
Writing Geoprocessing Scripts
With ArcGIS

������
��

�	

Copyright © 2004 ESRI
All Rights Reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of
ESRI. This work is protected under United States copyright law and
other international copyright treaties and conventions. No part of this
work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying and recording, or by any
information storage or retrieval system, except as expressly permitted in
writing by ESRI. All requests should be sent to Attention: Contracts
Manager, ESRI, 380 New York Street, Redlands, California 92373-8100,
USA.

The information contained in this document is subject to change without
notice.

�����������

Corey Tucker

���������	
��
��	���	
������
�
����	
����

Any software, documentation, and/or data delivered hereunder is
subject to the terms of the License Agreement. In no event shall
the U.S. Government acquire greater than RESTRICTED/LIMITED
RIGHTS. At a minimum, use, duplication, or disclosure by the
U.S. Government is subject to restrictions as set forth in FAR
§52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19
(JUN 1987) and/or FAR §12.211/12.212 (Commercial Technical
Data/Computer Software); and DFARS §252.227-7015
(NOV 1995) (Technical Data) and/or DFARS §227.7202
(Computer Software), as applicable. Contractor/Manufacturer is ESRI,
380 New York Street, Redlands, California 92373-8100, USA.

PUBLISHED BY

ESRI
380 New York Street

Redlands, California 92373-8100

ESRI, ArcView, SDE, ArcInfo, ArcSDE, ArcCatalog, ArcScene, 3D Analyst,
ModelBuilder, ArcGlobe, ArcMap, ArcEditor, ArcGIS, ArcObjects, GIS by
ESRI, the ArcGIS logo, and www.esri.com are trademarks, registered
trademarks, or service marks of ESRI in the United States, the
European Community, or certain other jurisdictions.

Other companies and products mentioned herein are trademarks or
registered trademarks of their respective trademark owners.

Attribution.pmd 04/01/2004, 12:16 PM1

Contents

CHAPTER 1: INTRODUCTION TO SCRIPTING IN ARCGIS 1

Scripting support in ArcGIS .. 2

Python and the geoprocessor ... 3

Getting help .. 5

CHAPTER 2: GETTING STARTED ... 7

Working with Python .. 8

An introduction to Python and PythonWin .. 10

Creating a script .. 12

Debugging ... 16

CHAPTER 3: USING TOOLS ... 21

The geoprocessor object .. 22

Tools and methods .. 24

Environment settings .. 30

Complex parameters .. 32

Listing tools, toolboxes, and environments ... 33

Licensing and extensions .. 34

CHAPTER 4: BATCH PROCESSING... 37

Listing data ... 38

Multiple inputs .. 41

CHAPTER 5: MESSAGING AND SCRIPT TOOLS 45

Messages ... 46

Getting messages ... 47

Script tools ... 48

Setting messages .. 49

Using script tool parameters .. 52

CHAPTER 6: DATA PROPERTIES AND ACCESS..................................... 55

Describing data ... 56

Data access using cursors ... 63

TOC.pmd 04/01/2004, 12:17 PM3

iv • Writing Geoprocessing Scripts with ArcGIS

CHAPTER 7: WORKING WITH GEODATABASES 73

Geodatabases .. 74

Naming feature classes and tables ... 75

Field name validation .. 76

Qualifying table and field names .. 77

Parsing table and field names ... 79

INDEX .. 81

TOC.pmd 04/01/2004, 12:17 PM4

Introduction to
scripting in ArcGIS

This chapter reviews what a script is and why it is

relevant to today’s Geographic Information System (GIS)

user. Issues such as what scripting language should be

used and how ArcGIS® works with scripting languages are

also covered.

11111

6 • Writing Geoprocessing Scripts With ArcGIS

SCRIPTING SUPPORT IN ARCGIS

Geoprocessing tasks can be time intensive since they are often performed on a
number of different datasets or on large datasets with numerous records. Script-
ing is an efficient method of automating geoprocessing tasks. Scripting allows the
execution of simple processes (a single tool) or complex processes (piggybacked,
multitool tasks with validation). In addition, scripts are recyclable, meaning they
can be data nonspecific and used again.

Any ArcGIS user has the option of writing a script to automate geoprocessing
work flows. Even if you have never thought of yourself as a programmer, after
reading the first three chapters in this book, you will be able to write scripts to
perform geoprocessing. You can also create models in ModelBuilder™, which
provides a canvas for you to visually create a geoprocessing work flow. This book
will explain how these scripts work and how you can modify them to incorporate
loops for batch processing or if statements for conditional control.

ArcGIS 9 introduces scripting support for many of today’s most popular scripting
environments, such as Python, VBScript, JScript, and Perl. A new ArcObjects™

component, the geoprocessor, manages all the geoprocessing functions available
within ArcGIS. It is an object that provides a single access point and environment
for the execution of any geoprocessing tool in ArcGIS, including extensions. The
geoprocessor implements automation using the COM IDispatch interface, making
it possible for interpretative and macro languages to access the more than
400 available tools.

Which scripting language to choose can be an open question. Any scripting lan-
guage that is COM compliant, interacts well in a Web-based environment, and
allows users to complete their tasks is a viable option. Although there are a
number of good scripting languages on the market, for simplicity this book will
mention three of the more popular languages that meet the necessary criteria:
VBScript, JScript, and Python. VBScript and JScript are familiar to many people
and are relatively simple languages. Similar to Visual Basic and C they are designed
to operate in a Windows environment. Python is an easy-to-learn language similar
to C. Python has the ease of use of a scripting language, along with the program-
ming capabilities of a complete developer language. Moreover, Python is plat-
form independent and can operate on a variety of operating systems including
UNIX, Linux, and Windows. For more information, visit www.python.org on
the Web.

Microsoft’s Component Object
Model (COM) is a mature technol-

ogy for sharing software components
that is language neutral. COM is a

protocol for how one binary compo-
nent connects with another; it is not a

language.

Chapter 1 • Introduction to scripting in ArcGIS • 7

PYTHON AND THE GEOPROCESSOR

The samples in this book use Python as the scripting language because ESRI sees
it as the language that fulfills the needs of our user community. Some advantages
of Python are:

• Python is easy to learn because of its clean syntax and simple, clear concepts.

• Python supports object-oriented programming in an easy-to-understand man-
ner.

• Documenting Python is easier because it has readable code.

• Complicated data structures are easy to work with in Python.

• Python is simple to integrate with C++ and Fortran.

• Python can be seamlessly integrated with Java.

• Python is free from the Web and has a widespread community.

Using the Geoprocessor Programming Model diagram
An accompanying diagram, the Geoprocessor Programming Model, gives an
overview of the geoprocessor object and all the other objects that may be created
from its methods. You will notice that some of the object diagrams found on the
diagram are placed in various pages of this book and that there are page numbers
on the objects in the diagram. When an object is discussed, its diagram will be
displayed in the left margin so you can see all its properties and methods. Use the
diagram as a quick reference for names, parameters and relationships when writ-
ing your scripts. You may notice that the type of data returned for a property is
only specified when it is not a string or number. Most values are simply strings or
numbers, so to keep the diagram simple, it only informs you of a data type when
it is not a string or number.

The Geoprocessor Programming Model is not
based on the Unified Modeling Language
(UML) notation used in the ArcObjects
object model diagrams. The arrows on the
diagram indicate instantiation. GpDispatch is
the COM name for the geoprocessor
IDispatch object. Any scripting language that
can instantiate a COM IDispatch object may
create the geoprocessor. In Python, the
Dispatch method on the win32com
module’s client object is used to create the
geoprocessor, while Visual Basic and
VBScript use the CreateObject function. The
geoprocessor is the only ArcGIS scripting
object that can be directly created using these
methods. All other ArcGIS scripting objects
are created by a method on the geoprocessor,
such as CreateObject, or as a property of an
object, such as the fields of a feature class.

8 • Writing Geoprocessing Scripts with ArcGIS

The different colors are meant to show logical relationships of objects. For
example, the purple objects are created by the various list methods of the
geoprocessor. The list methods are purple as well to indicate their relationship
with these objects. Some properties, such as Field in a feature class, are colored to
indicate they are an object, which, in this case, is the fields object that is purple.
The colors should help you connect the various methods and properties with the
appropriate objects and make the diagram easy to read.

The GpDispatch object supports the execution of tools as dynamic methods and
the use of environment settings as dynamic properties. The diagram does not
show these dynamic members of the geoprocessor, as the tools and environments
that are accessible depend on what is installed on the desktop machine being used
and what toolboxes are being referenced. The geoprocessor object simply refers to
tools and environments as generic methods and properties. See Chapter 3 for
further details and examples of how to use tools and set environments. Refer to
Chapter 6 of Geoprocessing in ArcGIS for more information about environment
settings.

Scripting examples
This book contains many examples using Python to coordinate and
execute geoprocessing tools. Many of these samples focus on the
use of specific methods, properties, or both methods and proper-
ties of the geoprocessor and are intended to be consise and easy to
follow. More detailed and sometimes complicated examples of
how to use the geoprocessor to solve problems may be found as
tools in ArcGIS. While most tools delivered with ArcGIS are
written in C++ and delivered in a binary form, some are written in
Python or ModelBuilder. Some tools execute batch operations,
such as loading data into a geodatabase or projecting a set of
feature classes, which is perfectly suited for scripting as the solu-
tion. The underlying script may be opened at any time to see what
happens when the tool is run. Use this capability to learn how to
use the geoprocessor in a number of situations, such as creating
multiple ring buffers or building pyramids for a set of rasters.
Script tools have a unique icon , so you can easily find tools that
use scripts to execute. Use the edit option in a tool’s context menu
to open the underlying script. These scripts may not be edited as
they are read-only, but you can copy the tool to a custom toolbox
and its underlying script to another folder so you can make edits if

desired. Refer to Chapter 5 and the ‘Creating models and adding scripts’ section
of Chapter 5 of Geoprocessing in ArcGIS to learn more about script tools.

ModelBuilder may also be used to generate scripts, as it will export a model to
either Python, VBScript, or JScript. The Help for each geoprocessing tool also
contains a section specific to scripting, with a description of each parameter and
an example of how to use the tool in a Python script.

PYTHON AND THE GEOPROCESSOR

Use the object key on the diagram to
understand the meaning of the symbols

adjacent to property and method names.

ModelBuilder is the interface used to
create models in ArcGIS. A model is a

collection of processes that form a work
flow. Refer to Chapter 8 of

Geoprocessing in ArcGIS to learn
more about models and ModelBuilder.

Different types of tools are indicated
using icons. Some tools, such as scripts

and models may allow their source to be
viewed and edited

Chapter 1 • Introduction to scripting in ArcGIS • 9

GETTING HELP

Getting help on your computer
In addition to this book, use the online Help system to learn how to use ArcGIS.
To learn how to use the online Help system, see Using ArcMap. For information
on a particular geoprocessing function, see the online geoprocessing command
reference or click the Help button on a geoprocessing dialog box.

Contacting ESRI
If you need to contact ESRI for technical support, see the product registration
and support card you received with ArcGIS Spatial Analyst or refer to ‘Contact-
ing Technical Support’ in the ‘Getting more help’ section of the ArcGIS Desktop
Help system. You can also visit ESRI on the Web at www.esri.com and
www.arconline.esri.com for more information on Spatial Analyst and ArcGIS.

ESRI education solutions
ESRI provides educational opportunities related to geographic information
science, GIS applications, and technology. You can choose from among instruc-
tor-led courses, Web-based courses, and self-study workbooks to find education
solutions that fit your learning style and pocketbook. For more information, visit
www.esri.com/education.

Getting started

There are endless uses for scripts and many

environments in which to write them. Python for

Windows provides an easy-to-use yet powerful integrated

development environment (IDE) for writing and

debugging scripts. This chapter will demonstrate how to

use PythonWin to create a script for batch processing

data.

22222

12 • Writing Geoprocessing Scripts With ArcGIS

Chapter 1 outlined many of the advantages of using Python for scripting with
ArcGIS. This chapter will demonstrate some of these by going through the steps
of creating a script. One of the most common reasons for writing a script is to
automate a work flow that uses many different datasets as input. Data regularly
needs to be manipulated before analysis can be done. Data, such as a set of
shapefiles, may need to be projected to the appropriate coordinate system and
clipped by a polygon feature class, defining a boundary. Other times, data needs to
be added to a geodatabase so it can have its topology validated before more
features are added. Scripting is one of the best ways to quickly define and ex-
ecute a work flow.

Script Description
The script that will be created is used in Exercise 3 of the Geoprocessing in ArcGIS
tutorial. The script is called multi_clip.py, and it clips all the feature classes found
in a workspace with a polygon feature class, creating new feature classes in an
output workspace. In the tutorial, the script is used to clip all the shapefiles in a
folder with a polygon shapefile defining a study area. The script may also move
the resulting data into a geodatabase if the output workspace is an Access .mdb
file or ArcSDE® connection. The script is provided with the tutorial data, but the
tutorial does not explain how the script works. That will be done in this chapter,
as we will write the script and discuss what each line does.

You will learn how to write a script in PythonWin, which provides the following:

• A script editor

• Integrated debugger

• Interactive command window

• Python COM and Microsoft Foundation Class (MFC) support

• Documentation for working with Python on Windows

Requirements
The requirements for writing this script are that Python 2.1, and PythonWin be
installed, which is provided by the ArcGIS Desktop install program, as well as
ArcGIS Desktop. The script you create will clip all shapefiles in a folder or stand-
alone feature classes in a geodatabase or geodatabase feature dataset with a poly-
gon feature class that shares a common extent. The tutorial for Geoprocessing in
ArcGIS provides suitable data for this script, so if you do not already have data
that fits this description, you should also install the geoprocessing tutorial for
ArcGIS.

Script Editors
You will work with the PythonWin Editor, Debugger and Interactive Command
windows during this exercise. Python scripts may be written in other applica-
tions, as PythonWin is not required to write a Python script. Scripts are simply
text files; any text editor, such as Notepad or VI, may be used to author a script.
The standard Python installation provides a default Python editor called Inte-
grated DeveLopment Environment (IDLE), which also provides search capabili-
ties and a symbolic debugger. IDLE is a good application for writing Python
scripts, but the advantage of using PythonWin is the integration of its debugger

Python is an Open Source scripting
language administered by the Python

Software Foundation. Visit
www.python.org to learn more about

Python and the mission of the foundation.

WORKING WITH PYTHON

You can visit the home page for
PythonWin by selecting the About Python
option in PythonWin’s Help menu. There
is a button at the bottom of the dialog
box called Home Page that will display
the Python for Windows Web site when

clicked if you are connected to the
Internet.

The Clip geoprocessing tool extracts
features from one feature class that

overlay the polygon features of
another feature class.

Chapter 2 • Getting started • 13

with the interactive window in a standard Windows style application.
PythonWin is required by ArcGIS, as it provides the communication between
standard Python and the COM ArcObjects used to write the geoprocessor.

Python References
This book is not a Python language reference. Certain Python syntax and behavior
is explained with respect to the examples and concepts used to demonstrate how
to write a geoprocessing script. Python is a rich language supporting a number of
operating systems and programming libraries. You should obtain a suitable Python
reference to augment the information you find in this book. For Python begin-
ners, Learning Python by Mark Lutz and David Asher and published by O’Reilly &
Associates is a good introduction to the language and is not overwhelming in
scope. There are many other books on Python and its particular uses, with new
ones being released regularly, so explore what is available. The Python Web site,
www.python.org, has full documentation for Python, but it is concise and devel-
oper oriented. There is a large online Python community with many online

WORKING WITH PYTHON

See Chapter 3 for more information
on how the geoprocessor works.

14 • Writing Geoprocessing Scripts With ArcGIS

resources that are accessible from the Python home page.

The Interactive Window and variables
Before creating a script, you need to take a closer look at the PythonWin applica-
tion itself.

1. Start PythonWin by double-clicking a shortcut installed on your desktop or
using the Programs list in your Start menu.

PythonWin starts with the Interactive window open when it is opened for the
first time. The Interactive window may be used to execute a single line of Python
code, with the resulting messages printed to the window.

2. Click the Interactive window and type “x = 1”. Press Enter. This creates a
variable x with a value of 1. Variables in Python do not have to be declared with
a specific type before they can be used. In this case, an integer variable has been
created and initialized with a value.

3. Type “y = 1” into the next line and press
Enter. This creates another integer variable y.

4. Type “x + y” into the next line and press
enter. The result, 2, is immediately printed. The
immediate window provides direct access to
the Python interpreter, as it evaluates each line
as it is entered.

Assignment is done using a single equal sign
“=”, while equivalence is tested using two
equal signs “==”. The type of variable is
defined by the value it is assigned. Python has a
number of numeric types such as long, short
integer, floating, and complex. Refer to your
Python language reference for more informa-
tion about numeric objects and expressions.

Strings variables are used frequently in scripts,
especially when defining geoprocessing tool
parameters. Paths or partial paths are used to
define a tool’s input or output. String opera-

tions, such as concatenation, are important when working with datasets in a
number of workspaces. Strings are a built-in type in Python and are defined as an
ordered collection of characters. Once a string’s character sequence has been set,
it can not be changed, but there are many ways in Python to work with those
characters.

