
ArcGIS® 9.1

ArcGIS® Engine Developer Guide

Copyright © 2004 ESRI
All rights reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of
ESRI. This work is protected under United States copyright law and
other copyright treaties and conventions. No part of this work may be
reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, or by any information
storage or retrieval system, except as expressly permitted in writing by
ESRI. All requests should be sent to Attention: Contracts Manager, ESRI,
380 New York Street, Redlands, California 92373-8100, USA.

The information contained in this document is subject to change without
notice.

ContrContrContrContrContribibibibibuting uting uting uting uting WrWrWrWrWriteriteriteriteritersssss
Euan Cameron, Chris Davies, Rob Elkins, Kylie Evans, Anne
Frankland, Shelly Gill, Natalie Hansen, Sean Jones, Allan
Laframboise, Glenn Meister, Dan O’Neill, Rohit Singh, Steve
Van Esch, Zhiqian Yu, and Mark Zollinger

U.S. GOVERNMENT RESTRICTED/LIMITED RIGHTSU.S. GOVERNMENT RESTRICTED/LIMITED RIGHTSU.S. GOVERNMENT RESTRICTED/LIMITED RIGHTSU.S. GOVERNMENT RESTRICTED/LIMITED RIGHTSU.S. GOVERNMENT RESTRICTED/LIMITED RIGHTS
Any software, documentation, and/or data delivered hereunder is
subject to the terms of the License Agreement. In no event shall
the U.S. Government acquire greater than RESTRICTED/LIMITED
RIGHTS. At a minimum, use, duplication, or disclosure by the
U.S. Government is subject to restrictions as set forth in FAR
§52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19
(JUN 1987) and/or FAR §12.211/12.212 (Commercial Technical
Data/Computer Software); and DFARS §252.227-7015
(NOV 1995) (Technical Data) and/or DFARS §227.7202
(Computer Software), as applicable. Contractor/Manufacturer is ESRI,
380 New York Street, Redlands, California 92373-8100, USA.

PUBLISHED BY

ESRI
380 New York Street

Redlands, California 92373-8100

ESRI, ArcView, ArcIMS, SDE, Spatial Database Engine, the ESRI globe
logo, ArcObjects, ArcGIS, ArcMap, ArcCatalog, ArcScene, ArcInfo, ArcEditor,
ArcGlobe, ArcReader, ArcToolbox, 3D Analyst, ArcSDE, GIS by ESRI,
the ArcGIS logo, www.esri.com, and @esri.com are trademarks, registered
trademarks, or service marks of ESRI in the United States, the European
Community, or certain other jurisdictions.

Other companies and products mentioned herein are trademarks or
registered trademarks of their respective trademark owners.

Attribution.pmd 1/25/2005, 3:24 PM1

Contents

CHAPTER 1: INTRODUCING ARCGIS ENGINE .. 1

ArcGIS 9 overview ... 2
Overview of ArcGIS Engine .. 6
Who can use ArcGIS Engine? ... 10
ArcGIS Engine capabilities .. 12
Getting started .. 16
Using this book .. 19
Developer resources .. 20

CHAPTER 2: ARCGIS SOFTWARE ARCHITECTURE ... 23

ArcGIS software architecture ... 24
ArcGIS application programming interfaces ... 29
ArcGIS Engine libraries .. 32

CHAPTER 3: DEVELOPING WITH ARCGIS CONTROLS 41

Working with the ArcGIS controls .. 42
Building applications with the ArcGIS controls ... 50

CHAPTER 4: DEVELOPER ENVIRONMENTS .. 57

The Microsoft Component Object Model ... 58
Developing with ArcObjects .. 70
The Visual Basic 6 environment .. 79
The Visual Basic 6 development environment .. 92
Visual C++ ... 99
.NET application programming interface .. 141
Java application programming interface ... 182
C++ application programming interface .. 197

CHAPTER 5: LICENSING AND DEPLOYMENT .. 253

ArcGIS licensing options ... 254
ArcGIS Engine Developer Kit .. 261
Application development and license initialization ... 286
Testing with ArcGIS Engine Runtime .. 274
Deployment .. 277

CHAPTER 6: DEVELOPER SCENARIOS .. 281

Building applications with ActiveX .. 282
Building applications with visual JavaBeans ... 304
Building applications with Windows Controls ... 331
Building applications with C++ and control widgets ... 357
Building a command-line Java application .. 409
Building a command-line C++ application ... 427

Toc.pmd 1/25/2005, 5:02 PM3

iv • ArcGIS Engine Developer Guide

APPENDIX A: READING THE OBJECT MODEL DIAGRAMS 441

Object model key .. 442
Classes and relationships .. 443
Interfaces and members .. 446
Putting it together—An example .. 449

APPENDIX B: ARCGIS DEVELOPER RESOURCES .. 451

ArcGIS software developer kit .. 452
ArcGIS Developer Online Web site ... 454

APPENDIX C: CONVERTING PERSONAL GEODATABASES 457

Converting data for use with the GIS Server on UNIX... 458

APPENDIX D: INSTALLING ARCGIS ENGINE RUNTIME ON
WINDOWS, SOLARIS, AND LINUX .. 463

Installing ArcGIS Engine Runtime on Windows ... 464
Installing ArcGIS Engine Runtime on Solaris and Linux .. 479

GLOSSARY .. 491

INDEX ... 507

Toc.pmd 1/25/2005, 5:02 PM4

Introducing
ArcGIS Engine1

ESRI® ArcGIS® Engine is a platform for building custom standalone geographic

information system (GIS) applications that support multiple application

programming interfaces (APIs), include advanced GIS functionality, and are built

using industry standards.

This chapter will introduce you, the developer, to the ArcGIS Engine developer kit

and the ArcGIS Engine Runtime, discussing how to use it and its different

components.

Topics covered in this chapter include:

• an overview of ArcGIS 9 • introduction to ArcGIS Engine • ArcGIS Engine

users • capabilities of ArcGIS Engine • a description of this book

Ch01_Intro.pmd 1/25/2005, 3:14 PM1

2 • ArcGIS Engine Developer Guide

ArcGIS provides a scalable framework for implementing GIS for a single user or
for many users on desktops and servers. This book focuses on building and de-
ploying custom applications using ArcGIS Engine. It will be of greatest use to
developers who want to embed mapping and GIS functionality in custom appli-
cations. It provides an overview of ArcGIS Engine, its components, and the
possibilities ArcGIS Engine offers developers who want to build and deploy
custom GIS applications and solutions. In addition, several scenarios are used to
illustrate, with code examples, the various types of applications that can be
developed with ArcGIS Engine.

AN OVERVIEW OF ARCGIS 9

ArcGIS 9 is an integrated family of GIS software products for building a com-
plete GIS. It is based on a common library of shared GIS software components
called ArcObjects™. ArcGIS 9 consists of four key parts:

• ArcGIS Desktop—an integrated suite of advanced GIS applications.

• ArcGIS Engine—embeddable GIS component libraries for building custom
applications using multiple application programming interfaces.

• ArcGIS Server—a platform for building server-side GIS applications in enter-
prise and Web computing frameworks. Used for building both Web services
and Web applications.

• ArcIMS®—GIS Web server to publish maps, data, and metadata through open
Internet protocols.

ARCGIS 9 OVERVIEW

Developers wanting to customize ArcGIS
Desktop applications or work with ArcGIS Server

should refer to the ArcGIS Desktop Devel-
oper Guide and the ArcGIS Server Adminis-

trator and Developer Guide.

Ch01_Intro.pmd 1/25/2005, 3:14 PM2

Chapter 1 • Introducing ArcGIS Engine • 3

ARCGIS 9 OVERVIEW

ArcObjects
ArcGIS
Desktop

ArcGIS
Server

ArcGIS
Engine

Each of the GIS frameworks also includes the ArcSDE® gateway, an interface for
managing geodatabases in numerous relational database management systems
(RDBMS).

ArcGIS is a platform for building geographic information systems. ArcGIS 9
extends the system with major new capabilities in the areas of geoprocessing, 3D
visualization, and developer tools. ArcGIS Engine and ArcGIS Server, developer-
centric products, make ArcGIS a complete system for application and server
development.

There is a wide range of possibilities when developing with ArcGIS. Developers
can:

• Configure/Customize ArcGIS applications, such as ArcMap™ and
ArcCatalog™.

• Extend the ArcGIS architecture and data model.

• Embed maps and GIS functionality in other applications with ArcGIS Engine.

• Build and deploy custom desktop applications with ArcGIS Engine.

• Build Web services and applications with ArcGIS Server.

The ArcGIS system is built and extended using software components called
ArcObjects. ArcObjects includes a wide variety of programmable components
ranging from fine-grained objects, such as individual geometry objects, to coarse-

grained objects, such as a map
object, that can be used to interact
with existing ArcMap documents.
These components aggregate com-
prehensive GIS functionality for
developers.

ArcGIS 9 has a common developer
experience across all ArcGIS prod-
ucts (Engine, Server, and Desktop).
You, as a developer, can work with
ArcObjects using standard pro-
gramming frameworks to extend
ArcGIS Desktop, build custom
applications with ArcGIS Engine,
and implement enterprise GIS
applications using ArcGIS Server.

As noted previously, this book
focuses on building and deploying
custom applications using ArcGIS
Engine. If you want to customize
ArcGIS Desktop applications or
work with ArcGIS Server, refer to
the ArcGIS Desktop Developer Guide
and the ArcGIS Server Administrator
and Developer Guide.

Ch01_Intro.pmd 1/25/2005, 3:15 PM3

4 • ArcGIS Engine Developer Guide

ARCGIS 9 OVERVIEW

The ArcGIS system is available in a number of programming frameworks includ-
ing C++, Component Object Model (COM), .NET, and Java™.

Each of the ArcGIS product architectures built with ArcObjects represents
alternative application development containers for GIS software developers,
including desktops, embeddable engines, and servers.

ArcGIS Desktop includes a series of Windows® desktop application frameworks
(for example, applications for map, catalog, toolbox, and globes) with user inter-
face (UI) components. ArcGIS Desktop is available at three functional levels
(ArcView®, ArcEditor™, and ArcInfo®) and can be customized and extended
using the ArcGIS Desktop developer kit.

The software developer kit (SDK) for ArcGIS Desktop is included with
ArcView, ArcEditor, and ArcInfo and supports the COM and .NET programming
frameworks. Many developers apply the ArcGIS Desktop SDK to add extended
functions, new GIS tools, custom user interfaces, and full extensions for improv-
ing professional GIS productivity of the ArcGIS Desktop applications.

ArcGIS Server defines and implements a set of standard GIS Web services (for
example, mapping, data access, and geocoding) as well as supports enterprise-level
application development based on ArcObjects for the server.

XML
Data

ArcGIS
Clients

Components

ArcGIS
Engine

Application
servers

Mobile GIS
Applications

DBMS

ArcIMS

ArcSDE

ArcGIS Server

ArcReader

ArcView

ArcEditor

ArcInfo

Custom
applications

ArcGIS Desktop

PDA

A r c O b j e c t s

Numerous
File-based
data types

Desktop
Developer Kit

ArcEngine
Developer Kit

ArcGIS Server
Developer Kit

Tablet
PC

Ch01_Intro.pmd 1/25/2005, 3:15 PM4

Chapter 1 • Introducing ArcGIS Engine • 5

The ArcGIS Server developer kit enables developers to build central GIS servers
to host GIS functions that are accessed by many users, perform back office pro-
cessing on large central GIS databases, build and deliver GIS Web applications,
and perform distributed GIS computing.

ArcGIS Engine, the focus of this guide, is a simple, application-neutral program-
ming environment for ArcObjects. Its SDK provides a series of embeddable
ArcGIS components that are used outside the ArcGIS Desktop application
framework—for example, mapping objects are managed as a part of ArcGIS
Engine, rather than in ArcMap. Using the ArcGIS Engine Developer Kit, devel-
opers can build focused GIS solutions with simple interfaces to access any set of
GIS functions or embed GIS logic in existing user applications to deploy GIS to
broad groups of users.

ARCGIS 9 OVERVIEW

ArcGIS Engine and its developer resources will
be discussed in more detail later in this chapter

and throughout this book.

Ch01_Intro.pmd 1/25/2005, 3:15 PM5

6 • ArcGIS Engine Developer Guide

OVERVIEW OF ARCGIS ENGINE

ArcGIS Engine is a complete library of embeddable GIS components for
developers to build custom applications. Using ArcGIS Engine, you can

embed GIS functions into
existing applications, including
Microsoft® Office products,
such as Word and Excel, and
build focused custom applica-
tions that deliver advanced
GIS systems to many users.
ArcGIS Engine consists of a
software developer kit and a
redistributable runtime provid-
ing the platform for all ArcGIS
applications. Since ArcGIS
Engine is supported on
Windows, Solaris, and Linux
(Intel), developers can create
cross-platform custom solu-
tions for a wide range of users.

The five parts of ArcGIS Engine
are outlined below:

1. Base Services—The core GIS
ArcObjects required for
almost any GIS application,
such as feature geometry and
display.

2. Data Access—ArcGIS Engine provides access to a wide variety of raster and
vector formats including the power and flexibility of the geodatabase.

3. Map Presentation—ArcObjects for map creation and display with symbology,
labeling, and thematic mapping capabilities including custom applications.

4. Developer Components—High-level user interface controls for rapid applica-
tion development and a comprehensive help system for effective development.

5. Extensions—ArcGIS Engine Runtime is deployable with the standard func-
tionality or with additional extensions for advanced functionality.

Each of these parts, including the extension functionality, is made available
through the ArcGIS Engine Developer Kit. The ArcGIS Engine Runtime and its
extensions, although integral factors in the development of a custom GIS appli-
cation, specifically involve application deployment and are, therefore, considered
separately.

ARCGIS ENGINE DEVELOPER KIT

The ArcGIS Engine Developer Kit is a component-based software development
product for building and deploying custom GIS and mapping applications. The
ArcGIS Engine Developer Kit is not an end user product, but rather a toolkit for
application developers. It can be used to build basic map viewers or comprehen-
sive and dynamic GIS editing tools. With the ArcGIS Engine Developer Kit, you,
as a developer, have an unprecedented flexibility for creating customized inter-

ArcGIS Engine Developer Kit and Runtime used
to build and deploy a custom solution to many

users.

Extensions

Developer
Components

Map
Presentation

Data
Access

Base
Services

Components of ArcGIS Engine

Ch01_Intro.pmd 1/25/2005, 3:15 PM6

Chapter 1 • Introducing ArcGIS Engine • 7

faces for maps. You can use one of several supported APIs to create unique
applications or combine ArcGIS Engine components with other software compo-
nents to realize a synergistic relationship between maps and the information that
users manage.

Using ArcGIS Engine, the map itself can be either an incidental element within
or the central component of an application. If, for example, the focus of your
application is a database with information about businesses, ArcGIS Engine can
enable the application to display a form with a map highlighting the business
location of interest when your user performs a query on the database.

The ArcGIS Engine Developer Kit provides access to a large collection of GIS
components, or ArcObjects, that fall into the categories discussed earlier—base
services, data access, and map presentation. Another part of ArcGIS Engine that
was discussed, developer components, is also included in the SDK. These are
value-added developer controls for creating a high-quality map user interface. The
ArcGIS developer controls are available with each supported API and platform.
The following ArcGIS controls, or visual components, are provided to assist with
application development:

• MapControl

• PageLayoutControl

• SceneControl

• GlobeControl

• ToolbarControl

• TOCControl

• ReaderControl

• Collection of commands, tools, and menus for use with the ToolbarControl

OVERVIEW OF ARCGIS ENGINE

An ArcGIS controls-based application

Chapter 3, ‘Developing with ArcGIS controls’,
discusses each of these visual components in

detail.

Ch01_Intro.pmd 1/25/2005, 3:15 PM7

8 • ArcGIS Engine Developer Guide

ARCGIS ENGINE RUNTIME

The final component of ArcGIS Engine is its extensions. All applications built
with the ArcGIS Engine Developer Kit require ArcGIS Engine Runtime, with
the appropriate license, to execute successfully. ArcGIS Engine Runtime is the
platform on which ArcGIS Desktop is built; this allows users of ArcGIS Desktop
applications to execute custom applications based on ArcGIS Engine, if permit-
ted by the ArcGIS Engine application developer. There are several ArcGIS En-
gine extensions ranging from standard to enterprise extensions.

Standard ArcGIS Engine functionality
The standard ArcGIS Engine Runtime provides the core
functionality of all ArcGIS applications. This level of
ArcGIS Engine Runtime provides the ability to work with
several different raster and vector formats, map presentation
and data creation, along with the ability to explore features
by performing a wide range of spatial or attribute searches.
This level also allows basic data creation, editing of
shapefiles and simple personal geodatabases, and GIS analy-
sis.

Geodatabase Update extension
The Geodatabase Update extension for ArcGIS Engine
Runtime adds the ability to create and update a multiuser
enterprise geodatabase managed with ArcSDE. This includes
the ability to work with schemas and versioned
geodatabases. The Geodatabase Update extension unlocks

ArcGIS Engine Runtime with the necessary ArcObjects to run custom editing
and advanced geodatabase solutions. These solutions include applications that
deal with GIS data automation and compilation and the construction and mainte-
nance of geodatabase features. The Geodatabase Update extension provides the
ability to programmatically create geodatabase behaviors, such as topologies,
subtypes, and geometric networks.

ArcGIS Engine developers with access to an RDBMS via ArcSDE are able to
build and deploy multiuser editing applications to end users that have the ArcGIS
Engine Runtime with the Geodatabase Update extension installed and config-
ured.

Other ArcGIS Engine extensions
Three additional extensions are available for the ArcGIS Engine Runtime:

1. Spatial extension—The ArcGIS Engine Runtime Spatial extension provides a
powerful set of functions that allow applications to create, query, and analyze
cell-based raster data. This type of analysis allows your users to derive infor-
mation about their data, identify spatial relationships, find suitable locations,
and calculate the accumulated cost of traveling from one point to another.
Other advanced applications that this extension supports include the calcula-
tion of slope, aspect, and contours against digital elevation models (DEMs).

2. 3D extension—The 3D extension for ArcGIS Engine Runtime enables the
visualization of data in 3D. This extension supplements standard ArcGIS

OVERVIEW OF ARCGIS ENGINE

ArcGIS Engine Standard Functionality
· Map interaction
· Map creation
· Map analysis
· Data creation (shapefile and personal geodatabase)
· Developer controls
· Developer technologies

ArcGIS Engine Runtime Extensions
· Geodatabase Update
· Spatial
· 3D
· Network

ArcGIS Engine Runtime deployment options

The availability of the different levels of function-
ality is controlled by a software authorization file

that can be configured by the end user or the
developer of the application. For more details on

deploying and configuring the ArcGIS Engine
Runtime, refer to Chapter 5, ‘Licensing and

deployment’.

Ch01_Intro.pmd 1/25/2005, 3:15 PM8

Chapter 1 • Introducing ArcGIS Engine • 9

Engine with the components for viewing a surface from multiple viewpoints
and determining what is visible from a chosen location. SceneControl and
GlobeControl provide the interface for viewing multiple layers of 3D and global
data for visualizing data, creating surfaces, and analyzing surfaces.

3. Network Analyst extension—The Network Analyst extension is new at
version 9.1 and enhances the standard ArcGIS Engine Runtime by adding the
capability of routing, service area analysis, and creating and managing network
datasets. The Network extension allows developers to create and deploy
powerful custom applications for transportation, emergency response, fire,
military, and a host of other purposes.

OVERVIEW OF ARCGIS ENGINE

The StreetMap USA extension functionality is no
longer a separate extension for ArcGIS Engine
but is included as part of the standard ArcGIS

Engine Runtime. The StreetMap USA functions
provide street-level mapping, address matching,

and basic routing for the USA. StreetMap layers
automatically manage, label, and draw features,

such as local landmarks, streets, parks, water
bodies, and other features, resulting in a rich

cartographic street network for the USA.

Ch01_Intro.pmd 1/25/2005, 3:15 PM9

10 • ArcGIS Engine Developer Guide

WHO CAN USE ARCGIS ENGINE?

Many users require focused, lightweight access to GIS. They need much less than
a complete GIS application, such as ArcView, yet require access to sophisticated
GIS logic in their applications. In cases in which users need focused, customized
access to GIS, ArcGIS Engine provides a lower-cost, lightweight option.

STANDALONE APPLICATION DEVELOPERS

There are many potential users of GIS-enhanced applications who are not GIS
professionals and are just not equipped to take advantage of the comprehensive
tools available on the market without a steep learning curve. To provide spatial
solutions to non-GIS users, developers need the ability to build domain-specific,
easy-to-use applications that can incorporate the power of a comprehensive GIS
into a user-friendly experience. These applications, if built from scratch, can be
an overwhelming development effort and may not be time or cost-effective.

You can use the ArcGIS Engine Developer Kit to successfully build standalone
applications. There is a wide variety of types of applications that can be built,
ranging from graphical user interface (GUI) applications to command-line, batch-
driven applications. GUI applications will make use of the extensive ArcGIS
controls exposed in the developer kit. These controls include everything you need
to build a sophisticated front-end application. You can leverage your chosen API
to integrate the ArcGIS controls with other third-party components and create a
unique user interface for your custom ArcGIS Engine application.

ARCGIS DESKTOP USERS

ArcMap, one of the ArcGIS Desktop applications, is an excellent way to create
data and author maps for use in custom applications. The MapControl and
PageLayoutControl provided with ArcGIS Engine can work with the map docu-
ments created in ArcMap. SceneControl and GlobeControl can display documents

An application built in Java using the
GlobeControl

Ch01_Intro.pmd 1/25/2005, 3:15 PM10

Chapter 1 • Introducing ArcGIS Engine • 11

authored in the ArcScene™ and ArcGlobe™ applications. Using the ArcGIS
Desktop applications to create and manage maps used in custom applications can
save you much development time and effort. ArcGIS Desktop also provides tools
to build and manage geodatabases, shapefiles, and other forms of spatial data.

The underlying components of ArcGIS Desktop are the same ArcObjects compo-
nents that make up ArcGIS Engine. This allows every ArcGIS Desktop user the
ability to run ArcGIS Engine applications. You can develop applications based on
ArcGIS Engine and deploy them to ArcGIS Desktop users or extend
ArcToolbox™ with a custom toolset built with the ArcGIS Engine developer kit.

ARCGIS SERVER USERS

ArcGIS Server administrators can provide server objects and Web services to
ArcGIS Engine applications. This allows the integration of desktop functionality
with server functionality. It is also important to remember that the GIS function-
ality exposed via the ArcObjects that compose ArcGIS Engine is the same in
ArcGIS Server, meaning that ArcGIS Server, Engine, and Desktop have the same
core ArcObjects.

WHO CAN USE ARCGIS ENGINE?

`

`

ArcObjectsArcObjectsArcObjects

ArcObjects
Proxies

ArcObjects
Proxies

ArcObjects
Proxies

ArcObjects

ArcObjects
Proxies

ArcObjects

`

` `

GIS Server

Desktop applications
(single user)

.NET/Java ADF

ArcGIS Engine

ArcGIS Desktop

Server applications
(Multiuser)

.NET/Java ADF

Server Object
Manager

Server Object Containers

Ch01_Intro.pmd 1/25/2005, 3:15 PM11

12 • ArcGIS Engine Developer Guide

ARCGIS ENGINE CAPABILITIES

The capabilities of ArcGIS Engine are extensive. As an ArcGIS Engine devel-
oper, you can implement these and many other functions using its developer kit:

• Display a map with multiple map layers, such as roads, streams, and bound-
aries.

• Pan and zoom throughout a map.

• Identify features on a map.

• Search for and find features on a map.

• Display labels with text from field values.

• Draw images from aerial photography or satellite imagery.

• Draw graphic features, such as points, lines, circles, and polygons.

• Draw descriptive text.

• Select features along lines and inside boxes, areas, polygons, and circles.

• Select features within a specified distance of other features.

• Find and select features with a Structured Query Language (SQL) expression.

• Render features with thematic methods, such as value map, class breaks, and
dot density.

• Dynamically display real-time or time series data.

• Find locations on a map by geocoding addresses or street intersections.

• Transform the coordinate system of your map data.

• Perform geometric operations on shapes to create buffers; calculate differ-
ences; and find intersections, unions, or inverse intersections of shapes.

• Manipulate the shape or rotation of a map.

• Create and update geographic features and their attributes.

EDITING FEATURES

ArcGIS Engine developer kit enables you to build applications that create,
modify, and remove vector-shaped features in a geodatabase or shapefile. The
standard ArcGIS Engine Runtime is used to run applications that edit shapefiles
or the simple features of a personal geodatabase. However, leveraging the full
function of the enterprise geodatabase, the Geodatabase Update extension of the
ArcGIS Engine Runtime is required.

The items listed at right, if deployed, are
included in the standard ArcGIS Engine Runtime

functionality and would not require any of the
additional extensions.

A software authorization file controls the
availability of the various levels of ArcGIS Engine

Runtime functionality. For more details on
deploying and configuring the ArcGIS Engine
Runtime, refer to Chapter 5, ‘Licensing and

deployment’.

Ch01_Intro.pmd 1/25/2005, 3:15 PM12

Chapter 1 • Introducing ArcGIS Engine • 13

SPATIAL MODELING AND ANALYSIS

You can extend the capabilities of ArcGIS Engine by adding the Spatial exten-
sion to ArcGIS Engine Runtime. This extension provides a broad range of pow-
erful spatial modeling and analysis functions. You can create, query, map, and
analyze cell-based raster data; perform integrated raster or vector analysis; derive
new information from existing data; query information across multiple data
layers; and fully integrate cell-based raster data with vector data in a custom
ArcGIS Engine application.

For example, you can:

• Convert features (points, lines, or polygons) to raster.

• Create raster buffers based on distance or proximity from features or rasters.

• Generate density maps from point features.

• Derive contours, slope, viewshed, aspect, and hillshades.

• Perform grid classification and display.

• Use data from standard formats including TIFF, BIL, IMG, USGS DEM,
SDTS, DTED, and many others.

ARCGIS ENGINE CAPABILITIES

An application, developed using the
MapControl, that utilizes the Spatial extension

for the ArcGIS Engine Runtime

Ch01_Intro.pmd 1/25/2005, 3:15 PM13

14 • ArcGIS Engine Developer Guide

3D VISUALIZATION AND MORE

The ArcGIS Engine Runtime 3D extension extends the capabilities of ArcGIS
Engine even further by enabling you to build applications that effectively visual-
ize and analyze surface and globe data using SceneControl and GlobeControl. You can
create applications that view a surface from multiple viewpoints, query a surface,

determine what is visible from a chosen location on a
surface, and display a realistic perspective image by
draping raster and vector data over a surface.

