

September 2012

Statistical Mapping

Aileen Buckley Esri, Redlands, California, USA

Purpose and audience

Purpose and audience

Audience

Cartography Cubed (Cartography³)

Nature of the phenomena

- Topographic
 - Land form > hydrography > land cover / land use > human features
- Environmental
 - Physical phenomena and processes, e.g., hydrography
- Network
 - Connectivity, flow, e.g., traffic
- Navigation
 - Networks, orientation, route finding features, e.g., aeronautical charts
- Demographic
 - Statistics, sampling, enumeration areas

Data

- Characteristics
 - Spatially discrete / continuous
 - Qualitative / quantitative
 - Point, line, polygon, surface, volume
 - Temporal
- Special characteristics
 - Important values (mean, threshold, etc.)
 - Zero values
 - Missing data or unknown values
 - Uncertainty

Data

- Characteristics
 - Spatially discrete / continuous
 - Qualitative / quantitative
 - Point, line, polygon, surface, volume
 - Temporal
- Special characteristics
 - Important values (mean, threshold, etc.)
 - Zero values
 - Missing data or unknown values
 - Uncertainty

Switching between numeration areas

- Areal interpolation
 - Reaggregation of data from one set of polygons to another set of polygons
- A geostatistical interpolation technique that extends kriging theory to data averaged or aggregated over polygons

- Look at the histogram
- Start with a standard classification (usually natural breaks)
- Adjust breaks to improve the map based on knowledge of the data and the audience

Classification schemes

- Quantiles the same number of enumeration units assigned to each class; variation in calculated values produced by different types of standardization may be usefully seen as ranked values
- Equal intervals breaks the data range into equal segments for predictable and equal class ranges
- Natural breaks minimizes variation within classes and maximize variation between classes; enumeration units that share a color are statistically more similar to each other than to units in other color classes
- Standard deviations shows you how much a feature's attribute value varies from the mean; class breaks are created with equal value ranges that are a proportion of the standard deviation, usually at intervals of 1, 1/2, 1/3, or 1/4 standard deviations

Classification schemes

- Three classifications of the same data set showing different patterns resulting from different classing methods
 - (a) quantile
 - (b) equal interval
 - (c) natural breaks
- The number of counties in each class is shown to the right of each legend

Prostate Cancer Mortality, White Males, 1970 to 1994

Adjusting classes

- A useful adjustment is to group extreme outliers into their own class and then class the rest of the data range using a standard method
- Ex High and low extreme values grouped into separate classes with the remaining range classed using equal intervals
- When there are many zero values in a data set, it works well to separate them into their own class and then class the remainder of the data set

Prostate Cancer Mortality, White Males 1970 to 1994

Deaths per 100,000 person years by county (Hybrid Equal Intervals)

30.65 - 40.61	
26.05 - 30.64	
21.63 - 26.04	
17.21 - 21.62	
12.71 - 17.20	
0.00 - 12.70	

Adjusting classes

- Apply natural breaks for good statistical breaks
- Then adjust classes to include the national rate
- Round data values to assist map reading by a general audience

Prostate Cancer Mortality, White Males 1970 to 1994

Deaths per 100,000 person years by county (Adjusted Jenks; break at U.S. rate of 22.01)

26.00 - 40.61	
22.01 - 25.99	
18.00 - 22.00	
0.00 - 17.99	

Number of classes

- The more classes used, the less changeable the map pattern will be with different classing methods and adjustments
- There are diminishing returns with increasing numbers of classes, and it becomes difficult to assign colors that readers can tell apart with too many classes
- Seven classes is often the most you will want to use on a statistical map with classed values
- An optimal number of classes can be found by examining diminishing reductions in variance with increasing numbers of classes

Things to note

- A value can only belong to one class
 - 1-9, 10-19, 20-29, etc...