5. Type “a = "Buddy"” into the next line and press Enter. This creates a string
variable called a.

6. Type “b = "Holly"” into the next line and press Enter.

7. Type “a + " " + b” into the next line and press Enter to concatenate the
strings. The evaluated full name will be printed below the expression.

8. Type “print a[0]” and press Enter. This prints the first character in the variable

Python can declare and initialize
multiple variables on the same line,
which is a good way to keep your

scripts compact and easy to follow.
The previous example could have

been declared as “x, y = 1, 1”.

Python does not permit the concat-
enation of strings with other types of

variables, such as numbers or
booleans. Use the str() tool to con-

vert a nonstring variable to a string
during a concatenation statement to

avoid a syntax error.

AN INTRODUCTION TO PYTHON AND PYTHONWIN

To change the contents of a string
variable, create a new variable. A

variable may be reset by redeclaring
its value. For example, a string variable

named MyStr with a value of “x” may be
set to uppercase using the upper tool.

“MyStr = MyStr.upper()”

Double quotes are used to indicate
what should be typed in the Interac-
tive window or script. Do not include

the double quotes wrapping each
code snippet, as it will cause a syntax
error. You must include quotes when
defining the value of a string variable.

Chapter 2 • Getting started • 15

a. Strings are indexed, with the first character being 0. A set of characters may be
accessed by specifying a range. Specifying “a[0:3]” would return “Bud”.

9. Type “print len(b)” and press Enter. This returns the length, or number of
characters, in variable b.

There are many tools for working with strings in Python and many techniques for
extracting, repeating, and formatting them. Refer to your Python reference for
more information on working with strings.

10. Click the Interactive window button
on the Standard toolbar to close it.

Importing Modules
By definition, Python scripts are modules,
which is Python’s highest level of code organi-
zation. Modules serve several purposes; the
most obvious is the ability to save code to a
reusable form, a script. Scripts may avoid
duplication of code by using programs con-
tained in other modules. Using the import
statement, a program may import any number
of functions, variables, or both contained in
another module. A module creates a natural
grouping and naming structure, which elimi-
nates ambiguity when using commonly named
programs.

Each time you create a script, you will import
one or more modules. All geoprocessing scripts
use the win32com module, as it provides the
programs needed to support the communica-

tion between Python and the COM IDispatch interface, which is used by the
geoprocessor. This is covered in more detail in Chapter 3. Other modules that are
required to work with math, files, and the operating system may also be im-
ported, depending on the requirements of your script.

AN INTRODUCTION TO PYTHON AND PYTHONWIN

The string module provides many
tools for string manipulation, such as
searching, conversion, and formatting. You
can access these tools by importing the

string module within your script. Many of
these tools are also found as methods of

a string object, so the string module is
not always needed.

16 • Writing Geoprocessing Scripts With ArcGIS

Creating a new script module
1. In PythonWin click the File menu and click the New option. Accept the
default option of Python Script and click OK.

The Script1 window will open. Script1 is the default name of your script.

2. Click the maximize window button on the Script1 window.

3. Click the File menu and click Save As. Name the script “multi_clip” and save it
in a folder of your choice.

Modules should follow the same naming rules as variables. They must start with a
letter and can be followed by any number of letters, digits, or underscores. Mod-
ule names become variable names when they are imported, so to avoid syntax
errors, they should not use reserved words such as while or if. Scripts should
always have a .py extension, as this is required when importing a script module. It
also defines Python as the executing application for your script.

4. At the top of the code window add the following lines:
#Import standard library modules

import win32com.client, sys, os

This imports the system, operating system, and Windows 32 modules to the
script. The win32com module has already been discussed, but the other two are
new. The sys module refers to the Python system and will be used to access
user-specified inputs. The os module provides easy access to the most fundamen-
tal tools of the operating system. Some of the os module’s filename manipula-
tion tools are used in this script. Refer to your Python reference material for more
information about the tools in these modules.

5. Add the following code to declare the geoprocessor object:
#Create the Geoprocessor object

GP = win32com.client.Dispatch("esriGeoprocessing.GpDispatch.1")

This script will have the following arguments so it can be used in a generic fash-
ion:

• An input workspace defining the set of feature classes to process

• A feature class to be used by the Clip tool as the area to be clipped from an
input feature class

• An output workspace where the results of the Clip tool will be written

• A cluster tolerance that will be used by the Clip tool

Refer to the Clip tool in the Analysis toolbox for detailed information on how
Clip works.

6. Add the following code to your script to define and set variables based on the
user-defined values passed to the script at execution:
#Set the input workspace

GP.workspace = sys.argv[1]

#Set the clip featureclass

clipFeatures = sys.argv[2]

CREATING A SCRIPT

See Chapter 3 for a complete de-
scription of the geoprocessor object
and how to work with its properties

and methods.

When naming variables, be mindful
that Python is case senitive, so “GP”

is not the same as “gp”. The names of
the geoprocessor’s methods and

properties (including tool and envi-
ronment setting names) are NOT

case sensitive.

Python automatically removes an
object from memory when it is no

longer referenced in a program.
When a script completes, all memory
allocated for objects is released and
any open files are closed. The del

statement can be used to delete an
object so its memory is deallocated

during a script’s execution.

Chapter 2 • Getting started • 17

CREATING A SCRIPT

#Set the output workspace

outWorkspace = sys.argv[3]

#Set the cluster tolerance

clusterTolerance = sys.argv[4]

The passed-in arguments are attributes of the sys module and can be sliced to
extract the argument you want. The first value of argv, argv[0], is the name of
the script. You can apply the same slicing tools used on strings to the argv at-
tribute, so sys.argv[1:] will return the entire list of argument values.

7. Add the following error handling statement and geoprocessor call to the script
window:
try:

 #Get a list of the featureclasses in the input folder

 fcs = GP.ListFeatureClasses()

Python enforces indentation of code after certain statements as a construct of
the language. The try statement defines the beginning of a block of code that
will be handled by its associated exception handler, or except statement. All
code within this block must be indented. Python uses try/except blocks to
handle unexpected errors during execution. Exception handlers define what the
program should do when an exception is raised by the system or by the script
itself. In this case you are only concerned about an error occurring with the
geoprocessor, so a try block is started just before you start to use the object. It is
good practice to use exception handling in any script using the geoprocessor so its
error messages can be propagated back to the user. This also allows the script to
exit gracefully and return informative messages instead of simply causing a system
error.

The geoprocessor’s ListFeatureClasses method returns an enumeration of feature
class names in the current workspace. The workspace defines the location of your
data and where all new data will be created unless a full path is specified. The
workspace has already been set to the first argument’s value. Chapter 4 discusses
how to work with enumerations in detail.

8. Add the following code to get the first value of the enumeration:
 #Loop through the list of feature classes

 fcs.Reset()

 fc = fcs.Next()

An enumeration is a list that has an undefined number of items. It should always
be reset before the first item is extracted so you can be sure you get the first item
in the list. You want to get the first item before you start looping through its
contents as you will use it as the conditional value for continuing a loop.

9. Add the following code:
 while fc:

 #Validate the new feature class name for the output workspace.

 outFeatureClass = outWorkspace + "/" + GP.ValidateTableName(fc,

 outWorkspace)

 #Clip each feature class in the list with the clip feature class.

Many geoprocessing scripts are not
generic in nature and have no argu-

ments. They use defined dataset
names and parameter values and may

not require the sys module. Import
modules only as needed to avoid

unnecessary memory use.

Statements that end with a colon indi-
cate the beginning of indented code.

Python does not use braces, brackets, or
semicolons to indicate the beginning or
end of a block of code. Instead Python

uses the indentation of the block to
define its boundaries. This results in code

that is easy to read and write.

18 • Writing Geoprocessing Scripts with ArcGIS

CREATING A SCRIPT

 #Do not clip the clipFeatures, it may be in the same workspace.

 if str(fc) != str(os.path.split(clipFeatures)[1]):

 GP.Clip(fc, clipFeatures, outFeatureClass,

 clusterTolerance)

 fc = fcs.Next()

When there are no more names in the enumeration, a null or empty string will be
returned. Python will evaluate this as false, which will cause the while loop to
exit. The next value from the enumeration must be retrieved before the end of
the indented block so it is evaluated correctly at the start of the loop. The
ValidateTableName method is used to ensure the output name is valid for the
output workspace. Certain characters, such as periods or dashes, are not allowed
in geodatabases, so this method will return a name with valid characters in place
of invalid ones. It will also return a unique name so no existing data is overwrit-
ten. Chapter 7 fully explains how to use this method and how to work with the
geodatabase.

The os module’s path object is used to manipu-
late the clip feature classes path, so only the
feature class name is evaluated in an expression,
not the entire path. The Clip tool is accessed as a
method of the geoproccessor, using the various
string variables as parameter values.

10. Add the following lines to complete the
script:
except:

 GP.AddMessage(GP.GetMessages(2))

 print GP.GetMessages(2)

The except statement is required by the earlier
try statement, otherwise a syntax error will
occur. If an error occurs during execution, the
code within the except block will be executed.
In this case, any message with a severity value of
2, indicating an error, will be added to the
geoprocessor in case the script is used as the
source of a tool. All error messages are also
printed to the standard output in case the script
is run outside a tool.

11. Save the script by clicking the Save button
on the Standard toolbar.

12. Add the following comments to the top of
your script:
##Script Name: Clip Multiple Featureclasses

##Description: Clips one or more shapefiles

##from a folder and places the clipped

##feature classes into a Geodatabase.

##Created By: Insert name here.

##Date: 11/04/2003

Scripts should be well commented. Each script

Chapter 2 • Getting started • 19

should contain a heading section that describes what it does, who created it, and
when it was created, along with comments throughout the script itself that
explain what it is doing. Use the pound symbol (#) to indicate a comment, which
is a text string that should not be interpreted by Python. All text following a
pound symbol will be ignored by the interpreter.

Coding Guidelines
Python enforces certain coding standards, such as indentation being part of the
syntax and variable name restrictions. Other languages may not have such stan-
dards, but it is a good idea to follow a general set of rules so your scripts and the
scripts of others inside and outside your organization provide good readability,
portability, and consistency. The following points are suggestions and can be used
to create your own coding guidelines.

• Variable names should start with a character and avoid using special characters
such as an asterisk. If the variable name consists of several words, capitalize
the first letter of each word (remember that Python and other languages are
case sensitive), except for the first word. For example,

myIntegerVariable = 1

• Use descriptive variable names and avoid using slang terms or abbreviations.

• Script names should follow the variable naming guidelines above. Python
scripts should always have a .py extension.

• Use indentation to show the structure of a program. Python enforces this, but
other languages do not. Use two or four spaces to define each logical level.
Align the beginning and end of statement blocks, and be consistent.

• Use arguments to a script and avoid overuse of global variables, as they can
cause unexpected results when they are accessed by a number of modules or
scripts.

• Avoid duplication of code by placing commonly used functions in a common
module that can be shared between scripts.

• If a script has arguments, it should validate the input values and return a
suitable message if an invalid value is specified.

• Scripts should be well commented. Each logical section should have an expla-
nation.

• Each script tools or function should have a header containing the script’s
name, a description of how it works, its requirements, who wrote it, and
when it was written.

Inevitably, errors occur when you write and execute scripts. Syntax errors may be

CREATING A SCRIPT

20 • Writing Geoprocessing Scripts With ArcGIS

DEBUGGING

caught by Python before the script is run by running a syntax check, but other
problems caused by typing errors, invalid property or method names or invalid
parameter values can only be caught during the execution of the script. Without
a debugging environment, you are left with the option of inserting print state-
ments at critical points of the script so you can trace its execution path and
variable values. A debugging environment lets you step through the program and
interrogate variables, check object validity, and evaluate expressions.

Executing and debugging your script
1. Click the Check button on the standard toolbar to check for syntax and
indentation errors in your script. If an error is found, the cursor will be
placed at that location. Correct the syntax and check it again until there are no
errors.

2. Click the Run button to open the Run Script dialog box.

3. Enter the parameters required by the script: an input workspace, a clip feature
class, an output workspace, and a cluster tolerance. Below is an example:
d:\st_johns d:\st_johns\urban_area.shp d:\st_johns\results 5

If you have the geoprocessing tutorial installed, for example, in your C:\Program
Files folder, you can use the \ArcTutor\Geoprocessing\San_Diego folder as
input. Specify \ArcTutor\Geoprocessing\San_Diego\study_quads.shp as the clip
feature class, any writable folder as the output workspace, and 10 for the cluster
tolerance. The cluster tolerance is optional in the Clip tool, so it could be omitted
if you want to use the default cluster tolerance for each input feature class.

4. Choose “Step-through in the debugger” as the Debugging option and click OK.

Two windows will be opened, one to show the value of expressions you define,
while the other displays the value of variables in the system’s call stack. The
cursor will be placed on the first line of the script that will be interpreted by
Python, which is the import statement. Adjust the size of the Python applica-
tion window as needed to accommodate the new windows.

5. Click the Step button on the Debugging toolbar. This will execute the
current line of code and move to the next.

A new window containing the win32com module has now opened, as the next
line of code to be executed is in that module. Importing a module will, in turn,
import all the modules it imports. You do not want to step through the code in
this module, as you are only interested in the code contained in the
multi_clip module.

6. Click the Step Out button twice to step out of the win32com module
and go back to the multi_clip script.

Use the Step Over button to avoid stepping into any code called by a line
and to move on to the next line in the current module.

7. Click the Step Over button to move to the next line. This will create the
geoprocessor object and will take several seconds due to its size.

8. Click the Step Over button four times so that the cursor is located at the try
statement.

Chapter 2 • Getting started • 21

9. In the Stack View window, click the _main_module node.

10. Click the Locals (Dict) node to display all local variables and their values.

You will see all the variables you have set in the Interactive window and the
multi_clip script, as well as the modules you have imported. Use the Stack win-
dow to check the scope of your variables and their values, as well as the contents
of all available modules.

11. Click the Step Over button three times to move the cursor to the while
statement. The three lines you execute will create the list of available feature
classes and populate the variable fc with the first name.

12. In the Watch window, click <New Item> and enter fc. Press Enter to change
the expression to the variable name. You will now see the value of the variable.

DEBUGGING

String variables have a “u” preceding the
value to indicate it is a unicode string.

Unicode is a 16-bit character set stan-
dard designed to facilitate multiple

languages.

22 • Writing Geoprocessing Scripts with ArcGIS

DEBUGGING

13. Click the Step Over button twice to first set the output workspace and move
to the if statement.

14. Click the Step Over button to move into the if statement’s code block
where the Clip tool will be executed.

15. Click the Step Over button twice to execute the tool and retrieve the next
feature class name from the feature class names enumeration. Notice the value of
the fc variable in the Watch window.

16. Click the Watch window and Stack View window buttons on the
Debugging toolbar so they are closed.

17. Click the Interactive window button . Add the following code and
press Enter:
GP.GetMessages()

All the messages from the Clip tool will be printed to the Interactive window.
Any object and variable may be used in the Interactive window during a debug
session, so it can be used for object interrogation and variable manipulation.

18. Click the Close button on the Debugging toolbar to stop the execution
of the script.

Setting breakpoints
There are several other debugging options when you run a script. In the previous
exercise, you stepped through the script line by line, but you may want to run the

script and only have it stop at defined
points called breakpoints.

1. Place your cursor on the following
line of code in the multi_clip script:
fcs = GP.ListFeatureClasses()

2. Click the Toggle Breakpoint button
on the Debugging toolbar to place a
breakpoint for that line.

A breakpoint symbol will appear on
the far left margin of the script. It can
be removed by clicking the Toggle
Breakpoint button or clicking the Clear
All Breakpoints button.

3. Click the Run button.

4. Click the Debugging dropdown list
and click “Run in the debugger” on the
Run Script dialog box.

5. Click OK to execute the script. The
script will now stop where the
breakpoint is set so you can step
through the script from that point.

Chapter 2 • Getting started • 23

DEBUGGING

6. Click the Close button to stop the script and exit the Debugging window.

Many breakpoints can be added to a script so you can jump from one line to
another during execution.

The Go button will continue executing the script until the next breakpoint
or the last line of code.

Congratulations, you have just written and debugged your first geoprocessing
script. The remaining chapters will discuss the capabilities of the geoprocessor
and provide more examples of how to work in Python.

Using tools

Scripts are the engines that run geoprocessing

operations for many types of tasks. They can be

used to automate tasks, such as data conversion,

or generate geodatabases. If scripts are engines, tools

can be thought of as the pistons that drive the engine.

In this chapter you will learn how to create the

geoprocessor and run tools within a script.

33333

26 • Writing Geoprocessing Scripts with ArcGIS

All geoprocessing tools are accessible through a single object called the Geopro-
cessor in ArcGIS. This high-level object exposes each tool as a native method.
The geoprocessor is an ArcObjects component, accessible in Visual Basic or other
COM compliant languages. It also supports the COM interface IDispatch, which
enables text-based interpretative languages to utilize COM objects. Most scripting
languages support COM using IDispatch, such as VBScript, Python, JScript, and
Perl, making the geoprocessing tools available to these languages.