You can, for example:

• Display ArcScene and ArcGlobe documents.

• Perform interactive perspective viewing, including pan
and zoom, rotate, tilt, and fly-through simulations, for
presentation and analysis.

• Display real-world surface features, such as buildings.

• Perform viewshed and line-of-sight analysis, spot
height interpolation, profiling, and steepest path
determination.

ARCGIS ENGINE CAPABILITIES

Java code for the inset GlobeControl-based
application

Display of a
SceneControl-

based application

Ch01_Intro.pmd 1/25/2005, 3:15 PM14

Chapter 1 • Introducing ArcGIS Engine • 15

NETWORK ANALYSIS

The Network extension to ArcGIS Engine is new at version 9.1 and provides
developers with the capability to create applications that utilize network data in a
variety of formats and creating and editing network datasets. The following
network functions are available to developers:

• Path—Find a path through a set of network locations that minimizes some
impedance (cost) attribute

• Tour—Determine the minimum-cost path to reach a series of stops; also
determines the order in which the stops are visited.

• Directions—Generate a series of directions for the user.

• Closest Facility—Given a network location (an incident) finds the closest
facilities.

• Service Areas—Find all network elements within a given distance from a
network location.

ARCGIS ENGINE CAPABILITIES

Ch01_Intro.pmd 1/25/2005, 3:15 PM15

16 • ArcGIS Engine Developer Guide

GETTING STARTED

Once you have the ArcGIS Engine Developer Kit installed, you will need to
register your product before you can start developing custom applications. At the
end of the installation of the ArcGIS Engine Developer Kit, the Software
Authorization wizard will start. Follow the steps through the wizard to authorize
ArcGIS Engine Developer Kit. The ESRI Customer Service Web site
(http://service.esri.com) can also be used to obtain your authorization file. To use
the Web site or the wizard, you will need to know your product registration
number. With the ArcGIS Engine Developer installed and authorized for use, you
are ready to get started. However, good applications require careful planning;
working with ArcObjects is no exception. Before beginning your development,
feel free to read through and use, as necessary, the discussions and checklists in
this section. They are provided to help you formulate your plans and ensure you’re
getting started on the right foot.

DETERMINING THE TYPE OF APPLICATION

A wide variety of applications can be developed with ArcGIS Engine. These
applications vary from simple consoles that perform operations, such as database
editing and analyses, to more complex Windows applications that contain con-
trols and visual components for user interaction and geographic data display. In
general, there are three types of ArcGIS Engine applications:

1. Standalone, nonvisual applications, such as console and utility applications

2. Standalone, visual applications, such as Windows and control-based applica-
tions

3. Embedded applications, such as components that are inserted into existing
applications

Ultimately, the type of application you develop will depend on the functional
requirements of the project at hand.

Checklist:

! What type of application are you developing? Nonvisual, visual, or
embedded?

! Do you plan to migrate the functionality to ArcGIS Desktop or
ArcGIS Server products?

! What platform do you want to support now and in the future?
Windows? Linux®? Both?

CHOOSING AN API AND DEVELOPMENT ENVIRONMENT

Since ArcGIS Engine Developer Kit provides four developer APIs—COM,
.NET, Java, and C++. The different APIs can be leveraged in several different
supported development environments. ESRI recommends and supports the
following integrated development environments (IDEs) or compilers when
working with ArcGIS Engine.

COM

• Visual Basic 6 sp3 or later

• Visual C++ 6 sp3 or later

Some examples of ArcGIS Engine applications
are provided in Chapter 6, ‘Developer scenarios’.
Additional samples are included with the ArcGIS

Developer Help system.

Visual Studio .NET

WebSphere Studio

Ch01_Intro.pmd 1/25/2005, 3:15 PM16

Chapter 1 • Introducing ArcGIS Engine • 17

GETTING STARTED

• Visual C++ (Visual Studio .NET 2003)

.NET

• C# (Visual Studio .NET 2003 with .NET Framework 1.1)

• VB.NET (Visual Studio .NET 2003 with .NET Framework 1.1)

Java

• Eclipse v. 3.0 or 3.0.1

• JBuilder™ X

• NetBeans 3.6

C++ (Compilers)

• Visual C++ sp3 or later for Windows

• Visual C++ (VS.NET 2003) for Windows

• GCC 3.2 C++ for Linux (Intel)

• WorkShop 6 Update 2 for Sun Solaris

The environment you choose to develop with will ultimately depend on your
programming skills, the functionality you wish to provide end users, and whether
or not you are integrating with other existing applications or technologies.

Checklist:

! What development environment and language are you the most familiar
with?

! Which ArcGIS Engine API do you plan to use?

! Which development environment and language is best suited for the
type of the development you want to undertake?

DEVELOPING YOUR APPLICATION

At this point, assuming that a proper project development plan is in place, you are
ready to dive into the ArcGIS Engine Developer Kit and start developing your
application. You may want to start by identifying the libraries and objects that
will be necessary to provide the functionality for the application. Use the devel-
oper help resources to assist you in this process, including the ArcGIS Developer
Help system, the Developer Guide series, samples included in the help system,
and the ArcGIS Developer Online site.

Checklist:

! Identify the ArcObjects functionality required.

! What ArcGIS Engine library references will be required?

! What ArcGIS license will be required to run the application?

! Are ArcGIS Engine extensions required?

! How do you plan to deploy the application?

! Have you implemented the correct license check-out code?

Each functional group of ArcObjects, or library,
used must be referenced in your development

environment for your application to compile and
run successfully. The various libraries available in

ArcGIS Engine are discussed in detail in
Chapter 2, ‘ArcGIS software architecture’.

Throughout most of this book, VB6 is used as
the language to illustrate most coding concepts
and is often the easiest language to learn when

getting started. See Chapter 4, ‘Developer
environments’, for programming guidelines for

VB and some of the other environments
supported by the ArcGIS Engine APIs.

ArcGIS Developer Online can be accessed from
http://arcgisdeveloperonline.esri.com.

Ch01_Intro.pmd 1/25/2005, 3:15 PM17

18 • ArcGIS Engine Developer Guide

DEPLOYING YOUR APPLICATION

Application deployment is an issue that should be considered long before applica-
tion development begins. ArcGIS Engine applications can be deployed in a num-
ber of ways, and it is possible to have a number of end user software and license
configurations. Therefore, there are a number of issues that you need to consider.

Checklist:

! Will users already have ArcGIS Engine Runtime installed? No ESRI
products installed?

! What ArcGIS license will your end users have on their systems?
ArcInfo, ArcEditor, or ArcView? Which license will your application
check for and use?

! How should you package and deploy the application?

! Will you need to provide new versions in the future?

! How will you distribute the application?

GETTING STARTED

Chapter 5, ‘Licensing and deployment’, discusses
the various aspects of this checklist.

Ch01_Intro.pmd 1/25/2005, 3:15 PM18

Chapter 1 • Introducing ArcGIS Engine • 19

USING THIS BOOK

This book, ArcGIS Engine Developer Guide, is an introduction for developers who
want to build standalone GIS applications. This guide will help you, as the devel-
oper, become familiar with the ArcGIS Engine object model by introducing all
the ArcGIS Engine developer kit components, discussing relevant aspects of
building applications, introducing supported APIs, and providing developer
scenarios that produce real-world GIS applications.

To serve the widest base of developers, most of the code samples provided
within this book use the COM Visual Basic 6 API. However, the developer
scenarios cover the full range of supported APIs, and a chapter is devoted to
API-specific usages.

The first two chapters of this book provide an overview of ArcGIS Engine and
its capabilities, including architecture and components. The remaining chapters
focus on developing application usages of each particular supported API.

CHAPTER GUIDE

Chapter 1, ‘Introducing ArcGIS Engine’, gives developers an overview of the
ArcGIS Engine product, its capabilities, and developer resources.

Chapter 2, ‘ArcGIS software architecture’, describes ArcGIS Engine architecture
and how the software components interact inside the system.

‘Developing with ArcGIS controls’ is detailed in Chapter 3. It describes each of
the controls and provides some considerations for their use in application devel-
opment.

Chapter 4, ‘Developer environments’, introduces you to the multiple APIs sup-
ported by ArcGIS Engine. This chapter guides you through each API from the
basics to advanced usage topics.

‘Licensing and deployment’ issues are addressed in Chapter 5. It details the licens-
ing options and discusses deployment strategies for your application, including
initialization and license checking.

Chapter 6, ‘Developer scenarios’, guides you through the creation and deployment
of several types of standalone applications utilizing each of the supported APIs.

This book also contains a number of appendixes that provide detailed informa-
tion about the object model diagrams available in the ArcGIS Developer Help
system and additional developer resources.

Ch01_Intro.pmd 1/25/2005, 3:15 PM19

20 • ArcGIS Engine Developer Guide

DEVELOPER RESOURCES

The following topics describe some of the additional resources available to
ArcGIS developers. More in-depth coverage on the resources available to devel-
opers is covered in Appendix B.

ARCGIS DEVELOPER HELP SYSTEM

The ArcGIS Developer Help system is an essential resource for both the begin-
ning and experienced ArcObjects developers. It contains information on develop-
ing with ArcObjects including sample code, technical documents, and object
model diagrams. In addition, it also serves as a reference guide containing infor-
mation on every object within ArcObjects. The help system is available to Visual
Basic, .NET, Java, and C++ developers. You can start the ArcGIS Developer
Help system through the ArcGIS program group from the Windows Start button.

THE ARCGIS DEVELOPER SERIES

This book is one in a series of books for ArcGIS developers.

The ArcGIS Desktop Developer Guide is for developers who want to customize or
extend one of the ArcGIS Desktop applications, such as ArcMap or ArcCatalog.
Developers can use Visual Basic for Applications (VBA) to customize and either
Visual Basic, Visual C++, or .NET to extend the applications.

The ArcGIS Server Administrator and Developer Guide is for developers who want to
use ArcGIS Server to build custom server applications. Server developers can
build Web services and Web applications that do simple mapping or include
advanced GIS functionality. Several scenarios illustrate with code examples some
of the different types of applications that can be developed using one of the
multiple ArcGIS Server Developer Kits. This book also serves as the administra-
tion guide to ArcGIS Server.

The VB6 version of ArcGIS Developer Help is
installed in a typical installation. Follow the
custom installation procedures to access the

C++, Java, or .NET versions.

Ch01_Intro.pmd 1/25/2005, 3:15 PM20

Chapter 1 • Introducing ArcGIS Engine • 21

DEVELOPER RESOURCES

ESRI DEVELOPER NETWORK ONLINE

ESRI Developer Network (EDN) online—http://edn.esri.com—is a central
location to find and view developer-focused articles, code samples, and other
resources related to ArcGIS, ArcIMS, ArcSDE, and ArcWeb Services. In addi-
tion, EDN provides a number of community-building areas intended to pro-
mote your collaboration and interaction with other GIS developers and ESRI
staff. The site is continually updated, making it the most up-to-date reference for
developers.

ESRI SUPPORT CENTER

The ESRI Support Center at http://support.esri.com contains software information,
technical documents, samples, forums, and a knowledge base for all ArcGIS
products.

ArcGIS developers can take advantage of the forums, knowledge base, and
samples sections to aid in development of their ArcGIS applications.

TRAINING

ESRI offers a number of instructor-led and Web-based training courses for the
ArcGIS developer. These courses range from introductory level for VBA to the
more advanced courses in component development for ArcGIS Desktop, Engine,
and Server.

For more information, visit http://www.esri.com and click the Training and Events
tab.

The ESRI Virtual Campus can be found directly at http://campus.esri.com.

The ESRI Support Center at
http://support.esri.com

The ESRI Developer Network at
http://edn.esri.com

The ESRI Virtual Campus at
http://campus.esri.com

Ch01_Intro.pmd 1/25/2005, 3:15 PM21

Ch01_Intro.pmd 1/25/2005, 5:17 PM22

ArcGIS software
architecture2

ArcGIS has evolved over several releases of the technology to be a modular,

scalable, cross-platform architecture implemented by a set of software

components called ArcObjects.

This chapter focuses on the main themes of this evolution at ArcGIS 9 and

introduces the reader to the various libraries that

compose the ArcGIS system.

Ch02_DevKit.pmd 1/25/2005, 3:15 PM23

24 • ArcGIS Engine Developer Guide

The ArcGIS software architecture supports a number of products, each with its
unique set of requirements. ArcObjects, the components that make up ArcGIS,
are designed and built to support this. This chapter introduces ArcObjects.

ArcObjects is a set of platform-independent software components, written in
C++, that provides services to support GIS applications on the desktop, in the
form of thick and thin clients, and on the server.

As stated, the language chosen to develop ArcObjects was C++; in addition to
this language, ArcObjects makes use of the Microsoft Component Object Model.
COM is often thought of as simply specifying how objects are implemented and
built in memory and how these objects communicate with one another. While
this is true, COM also provides a solid infrastructure at the operating system level
to support any system built using COM. On Microsoft Windows operating sys-
tems, the COM infrastructure is built directly into the operating system. For
operating systems other than Microsoft Windows, this infrastructure must be
provided for the ArcObjects system to function.

Not all ArcObjects components are created equally. The requirements of a par-
ticular object, in addition to its basic functionality, vary depending on the final
end use of the object. This end use broadly falls into one of the three ArcGIS
product families:

• ArcGIS Engine—Use of the object is within a custom application. Objects
within ArcGIS Engine must support a variety of uses; simple map dialog
boxes, multithreaded servers, and complex Windows desktop applications are
all possible uses of ArcGIS Engine objects. The dependencies of the objects
within ArcGIS Engine must be well understood. The impact of adding depen-
dencies external to ArcObjects must be carefully reviewed, since new depen-
dencies may introduce undesirable complexity to the installation of the appli-
cation built on ArcGIS Engine.

• ArcGIS Server—The object is used within the server framework, where
clients of the object are most often remote. The remoteness of the client can
vary from local, possibly on the same machine or network, to distant, where
clients can be on the Internet. Objects running within the server must be
scalable and thread safe to allow execution in a multithreaded environment.

• ArcGIS Desktop—Use of the object is within one of the ArcGIS Desktop
applications. ArcGIS Desktop applications have a rich user experience, with
applications containing many dialog boxes and property pages that allow end
users to work effectively with the functionality of the object. Objects that
contain properties that are to be modified by users of these applications
should have property pages created for these properties. Not all objects
require property pages.

ARCGIS SOFTWARE ARCHITECTURE

For a detailed explanation of COM, see the
COM section of Chapter 4, 'Developer

environments'.

ArcGIS Engine

Developer
Components

Map
Presentation

Map
Analysis

Data
Access

Base
Services

Ch02_DevKit.pmd 1/25/2005, 3:15 PM24

 Chapter 2 • ArcGIS software architecture • 25

Many of the ArcObjects components that make up ArcGIS are used within all three
of the ArcGIS products. The product diagrams on these pages show that the objects
within the broad categories of base services, data access, map analysis, and map
presentation are contained in all three products. These four categories contain the
majority of the GIS functionality exposed to developers and users in ArcGIS.

This commonality of function among all the products is important for developers to
understand, since it means that when working in a particular category, much of the
development effort can be transferred among the ArcGIS products with little
change to the software. After all, this is exactly how the ArcGIS architecture is
developed. Code reuse is a major benefit of building a modular architecture, but
code reuse does not simply come from creating components in a modular fashion.

The ArcGIS architecture provides rich functionality to the developer, but it is not a
closed system. The ArcGIS architecture is extendable by developers external to
ESRI. Developers have been extending the architecture for a number of years, and
the ArcGIS 9 architecture is no different; it, too, can be extended. However,
ArcGIS 9 introduces many new possibilities for the use of objects created by ESRI
and you. To realize these possibilities, components must meet additional require-
ments to ensure that they will operate successfully within this new and significantly
enhanced ArcGIS system. Some of the changes from ArcGIS 8 to ArcGIS 9 may
appear superficial, an example being the breakup of the type libraries into smaller
libraries. That, along with the fact that the objects with their methods and proper-
ties that were present at 8.3 are still available at 9.0, masks the fact that internally
ArcObjects has undergone some significant work.

The main focus of the changes made to the ArcGIS architecture at 9.0 revolves
around four key concepts:

• Modularity—A modular system where the dependencies between components
are well-defined in a flexible system.

• Scalability—ArcObjects must perform well in all intended operating environ-
ments, from single user desktop applications to multiuser and multithreaded
server applications.

• Multiple Platform Support—ArcObjects for ArcGIS Engine and Server should
be capable of running on multiple computing platforms.

• Compatibility—ArcObjects 9 should remain equivalent, both functionally and
programmatically, to ArcObjects 8.3.

MODULARITY

The esriCore object library, shipped as part of ArcGIS 8.3, effectively packaged all
ArcObjects components into one large block of GIS functionality; there was no
distinction between components. The ArcObjects components were divided into
smaller groups of components, these groups being packaged in Dynamic Link
Libraries (DLLs). The one large library, while simplifying the task of development
for external developers, prevented the software from being modular. Adding the
type information to all the DLLs, while possible, would have greatly increased the
burden on external developers and, hence, was not an option. In addition, the DLL
structure did not always reflect the best modular breakup of software components
based on functionality and dependency.

ArcGIS Desktop

ArcGIS Server

ARCGIS SOFTWARE ARCHITECTURE

Web
Development
Framework

Map
Presentation

Map
Analysis

Data
Access

Base
Services

User
Interface

Map
Presentation

Map
Analysis

Data
Access

Applications

Extensions

Base Services

Ch02_DevKit.pmd 1/25/2005, 3:15 PM25

26 • ArcGIS Engine Developer Guide

ESRI has developed a modular architecture for
ArcGIS 9 by a process of analyzing features and

functions and matching those with end user
requirements and deployment options based on

the three ArcGIS product families. Developers
who have extended the ArcGIS 8 architecture

with custom components are encouraged to go
through the same process to restructure their

source code into similar modular structures.

An obvious functionality split to make is user
interface and nonuser interface code. UI libraries

tend to be included only with the ArcGIS
Desktop products.

There is always a trade-off in performance and manageability when considering
architecture modularity. For each criterion, thought is given to the end use and
the modularity required for support that. For example, the system could be
divided into many small DLLs with only a few objects in each. Although this
provides a flexible system for deployment options, at minimum memory require-
ments, it would affect performance due to the large number of DLLs being
loaded and unloaded. Conversely, one large DLL containing all objects is not a
suitable solution either. Knowing the requirements of the components allows
them to be effectively packaged into DLLs.

The ArcGIS 9 architecture is divided into a number of libraries. It is possible for
a library to have any number of DLLs and EXEs within it. The requirements that
components must meet to be within a library are well-defined. For instance, a
library, such as esriGeometry (from the base services set of modules), has the
requirements of being thread safe, scalable, without user interface components,
and deployable on a number of computing platforms. These requirements are
different from libraries, such as esriArcMap (from the applications category),
which has user interface components and is a Windows-only library.

All the components in the library will share the same set of requirements placed
on the library. It is not possible to subdivide a library into smaller pieces for
distribution. The library defines the namespace for all components within it and is
seen in a form suitable for your chosen API.

• Type Library—COM

• .NET Interop Assembly—.NET

• Java Package—Java

• Header File—C++

SCALABILITY

The ArcObjects components within ArcGIS Engine and ArcGIS Server must be
scalable. Engine objects are scalable because they can be used in many different
types of applications; some require scalability, while others do not. Server objects
are required to be scalable to ensure that the server can handle many users con-
necting to it, and as the configuration of the server grows, so does the perfor-
mance of the ArcObjects components running on the server.

The scalability of a system is achieved using a number of variables involving the
hardware and software of the system. In this regard, ArcObjects supports
scalability with the effective use of memory within the objects and the ability to
execute the objects within multithreaded processes.

There are two considerations when multithreaded applications are discussed:
thread safety and scalability. It is important for all objects to be thread safe, but
simply having thread-safe objects does not automatically mean that creating
multithreaded applications is straightforward or that the resulting application
will provide vastly improved performance.

The ArcObjects components contained in the base services, data access, map
analysis, and map presentation categories are all thread safe. This means that
application developers can use them in multithreaded applications; however,

For this discussion, thread safety refers to
concurrent object access from multiple threads.

ARCGIS SOFTWARE ARCHITECTURE

Ch02_DevKit.pmd 1/25/2005, 3:15 PM26

 Chapter 2 • ArcGIS software architecture • 27

The classic singleton per process model means
that all threads of an application will still access

the main thread hosting the singleton objects.
This effectively reduces the application to a

single-threaded application.

programmers must still write multithreaded code in such a way as to avoid appli-
cation failures due to deadlock situations, and so forth.

In addition to the ArcObjects components being thread safe for ArcGIS 9, the
apartment threading model used by ArcObjects was analyzed to ensure that
ArcObjects could be run efficiently in a multithreaded process. A model referred
to as “Threads in Isolation” was used to ensure that the ArcObjects architecture is
used efficiently.

This model works by reducing cross-thread communication to an absolute mini-
mum or, better still, removing it entirely. For this to work, the singleton objects
at ArcGIS 9 were changed to be singletons per thread and not singletons per
process. The resource overhead of hosting multiple singletons in a process was
outweighed by the performance gain of stopping cross-thread communication
where the singleton object is created in one thread (normally the Main STA) and
the accessing object is in another thread.

ArcGIS is an extensible system, and for the Threads in Isolation model to work,
all singleton objects must adhere to this rule. If you are creating singleton objects
as part of your development, you must ensure that these objects adhere to the
rule.

MULTIPLE PLATFORM SUPPORT

As stated earlier, ArcObjects components are C++ objects, meaning that any
computing platform with a C++ compiler can potentially be a platform for
ArcObjects. In addition to the C++ compiler, the platform must also support
some basic services required by ArcObjects.

Although many of the platform differences do not affect the way in which
ArcObjects components are developed, there are areas where differences do
affect the way code is developed. The byte order of different computing architec-
tures varies between little endian and big endian. This is most readily seen when
objects read and write data to disk. Data written using one computing platform
will not be compatible if read using another platform, unless some decoding is
performed. All the ArcGIS Engine and ArcGIS Server objects support this mul-
tiple platform persistence model. ArcObjects components always persist them-
selves using the little endian model; when the objects read persisted data, it is
converted to the appropriate native byte order. In addition to the byte order
differences, there are other areas of functionality that differ between platforms;
the directory structure, for example, uses different separators for Windows and
UNIX—“\” and “/”, respectively. Another example is the platform-specific areas
of functionality, such as Object Linking and Embedding Database (OLE DB).

COMPATIBILITY

Maintaining compatibility of the ArcGIS system between releases is important to
ensure that external developers are not burdened with changing their code to
work with the latest release of the technology. Maintaining compatibility at the
object level was a primary goal of the ArcGIS 9 development effort. Although
this object-level compatibility has been maintained, there are some changes
between the ArcGIS 8 and ArcGIS 9 architectures that will affect developers,
mainly related to the compilation of the software.

Microsoft Windows is a little endian platform,
and Sun Solaris is a big endian platform.

While the aim of ArcGIS releases is to limit the
change in the APIs, developers should still test
their software thoroughly with later releases.

ARCGIS SOFTWARE ARCHITECTURE

Ch02_DevKit.pmd 1/25/2005, 3:15 PM27

28 • ArcGIS Engine Developer Guide

Although the changes required for software created for use with ArcGIS 8 to
work with ArcGIS 9 are minimal, it is important to understand that to realize any
existing investment in the ArcObjects architecture at ArcGIS 9, you must review
your developments with respect to ArcGIS Engine, ArcGIS Server, and ArcGIS
Desktop.

ESRI understands the importance of a unified software architecture and has
made numerous changes for ArcGIS 9 so the investment in ArcObjects can be
realized on multiple products. If you have been involved in creating extensions to
the ArcGIS architecture for ArcGIS 8, you should think about how the new
ArcGIS 9 architecture affects the way your components are implemented.

ARCGIS SOFTWARE ARCHITECTURE

Ch02_DevKit.pmd 1/25/2005, 3:15 PM28

Chapter 2 • ArcGIS software architecture • 29

ARCGIS APPLICATION PROGRAMMING INTERFACES

The functionality of ArcObjects can be accessed using four application program-
ming interfaces. The choice of which API to use is not a simple one and will
depend on a number of factors including the ArcGIS product that you are devel-
oping with, the end user functionality that you are developing, and your develop-
ment experience with particular languages. ArcGIS Engine supports the following
APIs:

• COM—Any COM-compliant language (for example, Visual Basic and Visual
C++) can be used with this API.

• .NET—Visual Basic .NET and C# are supported by this API.

• Java—Sun™ Java 2 Platform, Standard Edition (J2SE).

• C++—Microsoft Visual C++ 6.0, Microsoft Visual C++ .NET 2003,
Sun Solaris Forte 6 Update 2, Linux GCC 3.2.

When working with ArcObjects, developers can consume functionality exposed
by ArcObjects or extend the functionality of ArcObjects with their own compo-
nents. When referring to these APIs, there are differences with respect to con-
suming and extending the ArcObjects architecture.

CONSUMING API

All four APIs support consuming the functionality of ArcObjects; however, not
all interfaces implemented by ArcObjects are supported on all platforms. In some
cases interfaces make use of data types that are not compatible with an API. In
situations like this, an alternative implementation of the interface is provided for
developers to use. The naming convention of a “GEN” suffix on the interface
name is used to signify this kind of interface; IFoo would have an IFooGEN
interface. This alternative interface is usable by all APIs; however, if the
nongeneric interface is supported by the API, it is possible to continue to use the
API-specific interface.

EXTENDING API

Extending ArcObjects entails creating your own objects and adding them to the
ArcObjects architecture. ArcObjects is written to be extensible in almost all
areas. Support for extending the architecture varies among the APIs and, in some
cases, varies among languages of an API.

The COM API provides the most possibilities for extending the system. The
limitation within this API is with Visual Basic language. Visual Basic does not
support the implementation of interfaces that have one or more of the following
characteristics:

• The interface inherits from an interface other than IUnknown or IDispatch. For
example, ICurve, which inherits from IGeometry, cannot be implemented in VB
for this reason.

• Method names on an interface start with an underscore (“_”). You will not
find functions beginning with “_” in ArcObjects.

• A parameter of a method uses a data type not supported by Visual Basic.
IActiveView cannot be implemented in Visual Basic for this reason.

