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1.0 Executive Summary 

The Wetland Identification Model (WIM) is an automated geoprocessing workflow created 

through research at the University of Virginia (O’Neil et al., 2018; 2019; 2020). The workflow 

predicts likely wetland areas from a set of hydrologically based indicators that are derived from a 

high-resolution DEM. WIM is implemented as a series of Arc Hydro Python Script Tools for 

ArcGIS Pro (version 2.5 and higher). This document describes the implementation of WIM within 

the Arc Hydro framework and its intended workflow.  

1.1 Document History 

Table 1. Document Revision History 

Version Description Date 

1 Initial document (GLO). March 2020 

2 Adding use cases and documenting step 0 March 2021 

3 Updating use cases and documentation for Pro 3+ tools February 2024 
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2.0 Getting Started with WIM 

WIM is included in the installation of Arc Hydro Pro. Guidelines for installing Arc Hydro can be 

found here. Users should install version 2.0.165 or higher of Arc Hydro. Testing data used in this 

documentation can be found here.  

Users must also install the Scikit-Learn Python package to their ArcGIS Pro Python environment. 

Without doing so, “Train Random Trees,” “Run Random Trees,” and “Assess Accuracy” will fail. 

Follow the steps below to install the Scikit-Learn package.  

1. Clone the default ArcGIS Pro Python environment. 

o In an ArcGIS Pro project, select the “Project” tab  

o Select the “Python” tab 

o Select “Manage Environments” 

o Select “Clone Default” 

 

  

https://community.esri.com/message/393615-arc-hydro-installation-versions-and-documentation
https://www.esri.com/en-us/industries/water-resources/arc-hydro/downloads#arc-hydro-for-arcgis-pro
http://downloads.esri.com/archydro/archydro/Tutorial/Data/
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2. Add the Scikit-Learn package to the cloned environment. 

o With the cloned environment selected in the Python Package Manager page, 

select “Add Packages” 

o Navigate to Scikit-Learn and install the latest version. 

 

3. Select the cloned environment as the activated Python environment before using the 

WIM tools. 
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3.0 Solution Overview 

WIM is implemented as 10 script tools in the “Wetland Identification” toolset, within the Arc 

Hydro Tools Python Toolbox for ArcGIS Pro (Figure 1). The ModelBuilder implementation that 

was previously available has been removed as that execution method of WIM is not typically 

useful.  

 

Figure 1. Arc Hydro Pro toolset implementation of the Wetland Identification Model 

WIM consists of three main parts: preprocessing, predictor variable calculation, and 

classification and accuracy assessment (Figure 2). Required input data are a high‐resolution 

digital elevation model (DEM) and verified wetland/nonwetland coverage (i.e., ground truth 

data), both in TIFF format. A surface water raster is also strongly recommended. Final model 

outputs are wetland predictions and an accuracy report. All rasters created and used must be in 

TIFF format. The intended workflow is:  

0. (Optional) Input ground truth features are converted to raster format with the necessary 

environment settings applied. 

1. The input DEM is smoothed to optimize the surface for hydro feature extraction.  

2. The preprocessed DEM is used to calculate the predictor variables: the topographic 

wetness index (TWI), curvature, and cartographic depth‐to‐water index (DTW).  

3. Training data are derived from the ground truth data.  

4. The training data are coupled with the merged predictor variables to train a Random 

Trees (Breiman, 2001) model.  

a. Users can optionally incorporate other predictor variables in addition to or in 

place of the baseline topographic variables. The best-performing predictor 

variables may vary for different landscapes and target wetland types. 
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5. The trained Random Trees model is applied to an area to generate predictions. 

6. The ground truth data that were not used to train the model are used to assess the 

accuracy of predictions. 

7. (Optional) Apply simple, geometry based postprocessing to wetland predictions. This 

will also convert the raster prediction outputs to features. 

 

Figure 2. Overview of the Wetland Identification Model 
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3.1 Overview of WIM Tools 

Toolset Step Tool Description 

Wetland Identification 

(0 – optional)  

Rasterize 

ground truth 

features 

Preprocess 

Ground Truth 

Data 

Use this tool as a preliminary 

step to using WIM to ensure 

your ground truth raster input is 

in the proper format. Preprocess 

Ground Truth Data will return a 

raster with correct snap raster 

and cell size settings. The output 

raster will render known 

landcover classes (e.g., wetland 

or nonwetland) as integer raster 

values. Areas within the ground 

truth extents that are not known 

(i.e., unknown background 

areas) will be rendered as 

NoData and ignored in 

subsequent analyses. Users must 

take note of the integer value 

that represents specific 

classification targets. Integer 

values in the output raster must 

begin at 0 and increase by 1. The 

output raster will subsequently 

be used to create training and/or 

testing data. For that reason, the 

output raster dictates the cells 

that will be used for Random 

Trees training and accuracy 

assessments. 

(1)  

Smooth High-

Resolution 

DEM 

Smooth High-

Resolution 

DEM 

Smoothing is used to blur DEMs 

to remove the changes in 

elevation that are too small to 

indicate features of interest (i.e., 

microtopographic noise), which 

are ubiquitous in high-resolution 

DEMs. We recommend using a 

3m resolution. 

(2)  

Create 

Predictor 

Variables 

 

Calculate 

Depth to Water 

Index 

Calculates the cartographic 

depth-to-water index (DTW). 

The DTW, developed by 

Murphy et al. (2007), is a soil 

moisture index based on the 

assumption that soils closer to 
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surface water in terms of 

distance and elevation are more 

likely to be saturated. This tool 

uses the Spatial Analyst Surface 

Parameters tool to calculate the 

slope component. Like Surface 

Parameters, this tool gives users 

the option to implement an 

adaptive neighborhood size to 

compute slope. Surface water 

inputs can be either raster or 

feature type. Users should derive 

DTW from a smoothed, high 

resolution DEM to avoid 

microtopographic noise, and 

should use updated surface water 

data. 

