Largest Scale When Displaying Data [1]	Grid Cell Size in Deg. Min. Sec.	Grid Cell Size in Metric Units (@ Equator)	Rounded Value	Data Set	Extent	Type of Data	Date	Source Agency	Source Location
36,000,000	5 arc-minute (5')	9.27	$\sim 9.3 \mathrm{~km}$	ETOPO5	Global	Land topography and ocean bathymetry	1988	NOAA NGDC [2]	http://www.ngdc.noaa.gov/mgg/global/etopo5.HTML
14,000,000	2 arc-minute (2^{\prime})	3.71	$\sim 3.7 \mathrm{~km}$	ETOPO2	Global	Land topography and ocean bathymetry	$\begin{aligned} & 2001 \text { or } 2006 \\ & \text { (version } 2 \text {) } \end{aligned}$	NOAA NGDC	ESRI Data and Maps DVD (2001 version) and http://www.ngdc.noaa.gov/mgq/fliers/01mgq04.html (2006 version)
7,200,000	1 arc-minute (1^{\prime})	1.85	$\sim 2 \mathrm{~km}$	ETOPO1 [3]	Global	Land topography and ocean bathymetry	2008	NOAA NGDC	http://www.ngdc.noaa.gov/mgg/global/global.html
3,600,000	30 arc-second (30 ")	0.93	$\sim 1 \mathrm{~km}$	GTOPO30	Global	Land topography	1997	USGS [4]	ESRI Data and Maps DVD and http://eros.usgs.gov/\#Find_Data/Products_and_Data_Available/gtopo30
3,600,000	30 arc-second (30")	0.93	$\sim 1 \mathrm{~km}$	GLOBE (Global Land One-kilometer Base Elevation)	Global	Land topography	1999	NOAA NGDC	http://www.ngdc.noaa.gov/mgg/topo/globe.htm
3,600,000	30 arc-second (30")	0.93	$\sim 1 \mathrm{~km}$	HYDROIK Elevation Derivative Dataset	Global	Land topography	1996	USGS	http://eros.usgs.gov/\#Find_Data/Products_and_Data_Available/gtopo30/ hydro
3,600,000	30 arc-second (30 ")	0.93	$\sim 1 \mathrm{~km}$	SRTM30_PLUS	Global	Land topography	2009	NGA and NASA	http://topex.ucsd.edu/WWw_html/srtm30_plus.html
360,000	30 arc-second (30")	92.66	90 m	SRTM (Shuttle Radar Topography Mission) V2 (Version 2)	Global	Land topography	$\begin{aligned} & 2000 \text { and } 2003 \\ & \text { (V2) } \end{aligned}$	NGA and NASA [5]	ESRI Data and Maps DVD and http://www2.jpl.nasa.gov/srtm/
360,000	3 arc-second (30")	92.66	90 m	NGDC Coastal Relief Model	Coastal areas around the U.S.	Land topography and ocean bathymetry		Scripps [6]	http://www.ngdc. noaa. gov/mgg/coastal/crm.html
240,000	2 arc-second (2")	61.77	60 m	NED (National Elevation Dataset)	Alaska land topography	Land topography	Updated bimonthly	USGS	http://ned. usgs.gov/
120,000	1 arc-second (1")	30.89	30 m	ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) GDEM (Global Digital Elevation Model)	Global between 83 degrees north and south	Land topography	2009	NASA and Japan's Ministry of Economy	http://asterweb.jpl.nasa.gov/
120,000	1 arc-second (1")	30.89	30 m	NED	U.S. land topography and selcted areas in Alaska	Land topography	Updated bimonthly	USGS	http://ned. usgs.gov/
40,000	1/3 arc-second (1/3")	9.27	10 m	NED	U.S. and Alaska land topography in select areas	Land topography	Updated bimonthly	USGS	http://ned. usgs.gov/
13,333	1/9 arc-second (1/9")	3.09	3 m	NED	U.S. land topography in select areas	Land topography	Updated bimonthly	USGS	http://ned.usgs.gov/
8,000		$0.25 \mathrm{pts} / \mathrm{m}$ to 8 pts/m	2 m	Coastal LiDAR (Light Detection and Ranging)	All of the U.S. coastal states with converage ranging from shoreline strips to full county coverage	Land topography and ocean bathymetry	1997 to present		http://www.csc.noaa.gov/digitalcoast/data/coastallidar/index.html

[1] For an output map pixel density of 100 pix/inch or $40 \mathrm{pix} / \mathrm{cm}$. Computed from $1 / \mathrm{x}=1 /(40 \mathrm{pix} / \mathrm{cm} *$ grid cell size in column C converted to cm .)
${ }^{\text {[2] }}$ National Oceanic and Atmospheric Administration, National Geophysical Data Center
[3] There are two versions of ETOPO1: Ice Surface is a grid of the Earth's surface depicting the top of the Antarctic and Greenland ice sheets; Bedrock is a grid of the Earth's surface depicting the bedrock underneath the ice sheets. [4] United States Geological Survey
[5] National Geospatial-Intelligence Agency and National Aeronautics and Space Administration
[6] Scripps Institute of Oceanography, University of California, San Diego
111.19 Kilometers in One Degree of Latitude for an authalic sphere equal in surface area to the WGS84 ellipsoid
60.04 Nautical Miles in One Degree of Latitude for an authalic sphere equal in surface area to the WGS 84 ellipsoid