It is important not to confuse the Visual C++
support available through the COM API and the

native C++ API.

Since ArcObjects is developed in C++, there are
some cases in which data types compatible with

C++ have been used for performance reasons.
These performance considerations mostly affect
the internals of ArcObjects; therefore, using one

of the generic interfaces should not
adversely affect performance of your

ArcObjects developments.

Ch02_DevKit.pmd 1/25/2005, 3:16 PM29

30 • ArcGIS Engine Developer Guide

In addition to the limitations on the interfaces supported by VB, the binary reuse
technique of COM aggregation is not supported by VB. This means that certain
parts of the architecture cannot be extended; custom features is one such ex-
ample. In reality, the above limitations of Visual Basic have little effect on the
vast majority of developers, since the percentage of ArcObjects affected is small,
and for this small percentage, it is unlikely that developers will have a need to
extend the architecture. Other COM languages, such as Visual C++, do not
have any of these limitations.

The .NET API supports extending ArcObjects fully; the one exception is inter-
faces that make use of data types that are not compliant with OLE automation.
See the table below for a complete list of OLE automation-compliant data types.

The majority of differences between the APIs’
support for ArcObjects revolves around data
types. All APIs fully support the automation-

compliant data types shown on the right.
Differences occur with data types that are not

OLE automation compliant.

The Java and C++ APIs have similar limited support for extending ArcObjects.
Developers of these APIs are restricted to only being able to create custom
commands and tools. These commands and tools can then be used with the
ToolbarControl. This may appear to be a severe limitation, but despite this restric-
tion these APIs still have much to attract the developer. The ToolbarControl,
along with the other ArcGIS controls, offers a rich development environment
to work with. The ArcGIS Desktop applications are rich professional GIS
applications with a lot of functionality, but if viewed simply the applications
can be broken down into a series of toolbars, along with a table of contents
(TOC) and map viewing area. The desktop applications are all extended by
adding new commands and tools. In a similar way, developers can build applica-
tions with rich functionality using any of the four ArcGIS Engine APIs.

The COM and .NET APIs are only supported on the Microsoft Windows plat-

OLE automation data types

ARCGIS APPLICATION PROGRAMMING INTERFACES

Type Description
Boolean
unsigned char
double
float
int
long
short
BSTR
CURRENCY
DATE
SCODE
Typedef enum myenum
Interface IDispatch *
Interface IUnknown *
dispinterface
 Typename *
Coclass Typename *
[oleautomation]
 interface Typename *
SAFEARRAY
 (TypeName)
TypeName*
Decimal

Data item that can have the value True or False.
8-bit unsigned data item.
64-bit IEEE floating-point number.
32-bit IEEE floating-point number.
Signed integer, whose size is system dependent.
32-bit signed integer.
16-bit signed integer.
Length-prefixed string.
8-byte, fixed-point number.
64-bit, floating-point fractional number of days since Dec 30, 1899.
For 16-bit systems - Built-in error that corresponds to VT_ERROR.
Signed integer, whose size is system dependent.
Pointer to the IDispatch interface.
Pointer to an interface that does not derive from IDispatch.
Pointer to an interface derived from IDispatch.

Pointer to a coclass name (VT_UNKNOWN).
Pointer to an interface that derives from IDispatch.

TypeName is any of the above types. Array of these types.

TypeName is any of the above types. Pointer to a type.
96-bit unsigned binary integer scaled by a variable power of 10. A decimal
 data type that provides a size and scale for a number (as in coordinates).

Ch02_DevKit.pmd 1/25/2005, 3:16 PM30

 Chapter 2 • ArcGIS software architecture • 31

form, while the Java and C++ APIs are supported on all the platforms supported
by ArcGIS Engine.

ARCGIS APPLICATION PROGRAMMING INTERFACES

Ch02_DevKit.pmd 1/25/2005, 3:16 PM31

32 • ArcGIS Engine Developer Guide

Contains components that expose
services used by the other libraries
composing ArcGIS.

Defined types used by user
interface components in the
ArcGIS system such as
ICommand and ITool.

Contains the core geometry
objects and defines and
implements the spatial reference
objects for coordinate systems.

Contains types for all the definitions relating
to data access. Features, tables, networks,
and TINs are all defined in this library.

Contains components that support
drawing symbology to an output
device.

Contains the workspace factories and
workspaces for vector and raster data
formats supported by the geodatabase
that are stored within an RDBMS.

Contains the objects used to
obtain a connection to the
ArcGIS Server.

Contains the workspace factories and
workspaces for vector data formats
supported by the geodatabase API.

Contains the workspace
factories and workspaces
for file-based raster
data formats.

Contains the objects required to
support a distributed geodatabase.

Provides workspaces for
working with OLE DB-based
data sources.

Contains objects for working
with remote GIS services
provided by either ArcIMS
or the ArcGIS Server.

Contains the objects required
to generate output to both
printers and plotters or
exporting to files.

1
System

2
SystemUI

3
Geometry

Server
5

4
Display

7
GeoDatabase

6
Output

Carto

DataSources-
GDB

10
11

DataSources-
OleDB

9
DataSources-

File
8

GISClient

DataSource-
Raster

12

GeoDatabase-
Distributed

13

ARCGIS ENGINE LIBRARIES

Ch02_DevKit.pmd 1/25/2005, 3:16 PM32

 Chapter 2 • ArcGIS software architecture • 33

The libraries contained within ArcGIS Engine are summarized below. The dia-
grams that accompany this section indicate the library architecture of ArcGIS
Engine. Understanding the library structure, dependencies, and basic functionality
will help you as a developer navigate through the components of ArcGIS Engine.

The libraries are discussed in dependency order. The diagrams show this with
sequential numbers in the upper-right corner of the library block. For example,
System, as the library at the base of the ArcGIS architecture, is numbered one,
while GeoDatabase, numbered seven, depends on the six libraries that precede it
in the diagram—System, SystemUI, Geometry, Display, Server, and Output.

SYSTEM

The System library is the lowest level library in the ArcGIS architecture. The
library contains components that expose services used by the other libraries
composing ArcGIS. There are a number of interfaces defined within the system
library that can be implemented by the developer. The AoInitializer object is
defined in System; all developers must use this object to initialize and uninitialize
ArcGIS Engine in applications that make use of ArcGIS Engine functionality.
The developer does not extend this library but can extend the ArcGIS system by
implementing interfaces contained within this library.

SYSTEMUI
The SystemUI library contains the interface definitions for user interface compo-
nents that can be extended within ArcGIS Engine. These include the ICommand,
ITool, and IToolControl interfaces. The developer uses these interfaces to extend
the UI components that ArcGIS Engine developer components use. The objects
contained within this library are utility objects available to the developer to
simplify some user interface developments. The developer does not extend this
library but can extend the ArcGIS system by implementing interfaces contained
within this library.

GEOMETRY

The Geometry library handles the geometry, or shape, of features stored in fea-
ture classes or other graphical elements. The fundamental geometry objects with
which most users will interact are Point, MultiPoint, Polyline, and Polygon. Besides
those top-level entities are geometries that serve as building blocks for Polylines
and Polygons. Those are the primitives that compose the geometries. They are
Segment, Path, and Ring. Polylines and Polygons are composed of a sequence of
connected Segments that form a Path. A Segment consists of two distinguished
points, the start and the endpoint, and an element type that defines the curve
from start to end. The kinds of segments are CircularArc, Line, EllipticArc, and
BézierCurve. All geometry objects can have Z, M, and IDs associated with their
vertices. The fundamental geometry objects all support geometric operations such
as Buffer, Clip, and so on. The geometry primitives are not meant to be extended
by developers.

Entities within a GIS refer to real-world features; the location of these real-
world features is defined by a geometry along with a spatial reference. Spatial
reference objects for both projected and geographic coordinate systems are in-

Knowing the library dependency order is
important since it affects the way in which

developers interact with the libraries as they
develop software. For example, C++ developers

must include the type libraries in the library
dependency order to ensure correct compilation.

Understanding the dependencies also helps when
deploying your developments.

ARCGIS ENGINE LIBRARIES

For a comprehensive discussion on each library,
refer to the library overview topics, a part of the
library reference section of the ArcGIS Developer

Help system.

Ch02_DevKit.pmd 1/25/2005, 3:16 PM33

34 • ArcGIS Engine Developer Guide

cluded in the Geometry library. Developers can extend the spatial reference
system by adding new spatial references and projections between spatial
references.

DISPLAY

The Display library contains objects used for the display of GIS data. In addition
to the main display objects responsible for the actual output of the image, the
library contains objects that represent symbols and colors used to control the
properties of entities drawn on the display. The library also contains objects that
provide the user with visual feedback when interacting with the display. Devel-
opers most often interact with the display through a view similar to the ones
provided by the Map or PageLayout objects. All parts of the library can be ex-
tended; commonly extended are symbols, colors, and display feedbacks.

SERVER

The Server library contains objects that allow you to connect and work with
ArcGIS Servers. Developers gain access to an ArcGIS Server using the
GISServerConnection object. The GISServerConnection object gives access to the
ServerObjectManager. Using this object, a developer works with ServerContext
objects to manipulate ArcObjects running on the server. The Server library is not
extended by developers. Developers can also use the GISClient library when
interacting with the ArcGIS Server.

OUTPUT

The Output library is used to create graphical output to devices, such as printers
and plotters, and hardcopy formats, such as enhanced metafiles and raster image
formats (JPG, BMP, and so forth). The developer uses the objects in the library
with other parts of the ArcGIS system to create graphical output. Usually these
would be objects in the Display and Carto libraries. Developers can extend the
Output library for custom devices and export formats.

GEODATABASE

The GeoDatabase library provides the programming API for the geodatabase. The
geodatabase is a repository of geographic data built on standard industry rela-
tional and object relational database technology. The objects within the library
provide a unified programming model for all supported data sources within
ArcGIS. The GeoDatabase library defines many of the interfaces that are imple-
mented by data source providers higher in the architecture. The geodatabase can
be extended by developers to support specialized types of data objects (Features,
Classes, and so forth); in addition, it can have custom vector data sources added
using the PlugInDataSource objects. The native data types supported by the
geodatabase cannot be extended.

GISCLIENT

The GISClient library allows developers to consume Web services; these Web
services can be provided by ArcIMS and ArcGIS Server. The library includes
objects for connecting to GIS servers to make use of Web services. There is
support for ArcIMS Image and Feature Services. The library provides a common

ARCGIS ENGINE LIBRARIES

Ch02_DevKit.pmd 1/25/2005, 3:16 PM34

 Chapter 2 • ArcGIS software architecture • 35

Raster Data Objects is a COM API that provides
display and analysis support for file-based raster

data.

programming model for working with ArcGIS Server objects in a stateless man-
ner, either directly or through a Web service catalog. The ArcObjects components
running on the ArcGIS Server are not accessible through the GISClient interface.
To gain direct access to ArcObjects running on the server, you should use func-
tionality in the Server library.

DATASOURCESFILE

The DataSourcesFile library contains the implementation of the GeoDatabase
API for file-based data sources. These file-based data sources include shapefile,
coverage, TIN, computer-aided design (CAD), Spatial Data Compressed (SDC),
and vector product format (VPF). The DataSourcesFile library is not extended by
developers.

DATASOURCESGDB
The DataSourcesGDB library contains the implementation of the GeoDatabase
API for the database data sources. These data sources include Microsoft Access
and relational database management systems supported by ArcSDE—IBM®

DB2®, Informix®, Microsoft SQL Server™, and Oracle®. The DataSourcesGDB
library is not extended by developers.

DATASOURCESOLEDB
The DataSourcesOleDB library contains the implementation of the GeoDatabase
API for the Microsoft OLE DB data sources. This library is only available on the
Microsoft Windows operating system. These data sources include any OLE DB
supported data provider and text file workspaces. The DataSourcesOleDB library
is not extended by developers.

DATASOURCESRASTER

The DataSourcesRaster library contains the implementation of the GeoDatabase
API for the raster data sources. These data sources include relational database
management systems supported by ArcSDE—IBM DB2, Informix, Microsoft
SQL Server, and Oracle—along with supported Raster Data Objects (RDO)
raster file formats. Developers do not extend this library when support for new
raster formats is required; rather, they extend RDO. The DataSourcesRaster
library is not extended by developers.

GEODATABASEDISTRIBUTED

The GeoDatabaseDistributed library supports distributed access to an enterprise
geodatabase by providing tools for importing data into and exporting data out of
a geodatabase. The GeoDatabaseDistributed library is not extended by develop-
ers.

CARTO

The Carto library supports the creation and display of maps; these maps can
consist of data in one map or a page with many maps and associated marginalia.
The PageLayout object is a container for hosting one or more maps and their
associated marginalia: North arrows, legends, scalebars, and so forth. The Map
object is a container of layers. The Map object has properties that operate on all

ARCGIS ENGINE LIBRARIES

Ch02_DevKit.pmd 1/25/2005, 3:16 PM35

36 • ArcGIS Engine Developer Guide

Contains the objects for displaying
data. The PageLayout and Map
objects are in this library along
with map layers and renderers for
all the supported data types.

Contains core spatial analysis operations
that are used by the ArcGIS Spatial
Analyst and ArcGIS 3D Analyst extensions. Supports the creation and

analysis of utility networks.

Contains objects for performing
analysis and supports the display
of globe data.

Performs 3D analysis of
data and supports 3D
data display.

Contains objects related to working with
location data, either route events or
geocoding locations.

Contains controls for application
development including commands and
tools for use with the controls.

Contains objects related to working with
Network datasets.

Network-
Analyst

16

Spatial-
Analyst

22

Carto
14

Network-
Analysis

17

Location
15

19
GeoAnalyst

3DAnalyst
20

GlobeCore
21

Controls
18

ARCGIS ENGINE LIBRARIES

Ch02_DevKit.pmd 1/25/2005, 3:16 PM36

 Chapter 2 • ArcGIS software architecture • 37

The ArcGIS Server uses the MapServer object
for its Map Service.

layers within the map—spatial reference, map scale, and so forth—along with
methods that manipulate the map’s layers. There are many different types of
layers that can be added to a map. Different data sources often have an associated
layer responsible for displaying the data on the map: vector features are handled
by the FeatureLayer object, raster data by the RasterLayer, TIN data by the
TinLayer, and so on. Layers can, if required, handle all the drawing operations for
their associated data, but it is more common for layers to have an associated
Renderer object. The properties of the Renderer object control how the data is
displayed in the map. Renderers commonly use symbols from the Display library
for the actual drawing; the renderer simply matches a particular symbol with the
properties of the entity to be drawn. A Map object, along with a PageLayout
object, can contain elements. An element has geometry to define its location on
the map or page, along with behavior that controls the display of the element.
There are elements for basic shapes, text labels, complex marginalia, and so on.
The Carto library also contains support for map annotation and dynamic labeling.

Although developers can directly make use of the Map or PageLayout objects in
their applications, it is more common for developers to use a higher level object,
such as the MapControl, PageLayoutControl, or an ArcGIS application. These higher
level objects simplify some tasks, although they always provide access to the
lower level Map and PageLayout objects, allowing the developer fine control of
the objects.

The Map and PageLayout objects are not the only objects in Carto that expose the
behavior of map and page drawing. The MxdServer and MapServer objects both
support the rendering of maps and pages, but instead of rendering to a window,
these objects render directly to a file.

Using the MapDocument object, developers can persist the state of the map and
page layout within a map document (.mxd), which can be used in ArcMap or one
of the ArcGIS controls.

The Carto library is commonly extended in a number of areas. Custom renderers,
layers, and so forth, are common. A custom layer is often the easiest method of
adding custom data support to a mapping application.

LOCATION

The Location library contains objects that support geocoding and working with
route events. The geocoding functionality can be accessed through fine-grained
objects for full control, or the GeocodeServer objects offer a simplified API. Devel-
opers can create their own geocoding objects. The linear referencing functionality
provides objects for adding events to linear features and rendering these events
using a variety of drawing options. The developer can extend the linear reference
functionality.

NETWORKANALYST

The NetworkAnalyst library contains objects for working with network datasets.
Developers can extend this library by creating new network servers. A license for
the Network Analyst extension of the ArcGIS Engine Runtime Network option
is required to make use of the objects in this library.

ARCGIS ENGINE LIBRARIES

Ch02_DevKit.pmd 1/25/2005, 3:16 PM37

38 • ArcGIS Engine Developer Guide

NETWORKANALYSIS

The NetworkAnalysis library provides objects for populating a geodatabase with
network data and objects to analyze the network when it is loaded in the geo-
database. Developers can extend this library to support custom network tracing.
The library is meant to work with utility networks—gas lines, electricity supply
lines, and so forth.

CONTROLS

The Controls library is used by developers to build or extend applications with
ArcGIS functionality. The ArcGIS controls simplify the development process by
encapsulating ArcObjects and providing a coarser-grained API. Although the
controls encapsulate the fine-grained ArcObjects, they do not restrict access to
them. The MapControl and PageLayoutControl encapsulate the Carto library’s Map
and PageLayout objects, respectively. The ReaderControl encapsulates both the Map
and PageLayout objects and provides a simplified API when working with the
control. If the map publisher has granted permission, the developer can access the
internal objects in a similar way to the Map and PageLayout controls. The library
also contains the TOCControl that implements a table of contents and a
ToolbarControl for hosting commands and tools that work with a suitable control.

Developers extend the Controls library by creating their own commands and tools
for use with the controls. To support this the library has the HookHelper object.
This object makes it straightforward to create a command that works with any of
the controls in addition to ArcGIS applications, such as ArcMap.

GEOANALYST

The GeoAnalyst library contains objects that support core spatial analysis func-
tions. These functions are used within both the ArcGIS SpatialAnalyst and
ArcGIS 3DAnalyst™ libraries. Developers can extend the library by creating a new
type of raster operation. A license for either the ArcGIS Spatial Analyst or 3D
Analyst extension or the ArcGIS Engine Runtime Spatial or 3D extension is
required to make use of the objects in this library.

3DANALYST

The 3DAnalyst library contains objects for working with 3D scenes in a similar
way that the Carto library contains objects for working with 2D maps. The Scene
object is one of the main objects of the library since it is the container for data
similar to the Map object. The Camera and Target objects specify how the scene is
viewed regarding the positioning of the features relative to the observer. A scene
consists of one or more layers; these layers specify the data in the scene and how
the data is drawn.

It is not common for developers to extend this library. A license for either the
ArcGIS 3D Analyst extension or the ArcGIS Engine Runtime 3D extension is
required to work with objects in this library.

GLOBECORE

The GlobeCore library contains objects for working with globe data similar to the
way that the Carto library contains objects for working with 2D maps. The Globe

ARCGIS ENGINE LIBRARIES

ArcGIS Engine comes with more than
150 commands.

The contents of the Map and PageLayout
controls can be specified programmatically, or

they can load map documents.

The ReaderControl only supports Published
Map Files.

Ch02_DevKit.pmd 1/25/2005, 3:16 PM38

 Chapter 2 • ArcGIS software architecture • 39

object is one of the main objects of the library since it is the container for data
similar to the Map object. The GlobeCamera object specifies how the globe is
viewed regarding the positioning of the globe relative to the observer. The globe
can have one or more layers; these layers specify the data on the globe and how
the data is drawn.

The GlobeCore library has a developer control along with a set of commands and
tools to use with this control. This control can be used in conjunction with the
objects in the Controls library.

It is not common for developers to extend this library. A license for either the
ArcGIS 3D Analyst extension or the ArcGIS Engine Runtime 3D extension is
required to work with objects in this library.

SPATIALANALYST

The SpatialAnalyst library contains objects for performing spatial analysis on
raster and vector data. Developers most commonly consume the objects within
this library and do not extend it. A license for either the ArcGIS Spatial Analyst
extension or the ArcGIS Engine Runtime Spatial extension is required to work
with objects in this library.

ARCGIS ENGINE LIBRARIES

Ch02_DevKit.pmd 1/25/2005, 3:16 PM39

Ch02_DevKit.pmd 1/25/2005, 3:16 PM40

Developing with
ArcGIS controls3

ArcGIS Engine provides a number of high-level developer controls that enable

you to build or extend applications with ArcGIS functionality and create a high-

quality map-based user interface. These include the MapControl,

PageLayoutControl, ReaderControl, TOCControl, ToolbarControl, and

LicenseControl. The GlobeControl and SceneControl are also available, but

applications using these controls must be authorized with the ArcGIS Engine

3D extension.

This chapter includes:

• an overview of each control • a discussion of themes and concepts common

to each of the ArcGIS controls • considerations for building applications with or

without the ToolbarControl.

Ch03_EngineApps.pmd 1/25/2005, 3:16 PM41

42 • ArcGIS Engine Developer Guide

ArcGIS controls are high-level developer components that enable you to build
and extend applications with ArcGIS functionality and provide a graphical user
interface. They simplify your development process by encapsulating ArcObjects
and providing a coarser-grained API. The controls allow you to easily deploy
well-crafted applications with a common look and feel.

Each of the controls provided with ArcGIS Engine is available as an ActiveX®

Control, Motif widget, .NET Windows control, and visual JavaBean™. They
include:

• MapControl

• PageLayoutControl

• ReaderControl

• ToolbarControl

• TOCControl

• LicenseControl

• SceneControl

• GlobeControl

ArcGIS Desktop developers may also be familiar with the ArcReaderControl. This
control is available to ArcGIS Desktop developers who also have the required
ArcGIS Publisher extension license. This control is not included with ArcGIS
Engine and therefore is not discussed in this book.

ABOUT THE CONTROLS

This topic discusses methodology and concepts applicable to all of the ArcGIS
controls. Later topics in this section discuss specific aspects of each
control individually.

Embeddable components
Each ArcGIS control is an embeddable component that can be dropped
within a container form or dialog box provided by a visual design envi-
ronment. Once within a container the ArcGIS control can be resized
and repositioned along with other embeddable components, such as

command buttons and combo
boxes, to provide a user interface in
the application.

Property pages
Each ArcGIS control has a set of
property pages that are accessible in
most visual design environments,
once the control is embedded within
a container, by right-clicking the
control and clicking Properties from
the context menu. These property
pages provide shortcuts to a selec-
tion of a control’s properties and

WORKING WITH THE ARCGIS CONTROLS

A valid ArcGIS Engine Developer Kit license
enables you to create applications with all of

these controls; however deployment of applica-
tions built with either GlobeControl or

SceneControl requires both a core ArcGIS
license—Engine Runtime or Desktop—and its

corresponding 3D extension license.
For more information on deployment of

ArcGIS controls-based applications, see
Chapter 5, ‘Licensing and deployment’.

For information on developing with the
ArcReaderControl, see the Publisher library

overview topic in your ArcGIS Desktop Developer
Kit’s help system.

All properties accessible via the property
pages can be set in code by you, the devel-

oper.

The TOC in TOCControl stands for Table of
Contents.

Ch03_EngineApps.pmd 1/25/2005, 3:16 PM42

Chapter 3 • Developing with ArcGIS controls • 43

WORKING WITH THE ARCGIS CONTROLS

methods and allow you, as a developer, to build an application with little or no
code.

ArcObjects
Each ArcGIS control simplifies the development process by encapsulating coarse-
grained ArcObjects while still providing access to finer-grained ArcObjects. For
example, the PageLayoutControl encapsulates the PageLayout object. The PageLayout
contains at least one MapFrame element containing a Map, and the Map may
contain multiple raster, feature, or custom Layer objects. Each ArcGIS control
provides shortcuts to frequently used properties and methods on the ArcObjects
they encapsulate. For example, the MapControl has a SpatialReference property that
is a shortcut to the SpatialReference property of the Map object. Each ArcGIS
control also has some helper methods that perform common tasks. For example,
the MapControl has an AddShapeFile method. The ArcGIS controls are typically a
starting point for developing applications because they provide not only a user
interface but also a direct route into the object model.

Events
Each ArcGIS control fires events in response to keyboard and mouse interactions
by the end user. Other events fire in response to actions occurring within the
controls. For example, when a map document is loaded into the MapControl, the
OnMapReplaced event is fired, or when an object is dragged over the MapControl
via drag and drop, the OnOleDrop event is fired.

Buddy Controls
The ToolbarControl and TOCControl each work in conjunction with one other
‘buddy control’. Typically, the buddy control is a MapControl, PageLayoutControl,
ReaderControl, SceneControl, or GlobeControl. The buddy control can be set at design
time through the control property pages (in development environments that
support property page capability) or programmatically using SetBuddyControl.

Map authoring
The ArcGIS Desktop applications can be used to preauthor documents that can
be loaded into the ArcGIS controls to quickly produce high-quality mapping. For
example, ArcMap can be used to author map documents that can be loaded into
the MapControl and PageLayoutControl. Preauthoring documents can substantially
reduce your development time as it saves having to programmatically build up
maps and symbology from scratch. Once a document is loaded into an ArcGIS
control, any layer, element, and symbol can be accessed programmatically through
the object model if its appearance subsequently needs changing.

You can also save the contents of your controls to map documents using the
MapDocument class with the MapControl or PageLayoutControl. The documents can
then be reopened by the control or by ArcMap. Using this technique it is possible
to share documents between your custom application and ArcGIS Desktop. For

For more details on how the controls work
together, see the ‘TOCControl and

ToolbarControl’ section later in this chapter.

Ch03_EngineApps.pmd 1/25/2005, 3:16 PM43

44 • ArcGIS Engine Developer Guide

WORKING WITH THE ARCGIS CONTROLS

Application built using the PageLayoutControl

more information on authoring map documents, see the ArcGIS Desktop Help
system.

The table below summarizes the types of documents that can be loaded into each
ArcGIS control.

Published Map Files (.pmf)

Map
Document

(.mxd,
.mxt)

Layer
Files
(.lyr)

Scene
Document

(.sxd,
.sxt)

Globe
Document

(.3dd,
.sdt)

no permission
to load in a
customized
application
(ArcReader

application only

permission to
load in a

customized
application

permission to
load a

customized
application

and unrestricted
access to

its contents
MapControl Yes Yes No No No No Yes

PageLayoutControl Yes **Yes No No No No Yes

SceneControl No **Yes Yes No No No No

GlobeControl No **Yes No Yes No No No

ReaderControl No No No No No Yes Yes

*ArcReaderControl No No No No No Yes Yes

* The ArcReaderControl is only available with the ArcGIS Publisher extension. However, it is listed here
due to its similarity to the ReaderControl
** There are no properties available on the ArcGIS controls to directly load Layer (.lyr) files.
However, they can be loaded indirectly via the MapDocument object.