All geoprocessing capabilities of ArcGIS are exposed as methods of the
geoprocessor object, as it takes advantage of the dynamic nature of IDispatch to
create a single access point for running tools, including user-defined models. The
advantage of this approach over the one where a simple-to-use COM interface is
written to encapsulate each geoprocessing tool is that there is no need to write
the simple interface. Only the geoprocessing COM function needs to be written,
and the rest is taken care of by the geoprocessing framework.

Creating the object
Creating the geoprocessor object within the script is easy, using the scripting
environments standard call for instantiating IDispatch objects. Before this is
done, the Python win32com module must be loaded using the Import com-
mand. This module enables the COM IDispatch communication within Python.
All geoprocessing scripts must import this module to instantiate the geoprocessor
object so it can be seen as standard code that all your scripts have at the top.
Import COM Dispatch module

from win32com.client import Dispatch

Create the geoprocessor object and print the usage of the clip tool

GP = Dispatch("esriGeoprocessing.GPDispatch.1")

print GP.usage("clip_analysis")

Once you have the object, you can run any tool as a method. The standard
toolboxes that are installed with ArcGIS are immediately available once the
geoprocessor is created. These are:

• Analysis Tools

• Conversion Tools

• Data Management Tools

• Linear Referencing Tools

• Geocoding Tools

• Cartography Tools

Adding and removing toolboxes
The geoprocessor only knows about the tools in toolboxes that it has been made
aware of. Toolboxes may be found in many different folders or geodatabases, so it
would be impossible for the geoprocessor object to be aware of all tools that
exist in a system. To make a tool accessible to the geoprocessor, the tool’s toolbox
must be added to the geoprocessor so it is aware of its location and parameters.

THE GEOPROCESSOR OBJECT

The IDispatch interface exposes objects,
methods, and properties to programming
tools and other applications that support

Automation. COM components imple-
ment the IDispatch interface to enable

access by Automation clients, such as
Python, VBScript, and JScript.

The Component Object Model is a
software architecture that allows applica-

tions to be built from binary software
components. COM is the underlying

architecture that forms the foundation for
ArcGIS.

Chapter 3 • Using tools • 27

THE GEOPROCESSOR OBJECT

Add a toolbox with a model to the geoprocessor and set the workspace

GP.AddToolbox("d:/Myproject/MyTools.tbx")

GP.Workspace = "d:/Myproject"

Run the model with its required parameters

GP.BestPath("start.shp","destination.shp","results.shp")

A toolbox may also be removed from the geoprocessor so its tools are not acces-
sible from the geoprocessor. Keeping the number of known toolboxes to a
minimum decreases the chances of having multiple tools with the same name
being accessed at the same time, which could result in tool name ambiguity.
Remove toolbox from the geoprocessor

GP.RemoveToolbox("d:/Myproject/MyTools.tbx")

Scripts and models may be added to
custom toolboxes to create new

tools. System tools may also be added
to toolboxes to create custom

collections of tools that are stored in
a folder or a geodatabase. Refer to

Chapter 4 of Geoprocessing in ArcGIS
to learn more about toolboxes.

28 • Writing Geoprocessing Scripts with ArcGIS

TOOLS AND METHODS

Scripting is an ideal way to run a tool
many times with different parameters

automatically. This is called batch process-
ing.

Enumerations are lists without a
known count. Using a looping struc-
ture, a script can process the values

of an enumeration by simply checking to
see if there is another value to enumer-
ate. Refer to Chapter 4 for working with

enumerations.

All the system toolboxes have a set alias
property. Below are the toolbox names

and their aliases:

Data Management Tools—Management

Analysis Tools—Analysis

Conversion Tools—Conversion

Geocoding Tools—Location

Coverage Tools—Arc

ArcGIS Spatial Analyst Tools—SA

ArcGIS 3D Analyst™ Tools—3D

The geoprocessing object exposes a number of methods and properties to better
support the scripting experience. Methods, which may also be called functions,
can be used to list certain datasets, retrieve a dataset’s properties, validate a table
name before adding it to a geodatabase, or perform many others tasks. These
methods are only available from the geoprocessor, not as tools in ArcGIS applica-
tions, as they are meant for scripting. Each method will be discussed in detail in
this book. The example below shows how the ListFeatureClasses method can be
used to create a list object that contains the names of all the feature classes in a
workspace.
GP.workspace = "d:/MyData"

out_workspace = "d:/MyData/Results/"

clip_features = "d:/MyData/TestArea/Boundary.shp"

Get a list of the feature classes in the workspace

fcs = GP.ListFeatureClasses()

Loop through the list of feature classes

fcs.reset()

fc = fcs.next()

while fc:

 # Set the outputname for each output to be the same as the input

 output = out_workspace + fc

 # Clip each input feature class in the list.

 GP.clip_analysis(fc, clip_features, output, 5)

 fc = fcs.next()

Toolbox tools may be accessed as methods directly from the geoprocessor as well.
Due to the dynamic nature of the IDispatch COM interface, the geoprocessor can
access any tool that has been registered with the system, so geoprocessing opera-
tions such as overlays or buffering can be easily executed, as well as models and
other scripts. In the example above, the Clip tool from the Analysis Toolbox is
used to clip a number of feature classes in a batch operation.

Running a tool
Each geoprocessing tool has a fixed set of parameters that provides the tool with
the information it needs for execution. Tools usually have input parameters that
define the dataset or datasets that will typically be used to generate new output
data. Parameters have several important properties:

• Name: Each tool parameter has a unique name.

• Type: The type of data expected, such as feature class, integer, string and
raster.

• Direction: The parameter defines input or output values

• Required: Either a value must be provided for a parameter or it is optional

When a tool is used in a script, its parameter values must be correctly set so it can
execute when the script is run. The documentation of each tool clearly defines its
parameters and properties. Once a valid set of parameter values are provided, the
tool is ready to be executed.

Parameters are specified either as strings or objects. Strings are simply text that
uniquely identify a parameter value, such as a path to a dataset or a keyword.

Chapter 3 • Using tools • 29

TOOLS AND METHODS

Use the Location toolbar in ArcCatalog to help
determine the path to a dataset. In the example

above, the path for the selected feature class is
“Database

Connections\Birch.sde\WORLD.CITIES”.

Geodatabase feature datasets and
standalone feature classes may have the

same ArcCatalog path. Typically tools
work with one or the other. For those

tools that may work with either, such as
the Copy tool, the specific data type may

be specified to avoid ambiguity.

Most tool parameters can be specified as a simple string, with only complex
parameters, such as a spatial reference, requiring an object. How to create objects
and use them as parameters will be discussed in detail later in this chapter. In the
following code example, input and output parameters are defined for the Buffer
tool. In this case, two string variables are used to define the input and the output
so the call to the tool is easier to read. Other parameters are defined by strings,
which must always be quoted.
Output = "D:/St_Johns/data.mdb/roads_Buffer"

Roads = "D:/St_Johns/data.mdb/roads"

Set the toolbox to Analysis to avoid conflicts with other Buffer tools

and run Buffer

GP.Toolbox = "Analysis"

GP.Buffer(Roads, Output, "distance", "FULL", "ROUND", "NONE", "")

ArcCatalog paths
When the path to a dataset is specified as a tool or environment setting param-
eter, it must be the same as the path reported in the ArcCatalog™ Location
toolbar. Tools use ArcCatalog to find geographic data using an ArcCatalog path.
This path is a string and is typically unique to each dataset, containing either its

folder location, database connection, or URL in
the case of streaming Internet Mapping Server
(IMS) or server data. If the dataset you want to
use as a tool parameter cannot be seen in
ArcCatalog, then it cannot be used, except for
some file specific parameters, such as an
ArcInfo™ interchange file (e00) or raster
colormap file.

The ArcCatalog path for a shapefile is simply the
path to the folder containing the shapefile and
the shapefile’s name, including its .shp extension.
A shapefile containing roads located in the folder
C:\GrosMorne would have an ArcCatalog path
of “C:\GrosMorne\roads.shp”. A coverage in
that same folder containing a study area polygon
would have a similar ArcCatalog path of
“C:\GrosMorne\StudyArea”. A shapefile’s
extension is used to differentiate between a
shapefile and a coverage having the same name in
the same folder. INFO and dBASE tables act in
the same fashion, except the dBASE table has a
.dbf extension.

Feature classes in a personal geodatabase reside in
an Access database file, and enterprise
geodatabase feature classes are found in a Rela-

tional Database Management System (RDBMS). The ArcCatalog path to a per-
sonal geodatabase has the disk location of the Access file. A feature class name is
simply added to that path if it is standalone, resulting, for example, in a path of
“C:\GrosMorne\Data.mdb\rivers”. If a feature class is contained by a feature

30 • Writing Geoprocessing Scripts with ArcGIS

TOOLS AND METHODS

To learn more about working with
ArcObjects, visit the ArcGIS Developer

online website (http://
arcgisdeveloperonline.esri.com).

The geoprocessor object may be used in
Visual Basic (VB) or Visual Basic for
Applications (VBA) to execute any

geoprocessing tool. When used in VBA,
any resulting tool messages are captured

in the Command Line window. The
geoprocessing history model is also

updated with a record of any tool that is
executed.

The geoprocessor uses ArcCatalog
to reference geographic data. If the
geoprocessor is created in an appli-

cation that has an ArcCatalog al-
ready instantiated, it will use that in-

stance, otherwise, it will create one for
the lifetime of the geoprocessing object.

dataset, the feature dataset’s name must precede the feature class name. Feature
class paths must always include the feature dataset name when applicable, other-
wise, a tool will not recognize the path.

Instead of a path to an Access file, paths to data in an enterprise geodatabase
contain the location of the file defining the database connection. The default
location for this information is Database Connections in ArcCatalog, so a typical
path to a standalone feature class in an enterprise geodatabase may appear as
“Database Connections\Connection to GrosMorne.sde\reed.roads”. Use the
Location toolbar in ArcCatalog to check a dataset or workspace path.

The geoprocessor will not see data correctly if a script copies, deletes, or modifies
data without using one of the geoprocessor’s methods or a geoprocessing tool.
Copying a set of shapefiles using the file system can cause the geoprocessor’s
internal ArcCatalog to become out-of-date, as it does not see these changes. The
geoprocessor will not refresh automatically to see these changes, as ArcCatalog
does not monitor all changes in a system. In a case such as this, the
RefreshCatalog method must be used to make sure the ArcCatalog that the
geoprocessor uses references data correctly for a particular location.

Using ArcObjects as tool input
ESRI® ArcObjects is the development platform for the ArcGIS family of appli-
cations such as ArcMap™, ArcCatalog™, and ArcScene™. The ArcObjects software
components expose the full range of functionality available in ArcInfo and
ArcView® to software developers. These objects may be used to manage geo-
graphic data, such as the contents of a geodatabase, shapefiles, and coverages, to
name a few. If you are accustomed to working with ArcObjects, you can con-
tinue with that object model when working with the geoprocessor. An ArcObject
may be used instead of an ArcCatalog path when defining an input parameter to a
tool if the parameter accepts layers as valid input. For example, an IFeatureClass
object may be used to define the input to the Clip tool in the Analysis toolbox,
while an IRasterDataset object may be used as input to the Slope tool. The
CreateFeatureclass tool will not accept an ArcObject as the input location, which
could be a folder, geodatabase workspace, or geodatabase feature dataset, as none
of these data types may be represented as a layer. An ArcCatalog path must be
used to define newly created tool output. Append updates existing data, so its
output may be defined using an ArcObject, such as an IFeatureLayer. Below is an
example of using an ArcObject as input to a tool in VBA:
Public Sub ClipFC()

 Dim filePath As String

 filePath = "D:\st_johns"

 Dim inputName As String

 Dim clipName As String

 inputName = "roads.shp"

 clipName = "urban_area.shp"

 Dim pWorkspace As IWorkspace

 Dim pFact As IWorkspaceFactory

 Set pFact = New ShapefileWorkspaceFactory

Chapter 3 • Using tools • 31

A backslash (\) is a reserved charac-
ter indicating line continuation or an

escape character in Python. When
specifying a path, use two

backslashes instead of one to avoid a
syntax error. A forward slash (/) may

be used in place of a backslash. A
string literal may also be used by

placing “r” before a string containing
a backslash so it is interpreted cor-
rectly. All examples in this book use

forward slashes.

TOOLS AND METHODS

 Set pWorkspace = pFact.OpenFromFile(filePath, 0)

 Dim pFWorkspace As IFeatureWorkspace

 Set pFWorkspace = pWorkspace

 Dim pInfc As IFeatureClass

 Dim pClipfc As IFeatureClass

 Set pInfc = pFWorkspace.OpenFeatureClass(inputName)

 Set pClipDS = pFWorkspace.OpenFeatureClass(clipName)

 Dim pGP As Object

 Set pGP = CreateObject("esriGeoprocessing.GPDispatch.1")

 On Error GoTo EH

 pGP.Workspace = filePath

 pGP.Clip_analysis pInfc, pClipfc, filePath & "\clipfc.shp"

 Exit Sub

EH:

 MsgBox pGP.GetMessages(), vbOKOnly, "Clip"

End Sub

Tool return values
The geoprocessor always returns the output value(s) of the tool when it is ex-
ecuted. Typically, this is the path to the output dataset produced or updated by
the tool, but it may be other value types such as a number or a boolean. If there
is more than one output for a tool, the values are returned in a multivalue string,
which consists of multiple strings separated by a semicolon.

Output values are always returned to the script from the geoprocessor. Return
values are necessary when a tool has no output dataset, instead, it has an output
scalar value, such as an integer or boolean. They are also helpful when working
with multiuser databases, as output names are qualified with a user’s name and
table space when outputs are written into the database. This topic is covered in
more detail in Chapter 7. Below are several examples of how return values are
captured and what their values could be:

Example 1:
GP.Toolbox = "Analysis"

GP.Workspace = "D:/St_Johns/data.mdb"

outvar = GP.Clip("roads","urban_area","urban_roads")

Print output feature class name D:/St_Johns/data.mdb/urban_roads

print outvar

Example 2:
GP.Toolbox = "Management"

GP.Workspace = "D:/St_Johns/data.mdb"

defgrid = GP.CalculateDefaultGridIndex("urban_roads")

Print return value, which is a double precision number

print defgrid

32 • Writing Geoprocessing Scripts with ArcGIS

TOOLS AND METHODS

Setting the toolbox when using a tool is
a good practice if the script being written

may be used by others or in different
contexts. It eliminates the possibility of

tool name conflicts.

Avoid referencing too many
toolboxes in your script, as it in-

creases the possibility of a tool name
conflict. Add a toolbox when you
need its tools; remove it when you no

longer need them.

Example 3:
GP.Toolbox = "Analysis"

GP.Workspace = "Database Connections/Connection to st_johns.sde"

outvar = GP.Clip("roads","urban_area","urban_roads")

Print return value of fully qualified output name which will be

Database Connections\Connection to jreinhart.sde\gp.city.urban_roads

print outvar

Tool names and name conflicts
Tools have a name and label property. A tool name must be unique for the
toolbox containing the tool, but the label has no restrictions. For example, a tool
may be named “CalculatePath”, while its label is “Calculate Best Path”. There
must be no other tool in that toolbox named “CalculatePath”, but other tools
may have the same label. The tool label is used for displaying the tool in an
ArcGIS application and for labeling the tool’s dialog box. The tool name is used
to execute the tool in the command line and within scripts. The name must not
have spaces or other restricted characters such as percent symbols or slashes.

A script typically uses tools from more than one toolbox, as seen with the
toolboxes ESRI delivers with ArcGIS. When using multiple toolboxes, it is
possible that two or more toolboxes will contain a tool with the same name.
When this happens, the geoprocessor is unable to determine which tool in which
toolbox should be executed when the tool is referenced in a script. If the
geoprocessor determines that the tool name is ambiguous, an error is returned.

There are two ways of avoiding these tool name conflicts. The first is to specify
which toolbox should be used as the default tool location when a tool is called by
the geoprocessor. The second is to add a suffix to the name of the tool using the
toolbox’s alias when the tool is referenced by the geoprocessor. This will be
discussed in the ‘Using a toolbox alias’ section below.