Prostate Cancer Mortality, White Males 1970 to 1994

Deaths per 100,000 person years by county (Adjusted Jenks; break at U.S. rate of 22.01)

26.00 - 40.61
22.01 - 25.99
18.00 - 22.00
0.00 - 17.99

Things to note

- A value can only belong to one class
 - 1-9, 10-19, 20-29, etc...
 - Label breaks instead

Prostate Cancer Mortality, White Males 1970 to 1994

Deaths per 100,000 person years by county (Adjusted Jenks; break at U.S. rate of 22.01)

26.00 - 40.61
22.01 - 25.99
18.00 - 22.00
0.00 - 17.99

Things to note

- A value can only belong to one class
 - 1-9, 10-19, 20-29, etc...
 - Label breaks instead
- Possibly add labels
 - Adds immediate understanding
 - Could change visual impression

Labeling features with values

Cartographic symbolization

Cartographic symbolization

Visual variables

Visual variables

- Qualitative
 - Shape
 - Color hue
- Quantitative
 - Size
 - Color value
 - Color intensity
 - Texture

Color variables

Qualitative data

- Color hue symbolizes categorical difference in counts for two race groups
- Pie chart symbols are scaled to a constant size and show relative proportions of mortality for two populations: black and white males

Black to White Proportions, 1990-1994

Proportion in number of prostate cancer deaths for Black and White males of all ages by state economic areas

White Black males

Color schemes

- a. Sequential, single hue scheme (blue)
- **b.** Sequential scheme with hue transition (yellow-green-blue)
- c. Spectral scheme used as a **diverging** scheme with the lightest colors marking the overall U.S. rate (blue-green-yellow-orange-red)

Diverging color schemes

18.34 - 20.14

15.12 - 18.33

10.24 - 15.11

0.00 - 10.23

20.15

- a. Spectral scheme modified to accommodate color blind map readers by skipping green hues (using blue and red)
- b. Two hues (green and purple) diverging from a central light class at the U.S. rate
- c. Change in rates between two time periods with diverging reds (increasing rates) and blues (decreasing)

20.15

18.34 - 20.14

15.12 - 18.33

10.24 - 15.11

0.00 - 10.23

12.00 - 25.82	
8.00 - 11.99	
4.00 - 7.99	
0.00 - 3.99	Equal rates
-4.000.01	Equal rates
-8.004.01	
-12.008.01	
-45.2212.01	

Colorbrewer.org

🗲 🕙 colorbrewer2.org 🗲

Support

Back to ColorBrewer 1.0
Mapping methods

Mapping methods

Proportional symbols

- Point + size
- Each map symbol is scaled to an individual county value
- Legend shows example symbol sizes and data values they represent

Prostate Cancer Mortality White Males, 1970 to 1994

Number of deaths, White males of all ages by county (example symbol sizes)

Graduated symbols

- Point + size
- Each map symbol is grouped into a class
- Legend shows symbol sizes and data values they represent
- On this map, size is used for the count variable (rows; larger symbols for more deaths)
- We'll talk about how this map is also bivariate in a minute

Prostate Cancer Mortality Black Males, 1970 to 1994

Black male prostate cancer deaths, all ages by county

Rate range in middle column (orange) straddles U.S. rate for Black males of 47.2

Choropleth

- Area + lightness
- Choro = area + pleth = value
- Because the method assumes homogeneity within areas, you must normalize the data

Population Characteristics, 1999

Prostate Cancer Mortality, White Males 1970 to 1994

Deaths per 100,000 person years by county (Adjusted Jenks; break at U.S. rate of 22.01)

26.00 - 40.61
22.01 - 25.99
18.00 - 22.00
0.00 - 17.99

Special classes

- Zero deaths are separated to a class
- Significance and sparse data symbols are overlayed on a diverging choropleth representation
 - Note This map also shows more complete wording for a thematic map, with general information in the map title, and specific information about the calculation and data mapped in the legend title and note

Deaths per 100,000 person years, Black males of all ages by state economic areas

Notes

Mortality rates are age-adjusted using 1970 U.S. standard million population. Left side of legend:

The middle class break is set to the U.S. rate for Black males and divides the map into reds for rates significantly higher than the U.S. rate and blues for significantly lower rates.

Other class breaks are rounded to equal intervals of 5 and diverge from the U.S. rate. Right side of legend:

Greens represent rates not significantly different than the U.S. rate for Black males of 47.22. Sparse population is indicated when the number of deaths is less than 6 or is less than 12 and not significantly different than the U.S. rate for Black males.