MAPCONTROL AND PAGELAYOUTCONTROL

The MapControl and PageLayoutControl correspond to the data and
layout views of the ArcMap desktop application. The MapControl
encapsulates the Map object, and the PageLayoutControl encapsulates
the PageLayout object. Map documents authored with the ArcMap
application can be loaded into the MapControl and PageLayoutControl
to avoid programmatically composing the cartography.

The map document can be set at design time though the MapControl
and PageLayoutControl property pages (in development environments
that support property page capability), and the control can be set to
“link” or “con-
tain” the map
document. When
linking, the con-
trol will read the
map document

whenever the control is cre-
ated on the container and will
display the most recent updates
to the map document. When
containing, the control will
copy the contents of the map
document into the control and
will not display any further
updates made to the map
document from that point
onward. Alternatively, a map
document can be loaded into

Application built using the MapControl

Ch03_EngineApps.pmd 1/25/2005, 3:16 PM44

Chapter 3 • Developing with ArcGIS controls • 45

the control programmatically using the LoadMxFile method.

Not only can the MapControl and PageLayoutControl read map documents, they can
also write map documents. Both controls implement the IMxdContents interface
that enables the MapDocument object to write the contents of the MapControl and
PageLayoutControl to a new map document.

Helper methods, such as TrackRectangle, TrackPolygon, TrackLine, and TrackCircle,
exist on the MapControl for tracking or “rubberbanding” shapes on the display.
The VisibleRegion property can be used to change the shape of the MapControl ’s
display area. Helper methods, such as FindElementByName and LocateFrontElement,
exist on the PageLayoutControl to help you manage elements, while the Printer and
PrinterPageCount properties, together with the PrintPageLayout method, assist with
printing tasks.

GLOBECONTROL AND SCENECONTROL

The GlobeControl and SceneControl correspond to the 3D views of the ArcGlobe
and ArcScene applications. The GlobeControl encapsulates the GlobeViewer object,
and the SceneControl encapsulates the SceneViewer object. Globe and Scene docu-
ments authored with the ArcGlobe and ArcScene applications can be loaded into
the GlobeControl and SceneControl, respectively, to avoid programmatically compos-
ing the cartography.

Both the GlobeControl and SceneControl have built-in navigation capability that
allows the end user to move around the 3D view and visualize the 3D data,
without having to use the available control commands or a custom command. To
use the built-in navigation, the Navigate property must be set either through the
property pages or programmatically. The end user can use the left mouse button

to navigate backward and for-
ward and to the left and right of
the display and use the right
mouse button to zoom in and
out on the display.

ArcGIS Desktop developers may already be
familiar with MapControl and

PageLayoutControl since these controls were
initially made available in previous ArcGIS

Desktop releases. With the release of ArcGIS
Engine, these controls have been incorporated

into its package of developer components. As in
previous releases, ArcGIS Desktop developers
can build applications with MapControl or

PageLayoutControl even without an ArcGIS
Engine license. However, they cannot work with

the additional controls provided with ArcGIS
Engine unless you have an Engine Developer Kit

license.

WORKING WITH THE ARCGIS CONTROLS

Deployment of applications built with either
GlobeControl or SceneControl requires both

a core ArcGIS license—Engine Runtime or
Desktop—and its corresponding 3D extension

license. For more information on deployment of
ArcGIS controls-based applications, see
Chapter 5, ‘Licensing and deployment’.

Applications built using the GlobeControl
and SceneControl, respectively

Ch03_EngineApps.pmd 1/25/2005, 3:16 PM45

46 • ArcGIS Engine Developer Guide

WORKING WITH THE ARCGIS CONTROLS

For more information on the
ArcReaderControl, see the Publisher library

overview topic in your ArcGIS Desktop Developer
Kit’s help system.

A ReaderControl application

TOCCONTROL

The TOCControl works in conjunction with a buddy
control. The buddy control can be a MapControl,
PageLayoutControl, ReaderControl, SceneControl, or
GlobeControl. The buddy control can be set at design time
through the TOCControl property pages (in development
environments that support property page capability) or
programmatically using the SetBuddyControl method when
the container hosting the TOCControl is displayed.

Each TOCControl buddy control implements the
ITOCBuddy interface. The TOCControl works with the
buddy control to display an interactive tree view of its
map, layer, and symbology contents and to keep its
contents synchronized with the buddy control. For
example, if the TOCControl has a MapControl as its buddy,
and a map layer is removed from the MapControl, the map

layer will also be removed from the TOCControl. Likewise, if the end user inter-
acts with the TOCControl to uncheck a map layer’s visibility, the layer will no
longer be visible within the MapControl.

A TOCControl application

READERCONTROL

The ReaderControl corresponds to the data and layout views of the ArcReader™

Desktop application, together with its table of contents. The ReaderControl also
contains the internal windows and tools used by the ArcReader application, such

as the Find window and the Identify tool. Published
Map Files (PMF) authored with ArcMap and published
with the ArcGIS Publisher extension can be loaded
into the ReaderControl, if published with permission to
load into a customized ArcReader application.

The ReaderControl has a simple self-contained object
model that exposes all the functionality of the
ArcReader application and does not require access to
ArcObjects. As such, developing applications with the
ReaderControl does not require previous experience with
ArcObjects. However, if a Published Map File was
published with unrestricted access to its contents, you
can access the underlying ArcObjects and develop with
the ReaderControl in a similar way to the MapControl and
PageLayoutControl.

While the ArcReaderControl is not available with
ArcGIS Engine, it is mentioned here due to its similar-

ity with the ReaderControl; the ArcReaderControl has the same simple, self-con-
tained object model as the ReaderControl. However, the ArcReaderControl cannot
be used as a buddy control to work in conjunction with the TOCControl or
ToolbarControl, nor can you access any underlying ArcObjects components. Devel-
oping with the ArcReaderControl requires the ArcGIS Publisher extension, and
applications built with the ArcReaderControl can be deployed on any machine that
has the free ArcReader application.

ArcReader is available for download.
To get your free copy, go to

http://www.esri.com/arcreader.

To link a custom control that you have created
to the TOCControl the custom control must

implement the ITOCBuddy interface.

Ch03_EngineApps.pmd 1/25/2005, 3:16 PM46

Chapter 3 • Developing with ArcGIS controls • 47

WORKING WITH THE ARCGIS CONTROLS

An application that uses the ToolbarControl
and the GlobeControl

If you are using JavaBeans, the buddy control can
only be set through code as this property is not
exposed in the integrated development environ-

ment (IDE) property pages.

TOOLBARCONTROL

The ToolbarControl works in conjunction with a buddy control. The buddy control
can be a MapControl, PageLayoutControl, ReaderControl, SceneControl, or GlobeControl.
The buddy control can be set at design time through the ToolbarControl property
pages (in development environments that support property page capability) or
programmatically using the SetBuddyControl method when the container hosting
the ToolbarControl is displayed. The ToolbarControl hosts a panel of commands,
tools, tool controls, and menus that work with the display of the buddy control.

Each ToolbarControl buddy control implements the IToolbarBuddy interface. This
interface is used to set the CurrentTool property of the buddy control. For ex-
ample, imagine a ToolbarControl that is hosting a Page Zoom In tool and has a
PageLayoutControl as its buddy. When the end user clicks on the Page Zoom In tool
on the ToolbarControl, it will become the CurrentTool of the PageLayoutControl. The
implementation of the Page Zoom In tool will query the ToolbarControl to access
its buddy control—the PageLayoutControl—and retrieve the PageLayout. It will
then provide the implementation for displaying the rectangle dragged by the end
user and changing the extent of the PageLayout.

CONTROL COMMANDS

ArcGIS Engine provides a set of commands, tools, and menus to work with the
ArcGIS controls. For example, there is a map navigation, feature selection, and
graphic element commands suite that works with the MapControl and
PageLayoutControl. Likewise, there is a suite of commands for the SceneControl,
GlobeControl, and ReaderControl. For applications using an individual control, these
commands can work directly with the control by programmatically creating a new
instance of the command and passing the control to the command’s OnCreate
event. For applications using the ToolbarControl in conjunction with a buddy
control, these commands can be added to the ToolbarControl either through the

To link a custom control that you have created
to the ToolbarControl the custom control

must implement the IToolbarBuddy interface.

Ch03_EngineApps.pmd 1/25/2005, 3:16 PM47

48 • ArcGIS Engine Developer Guide

WORKING WITH THE ARCGIS CONTROLS

property pages at design time, programmatically, or at runtime by the end user if
the ToolbarControl is in customize mode.

You can also extend the suite of commands provided by ArcGIS Engine by
creating their own custom commands, tools, and menus to work with the ArcGIS
controls. The HookHelper, GlobeHookHelper, and SceneHookHelper objects can be
used to simplify this development. Refer to the ‘Building applications’ scenarios
in Chapter 6, ‘Developer scenarios’, to see how to build a custom command using
the HookHelper object.

LICENSECONTROL

The LicenseControl is used to initialize an application with a suitable license(s)
for it to run successfully on any machine it is deployed on to. The LicenseControl
will configure the licenses at application start time when the form or dialog box
containing the LicenseControl is loaded. Use the LicenseControl to automatically
perform license initialization within simple graphical user interface applications
using the MapControl, PageLayoutControl, TOCControl, ToolbarControl,
ReaderControl, SceneControl, or GlobeControl. If greater control is required
over license initialization, particularly when checking out and in extension li-
censes (the LicenseControl will check out extension licenses for the duration of
an application’s life), use the AoInitialize object in the System library to program-
matically perform license initialization.

The LicenseControl is visible within a visual design environment but is invisible
at runtime, so unlike the other controls the LicenseControl does not provide any
user interface in an application. In design time the LicenseControl property pages
must be used to configure the application with product and extension licenses.

Products
Select at least one product license with which the application can be initialized.
By default, the LicenseControl will try to initialize the application with the
ArcGIS Engine product license. If the product you require is not licensed, you
may optionally initialize the application with a higher product license. For ex-
ample, if you select the ArcGIS Engine license and the ArcView license, the

Refer to Chapter 5 ‘Licensing and deployment’
for more details about the concepts of licensing.

The LicenseControl is only available with the
COM (ActiveX Control) and .NET (Windows

Control) APIs.

Ch03_EngineApps.pmd 1/25/2005, 3:16 PM48

Chapter 3 • Developing with ArcGIS controls • 49

WORKING WITH THE ARCGIS CONTROLS

LicenseControl will initially try to initialize the application with an ArcGIS
Engine license (the lower license). If that license is not available, the
LicenseControl will try to initialize the application with an ArcView license (the
next higher level license selected). If no product licenses are available, then the
application will fail to initialize. Note that once an application is initialized with
a product license, it is not possible to reinitialize the application for the duration
of the application’s life.

Extensions
Select the extension licenses required by the application. Not every extension
license is available with every product license; as such the list of available exten-
sion licenses will change as different product licenses become selected. The avail-
ability of each extension license is checked in conjunction with the product
license with which the application will ultimately be initialized. If any of the
selected extensions are not available, the application will fail to initialize. The
LicenseControl will check out extensions directly after the application is initial-
ized and will check in extensions when the application is shutdown.

If a SceneControl or GlobeControl (requiring the 3D Analyst extension) is em-
bedded within the same container as the LicenseControl, the 3D Analyst exten-
sion will automatically be checked.

Shutdown
Set whether the LicenseControl will automatically shut down the application if
license initialization fails. If the LicenseControl handles license initialization
failure, a License Failure dialog box will be displayed to the user before the
application is shut down. If the developer handles license initialization failure,
the LicenseAvailability, Status, and Summary properties can be used to obtain
information on the nature of the failure before the application is programmati-
cally shut down.

Ch03_EngineApps.pmd 1/25/2005, 3:16 PM49

50 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH THE ARCGIS CONTROLS

The ArcGIS controls can be used to build applications in two ways: the ArcGIS
controls can be embedded into an existing application to add additional mapping
capability, or the ArcGIS controls can be used to create a new standalone applica-
tion. In either case, an individual ArcGIS control can be embedded into an appli-
cation or the TOCControl and ToolbarControl can be used in conjunction with
another ArcGIS control to provide part of the application’s framework. The
following sections discuss the application development process for the controls
both when you are utilizing the ToolbarControl and when you choose not to.

APPLICATION DEVELOPMENT USING THE TOOLBARCONTROL

The ToolbarControl is typically used in conjunction with a buddy control and a
selection of the control commands to quickly provide a functional GIS applica-
tion. The ToolbarControl is not only providing a part of the user interface; it is also
providing a part of the application’s framework. ArcGIS Desktop applications,
such as ArcMap, ArcGlobe, and ArcScene, have a powerful and flexible frame-
work that includes user interface components such as toolbars, commands,
menus, dockable windows, and status bars. This framework enables the end user
to customize the application by allowing them to reposition, add, and remove
most of these user interface components.

Many development environments provide some pieces of a framework in the
form of simple dialog boxes, forms, and multiple docking interface (MDI) appli-
cations. They also provide generic user interface components such as buttons,
status bars, and list boxes. However, a substantial amount of coding can still be
required to provide toolbars and menus that host commands, especially if they
need to be customized by the end user.

The ToolbarControl and the objects within its library can supply pieces of a frame-
work similar to the ArcGIS Desktop application framework. You can use some or
all of these framework pieces when building an application with the
ToolbarControl.

Commands
ArcGIS Engine provides several suites of control commands that work with the
ArcGIS controls to perform some specific action. You can extend this suite of
control commands by creating their own customized commands that perform
some specific piece of work. All of these command objects implement the
ICommand interface that is used by the ToolbarControl to call methods and access
properties at appropriate times.

The ICommand::OnCreate method is called shortly after the Command object is
hosted on the ToolbarControl. The method is passed a handle or “hook” to the
application with which the command will work. The implementation of a com-
mand normally tests to see if the hook object is supported (that is, the command
tests to see that the hook is an object that the command can work with). If the
hook is not supported, the command disables itself. If the hook is supported, the
command stores the hook for later use. For example, if an Open Map Document
command is to work with the MapControl or PageLayoutControl, and they are passed
to the OnCreate method as the hook, the command will store the hook for later
use. If the ToolbarControl is passed to the OnCreate event as the hook, the com-
mand would normally check the type of buddy control being used in conjunction

For step-by-step scenarios walking you through
the ArcGIS controls development process, refer to
the ‘Building applications’ scenario of your choice

in Chapter 6, ‘Developer scenarios’.

Ch03_EngineApps.pmd 1/25/2005, 3:16 PM50

Chapter 3 • Developing with ArcGIS controls • 51

with the ToolbarControl using the Buddy property. For example, if a command
hosted on the ToolbarControl only works with the ReaderControl and the
ToolbarControl buddy is a MapControl, the command should disable itself.

To help you create custom commands to work with the ArcGIS controls and the
ArcGIS Desktop applications, HookHelper, GlobeHookHelper, and SceneHookHelper
objects exist.

• The HookHelper is used for custom commands that work with the MapControl,
PageLayoutControl, ToolbarControl, and ArcMap Desktop application.

• The SceneHookHelper is used for custom commands that work with the
SceneControl, ToolbarControl, and ArcScene Desktop application.

• The GlobeHookHelper is used for custom commands that work with the
GlobeControl, ToolbarControl, and ArcGlobe Desktop application.

Rather than requiring you to add code into a command’s OnCreate method to
determine the type of hook passed to the command, the helper object handles
this. The helper objects are used to hold onto the hook and return ActiveView,
PageLayout, Map, Globe, and Scene objects (depending on the type of helper object)
regardless of the type of hook that is passed. Refer to the ‘Building applications’
scenarios in Chapter 6, ‘Developer scenarios’, to see how to build a custom
command using the HookHelper object that works with a MapControl,
PageLayoutControl, and ToolbarControl.

The ICommand::OnClick method is called when the end user clicks a command
item hosted on the ToolbarControl. Depending on the type of command, it will
typically do some work using the hook to access the required objects from the
buddy control. There are three types of commands:

• A single-click command implementing the ICommand interface that responds
to a single click. A click results in a call to the ICommand::OnClick method, and
an action is performed. By changing the ICommand::Checked value, simple
command items can behave like a toggle. Single-click commands are the only
types of commands that can be hosted on a menu.

• A command item or tool implementing both the ICommand and ITool interfaces
that requires end user interaction with
the display of the buddy control. The
ToolbarControl maintains one
CurrentTool. When the end user clicks
the tool on the ToolbarControl, it
becomes the CurrentTool, and the
previous tool is deactivated. The
ToolbarControl will set the CurrentTool
of the buddy control. While the tool
is the CurrentTool, it will receive
mouse and key events from the buddy
control.

BUILDING APPLICATIONS WITH THE ARCGIS CONTROLS

A tool control displaying the
current page percentage

The current tool to
zoom in on the page

A menu
containing
single
click map
commands

A single click
command to
open a map

Ch03_EngineApps.pmd 1/25/2005, 3:16 PM51

52 • ArcGIS Engine Developer Guide

• A command item or tool control implementing both the ICommand and
IToolControl interfaces. This is typically a user interface component, such as a
Listbox or ComboBox, hosted on the ToolbarControl. The ToolbarControl hosts a
small window supplied by a window handle from the IToolControl::hWnd
property. Only a single instance of a particular tool control can be added to
the ToolbarControl.

Commands can be added to ToolbarControl in two ways: by specifying a UID
object that uniquely identifies a command (using a Globally Unique Identifier, or
GUID) or by supplying an instance of an existing Command object to the AddItem
method. Where possible, commands should be added to the ToolbarControl by
specifying a UID. If a UID is supplied, the ToolbarControl can identify whether
this command has previously been added and, if so, can reuse the previous in-
stance of the command. When an existing instance of a Command object is added
to the ToolbarControl, there is no unique identifier for the command, and multiple
instances of the same command can exist on the ToolbarControl.

ToolbarItem
A ToolbarItem is a single command or menu hosted on a ToolbarControl or
ToolbarMenu. The IToolbarItem interface has properties to determine the appear-
ance of the item to the end user, for example, whether the item has a vertical line
to its left signifying that it begins a Group and whether the Style of the item
displays with a bitmap, a caption, or both. The Command and Menu properties
return the actual command or menu that the ToolbarItem represents.

Updating commands
By default, the ToolbarControl updates itself automatically every one-half second
to ensure that the appearance of each ToolbarItem hosted on the ToolbarControl is
synchronized with the Enabled, Bitmap, and Caption properties of its underlying
command. Changing the UpdateInterval property can alter the frequency of the
update. An UpdateInterval of 0 will stop any updates from happening automati-
cally, and you must call the Update method programmatically to refresh the state
of each ToolbarItem.

The first time the Update method is called in an application, the
ToolbarControl will check whether the ICommand::OnCreate method of
each ToolbarItem’s underlying command has been called. If the method
has not been called, the ToolbarControl is automatically passed as the hook
to the ICommand::OnCreate method.

ToolbarMenu
The ToolbarControl can host an item that is a dropdown menu. A
ToolbarMenu item presents a vertical list of single-click command items.
The user must select one of the command items on the ToolbarMenu or
click outside the ToolbarMenu to make it disappear. A ToolbarMenu can
only host command items; no tools or tool controls are permitted. The
ToolbarMenu itself can be hosted on the ToolbarControl, be hosted on

BUILDING APPLICATIONS WITH THE ARCGIS CONTROLS

Hosting the ToolbarMenu directly on the
ToolbarControl

Ch03_EngineApps.pmd 1/25/2005, 3:16 PM52

Chapter 3 • Developing with ArcGIS controls • 53

another ToolbarMenu as a submenu, or appear as a popup menu and be
used for a right-click context menu. Refer to the ‘Building applications’
scenarios in Chapter 6, ‘Developer scenarios’, to see how to build a
popup menu hosting some control commands that work with the
PageLayoutControl.

CommandPool
Each ToolbarControl and ToolbarMenu has a CommandPool that is used to
manage the collection of Command objects that it is using. Normally, you
will not interact with the CommandPool. When a command is added to
the ToolbarControl either through the property pages of the ToolbarControl
or programmatically, the command is automatically added to the
CommandPool. Command objects are added to the CommandPool either as a
UID object that uniquely identifies the command—using a GUID—or
as an existing instance of a Command object.

If an existing instance of a Command object is added, there is no unique
identifier for the command, and multiple instances of the same com-
mand can exist in the CommandPool. If a UID object is supplied, the
CommandPool can identify whether the command already exists in the
CommandPool and, if so, can reuse the previous instance of the command.
The CommandPool manages this by tracking whether the OnCreate method
of a command has been called. If the OnCreate method has been called,
it will reuse the command and increment its UsageCount.

For example, if a Zoom In tool is added to a ToolbarControl twice, with
the UID supplied, when one of the Zoom In items on the ToolbarControl
is selected and appears “pressed”, the other Zoom In item will also
appear pressed because they are both using the same Command object.
When an application contains multiple ToolbarControls or ToolbarMenus,

you should ensure each ToolbarControl and ToolbarMenu uses the same
CommandPool so only one instance of a command is created in the application.

Customize
The ToolbarControl has a Customize property that can be set to put the
ToolbarControl into customize mode. This changes the behavior of the
ToolbarControl and allows the end user to rearrange, remove, and add items as well
as change their appearance.

• Use the left mouse button to select an item on the ToolbarControl, then either
drag the selected item to a new position or drag and drop the item off the
ToolbarControl to remove it.

• Right-click to select an item and display a customize menu. The customize
menu can be used to remove the item or change the Style (bitmap, caption, or
both) and Grouping of the ToolbarItem.

While the ToolbarControl is in customize mode, you can programmatically launch
the modeless CustomizeDialog. The CustomizeDialog lists all of the control
commands, together with any custom commands, toolsets, and menus. It does
this by reading entries from the ESRI Controls Commands, ESRI Controls

BUILDING APPLICATIONS WITH THE ARCGIS CONTROLS

Hosting the ToolbarMenu as a popup

Hosting theToolbarMenu as a submenu

Ch03_EngineApps.pmd 1/25/2005, 3:16 PM53

54 • ArcGIS Engine Developer Guide

Toolbars, and ESRI Controls Menus component categories. If
required you can change the CustomizeDialog to use alternative
component categories. The end user can add these commands,
toolsets, and menus to the ToolbarControl either by dragging and
dropping them onto the ToolbarControl or double-clicking them.

The CustomizeDialog is modeless to allow the user to interact
with the ToolbarControl. When the CustomizeDialog is launched
with the StartDialog method, the method call returns immediately
while the CustomizeDialog remains open on the screen. To keep a
reference to the CustomizeDialog while it is open, it is sensible
practice to store a class-level variable to the CustomizeDialog and
to listen to its ICustomizeDialogEvents. Refer to the ‘Building
applications’ scenarios in Chapter 6, ‘Developer scenarios’, to see
how to display the CustomizeDialog when the ToolbarControl is in
customize mode.

OperationStack
The ToolbarControl has an OperationStack that is used to manage undo and redo
functionality. Operations are added to the operation stack by each ToolbarItem’s
underlying command so the operation can be rolled forward and rolled back as
desired. For example, when a graphic element is moved, the operation can be
undone by moving the graphic back to its original location. Whether or not a
command makes use of an OperationStack depends on its implementation.
Typically, you create a single ControlsOperationStack for an application (by
default, the OperationStack property is Nothing) and sets it into each
ToolbarControl. Undo and Redo commands can be added to the ToolbarControl that
proceed through the OperationStack.

APPLICATION DEVELOPMENT WITHOUT THE TOOLBARCONTROL

While building applications with the ToolbarControl can quickly provide pieces of
a framework similar to the ArcGIS Desktop application framework, there are
times when the ToolbarControl is not required for an application:

• The visual appearance of the ToolbarControl may not match that of the appli-
cation.

• The overhead of implementing Command objects for the ToolbarControl is not
required.

• There is an existing application framework present in the application.

• The ToolbarControl and the commands it hosts do not easily work across mul-
tiple buddy controls.

In such circumstances, you must work directly with the MapControl,
PageLayoutControl, SceneControl, GlobeControl, or ReaderControl. Any additional user
interface components needed by the application, such as command buttons,
status bars, and list boxes, may be supplied by development environment.

BUILDING APPLICATIONS WITH THE ARCGIS CONTROLS

The modeless CustomizeDialog box for
ToolbarControl

Ch03_EngineApps.pmd 1/25/2005, 3:16 PM54

Chapter 3 • Developing with ArcGIS controls • 55

BUILDING APPLICATIONS WITH THE ARCGIS CONTROLS

For example, building map navigation functionality into a MapControl application
can be achieved by:

• Setting the resulting Envelope of the IMapControl2::TrackRectangle method into
the IMapControl2::Extent property within the MapControl’s OnMouseDown event
to create Zoom In functionality.

• Setting the Envelope of the IMapControl2::FullExtent property into the
IMapControl2::Extent property to create Full Extent functionality. This code
could be placed within the Click event of a command button supplied by the
development environment.

Alternatively, the control commands that are provided with ArcGIS Engine, or
any custom commands that make use of the HookHelper, SceneHookHelper, or
GlobeHookHelper objects, will work directly with an individual ArcGIS control.
However, you become responsible for calling ICommand::OnCreate and
ICommand::OnClick methods at the appropriate times and reading properties on
the ICommand interface to build up the user interface as follows:

• A new instance of a command is created programmatically, and the individual
ArcGIS control is passed to the OnCreate event. For example, if the 3D Zoom
FullExtent command is to work with the GlobeControl, the GlobeControl must
be passed as the hook to the OnCreate method.

• You can use the CommandPool object without the ToolbarControl to manage the
commands used by an application. The CommandPool will provide support for
calling the OnCreate method of each command based on its Hook property.

• If the command only implements the ICommand interface, you can call the
OnClick method at the appropriate time to perform the specific action. If the
command is a tool that implements both the ICommand and ITool interfaces,
you must set the tool to be the CurrentTool in the ArcGIS control. The ArcGIS
control will send any keyboard and mouse events to the tool.

• A command’s Enabled, Caption, and Bitmap properties can be read and set into
the properties of a command button supplied by the development environ-
ment to build up the user interface of the application.

While this approach to building applications requires more programming, building
from scratch does allow more flexibility.

Ch03_EngineApps.pmd 1/25/2005, 3:16 PM55

Ch03_EngineApps.pmd 1/25/2005, 3:16 PM56

57

Developer
environments4

ArcObjects is based on Microsoft’s Component Object Model. End users of ArcGIS

applications don’t necessarily have to understand COM, but if you’re a developer

intent on developing applications based on ArcObjects or extending the existing

ArcGIS applications using ArcObjects, an understanding of COM is a requirement

even if you plan to use the C++, Java, or .NET APIs and not COM specifically. The

level of understanding required depends on the depth of customization or

development you want to undertake. At a minimum, review ‘The Microsoft

Component Object Model’ and ‘Developing with ArcObjects’ sections, then proceed

to the later API-specific section of your choice.