Setting the current toolbox
Each toolbox has a unique path. This path can be used to specify the first place
the geoprocessor should look when a tool is executed. If that toolbox has a tool
with the same name as a tool in another toolbox referenced by the geoprocessor,
the geoprocessor will select the tool in the toolbox that has been explicitly set for
the geoprocessor. A toolbox’s path or alias may be used to explicitly set it. A
toolbox’s alias is a short name that is used to quickly identify it. The alias has the
same naming restrictions as a tool and should be unique. The examples below
show how to set the default toolbox for the geoprocessor:

Example 1:
Set the default toolbox using the toolbox's path

GP.AddToolbox = "D:/St_Johns/Path Tools.tbx"

GP.Toolbox = "D:/St_Johns/Path Tools.tbx"

GP.Workspace = "D:/St_Johns/data.mdb"

GP.CalculatePath("start","destination","path")

Chapter 3 • Using tools • 33

TOOLS AND METHODS

All the system toolboxes have a set alias
property. Below are the toolbox names

and their aliases:

Data Management Tools—Management

Analysis Tools—Analysis

Conversion Tools—Conversion

Geocoding Tools—Location

Coverage Tools—Arc

ArcGIS Spatial Analyst Tools—SA

ArcGIS 3D Analyst Tools—3D

Example 2:
Set the default toolbox using its alias

GP.AddToolbox = "D:/St_Johns/Path Tools.tbx"

GP.Toolbox = "PathTools"

GP.Workspace = "D:/St_Johns/data.mdb"

GP.CalculatePath("start","destination","path")

Using a toolbox alias
Often, only a few toolboxes are used in a script, so explicitly setting the toolbox
may not be necessary for most tools known by the geoprocessor. In the rare case
where a conflict is known to occur, it may be avoided by simply suffixing the tool
name with the alias of the toolbox and an underscore. This additional informa-
tion eliminates ambiguity for the geoprocessor, allowing it to execute the correct
tool. Not all toolboxes have an alias, as it is an optional property. There may also
be nonunique toolbox alias names, so only use a toolbox’s alias when there is no
chance of an alias name conflict; otherwise, explicitly set the default toolbox for
the geoprocessor using the toolbox’s path. In the example below, the script tries
to access the Clip tool found in the Analysis Tools toolbox and the Clip tools
found in the Coverage Tools toolbox. These tools perform very similar operations,
but they are distinct, requiring different parameters. By using the alias of each
toolbox, a tool name conflict is avoided.
Clip the geodatabase feature class roads with the urban_area coverage

GP.Workspace = "D:/St_Johns/data.mdb"

Use the Analysis Tools alias to specify its Clip tool

GP.clip_analysis("roads","urban_area/polygon","urban_roads")

Clip the coverage rivers with the urban_area coverage

GP.Workspace = "D:/St_Johns"

Use the Coverage Tools alias to specify its Clip tool

GP.clip_arc("rivers","urban_area","urban_roads")

34 • Writing Geoprocessing Scripts with ArcGIS

ENVIRONMENT SETTINGS

Environment settings are divided into
five categories: General, coverage,

geodatabase, raster geodatabase and
raster analysis. Refer to the ArcGIS Help
system to learn about available settings

and what tools they affect.

Environment setting names are
unique and can be found in the

ArcGIS Help system. Environment names
have the same restrictions as tool names,
so restricted characters, such as spaces or

slashes, are not allowed.

Each tool has a set of parameters it uses to execute an operation. Some of these
parameters are common among tools, such as a tolerance or output location.
These parameters may obtain their default values from a geoprocessing environ-
ment that all tools utilize during their operation. When a tool is executed, the
current environment settings may also be used as global input parameter values.
Settings such as an area of interest, the spatial reference of the output dataset,
and the cell size of a new raster dataset may all be specified in the geoprocessing
environment. For a complete list and description of the geoprocessing environ-
ment settings, refer to Chapter 6 in Geoprocessing in ArcGIS.

A script may be executed in several different ways. It may be run by a script tool
in an ArcGIS application, such as ArcMap. It may also be run from another script
or by itself from a command prompt. When a script is run inside a tool from an
ArcGIS application or from another geoprocessing script, the environment set-
tings used by the calling application or script are passed to it. These settings
become the default settings used by the tool’s script when it is executed. The
called script may alter the settings passed to it, but those changes are only used
within that script or by any other tool it may call. Changes are not passed back to
the calling script or application. The environment model can best be described as
cascading, where values flow down to any process that uses the geoprocessing
environment.

Environment settings are exposed as properties of the geoprocessor in the script-
ing environment. These properties may be used to retrieve the current values or
to set them. Each environment setting has a name and a label. Labels are dis-
played on the Environment Settings dialog box in ArcGIS. Names are used in
scripts or at the command line in ArcGIS applications. Below are several ex-
amples of how to use environment values:

Example 1: Setting Environment Values
Set the workspace environment setting

GP.Workspace = "D:/St_Johns/data.mdb"

Set the cluster tolerance environment setting

GP.ClusterTolerance = 2.5

Calculate the default spatial grid index, half it and then

set the spatial grid 1 environment setting

GP.SpatialGrid1 = pGP.CalculateDefaultGridIndex("roads") / 2

Clips the roads by the urban area feature class

GP.Toolbox = “Analysis”

GP.Clip("roads","urban_area","urban_roads")

Example 2: Getting and Setting an Environment Value
Check the current raster cell size and make sure it is a certain size

for standard output

GP.Workspace = "d:/avalon/data"

if GP.CellSize < 10:

 GP.CellSize = 10

elif GP.CellSize > 20:

 GP.CellSize = 20

GP.HillShade_sa("island_dem","island_shade",300)

Chapter 3 • Using tools • 35

ENVIRONMENT SETTINGS

The environment settings file is text
stored in an XML schema, but it is not

important for you to understand its
format because it is only meant as a

vehicle for persistence and transfer of
settings from one geoprocessor to the

next.

Environment values may be passed
between modules as arguments.

Saving and loading settings between
executing modules is not an efficient

way of sharing values. Using a set-
tings file is valid when used by mod-

ules that are not run together, which
is the intent of the adjacent example.

Saving and loading settings
Automatic transfer of settings is only done when a script is executed by a geopro-
cessing tool. When a geoprocessing script calls another geoprocessing script, the
environments are not automatically passed to the called script, as there is no way
for the first script to know that the second script will contain a geoprocessor.

To facilitate the transfer of environment settings from one script to another and
to save settings from one session to the next, settings may be saved to a file. A
geoprocessor may then set its environments by loading a settings file. In the first
example below, a script transfers its settings to a second script by saving them to a
file and passing that file name as a parameter to a second script. The second
example loads an environment settings file using a name passed as a script argu-
ment.

Example 1:
from win32com.client import Dispatch

Create the GPDispatch object

GP = Dispatch("esriGeoprocessing.GPDispatch.1")

Set the raster environment settings and the workspace

GP.CellSize = 25

GP.Mask = "D:/St_Johns/Landcover"

GP.Workspace = "D:/St_Johns"

Save the environment settings

envfile = GP.SaveSettings("D:/St_Johns/settings")

Call python script and pass file name as argument

os.system('MyHillshade.py ' + envfile)

Example 2:
import os

from win32com.client import Dispatch

Create the GPDispatch object

GP = Dispatch("esriGeoprocessing.GPDispatch.1")

Get the input parameter value

envfile = sys.argv[1]

Load the environment settings

envfile = GP.LoadSettings(envfile)

Calculate hillshade

GP.Hillshade("city_dem","city_shade",250)

36 • Writing Geoprocessing Scripts with ArcGIS

COMPLEX PARAMETERS

For more information about map projec-
tions and spatial references, refer to

Understanding Map Projections and
Building a Geodatabase.

Tool parameters are usually defined using simple text strings. Dataset names,
paths, keywords, field names, tolerances, and domain names are all simple to
specify using a quoted string. Some parameters are harder to define using a single
string, as they define a more complex parameter type that requires many proper-
ties. Spatial references, value tables, weighted overlay tables, and remap tables are
examples of complex parameters, as they require a number of properties to be set
before they can be used. Instead of using simple text strings to define these
parameters, they are defined using objects that have all the required information
defined as read/write properties. Refer to a tool’s documentation to review its
parameters and how they are specified in scripts. Each tool’s documentation has a
specific section for scripting with examples, so it will inform you if an object or a
string is expected for a parameter and show how it is defined.

Parameter objects are created using the geoprocessor’s CreateObject method.
Once an object has been created, its properties must be set before it is used as a
parameter. An object’s properties are read or set in the same manner as
geoprocessing environment settings. Below is an example of how a parameter
object is created and used in a tool:
Create spatial reference object for new feature dataset

SR = GP.CreateObject("SpatialReference")

SR.Name = "Lambert Conformal Conic"

SR.StandardParallel1 = "46 00 00"

SR.StandardParallel2 = "52 00 00"

SR.CentralMeridian = "-61 00 00"

SR.LongitudeOfOrigin = "0 00 00"

SR.FalseEasting = "1000000"

SR.Domain = "1000000;0;3000000;5000000"

Create new feature dataset

GP.CreateFeatureDataset("d:/st_johns/data.mdb/results",SR)

Chpater 3 • Using Tools • 37

LISTING TOOLS, TOOLBOXES, AND ENVIRONMENTS

Depending on which toolboxes have been added to the geoprocessor, the
geoprocessor may have access to several toolboxes, dozens of environment
settings and hundreds of tools. There are three appropriately named methods on
the geoprocessor to return a list of tools (ListTools), environment settings
(ListEnvironments) or toolboxes (ListToolboxes). These methods have one
option, a search string, or wild card, and they return an enumeration of name
strings that can be looped through. Refer to Chapter 4 for more information
about using enumerations. The example below shows how to access all the tools
from the geoprocessor and print out their usage.
from win32com.client import Dispatch

Create the Geoprocessor

GP = Dispatch("esriGeoprocessing.GPDispatch.1")

Create a list of the default set of tools.

tools = GP.ListTools()

Get the first tool name from the list.

tools.Reset()

tool = tools.Next()

Loop through the list and print each tool's usage.

while tool:

 print GP.Usage(tool)

 tool = tools.Next()

38 • Writing Geoprocessing Scripts with ArcGIS

LICENSING AND EXTENSIONS

Whenever a tool is executed in a script, an ArcGIS Desktop license is required.
Tools from ArcGIS extensions, such as Spatial Analyst, require an additional
license for that extension. If the necessary licenses are not available, a tool will
fail and return appropriate error messages. The geoprocessor will always assume
an ArcInfo license is required for execution of a script, so if a script does not
explicitly set the product required by the tools it executes, an ArcInfo license will
be initialized. If ArcView or ArcEditor™ are the only available desktop licenses, a
script must explicitly set the product to ArcView or ArcEditor. The table below
shows the methods available in the geoprocessor for checking, setting, and return-
ing licences:

The SetProduct method is used to define the desktop license used by a script. A
string is returned by the geoprocessor, indicating whether the license was initial-
ized successfully. The CheckProduct method may be used to see which desktop
licenses are available, while the ProductInfo method will report what the current
product license is.

Licenses for extensions may be retrieved from a license manager and returned
once they are no longer needed. The CheckExtension is used to see if a license is
available to be checked out for a specific type of extension, while
CheckOutExtension actually retrieves the license. Once the extension license has
been retrieved by the script, extension tools will execute. Once a script is done
with an extension’s tools, the CheckInExtension method should be used to return
the license to the license manager so other applications may use it. All checked-
out extension licenses and set product licenses are returned to the license manager

Chapter 3 • Using tools • 39

LICENSING AND EXTENSIONS

when a script completes. The following example will execute some
Spatial Analyst tools and set the desktop product license to ArcView, as an
ArcInfo license is not required to execute tools from an extension. The script
would fail if the ArcView license is not explicitly set and no ArcInfo license is
available, as a desktop license is required to execute extension tools.
Import COM Dispatch module

from win32com.client import Dispatch

Create the geoprocessor object

GP = Dispatch("esriGeoprocessing.GPDispatch.1")

GP.SetProduct("arcview")

try:

 if GP.CheckExtension("spatial") == "available":

 GP.CheckOutExtension("spatial")

 else:

 raise "LicenseError"

 GP.Workspace = "D:/GrosMorne"

 GP.HillShade("WesternBrook", "westbrook_hill", 300)

 GP.Aspect("WesternBrook", "westbrook_aspect")

 GP.CheckInExtension("spatial")

except "LicenseError":

 print "Spatial Analyst license is unavailable"

except:

 print GP.GetMessages(2)

A returned value of “failed” indicates there was a problem in communication
with the license manager. A network error or a stopped license manager process
are examples of the failure of some methods.

Batch processing

Many geoprocessing tasks are done repetitively and

often. An easy and efficient way of automating these

tasks is essential.

This chapter will show how to write scripts to work with

many inputs and outputs using a number of the

geoprocessor’s functions and objects that were built for

batch processing.

44444

42 • Writing Geoprocessing Scripts with ArcGIS

LISTING DATA

Companies and organizations that use a GIS typically have large amounts of
information stored in many different data formats. Hundreds of shapefiles,
geodatabase feature classes, coverages, grids, and tables may form the backbone
of the organization and are used every day. New data may also be created at a
staggering rate by converting data from one format to another. The tasks required
to maintain current databases and create data suitable for analysis are often
daunting because of the volume of data required for processing.

Scripts are used to meet these requirements, as they are an effient way of organiz-
ing data and executing operations. One of the foremost tasks in a batch process-
ing script is cataloging the data that is available so it can iterate through the data
during processing. The geoprocessor has a number of methods built specifically
for creating such lists. These methods work with all different types of data and
provide flexibility for restricting a search by name or data category. Below is a list
of these methods and their syntax:

• ListDatasets (Wild Card, Dataset Type): Returns the datasets in the
current workspace.

• ListFeatureClasses (Wild Card, Feature Type): Returns the feature
classes in the current workspace.

• ListFields (Input Value, Wild card, Field Type): Returns a list of fields
found in the input value.

• ListIndexes (Input Value, Wild Card): Returns a list of attribute indexes
found in the input value.

• ListRasters (Wild Card, Raster Type): Returns a list of rasters found in
the current workspace.

• ListTables (Wild Card, Table Type): Returns a list of tables found in the
current workspace.

• ListWorkspaces (Wild Card, WorkspaceType): Returns a list of
workspaces found in the current workspace.

The result of each of these methods is an enumeration, which is a list of values
without a known count. An enumeration in scripting may contain any type of
data, such as string, which could be, for example, a pathname to a dataset, a field,
or a row from a table. Once the enumeration has been created with the values
you want, you can loop through it in your script to work with each individual
value.

Parameters
The parameters of these methods are similar. A few, such as ListFields, require
an input dataset value, as the items the methods are listing reside within a certain
object or dataset. Other methods do not require an input dataset, as they list
types of data in the current workspace that are defined in the environment
settings. All methods have a wild card parameter, which is used to restrict the
objects or datasets listed by name. A wild card defines a name filter, and all the
contents in the newly created list must pass that filter. For example, you may
want to list all the feature classes in a workspace that start with the letter G. The

The wild card option uses an asterisk to
mean any character. More than one

asterisk may be used in the wild card
string. For example, the wild card ‘*road*’
can be used to find items that have the

word road in their names.

Scripts may be run outside an ArcGIS
application at any time. By using an

operating system’s scheduling mecha-
nism, you may have a script run at a

regular date and time.

Chapter 4 • Batch processing • 43

following example shows how this is done:
Import COM Dispatch module

from win32com.client import Dispatch

Create the geoprocessor object

GP = Dispatch("esriGeoprocessing.GPDispatch.1")

Set the workspace. List all of the feature classes that start with 'G'

GP.Workspace = "D:/St_Johns/data.mdb"

fcs = GP.ListFeatureClasses("G*")

The list may also be restricted to match certain data properties, such as only
polygon feature classes, integer fields, or coverage datasets. This is what the Type
parameter is used for in all the methods. In the next example, the feature classes
in a workspace are filtered using a wild card and a data type, so only polygon
feature classes that start with the letter G are in the resulting enumeration:
Set the workspace. List all of the polygon feature classes that

start with 'G'

GP.Workspace= "D:/St_Johns/data.mdb"

fcs = GP.ListFeatureClasses("G*","polygon")

Looping
Once you have the list you want, you must iterate through it utilizing one of the
looping mechanisms of the scripting environment you are using. Most languages
have a common looping structure, called a While loop, that works well with
enumerations. Below is an example of a While loop used to iterate through the
list generated in the previous example:
Reset the enumeration to make sure the first object is returned

fcs.reset()

Get the first feature class name

fc = fcs.next()

while fc: # While the feature class name is not None

 # Copy the features from the workspace to a folder

 GP.Copy(fc,"D:/St_Johns/Shapefiles/” + fc)

 # Get the next feature class name

 fc = fcs.next()

A While loop is ideal for working with an enumeration because it evaluates a
condition before the loop is executed. By setting a value before the loop and
setting the next value at the end of the loop, the loop will iterate until the value
is set to a null or empty value. Enumerations have two methods and no proper-
ties. The Reset method ensures that the first record in the enumeration is re-
turned when the next method is called. The Next method simply returns the
currently selected value in the enumeration. Calling Next increments the
enumeration’s selection. Following is another example of how to use an enu-
meration created by a list function. The script is used to create raster pyramids for
all rasters that are TIFF images within a folder.
Set the workspace. List all of the TIFF files

GP.Workspace= "D:/St_Johns/images"

tiffs = GP.ListRaster("*","TIFF")

LISTING DATA

 A workspace is a directory, database, or
dataset containing geographic data (for

example, geodatabase, geodatabase
feature dataset, coverage, folder) and

other supporting data.