Calculate 

Curvature 

Calculates the curvature (i.e., the 

second derivative) of the land 

surface. Curvature can be used 

to describe the degree of 

convergence and acceleration of 

flow (Moore et al., 1991). This 

tool uses the Spatial Analyst 

Surface Parameters tool to 

calculate mean curvature. Like 

Surface Parameters, this tool 

gives users the option to 

implement an adaptive 

neighborhood size to compute 

curvature. Users should derive 

curvature from a smoothed, high 

resolution DEM to avoid 

microtopographic noise. 

Calculate 

Topographic 

Wetness Index 

Calculates the topographic 

wetness index (TWI). The TWI 

relates the tendency of an area to 

receive water to its tendency to 

drain water. This tool uses the 

Spatial Analyst Surface 

Parameters tool to calculate the 

slope component. Like Surface 

Parameters, this tool gives users 

the option to implement an 

adaptive neighborhood size to 
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compute slope. To calculate the 

flow accumulation component, 

the tool uses the Spatial Analyst 

Fill tool or Spatial Analyst 

Derive Continuous Flow tool. 

Users should derive TWI from a 

smoothed, high-resolution DEM 

to avoid microtopographic noise. 

(3)  

Split ground 

truth data into a 

training set and 

a testing set 

Train Test Split 

Create training and testing 

subsets from a ground truth 

raster for supervised 

classification applications. The 

training raster is created by 

randomly sampling user-defined 

percentages of each discrete 

class of the ground truth data. 

Alternatively, the training raster 

is a subset designated by the 

training sampling area 

constraint. The testing raster is 

the complement of the training 

raster, comprised of all 

remaining cells in the ground 

truth extents. The testing raster 

represents a reserved group of 

ground truth cells that can be 

used to assess model accuracy 

for areas where it was not 

trained. 

(4)  

Train the 

Random Trees 

model 

Train Random 

Trees 

Executes the training phase of 

the Random Trees algorithm. In 

this phase, the algorithm takes 

bootstrap samples of the training 

dataset. A decision tree is 

created from each bootstrap 

sample. Each decision tree 

attempts to learn patterns present 

in ground truth classes. The 

trained model is saved and can 

be used to generate predictions 

based on the patterns learned 

during training. 

(5)  
Run Random 

Trees 

Predict the distribution of target 

landscape classes using a model 

trained for those classes. 
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Generate 

predictions 

Predictions do not need to be 

made in the same area for which 

the model was trained, but the 

calculation of the predictor 

variable(s) used to train the 

model applied must be the same. 

In the baseline implementation, 

a model can be trained using the 

DTW, Curvature, and TWI for 

one area and used to make 

predictions for a new area where 

DTW, Curvature, and TWI have 

also been derived. 

(6)  

Generate 

accuracy 

metrics for 

predictions 

Assess 

Accuracy 

Given the predicted output from 

the preceding step and a 

corresponding raster with 

ground truth labels for the cells 

(i.e., the testing raster), this tool 

generates accuracy metrics that 

summarize the model’s ability to 

predict the target classes. 

Additional metrics are generated 

if the user includes output class 

probability rasters. 

(7 – optional) 

Apply 

geometry-

based cleanup 

to wetland 

predictions 

Postprocess 

Wetland 

Predictions 

Pixel-based classifications, like 

Random Trees, can produce 

sparse predictions since they 

consider the relationship 

between target classes and 

characteristics on a cell-by-cell 

basis. In the case of wetlands, 

these isolated cells are unlikely 

to represent true wetlands, which 

exist as geomorphic objects. 

Further, smaller collections of 

sparse predictions may represent 

wetlands smaller than a user's 

minimum mapping wetland unit. 

This tool applies a simple, 

geometry based post-processing 

to raster wetland predictions to 

return a cleaned-up set of 

predicted wetland polygons. The 

post-processing workflow 

performs the following:  
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1. Majority Filter on the 

input binary predictions 

raster (using 8 neighbors 

and a replacement 

threshold of half)  

2. Converts the filtered 

raster to polygons, 

deleting the nonwetland 

polygons (cell value = 1)  

3. Deletes any remaining 

polygons smaller than 

the input minimum 

wetland size  

4. Uses Eliminate Polygon 

Part to fill holes smaller 

than the input minimum 

wetland size within 

remaining wetlands  
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3.2 Database Design 

It is recommended that you follow the intended database design. The folder structure is as 

follows.  

 

Although the folder structure mirrors the Arc Hydro design, the Layers feature dataset is unused 

as no feature classes are created. The contents of the other folders are as follows. 

 “MyProject\Layers” subfolders: 

1. “inputs” 

a. Stores the input data in TIFF format. At a minimum, these data must include the 

DEM, ground truth dataset, and surface water raster. If a training area constraint is 

used, it should be saved to this location. 

b. If running multiple trials of the WIM, the contents of this folder will not change.  

2. “model” 

a. Stores data that directly impact or are directly impacted by the Random Trees 

model. This includes the training and testing rasters, and the variable importance 

measures that are calculated each time a model is trained.  

b. The contents of these files should be kept for reference over the course of trials 

that evaluate different training sampling scenarios. 

3. “outputs” 

a. Stores the prediction outputs from the Random Trees model. This will always 

include a prediction raster, where each cell is assigned a class. This folder may 

also include prediction probability rasters. 
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4. “predictor_variables” 

a. Stores the predictor variables that are used to train the Random Trees model. If 

preprocessing parameters change, new contents will be added to this folder. If you 

choose to include additional predictor variables, they should be saved here. 

5. “secondary_outputs” 

a. Stores intermediate raster outputs. These will include the smoothed DEM, 

hydroconditioned DEM, TWI components, and DTW components. If users have 

already used these rasters to derive predictor variables (see sections 2.3.3 – 2.3.5), 

the contents of this folder can be archived to free disk space. 

“MyProject\train_model_predict_metrics” contents: 

1. This folder (named according to user input) contains the accuracy metrics used to 

summarize model performance. These are not GIS data, but rather various plots and 

tables. 
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3.3 Output Data Naming Conventions 

It is best practice to follow predetermined data and naming conventions. These include the 

following: 

1. Processed DEMs are saved with prefixes that describe the preprocessing methods 

applied. For example, “dem_pm_100.tif” is a DEM that was smoothed using the Perona-

Malik method with 100 iterations.  