Each API-specific section introduces you to programming techniques of supported

languages and details advanced features particular to development with

ArcObjects.

Topics covered in this chapter include:

• the Microsoft Component Object Model • developing with ArcObjects • Visual

Basic, both as a platform and as your development environment • Visual C++ •

the .NET API • the Java API • the C++ API

Ch04_EngineAPIs.pmd 1/25/2005, 4:31 PM57

58 • ArcGIS Engine Developer Guide

THE MICROSOFT COMPONENT OBJECT MODEL

Before discussing COM specifically, it is worth considering the wider use of soft-
ware components in general. There are a number of factors driving the motivation
behind software components, but the principal one is the fact that software devel-
opment is a costly and time-consuming venture.

In an ideal world, it would be possible to write a piece of code once and reuse it
again and again using a variety of development tools, even in circumstances that
the original developer did not foresee. Ideally, changes to the code’s functionality
made by the original developer could be deployed without requiring existing users
to change or recompile their code.

Early attempts at producing reusable chunks of code revolved around the creation
of class libraries, usually developed in C++. These early attempts suffered from
several limitations, notably difficulty of sharing parts of the system (it is difficult to
share binary C++ components—most attempts have only shared source code),
problems of persistence and updating C++ components without recompiling, lack
of good modeling languages and tools, and proprietary interfaces and customization
tools.

To counteract these and other problems, many software engineers have adopted
component-based approaches to system development. A software component is a
binary unit of reusable code.

Several different but overlapping standards have emerged for developing and
sharing components. For building interactive desktop applications, Microsoft’s
COM is the de facto standard. On the Internet, JavaBeans is viable technology. At
a coarser grain appropriate for application-level interoperability, the Object
Management Group (OMG) has specified the common object request broker
architecture (CORBA).

To understand COM—and, therefore, all COM-based technologies—it’s impor-
tant to realize that it isn’t an object-oriented language but a protocol, or standard.
COM is more than just a technology; it is a methodology of software develop-
ment. COM defines a protocol that connects one software component, or mod-
ule, with another. By making use of this protocol, it’s possible to build reusable
software components that can be dynamically interchanged in a distributed
system.

COM also defines a programming model known as interface-based programming.
Objects encapsulate the manipulation methods and the data that characterizes each
instantiated object behind a well-defined interface. This promotes structured and
safe system development since the client of an object is protected from knowing any
details of how a particular method is implemented. COM doesn’t specify how an
application should be structured. As an application programmer working with
COM, language, structure, and implementation details are left up to you.

COM does specify an object model and programming requirements that enable
COM objects to interact with other COM objects. These objects can be within a
single process, in other processes, or even on remote machines. They can be
written in other languages and may have been developed in different ways. That
is why COM is referred to as a binary specification or standard—it is a standard
that applies after a program has been translated to binary machine code.

ESRI chose COM as the component technology
for ArcGIS because it is a mature technology that

offers good performance, many of today’s
development tools support it, and there is a

multitude of third-party components that can be
used to extend the functionality of ArcObjects.

The key to the success of components is that
they implement, in a practical way, many of the

object-oriented principles now commonly
accepted in software engineering. Components
facilitate software reuse because they are self-

contained building blocks that can easily be
assembled into larger systems.

Ch04_EngineAPIs.pmd 1/25/2005, 4:31 PM58

Chapter 4 • Developer environments • 59

COM allows these objects to be reused at a binary level, meaning that third-party
developers do not require access to source code, header files, or object libraries to
extend the system, even at the lowest level.

COMPONENTS, OBJECTS, CLIENTS, AND SERVERS

Different texts use the terms components, objects, clients, and servers to mean
different things. (To add to the confusion, various texts refer to the same thing
using all these terms.) Therefore, it is worthwhile to define some terminology.

COM is a client/server architecture. The server (or object) provides some func-
tionality, and the client uses that functionality. COM facilitates the communica-
tion between the client and the object. An object can, at the same time, be a
server to a client and a client of some other object’s services.

Client
VBApp.exe

Client/Server
ArcMap.exe

Server
Map.dll

The client and its servers can exist in the same process or in a different process
space. In-process servers are packaged in DLL form, and these DLLs are loaded
into the client’s address space when the client first accesses the server. Out-of-
process servers are packaged in executables (EXE) and run in their own address
space. COM makes the differences transparent to the client.

When creating COM objects, the developer must be aware of the type of server
that the objects will reside in, but if the creator of the object has implemented
them correctly, the packaging does not affect the use of the objects by the client.

There are pros and cons to each method of packaging that are symmetrically
opposite. DLLs are faster to load into memory, and calling a DLL function is
faster. EXEs, on the other hand, provide a more robust solution (if the server
fails, the client will not crash), and security is better handled since the server has
its own security context.

In a distributed system, EXEs are more flexible, and it does not matter if the
server has a different byte ordering from the client. The majority of ArcObjects
servers are packaged as in-process servers (DLLs). Later, you will see the perfor-
mance benefits associated with in-process servers.

In a COM system, the client, or user of functionality, is completely isolated from
the provider of that functionality, the object. All the client needs to know is that
the functionality is available; with this knowledge, the client can make method
calls to the object and expect the object to honor them. In this way, COM is said
to act as a contract between client and object. If the object breaks that contract,
the behavior of the system will be unspecified. In this way, COM development is
based on trust between the implementer and the user of functionality.

In the ArcGIS applications, there are many objects that provide, via their inter-
faces, thousands of properties and methods. When you use the ESRI object
libraries, you can assume that all these properties and interfaces have been fully
implemented, and if they are present on the object diagrams, they are there to
use.

Objects are instances of COM classes that
make services available for use by a client.

Hence, it is normal to talk of clients and objects
instead of clients and servers. These objects are
often referred to as COM objects and compo-

nent objects. This book will refer to them simply
as objects.

Client and server

COM+ server

MyComputer

process space

YourComputer

process space

Objects inside an out-of-process server are
accessed by COM-supplied proxy objects, which
make access transparent to the client. The COM

runtime handles the remoting layer.

COM
objects

yourEXE

server

myEXE

client

Objects inside an out-of-process server are
accessed by COM-supplied proxy objects, which

make access transparent to the client.

MyComputer

process space process space

COM out-of-process server

COM
object

s

myEXE

client

proxy
object

yourEXE

server

proxy
object

MyComputer

process space

Objects inside an in-process server are accessed
directly by their clients.

COM in-process server

myDLL
COM

objects

client

yourDLL

server

THE MICROSOFT COMPONENT OBJECT MODEL

Ch04_EngineAPIs.pmd 1/25/2005, 4:31 PM59

60 • ArcGIS Engine Developer Guide

CLASS FACTORY

Within each server there is an object called a class factory that the COM runtime
interacts with to instantiate objects of a particular class. For every corresponding
COM class, there is a class factory. Normally, when a client requests an object
from a server, the appropriate class factory creates a new object and passes out
that object to the client.

SINGLETON OBJECTS

Although this is the normal implementation, it is not the only implementation
possible. The class factory can also create an instance of the object the first time
and, with subsequent calls, pass the same object to clients. This type of imple-
mentation creates what is known as a singleton object since there is only one
instance of the object per process.

GLOBALLY UNIQUE IDENTIFIERS

A distributed system potentially has thousands of interfaces, classes, and servers,
all of which must be referenced when locating and binding clients and objects
together at runtime. Clearly, using human-readable names would lead to the
potential for clashes; hence, COM uses GUIDs, 128-bit numbers that are virtually
guaranteed to be unique in the world. It is possible to generate 10 million GUIDs
per second until the year 5770 A.D., and each one would be unique.

The COM API defines a function that can be used to generate GUIDs; in addi-
tion, all COM-compliant development tools automatically assign GUIDs when
appropriate. GUIDs are the same as Universally Unique Identifiers (UUIDs),
defined by the Open Group’s Distributed Computing Environment (DCE) speci-
fication. Below is a sample GUID in registry format.
 {E6BDAA76-4D35-11D0-98BE-00805F7CED21}

COM CLASSES AND INTERFACES

Developing with COM means developing using interfaces, the so-called interface-
based programming model. All communication between objects is made via their
interfaces. COM interfaces are abstract, meaning there is no implementation
associated with an interface; the code associated with an interface comes from a
class implementation. The interface sets which requests can be made of an object
that chooses to implement the interface.

How an interface is implemented differs among objects. Thus, the objects inherit
the type of interface, not its implementation, which is called type inheritance.
Functionality is modeled abstractly with the interfaces and implemented within a
class implementation. Classes and interfaces are often referred to as the “what”
and “how” of COM. The interface defines what an object can do, and the class
defines how it is done.

COM classes provide the code associated with one or more interfaces, thus encap-
sulating the functionality entirely within the class. Two classes can have the same
interface, but they may implement them quite differently. By implementing these
interfaces in this way, COM displays classic object-oriented polymorphic behav-
ior. COM does not support the concept of multiple inheritance; however, this is

THE MICROSOFT COMPONENT OBJECT MODEL

GUIDGEN.EXE is a utility that ships with
Microsoft’s Visual Studio and provides an easy-to-

use user interface for generating GUIDs. It can
be found in the directory <VS Install

Dir>\Common\Tools.

The acronym GUID is commonly pronounced
“gwid”.

Class
factory A

IClassFactory

IUnknown

COM
object A

InterfaceA

IUnknown

COM
object B

InterfaceB

IUnknown

COM
object B

InterfaceB

IUnknown

Class
factory B

IClassFactory

IUnknown

A server is a binary file that contains all the
code required by one or more COM classes. This
includes both the code that works with COM to
instantiate objects into memory and the code to

perform the methods supported by the objects
contained within the server.

Ch04_EngineAPIs.pmd 1/25/2005, 4:31 PM60

Chapter 4 • Developer environments • 61

Access-
Workspace-

Factory

Workspace-
Factory

Workspace

This is a simplified portion of the geodatabase
object model showing type inheritance among
abstract classes, coclasses, and instantiation of

classes.

not a shortcoming since individual classes can implement multiple interfaces. See
the diagram to the lower left on polymorphic behavior.

Within ArcObjects are three types of classes that the developer must be aware of:
abstract classes, coclasses, and classes. An abstract class cannot be created; it is
solely a specification for instances of subclasses (through type inheritance).
ArcObjects Dataset and Geometry classes are examples of abstract classes. An
object of type Geometry cannot be created, but an object of type Polyline can.
This Polyline object, in turn, implements the interfaces defined within the Geom-
etry base class; hence, any interfaces defined within object-based classes are
accessible from the coclass.

A coclass is a publicly creatable class. In other words, it is possible for COM to
create an instance of that class and give the resultant object to the client to use
the services defined by the interfaces of that class. A class cannot be publicly
created, but objects of this class can be created by other objects within
ArcObjects and given to clients to use.

To the lower left is a diagram that illustrates the polymorphic behavior exhibited
in COM classes when implementing interfaces. Notice that both the Human and
Parrot classes implement the ITalk interface. The ITalk interface defines the
methods and properties, such as StartTalking, StopTalking, or Language, but clearly,
the two classes implement these differently.

INSIDE INTERFACES

COM interfaces are how COM objects communicate with each other. When
working with COM objects, the developer never works with the COM object
directly but gains access to the object via one of its interfaces. COM interfaces
are designed to be a grouping of logically related functions. The virtual functions
are called by the client and implemented by the server; in this way, an object’s
interfaces are the contract between the client and object. The client of an object
is holding an interface pointer to that object. This interface pointer is referred to
as an opaque pointer since the client cannot gain any knowledge of the imple-
mentation details within an object nor direct access to an object’s state data. The
client must communicate through the member functions of the interface. This
allows COM to provide a binary standard through which all objects can effec-
tively communicate.

Interfaces allow developers to model functionality abstractly. Visual C++ devel-
opers see interfaces as collections of pure virtual functions, while Visual Basic
developers see interfaces as collections of properties, functions, and subroutines.

The concept of the interface is fundamental in COM. The COM Specification
(Microsoft, 1995) emphasizes these four points when discussing COM interfaces:

• An interface is not a class. An interface cannot be instantiated by itself since it
carries no implementation.

• An interface is not an object. An interface is a related group of functions and
is the binary standard through which clients and objects communicate.

THE MICROSOFT COMPONENT OBJECT MODEL

This diagram shows how common behavior,
expressed as interfaces, can be shared among
multiple objects, animals in this example, to

support polymorphism.

Human
IBirth

ITalk

IWalk

IDeath

Parrot
IBirth

ITalk

IWalk

IFly

IDeath

Dog
IBirth

IWalk

IDeath

Classes

Interfaces

IBirth

ITalk

IWalk

IFly

IDeath

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM61

62 • ArcGIS Engine Developer Guide

• Interfaces are strongly typed. Every interface has its own interface identifier,
thereby eliminating the possibility of a collision between interfaces of the
same human-readable name.

• Interfaces are immutable. Interfaces are never versioned. Once defined and
published, an interface cannot be changed.

Once an interface has been published, it is not possible to change the external
signature of that interface. It is possible at any time to change the implementa-
tion details of an object that exposes an interface. This change may be a minor
bug fix or a complete reworking of the underlying algorithm; the clients of the
interface do not care since the interface appears the same to them. This means
that when upgrades to the servers are deployed in the form of new DLLs and
EXEs, existing clients need not be recompiled to make use of the new function-
ality. If the external signature of the interface is no longer sufficient, a new
interface is created to expose the new functions. Old or deprecated interfaces are
not removed from a class to ensure all existing client applications can continue to
communicate with the newly upgraded server. Newer clients will have the choice
of using the old or new interfaces.

THE IUNKNOWN INTERFACE

All COM interfaces derive from the IUnknown interface, and all COM objects
must implement this interface. The IUnknown interface performs two tasks: it
controls object lifetime and provides runtime type support. It is through the
IUnknown interface that clients maintain a reference on an object while it is in
use—leaving the actual lifetime management to the object itself.

Object lifetime is controlled with two methods, AddRef and Release, and an
internal reference counter. Every object must have an implementation of
IUnknown to control its own lifetime. Anytime an interface pointer is created or
duplicated, the AddRef method is called, and when the client no longer requires
this pointer, the corresponding Release method is called. When the reference
count reaches zero, the object destroys itself.

Clients also use IUnknown to acquire other interfaces on an object. QueryInterface is
the method that a client calls when another interface on the object is required.
When a client calls QueryInterface, the object provides an interface and calls
AddRef. In fact, it is the responsibility of any COM method that returns an
interface to increment the reference count for the object on behalf of the caller.
The client must call the Release method when the interface is no longer needed.
The client calls AddRef explicitly only when an interface is duplicated.

When developing a COM object, the developer must obey the rules of
QueryInterface. These rules dictate that interfaces for an object are symmetrical,
transitive, and reflexive and are always available for the lifetime of an object. For
the client this means that, given a valid interface to an object, it is always valid to
ask the object, via a call to QueryInterface, for any other interface on that object
including itself. It is not possible to support an interface and later deny access to
that interface, perhaps because of time or security constraints. Other mechanisms

THE MICROSOFT COMPONENT OBJECT MODEL

The name IUnknown came from a 1988
internal Microsoft paper called Object Archi-
tecture: Dealing with the Unknown – or –

Type Safety in a Dynamically Extensible Class
Library.

An interface’s permanence is not restricted to
simply its method signatures, but extends to its

semantic behavior as well. For example, an
interface defines two methods, A and B, with no

restrictions placed on their use. It breaks the
COM contract if, at a subsequent release,

Method A requires that Method B be executed
first. A change like this would force possible

recompilations of clients.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM62

Chapter 4 • Developer environments • 63

Since IUnknown is fundamental to all COM
objects, in general, there are no references to

IUnknown in any of the ArcObjects documenta-
tion and class diagrams.

Smart pointers are a class-based smart type and
are covered in detail later in this chapter.

The method QueryInterface is often referred
to by the abbreviation QI.

must be used to provide this level of functionality. Some classes support the
concept of optional interfaces. Depending on the coclass, they may optionally
implement an interface; this does not break this rule since the interface is either
always available or always not available on the class.

When requested for a particular interface, the QueryInterface method can return an
already assigned piece of memory for that requested interface, or it can allocate a
new piece of memory and return that. The only case when the same piece of
memory must be returned is when the IUnknown interface is requested. When
comparing two interface pointers to see if they point to the same object, it is
important that a simple comparison not be performed. To correctly compare two
interface pointers to see if they are for the same object, they both must be que-
ried for their IUnknown interface, and the comparison must be performed on the
IUnknown pointers. In this way, the IUnknown interface is said to define a COM
object’s identity.

It’s good practice in Visual Basic to call Release explicitly by assigning an interface
equal to Nothing to release any resources it’s holding. Even if you don’t call Re-
lease, Visual Basic will automatically call it when you no longer need the object—
that is, when it goes out of scope. With global variables, you must explicitly call
Release. In Visual Basic, the system performs all these reference-counting opera-
tions for you, making the use of COM objects relatively straightforward.

In C++, however, you must increment and decrement the reference count to
allow an object to correctly control its own lifetime. Likewise, the QueryInterface
method must be called when asking for another interface. In C++ the use of
smart pointers simplifies much of this. These smart pointers are class based and,
hence, have appropriate constructors, destructors, and overloaded operators to
automate much of the reference counting and query interface operations.

INTERFACE DEFINITION LANGUAGE

Microsoft Interface Definition Language (MIDL) is used to describe COM objects
including their interfaces. This MIDL is an extension of the Interface Definition
Language (IDL) defined by the DCE, where it was used to define remote procedure
calls between clients and servers. The MIDL extensions include most of the Object
Definition Language (ODL) statements and attributes. ODL was used in the early
days of OLE automation for the creation of type libraries.

TYPE LIBRARY

A type library is best thought of as a binary version of an IDL file. It contains a
binary description of all coclasses, interfaces, methods, and types contained within a
server or servers.

There are several COM interfaces provided by Microsoft that work with type
libraries. Two of these interfaces are ITypeInfo and ITypeLib. By utilizing these
standard COM interfaces, various development tools and compilers can gain
information about the coclasses and interfaces supported by a particular library.

To support the concept of a language-independent development set of compo-
nents, all relevant data concerning the ArcObjects libraries is shipped inside type
libraries. There are no header files, source files, or object files supplied or needed
by external developers.

THE MICROSOFT COMPONENT OBJECT MODEL

The rules of QueryInterface dictate that
interfaces of an object are reflexive, symmetrical,

and transitive. It is always possible, holding a
valid interface pointer on an object, to get any

other interface on that object.

MIDL is commonly referred to as IDL.

The IDL defines the public interface that
developers use when working with ArcObjects.

When compiled, the IDL creates a type library.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM63

64 • ArcGIS Engine Developer Guide

server
class

outbound interface
inbound interface

client
class

interfaceinterface
interface

In the diagrams in this book and the ArcObjects
object model diagrams, outbound interfaces are

depicted with a solid circle on the interface jack.

INBOUND AND OUTBOUND INTERFACES

Interfaces can be either inbound or outbound. An inbound interface is the most
common kind—the client makes calls to functions within the interface contained
on an object. An outbound interface is one in which the object makes calls to the
client—a technique analogous to the traditional callback mechanism.

There are differences in the ways these interfaces are implemented. The implementer
of an inbound interface must implement all functions of the interface; failure to do
so breaks the contract of COM. This is also true for outbound interfaces. If you use
Visual Basic, you don’t have to implement all functions present on the interface
since it provides stub methods for the methods you don’t implement. On the other
hand, if you use C++, you must implement all the pure virtual functions to compile
the class.

Connection points is a specific methodology for working with outbound COM
interfaces. The connection point architecture defines how the communication
between objects is set up and taken down. Connection points are not the most
efficient way of initializing bidirectional object communication, but they are in
common use because many development tools and environments support them.

Dispatch event interfaces
There are some objects within ArcObjects that support two outbound event
interfaces that look similar to the methods they support. Examples of two such
interfaces are the IDocumentEvents and the IDocumentEventsDisp. The “Disp” suffix
denotes a pure Dispatch interface. These dispatch interfaces are used by VBA when
dealing with certain application events such as loading documents. A VBA program-
mer works with the dispatch interfaces, while a developer using another develop-
ment language uses the nonpure dispatch interface. Since these dispatch event
interfaces are application specific, consult ArcGIS Developer Help for more details
on using the interface.

Default interfaces
Every COM object has a default interface that is returned when the object is
created if no other interface is specified. All the objects within the ESRI object
libraries have IUnknown as their default interface, with a few exceptions.

The default interface of the Application object for both ArcCatalog and ArcMap is
the IApplication interface. These uses of non-IUnknown default interfaces are a
requirement of Visual Basic for Applications and are found on the ArcMap and
ArcCatalog application-level objects.

This means that variables that hold interface pointers must be declared in a
certain way. For more details, see the coding sections later in this chapter. When
COM objects are created, any of the supported interfaces can be requested at
creation time.

THE MICROSOFT COMPONENT OBJECT MODEL

The reason for making IUnknown the default
interface is because the VB object browser hides

information for the default interface. The fact
that it hides IUnknown is not important for VB

developers.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM64

Chapter 4 • Developer environments • 65

IDispatch interface
COM supports three types of binding:
• Late. This is where type discovery is left until runtime. Method calls made by

the client but not implemented by the object will fail at execution time.
• ID. Method IDs are stored at compile time, but execution of the method is

still performed through a higher-level function.
• Custom vTable (early). Binding is performed at compile time. The client can

then make method calls directly into the object.
The IDispatch interface supports late- and ID-binding languages. The IDispatch
interface has methods that allow clients to ask the object what methods it sup-
ports.

Assuming the required method is supported, the client executes the method by
calling the IDispatch::Invoke method. This method, in turn, calls the required
method and returns the status and any parameters back to the client on comple-
tion of the method call.

Clearly, this is not the most efficient way to make calls on a COM object. Late
binding requires a call to the object to retrieve the list of method IDs; the client
must then construct the call to the Invoke method and call it. The Invoke method
must then unpack the method parameters and call the function.

All these steps add significant overhead to the time it takes to execute a method.
In addition, every object must have an implementation for IDispatch, which
makes all objects larger and adds to their development time.

ID binding offers a slight improvement over late binding in that the method IDs
are cached at compile time, which means the initial call to retrieve the IDs is not
required. However, there is still significant call overhead because the
IDispatch::Invoke method is still called to execute the required method on the
object.

Early binding, often referred to as custom vTable binding, does not use the
IDispatch interface. Instead, a type library provides the required information at
compile time to allow the client to know the layout of the server object. At
runtime, the client makes method calls directly into the object. This is the fastest
method of calling object methods and also has the benefit of compile-time type
checking.

Objects that support both IDispatch and custom vTable are referred to as dual
interface objects. The object classes within the ESRI object libraries do not
implement the IDispatch interface; this means that these object libraries cannot be
used with late-binding scripting languages, such as JavaScript or VBScript, since
these languages require that all COM servers accessed support the IDispatch
interface.

Careful examination of the ArcGIS class diagrams indicates that the Application
objects support IDispatch because there is a requirement in VBA for the IDispatch
interface.

THE MICROSOFT COMPONENT OBJECT MODEL

Binding is the term given to the process of
matching the location of a function given a

pointer to an object.

Custom vTable binding 825,000 20,000

Late binding 22,250 5,000

Binding type
In process

DLL
Out of process

DLL

This table shows the number of function calls
that can be made per second on a typical

Pentium® III machine.

vTable

vTable

GetTypeInfoCount

GetTypeInfo

GetIDsOfNames

Invoke

Name

Document

StatusBar

QueryInterface

AddRef

Release

QueryInterface

AddRef

Release

Name

Description

AreaOfInterest

Custom - Map

Dual - Application

IUnknown

IMap

IUnknown

IDispatch

IApplication

These diagrams summarize the custom and
IDispatch interfaces for two classes in

ArcObjects. The layout of the vTable displays the
differences. It also illustrates the importance of
implementing all methods—if one method is

missing, the vTable will have the wrong layout,
and hence, the wrong function pointer would be

returned to the client, resulting in a system
crash.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM65

66 • ArcGIS Engine Developer Guide

All ActiveX controls support IDispatch. This means it is possible to use the vari-
ous ActiveX controls shipped with ArcObjects to access functionality from
within scripting environments.

INTERFACE INHERITANCE

An interface consists of a group of methods and properties. If one interface
inherits from another, then all the methods and properties in the parent are
directly available in the inheriting object.

The underlying principle here is interface inheritance, rather than the implementa-
tion inheritance you may have seen in languages such as SmallTalk and C++. In
implementation inheritance, an object inherits actual code from its parent; in
interface inheritance, it’s the definitions of the methods of the object that are
passed on. The coclass that implements the interfaces must provide the imple-
mentation for all inherited interfaces.

Implementation inheritance is not supported in a heterogeneous development
environment because of the need to access source and header files. For reuse of
code, COM uses the principles of aggregation and containment. Both of these are
binary-reuse techniques.

AGGREGATION AND CONTAINMENT

For a third-party developer to make use of existing objects, using either contain-
ment or aggregation, the only requirement is that the server housing the contained
or aggregated object is installed on both the developer and target release ma-
chines. Not all development languages support aggregation.

The simplest form of binary reuse is containment. Containment allows modifica-
tion of the original object’s method behavior but not the method’s signature.
With containment, the contained object (inner) has no knowledge that it is
contained within another object (outer). The outer object must implement all the
interfaces supported by the inner. When requests are made on these interfaces,
the outer object simply delegates them to the inner. To support new functionality,
the outer object can either implement one of the interfaces without passing the
calls on or implement an entirely new interface in addition to those interfaces
from the inner object.

COM aggregation involves an outer object that controls which interfaces it
chooses to expose from an inner object. Aggregation does not allow modification
of the original object’s method behavior. The inner object is aware that it is being
aggregated into another object and forwards any QueryInterface calls to the outer
(controlling) object so the object as a whole obeys the laws of COM.

To the clients of an object using aggregation, there is no way to distinguish which
interfaces the outer object implements and which interfaces the inner object
implements.

Custom features make use of both containment and aggregation. The developer
aggregates the interfaces where no customizations are required and contains those
that are to be customized. The individual methods on the contained interfaces can
then either be implemented in the customized class, thus providing custom function-
ality, or the method call can be passed to the appropriate method on the contained
interface.