The geoprocessor uses enumerations
for its list function results and cursor

support, as enumerations support the
flexibility required for sequential data

access and multiple data types.

44 • Writing Geoprocessing Scripts with ArcGIS

Reset the enumeration to make sure the first object is returned

tiffs .reset()

Get the first feature class name

tiff = tiffs.next()

while tiff: # While the raster name is not empty

 # Create pyramids

 GP.BuildPyramids(tiff)

 # Get the next TIFF raster

 tiff = tiffs.next()

Types
The default behavior for all list methods is to list all supported types. A keyword
is used to restrict the returned list to a specific type. The type keywords for each
method are listed in the table below. Refer to the ArcGIS Help system for more
information about feature classes, datasets, workspaces, fields, tables, and sup-
ported raster formats.

Function Type Keywords

LISTING DATA

Chapter 4 • Batch processing • 45

MULTIPLE INPUTS

The ArcGIS overlay engine supports
the intersection or union of any

number of inputs, saving you from
having to run these tools in a pair-
wise fashion. Read the Overlay toolset

documentation for more information
about the new overlay engine in ArcGIS

9.

There is no harm in wrapping each item
in a multivalue string with single quotes.
Single quotes are only required when an
item in the string has a space and there

are input options, such as a rank or
reclass value.

Tools may accept a single input or many inputs, depending on the operation. Tools
that convert or overlay data may accept multiple datasets as input because of the
nature of the operation. In a script, inputs are passed to these tools as a
multivalue string, which uses a semicolon to separate each input within the string.
A multivalue string is easy to create within a script using the string manipulation
functions built into the scripting language. In this example, a multivalue string is
created using one of Python’s string concatenation functions:
Import COM Dispatch module

from win32com.client import Dispatch

Create the geoprocessor object

GP = Dispatch("esriGeoprocessing.GPDispatch.1")

Set the workspace. List all of the feature classes in the dataset

GP.Workspace= "D:/St_Johns/data.mdb/neighborhoods"

fcs = GP.ListFeatureClasses()

Create the multi-value string for the Analysis Union tool

fcs.reset

Get the first feature class name and set the string variable

fc = fcs.next()

inputs = fc

Get the next name and start the loop

fc = fcs.next()

while fc: # While the fc name is not empty

 inputs = inputs + ";" + fc

 fc= fcs.next()

Union the feature classes with the land use feature class to create

a single feature class with all of the neighborhood and land use data

inputs = inputs + ";D:/St_Johns/data.mdb/land_use"

GP.Toolbox = "Analysis"

GP.Union(inputs, "D:/St_Johns/data.mdb/lu_output")

Using input options
The Union and Intersect overlay tools in ArcGIS support the use of priority
ranks, which are used to preserve features with high accuracy. A rank is assigned
to each input feature class as an optional value, where 1 is the highest rank. If no
rank is given for a feature class, then it uses the lowest rank available. If no ranks
are provided for any input, then they all receive the same rank. In a multivalue
string, a rank is specified after the name of the feature class, with a space separat-
ing the values. If the feature class name has a space, it must be wrapped by single
quotes. The example below shows how to create such a string:
GP.Workspace= "D:/St_Johns/data.mdb/neighborhoods"

inputs = "east 1;west 1;south 1;'north end' 2"

inputs = inputs + ";D:/St_Johns/data.mdb/land_use 3"

GP.Toolbox = "Analysis"

GP.Union(inputs, "D:/St_Johns/data.mdb/land_use")

If an input has more than one option, separate each option with a space before
using a semicolon to indicate the next input.

46 • Writing Geoprocessing Scripts with ArcGIS

MULTIPLE INPUTS

Refer to Chapter 3 for more information
on tool return values and Chapter 5 for

how to work with script arguments.

Lists are what is known as a collec-
tion type in Python. Lists may con-

tain any type of object, such as a
string or number and they have a

number of methods for appending,
sorting and navigating.

A script tool will generate a multi-value
string for any parameter that has its

MultiValue property set to yes.

A value table only exists during the
lifetime of the geoprocessor object that
created it. The table may be thought of
as a virtual matrix of values that is not

persisted as an actual table because it is
a device for managing many parameter

values in a script.

Using a multivalue input
Just as you may create and use a multivalue string for a tool’s input, your script
may have to use a multivalue string, as one may be returned as an output value of
a tool or passed as an input argument for your script. Your script may simply pass
the multivalue string as a parameter for a tool, or it may have to split all the
values within it so they can be used individually.

A script that converts multiple feature classes from one format to another is a
good example of why you may want to use a multi-value as input. In ArcGIS,
feature conversion can be performed by copying features from one workspace to
another using the CopyFeatures tool. The tool will convert from one format to
another if the two workspaces are of different types. The CopyFeatures tool
copies one feature class at a time, so if your script accepts multiple inputs, it must
split the string into its individual feature class names and put the names in a data
structure that is suitable for looping, such as a list or array. The following example
shows how this could be done:
Import COM Dispatch and sys

from win32com.client import Dispatch

import sys

#Create the Geoprocessor object

GP = Dispatch("esriGeoprocessing.GpDispatch.1")

Set the output workspace

GP.Workspace = sys.argv[2]

Split input values using the semicolon

inputs = sys.argv[1]

inputlist = inputs.split(";")

#Loop through the list of inputs

for input in inputlist :

 # Validate the output name for the new workspace

 out_name = GP.ValidateTablename(input)

 # Copy the features to the new workspace

 GP.CopyFeatures(input,out_name)

Using value tables
A value table is a flexible object that may be used as a value for any multivalue
parameter. The previous examples of multivalue parameter values focus on the
text value of the parameter, which may become difficult to use when there are
numerous values with complex paths. The value table is used to organize the
values into a table, so values may be easily added or removed, eliminating the
complexity of parsing a multivalue text string.

The number of columns a value table will contain must be specified when it is
created. Each column corresponds to a value in the parameter being defined.
Union, for example, requires the path to a dataset or a layer name, along with a
priority rank for each input entry. A value table for Union will require two
columns—one for the data and one for the priority rank. The following example
shows how to create and populate a table for Union:

Chapter 4 • Batch processing • 47

Set the workspace. List all of the feature classes in the dataset

GP.Workspace= "D:/St_Johns/data.mdb/neighborhoods"

fcs = GP.ListFeatureClasses()

Create the value table for the Analysis Union tool with 2 columns

vtab = GP.CreateObject("ValueTable",2)

fcs.reset

Get the first feature class name and set the string variable

fc = fcs.next()

inputs = fc

Get the next name and start the loop

fc = fcs.next()

while fc: # While the fc name is not empty

 # Update the value table with a rank of 2 for each record, except

 # roads

 if fc <> "roads":

 vtab.AddRow(fc,"2")

 else:

 vtab.AddRow(fc,"1")

 fc= fcs.next()

Union the feature classes with the land use feature class to create

a single feature class with all of the neighborhood and land use data

vtab.AddRow ("D:/St_Johns/data.mdb/land_use","2")

GP.Union_analysis(vtab, "D:/St_Johns/data.mdb/lu_output")

A value table may be populated with a multivalue string that has been passed to a
script as an argument, making it easy to extract each record. The example below
shows how to do this:
Set the output workspace

GP.Workspace = sys.argv[2]

Create the value table 1 column

vtab = GP.CreateObject("ValueTable",1)

MULTIPLE INPUTS

Value tables make it easy to work
with multivalue parameters, as they do all

the parsing of individual values. Each
scripting language has different functions
for parsing strings. The value table object

provides a standard way to work with
multivalue parameters, independent of

the scripting language.

48 • Writing Geoprocessing Scripts with ArcGIS

MULTIPLE INPUTS

Set the values of the table with the contents of the first argument

vtab.LoadFromString(sys.argv[1])

x = 1

#Loop through the list of inputs

while x < vtab.RowCount:

 # Validate the output name for the new workspace

 name = vtab.GetRow(x)

 out_name = GP.ValidateTablename(name)

 # Copy the features to the new workspace

 GP.CopyFeatures(name ,out_name)

 x = x + 1

Messaging and
script tools

Tools create messages while executing so the processing

status may be known. Messages are also created once a

tool has completed executing. There are different types of

messages, depending on the processing status of the tool.

This chapter will explain the different types of messages

and how to use and set them within a script. Scripts may

be used as the source of tools in ArcGIS, allowing scripts

to be executed using dialog boxes, models, or the

command line. The geoprocessor exposes a number of

methods for easy communication between scripts and the

geoprocessing framework in ArcGIS applications.

55555

50 • Writing Geoprocessing Scripts with ArcGIS

MESSAGES

During execution of a tool, messages are relayed back to the geoprocessor. These
messages include such information as when the operation started, what parameter
values are being used, the operation’s progress, and warnings of potential prob-
lems or errors. All communication between a tool, the geoprocessor, and the user
is conducted via this messaging. Scripts are frequently run in an automated fash-
ion without user interaction. Since geoprocessing tools do not assume there is
direct interaction with a user, they never use message boxes or other types of
dialog boxes during their execution.

Message types and severity
A tool message will be classified as either information, a warning, or an error. A
message’s type is indicated by its severity property, which is a numeric value.
Messages may also be returned when dialog boxes are used to define tool param-
eters as tools execute a validation routine to check those values. A tool will
validate its parameter values during its use.

An informative message may be used to indicate any event that does not reflect a
problem or possible error. Typical informative messages indicate a tool’s progress,
what time a tool started or completed, output data characteristics, or tool results.
A severity value of zero is used for informative messages, as they require no
action from a user or script.

Warning messages are generated when a tool experiences a situation that may
cause a problem during its execution or when the result may not be what the user
expects. A user or script may choose to take action when a warning is returned,
such as cancelling the tool’s execution or making another parameter choice.
Defining a coordinate system for a dataset that already has a coordinate system
defined, for example, will generate a warning. The tool will still execute, but it
may not create the desired result if the user did not intend to alter the existing
coordinate system. A severity value of one is given to warning messages.

Error messages indicate a critical event that will prevent a tool from executing.
Errors are generated when one or more parameters have invalid values or when a
critical execution process or routine has failed. A path to data that does not exist,
an invalid keyword, or corrupted data are examples of situations that will cause
an error. Errors have a severity value of two, indicating an action is required by
the script or user.

Most scripting languages have built-in error handling, allowing scripts to continue
execution in a logical fashion when an error occurs. When an error message from
a tool is returned to the geoprocessor, it generates a system error, which may be
caught by a script’s error handling routine. If a script does not have an error
handling routine, it will fail immediately, which decreases its robustness. Use
error handling routines to manage errors and improve a script’s usability.

Messages from the last tool the geoprocessor executed are maintained as a list of
message objects by the geoprocessor. A message object contains a message’s text
and its severity. Using a number of geoprocessor methods, you may access the
message list to retrieve, add, or clear messages.

Many of the examples in this book
have error handling routines. Refer

to the scripting language’s documen-
tation for a complete discussion of

how to use its error handling mecha-
nism.

Chapter 5 • Messaging and script tools • 51

GETTING MESSAGES

Getting messages
When tools are executed in a script, you may want to access the resulting mes-
sages if an error or warning occurs or simply show the progress of an operation.
The GetMessages method will return a single string containing all the messages
from the tool that was last executed. The returned messages may be filtered to
only those with a certain severity using the optional severity option.
Import COM Dispatch

from win32com.client import Dispatch

Create the Geoprocessor object

GP = Dispatch("esriGeoprocessing.GpDispatch.1")

Execute the Clip tool

GP.Toolbox = "Analysis"

GP.Workspace = "D:/St_Johns/data.mdb"

GP.Clip("roads","urban_area","urban_roads")

Get the resulting messages and print them

print GP.GetMessages()

Individual messages may be retrieved using the GetMessage method. This method
has one parameter, which is the index of the message in the geoprocessor’s mes-
sage list or array. The MessageCount property maintains the number of messages
in the geoprocessor’s message array. The example below shows how to print the
start and end time for a tool.
GP.Clip("roads","urban_area","urban_roads")

Print the second message.

print GP.GetMessage(1)

Print the last message.

print GP.GetMessage(GP.MessageCount - 1)

Arrays are collections of data with a
fixed size. The data is of the same
type and may be accessed in any

order.

Arrays are typically zero based. The
index to the first member is zero and
the number of members minus one is

the index to the last member.

A tool’s second and last messages
always give the start and end time for

the tool’s execution.

52 • Writing Geoprocessing Scripts with ArcGIS

For information on how to add a script to
a toolbox, refer to “Creating models and

adding scripts” in Chapter 5 of
Geoprocessing in ArcGIS.

For more information on using script
tools in models, refer to “Controlling the

flow of processing” in Chapter 9 of
Geoprocessing in ArcGIS

SCRIPT TOOLS

Many scripts are written for specific datasets and scenarios and are never used
after they have perfomed the task they were written for. One of the advantages
of scripting is its low cost due to its rapid development. Scripts are often written
for the task at hand and then deleted when the task is complete. Some scripts
perform a generic operation that may be used repeatedly because they use argu-
ments to change tool parameters and behavior. These scripts may rarely change
and are used by a number of people.

The geoprocessing framework in ArcGIS accepts scripts as the executable source
of a tool. They are a valuable way to quickly and easily customize geoprocessing
capabilities. Scripts are also ideal for controlling models, as they can create vari-
ables that may be used to manage a model’s flow. The ability of scripts to use the
capabilities of the geoprocessor to inspect the properties of datasets along with
the native statements of the scripting language, such as If, is powerful for model
users. The example below shows a model using a script tool, GetType. The tool
sets two output variables depending on the coverage’s feature classes. The model
uses these variables to control what executes after GetType. The code below
shows what GetType does.

Check the type of feature classes in a coverage

import win32com.client, sys

GP = win32com.client.Dispatch("esriGeoprocessing.GPDispatch.1")

Check the feature classes and set the output parameters

GP.Workspace(sys.argv[1]) # Set the workspace to the coverage

if GP.ListFeatureclasses("*","polygon").Next():

 GP.AddMessage("Feature type is polygon")

 GP.SetParameterAsText(1,"true")

 GP.SetParameterAsText(2,"false")

elif GP.ListFeatureclasses("*","arc").Next():

 GP.AddMessage("Feature type is line")

 GP.SetParameterAsText(1,"false")

 GP.SetParameterAsText(2,"true")

else:

 GP.AddMessage("Coverage has neither polygons nor lines")

 GP.SetParameterAsText(1,"false")

 GP.SetParameterAsText(2,"false")

Chapter 5 • Messaging and script tools • 53

SETTING MESSAGES

Setting output messages
When a script tool is executed, messages often need to be returned to the user,
especially when problems arise. To support the full integration of scripts as tools,
the geoprocessor has several methods for adding messages, which are then avail-
able to the user. Messages added to the geoprocessor are immediately returned to
the application or script executing the tool. The three methods for adding various
types of output messages are:

AddMessage(message string)
AddWarning(message string)
AddError(message string)

Each of these methods take a single string parameter, which is then displayed to
the user if the tool is run from a script tool in an ArcGIS application. Once an
error message is added, the geoprocessor immediately generates a system error that
halts the execution of the tool. The next example copies a list of feature classes
from one workspace to another. An automatic conversion takes place if the
workspaces are of a different type, such as a geodatabase to a folder. Error
handling is used to catch any problems and return messages; otherwise, messages
of success are returned during execution.
ConvertFeatures.py

Converts feature classes by copying them from one workspace to another

Import the utility module which imports the standard library modules and

creates the geoprocessing object.

from ScriptUtils import *

Get the list of feature classes to be copied to the output workspace.

in_feature_classes = sys.argv[1]

Establish an array of input featureclasses

in_feature_classes = SplitMulti(in_feature_classes)

Get the output workspace

out_folder = sys.argv[2]

Loop through the array copying each featureclass to the output workspace

for each in_feature_class string in the in_feature_classes enumeration.

 try:

 # Create the output name

 feature_class_name = GP.ValidateTableName(in_feature_class,

 out_folder)

 # Add an output message

 GP.AddMessage("Converting: " + in_feature_class + " To " +

 feature_class_name + ".shp")

 # Copy the feature class to the output workspace

 CopyFeatures(in_feature_class, out_folder + os.sep +

Functions, modules, and objects may be
imported from other Python scripts to

simplify your script and centralize code.
The import statement is used to pull

everything from another script or just the
entities you want.

Exceptions are events that may
modify the flow of control through a

program. They may be triggered or
intercepted within a script using the

Try and Raise statements.