Bivariate choropleth

- A bivariate choropleth map offers a visual combination of two variables, making visible their covariation
- Breaks between classes for white male death rates separate columns
- Breaks for black male death rates separate rows
- Overall U.S. rates for black and white groups are used as class breaks for both races

Prostate Cancer Race Comparison 1970 to 1994

Deaths per 100,000 person years by county

Bivariate map

- A bivariate map showing both number of deaths and death rates
- As we saw, size is used for the count variable (rows; small to large)
- Hue and lightness are used for the rate data (columns; light yellow to dark red)
- The combination of small size and color reduces the visual prominence of counties with few deaths and thus less reliable rates

Prostate Cancer Mortality Black Males, 1970 to 1994

Black male prostate cancer deaths, all ages by county

Bivariate map

- Proportional point symbols for rates overlay choropleth symbols for number of deaths
- Counts of zero, <6, and <12 are used to indicate sparse populations and suggest caution in judging rates (especially extreme rates) in these counties

Prostate Cancer Mortality Black Males, 1970 to 1994

Black male prostate cancer deaths, all ages by county

Num	ber of deaths	Rate: Dea 100,000 p (example	aths per person years symbol sizes)
	0		10
	6 - 11		50
	12 - 5324		100

Map series - quantiles

- Each map classed separately using quantile classing
- The maps are a time series

Prostate Cancer Mortality, White Males 1970 to 1974

Deaths per 100,000 person years by state economic area

22.46 - 30.66
21.02 - 22.45
19.94 - 21.01
18.70 - 19.93
17.28 - 18.69
11.49 - 17.27

Deaths per 100,000 person years by state economic area

23.48 - 29.33
22.12 - 23.47
21.06 - 22.11
19.96 - 21.05
18.83 - 19.95
13.40 - 18.82

1990 to 1994

Deaths per 100,000 person years by state economic area

	27.02 - 30.67
	25.34 - 27.01
	24.44 - 25.33
	23.57 - 24.43
1	22.23 - 23.56
	17.62 - 22.22

Map series – same class breaks

- The same map series with all maps sharing the same set of classes to aid map comparison within the time series
- Class breaks based on the U.S. rate for each time period are included on all maps
- The U.S. rate for the 5-year period mapped is highlighted in each maps' legend

24.37 - 30.67

23.00 - 24.36

21.29 - 22.99

20.05 - 21.28

18.00 - 20.04

17.62 - 17.99

U.S. rate

24.37

24.37 - 29.33	
23.00 - 24.36	
21.29 - 22.99	U.S. rate
20.05 - 21.28	21.29
18.00 - 20.04	
13.40 - 17.99	

24.37 - 30.66

23.00 - 24.36

21.29 - 22.99

20.05 - 21.28

18.00 - 20.04

11.49 - 17.99

U.S. rate

20.05

Politics

During the nineteenth century Oregon politics were fairly stable: Republicans were the majority party, but the Democrats were active and modestly successful. During this time of strong regional influence in American politics, Oregon resembled most other northern (or Union) states. Through the first third of the twentieth century Oregon became solidly Republican. From 1900 to 1928, Oregon voted for the Republican candidate for President in six of seven elections; in U.S. Senate elections, Grand Old Party (GOP) candidates prevailed eight of 11 times.

Economic reverses during the Great Depression of the 1930s made class rather than region the focus of political divisions. In Oregon and the nation, the New Deal made the Democrats much more competitive. This revival is reflected in the voter registration figures below, showing a rapid increase among the Democrats from 1930 to 1936. The 1932 and 1936 maps show the broad pattern of Franklin Roosevelt's first two victories-again reflecting national trends. But by the post-war years, Oregon trended back toward the Republican side, with state victories by Republican presidential candidates in 1948, 1952 and 1956. During this period, the Oregon congressional delegation also largely reverted to its GOP roots.

But by the mid-1950s, increasing urbanization and effective organizing by liberal political activists helped the Democrats. From that period to the late 1970s, Democrats expanded their urban and labor core (with significant support among registered voters in rural Oregon) to become the majority party in the state.

But the political wheel turned again starting roughly in 1980, as Ronald Reagan easily carried Oregon and the nation. The GOP captured control of the state House of Representatives in 1990 and the state Senate in 1994. But through the 1990s, with rare exceptions, the Republicans were unable to win most statewide contests. For example, since 1986 three Democratic governors have been elected to four successive terms.