THE MICROSOFT COMPONENT OBJECT MODEL

Interfaces that directly inherit from an interface
other than IUnknown cannot be implemented

in VB.

COM
aggregation

class

interface1

method3
method4

interface2

IUnknown

IUnknown

class

method1
method2

COM
containment

feature

interface2

method7
method8

interface4

IUnknown

IUnknown

class

method1
method2

method5
method6

interface3

method3
method4

interface1

Custom
feature

class

interface1

method3
method4

interface2

IUnknown (inner)

IUnknown (controlling)

class

method1
method2

child class

parent class

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM66

Chapter 4 • Developer environments • 67

Aggregation is important in this case since there are some hidden interfaces defined
on a feature that cannot be contained.

Visual Basic 6 does not support aggregation, so it can’t be used to create custom
features.

THREADS, APARTMENTS, AND MARSHALLING

A thread is a process flow through an application. There are potentially many
threads within Windows applications. An apartment is a group of threads that
works with contexts within a process. With COM+, a context belongs to one
apartment. There are potentially many types of contexts; security is an example
of a type of context. Before successfully communicating with each other, objects
must have compatible contexts.

COM supports two types of apartments: single-threaded apartments and
multithreaded apartments (MTA). COM+ supports the additional thread-neutral
apartment (TNA). A process can have any number of STAs; each process creates
one STA called the main apartment. Threads that are created as apartments are
placed in an STA. All user interface code is placed in an STA to prevent deadlock
situations. A process can only have one MTA. A thread that is started as
multithreaded is placed in the MTA. The TNA has no threads permanently associ-
ated with it; rather, threads enter and leave the apartment when appropriate.

In-process objects have an entry in the registry, the ThreadingModel, that informs
the COM service control manager (SCM) into which apartment to place the
object. If the object’s requested apartment is compatible with the creator’s apart-
ment, the object is placed in that apartment; otherwise, the SCM will find or
create the appropriate apartment. If no threading model is defined, the object
will be placed in the main apartment of the process. The ThreadingModel registry
entry can have the following values:

• Apartment. Object must be executed within the STA. Normally used by UI
objects.

• Free. Object must be executed within the MTA. Objects creating threads are
normally placed in the MTA.

• Both. Object is compatible with all apartment types. The object will be cre-
ated in the same apartment as the creator.

• Neutral. Objects must execute in the TNA. Used by objects to ensure there is
no thread switch when called from other apartments. This is only available
under COM+.

Marshalling enables a client to make interface function calls to objects in other
apartments transparently. Marshalling can occur between COM apartments on
different machines, between COM apartments in different process spaces, and
between COM apartments in the same process space (STA to MTA, for example).
COM provides a standard marshaller that handles function calls that use automa-
tion-compliant data types (see table below). Nonautomation data types can be
handled by the standard marshaller as long as proxy stub code is generated; other-
wise, custom marshalling code is required.

THE MICROSOFT COMPONENT OBJECT MODEL

Although an understanding of apartments and
threading is not essential in the use of

ArcObjects, basic knowledge will help you
understand some of the implications with certain

development environments highlighted later in
this chapter.

Apartments

process space
Thread
neutral

apartment

Single threaded apartment
(main apartment)

Single threaded apartment

Single threaded apartment

Multithreaded apartment

Think of the SCM (pronounced scum) as the
COM runtime environment. The SCM interacts
with objects, servers, and the operating system
and provides the transparency between clients

and the objects with which they work.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM67

68 • ArcGIS Engine Developer Guide

unsigned char

Boolean

Type

8-bit unsigned data item

Data item that can have the value True or False

Description

float

double

32-bit IEEE floating-point number

64-bit IEEE floating-point number

long

int

32-bit signed integer

Signed integer, whose size is system dependent

BSTR

short

Length-prefixed string

16-bit signed integer

DATE

CURRENCY

64-bit, floating-point fractional number of days since Dec 30, 1899

8-byte, fixed-point number

Typedef enum myenum

SCODE

Signed integer, whose size is system dependent

For 16-bit systems - Built-in error that corresponds to VT_ERROR

Interface IUnknown *

Interface IDispatch *

Pointer to an interface that does not derive from IDispatch

Pointer to the IDispatch interface

Coclass Typename *

dispinterface Typename *

Pointer to a coclass name (VT_UNKNOWN)

Pointer to an interface derived from IDispatch

SAFEARRAY(TypeName)

[oleautomation] interface Typename *

TypeName is any of the above types. Array of these types

Pointer to an interface that derives from IDispatch

Decimal

TypeName*

96-bit unsigned binary integer scaled by a variable power of 10. A decimal data
type that provides a size and scale for a number (as in coordinates)

TypeName is any of the above types. Pointer to a type

COMPONENT CATEGORY

Component categories are used by client applications to find all COM classes of a
particular type that are installed on the system efficiently. For example, a client
application may support a data export function in which you can specify the
output format—a component category could be used to find all the data export
classes for the various formats. If component categories are not used, the applica-
tion has to instantiate each object and interrogate it to see if it supports the
required functionality, which is not a practical approach. Component categories
support the extensibility of COM by allowing the developer of the client applica-
tion to create and work with classes that belong to a particular category. If at a
later date, a new class is added to the category, the client application need not be
changed to take advantage of the new class; it will automatically pick up the new
class the next time the category is read.

COM AND THE REGISTRY

COM makes use of the Windows system registry to store information about the
various parts that compose a COM system. The classes, interfaces, DLLs, EXEs,

type libraries, and so forth, are all given GUIDs that the SCM
uses when referencing these components. To see an example of
this, run regedit, then open HKEY_CLASSES_ROOT. This
opens a list of all the classes registered on the system.

COM makes use of the registry for a number of housekeeping
tasks, but the most important and most easily understood is
the use of the registry when instantiating COM objects into
memory. In the simplest case, that of an in-process server, the
steps are as follows:

1. Client requests the services of a COM object.

THE MICROSOFT COMPONENT OBJECT MODEL

ESRI keys in the Windows system registry

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM68

Chapter 4 • Developer environments • 69

2. SCM looks for the requested objects registry entry by searching on the class ID
(a GUID).

3. DLL is located and loaded into memory. The SCM calls a function within the
DLL called DllGetClassObject, passing the desired class as the first argument.

4. The class object normally implements the interface IClassFactory. The SCM
calls the method CreateInstance on this interface to instantiate the appropriate
object into memory.

5. Finally, the SCM asks the newly created object for the interface that the client
requested and passes that interface back to the client. At this stage, the SCM
drops out of the equation, and the client and object communicate directly.

From the above sequence of steps, it is easy to imagine how changes in the
object’s packaging (DLL versus EXE) make little difference to the client of the
object. COM handles these differences.

AUTOMATION

Automation is the technology used by individual objects or entire applications to
provide access to their encapsulated functionality via a late-bound language.
Commonly, automation is thought of as writing macros, where these macros can
access many applications for a task to be done. ArcObjects, as already stated, does
not support the IDispatch interface; hence, it cannot be used alone by an automa-
tion controller.

THE MICROSOFT COMPONENT OBJECT MODEL

The function DllGetClassObject is the function
that makes a DLL a COM DLL. Other functions,

such as DllRegisterServer and
DllUnregisterServer, are nice to have but not
essential for a DLL to function as a COM DLL.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM69

70 • ArcGIS Engine Developer Guide

DEVELOPING WITH ARCOBJECTS

ArcGIS applications are built using ArcObjects and can be developed via several
APIs. These include COM (VB, VC++, MainWin), .NET (VB.NET and C#),
Java, and C++. Some APIs are more suitable than others for developing certain
applications. This is briefly discussed later, but you should also read the appropri-
ate developer guide for the product you are working with for more information
and recommendations on which API to use.

The subsequent sections of this chapter cover some general guidelines and consid-
erations when developing with ArcObjects regardless of the API. Some of the
more common API languages each have a section describing the development
environment, programming techniques, resources, and other issues you must
consider when developing with ArcObjects.

CODING STANDARDS

Each of the language-specific sections begins with a section on coding standards
for that language. These standards are used internally at ESRI and are followed by
the samples that ship with the software.

To understand why standards and guidelines are important, consider that in any
large software development project, there are many backgrounds represented by
the team members. Each programmer has personal opinions concerning how code
should look and be built. If each programmer engineers code differently, it be-
comes increasingly difficult to share work and ideas. On a successful team, the
developers adapt their coding styles to the tone set by the group. Often, this
means adapting one’s code to match the style of existing code in the system.

Initially, this may seem burdensome, but adopting a uniform programming style
and set of techniques invariably increases software quality. When all the code in a
project conforms to a standard set of styles and conventions, less time is wasted
learning the particular syntactic quirks of individual programmers, and more time
can be spent reviewing, debugging, and extending the code. Even at a social level,
uniform style encourages team-oriented, rather than individualist, outlooks—
leading to greater team unity, productivity, and ultimately, better software.

GENERAL CODING TIPS AND RESOURCES

This section on general coding tips will benefit all developers working with
ArcObjects no matter what language they are using. Code examples are shown in
VBA, however.

Class diagrams
Getting help with the object model is fundamental to successfully working with
ArcObjects. Appendix A, ‘Reading the object model diagrams’, provides a
detailed introduction to the class diagrams and shows many of the common
routes through objects. The class diagrams are most useful if viewed in the early
learning process in printed form. This allows developers to appreciate the overall
structure of the object model implemented by ArcObjects. When you are com-
fortable with the overall structure, the PDF files included with the software
distribution can be more effective to work with. The PDF files are searchable;
you can use the Search dialog box in Acrobat Reader to find classes and interfaces
quickly.

For simplicity, some samples will not follow the
coding standards. For example, it is recom-

mended that when coding in Visual Basic, all
types defined within an ESRI object library are

prefixed with the library name, for example,
esriGeometry.IPolyline. This is only done in

samples in which a name clash will occur.
Omitting this text makes the code easier to
understand for developers new to ArcObjects.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM70

Chapter 4 • Developer environments • 71

Object browsers
In addition to the class diagram PDF files, the type library information can be
viewed using a number of object browsers, depending on your development
platform.

Visual Basic and .NET have built-in object browsers; OLEView (a free utility
from Microsoft) also displays type library information. The best object viewer to
use in this environment is the ESRI object viewer. This object viewer can be used
to view type information for any type library that you reference within it. Infor-
mation on the classes and interfaces can be displayed in Visual Basic, Visual C++,
or object diagram format. The object browsers can view coclasses and classes but
cannot be used to view abstract classes. Abstract classes are only viewable on the
object diagrams, where their use is solely to simplify the models.

Java and C++ developers should refer to the ArcObjects—Javadoc™ or ArcGIS
Developer Help.

Component help
All interfaces and coclasses are documented in the component help file. Ulti-
mately, this will be the help most commonly accessed when you get to know the
object models better.

For Visual Basic and .NET developers, this is a compiled HTML file that can be
viewed by itself or when using an IDE. If the cursor is over an ESRI type when
the F1 key is pressed, the appropriate page in the ArcObjects Class Help in the
ArcGIS Developer Help system is displayed in the compiled HTML viewer.

For Java and C++ developers, refer to ArcObjects—Javadoc or the ArcGIS
Developer Help system.

Code wizards
There are a number of code generation wizards available to help with the cre-
ation of boilerplate code in Visual Basic, Visual C++, and .NET. Although these
wizards are useful in removing the tediousness in common tasks, they do not
excuse you as the developer from understanding the underlying principles of the
generated code. The main objective should be to read the accompanying docu-
mentation and understand the limitations of these tools.

Indexing of collections
All collection-like objects in ArcObjects are zero based for their indexing. This is
not the case with all development environments; Visual Basic has both zero- and
one-based collections. As a general rule, if the collection base is not known,
assume that the collection base is zero. This ensures that a runtime error will be
raised when the collection is first accessed (assuming the access of the collection
does not start at zero). Assuming a base of one means the first element of a zero-
based collection would be missed and an error would only be raised if the end of
the collection were reached when the code is executed.

DEVELOPING WITH ARCOBJECTS

This graph shows the performance benefits of
accessing a collection using an enumerator as

opposed to the elements index. As expected, the
graph shows a classic power trend line (y=cxb).

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM71

72 • ArcGIS Engine Developer Guide

Accessing collection elements
When accessing elements of a collection sequentially, it is best to use an enumera-
tor interface. This provides the fastest method of walking through the collection.
The reason for this is that each time an element is requested by index, internally
an enumerator is used to locate the element. Hence, if the collection is looped
over getting each element in turn, the time taken increases exponentially (y=cxb).

Enumerator use
When requesting an enumerator interface from an object, the client has no idea
how the object has implemented this interface. The object may create a new
enumerator, or it may decide for efficiency to return a previously created enu-
merator. If a previous enumerator is passed to the client, the position of the
element pointer will be at the last accessed element. To ensure that the enumera-
tor is at the start of the collection, the client should reset the enumerator before
use.

Error handling
All methods of interfaces, in other words, methods callable from other objects,
should handle internal errors and signify success or failure via an appropriate
HRESULT. COM does not support passing exceptions out of interface method
calls. COM supports the notion of a COM exception. A COM exception utilizes
the COM error object by populating it with relevant information and returning an
appropriate HRESULT to signify failure. Clients, on receiving the HRESULT,
can then interrogate the COM Error object for contextual information about the
error. Languages, such as Visual Basic, implement their own form of exception
handling. For more information, see the specific section in this chapter for the
language with which you are developing.

Notification interfaces
There are a number of interfaces in ArcObjects that have no methods. These are
known as notification interfaces. Their purpose is to inform the application
framework that the class that implements them supports a particular set of
functionality. For instance, the application framework uses these interfaces to
determine if a menu object is a root-level menu (IRootLevelMenu) or a context
menu (IShortcutMenu).

Client-side storage
Some ArcObjects methods expect interface pointers to point to valid objects
prior to making the method call. This is known as client storage since the client
allocates the memory needed for the object before the method call. Suppose you
have a polygon, and you want to obtain its bounding box. To do this, use the
QueryEnvelope method on IPolygon. If you write the following code:
 Dim pEnv As IEnvelope

 pPolygon.QueryEnvelope pEnv

you’ll get an error because the QueryEnvelope method expects you (the client) to
create the Envelope. The method will modify the envelope you pass in and return
the changed one back to you. The correct code follows:

DEVELOPING WITH ARCOBJECTS

Exception handling is language specific, and since
COM is language neutral, exceptions are not

supported.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM72

Chapter 4 • Developer environments • 73

 Dim pEnv As IEnvelope

 Set pEnv = New Envelope

 pPolygon.QueryEnvelope pEnv

How do you know when to create and when not to create? In general, all meth-
ods that begin with “Query”, such as QueryEnvelope, expect you to create the
object. If the method name is GetEnvelope, then an object will be created for you.
The reason for this client-side storage is performance. When it is anticipated that
the method on an object will be called in a tight loop, the parameters need only
be created once and simply populated. This is faster than creating new objects
inside the method each time.

Property by value and by reference
Occasionally, you will see a property that can be set by value or by reference,
meaning that it has both a put_XXX and a putref_XXX method. On first appear-
ance, this may seem odd—Why does a property need to support both? A Visual
C++ developer sees this as simply giving the client the opportunity to pass own-
ership of a resource over to the server (using the putref_XXX method). A Visual
Basic developer will see this as quite different; indeed, it is likely because of the
Visual Basic developer that both By Reference and By Value are supported on the
property.

To illustrate this, assume there are two text boxes on a form, Text1 and Text2.
With a propput, it is possible to do the following in Visual Basic:
 Text1.text = Text2.text

It is also possible to write this:
 Text1.text = Text2

or this:
 Text1 = Text2

All these cases make use of the propput method to assign the text string of text
box Text2 to the text string of text box Text1. The second and third cases work
because no specific property is stated, so Visual Basic looks for the property with
a DISPID of 0.

This all makes sense assuming that it is the text string property of the text box
that is manipulated. What happens if the actual object referenced by the variable
Text2 is to be assigned to the variable Text1? If there were only a propput method,
it would not be possible; hence, the need for a propputref method. With the
propputref method, the following code will achieve the setting of the object
reference:
 Set Text1 = Text2

Initializing Outbound interfaces
When initializing an Outbound interface, it is important to only initialize the
variable if the variable does not already listen to events from the server object.
Failure to follow this rule will result in an infinite loop.

DEVELOPING WITH ARCOBJECTS

DISPIDs are unique IDs given to properties and
methods for the IDispatch interface to effi-

ciently call the appropriate method using the
Invoke method.

Notice the use of the “Set”.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM73

74 • ArcGIS Engine Developer Guide

As an example, assume there is a variable ViewEvents that has been dimensioned
as:
 Private WithEvents ViewEvents As Map

To correctly sink this event handler, you can write code within your initialization
routines like this:
set ViewEvents = MapControl1.map

DATABASE CONSIDERATIONS

When programming against the database, there are a number of rules that must
be followed to ensure that the code will be optimal. These rules are detailed
below.

If you are going to edit data programmatically, that is, not use the editing tools in
ArcMap, you need to follow these rules to ensure that custom object behavior,
such as network topology maintenance or triggering of custom feature-defined
methods, is correctly invoked in response to the changes your application makes
to the database. You must also follow these rules to ensure that your changes are
made within the multiuser editing (long transaction) framework.

Edit sessions
Make all changes to the geodatabase within an edit session, which is bracketed
between StartEditing and StopEditing method calls on the IWorkspaceEdit interface
found on the Workspace object.

This behavior is required for any multiuser update of the database. Starting an
edit session gives the application a state of the database that is guaranteed not to
change, except for changes made by the editing application.

In addition, starting an edit session turns on behavior in the geodatabase such that
a query against the database is guaranteed to return a reference to an existing
object in memory if the object was previously retrieved and is still in use.

This behavior is required for correct application behavior when navigating be-
tween a cluster of related objects while making modifications to objects. In other
words, when you are not within an edit session, the database can create a new
instance of a COM object each time the application requests a particular object
from the database.

Edit operations
Group your changes into edit operations, which are bracketed between the
StartEditOperation and StopEditOperation method calls on the IWorkspaceEdit inter-
face.

You may make all your changes within a single edit operation if so required. Edit
operations can be undone and redone. If you are working with data stored in
ArcSDE, creating at least one edit operation is a requirement. There is no addi-
tional overhead to creating an edit operation.

DEVELOPING WITH ARCOBJECTS

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM74

Chapter 4 • Developer environments • 75

Recycling and nonrecycling cursors
Use nonrecycling search cursors to select or fetch objects that are to be updated.
Recycling cursors should only be used for read-only operations, such as drawing
and querying features.

Nonrecycling cursors within an edit session create new objects only if the object
to be returned does not already exist in memory.

Fetching properties using query filters
Always fetch all properties of the object; query filters should always use “*”. For
efficient database access, the number of properties of an object retrieved from
the database can be specified. For example, drawing a feature requires only the
OID and the Shape of the feature; hence, the simpler renderers only retrieve these
two columns from the database. This optimization speeds up drawing but is not
suitable when editing features.

If all properties are not fetched, then object-specific code that is triggered may
not find the properties that the method requires. For example, a custom feature
developer might write code to update attributes A and B whenever the geometry
of a feature changes. If only the geometry was retrieved, then attributes A and B
would be found to be missing within the OnChanged method. This would cause
the OnChanged method to return an error, which would cause the Store to return
an error and the edit operation to fail.

Marking changed objects
After changing an object, mark the object as changed (and ensure that it is up-
dated in the database) by calling Store on the object. Delete an object by calling
the Delete method on the object. Set versions of these calls also exist and should
be used if the operation is being performed on a set of objects to ensure optimal
performance.

Calling these methods guarantees that all necessary polymorphic object behavior
built into the geodatabase is executed (for example, updating of network topol-
ogy or updating of specific columns in response to changes in other columns in
ESRI-supplied objects). It also guarantees that developer-supplied behavior is
correctly triggered.

Update and insert cursors
Never use update cursors or insert cursors to update or insert objects into object
and feature classes in an already-loaded geodatabase that has active behavior.

Update and insert cursors are bulk cursor APIs for use during initial database
loading. If used on an object or feature class with active behavior, they will
bypass all object-specific behavior associated with object creation, such as topol-
ogy creation, and with attribute or geometry updating such as automatic recalcu-
lation of other dependent columns.

DEVELOPING WITH ARCOBJECTS

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM75

76 • ArcGIS Engine Developer Guide

Shape and ShapeCopy geometry property
Make use of a Feature object’s Shape and ShapeCopy properties to optimally re-
trieve the geometry of a feature. To better understand how these properties relate
to a feature’s geometry, refer to the diagram to the left to see how features com-
ing from a data source are instantiated into memory for use within an application.

Features are instantiated from the data source using the following sequence:

1. The application requests a Feature object from a data source by calling the
appropriate geodatabase API method calls.

2. The geodatabase makes a request to COM to create a vanilla COM object of
the desired COM class (normally this class is esriGeoDatabase.Feature).

3. COM creates the Feature COM object.

4. The geodatabase gets attribute and geometry data from a data source.

5. The vanilla Feature object is populated with appropriate attributes.

6. The Geometry COM object is created, and a reference is set in the Feature
object.

7. The Feature object is passed to the application.

8. The Feature object exists in the application until it is no longer required.

USING A TYPE LIBRARY

Since objects from ArcObjects do not implement IDispatch, it is essential to make
use of a type library for the compiler to early-bind to the correct data types. This
applies to all development environments; although, for Visual Basic, Visual C++,
and .NET, there are wizards that help you set this reference.

The type libraries required by ArcObjects are located within the ArcGIS install
folder. For example, the COM type libraries can be found in the COM folder,
while the .NET Interop assemblies are within the DotNet folder. Many different
files can contain type library information, including EXEs, DLLs, OLE custom
controls (OCXs), and object libraries (OLBs).

COM DATA TYPES

COM objects talk via their interfaces, and hence, all data types used must be
supported by IDL. IDL supports a large number of data types; however, not all
languages that support COM support these data types. Because of this,
ArcObjects does not make use of all the data types available in IDL but limits the
majority of interfaces to the data type supported by Visual Basic. The following
table shows the data types supported by IDL and their corresponding types in a
variety of languages.

DEVELOPING WITH ARCOBJECTS

Application

DatabaseCOM

7

Geodatabase API

8

5

6

2 4

3

7

1

The diagram above clearly shows that the
Feature, which is a COM object, has another

COM object for its geometry. The Shape
property of the feature simply passes the

IGeometry interface pointer to this geometry
object out to the caller that requested the

shape. This means that if more than one client
requested the shape, all clients point to the

same geometry object. Hence, this geometry
object must be treated as read-only. No changes
should be performed on the geometry returned

from this property, even if the changes are
temporary. Anytime a change is to be made to a

feature’s shape, the change must be made on
the geometry returned by the ShapeCopy
property, and the updated geometry should

subsequently be assigned to the Shape property.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM76

Chapter 4 • Developer environments • 77

charboolean unsigned char unsupported

charbyte unsigned char unsupported

charsmall char unsupported

shortshort short Integer

intlong long Long

longhyper __int64 unsupported

floatfloat float Single

doubledouble double Double

charchar unsigned char unsupported

shortwchar_t wchar_t Integer

intenum enum Enum

Interface Ref.Interface Pointer Interface Pointer Interface Ref.

ms.com.VariantVARIANT VARIANT Variant

java.lang.StringBSTR BSTR String

[true/false]VARIANT_BOOL short (-1/0) Boolean

IDL Microsoft C++ Visual Basic JavaLanguage

Base types

Extended
types

Note the extended data types at the bottom of the table: VARIANT, BSTR, and
VARIANT_BOOL. Although it is possible to pass strings using data types such as
char and wchar_t, these are not supported in languages such as Visual Basic. Visual
Basic uses BSTRs as its text data type. A BSTR is a length-prefixed wide charac-
ter array in which the pointer to the array points to the text contained within it
and not the length prefix. Visual C++ maps VARIANT_BOOL values onto 0
and –1 for the False and True values, respectively. This is different from the
normal mapping of 0 and 1. Hence, when writing C++ code, be sure to use the
correct macros—VARIANT_FALSE and VARIANT_TRUE—not False and
True.

USING COMPONENT CATEGORIES

Component categories are used extensively in ArcObjects so developers can
extend the system without requiring any changes to the ArcObjects code that will
work with the new functionality.

ArcObjects uses component categories in two ways. The first requires classes to
be registered in the respective component category at all times—for example,
ESRI Mx Extensions. Classes, if present in that component category, have an
object that implements the IExtension interface and is instantiated when the
ArcMap application is started. If the class is removed from the component cat-
egory, the extension will not load, even if the map document (.mxd file) is refer-
encing that extension.

The second use is when the application framework uses the component category
to locate classes and display them to a user to allow some user customization to
occur. Unlike the first method, the application remembers (inside its map docu-
ment) the objects being used and will subsequently load them from the map
document. An example of this is the commands used within ArcMap. ArcMap
reads the ESRI Mx Commands category when the Customization dialog box is
displayed to the user. This is the only time the category is read. Once the user
selects a command and adds it to a toolbar, the map document is used to deter-
mine what commands should be instantiated. Later, when debugging in Visual
Basic is covered in ‘The Visual Basic 6 development environment’ section of this
chapter, you’ll see the importance of this.

DEVELOPING WITH ARCOBJECTS

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM77

78 • ArcGIS Engine Developer Guide

Now that you’ve seen two uses of component categories, you will see how to get
your classes registered into the correct component category. Development envi-
ronments have various levels of support for component categories; ESRI pro-
vides two ways of adding classes to a component category. The first can only be
used for commands and command bars that are added to either ArcMap or
ArcCatalog. Using the Add From File button on the Customize dialog box
(shown on the left), it is possible to choose a server. All classes in that server are
then added to either the ESRI Gx Commands or the ESRI Mx Commands,
depending on the application being customized. Although this utility is useful, it
is limited since it adds all the classes found in the server. It is not possible to
remove classes, and it only supports two of the many component categories
implemented within ArcObjects.

Distributed with ArcGIS applications is a utility application called the Compo-
nent Category Manager, shown on the left. This small application allows you to
add and remove classes from any of the component categories on your system,
not just ArcObjects categories. Expanding a category displays a list of classes in
the category. You can then use the Add Object button to display a checklist of all
the classes found in the server. You check the required classes, and these checked
classes are then added to the category.