54 • Writing Geoprocessing Scripts with ArcGIS

 feature_class_name)

 # If successful, add another message

 GP.AddMessage("Successfully converted: " + in_feature_class

 + " To " + out_folder)

 except StandardError, ErrDesc:

 GP.AddWarning("Failed to convert: " + in_feature_class)

 GP.AddWarning(ErrDesc)

 except:

 GP.AddWarning("Failed to convert: " + in_feature_class)

 if not gp.GetMessages(2) == "":

 GP.AddError(GP.GetMessages(2))

ScriptUtils.py

Import standard library modules

import win32com.client, sys, string, os

Create the geoprocessing object

GP = win32com.client.Dispatch("esriGeoprocessing.GpDispatch.1")

def SplitMulti(multi_input):

 try:

 # Remove the single quotes and parenthesis around each input

 # featureclass

 #split input tables

 multi_as_list = string.split(multi_input, ";")

 return multi_as_list

 except:

 ErrDesc = "Error: Failed in parsing the inputs."

 raise StandardError, ErrDesc

def CopyFeatures(in_table, out_table):

 try:

 ErrDesc = "CopyFeatures failed"

 # Copy each feature class to the output workspace

 gp.copyfeatures_management(in_table, out_table)

 except:

 if gp.GetMessages(2) != "":

 ErrDesc = gp.GetMessages(2)

 raise StandardError, ErrDesc

Strings, defined in the String module, are
a built-in type used to store and repre-
sent text. A number of operations are

supported for manipulating strings, such
as concatenation, slicing and indexing.

The OS module provides a generic
interface to the operating system’s

basic set of tools.

SETTING MESSAGES

StandardError is a built-in exception
from which most exception types are

based in Python. It is called if a tool
error occurs, with the ErrDesc

variable set by the tool’s error message.

Chapter 5 • Messaging and script tools • 55

There are times when you may want a script to return messages from a tool it has
executed. Using an index parameter, the AddReturnMessage method will return a
message from the geoprocessor’s message array. The example below shows how to
return all a tool’s messages:
GP.Clip_analysis("roads","urban_area","urban_roads")

Return the resulting messages as script tool output messages

x = 0

while x < GP.MessageCount:

 GP.AddReturnMessage(x)

 x = x + 1

SETTING MESSAGES

In ArcGIS applications, such as ArcMap or
ArcCatalog, messages are displayed in the
geoprocessing window whenever a tool is

executed.

56 • Writing Geoprocessing Scripts with ArcGIS

USING SCRIPT TOOL PARAMETERS

Geoprocessing tools typically have parameters, as described in Chapter 3. Param-
eters, also called arguments, make scripts more generic and flexible, so they can be
used to vary input data, set other tool parameters used in the script, or control
the script’s processing logic.

When a script is added to a toolbox, a number of parameters may be defined.
These parameters correspond to a script’s parameters, representing input and
output values. Typically scripts only have input values, as they are typically run in
an independent fashion. Script tools must define their outputs so tools work as
expected in models built with ModelBuilder or on the command line in the
geoprocessing window. Models need an output parameter so it can be used as the
input for another tool, while tools on the command line allow users to specify the
name and location of a tool’s output.

System tools, built with ArcObjects, populate the properties of output variables
in a model to aid subsequently connected tools. These properties are not required
for building models but aid in their construction. System tools do this with a
validation routine that is called each time a parameter value is changed for a tool.
Script tools do not have a validation routine, just one for execution, which is the
script itself. The geoprocessing framework does some validation for script tools
automatically, such as ensuring a parameter value matches what is expected for a
parameter, including a number for a numeric parameter and a path to a feature
class for a feature class parameter. By defining dependencies between parameters,
certain behavior may also be built into a tool. For example, a dependency be-
tween a feature class parameter and a field parameter in which the field param-
eter is dependent on the feature class, will mean the field list will automatically
be populated on the tool when the feature class is given a valid value. Another
script may not actually have a new output, as it alters a dataset specified as an
input parameter. In this case, the script tool would still declare an output param-
eter, with the type set to derived with a dependency on the input dataset. The
script tool will automatically set the output parameter’s value to be the same as
the input dataset when used in a model so the tool may be used in a work flow.

Getting input parameter values
Scripting languages typically provide a mechanism for accessing arguments passed
to the script from the caller. VBScript, for example, provides a comma-delimited
string of all input arguments, while Python uses its system module. A script must
use these mechanisms if it is not the source of a script tool, as shown in the
example below:
import win32com.client, sys

GP = win32com.client.Dispatch("esriGeoprocessing.GPDispatch.1")

Set the input workspace

GP.Workspace(sys.argv[1])

The argument list in Python is zero based, with the actual script call being the
first argument. The second argument is the first user-specified value following the
script name. Following is an example of how to call the script in the example
above, specifying an input workspace:
Clipdata.py "d:\soils\Newfoundland"

One of the property pages for a script tool. For
information on adding a script to a toolbox, refer

to “Creating models and adding scripts” in
Chapter 5 of Geoprocessing in ArcGIS.

Script tools must populate the values of their
output parameters so they can be used as

parameters for other tools in a model.

Chapter 5 • Messaging and script tools • 57

If a script is the source of a script tool, it may use the geoprocessor to access the
input parameter values. The script below, an edited section from an earlier
sample, demonstrates how to use the GetParameterAsText method to get input
parameter values:
ConvertFeatures.py

Converts feature classes by copying them from one workspace to another

Import the utility module which imports the standard library modules and

creates the geoprocessing object.

from ScriptUtils import *

Get the list of feature classes to be copied to the output workspace.

in_feature_classes = GP.GetParameterAsText(0)

Establish an array of input featureclasses

in_feature_classes = SplitMulti(in_feature_classes)

Get the output workspace

out_folder = GP.GetParameterAsText(1)

Setting output parameters
Output parameter values may not be known until the script is executed, as seen
in the script tool example at the beginning of this chapter. The script must evalu-
ate or calculate an output value based on its input, so script tools must have a
way to specify output values after execution so the values may be used in a model
work flow.

The SetParameter and SetParameterAsText methods will set the value of an
output parameter using either an object, such as a value table, or a text string.
Both methods require an index value to indicate which parameter will be up-
dated. The GetType script example on page 50 sets output parameter values so
the output variables of the GetType tool in ModelBuilder can be used to set
precondition values for other processes in the model.

USING SCRIPT TOOL PARAMETERS

Data properties
and access

Scripting logic is often determined by the properties

of the data being used. Tool parameters may also vary

bacause of these properties.

The Geoprocessor provides a number of functions

for describing and manipulating data. They may be

used to access general properties, such as a dataset’s

type, or specific values from attributes. This chapter

will explain how to use the geoprocessor to focus on

all aspects of your data.

66666

60 • Writing Geoprocessing Scripts with ArcGIS

DESCRIBING DATA

Geoprocessing tools work with all types of data, such as geodatabase feature
classes, shapefiles, rasters, tables, topologies and networks. Each piece of data has
properties that may be used to control the flow of a script or the parameters of a
tool. For example, the output feature type of an intersect operation is dependent
on the type of data being intersected. When the Intersect tool is run within a
script on a list of input datasets, it must be able to determine the data types used
so the correct output type can be set.

Using the geoprocessor’s Describe method, a dataset’s properties may be deter-
mined then used to make decisions. The output of Describe is an object contain-
ing properties such as data type, fields, indices, and so on. Different dataset types
have different properties, so the object created by Describe changes its properties
depending on what is being described.
Import COM Dispatch and create geoprocessor

from win32com.client import Dispatch

GP = Dispatch("esriGeoprocessing.GpDispatch.1")

Describe feature class

desc = GP.Describe("D:/St_Johns/data.mdb/roads")

type = desc.FeatureType

The following charts show the properties available for each data type:

Any feature class will have the stan-
dard feature class properties shown on

the right. This includes geodatabase,
shapefile, coverage, CAD, Vector Product

Format and Smart Data Compression
feature classes.

Describe creates what is known as a
Dispatch object. Its properties are
dynamic, depending on what data
type is described. These properties

come from the data elements defined
by the geoprocessing COM frame-

work. See the Data Elements Object
Diagram found in the ArcGIS Developer

Help system for more information.

All simple tables in the geodatabase
require an ObjectID (OID) type field. It

uniquely identifies each object stored in
the table in the database. Other table
types, such as INFO or dBASE, do not

require an OID field.

Chapter 6 • Data properties and access • 61

DESCRIBING DATA

Coverage feature classes always exist
within a coverage dataset. Some of

the coverage feature class properties
stem from this relationship.

Layers and table views are used to limit
the features/rows from the underlying

data source. This is done using a “where”
clause to define an initial set of features,

a selection, or both. The FieldInfo property
is used to set what fields are available

and what their names are.

Datasets are containers that define
the spatial reference and extents of
their contents. Coverages, geodata-

base feature datasets, and CAD datasets
are all examples of this.

62 • Writing Geoprocessing Scripts with ArcGIS

DESCRIBING DATA

Shapefile, personal geodatabase, and
coverage workspaces have no connection

properties. Domains are only found in
Access and ArcSDE workspaces, as

domains are only found in geodatabases.

For more information about enumera-
tions and how to work with them, refer

to Chapter 4.

Fields and indexes
The fields or indexes property of a table or feature class is exposed as an enu-
meration. In this case, the enumeration may contain field or index objects, con-
sisting of properties for each field or index. The ListField and ListIndexes meth-
ods may be used to create the same enumerations or limit their contents. The
following example shows how to create an enumeration of fields and how to
loop through the contents to find a specific field.
Import COM Dispatch and create geoprocessor

from win32com.client import Dispatch

GP = Dispatch("esriGeoprocessing.GpDispatch.1")

Describe feature class

fc = "D:/St_Johns/data.mdb/roads"

desc = GP.Describe(fc)

fields = desc.Fields

field = fields.next()

while field:

 if field.Name == "Flag":

 # Set the value for the field and exit loop

GP.CalculateField(fc, "Flag", "1")

 break

 field = fields.next()

Chapter 6 • Data properties and access • 63

DESCRIBING DATA

For more information on ListFields
and ListIndexes, refer to Chapter 4.

These functions may be used to limit
the results based on name and type.

The properties of the field and index objects are listed below:

The spatial reference object
Geographic datasets, such as feature classes, coverages, and rasters, have a spatial
reference, which defines a dataset’s coordinate system, XY domain, M domain,
and Z domain. Each part of the spatial reference has a number of properties,
especially the coordinate system, which defines what map projection options are
used to define horizontal coordinates. All this information is available from the
spatial reference property, which is actually another object containing a number
of properties.
Describe feature class

fc = "D:/St_Johns/data.mdb/roads"

desc = GP.Describe(fc)

Get the spatial reference

SR = desc.SpatialReference

Check if the feature class is in projected space

if SR.Type == "Projected":

 GP.Copy(fc,"D:/St_Johns/data.mdb/UTM")

64 • Writing Geoprocessing Scripts with ArcGIS

DESCRIBING DATA

 For more information about projected
and geographic coordinate systems and

ellipsoids, refer to Understanding Map
Projections.

The properties of the spatial reference object are listed below:

Chapter 6 • Data properties and access • 65

DESCRIBING DATA

Property sets
Some properties are composed of a set of values. The tolerances of a coverage or
the connection properties of a workspace are examples of this. Property sets
have named properties that can be called from the property set itself. In the
example below, the tolerances of a coverage are printed to the standard output:
from win32com.client import Dispatch

GP = Dispatch("esriGeoprocessing.GpDispatch.1")

desc = GP.Describe("D:/St_Johns/freshwater")

covTols = desc.tolerances

print covTols.Fuzzy

print covTols.Dangle

print covTols.TicMatch

print covTols.Edit

print covTols.NodeSnap

print covTols.Weed

print covTols.Grain

print covTols.Snap

Property sets are typically used when the properties of the object being described
may vary. The connection properties of an enterprise geodatabase workspace will
vary depending on the type of ArcSDE database that is being used, so it is well
suited to a property set that has no predefined set of values. Refer to ArcObjects
documentation for more information about workspace properties.

Checking for existence
Scripts often use paths to data, which may be problematic if the data being
referenced does not exist. Data may be deleted or moved between executions of
a script, which will cause errors if the path is used as a geoprocessing tool param-
eter. If there is a possibility of a referenced dataset not existing during a script’s
execution, the geoprocessor’s Exists method should be used. The function simply
returns a Boolean value for the existence of a dataset or object at the time of

66 • Writing Geoprocessing Scripts with ArcGIS

DESCRIBING DATA

The default behavior for all tools is
to overwrite any output that already

exists. This behavior may be changed by
changing the overwrite data setting to

false. An error is returned when the
overwrite data setting is false and a tool’s

specified output already exists.

execution. Objects, such as a cursor, spatial reference, or any other object man-
aged by the geoprocessor, may also be used as input to Exists. Exists will work
with any type of data available in ArcCatalog or with any system file or folder.
An ArcCatalog path must be used for this and any other method of the
geoprocessor when referring to GIS data. If the data resides in an enterprise
geodatabase, the name must be fully qualified. See Chapter 7 for more informa-
tion on working with geodatabases and qualifying names.
GP.Workspace = "D:/St_Johns/data.mdb"

Clip roads feature class if it exists

fc = "D:/St_Johns/data.mdb/roads"

if GP.Exists(fc):

 GP.clip_analysis(fc,"urban_area","urban_roads")

Chapter 6 • Data properties and access • 67

DATA ACCESS USING CURSORS

Fields are accessed using the row
object. Values are returned using

either the field name as a property of
the row object or by its position in the

table.

A cursor is a data access object that can either be used to iterate over the set of
rows in a table or insert new rows into a table. Cursors have three forms, referred
to as a search, insert, or update cursor. Each type of cursor is created by a corre-
sponding geoprocessor method (SearchCursor, InsertCursor, or UpdateCursor) on
a table, table view, feature class, or feature layer. A search cursor can be used to
retrieve rows. An update cursor can be used to positionally update and delete
rows, while an insert cursor is used to insert rows into a table or feature class.

All three cursor methods create an enumeration of row objects. The methods
supported by the row object depend on the type of cursor created. The Next
method on a search or update cursor returns the next row in the enumeration. To
retrieve all rows in a table containing N rows, the script must make N calls to
Next. In Python, a call to Next after the last row in the result set has been re-
trieved returns None, which is a special data type that acts as a placeholder.

Cursors can only be navigated in a forward direction; they do not support backing
up and retrieving rows that have already been retrieved or making multiple passes
over data. If a script needs to make multiple passes over the data, the application
needs to reexecute the method that returned the cursor. If both executions of a
method are made within the same edit session (or database transaction with the
appropriate level of isolation), the application is guaranteed not to see any
changes made to the data by other concurrently executing applications. This
example shows a simple cursor operation. It prints out the value of the each field
for the first row in a table.
Create search cursor

rows = GP.SearchCursor(“D:/st_johns/roads.shp”)

row = rows.Next()

fields = GP.ListFields(“D:/st_johns/roads.shp”)

field = fields.Next()

while field:

 if field.type != “Geometry”:

 print field.name + “: Value = “ + str(row.GetValue(field.name))

 field = fields.Next()

Note that no data is fetched from the table until the Next method is called.

When you are using a cursor and changing the underlying data at the same time,
you may be concerned about the cursor operation and positioning. The situation,
summarized by the table below, is actually quite simple.

68 • Writing Geoprocessing Scripts with ArcGIS

All updates or inserts to a table are
done outside an edit session in ArcGIS.

Changes made are permanent and
cannot be undone.

DATA ACCESS USING CURSORS

All row objects retrieved from a table logically contain the same ordered set of
fields. In particular, the order of fields in a row of a table is the same as the order
of fields returned from the ListFields method. The row will only contain the
visible fields of the table used to create the cursor, with each field name being a
property of the object.

Row enumeration object
The methods of the enumeration object created by the various cursor methods
vary depending on the type of cursor created. The following chart shows what
methods are supported for each cursor type.

UpdateRow
The UpdateRow method can be used to update the row at the current position
of an update cursor. Making a call to Next on a cursor returns a row and posi-
tions the cursor on that row. After fetching a row object using Next, the script
can modify the row as needed and call UpdateRow, passing in the modified row.
Create update cursor for feature class

rows = GP.UpdateCursor("D:/St_Johns/data.mdb/roads")

row = rows.Next()

Update the field used in buffer so the distance is based on the road

type. Road type is either 1, 2, 3 or 4. Distance is in meters.

while row:

 row.buffer_distance = row.road_type * 100

 rows.UpdateRow(row)

 row = rows.Next()

DeleteRow
The DeleteRow method can be used to delete the row at the current position of
an update cursor (that is, to delete the row returned by the last call to Next on
this cursor). After fetching the row object using Next, the script should call
DeleteRow on the cursor to delete the row.
Create update cursor for feature class

rows = GP.UpdateCursor("D:/St_Johns/data.mdb/roads")

row = rows.Next()

while row: # Delete all rows that have a roads type of 4

 if row.road_type == 4:

 rows.DeleteRow(row)

 row = rows.Next()

Chapter 6 • Data properties and access • 69

 Not all scripting languages support
the evaluation of a variable as an

object property or method. In these
cases the GetValue and SetValue

methods are particularly useful.

Python supports the use of a vari-
able as a property or method name

using the Eval function.

DATA ACCESS USING CURSORS

Cursors honor layer/table view
definition queries and selections. The row
enumeration object will only contain the

rows that would be used by any
geoprocessing tool during an operation.