2. By default, predictor variables are saved with the base name of the preprocessed DEM 

and a suffix with the pattern “_[var].tif.” This is recommended to keep track of the effect 

of DEM preprocessing on wetland modeling accuracy, and how the best-performing 

preprocessing methods may differ across predictor variables. 

3. Training and testing rasters are saved as “train.tif” and “test.tif” by default. However, 

users are encouraged to choose names that reflect the training sampling scenario applied, 

since the base name of the training raster is used for naming prediction and accuracy 

outputs. An example of recommended naming convention would be 

“train_0_50_1_20.tif” and “test_0_50_1_80.tif”. These names reflect that 50% of class 0 

and 20% of class 1 were used for training, and the accuracy assessment will apply to the 

remaining 50% and 80% of class 0 and 1, respectively.  



 

 

Arc Hydro – Wetland Identification Model 15 2/2024 

4.0 Extents and Size Limitations 

There are two distinct processing extents when running WIM (Figure 3). First, is the modeling 

extent. The modeling extent is determined by the ground truth area extents. This represents the 

area for which a model can be trained and tested because the true landcover classes are only 

known within these extents. The Train Random Trees tool will only process within the extents of 

the training raster. The Assess Accuracy tool will similarly only process within the extents of the 

testing raster.  

Second is the predictor variable extent. This extent represents the area for which wetland 

characteristics are generated. The best practice for this extent is the smallest hydrologic unit that 

encompasses the modeling extent, as this will allow the user to include the area’s hydrologic 

connectivity. Due to raster size limitations, the predictor variable extent should not be larger than 

a HUC-12 watershed with 1m resolution, and smaller watersheds are encouraged if available. 

Using the baseline implementation of WIM, the predictor variable extent is determined by the 

input DEM and surface water raster. If users include additional predictor variables, such as 

imagery-based vegetation information, the source imagery raster would also determine the 

predictor variable extents. The predictor variable extent is the processing extent used for all tools 

other than Train Random Trees and Assess Accuracy. Moreover, wetland predictions can be 

generated for the entirety of the predictor variable extent, as seen in the use cases.  

Size limitations for input rasters will vary by machine. On the backend, raster size limitations are 

determined by NumPy array size limits and limits inherent to the arcpy RasterToNumPyArray 

tool. If users run into size-related errors, they should process in chunks. For example, derive the 

predictor variables in watershed chunks (no larger than a HUC-12) and use the most confident 

pocket of ground truth data to train the model, reserving other areas for accuracy assessment. We 

recommend following the WIM workflow with a 3m raster resolution, stemming from a 3m 

DEM resolution. In most cases, this resolution allows for processing of an entire HUC-12. In 

addition, wetland modeling has been shown to achieve a higher accuracy when predictor 

variables are modeled from a 3m DEM vs. 1m. 

https://pro.arcgis.com/en/pro-app/3.1/arcpy/functions/rastertonumpyarray-function.htm
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Figure 3. WIM modeling extent (red) and predictor variable extent (yellow). The predictor variable extent is a hydrologic 

unit that fully encompasses the ground truth area. The modeling extent (red) is the ground truth area, where training and 

testing can occur. If ground truth data extends to an entire watershed, the predictor variable and modeling extent would 

be the same (as shown in Use Case 1). 
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5.0 Use Cases 

WIM is intended to produce an initial screening of wetlands in areas where wetlands data does 

not exist. WIM outputs can be useful for understanding relative wetland abundance between 

areas and/or prioritizing surveying efforts to manually confirm wetland characteristics.  

WIM is flexible and can be configured to fit several modeling needs. Below, we provide 

suggestions and starting points for WIM parameters. But users should keep in mind that optimal 

WIM parameters will vary by the landscape and application. It will be an iterative process to 

build the best-performing model for a user’s specific study area and end goal. For more detailed 

discussion on the methods applied and the justification for their use in the WIM workflow, see 

O’Neil et al. (2018; 2019).   

The following use cases are chosen to highlight the flexibility of WIM. Use cases are based in 

Delaware and leverage updated NWI data as ground truth data. However, we recommend using 

the most accurate ground truth data available for your own applications. 

Follow along with Use Case data. This data package will include all input and created data, 

with the exception of trained model files. 

5.1 Use Case 1 – Binary Classes, Baseline Predictor Variables, 
Training Sampling Constraint 

Use Case 1 applies WIM with binary ground truth classes (e.g., wetlands and nonwetlands) and 

only the baseline predictor variables (i.e., curvature, TWI, and DTW). All ground truth data is 

contained by a single HUC-12 watershed, so we will use a training sampling area constraint to 

create distinct training and testing datasets.  

Our input data for this use case is as follows: 

1. Ground truth wetland features,  

2. One feature delineating the extent to which wetlands were surveyed (i.e., all areas within 

the extents other than wetlands are confidently nonwetland area), 

3. One feature delineating the extent within which training data can be extracted, 

4. DEM raster (3m resolution), and 

5. Surface water raster. 

http://downloads.esri.com/archydro/archydro/Tutorial/Data/
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Input data for Use Case 1, separated by feature data (left) and raster data (right) 

Note that in this example, wetland coverage is known within an entire HUC-12 watershed. 

Unlike the example in Figure 3, the predictor variable extent and the modeling extent are the 

same – the HUC-12 boundary (yellow). The DEM was clipped to the HUC-12 extent and 

predictor variables will be calculated for that area. The model will train using data within the 

training sampling area constraint (red), which delimits the training data. Model predictions and 

accuracy assessment will be completed for the area outside of the training sample constraint and 

within the HUC-12 boundary, i.e., the extent of the testing data. See the visual illustrations 

below.  

 

Explanation of the computational extents for Use Case 1 
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0. Preprocess Ground Truth Data 

 

 

Ground truth raster output created by Preprocess Ground Truth Data 

The Preprocess Ground Truth Data tool converts ground truth features and the limits of known 

ground truth area into a raster with resolution, spatial reference, and extent that matches the input 

DEM. The created ground truth raster represents known landcover classes as unique integer 

values. In the example above, pixels with a value of 0 correspond to known wetlands and those 

with a value of 1 correspond to known nonwetlands. These pixels will be interpreted by the 

Random Trees model as target classes. See Section 5.4.1 for details on configuring a model with 

multiple target classes.  
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1. Smooth High Resolution DEM 

 

 

Smoothed DEM created by Perona Malik Smoothing via Smooth High Resolution DEM 

We strongly recommend the Perona Malik Smoothing algorithm for hydrologic feature 

extraction. Applying this smoothing process has been shown to improve both stream extraction 

(Passalacqua et al., 2010) and wetland (O’Neil et al., 2019) modeling.  