There is now strong urban-rural political regionalism in Oregon, clearly seen in the maps for presidential elections since 1988. Both Portland and Multnomah County are heavily Democratic, as are the university-influenced cities of Eugene and Corvallis and a number of coastal counties which are home to intense ongoing labor-management. conflicts. Rural counties in Eastern and southern Oregon-including some in northeast Oregon that were once solidly Democratic-have shifted decisively to the GOP. Thus the urban Democratic preference is almost balanced by the rural tilt toward to the Republicans

Since about 1980, many more voters have either declined to affiliate with a major party or registered with a minor party. Two important sources for these voters are (1) rural blue collar workers, formerly Democrats, who have been alienated by the influence of urban environmentalists on the party, and (2) moderate suburbanites, particularly women, alienated from the Republican party by the influence of religious conservatives.

Presidental Elections 1928-2000

is also presented in a second map, colored in the same way, but showing counties as circles, proportional in size to the number of votes cast. This second presentation corrects for disparities in geographic size—a useful adjustment since it is votes, not square miles that count in elections. Proportional circles make individual counties and their color classes more difficult to identify, but gives a more accurate representation of the statewide vote. Space constraints limit this "double map" presentation to this single example, but all the maps on these pages (and elsewhere in this atlas) should be interpreted with county populations in mind. See pages 26-27.

1990 #5: Property Tax Limits 54 53 100

State Ballot Measures

One of the first states to adopt a ballot measure initiative process (1902), Oregon initiatives can qualify with fewer signatures than initiatives in most other states permitting the process. In the late 1980s, courts ruled that paid petition circulators could not be prohibited, and the use of initiatives expanded greatly. Measure 5 in 1990 reflected a widespread Western tax revolt which began in 1978 with California's Proposition 13. Measure 5's passage cut property taxes nearly in half, requiring greater state reliance on income taxes for funding. A decade later, the passage of Measure 7 required compensation to property owners for land use planning and zoning restrictions (later struck down by the courts). Measure 18 in 1994 restricting hunting clearly reflected the state's urban-rural split. The same divide is apparent in the approval of Measure 67 (1998), authorizing the use of marijuana for medical purposes, and the defeat of Measure 9 (2000), which proposed to deny legal protection to homosexuals.

Ballot measure maps show majority "yes" vote percentages in green, and majority "no" vote percentages in brown

Democrats

Voter Registration 2000

22 22

48

49

Transformational view of cartography

Information transformation

Basic characteristics of maps

- All maps are concerned with two primary elements
 - Locations and attributes
- All maps are reductions of reality
 - Scale
- All maps are abstractions of reality
 - Generalization and its components
- All maps are transformations of space
 - Map projections and coordinate systems
- All maps use signs and symbolism
 - Cartographic symbolization

Basic characteristics of maps

- All maps are concerned with two primary elements
 - Locations and attributes
- All maps are reductions of reality
 - Scale
- All maps are abstractions of reality
 - Generalization and its components
- All maps are transformations of space
 - Map projections and coordinate systems -
- All maps use signs and symbolism
 - Cartographic symbolization

Basemaps and overlays

Basemap – reference information to provide geographic context

Overlay – mapped statistical data

Administrative boundaries Hydrography Transportation Land cover Associated labels Administrative boundaries Associated labels

Generalization

Generalization

Detailed country boundary data

Detailed country boundary data + volcanic eruptions

Generalized country boundary data

Generalized country boundary data + volcanic eruptions

Volcanoes + cased point symbols

Comparisons

Detailed

Generalized

Map projection

Map projection

- (a) No projection is set so latitude and longitude remain in the square-grid default arrangement
- (b) Albers equal area projection for the U.S.
- (c) Albers modified by adjusting the central meridian to the center of the mapped area to position north as up
 - Note The gray-filled counties had more than five prostate cancer deaths for black males, 1970–1994

b. Albers Equal Area projection for U.S.

■

WGS84 (Geographic)

New Zealand – WGS84

New Zealand Transverse Mercator

Data Frame Properties	×
Feature Cache Annotation Groups Extent Indicators Frame Size and	Position
General Data Frame Coordinate System Illumination	Grids
Type here to search	*
NZGD 2000 North Taieri Circuit	
NZGD 2000 NZ Continental Shelf 2000	
MZGD 2000 Observation Point Circuit	
NZGD 2000 Okarito Circuit	
WZGD 2000 Poverty Bay Circuit	
WZGD 2000 Raoul Island TM 2000	
NZGD 2000 Taranaki Circuit	
NZGD 2000 Timaru Circuit	-
Current coordinate system:	
NZGD_2000_New_Zealand_Transverse_Mercator WKID: 2193 Authority: EPSG Projection: Transverse_Mercator False_Easting: 1600000.0 False_Northing: 1000000.0 Central_Meridian: 173.0 Scale_Factor: 0.9996 Latitude_Of_Origin: 0.0 Linear Unit: Meter (1.0)	1
Transformations OK Cancel	Apply