InsertRow
Insert cursors are used to bulk insert rows. The InsertRow method takes a row
object as an argument. The script obtains a new row object using the NewRow
method on the enumeration object into which rows are to be inserted. Each call
to InsertRow on the cursor creates a new row in the table whose initial values are
set to the values in the input row.
Create insert cursor for table

rows = GP.InsertCursor("D:/St_Johns/data.mdb/roads_lut")

x = 1

Create 25 new rows. Set the initial row id and distance values

while x <= 25:

 row = rows.NewRow()

 row.rowid = x

 row.distance = 100

 rows.InsertRow(row)

 x = x + 1

GetValue and SetValue
The row object may access and update field values using field names or a field’s
index position. This approach works well when the field names or order is
known, but this may not always be the case. Variables may be used to create
generic scripts with no knowledge of what fields exist within a table. The row
has two methods that allow the use of variables as field names. The GetValue
method simply returns a field’s value, with the field name being the only input
parameter. The SetValue method has two parameters—the field to be updated
and the value to be used. The sample below creates a lookup table for all polygon
feature classes in a workspace. The lookup table contains an ID that corresponds
to the ObjectID for each feature in the feature class and a distance value that
could be used for the Buffer tool.
List the polygon feature classes

fcs = GP.ListFeatureclasses("*","polygon")

Loop through the results. Get the ObjectID field

fc = fcs.Next

while fc:

 OIDFields = GP.ListFields(fc,"*","OID")

 # Create a search cursor on the feature class and an insert cursor

 # on a new look-up-table

 featcur = GP.SearchCursor(fc)

 # Create look-up-table and add fields

 tab = fc + "_lut"

 GP.CreateTable(tab)

 GP.AddField(tab,"id","long")

 GP.AddField(tab,"dist","long")

 # Open insert cursor on new look-up-table

 tabcur = GP.InsertCursor(tab)

 f_row = featcur.Next()

 # Get the OID field from the feature class

 OIDField = OIDFields.Next()

70 • Writing Geoprocessing Scripts with ArcGIS

DATA ACCESS USING CURSORS

All simple feature classes require a
geometry type field. It contains the
actual geometry of a feature and is
typically called Shape. The ListFields or

Describe methods may be used to
retrieve the geometry field from a

feature class. The name of the field can
be determined from the field object.

Structured Query Language (SQL) is
a powerful language you use to

define one or more criteria that can
consist of attributes, operators, and

calculations. For example, imagine you
have a table of customer data and

want to find those who spent more
than $50,000 with you last year and
whose business type is “Restaurant”.
You would select the customers with

this expression: “Sales > 50000 AND
Business_type = ‘Restaurant’”.

 # Loop through the rows in the feature class

 while f_row:

 # Create a new row for the look-up-table and set its id to be the

 # same as the feature OID and set the distance to 100.

 t_row = tabcur.NewRow()

 t_row.id = f_row.GetValue(OIDField.name)

 t_row.dist = 100

 # Insert the row into the look-up-table and get the next row

 # from the feature class

 tabcur.InsertRow(row)

 f_row = featcur.Next()

 fc = fcs.Next

Specifying a query
When a query is specified for an update or search cursor, only the records satisfy-
ing that query are returned. A SQL query represents a subset of the single table
queries that may be made against a table in a SQL database using the SQL
SELECT statement. The syntax used to specify the where clause is the same as
that of the underlying database holding the data. Refer to the ArcGIS Desktop
Help system for more information on defining SQL where clauses. The example
below filters the rows of a search cursor to only roads of a certain type:
Import COM Dispatch and create geoprocessor

from win32com.client import Dispatch

GP = Dispatch("esriGeoprocessing.GpDispatch.1")

Create search cursor

rows = GP.SearchCursor("D:/St_Johns/data.mdb/roads",

 "[type] = ‘residential’")

row = rows.Next()

while row:

 # Print the name of the residential road

 print row.Name

 row = rows.Next()

The geometry object
Using a geometry object, the geoprocessor supports cursor access of feature
geometry. The object, created by the row object when the shape field is specified,
exposes a number of properties that describe a feature. The example below
shows how to create a geometry object for each line feature in a feature class and
sum their length:
Create search cursor

rows = GP.SearchCursor("D:/St_Johns/data.mdb/roads")

row = rows.Next()

Calculate the total length of all roads

length = 0

while row:

 # Create the geometry object

 feat = row.shape

 length = length + feat.Length

 row = rows.Next()

print length

Chapter 6 • Data properties and access • 71

DATA ACCESS USING CURSORS

Reading geometries
Each feature in a feature class contains a set of points defining the vertices of a
polygon or line or a single coordinate defining a point feature. These points may
be accessed using the geometry object, which returns them in an array of point
objects. The array object may contain any number of geoprocessing objects, such
as points, geometries, or spatial references.

Features in a geodatabase or shapefile may have multiple parts. The geometry
object’s PartCount property returns the number of parts for a feature. The
GetPart method will return an array of point objects for a particular part of the
geometry if an index is specified. If an index is not specified, an array containing

72 • Writing Geoprocessing Scripts with ArcGIS

DATA ACCESS USING CURSORS

A multipart feature is composed of
more than one physical part but only

references one set of attributes in
the database. For example, in a layer
of states, the State of Hawaii could
be considered a multipart feature.

Although composed of many islands,
it would be recorded in the database

as one feature.

A ring is a closed path that defines a
two-dimensional area. A valid ring con-
sists of a valid path such that the from

and to points of the ring have the same
X and Y coordinates. A clockwise ring is

an exterior ring, and a counterclockwise
ring defines an interior ring.

an array of point objects for each geometry part will be returned. The example
below will print the coordinates for all features to the output window:
Create search cursor

rows = GP.SearchCursor("D:/St_Johns/data.mdb/roads")

row = rows.Next()

Print the coordinates of each road line feature

while row:

 # Create the geometry object

 feat = row.shape

 a = 0

 while a < feat.PartCount:

 # Get each part of the geometry

 roadArray = feat.GetPart(a)

 roadArray.Reset

 # Get the first point object for the feature

 pnt = roadArray.Next()

 while pnt:

 print str(pnt.id) + ";" + str(pnt.x) + ";" + str(pnt.y)

 pnt = roadArray.Next()

 a = a + 1

 row = rows.Next()

Point features return a single point object instead of an array of point objects.
All other feature types—polygon, polyline, and multipoint—return an array of
point objects or an array containing multiple arrays of point objects if the feature
has multiple parts.

A polygon will consist of a number of rings if it contains holes. The array of
point objects returned for a polygon will contain the points for the exterior ring
and all inner rings. The exterior ring is always returned first, followed by inner
rings, with null point objects as the separator. Whenever a script is reading coor-
dinates for polygons in a geodatabase or shapefile, it should contain logic for
handling inner rings if this information is required by the script; otherwise, only
the exterior ring will be read. The following script prints out the coordinates for
polygons in a feature class. It shows how to handle multipart polygons and poly-
gons with multiple rings.
from win32com.client import constants, Dispatch

from types import *

import pythoncom, sys

Chapter 6 • Data properties and access • 73

DATA ACCESS USING CURSORS

Strings may be easily concatenated in
Python using the addition operator. The
Str function can be used to return the
string value of any object so the value

can be concatenated with other strings.

GP = Dispatch("esriGeoprocessing.GpDispatch.1")

fc = sys.argv[1]

dsc = GP.describe(fc)

print "Describing:", fc

ftype = dsc.ShapeType

rows = GP.searchcursor(fc)

print "Extent:"

print dsc.Extent

Create search cursor

rows = GP.SearchCursor(fc)

row = rows.Next()

Print the coordinates of each landuse polygon feature

while row:

 # Create the geometry object

 feat = row.shape

 a = 0

 print " "

 print "Feature: " + str(row.fid) + " number of parts: " +

 str(feat.PartCount)

 while a < feat.PartCount:

 # Get each part of the geometry

 print "Part: " + str(a + 1)

 LUArray = feat.GetPart(a)

 LUArray.Reset()

 b = 1

 # Get the first point object for the polygon

 pnt = LUArray.Next()

 while pnt:

 print str(pnt.id) + "," + str(pnt.x) + "," + str(pnt.y)

 pnt = LUArray.Next()

 # The point may be a null separator, so check to

 # see if another point exists.

 if not pnt:

 pnt = LUArray.Next()

 # If the point does exist, continue printing

 # the coordinates of the inner ring.

 if pnt:

 print "Inner ring: " + str(b)

 b = b + 1

 print " "

 a = a + 1

 row = rows.Next()

Writing geometries
Using insert and update cursors, scripts may create new features in a feature class
or update existing ones. A script can define a feature by creating a point object,
populating its properties and placing it in an array. That array may then be used to
set a feature’s geometry. A single geometry part is defined by an array of points, so

Read the upcoming section about
locking to understand how cursors

affect other applications.

74 • Writing Geoprocessing Scripts with ArcGIS

a multipart feature can be created from multiple arrays of points. The following
example shows how to read a text file containing a series of linear coordinates
and then use them to create a new feature class.
Create a new line feature class using a text file of coordinates.

The coordinate file is in the format of ID;X;Y.

import win32com.client, sys, fileinput, os, string

Create the geoprocessor object

GP = win32com.client.Dispatch("esriGeoprocessing.GPDispatch.1")

Get the name of the input file

infile = sys.argv[1]

Get the name of the output feature class

fcname = sys.argv[2]

Get the name of the template feature class.

template = sys.argv[3]

try:

 # Create the feature class

 GP.CreateFeatureclass(os.path.dirname(fcname),os.path.basename(fcname),

 "Polyline", template)

 # Open an insert cursor for the new feature class.

 cur = GP.InsertCursor(fcname)

 # Create the array and point objects needed to create a feature

 lineArray = GP.CreateObject("Array")

 pnt = GP.CreateObject("Point")

 ID = -1 # Initialize a variable for keeping track of a feature's ID.

 # Assume all IDs are positive.

 for line in fileinput.input(infile): # Open the input file

 # Create a list of input values and set the point properties.

 values = string.split(line,";")

 pnt.id = values[0]

 print pnt.id

 pnt.x = values[1]

 print pnt.x

 pnt.y = values[2]

 print pnt.y

 if ID == -1:

 ID = pnt.id

 # Add the point to the feature's array of points.

 # If the ID has changed create a new feature

 if ID != pnt.id:

 # Create a new row, or feature, in the feature class.

 feat = cur.NewRow()

 # Set the geometry of the new feature to the array of points

 feat.shape = lineArray

 # Insert the feature

 cur.InsertRow(feat)

 lineArray.RemoveAll()

 lineArray.add(pnt)

 ID = pnt.id

except:

 print GP.GetMessages(2)

Below is an example of a file that may
be processed by this script. The file has a
blank line at the end to ensure all inputs

are used:

1;-61845879.0968;45047635.4861

1;-3976119.96791;46073695.0451

1;1154177.8272;-25134838.3511

1;-62051091.0086;-26160897.9101

2;17365918.8598;44431999.7507

2;39939229.1582;45252847.3979

2;41170500.6291;27194199.1591

2;17981554.5952;27809834.8945

3;17365918.8598;44431999.7507

3;15519011.6535;11598093.8619

3;52046731.9547;13034577.2446

3;52867579.6019;-16105514.2317

3;17160706.948;-16515938.0553

DATA ACCESS USING CURSORS

Chapter 6 • Data properties and access • 75

An array of points is not necessary when writing point features. A single point
object is used to set the geometry of a point feature.

The geoprocessor validates all geometries before they are written to a feature
class. Issues such as incorrect ring orientation and self-intersecting polygons,
among others, are corrected when the geometry is simplified before its insertion.
The geoprocessor will not write invalid geometry.

Setting a cursor’s spatial reference
By default, the spatial reference of the geometry returned from a search cursor or
set by an update or insert cursor is the same as the feature class referenced by the
cursor. A different spatial reference for the input or output features may be
specified when the cursor is created. In the case of a search cursor, specifying a
spatial reference that is different from the spatial reference of the input feature
class will result in geometries that are projected to the cursor’s spatial reference.
The example below has a point feature class with a coordinate system of Univer-
sal Transverse Mercator (UTM) zone 21 North, defined in its spatial reference.
The script will produce a text file with the coordinates of the points in decimal
degrees.
import win32com.client, sys

Create the geoprocessor object

GP = win32com.client.Dispatch("esriGeoprocessing.GPDispatch.1")

Describe a feature class with a geographic coordinate system

desc = GP.Describe("D:/St_Johns/data.mdb/latlongbnd")

Create search cursor. Use the spatial reference object from the

described feature class so geometries are returned in decimal degrees.

rows = GP.SearchCursor("D:/St_Johns/data.mdb/buildings", "",
desc.SpatialReference)

row = rows.Next()

Open the file for output. This also creates the file if it does not
exist.

out = open(sys.argv[1],"w")

Print the coordinates of each building point feature

while row:

 # Create the geometry object

 feat = row.shape

 # Get the geometry's point object.

 pnt = feat.GetPart()

 # Write the XY coordinate to the output file

 out.write(str(pnt.x) + ";" + str(pnt.y) + "\n")

 row = rows.Next()

Close the output file

out.close()

Setting the spatial reference of an insert or update cursor is required when the
coordinate system of the input geometries is different from the referenced feature

DATA ACCESS USING CURSORS

The spatial reference for a feature
class describes its coordinate system

(for example, geographic, UTM, and
State Plane), its spatial domain, and its

precision. The spatial domain is best
described as the allowable coordinate

range for x,y coordinates, m- (measure)
values, and z-values. The precision de-

scribes the number of system units per
one unit of measure.

76 • Writing Geoprocessing Scripts with ArcGIS

class. Defining an insert or update cursor’s spatial reference allows the cursor to
project the coordinates on the fly before they are actually written to the feature
class. A script that writes geographic Global Positioning System (GPS) coordi-
nates to a feature class with a State Plane Coordinate System is an ideal example
of when to set a cursor’s spatial reference.

Locking
Insert and update cursors honor table locks set by ArcGIS. Locks prevent mul-
tiple processes from changing the same table at the same time. There are two
types of locks—shared and exclusive. A shared lock is applied anytime a table or
dataset is accessed. Multiple shared locks can exist for a table, but no exclusive
locks are permitted if a shared lock exists. Displaying a feature class in ArcMap or
previewing a table in ArcCatalog are examples of when a shared lock would be
applied. Exclusive locks are applied when changes are made to a table or feature
class. Editing and saving a feature class in ArcMap, changing a table’s schema in
ArcCatalog or using an insert cursor on a shapefile in PythonWin are examples of
when an exclusive lock is applied by ArcGIS.

Update and insert cursors cannot be created for a table or feature class if an
exclusive lock exists for that dataset. The UpdateCursor or InsertCursor methods
will return an error stating that the methods failed because an exclusive lock
exists for the dataset. If these methods successfully create a cursor, they will
apply an exclusive lock on the dataset, so two scripts may not create an update or
insert cursor on the same dataset.

Locks persist until the application or script releases a dataset, either by closing or
releasing the cursor object explicitly. In a script, the cursor object should be
deleted so the exclusive lock it placed on the dataset is released. Otherwise, all
other applications or scripts could be unnecessarily prevented from accessing a
dataset. The sample below shows how to open an update cursor and release it. An
error handler is used to check if the UpdateCursor method fails because of
another exclusive lock on the table.
Create update cursor for feature class

try:

 rows = GP.UpdateCursor("D:/St_Johns/data.mdb/roads")

 row = rows.Next()

 # Update the field used in buffer so the distance is based on the road

 # type. Road type is either 1, 2, 3 or 4. Distance is in meters.

 while row:

 row.buffer_distance = row.road_type * 100

 rows.UpdateRow(row)

 row = rows.Next()

Delete the row and cursor

 del row, rows

except:

 if not GP.GetMessages() == "":

 GP.AddMessage(GP.GetMessages(2))

 if row:

 del row

 if rows:

 del rows

DATA ACCESS USING CURSORS

Other scripting languages have
different functions or statements for

undoing referencing to objects. For
example, VBScript uses the Set state-
ment to release an object by setting
it to Nothing. For more information

regarding object handling, refer to
the reference of the language you

are using.

An edit session in ArcMap will apply a
shared lock to data during the edit
session. An exclusive lock is applied

when edits are saved. A dataset is not
editable if an exclusive lock already

exists.

When working in a Python editor,
such as PythonWin, you may need to
clean up object references to remove
dataset locks set by cursors. Use the

gc (garbage collection) module in the
Interactive window to control when
unused objects are removed and/or

explicitly delete references within
your script.

Working with
geodatabases

A geodatabase provides a rich single or multiuser

environment for managing your data. Updating

geodatabases with the results of geoprocessing tools

requires some forethought, as the geodatabase has some

rules for managing how datasets and fields are named.

The geoprocessor provides a number of methods to

ensure that correct naming standards are followed.

77777

78 • Writing Geoprocessing Scripts with ArcGIS

GEODATABASES

Geodatabases are relational databases that contain geographic information.
Geodatabases contain feature classes and tables. Feature classes can be organized
into a feature dataset; they can also exist independently in the geodatabase.