 

2. Calculate Predictor Variables 

In this step, rasters that describe wetland and nonwetland characteristics are prepared. We focus 

on the three baseline WIM predictor variables. These are topographic derivatives that serve as 

proxies for near-surface soil moisture. Other wetland/nonwetland indicators can be included, and 

in some cases, should be included to improve models. 
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a. Calculate Depth to Water Index (DTW) 

The DTW calculation requires an input surface water raster. These data may come from public 

datasets for streams and waterbodies, such as NHD. Or they may be derived from a combination 

of satellite imagery and the elevation data. See this blog on creating a surface water raster for 

WIM using DSWE and elevation-derived streams. In any case, the surface water raster must 

have the same resolution and projection as the input DEM.  

 

Example of the input surface water raster showing stream centerlines and waterbody as 

observed by DSWE. 

https://www.usgs.gov/national-hydrography/access-national-hydrography-products
https://esrips.github.io/ah-docs/docs/userGuides/wetland-identification/Using_DSWE_for_Wetland_Identification
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DTW results for the predictor variable extents (left) and zoomed in showing known wetlands in 

white shading (right). 

 

b. Calculate Curvature 
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Curvature results for the predictor variable extents (left) and zoomed in showing known 

wetlands in white shading (right). 

c. Calculate Topographic Wetness Index (TWI) 
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We recommend using the Continuous Flow option for the Hydrocondition Method. This method 

leverages the A* least-cost path analysis for flow routing, where water is routed into sinks along 

the steepest path and out of sinks along the mildest ascent. This method allows us to omit 

altering the high-resolution DEM through Fill or similar hydroconditioning techniques. 

 

TWI results for the predictor variable extents (left) and zoomed in showing known wetlands in 

white shading (right). 

 

3. Train Test Split 

Train Test Split is used to partition the prepared ground truth data into training and testing 

subsets. The training subset represents the only areas of ground truth data seen by the model to 

https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-derive-continuous-flow-works.htm
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learn the relationships and dependencies between the predictor variables and the ground truth 

classes. The testing subset is reserved ground truth data that can be used to assess how accurate 

predictions are for an area where the model was not trained. An alternative to this application of 

Train Test Split is the one shown in Use Case 2. 

 

Aside from the methods shown here and in Use Case 2, users could alternatively skip this step 

and proceed to training the random trees model with the entire ground truth raster. However, the 

ground truth area would then be disqualified for a representative accuracy assessment. 

 

 

 

Note that without a training sampling area constraint, you may want to modify the Percent to 

Sample for Testing parameter. For example, if training data can be sampled from the entire 

ground truth area, a user could specify that only 50% from each target class should be sampled 

for training and the remainder would be left for testing. The Percent to Sample for Testing can 

also be used to address class imbalance. In an area with significantly more wetland area than 

nonwetland, it can be beneficial to sample a smaller proportion of the nonwetland class to 

provide more similar quantities of wetland and nonwetland examples during training. 
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Training and testing rasters created by Train Test Split 

4. Train Random Trees 

In this step, a Random Trees model is created that defines dependencies between the predictor 

variables and wetland vs. nonwetland presence. You may encounter a warning that rasters will be 

clipped to maintain common extents. That is expected and not a cause for concern. 
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This tool creates several important outputs: 

• Composite raster  

o Multidimensional raster where each band stores the information from one of the 

predictor variables. If only one predictor variable is used, the composite raster 

will be a copy of the single predictor variable. If you already have a composite 

raster of your predictor variables, you can enter that as the single predictor 

variable raster. 

• Variable importance report 

o Relative measures of importance between the predictive variables during training. 

The values are related to an estimated decrease in accuracy if that variable were 

removed. 

• Trained model (*.JOBLIB) 

o File that retains the learned relationships between predictor variables and target 

classes. This file can be used to generate new predictions. 
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Outputs from Train Random Trees, variable importance report (left) and composite raster (right) 

 

The composite raster is created from the three predictor variable rasters; thus, it maintains the 

full predictor variable extent. However, the model training only occurred within the extents of 

the training dataset (red extents).  

 

 

5. Run Random Trees 

 

The resulting trained model can now be applied to any composite raster comprised of the same 

combination of predictor variables, in the same order. We will generate predictions for all of the 

composite raster. The output predictive rasters will contain results for an area that the model has 

already learned from as well as a larger area where the model has not been trained.  
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Two sets of outputs are created: 

 

1. One prediction raster that represents the hard classification. Each pixel in this raster is 

assigned the class that the model predicts it belongs to. 

2. Probability raster created for each target class from training. Each pixel in the rasters is 

assigned a probability (0-1) that it belongs to the corresponding class. 

 
Output predictions for Use Case 1, where each pixel is assigned a predicted class. 
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Output class 0 (i.e., wetlands) probability predictions for Use Case 1, where each pixel is 

assigned its probability of belonging to class 0. 

 

6. Assess Accuracy 

Predictions were generated in areas outside of the training area, i.e., the testing area. Since we 

know the true coverage of wetlands and nonwetlands within the testing area, we can perform an 

accuracy assessment and understand the trained model’s expected accuracy in similar areas. The 

Assess Accuracy tool will compare the predictive value of each pixel to the actual pixel value, 

according to the testing raster. 
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A directory of accuracy metrics is created. The accuracy metrics pertain only to the extents of the 

testing raster used in Assess Accuracy. The Scikit-Learn library is the engine behind the 

accuracy metrics. The accuracy results include: 

• Accuracy report – summarizes the precision, recall, and F1-score of each prediction 

target. The “support” column is the number of pixels per class in the testing dataset. 

 

• Confusion matrix – summarizes the number of pixels in the prediction raster that falls 

into the true positive, true negative, false positive, false negative categories.  