Using these ESRI tools is not the only method of interacting with component
categories. During the installation of the server on the target user’s machine, it is
possible to add the relevant information to the registry using a registry script.
Below is one such script. The first line tells Windows for which version of
regedit this script is intended. The last line, starting with “[HKEY_LOCAL_”,
executes the registry command; all the other lines are comments in the file.
REGEDIT4

; This Registry Script enters coclasses into their appropriate Component
Category

; Use this script during installation of the components

; Coclass: Exporter.ExportingExtension

; CLSID: {E233797D-020B-4AD4-935C-F659EB237065}

; Component Category: ESRI Mx Extensions

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{E233797D-020B-4AD4-935C-
F659EB237065}\Implemented Categories\{B56A7C45-83D4-11D2-A2E9-080009B6F22B}]

The last line in the code above is one continuous line in the script.

The last method is for the self-registration code of the server to add the relevant
classes within the server to the appropriate categories. Not all development
environments allow this to be set up. Visual Basic has no support for component
categories, although there is an add-in that allows this functionality. See the
sections on Visual Basic developer add-ins and Active Template Library (ATL) in
the ArcGIS Developer Help.

DEVELOPING WITH ARCOBJECTS

The Customize dialog box in ArcMap and
ArcCatalog

The Component Category Manager

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM78

Chapter 4 • Developer environments • 79

The tables below summarize suggested naming
standards for the various elements of your Visual

Basic projects.

cls

frm

Prefix

Class

Form

Module Type

prj

bas

Project

Standard

Name your modules according to the overall
function they provide; do not leave any with

default names (such as “Form1”, “Class1”, or
“Module1”). In addition, prefix the names of

forms, classes, and standard modules with three
letters that denote the type of module, as shown

in the table above.

cbo

chk

Prefix

Combo box

Check box

Control Type

cdl

cmd

Common dialog

Command button

fra

frm

Frame

Form

grd

gph

Grid

Graph

iml

img

Image list

Image

lst

lbl

List box

Label

map

lvw

Map control

List view

mnu

msk

Menu

Masked edit

opt

ole

Option button

OLE client

pbr

pic

Progress bar

Picture box

srl

rtf

Scroll bar

Rich text box

sbr

sld

Status bar

Slider

txt

tab

Text box

Tab strip

tbr

tmr

Tool bar

Timer

tvwTree view

As with modules, name your controls according
to the function they provide; do not leave them

with default names since this leads to decreased
maintainability. Use the three-letter prefixes

above to identify the type of control.

USER INTERFACE STANDARDS

Consider preloading forms to increase the responsiveness of your application. Be
careful not to preload too many (preloading three or four forms is fine).

Use resource files (.res) instead of external files when working with bitmap files,
icons, and related files.

Make use of constructors and destructors to set variable references that are only
set when the class is loaded. These are the VB functions: Class_Initialize() and
Class_Terminate() or Form_Load() and Form_Unload(). Set all variables to Nothing
when the object is destroyed.

Make sure the tab order is set correctly for the form. Do not add scroll bars to the
tabbing sequence; it is too confusing.

Add access keys to those labels that identify controls of special importance on the
form (use the TabIndex property).

Use system colors where possible instead of hard-coded colors.

Variable declaration
• Always use Option Explicit (or turn on Require Variable Declaration in the VB

Options dialog box). This forces all variables to be declared before use and,
thereby, prevents careless mistakes.

• Use Public and Private to declare variables at module scope and Dim in local
scope. (Dim and Private mean the same at Module scope; however, using Private
is more informative.) Do not use Global anymore; it is available only for
backward compatibility with VB 3.0 and earlier.

• Always provide an explicit type for variables, arguments, and functions.
Otherwise, they default to Variant, which is less efficient.

• Only declare one variable per line unless the type is specified for each variable.

This line causes count to be declared as a Variant, which is likely to be unintended.
 Dim count, max As Long

This line declares both count and max as Long, the intended type.
 Dim count As Long, max As Long

These lines also declare count and max as Long and are more readable.
 Dim count As Long

 Dim max As Long

Parentheses
Use parentheses to make operator precedence and logic comparison statements
easier to read.
 Result = ((x * 24) / (y / 12)) + 42

 If ((Not pFoo Is Nothing) And (Counter > 200)) Then

THE VISUAL BASIC 6 ENVIRONMENT

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM79

80 • ArcGIS Engine Developer Guide

Use the following notation for naming variables
and constants:

[<libraryName.>][<scope_>]<type><name>

<name> describes how the variable is used or
what it contains. The <scope> and <type>

portions should always be lowercase, and the
<name> should use mixed case.

stdole

esriGeometry

Library Name

<empty>

Standard OLE COM Library

ESRI Object Library

Library

Simple variable data type

<libraryName>

g

c

Prefix

m

<empty>

public variable defined in a class form or
standard module

constant within a form or class

Variable scope

private variable defined in a class or form

local variable

<scope>

Boolean

Data Type

byte or unsigned char

function

handle

int (integer)

long

a pointer

string

b

Prefix

by

fn

h

i

l

p

s

doubled

<type>

Order of conditional determination
Visual Basic, unlike languages such as C and C++, performs conditional tests on
all parts of the condition, even if the first part of the condition is False. This
means you must not perform conditional tests on objects and interfaces that had
their validity tested in an earlier part of the conditional statement.
 ' The following line will raise a runtime error if pFoo is NULL.

 If ((Not pFoo Is Nothing) And (TypeOf pFoo.Thing Is IBar)) then

 End If

 ' The correct way to test this code is

 If (Not pFoo Is Nothing) Then

 If (TypeOf pFoo.Thing Is IBar) Then

 ' Perform action on IBar thing of Foo

 End If

 End If

Indentation
Use two spaces or a tab width of two for indentation. Since there is always only
one editor for VB code, formatting is not as critical an issue as it is for C++ code.

Default properties
Avoid using default properties except for the most common cases. They lead to
decreased legibility.

Intermodule referencing
When accessing intermodule data or functions, always qualify the reference with
the module name. This makes the code more readable and results in more effi-
cient runtime binding.

Multiple property operations
When performing multiple operations against different properties of the same
object, use a With … End With statement. It is more efficient than specifying the
object each time.
 With frmHello

 .Caption = "Hello world"

 .Font = "Playbill"

 .Left = (Screen.Width - .Width) / 2

 .Top = (Screen.Height - .Height) / 2

 End With

Arrays
For arrays, never change Option Base to anything other than zero, which is the
default. Use LBound and UBound to iterate over all items in an array.
 myArray = GetSomeArray

 For i = LBound(myArray) To UBound(myArray)

 MsgBox cstr(myArray(i))

 Next I

THE VISUAL BASIC 6 ENVIRONMENT

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM80

Chapter 4 • Developer environments • 81

Bitwise operators
Since And, Or, and Not are bitwise operators, ensure that all conditions using
them test only for Boolean values, unless, of course, bitwise semantics are what is
intended.
 If (Not pFoo Is Nothing) Then

 ' Valid Foo do something with it

 End If

Type suffixes
Refrain from using type suffixes on variables or function names, such as myString$
or Right$(myString), unless they are needed to distinguish 16-bit from 32-bit num-
bers.

Ambiguous type matching
For ambiguous type matching, use explicit conversion operators, such as CSng,
CDbl, and CStr, instead of relying on VB to pick which one will be used.

Simple image display
Use an ImageControl rather than a PictureBox for simple image display. It is much
more efficient.

Error handling
Always use On Error to ensure fault-tolerant code. For each function that does
error checking, use On Error to jump to a single error handler for the routine that
deals with all exceptional conditions that are likely to be encountered. After the
error handler processes the error—usually by displaying a message—it should
proceed by issuing one of the recovery statements shown on the table to the left.

Error handling in Visual Basic is not the same as general error handling in COM
(see the section ‘Working with HRESULTs’ in this chapter).

Event functions
Refrain from placing more than a few lines of code in event functions to prevent
highly fractured and unorganized code. Event functions should simply dispatch to
reusable functions elsewhere.

Memory management
To ensure efficient use of memory resources, the following points should be
considered:

• Unload forms regularly. Do not keep many forms loaded but invisible since
this consumes system resources.

• Be aware that referencing a form-scoped variable causes the form to be
loaded.

• Set unused objects to Nothing to free up their memory.

• Make use of Class_Initialize and Class_Terminate to allocate and destroy
resources.

THE VISUAL BASIC 6 ENVIRONMENT

Exit Sub

Recovery
Statement

Raise

Resume

Resume
Next

Frequency

usually

often

rarely

very rarely

Meaning

Function failed, pass control
back to caller

Raise a new error code in
the caller's scope

Error condition removed,
reattempt offending
statement

Ignore error and continue
with next statement

Recovery statements issued by error handlers

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM81

82 • ArcGIS Engine Developer Guide

While Wend constructs
Avoid While … Wend constructs. Use the Do While … Loop or Do Until ... Loop
instead because you can conditionally branch out of this construct.
 pFoos.Reset

 Set pFoo = pFoos.Next

 Do While (Not pFoo Is Nothing)

 If (pFoo.Answer = "Done") Then Exit Loop

 Set pFoo = pFoos.Next

 Loop

The Visual Basic Virtual Machine
The Visual Basic Virtual Machine (VBVM) contains the intrinsic Visual Basic
controls and services, such as starting and ending a Visual Basic application,
required to successfully execute all Visual Basic developed code.

The VBVM is packaged as a DLL that must be installed on any machine wanting
to execute code written with Visual Basic, even if the code has been compiled to
native code. If the dependencies of any Visual Basic compiled file are viewed,
the file msvbvm60.dll is listed; this is the DLL housing the Virtual Machine.

For more information on the services provided by the VBVM, see the sections
‘Interacting with the IUnknown interface’ and ‘Working with HRESULTs’ in this
chapter.

Interacting with the IUnknown interface
The section ‘The Microsoft Component Object Model’ earlier in this chapter
contains a lengthy section on the IUnknown interface and how it forms the basis
on which all of COM is built. Visual Basic hides this interface from developers
and performs the required interactions (QueryInterface, AddRef, and Release func-
tion calls) on the developer’s behalf. It achieves this because of functionality
contained within the VBVM. This simplifies development with COM for many
developers, but to work successfully with ArcObjects, you must understand what
the VBVM is doing.

Visual Basic developers are accustomed to dimensioning variables as follows:
 Dim pColn as New Collection ' Create a new collection object.

 PColn.Add "Foo", "Bar" ' Add element to collection.

It is worth considering what is happening at this point. From a quick inspection
of the code, it appears that the first line creates a collection object and gives the
developer a handle on that object in the form of pColn. The developer then calls a
method on the object Add. Earlier in the chapter you learned that objects talk via
their interfaces, never through a direct handle on the object itself. Remember,
objects expose their services via their interfaces. If this is true, something isn’t
adding up.

What is actually happening is some “VB magic” performed by the VBVM and
some trickery by the Visual Basic Editor (VBE) in the way that it presents objects
and interfaces. The first line of code instantiates an instance of the collection
class, then assigns the default interface for that object, _Collection, to the variable
pColn. It is this interface, _Collection, that has the methods defined on it. Visual

The VBVM was called the VB Runtime in earlier
versions of the software.

THE VISUAL BASIC 6 ENVIRONMENT

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM82

Chapter 4 • Developer environments • 83

Basic has hidden the interface-based programming to simplify the developer
experience. This is not an issue if all the functionality implemented by the object
can be accessed via one interface, but it is an issue when there are multiple inter-
faces on an object that provides services.

The Visual Basic Editor backs this up by hiding default interfaces from the
IntelliSense completion list and the object browser. By default, any interfaces that
begin with an underscore, “_”, are not displayed in the object browser (to display
these interfaces, turn Show Hidden Member on, although this will still not dis-
play default interfaces).

You have already learned that the majority of ArcObjects have IUnknown as their
default interface and that Visual Basic does not expose any of IUnknown’s meth-
ods, namely, QueryInterface, AddRef, and Release. Assume you have a class Foo that
supports three interfaces, IUnknown (the default interface), IFoo, and IBar. This
means that if you were to dimension the variable pFoo as below, the variable pFoo
would point to the IUnknown interfaces.
 Dim pFoo As New Foo ' Create a new Foo object

 pFoo.??????

Since Visual Basic does not allow direct access to the methods of IUnknown, you
would immediately have to QI for an interface with methods on it that you can
call. Because of this, the correct way to dimension a variable that will hold
pointers to interfaces is as follows:
 Dim pFoo As IFoo ' Variable will hold pointer to IFoo interface.

 Set pFoo = New Foo ' Create Instance of Foo object and QI for IFoo.

Now that you have a pointer to one of the object’s interfaces, it is an easy matter
to request from the object any of its other interfaces.
 Dim pBar as IBar ' Dim variable to hold pointer to interface

 Set pBar = pFoo ' QI for IBar interface

By convention, most classes have an interface with the same name as the class
with an “I” prefix; this tends to be the interface most commonly used when
working with the object. You are not restricted to which interface you request
when instantiating an object; any supported interface can be requested; hence, the
code below is valid.
 Dim pBar as IBar

 Set pBar = New Foo ' CoCreate Object

 Set pFoo = pBar ' QI for interface

Objects control their own lifetime, which requires clients to call AddRef anytime
an interface pointer is duplicated by assigning it to another variable and to call
Release anytime the interface pointer is no longer required. Ensuring that there are
a matching number of AddRefs and Releases is important, and fortunately, Visual
Basic performs these calls automatically. This ensures that objects do not “leak”.
Even when interface pointers are reused, Visual Basic will correctly call release on
the old interface before assigning the new interface to the variable. The following
code illustrates these concepts; note the reference count on the object at the
various stages of code execution.

THE VISUAL BASIC 6 ENVIRONMENT

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM83

84 • ArcGIS Engine Developer Guide

Private Sub VBMagic()

 ' Dim a variable to the IUnknown interface on the simple object.

 Dim pUnk As IUnknown

 ' Co Create simpleobject asking for the IUnknown interface.

 Set pUnk = New SimpleObject 'refCount = 1

 ' QI for a useful interface.

 ' Define the interface.

 Dim pMagic As ISimpleObject

 ' Perform the QI operation.

 Set pMagic = punk 'refCount = 2

 ' Dim another variable to hold another interface on the object.

 Dim pMagic2 As IAnotherInterface

 ' QI for that interface.

 Set pMagic2 = pMagic 'refCount = 3

 ' Release the interface pointer.

 Set pMagic2 = Nothing 'refCount = 2

 ' Release the interface.

 Set pMagic = Nothing 'refCount = 1

 ' Now reuse the pUnk variable - what will VB do for this?

 Set pUnk = New SimpleObject 'refCount = 1, then 0, then 1

 ' Let the interface variable go out of scope and let VB tidy up.

End Sub'refCount = 0

Often interfaces have properties that are actually pointers to other interfaces.
Visual Basic allows you to access these properties in a shorthand fashion by
chaining interfaces together. For instance, assume that you have a pointer to the
IFoo interface, and that interface has a property called Gak that is an IGak inter-
face with the method DoSomething. You have a choice on how to access the
DoSomething method. The first method is the long-handed way.
 Dim pGak as IGak

 Set pGak = pFoo ' Assign IGak interface to local variable.

 pGak.DoSomething ' Call method on IGak interface.

Alternatively, you can chain the interfaces and accomplish the same thing on one
line of code.
 pFoo.Gak.DoSomething ' Call method on IGak interface.

When looking at the sample code, you will see both methods. Normally, the
former method is used on the simpler samples, as it explicitly tells you what
interfaces are being worked with. More complex samples use the shorthand
method.

See the Visual Basic Magic sample on the disk
for this code. You are encouraged to run the

sample and use the code. This object also uses
an ATL C++ project to define the SimpleObject
and its interfaces; you are encouraged to look at
this code to learn a simple implementation of a

C++ ATL object.

THE VISUAL BASIC 6 ENVIRONMENT

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM84

Chapter 4 • Developer environments • 85

This technique of chaining interfaces together can always be used to get the value
of a property, but it cannot always be used to set the value of a property. Inter-
face chaining can only be used to set a property if all the interfaces in the chain
are set by reference. For instance, the code below would execute successfully.
 MapControl1.Map.Layers(0).Name = "Foo"

The above example works because both the Layer of the Map and the Map of the
map control are returned by reference. The lines of code below would not work
since the Extent envelope is set by value on the active view.
 MapControl1.ActiveView.Extent.Width = 32

The reason that this does not work is that the VBVM expands the interface chain
to get the end property. Because an interface in the chain is dealt with by value,
the VBVM has its own copy of the variable, not the one chained. To set the
Width property of the extent envelope in the above example, the VBVM must
write code similar to this:
 Dim pActiveView as IActiveView

 Set pActiveView = MapControl1.ActiveView

 Dim pEnv as IEnvelope

 Set pEnv = pActiveView.Extent ' This is a get by value.

 PEnv.Width = 32 ' The VBVM has set its copy of the Extent and not

 ' the copy inside the ActiveView.

For this to work, the VBVM requires the extra line below.
 pActiveView.Extent = pEnv ' This is a set by value.

Accessing ArcObjects
You will now see some specific uses of the create instance and query interface
operations that involve ArcObjects. To use an ArcGIS object in Visual Basic or
VBA, you must first reference the ESRI library that contains that object. If you
are using VBA inside ArcMap or ArcCatalog, most of the common ESRI object
libraries are already referenced for you. In standalone Visual Basic applications or
components, you will have to manually reference the required libraries.

You will start by identifying a simple object and an interface that it supports. In
this case, you will use a Point object and the IPoint interface. One way to set the
coordinates of the point is to invoke the PutCoords method on the IPoint interface
and pass in the coordinate values.
 Dim pPt As IPoint

 Set pPt = New Point

 pPt.PutCoords 100, 100

The first line of this simple code fragment illustrates the use of a variable to hold
a reference to the interface that the object supports. The line reads the IID for
the IPoint interface from the ESRI object library. You may find it less ambiguous
(as per the coding guidelines), particularly if you reference other object libraries
in the same project, to precede the interface name with the library name, for
example:
 Dim pPt As esriGeometry.IPoint

THE VISUAL BASIC 6 ENVIRONMENT

To find out what library an ArcObjects compo-
nent is in, review the object model diagrams in

the developer help or use the LibraryLocator tool
in your developer kit tools directory.

IID is short for Interface Identifier, a GUID.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM85

86 • ArcGIS Engine Developer Guide

That way, if there happens to be another IPoint referenced in your project, there
won’t be any ambiguity as to which one you are referring to.

The second line of the fragment creates an instance of the object or coclass, then
performs a QI operation for the IPoint interface that it assigns to pPt.

With a name for the coclass as common as Point, you may want to precede the
coclass name with the library name, for example:
 Set pPt = New esriGeometry.Point

The last line of the code fragment invokes the PutCoords method. If a method
can’t be located on the interface, an error will be shown at compile time.

Working with HRESULTs
So far, you have seen that all COM methods signify success or failure via an
HRESULT that is returned from the method; no exceptions are raised outside the
interface. You have also learned that Visual Basic raises exceptions when errors
are encountered. In Visual Basic, HRESULTs are never returned from method
calls, and to confuse you further when errors do occur, Visual Basic throws an
exception. How can this be? The answer lies with the Visual Basic Virtual Ma-
chine. It is the VBVM that receives the HRESULT; if this is anything other than
S_OK, the VBVM throws the exception. If it was able to retrieve any worth-
while error information from the COM error object, it populates the Visual Basic
Err object with that information. In this way, the VBVM handles all HRESULTs
returned from the client.

When implementing interfaces in Visual Basic, it is good coding practice to raise
an HRESULT error to inform the caller that an error has occurred. Normally, this
is done when a method has not been implemented.
 ' Defined in module

 Const E_NOTIMPL = &H80004001 ' Constant that represents HRESULT

 ' Added to any method not implemented

 On Error GoTo 0

 Err.Raise E_NOTIMPL

You must also write code to handle the possibility that an HRESULT other than
S_OK is returned. When this happens, an error handler should be called and the
error dealt with. This may mean simply notifying the user, or it may mean auto-
matically dealing with the error and continuing with the function. The choice
depends on the circumstances. Below is a simple error handler that will catch any
error that occurs within the function and report it to the user. Note the use of
the Err object to provide the user with some description of the error.
Private Sub Test()

 On Error GoTo ErrorHandler

 ' Do something here.

 Exit Sub ' Must exit sub here before error handler

ErrorHandler:

 Msgbox "Error In Application – Description " & Err.Description

End Sub

A QI is required since the default interface of
the object is IUnknown. Since the pPt variable

was declared as type IPoint, the default
IUnknown interface was QI’d for the IPoint

interface.

THE VISUAL BASIC 6 ENVIRONMENT

Coclass is an abbreviation of component object
class.

This is the compilation error message shown
when a method or property is not found on an

interface.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM86

Chapter 4 • Developer environments • 87

Working with properties
Some properties refer to specific interfaces in the ESRI object library, and other
properties have values that are standard data types, such as strings, numeric
expressions, and Boolean values. For interface references, declare an interface
variable and use the Set statement to assign the interface reference to the prop-
erty. For other values, declare a variable with an explicit data type or use Visual
Basic’s Variant data type. Then, use a simple assignment statement to assign the
value to the variable.

Properties that are interfaces can be set either by reference or value. Properties
that are set by value do not require the Set statement.
 Dim pEnv As IEnvelope

 Set pEnv = pActiveView.Extent ' Get extent property of view.

 pEnv.Expand 0.5, 0.5, True ' Shrink envelope.

 pActiveView.Extent = pEnv ' Set By Value extent back on IActiveView.

 Dim pFeatureLayer as IfeatureLayer

 Set pFeatureLayer = New FeatureLayer ' Create New Layer.

 Set pFeatureLayer.FeatureClass = pClass ' Set ByRef a class into layer.

As you might expect, some properties are read-only, others are write-only, and
still others are read/write. All the object browsers and the ArcObjects Class Help
(found in the ArcGIS Developer Help system) provide this information. If you
attempt to use a property and either forget or misuse the Set keyword, Visual
Basic will fail the compilation of the source code with a “method or data mem-
ber not found” error message. This error may seem strange since it may be given
for trying to assign a value to a read-only property. The reason for the message is
that Visual Basic is attempting to find a method in the type library that maps to
the property name. In the above examples, the underlying method calls in the
type library are put_Extent and putref_FeatureClass.

Working with methods
Methods perform some action and may or may not return a value. In some in-
stances, a method returns a value that’s an interface; for example, in the code
fragment below; TrackCircle returns an IPolygon interface.
Dim pCircle as IPolygon

set pCircle = MapControl1.TrackCircle

In other instances, a method returns a Boolean value that reflects the success of
an operation or writes data to a parameter; for example, the IsActive method of
IActiveView returns a value of true if the map is active.

Be careful not to confuse the idea of a Visual Basic return value from a method
call with the idea that all COM methods must return an HRESULT. The VBVM
is able to read type library information and set up the return value of the VB
method call to be the appropriate parameter of the COM method.

Working with events
Events let you know when something has occurred. You can add code to respond
to an event. For example, a command button has a Click event. You add code to

THE VISUAL BASIC 6 ENVIRONMENT

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM87

88 • ArcGIS Engine Developer Guide

perform some action when the user clicks the control. You can also add events
that certain objects generate. VBA and Visual Basic let you declare a variable with
the keyword WithEvents. WithEvents tells the development environment that the
object variable will be used to respond to the object’s events. This is sometimes
referred to as an “event sink”. The declaration must be made in a class module or
a form. Here’s how you declare a variable and expose the events of an object in
the Declarations section:
 Private WithEvents m_pViewEvents as Map

Visual Basic only supports one outbound interface (marked as the default out-
bound interface in the IDL) per coclass. To get around this limitation, the
coclasses that implement more than one outbound interface have an associated
dummy coclass that allows access to the secondary outbound interface. These
coclasses have the same name as the outbound interface they contain, minus the I.
 Private WithEvents m_pMapEvents as MapEvents

Once you’ve declared the variable, search for its name in the Object combo box
at the top left of the code window. Then, inspect the list of events to which you
can attach code in the Procedure/Events combo box at the top right of the code
window.

Not all procedures of the outbound event interface need to be stubbed out, as
Visual Basic will stub out any unimplemented methods. This is different from
inbound interfaces, in which all methods must be stubbed out for compilation to
occur.

Before the methods are called, the hookup between the event source and sink
must be made. This is done by setting the variable that represents the sink to the
event source.
 Set m_pMapEvents = MapControl1.Map

Pointers to valid objects as parameters
Some ArcGIS methods expect interfaces for some of their parameters. The
interface pointers passed can point to an instanced object before the method call
or after the method call is completed.

For example, if you have a polygon (pPolygon) whose center point you want to
find, you can write code as follows:
 Dim pArea As IArea

 Dim pPt As IPoint

 Set pArea = pPolygon ' QI for IArea on pPolygon

 Set pPt = pArea.Center

You don’t need to create pPt because the Center method creates a Point object for
you and passes back a reference to the object via its IPoint interface. Only meth-
ods that use client-side storage require you to create the object prior to the
method call.

Passing data between modules
When passing data between modules it is best to use accessor and mutator func-
tions that manipulate some private member variable. This provides data encapsu-
lation, which is a fundamental technique in object-oriented programming. Public
variables should never be used.

THE VISUAL BASIC 6 ENVIRONMENT

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM88

Chapter 4 • Developer environments • 89

For instance, you might have decided that a variable has a valid range of 1–100.
If you were to allow other developers direct access to that variable, they could
set the value to an illegal value. The only way of coping with these illegal values
is to check them before they get used. This is both error prone and tiresome to
program. The technique of declaring all variables as private member variables of
the class and providing accessor and mutator functions for manipulating these
variables will solve this problem.

In the example below, these properties are added to the default interface of the
class. Notice the technique used to raise an error to the client.
Private m_lPercentage As Long

Public Property Get Percentage() As Long

 Percentage = m_lPercentage

End Property

Public Property Let Percentage(ByVal lNewValue As Long)

 If (lNewValue >= 0) And (lNewValue <= 100) Then

 m_lPercentage = lNewValue

 Else

 Err.Raise vbObjectError + 29566, "MyProj.MyObject", _

 "Invalid Percentage Value. Valid values (0 -> 100)"

 End If

End Property

When you write code to pass an object reference from one form, class, or module
to another, for example:
 Private Property Set PointCoord(ByRef pPt As IPoint)

 Set m_pPoint = pPt

 End Property

your code passes a pointer to an instance of the IPoint interface. This means that
you are only passing the reference to the interface, not the interface itself; if you
add the ByVal keyword (as follows), the interface is passed by value.
 Private Property Let PointCoord(ByVal pPt As IPoint)

 Set m_pPoint = pPt

 End Property

In both of these cases the object pointed to by the interfaces is always passed by
reference. To pass the object by value, a clone of the object must be made, and
that is passed.