Feature classes store geographic features represented as points, lines, or polygons
and their attributes; they can also store annotation and dimensions. All feature
classes in a feature dataset share the same coordinate system. Tables may contain
additional attributes for a feature class or geographic information such as ad-
dresses or x,y,z coordinates.

The geodatabase model defines a generic model for geographic information. This
generic model can be used to define and work with a wide variety of different
user- or application-specific models. By defining and implementing a wide variety
of behavior on a generic geographic model, a robust platform is provided for the
definition of a variety of user data models.

The geodatabase supports a model of topologically integrated feature classes,
similar to the coverage model. However, it extends the coverage model with
support for complex networks, topologies, relationships among feature classes,
and other object-oriented features. The ESRI ArcGIS Desktop applications
(ArcMap, ArcCatalog, and ArcGlobe™) work with geodatabases as well as cover-
ages and shapefiles. To learn how to build and edit data in a geodatabase, see
Editing in ArcGIS.

Successfully implementing a multiuser GIS system with ArcInfo and ArcSDE
starts with a good data model design and database tuning. How the data is stored
in the database, the applications that access it, and the client and server hardware
configurations are all key factors to a successful multiuser GIS system.

A critical part of a well-performing geodatabase is the tuning of the database
management system (DBMS) in which it is stored. This tuning is not required for
personal geodatabases; however, it is critical for ArcSDE geodatabases. For more
information on tuning your database for ArcSDE and the geodatabase, see the
Configuration and Tuning Guide for <DBMS> PDF file.

Designing a geodatabase is a critical process that requires planning and revision
until you reach a design that meets your requirements. Once you have a design,
you can create the geodatabase and its schema using geoprocessing tools. There
are tools for creating, modifying, and analyzing your geodatabase schema, such as
Create Featureclass, Compress, and Add Subtype.

Geodatabases use various relational database management systems to maintain the
many tables that comprise a geodatabase. All tables in a geodatabase must have a

Personal geodatabases are designed
for single use, utilizing Access as the

database. Multiuser geodatabases use
RDBMS packages, such as Oracle, SQL

Server, or IBM DB2. Generic
geoprocessing scripts should be written

to work with either type of geodatabase
using the various validation and qualifica-

tion geoprocessor methods.

Chapter 7 • Working with geodatabases • 79

unique name, so a mechanism for checking if a table name is unique is essential
when creating data in a geodatabase. The default behavior for geoprocessing tools
is to overwrite output that already exists, so there is potential for accidentally
overwriting data if the script does not ensure that the new output name is
unique.

Using the ValidateTableName method, a script can determine if a specific name is
valid and unique to a specific workspace. Specifying the workspace as a param-
eter allows the geoprocessor to check all the existing table names and determine
if there are naming restrictions imposed by the output workspace. If the output
workspace is an RDBMS, it may have reserved words that may not be used as a
table name. It may also have invalid characters that are not to be used in a table
or field name. ValidateTableName will return a string representing a valid table
name that may be the same as the input name if the input name is valid. The
example below guarantees that the new output feature class created by the Copy
Features tool will have a unique name that is valid in any geodatabase:
Move all shapefiles from a folder into a geodatabase

Import COM Dispatch module

import win32com.client

Create the geoprocessor object

GP = win32com.client.Dispatch("esriGeoprocessing.GPDispatch.1")

Set the workspace. List all of the shapefiles

GP.Workspace = "D:\St_Johns"

fcs = GP.ListFeatureClasses("*")

Reset the enumeration to make sure the first object is returned

fcs.reset()

Get the first feature class name

fc = fcs.next()

while fc: # While the feature class name is not empty

 # Copy the features from the workspace to a geodatabase

 GP.Workspace = "Database Connections/Bluestar.sde"

 # Validate the output name so it is unique and valid

 outfc = GP.ValidateTableName(fc)

 GP.Copyfeatures(fc, outfc)

 # Get the next feature class name

 fc = fcs.next()

Each database may have naming restrictions for field names in a table. Objects

NAMING FEATURE CLASSES AND TABLES

For more information regarding reserved
words and invalid characters, refer to the

documentation of the RDBMS you are
using. An example of a reserved word is
“Select”, while “%” is a restricted charac-

ter in most databases.

80 • Writing Geoprocessing Scripts with ArcGIS

FIELD NAME VALIDATION

such as feature classes or relationship classes are stored as tables in an RDBMS, so
these restrictions affect more than just standalone tables. These restrictions may
or may not be common between various database systems, so scripts should check
all new field names to ensure that a tool does not fail during execution. The
example below will ensure that a field will be added no matter what the input
name is, using the ValidateFieldName method:
Create a new numeric field containing the ratio of polygon area to

polygon perimeter. Two arguments, a feature class and field name

are expected.

Import COM Dispatch module, system and operating system modules

import win32com.client, sys, os

Create the geoprocessor object

GP = win32com.client.Dispatch("esriGeoprocessing.GPDispatch.1")

Check the number of arguments

if len(sys.argv) < 2:

 print "Script requires two arguments, feature class and field name"

else:

 try:

 # Get the input feature class and make sure it contains polygons

 input = sys.argv[1]

 dsc = GP.Describe(input)

 if dsc.ShapeType != "polygon":

 raise "ShapeError"

 # Get the new field name and validate it

 fieldname = sys.argv[2]

 fieldname = GP.ValidateFieldName(fieldname,

 os.path.dirname(input))

 # Make sure shape_length and shape_area fields exist

 if GP.ListFields(input,"Shape_area").Next() and \

 GP.ListFields(input,"Shape_length").Next():

 # Add the new field and calculate the value

 GP.AddField(input, fieldname, "double")

 GP.CalculateField(input,fieldname,

 "[Shape_area] / [Shape_length]")

 else:

 raise "FieldError"

 except "ShapeError":

 print "Input does not contain polygons"

 except "FieldError":

 print "Input does not shape area and length fields"

 except:

 print GP.GetMessages(2)

Whenever a script is updating a
dataset, such as a feature class or

table, be careful to avoid situations
where the dataset is locked.

Microsoft Access always locks a
database for update operations

when a table is accessed, so if you
have a personal geodatabase open in

ArcCatalog, a script will not be able
to update any of the geodatabase’s

contents until it is deselected and the
folder is refeshed or ArcCatalog is closed.

This includes script tools.

Python evaluates an empty data
structure as false, and any nonempty
data structure as true. A numeric value of
zero or an empty string is also evaluated

as false.

Chapter 7 • Working with geodatabases • 81

QUALIFYING TABLE AND FIELD NAMES

ArcGIS desktop applications, such as
ArcMap and ArcCatalog, always

present fully qualified feature class, table,
and field names. If you are unsure of the

owner of a table or which tables are
accessible to you, use ArcCatalog to view

the contents of the geodatabase.

Geodatabases that reside in an RDBMS, such as Oracle, SQL Server, or IBM
DB2, use standard database naming conventions for identifying tables for specific
users. An RDBMS may contain thousands of tables from many different users;
therefore users of an enterprise geodatabase must understand how to correctly
qualify the name of an object so the correct feature class, relationship class,
feature dataset, or table is used during an operation. If an unqualified name is
specified as input to a tool, the geoprocessor will qualify it automatically using
the currently connected user name, which is specified as a property of the con-
nected workspace. If a script needs to access data from a number of users, it
should qualify the name of the table using the geoprocessor’s QualifyTableName
method so the syntax of the qualified name is correct. It requires the name of a
table, the username and the path to a geodatabase. Output parameter values do
not need to be qualified because a tool’s output is always created by the con-
nected user of the workspace. The example below shows how a script qualifies
table names so it can use tables from a number of users:
Clip all of the featureclasses in a feature dataset

Import COM Dispatch module

import win32com.client

Create the geoprocessor object

GP = win32com.client.Dispatch("esriGeoprocessing.GPDispatch.1")

Create the list of input featureclasses

GP.Workspace = "Database Connections/Calgary.sde/transportation"

fcs = GP.Listfeatureclasses()

fc = fcs.Next()

while fc:

 outfc = GP.ValidateTableName(fc,

 "Database Connections/Calgary.sde/clip")

 # Qualify the clip fc name as it is owned by Grace

 clipfc = GP.QualifyTableName("Grace","study_area",

 "Connections/Calgary.sde")

 try:

 GP.Clip(fc, clipfc, outfc)

 except:

 print GP.GetMessages(2)

 print "Successfully clipped " + fc

82 • Writing Geoprocessing Scripts with ArcGIS

QUALIFYING TABLE AND FIELD NAMES

Field names such as Area, Entity, and
Len are used by ArcSDE system tables,
and they require scripts to fully qualify
fields with these names. Refer to the
ArcSDE Administration Guide for

more information on ArcSDE field names.

SQL queries may contain the names of a number of fields from two or more
tables. It is not uncommon for the same field name to exist in separate tables,
especially when working with foreign and primary keys. Qualified field names
must also be used when a table contains certain field names that are also used by
ArcSDE. To resolve the ambiguity between duplicate names, the field name must
be qualified with the table or view name. The QualifyFieldName method allows
a database independent mechanism for creating fully qualified field names, using
the table and field name as input. The script below is an example of a script that
will always create a correct SQL statement, regardless of the underlying database
type:
Update a selected set of parcels based on a SQL query

Import COM Dispatch module

import win32com.client

Create the geoprocessor object

GP = win32com.client.Dispatch("esriGeoprocessing.GPDispatch.1")

try:

 GP.Workspace = "Database Connections/Calgary.sde/LegalFabric"

 # Create the layer for the selection

 GP.MakeLayer("taxparcels","parcels")

 # Join the parcel updates table using parcel_id field

 GP.Addjoin("parcels", "parcel_id", "parcel_updates", "parcel_id")

 # Qualify the identically named fields

 id = GP.QualifyFieldName(parcels, "parcel_id")

 update_id = GP.QualifyFieldName(parcel_updates, "parcel_id")

 # Select the parcels using the qualified names

 GP.SelectLayerByAttribute("parcels","New_Selection",

 id + " = " + update_id)

 # Calculate the update flag to be true for the selected parcels

 GP.CalculateField("parcels", "updateflag", "true")

except:

 print GP.GetMessages(2)

Chapter 7 • Working with geodatabases • 83

PARSING TABLE AND FIELD NAMES

A string in Python has a number of
native methods for manipulation. In

this example, the split method is used
to create a Python list, using the

comma as the delimiter. Other string
methods include upper, lower, strip

and count.

A Python list is an ordered collection of
any type of object, such as strings or

numbers. Lists are zero-based and may
be used to effectively handle arrays of
values when the order of the list’s con-

tents is known.

Scripts that are used as the source of
script tools can make some assump-

tions about their input argument
values. Paths to data are always fully

qualified by the geoprocessing frame-
work. Scripts that may be run outside an
ArcGIS application should not make the

same assumption. Refer to Chapter 5 for
more information on script tools.

Scripts should use the geoprocessor’s ParseTableName and ParseFieldName
methods to split the fully qualified names for a dataset or for a column in a table
into its components (database, owner, table, column). Scripts that need to be
RDBMS independent should not assume that ‘.’ is the delimiter used to separate
the components of a fully qualified dataset name. ArcGIS applications always use
fully qualified names, so if your script is being used as the source of a script tool,
any feature class name, for example, will need to be parsed if the script needs to
determine the name of the feature class without the user and database names. In
the example below, the script is checking the input feature class for specific user
names. The script could use the parsing functions of Python to split the qualified
name, but it would then assume a specific syntax, which may change if another
database type is used. ParseTableName returns a single string with the database
name, owner name, and table name separated by commas. ParseFieldName
returns the table name and the field name, also separated by commas. A script can
then reliably parse the returned string, as these methods always return the same
formatted string.
Append input feature class to another feature class and update field

Import COM Dispatch module and system module

import win32com.client, sys

Create the geoprocessor object

GP = win32com.client.Dispatch("esriGeoprocessing.GPDispatch.1")

Get the name of the input feature class and parse it.

GP.Workspace = os.path.dirname(sys.argv[1])

Create a list and populate it

fullname = GP.ParseTableName(os.path.basename(sys.argv[1]))

nameList = fullname.split(",")

database = nameList[0]

owner = nameList[1]

featureclass = nameList[2]

Qualify the name of the feature class that will be appended to and set

the workspace using the administrator’s connection

GP.Workspace = "Database Connections/Trans_admin.sde"

AppendFC = GP.ValidateTableName("common", "roads")

try:

 if owner == "grace":

 GP.CalculateField(fullname, "AppendedBy", owner)

 GP.Append(fullname, AppendFC)

 elif owner == "reed":

 GP.CalculateField(fullname, "AppendedBy", owner)

 GP.Append(fullname, AppendFC)

 else:

 GP.AddError("Unknown user of input feature class")

except:

 GP.AddError(GP.GetMessages(2))

Index • lxxxv

Index

A

AddError 49
AddMessage 49
AddReturnMessage 51
AddWarning 49
ArcGIS Product

checking 34
setting 34

ArcObjects 26
Array object 67

B

Batch Processing
described 38

C

Check existence of data 61
CheckExtension 34
CheckInExtension 34
CheckOutExtension 34
CheckProduct 34
Coding guidelines 15
COM 3, 22
CreateObject 32
Cursors

defining a spatial reference 71
deleting a row 64
getting values 65
insert cursor 65, 70
inserting a row 65
locking 72
positioning of 63
row object 64
search cursor 63, 69
setting values 65
types of 63
update cursor 64
using 63
using a query 66
using geometry 66

D

DeleteRow 64
Describe 56

E

Enumerations
using 13, 38

Environment Settings
described 30
listing 33
loading 31
saving 31
setting 30

Exists 61
Extensions

checkin in a license 34
checking out a license 34
checking status of 34
licensing 34

F

Field
object 58
qualifying name of 78
validating name of 76

Fields
object 58

G

Geodatabase
described 74
working with 74

Geometry
object 66
reading 67
writing 69

Geoprocessing
described 2

Geoprocessing programming model 3
Geoprocessor

creating 22
described 22

GetMessage 47
GetMessages 47
GetType 48
GetValue 65
GpDispatch 4, 22

I

Index
object 59

Indexes
object 58

Input options 41
InsertRow 65

lxxxvi • Writing Geoprocessing Scripts with ArcGIS

J

JScript 2

L

Licensing 34
ListDatasets 38
ListEnvironments 33
ListFeatureClasses 13, 38
ListFields 38, 58
ListIndexes 38, 58
Listing data 38
ListRasters 38
ListTables 38
ListToolboxes 33
ListTools 33
ListWorkspaces 38
Locking with cursors 72

M

MessageCount 47
Messages

count 47
described 46
getting 47
setting 49
types of 46

ModelBuilder 4
Multivalues

creating 41
described 41
using 41

O

Objects
creating 32

P

Parameters
setting 52, 53

ParseTableName 79
Perl 2
Point object 68
ProductInfo 34
Property Sets 61
Python

advantages of 3
debugging 16
editors 8
except statement 14
exceptions 13

importing modules 11
os module 12, 14
references 9
script arguments 13
setting breakpoints 18
sys module 12
using 8
win32com module 12, 22

Q

QualifyFieldName 78
QualifyTableName 77

R

Row
deleting 64

Row object 64

S

Script tools
defining 52

Scripts
arguments 13
coding guidelines 15
creating 12
debugging 16
examples of 4
while loop 39

SetProduct 34
SetValue 65
Spatial Reference

for a cursor 71
using an object 59

SQL 66

T

Table
deleting rows 64
parsing name of 79
qualifying name of 77
updating rows 64
validating name of 75

toolbox alias 29
Toolboxes

adding 22
listing 33
removing 22
setting the current toolbox 28
using an alias 29

Tools
licensing 34

Index • lxxxvii

listing 33
name conflicts 28
properties of 24
return values 27
running 24
script tool 48
severity 46
using ArcCatalog paths 25
using ArcObjects as input 26

U

UpdateRow 64

V

ValidateFieldName 76
ValidateTableName 14, 75
Value tables

using 42
Variables

creating 10
using 10

VBScript 2

lxxxviii • Writing Geoprocessing Scripts with ArcGIS

	Writing Geoprocessing Scripts With ArcGIS
	Contents
	Chapter 1: Introduction to scripting in ArcGIS
	Scripting support in ArcGIS
	Python and the geoprocessor
	Getting help

	Chapter 2: Getting started
	Working with Python
	An introduction to Python and PythonWin
	Creating a script
	Debugging

	Chapter 3: Using tools
	The geoprocessor object
	Tools and methods
	Environment settings
	Complex parameters
	Listing tools, toolboxes, and environments
	Licensing and extensions

	Chapter 4: Batch processing
	Listing data
	Multiple inputs

	Chapter 5: Messaging and script tools
	Messages
	Getting Messages
	Script tools
	Setting messages
	Using script tool parameters

	Chapter 6: Data properties and access
	Describing data
	Data access using cursors

	Chapter 7: Working with geodatabases
	Geodatabases
	Naming feature classes and tables
	Field name validation
	Qualifying table and field names
	Parsing table and field names

	Index