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html#sklearn.metrics.precision_recall_fscore_support
https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix
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• Precision-Recall curve – plots the precision and recall for varying decision thresholds, as 

given by the probability raster. This output is only created if Optional Accuracy Outputs 

are entered. The precision-recall curve also gives an Average Precision score, which 

summarizes the accuracies overall. A perfect mode will have an Average Precision of 1. 

Strong models are those that trend towards Average Precision = 1.  

 

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html#sklearn.metrics.precision_recall_curve
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
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5.1.1 Interpreting Use Case 1 Results 

While the WIM workflow was executed successfully for Use Case 1, the model performed 

poorly. Average Precision was relatively low (0.4), and wetland precision and recall were low 

(47% and 19%, respectively).  

This specific study area is agricultural, which may impact natural drainage patterns and result in 

misleading wetland signatures from the baseline wetland indicators alone. For that reason, our 

model may benefit from being able to relate wetlands to landcover classes, in addition to 

topographic indices. In Use Case 2, we will refine the model by adding landcover data to the 

predictor variable set.  

 

Use Case 1 Probability results with known wetlands shown (white shading). This scene 

exemplifies the poor performance of the Use Case 1 model, where known wetlands are predicted 

to have low-medium wetland likelihood. 

5.2 Use Case 2 – Additional Predictor Variables 

WIM baseline indicators may be insufficient for wetland modeling in areas with built drainage or 

landscapes with a more complex subsurface (e.g., coastal or glacial influence). In such cases, 

topographic variations do not correlate well to ground water table gradients, which is an 

underlying assumption of WIM’s baseline inputs. Even in areas where the baseline topographic 

derivatives are good indicators of wetlands, additional predictor variables may improve results 

by providing more distinct characteristics for target classes. 

WIM predictor variables are not limited to DEM-derived indices. The Random Forests algorithm 

can train on both continuous and categorical data. So, WIM inputs can include other indices, like 

NDVI, as well as discreet and non-ordinal data like landcover classes.  
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This specific study area is agricultural, which may impact natural drainage patterns and result in 

misleading wetland signatures from the baseline wetland indicators alone. For that reason, 

landcover class information may improve our model by indicating cropland vs. natural areas.  

We will refine the Use Case 1 model by adding landcover data from the Living Atlas. Refer to 

Use Case 1 for steps 1 – 3. 

4. Train Random Trees – Additional Predictor Variable 

a) Preparing additional predictor variables 

As with any additional predictor variable, this dataset must be exported as a TIFF with matching 

cell size, projection, and extents as the input DEM. This can be accomplished with several tools. 

We used the following procedure: 

• Run Extract By Mask 

o Input raster = raw landcover raster 

o Input raster mask data = preprocessed DEM (has been clipped to the processing 

extents and is in the desired projection) 

o Extraction Area = inside 

o Environments 

▪ Output Coordinate System = preprocessed DEM 

▪ Processing Extent = preprocessed DEM 

▪ Cell Size = preprocessed DEM 

▪ Snap Raster = preprocessed DEM 

b) Train Random Trees 

https://livingatlas.arcgis.com/landcover/
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The newly generated variable importance report provides a sense of the value provided by the 

additional predictor variable.  

 

Variable Importance report generated from Train Random Trees with the additional predictor 

variable, landcover classes 

The landcover class input appears to be impactful as it has a higher importance than the three 

baseline inputs. 

5. Run Random Trees 



 

 

Arc Hydro – Wetland Identification Model 36 2/2024 

Just as we did in Use Case 1, Run Random Trees will be used to generate predictions with the 

newly trained model. This iteration of the tool will use the model file and composite raster 

created in the previous step. The newly trained model can only be applied to composite rasters 

composed of the same four predictor variables: curvature, DTW, TWI, and Sentinel 2 landcover 

classes.  

We can see the effect of our model refinement by comparing these results to Use Case 1 results.  

 

Wetland class probabilities predicted by the Use Case 1 (left) and Use Case 2 (right) models. 

Use Case 1 leverages only the baseline WIM predictor variables. Use Case 2 adds Sentinel-2 

landcover classes to the predictor variable set. Verified wetlands are shown in white shading. 

 

A visual comparison between the Use Case 1 and Use Case 2 results show the Use Case 2 model 

was more certain in wetland predictions within the testing wetlands. This indicates a more 

accurate model.  

6. Assess Accuracy 

Following the method in Use Case 1, an accuracy report can be generated for Use Case 2. The 

same testing dataset is used, but they are compared to the Use Case 2 results. Shown below, the 

inclusion of landcover data improved the model according to all accuracy metrics.  
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Accuracy report for the Use Case 2 model 

 

Confusion matrix for the Use Case 2 model 
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Precision-recall curve for the Use Case 2 model 
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5.3 Use Case 3 – Applying a Developed Model to a Similar Area 

Use Case 1 and Use Case 2 describe a scenario where a user has a single HUC-12 area of 

interest, and a portion of that area is used to train a model while the remainder is used to run 

inference and assess accuracy. Another typical scenario is one where a model is developed in one 

region for which wetland distribution is known (perhaps one HUC-12) and applied to a new 

region where wetlands data does not exist. In this scenario, the separate training and testing 

regions should have similar enough landscapes that the learned wetland characteristics are likely 

to translate. As with the previous examples, the model must be applied to an area that has the 

same predictor variable set that was used for training. 

Use Case 3 entails training a model using one HUC-12 and testing and evaluating the model in 

an adjacent HUC-12. Data from previous use cases are repurposed.  

Our input data mirrors the Use Case 1 set; however, data is available for two HUC-12s (training 

and testing HUC-12s). Since ground truth data is known for all of the Training HUC, the entire 

Training HUC is the predictor variable extent. Training will occur for all pixels within the 

Training HUC. We will calculate predictor variables for all of the Testing HUC, so the trained 

model will be applied for the entirety of that area. Testing wetlands are known for all of the 

Testing HUC, so an accuracy assessment will be performed for the entirety of that area as well.  

 

Training (yellow) and testing (red) areas for Use Case 3. All wetlands in the training area will 

be used to train a model that will be applied to the testing area. 