New Zealand Transverse Mercator

New Zealand – Albers equal area

Projected Coordinate System Properties			x
General			
Name:	New_	Zealand_Albers_Equal_Area_Conic	1
Projection			<u>_ </u>
Name			
Nonie.	Albers	•	
Parameter		Value	
False_Northing		0.00000000000000000	
Central_Meridian		173.000000000000000000000000000000000000	
Standard_Parallel_1		-37.00000000000000000	
Standard_Parallel_2		-45.000000000000000000000000000000000000	1
Latitude_Of_Origin		-60.000000000000000000000000000	i
			3
clinear Unit			_
Name			
indiric.	Meter	•	
Meters per unit:	1		1
			91
- Geographic Coordinate S	System		_
Name: GCS_South_Am Angular Unit: Degree (Prime Meridian: Greenv Datum: D_South_Amer Spheroid: GRS_1967 Semimajor Axis: 637	vich (0. vich (0. rican_1 Trunca 8160.0	1969 532925199433) 0) 969 tted]
		OK Cancel Apply	/

New Zealand – Albers equal area

New Zealand – Web Mercator (web maps)

Projected Coordinate System Properties		
General	2	
Name:	/GS_1984_Web_Mercator_Auxiliary_Sphere	
Projection		
Name		
Name:	Mercator_Auxiliary_Sphere	
Parameter	Value 🔺	
False_Easting	0.0000000000000000000000000000000000000	
False_Northing	0.0000000000000000000000000000000000000	
Central_Meridian	0.0000000000000000	
Standard_Parallel_1	0.000000000000000	
Auxiliary_Sphere_Type	e 0.00000000000000000000000000000000000	
Name:	Meter 💌	
Meters per unit:	1	
Geographic Coordinate S	System	
Name: GCS_WGS_1984 Angular Unit: Degree (0.0174532925199433) Prime Meridian: Greenwich (0.0) Datum: D_WGS_1984 Spheroid: WGS_1984 Semimajor Axis: 6378137.0		
•	4	
	OK Cancel Apply	

New Zealand – Web Mercator

So distorted in shape that it does not even fit in the window anymore

New Zealand projections

WGS84

New Zealand Transverse Mercator

New Zealand Albers equal area
Map compilation

Five basic cartographic principles

- Figure-ground
- Contrast
- Legibility
- Visual hierarchy
- Balance

Figure-ground

Contrast

Legibility

Visual hierarchy

Balance

Marginalia

- Title
- North arrow
- Scale bar
- Inset maps

Inset maps

See enlargements below

Locator maps

Emphasize location relative to southwestern Pacific Ocean

Emphasize location relative to Australia

Emphasize location relative to Antarctica

Affective objective

- The "affect" of the map
- The "look and feel" of the map
- Aesthetic appeal
- Get peoples' attention, then keep it

Additional topics

- Legends
- Map series
- Multivariate maps
- Spatio-temporal maps
- Other mapping methods
- Web maps

5 minute warning

Design and technical considerations

- "What size will it be?"
- "What geographic extent will I show?"
- "What map scale will that make it?"
- "What map projection will I use?"
- "Will it be in color?"
- "What will the print resolution be?"

What size will it be? 17" – 19" monitor

-13045802.919 4037554.8 Meters

What geographic extent? Larger than the screen

What map scale? *Multiple map scales*

What map projection? Web Mercator???