0. Preprocess Ground Truth Data 

Run the Preprocess Ground Truth Data tool for the training dataset. Save the output as 

training.tif. 
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Training raster for Use Case 3 

1. Smooth High-Resolution DEM 

Repeat Step 1 from Use Case 1 using the DEM for the training HUC12. This will create a 

Perona-Malik smoother DEM in the training area. 

2. Calculate Predictor Variables 

Repeat Steps 2a, 2b, and 2c from Use Case 1 using the DEM for the training HUC12. These 

steps will create the following: 

• Curvature for the training area 
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• TWI for the training area 

• DTW for the training area 

In addition, we will again use a landcover raster derived from Sentinel-2, as we did in Use Case 

2. A prepared landcover raster is provided for you in the UseCase3 > Layers > 

predictor_variables directory.  

3. Train Test Split 

We will use the entirety of the ground truth raster in the training area (i.e., “training.tif”) to train 

the model. This raster was created with the necessary environment constraints during the 

Preprocess Ground Truth Data tool. For that reason, Train Test Split is skipped. 

 

4. Train Random Trees 

Use the Train Random Trees tool to train a model within the training extents. Save the Prepared 

Predictor Variable raster as composite_training.tif. As done in previous use cases, leave all 

advanced parameters as the default values.  
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5. Run Random Trees 

Before generating predictions in the testing area, we must create a composite raster for the 

testing area that mirrors the predictor variable set used to train the model in Step 4. 

a. Smooth High-Resolution DEM 

Smooth the testing DEM using the same parameters applied to the training DEM in Step 1.  

b. Calculate Predictor Variables 

Create Curvature, TWI, and DTW rasters from the smoothed testing DEM. Use the prepared 

surface water raster for the testing area that is provided.  

c. Create a composite raster 

Use the Composite Bands tool to create a composite raster for the testing area. Be sure to enter 

the rasters in the same order as was used in Step 4. 

 

d. Generate predictions with the trained model 

Use the Run Random Trees tool to generate predictions for the testing area.  
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Prediction results for Use Case 3, verified wetlands are shown in white shading. 

6. Assess Accuracy 

Predictions have been generated within the testing HUC12. We have verified wetlands for this 

same area; thus we can perform an accuracy assessment.  

a. Use Preprocess Ground Truth Data to prepare the testing wetlands data for Assess 

Accuracy 
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b. Assess Accuracy 

Use the output from the previous step (testing.tif) as the testing raster input to assess the 

accuracy of the prediction results.  
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6.0 Additional Usage Guidance 

6.1 Multiple Target Classes & Specific Sampling Percentages 

Seeing an example below for using WIM with multiclass ground truth classes (e.g., wetlands by 

type or wetlands and specific nonwetland classes). Additionally, specific sampling percentages 

will be indicated for training data sampling. 

Assume the Input Ground Truth Features are polygons that represent multiple known landcover 

classes. The distinct classes are indicated by the “type” field. Preprocess Ground Truth Data can 

be used to rasterize these features properly for WIM, while maintaining the class data.  
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Groundtruth raster created with multiple classes 

See additional examples for Preprocess Ground Truth Data here. 

 

The Train Test Split tool will also be configured differently to account for the multiclass 

prediction scenario and to specify specific training sampling percentages. With these parameters 

and without a Training Sampling Area Constraint, the resulting training and testing rasters will 

be composed of randomly sampled pixels of varying quantities.  

 

 

https://community.esri.com/t5/water-resources-blog/wim-updates-for-arcgis-pro-3/ba-p/1233973
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Training and testing rasters created from a multiclass groundtruth raster and varying sampling 

percentages  

 

6.2 Results Interpretation and Model Development 

Developing a wetland model that is best suited to your target landscape and application will be 

an iterative process informed by results interpretation. The entire suite of accuracy metrics 

generated should be considered when evaluating model performance. In assessing the 

performance of a model, consider: 

• The difference in true negative rate (nonwetland recall) and true positive rate (wetland recall) 

in an imbalanced area. In an area where true wetlands are very sparse, a high true negative 

rate, low true positive rate, and high overall accuracy can be misleading. Consider that in an 

area where there is much more nonwetland area than wetland - an unskilled model could 

predict the entire area to be nonwetland and achieve “high” overall accuracy while 

identifying 0% of the wetlands. 

• The tradeoff between wetland recall and precision. Unless you have a very high performing 

model, you can expect precision to decrease as recall increases. This is because more 

predictions need to be made to increase recall, and this typically results in some erroneous 

predictions (i.e., lower precision) as well. When you are past the point of being able to 

increase both metrics, you should consider whether it is more costly to omit true wetlands 

(related to recall) or overpredict wetlands (related to precision). Balancing these metrics can 

be accomplished through model development or using the probability raster to explicitly 

define the confidence threshold required to make a wetland prediction.  

• The precision-recall (PR) curve as a way to summarize model performance. The PR curve 

shows the precision and recall for that specific class if class predictions were made at varying 

confidence thresholds. The area under this curve, or Average Precision (AP), summarizes 

model performance for identifying that specific class, with values closer to 1 indicating a 

better model. When the AP score gets closer to 1, it shows that as the confidence threshold is 

lowered and the model makes more predictions for that class, recall increases with minimal 

sacrifice to precision/overprediction.  

 

Moreover, ways to improve your model may include: 

• Alternative training sampling schemes. Literature supports undersampling the majority class 

in an imbalanced scenario can improve the detection rate of the minority class. In other 

words, you may want to sample less of nonwetland class(es) if they represent a much larger 

proportion of your entire project area compared to the wetland class.  
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• Remove the training constraint or change its location. It is possible that the wetlands found 

within the training constraints are not representative of the types of wetlands in the testing 

area. By sampling more types of wetlands, the model can learn a more robust set of wetland 

characteristics. 

 

• Experiment with additional trials of the DEM preprocessing phase. Literature shows that the 

best performing smoothing method and scale for the DEM may vary between the topographic 

predictor variables. Also, depending on the size of wetlands typical to the target area, 

predictor variables may model the wetland hydrology better when derived at coarser or finer 

scales. 

 

• Improve the quality of the ground truth datasets. It is important to be confidence in the spatial 

extents to which you know wetland coverage. Otherwise, it is possible that additional 

wetlands exist in the ground truth dataset and the model could be trained and assessed on 

incorrect data. Further, model results may improve with more discrete and unique classes in 

the ground truth data IF the predictor variables used are good distinguishers between the 

classes. Improving the quality of this data would not only improve the model training, but 

also provide a more representative accuracy assessment.  

 

• Include additional predictor variables. The baseline, topographic predictor variables included 

with WIM have been shown to be useful for wetland mapping across landscapes. However, 

they are not at all exhaustive of relevant landcover characteristics. If additional predictor 

variables are available for your project area, they should be included in your model 

development iterations. Presumably, including vegetative information or other imagery-based 

data would improve results. These additional predictors may be especially helpful in areas 

with few topographic variations or with coastal or glacial subsurface influence. It is 

important to keep in mind, however, that the same set of predictor variables must be present 

for any other area that you want to apply your trained model to.  
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7.0 Individual Tool Help 

See the documentation for tool metadata. Relevant notes beyond Tool Metadata, if any, follow. 

7.1 Preprocess Ground Truth Data 

 

Algorithm Notes: 

See usage examples below.

https://esrips.github.io/ah-docs/docs/category/wetland-identification
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7.2 Smooth High-Resolution DEM 

Algorithm Notes: 

• Execution of Gaussian smoothing in the WIM is based on code from Sangireddy et al. 

(2016). 

• Execution of Perona Malik smoothing in the WIM is based on code from Sangireddy et 

al. (2016). 

7.3 Calculate Depth to Water Index using Surface Parameters 

Algorithm Notes: 
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This tool calculates the cartographic depth-to-water index (DTW) to be subsequently used as a 

predictor of wetland areas. The DTW, developed by Murphy et al. (2007), is a soil moisture 

index based on the assumption that soils closer to surface water, in terms of distance and 

elevation, are more likely to be saturated. Calculated as a grid, the DTW is defined as  

 
(1) 

where dz/dx is the downward slope of cell 𝑖 along the least-cost (i.e., slope) path to the nearest 

surface water cell, a is a factor accounting for flow moving parallel or diagonal across pixel 

boundaries, and xc is the cell resolution (Murphy et al., 2007). The WIM implementation of eq. 

(1) requires two inputs: a slope raster to represent the cost surface and a surface water raster to 

represent the source location.  

The tool performs the following actions: 

1. Calculates a DTW-specific slope raster from the input DEM unless one is provided as an 

optional input.  

2. Optionally saves the intermediate outputs created during processing.  

3. Creates the DTW raster using the surface water raster as the source and the DTW slope 

raster as the cost.  

 

 

7.4 Calculate Curvature using Surface Parameters 

Algorithm Notes:  
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7.5 Calculate Topographic Wetness Index using Surface Parameters 

Algorithm Notes: 

This tool calculates the topographic wetness index (TWI) to be subsequently used as a predictor 

of wetland areas. The TWI relates the tendency of an area to receive water to its tendency to 

drain water, and is defined as 

 
(2) 

where a is the specific catchment area (contributing area per unit contour length) and tan(B) is 

the local slope (Beven & Kirkby, 1979). The WIM implementation of eq (2) requires a TWI 

slope and specific catchment area as inputs, although both can be calculated directly from the 

input high-resolution DEM. 

The tool performs the following actions: 

1. Calculates a TWI-specific slope raster from the input DEM, unless one is provided as an 

optional input.  

2. Calculates a specific catchment area raster from the input DEM, unless one is provided as 

an optional input.  

3. Optionally saves the intermediate outputs created during processing.  

4. Creates the TWI raster by implementing eq. (2) as a raster algebra expression.  
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7.6 Train Test Split 

Algorithm Notes: 

 

7.7 Train Random Trees 

Algorithm Notes: 

This tool executes the training phase of the Random Trees algorithm. In this phase, the algorithm 

takes bootstrap samples of the training dataset, including the labeled cells in the training raster 

and the predictor variables. A decision tree is created from each bootstrap sample, and all are 

used to learn the indicators of the ground truth classes based on information from the predictor 

variables. In doing this, the Random Trees algorithm is less susceptible to overfitting. This tool 

uses the Scikit-Learn Python library (Scikit-Learn Developers, 2017a) to execute the Random 

Trees algorithm. For a more detailed discussion of the algorithm and its fit for WIM, see O’Neil 

et al. (2019).  

The tool performs the following actions: 

1. Prepares the predictor variable raster(s) for use by the Scikit-Learn library. If more than 

one predictor variable raster is given, a composite raster is created from all input 

predictor variables and saved to the Prepared Predictor Variable Raster name. If only one 

raster is passed, it will be copied and saved to the Prepared Predictor Variable Raster 

name, but it can be disregarded for later steps. In either case, the cells in the prepared 

raster are extracted only where the training labels before further use.  

2. Initializes the Random Trees model according to the number of trees, the maximum tree 

depth, the maximum number of features, and the class weights. If users omit these 

parameters or leave them unaltered, default values are used. Users should see Scikit-

Learn documentation for further details on these parameters (Scikit-Learn Developers, 

2017a).  

3. Trains the initialized model given the training dataset. Saves the trained model to a 

JOBLIB file. 

4. Saves the variable importance measures to a TXT file. These measures provide an 

estimate of the decrease in accuracy of the model if that predictor variable was removed. 

Common Error Messages: 

• Generic error due to Composite Bands tools on the backend 
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o Fix – Open the Composite Bands geoprocessing tool, navigate to its environment 

settings, change the Parallel Processing Factor to 0, re-run the Train Random 

Trees tool. 

o Or, after changing the Parallel Processing Factor, run the Composite Bands tool 

directly where the input rasters will be the same list of rasters that were entered 

into the predictor variables raster list. The output composite raster will be used as 

the only input predictor variables raster in the Train Random Trees tool. A copy 

of the composite raster will be created by the Train Random Trees tool, this can 

be ignored. Continue with the rest of the workflow. 