Will it be in color? Yes

	000000	000033	0000000	000000	000000	000055	
	000000	000033	000066	000099	0000000	0000FF	
	00330	003333	003366	003399	003300	1033FF	
	003600	0000000	0000000	006699	006600	000000	
	005500	009955	009966	009999	009900	0099FF	
	005500	005522	0000088	0000099	0000000	ODEEEE	
	220000	220022	320055	220000	00FFCC	220055	
	330000	330033	222266	330099	330000	3300FF	
	226600	226622	226666	335399	226600	226655	
	220000	220022	330000	330000	33000	220055	
	339900	339933	22000	330000	339900	3399FF	
	330000	225522	225560	330099	330000		
	SSPPOU	55FF55	557766	557799	SSPEC	SSEFF	
	660000	660033	660066	660099	6600000	CODEF	
	663300	663333	663366	663399	6633CC	033FF	
	666670	00033	000000	0 0099	6666000	CCDOFF	
	669900	669933	009900	6699999	6699000	DOBALL	
	660,000	660033	660066	660099	660000	660.CFF	
	666-00	000022	66FF66	000000	BBFFCC		
	990,000	990033	990066	990099	9900000	990 OFF	
	993.100	993333	593366	993399	5133CC	993FF	
	996600	996633	996.66	996699	9966 CC	9956FF	
	999910	999933	999966	999999	999900	9999FF	
	99000	990033	990066	990099	990000	9CCFF	
	997700	99FF33	995566	997799	99FFCC	997777	
	CC0000	CC0033	CC0066	CC0099	CCUUCC	CCUUFF	
	005500	000000	CC3366	00000	005500	CC33FF	
	CC6600	CC6633	CC6666	CC6695	000000	CC66FF	
	00000	000000	CC9966	000000	009900	CC99FF	
	CCCCOU	CCCCSS	CCCC66	CCCC99	CCCCCC	CCCCFF	
	CCFF00	CCFF33	CCFF66	CCFF99	FERREC	CCFFFF	
	FF0000	FF0033	FFUU66	FF0099	FFUCC	FFOOFF	
	755500	FF6622	FF3366	FF3399	FESSOO	FEGGE	
	550000	FF6633	550066	FF6699	FFBBCC	FFGGF	
	FF9500	FF9933	FLAAPP	FF9999	FF99CC	FEGGE	
	FFCCUU	FFCC33	FFCC66	FFCC99	FFCCCC	FFCCFF	
	FFFFUU	FFFF33	FFFF66	FFFF99	FFFFCC	FFFFF	

What will the resolution be? 96 dpi

2 minute warning

Design and technical considerations

- "What size will it be?"
- "What geographic extent will I show?"
- "What map scale will that make it?"
- "What map projection will I use?"
- "Will it be in color?"
- "What will the print resolution be?"
- "How will readers interact with the map?"
- "How to I publish the map?"

To learn more...

- Mapping Resource Center esriurl.com/mapping
- Mapping blog esriurl.com/mapping > Blog
- Mapping Center mappingcenter.esri.com
- ArcUser magazine (online and print)
- ArcWatch online monthly newsletter

References (in order of appearance)

- Skipping stone image <u>http://en.wikipedia.org/wiki/Stone_skipping</u>
- "Cartography Cubed" MacEachren, A. M. and Kraak, M.-J. 1997. Exploratory cartographic visualization: Advancing the agenda. *Computers & Geosciences* 23(4): 335-343
- Statistical surfaces Jenks, G. F. (1963), Generalization in Statistical Mapping. *Annals of the Association of American Geographers*, 53: 15–26
- Areal interpolation ArcGIS Online Help, http://resources.arcgis.com/en/help/main/10.1/index.html#//0031000000q8000000
- Statistical maps Brewer, C. 2006. Basic Mapping Principles for Visualizing Cancer Data Using Geographic Information Systems (GIS). *American Journal of Preventive Medicine*, 30(2): s25-S36, <u>http://www.ajpmonline.org/article/S0749-3797%2805%2900358-2/fulltext#section2</u>
- Visual variables Bertin, Jacques. 2010. <u>Semiology of Graphics: Diagrams, Networks, Maps</u>. Redlands, CA: Esri Press, 124 pages, <u>http://makingmaps.net/2008/02/13/map-symbols-showing-multivariate-data-with-texture/</u>
- Color variables Brewer, Cynthia A. 2005. <u>Designing Better Maps: A Guide for GIS Users</u>. Redlands, CA: Esri Press, 202 pages
- ColorBrewer 2.0 <u>http://colorbrewer2.org/</u>
- Oregon maps Loy, W. G, Allan S, Buckley A. R., Meacham, J. E. 2001. Atlas of Oregon, 2nd ed., Eugene, OR: University of Oregon Press, 301 pages
- Web Mercator measuring tool http://serverx.esri.com/javascript_examples/compare_measurements.htm
- Online atlas maps <u>http://serverx.esri.com/javascript_examples/compare_measurements.htm</u>

Thank you! abuckley@esri.com