• IndexError: boolean index did not match indexed array along dimension 0; dimension is 

XXXX but corresponding boolean dimension is XXXX 

o This error is due to a mismatch in raster extents between the prepared predictior 

variable raster (the composite raster of the list of predictor variable rasters 

entered, or the single predictor variable entered if only one is being used) and the 

training raster. On the backend, the tool attempts to clip the prepared predictor 

variable raster to the same extents as the training raster. This error indicates that 

this process has failed.  

o As a workaround, try: 

▪ Manually run Composite Bands on the predictor variable rasters (or 

proceed with the single predictor variable raster being used) 

▪ Manually run Clip Raster between the result and the training raster 

▪ Check in the raster properties that the number of columns and rows is the 

same as those in the training raster 

o Also consider that the training raster must fit entirely within the extents of the 

predictor variables being used. If the training raster extends beyond, generate the 

predictor variables for entire extent of the area, or use a smaller ground truth area 

if the prior is not possible. 

• "ValueError: Input contains NaN, infinity or a value too large for dtype('float32')." 

o This error indicates that one of your Predictor Variable Rasters has a pixel type 

larger than 32 bit and/or a No Data value of NaN. On the backend, the scikit-learn 

library is used and has a value limitation that is exceeded by NaN values. This 

error source can be confirmed by opening the raster properties of a raster and 

seeing the No Data value and the pixel type parameters. 
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o This error is more common if one of the rasters were created outside of ArcGIS 

Pro or with tools other than WIM tools. 

o For each of the rasters with “nan” as the No Data value and/or pixel type of 64 bit 

▪ Run Copy Raster 

▪ Specify the output to be a TIFF 

▪ Specify the Pixel Type to be 32 bit signed 

▪ Choose a No Data Value other than nan 

• A common No Data value for 32 bit rasters is -3.4028235e+38 

• After running once, you may see that most of the raster is black 

and the minimum value is very large (e.g., -20000000). This will 

not interfere with further processes, but you can re-run Copy 

Raster with this unrealistic minimum value as the No Data Value 

parameter. 

7.8 Run Random Trees 

Algorithm Notes: 

This tool uses the trained Random Trees model to predict the class for the cells of the input 

predictor variables. Predictions do not need to be made in the same area for which the model was 

trained, but the calculation of the predictor variable(s) must be the same. In this case, a model 

can be trained using the DTW, Curvature, and TWI for one area and used to make predictions for 

a new area, if DTW, Curvature, and TWI have also been derived and are used as inputs.  

The tool performs the following actions: 

1. Loads the JOBLIB model and uses it to predict wetland and nonwetland areas for the 

predictor variables raster. Internally, the random trees algorithm uses the relationships 

learned between the predictor variables and class values during training and determines 

the final predicted class based on the majority vote of all decision trees created.  

2. If “Save probability rasters” is True, uses the JOBLIB model to produce the probability 

raster for each target class (e.g., wetland and nonwetland). The values in these rasters 

represent the probability that the cell belongs to the class in question on a 0-1 scale. 

These outputs can be useful for decision makers where the tradeoff between wetland 

detection and overprediction can be examined. Producing and saving these outputs also 

allow for a more thorough accuracy assessment in later steps. 
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7.9 Assess Accuracy 

Algorithm Notes: 

Given the predicted output from a supervised classification model and labeled ground truth data 

(i.e., the testing raster), a report is generated summarizing the performance of the model for the 

locations of the testing data (ideally, locations not used for training the model). Additional 

metrics are generated if the user includes output class probability rasters. Accuracy metrics were 

chosen to avoid misleading assessments of imbalanced ground truth classes, which is typical of 

wetland/nonwetland distributions. For further details and justification for the metrics chosen, see 

O’Neil et al. (2019). Accuracy metrics are calculated using the Scikit-Learn library (Scikit‐learn 

Developers, 2017b). Inputs and outputs are shown in the example run.  

The tool performs the following actions: 

1. Creates a new directory for accuracy metrics if the specified one does not already exist.  

2. If necessary, extracts the prediction raster cells that overlap with the testing raster cells. 

3. Calculates and plots a confusion matrix. The confusion matrix categorizes each cell 

(represented in units of km2 and m2) into one of four groups: true positive, true negative, 

false positive, or false negative. These categories indicate that the predicted cell either 

correctly identified wetland area, correctly identified nonwetland area, incorrectly 

identified a wetland area, or incorrectly identified a nonwetland area, respectively. The 

plots are saved as PNG files to the accuracy metrics directory as “conf_matrix” and 

“conf_matrix_meters.” 

4. Creates a classification report and saves to a TXT file as “summary_stats.” For each 

class, this report gives the precision, recall, f1-score, and support. Although metrics are 

calculated for each class, the descriptions below focus on the interpretation of scores for 

the wetland class. Note that other metrics given by the classification report may be 

misleading for imbalanced class predictions. For more information on these, users should 

see the Scikit-Learn documentation (Scikit‐learn Developers, 2017b). 

 

Precision is a metric that accounts for overprediction of the positive class (i.e., wetlands), 

without being biased by disproportionately large populations of the negative class (i.e., 

nonwetlands). Precision is the percentage of wetland predictions made that were correct, 

calculated as: 

 
(3) 
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Recall is a metric of class detection, giving the percentage of true wetlands that were 

correctly identified: 

 
(4) 

F1 score represents a weighted average of precision and recall, where the best F1 score is 

a value of 1 and a worst score is a value of 0. It is important to note that this metric 

assumes that high detection rate and low overprediction are equally important to 

stakeholders. Other forms of the F1 score exist where these components can be given 

different weights. The F1 score is defined as 

 
(5) 

 Finally, support represents the total samples (number of cells) in the true wetland class. 

5. If class probability rasters are passed, calculates and plots precision-recall curves for each 

probability raster, which each corresponds to a single class, given. Precision-recall curves 

plot precision versus recall for each predictive threshold of that class. That is, the curve 

will show the precision and recall scores if each cell required 0-100% probability of 

belonging to a class before being assigned to that class. In addition, the Average 

Precision score is calculated for each precision-recall curve. Average Precision is a 

surrogate for the area under the precision-recall curve, and it is used to summarize model 

performance for the class of interest. An Average Precision score closer to 1 indicates a 

better performing model. The Average Precision metrics is calculated as, 

 
(6) 

Where Pn and Rn are the precision and recall at the nth predictive threshold, respectively. 
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