Using the TypeOf keyword
To check whether an object supports an interface, you can use Visual Basic’s
TypeOf keyword.

For example, given the first layer in a map control, you can test whether it is a
CAD layer using the following code:
 Dim pUnk As IUnknown

 Dim pCadLayer As ICadLayer

 Set pUnk = MapControl1.Layer(0)

THE VISUAL BASIC 6 ENVIRONMENT

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM89

90 • ArcGIS Engine Developer Guide

 If TypeOf pUnk Is ICadLayer Then

 Set pCadLayer = pUnk

 'do something with the layer

 End If

Using the Is operator
If your code requires you to compare two interface reference variables, you can
use the Is operator. Typically, you can use the Is operator in the following circum-
stances:

• To check if you have a valid interface. For an example, see the following
code:

 Dim pPt As IPoint

 Set pPt = New Point

 If (Not pPt Is Nothing) Then 'a valid pointer?

 ...' do something with pPt

 End If

• To check if two interface variables refer to the same actual object. Imagine
that you have two interface variables of type IPoint, pPt1, and pPt2. Are they
pointing to the same object? If they are, then pPt1 Is pPt2.

The Is keyword works with the COM identity of an object. Below is an example
that illustrates the use of the Is keyword when finding out if a certain method on
an interface returns a copy of or a reference to the same real object.

In the following example, the Extent property on a map (IMap) returns a copy,
while the ActiveView property on a MapControl always returns a reference to the
real object.
 Dim pEnv1 As IEnvelope

 Dim pEnv2 As IEnvelope

 Dim pActiveView1 As IActiveView

 Dim pActiveView2 As IActiveView

 Set pEnv1 = MapControl1.ActiveView.Extent

 Set pEnv2 = MapControl1.ActiveView.Extent

 Set pActiveView1 = MapControl1.ActiveView

 Set pActiveView2 = MapControl1.ActiveView

 'Extent returns a copy,

 'so pEnv1 is pEnv2 returns false

 MsgBox pEnv1 Is pEnv2

 'ActiveView returns a reference so,

 'ActiveView1 is ActiveView2 returns true

 MsgBox pActiveView1 Is pActiveView2

THE VISUAL BASIC 6 ENVIRONMENT

Enumerators can support other methods, but
these two methods are common among all

enumerators.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM90

Chapter 4 • Developer environments • 91

Iterating through a collection
In your work with ArcObjects, you’ll discover that, in many cases, you’ll be
working with collections. You can iterate through these collections with an
enumerator. An enumerator is an interface that provides methods for traversing a
list of elements. Enumerator interfaces typically begin with IEnum and have two
methods: Next and Reset. Next returns the next element in the set and advances
the internal pointer, and Reset resets the internal pointer to the beginning.

Here is some VB code that loops through the selected features (IEnumFeature) in a
map control.
 Dim pEnumFeat As IEnumFeature

 Dim pFeat As IFeature

 Set pEnumFeat = MapControl1.Map.FeatureSelection

 Set pFeat = pEnumFeat.Next

 Do While (Not pFeat Is Nothing)

 Debug.Print pFeat.Value(pFeat.Fields.FindField("state_name"))

 Set pFeat = pEnumFeat.Next

 Loop

Some collection objects, the Visual Basic Collection being one, implement a
special interface called _NewEnum. This interface, because of the _ prefix, is
hidden, but Visual Basic developers can still use it to simplify iterating through a
collection. The Visual Basic For Each construct works with this interface to
perform the Reset and Next steps through a collection.
 Dim pColn as Collection

 Set pColn = GetCollection()' Collection returned from some function

 Dim thing as Variant ' VB uses methods on _NewEnum to step through

 For Each thing in pColn ' an enumerator.

 MsgBox Cstr(thing)

 Next

THE VISUAL BASIC 6 ENVIRONMENT

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM91

92 • ArcGIS Engine Developer Guide

THE VISUAL BASIC 6 DEVELOPMENT ENVIRONMENT

The previous section of this chapter focused primarily on how to write code in
the VBA development environment embedded within the ArcGIS Desktop
applications. This section focuses on particular issues related to creating ActiveX
DLLs that can be added to the applications and writing external standalone
applications using the Visual Basic development environment.

CREATING COM COMPONENTS

Most developers use Visual Basic to create a COM component that works with
ArcMap or ArcCatalog. Earlier in this chapter you learned that since the ESRI
applications are COM clients—their architecture supports the use of software
components that adhere to the COM specification—you can build components
with different languages including Visual Basic. These components can then be
added to the applications easily. For information about packaging and deploying
COM components that you’ve built with Visual Basic, see Chapter 5, ‘Licensing
and deployment’, in this guide.

This section is not intended as a Visual Basic tutorial; rather, it highlights aspects
of Visual Basic that you should know to be effective when working with
ArcObjects.

In Visual Basic you can build a COM component that will work with ArcMap or
ArcCatalog by creating an ActiveX DLL. This section will review the rudimentary
steps involved. Note that these steps are not all-inclusive. Your project may
involve other requirements.

1. Start Visual Basic. In the New Project dialog box, create an ActiveX DLL
Project.

2. In the Properties window, make sure that the Instancing property for the
initial class module and any other class modules you add to the Project are set
to 5—MultiUse.

3. Reference the ESRI object libraries that you will require.

4. Implement the required interfaces. When you implement an interface in a class
module, the class provides its own versions of all the public procedures speci-
fied in the type library of the interface. In addition to providing mapping
between the interface prototypes and your procedures, the Implements state-
ment causes the class to accept COM QueryInterface calls for the specified
interface ID. You must include all the public procedures involved. A missing
member in an implementation of an interface or class causes an error. If you
don’t put code in one of the procedures in a class you are implementing, you
can raise the appropriate error (Const E_NOTIMPL = &H80004001). That
way, if someone else uses the class, they’ll understand that a member is not
implemented.

5. Add any code that’s needed.

6. Establish the Project Name and other properties to identify the component. In
the Project Properties dialog box, the project name you specify will be used as
the name of the component’s type library. It can be combined with the name
of each class the component provides to produce unique class names (these
names are also called ProgIDs). These names appear in the Component Cat-
egory Manager. Save the project.

The ESRI VB Add-In interface implementer can
be used to automate Steps 3 and 4.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM92

Chapter 4 • Developer environments • 93

7. Compile the DLL.

8. Set the component’s Version Compatibility to binary. As your code evolves, it’s
good practice to set the components to Binary Compatibility so, if you make
changes to a component, you’ll be warned that you’re breaking compatibility.
For additional information, see the ‘Binary compatibility mode’ help topic in
the Visual Basic online help.

9. Save the project.

10. Make the component available to the application. You can add a component
to a document or template by clicking the Add from file button in the Cus-
tomize dialog box’s Commands tab. In addition, you can register a component
in the Component Category Manager.

IMPLEMENTING INTERFACES

You implement interfaces differently in Visual Basic, depending on whether they
are inbound or outbound interfaces. An outbound interface is seen by Visual
Basic as an event source and is supported through the WithEvents keyword. To
handle the outbound interface, IActiveViewEvents, in Visual Basic (the default
outbound interface of the Map class), use the WithEvents keyword and provide
appropriate functions to handle the events.
 Private WithEvents ViewEvents As Map

 Private Sub ViewEvents_SelectionChanged()

 ' User changed feature selection update my feature list form

 UpdateMyFeatureForm

 End Sub

Inbound interfaces are supported with the Implements keyword. However, unlike
the outbound interface, all the methods defined on the interface must be stubbed
out. This ensures that the vTable is correctly formed when the object is instanti-
ated. Not all the methods have to be fully coded, but the stub functions must be
there. If the implementation is blank, an appropriate return code should be given
to any client to inform them that the method is not implemented (see the section
‘Working with HRESULTs’ in this chapter). To implement the IExtension inter-
face, code similar to that below is required. Note that all the methods are imple-
mented.
Private m_pApp As IApplication

Implements IExtension

 Private Property Get IExtension_Name() As String

 IExtension_Name = "Sample Extension"

End Property

Private Sub IExtension_Startup(ByRef initializationData As Variant)

 Set m_pApp = initializationData

End Sub

Private Sub IExtension_Shutdown()

 Set m_pApp = Nothing

End Sub

THE VISUAL BASIC 6 DEVELOPMENT ENVIRONMENT

Visual Basic automatically generates the
necessary GUIDs for the classes, interfaces, and

libraries. Setting binary compatibility forces VB to
reuse the GUIDs from a previous compilation of

the DLL. This is essential, since ArcMap stores
the GUIDs of commands in the document for

subsequent loading.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM93

94 • ArcGIS Engine Developer Guide

After the applicable ESRI object libraries are
referenced, all the types contained within them

are available in Visual Basic. IntelliSense will also
work with the contents of the object libraries.

SETTING REFERENCES TO THE ESRI OBJECT LIBRARIES

The principal difference between working with the VBA development environ-
ment embedded in the applications and working with Visual Basic is that the
latter environment requires that you load the appropriate object libraries so that
any object variables that you declare can be found. If you don’t add the refer-
ence, you’ll get the error message shown on the left. In addition, the global vari-
ables ThisDocument and Application are not available to you.

Adding a reference to an object library
Depending on what you want your code to do, you may need to add several ESRI
object and extension libraries. You can determine what library an object belongs
to by reviewing the object model diagrams in the developer help or by using the
LibraryLocator tool located in the Tools directory of your developer kit.

To display the References dialog box in which you can set the references you
need, select References in the Visual Basic Project menu.

After you set a reference to an object library by selecting the check box next to its
name, you can find a specific object and its methods and properties in the object
browser.

If you are not using any objects in a referenced library, you should clear the check
box for that reference to minimize the number of object references Visual Basic
must resolve, thus reducing the time it takes your project to compile. You should
not remove a reference for an item that is used in your project.

You can’t remove the “Visual Basic for Applications” and “Visual Basic objects
and procedures” references because they are necessary for running Visual Basic.

REFERRING TO A DOCUMENT

Each VBA project (Normal, Project, TemplateProject) has a class called
ThisDocument, which represents the document object. Anywhere you write code
in VBA you can reference the document as ThisDocument. Further, if you are
writing your code in the ThisDocument code window, you have direct access to all
the methods and properties on IDocument. This is not available in Visual Basic.
You must first refer to the Application, then the document. When adding both
extensions and commands to ArcGIS applications, a pointer to the IApplication
interface is provided.
Implements IExtension

Private m_pApp As IApplication

Private Sub IExtension_Startup(ByRef initializationData As Variant)

 Set m_pApp = initializationData ' Assign IApplication.

End Sub

Implements ICommand

Private m_pApp As IApplication

Private Sub ICommand_OnCreate(ByVal hook As Object)

 Set m_pApp = hook ' QI for IApplication.

End Sub

THE VISUAL BASIC 6 DEVELOPMENT ENVIRONMENT

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM94

Chapter 4 • Developer environments • 95

Singletons are objects that only support one
instance of the object. These objects have a class

factory that ensures that anytime an object is
requested, a pointer to an already existing object

is returned.

Now that a reference to the application is in an IApplication pointer member
variable, the document and all other objects can be accessed from any method
within the class.
 Dim pDoc as IDocument

 Set pDoc = m_pApp.Document

 MsgBox pDoc.Name

GETTING TO AN OBJECT

In the previous example, navigating around the objects within ArcMap was a
straightforward process since a pointer to the Application object, the root object
of most of the ArcGIS application’s objects, was passed to the object via one of
its interfaces. This, however, is not the case with all interfaces that are imple-
mented within the ArcObjects application framework. There are cases when you
may implement an object that exists within the framework, and there is no
possibility to traverse the object hierarchy from that object. This is because few
objects support a reference to their parent object (the IDocument interface has a
property named Parent that references the IApplication interface). To give develop-
ers access to the application object, there is a singleton object that provides a
pointer to the running application object. The code below illustrates its use.
 Dim pAppRef As New AppRef

 Dim pApp as IApplication

 Set pApp = pAppRef

You must be careful to ensure that this object is only used where the implementa-
tion will always run only within ArcMap and ArcCatalog. For instance, it would
not be a good idea to make use of this function from within a custom feature
since that would restrict what applications could be used to view the feature
class.

RUNNING ARCMAP WITH A COMMAND-LINE ARGUMENT

You can start ArcMap from the command line and pass it an argument that is
either the pathname of a document (.mxd) or the pathname of a template
(.mxt). In the former case, ArcMap will open the document; in the latter case,
ArcMap will create a new document based on the template specified.

You can also pass an argument and create an instance of ArcMap by supplying
arguments to the Win32 API’s ShellExecute function or Visual Basic’s Shell func-
tion as follows:
 Dim ret As Variant

 ret = Shell("C:\Program Files\arcgis\bin\arcmap.exe _

 C:\Program Files\arcgis\bin\templates\LetterPortrait.mxt", vbNormalFocus)

By default, Shell runs other programs asynchronously. This means that ArcMap
might not finish executing before the statements following the Shell function are
executed.

To execute a program and wait until it is terminated, you must call three Win32
API functions. First, call the CreateProcessA function to load and execute
ArcMap. Next, call the WaitForSingleObject function, which forces the operating
system to wait until ArcMap has been terminated. Finally, when the user has
terminated the application, call the CloseHandle function to release the
application’s 32-bit identifier to the system pool.

THE VISUAL BASIC 6 DEVELOPMENT ENVIRONMENT

In Visual Basic, it is not possible to determine
the command line used to start the application.

There is a sample on disk that provides this
functionality. It can be found at <ArcGIS Devel-

oper Kit install>\samples\COM
Techniques\Command Line.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM95

96 • ArcGIS Engine Developer Guide

DEBUGGING VISUAL BASIC CODE

Visual Basic has a debugger integrated into its development environment. This is,
in many cases, a valuable tool when debugging Visual Basic code; however, in
some cases it is not possible to use the VB debugger. The use of the debugger and
these special cases are discussed below.

Running the code within an application
It is possible to use the Visual Basic debugger to debug your ArcObjects software-
based source code even when ActiveX DLLs are the target server. The applica-
tion that will host your DLL must be set as the Debug application. To do this,
select the appropriate application, ArcMap.exe, for instance, and set it as the Start
Program in the Debugging options of the Project Properties.

Using commands on the Debug toolbar, ArcMap can be started and the DLL
loaded and debugged. Break points can be set, lines stepped over, functions
stepped into, and variables checked. Moving the line pointer in the left margin
can also set the current execution line.

Visual Basic debugger issues
In many cases, the Visual Basic debugger will work without any problems; how-
ever, there are two problems when using the debugger that is supplied with
Visual Basic 6. Both of these problems exist because of the way that Visual Basic
implements its debugger.

Normally when running a tool within ArcMap, the DLL is loaded into ArcMap
address space, and calls are made directly into the DLL. When debugging, this is
not the case. Visual Basic makes changes to the registry so that the class identifier
(CLSID) for your DLL does not point to your DLL but, instead, points to the
Visual Basic Debug DLL (VB6debug.dll). The Debug DLL must then support all
the interfaces implemented by your class on the fly. With the VB Debug DLL
loaded into ArcMap, any method calls that come into the DLL are forwarded to
Visual Basic, where the code to be debugged is executed. The two problems with
this are caused by the changes made to the registry and the cross-process space
method calling. When these restrictions are first encountered, it can be confusing
since the object works outside the debugger or at least until it hits the area of
problem code.

Since the method calls made from ArcMap to the custom tool are across apart-
ments, there is a requirement for the interfaces to be marshalled. This marshalling
causes problems in certain circumstances. Most data types can be automatically
marshalled by the system, but there are a few that require custom code because
the standard marshaller does not support the data types. If one of these data
types is used by an interface within the custom tool and there is no custom mar-
shalling code, the debugger will fail with an “Interface not supported” error.

The registry manipulation also breaks the support for component categories. Any
time there is a request on a component category, the category manager within
COM will be unable to find your component because, rather than asking whether
your DLL belongs to the component category, COM is asking whether the VB

THE VISUAL BASIC 6 DEVELOPMENT ENVIRONMENT

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM96

Chapter 4 • Developer environments • 97

debugger DLL belongs to the component category, and it doesn’t. What this
means is that anytime a component category is used to automate the loading of a
DLL, the DLL cannot be debugged using the Visual Basic debugger.

This causes problems for many of the ways to extend the framework. The most
common way to extend the framework is to add a command or tool. Previously,
it was discussed how component categories were used in this instance. Remember
that the component category was only used to build the list of commands in the
dialog box. This means that if the command to be debugged is already present on
a toolbar, the Visual Basic debugger can be used. Hence, the procedure for debug-
ging Visual Basic objects that implement the ICommand interface is to ensure that
the command is added to a toolbar when ArcMap is executed standalone and,
after saving the document, load ArcMap through the debugger.

In some cases, such as extensions and property pages, it is not possible to use the
Visual Basic debugger. If you have access to the Visual C++ debugger, you can
use one of the options outlined below. Fortunately, there are a number of ESRI
Visual Basic Add-ins that make it possible to track down the problem quickly and
effectively. The add-ins, described in ArcGIS Developer Help in the section
‘Visual Basic Developer Add-Ins’, provide error log information including line
and module details. A sample output from an error log is given below; note the
call stack information along with line numbers.
Error Log saved on : 8/28/2000 - 10:39:04 AM

Record Call Stack Sequence - Bottom line is error line.

 chkVisible_MouseUp C:\Source\MapControl\Commands\frmLayer.frm Line : 196

 RefreshMap C:\Source\MapControl\Commands\frmLayer.frm Line : 20

Description

 Object variable or With block variable not set

Alternatives to the Visual Basic debugger
If the Visual Basic debugger and add-ins do not provide enough information, the
Visual C++ debugger can be used, either on its own or with C++ ATL wrapper
classes. The Visual C++ debugger does not run the object to be debugged out of
process from ArcMap, which means that none of the above issues apply. Common
debug commands are given in the Visual C++ section ‘Debugging tips in Devel-
oper Studio’. Both techniques below require the Visual Basic project to be com-
piled with debug symbol information.

The Visual C++ debugger can work with this symbolic debug information and
the source files.

Visual C++ debugger
It is possible to use the Visual C++ debugger directly by attaching to a running
process that has the Visual Basic object to be debugged loaded and setting a break
point in the Visual Basic file. When the line of code is reached, the debugger will
halt execution and step into the source file at the correct line. The required steps
are as follows:

1. Start an appropriate application, such as ArcMap.exe.

THE VISUAL BASIC 6 DEVELOPMENT ENVIRONMENT

Create debug symbol information using the
Create Symbolic Debug Info option on the

Compile tab of the Project Properties dialog box.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM97

98 • ArcGIS Engine Developer Guide

2. Start Microsoft Visual C++.

3. Attach to the ArcMap process using the Menu options Build > Start Debug >
Attach to process.

4. Load the appropriate Visual Basic Source file into the Visual C++ debugger
and set the break point.

5. Call the method within ArcMap.

No changes can be made to the source code within the debugger, and variables
cannot be inspected, but code execution can be viewed and altered. This is often
sufficient to determine what is wrong, especially with logic-related problems.

ATL wrapper classes
Using the ATL, you can create a class that implements the same interfaces as the
Visual Basic class. When you create the ATL object, you create the Visual Basic
object. All method calls are then passed to the Visual Basic object for execution.
You debug the contained object by setting a break point in the appropriate C++
wrapper method, and when the code reaches the break point, the debugger
proceeds through the Visual Basic code. For more information on this technique,
look at the ATL debugger sample in the Developer Samples of the ArcGIS
Developer Help system.

THE VISUAL BASIC 6 DEVELOPMENT ENVIRONMENT

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM98

Chapter 4 • Developer environments • 99

VISUAL C++

Developing in Visual C++ is a large and complex subject, as it provides a much
lower level of interaction with the underlying Windows APIs and COM APIs
when compared to other development environments.

While this can be a hindrance for rapid application development, it is the most
flexible approach. A number of design patterns, such as COM aggregation and
singletons, that are possible in Visual C++ are not possible in Visual Basic 6. By
using standard class libraries, such as ATL, the complex COM plumbing code can
be hidden. However, it is still important to have a thorough understanding of the
underlying ATL COM implementation.

The documentation in this section is based on Microsoft Visual C++ version 6
and provides some guidance for ArcGIS development in this environment. With
the release of Visual Studio C++ .NET (also referred to as VC7), many new
enhancements are available to the C++ developer. While VC7 can work with the
managed .NET environment and it is possible to work with the ArcGIS .NET
API, this will only add overhead to access the underlying ArcGIS COM objects.
So for the purposes of ArcGIS development in VC7, it is recommended to work
the “traditional” way—that is, directly with the ArcGIS COM interfaces and
objects.

With the addition of the Visual C# .NET language, it is worth considering
porting Visual C++ code to this environment and using the ArcGIS .NET API.
The syntax of C# is not unlike C++, but the resulting code is generally simpler
and more consistent.

This section is intended to serve two main purposes:

• To familiarize you with general Visual C++ coding style and debugging, begin-
ning with a discussion on ATL

• To detail specific usage requirements and recommendations for working with
the ArcObjects programming platform in Visual C++

WORKING WITH ATL

This section cannot cover all the topics that a developer working with ATL
should know to be effective, but it will serve as an introduction to ATL. ATL
helps you implement COM objects and saves typing, but it does not excuse you
from knowing C++ and how to develop COM objects.

ATL is the recommended framework for implementing COM objects. The ATL
code can be combined with Microsoft Foundation Class Library (MFC) code,
which provides more support for writing applications. An alternative to MFC is
the Windows Template Library (WTL), which is based on the ATL template
methodology and provides many wrappers for window classes and other applica-
tion support for ATL. WTL is available for download from Microsoft; at the time
of writing, version 7.1 is the latest and can be used with Visual C++ version 6
and Visual C++ .NET.

ATL in brief
ATL is a set of C++ template classes designed to be small, fast, and extensible,
based loosely on the Standard Template Library (STL). STL provides generic
template classes for C++ objects, such as vectors, stacks, and queues. ATL also

There are many enhancements to ATL in VC7.
Some of the relevant changes are covered in the

section ‘ATL in Visual C++ .NET’ later in this
chapter.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM99

100 • ArcGIS Engine Developer Guide

VISUAL C++

provides a set of wizards that extends the Visual Studio development environ-
ment. These wizards automate some of the tedious plumbing code that all ATL
projects must have. The wizards include, but are not limited to, the following:

• Application—Used to initialize an ATL C++ project.

• Object—Used to create COM objects. Both C++ and IDL code are generated,
along with the appropriate code to support the creation of the objects at
runtime.

• Property—Used to add properties to interfaces.

• Method—Used to add methods to interfaces; both the Property and Method
wizards require you to know some IDL syntax.

• Interface Implementation—Used to implement stub functions for existing
interfaces.

• Connection Point Implement—Used to implement outbound events’ inter-
faces.

Typically, these are accessed by a right-click on a project, class, or interface in
Visual Studio Workspace/Class view.

ATL provides base classes for implementing COM objects as well as implementa-
tions for some of the common COM interfaces, including IUnknown, IDispatch,
and IClassFactory. There are also classes that provide support for ActiveX controls
and their containers.

ATL provides the required services for exposing ATL-based COM objects includ-
ing registration, server lifetime, and class objects.

These template classes build a hierarchy that sandwiches your class. These inherit-
ances are shown to the left. The CComxxxThreadModel class supports thread-safe
access to global, instance, and static data. The CComObjectRootEx class provides
the behavior for the IUnknown methods. The interfaces at the second level repre-
sent the interfaces that the class will implement; these come in two varieties. The
IxxxImpl interface contains ATL-supplied interfaces that also include an imple-
mentation; the other interfaces have pure virtual functions that must be fully
implemented within your class. The CComObject class inherits your class; this class
provides the implementation of the IUnknown methods along with the object
instantiation and lifetime control.

ATL and DTC
Along with smart types, covered later in this chapter, Direct-To-COM (DTC)
provides some useful compiler extensions you can use when creating ATL-based
objects. The functions __declspec and __uuidof are two such functions, but the
most useful is the #import command.

COM interfaces are defined in IDL, then compiled by the Microsoft IDL com-
piler (MIDL.exe). This results in the creation of a type library and header files.
The project uses these files automatically when compiling software that refer-
ences these interfaces. This approach is limited in that, when working with
interfaces, you must have access to the IDL files. As a developer of ArcGIS, you
only have access to the ArcGIS type library information contained in .olb and

CComObject<CMyObject>

CMyObject

CComObjectRootEx<>

IMyInt2

IMyIntIXxxImpl

CComXxxThreadModel

The hierarchical layers of ATL

A more detailed discussion on Direct- To-COM
follows in the section ‘Direct-To-COM smart

types’.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM100

Chapter 4 • Developer environments • 101

VISUAL C++

.ocx files. While it is possible to engineer a header file from a type library, it is a
tedious process. The #import command automates the creation of the necessary
files required by the compiler. Since the command was developed to support
DTC, when using it to import ArcGIS type libraries, there are a number of
parameters that must be passed so the correct import takes place. For further
information on this process, see the later section ‘Importing ArcGIS type librar-
ies’.

Handling errors in ATL
It is possible to just return an E_FAIL HRESULT code to indicate the failure
within a method; however, this does not give the caller any indication of the
nature of the failure. There are a number of Windows-standard HRESULTs
available, for example, E_INVALIDARG (one or more arguments are invalid)
and E_POINTER (invalid pointer). These error codes are listed in the window
header file winerror.h. Not all development environments have comprehensive
support for HRESULT; Visual Basic clients often see error results as “Automation
Error—Unspecified Error”. ATL provides a simple mechanism for working with
the COM error information object that can provide an error string description, as
well as an error code.

When creating an ATL object, the Object wizard has an option to support
ISupportErrorInfo. If you toggle the option on, when the wizard completes, your
object will implement the interface ISupportErrorInfo, and a method will be added
that looks something like this:
STDMETHODIMP MyClass::InterfaceSupportsErrorInfo(REFIID riid)

{

static const IID* arr[] =

{

&IID_IMyClass,

};

for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++)

{

if (InlineIsEqualGUID(*arr[i], riid))

return S_OK;

}

return S_FALSE;

}

It is now possible to return rich error messages by calling one of the ATL error
functions. These functions even work with resource files to ensure easy interna-
tionalization of the message strings.

// Return a simple string.

AtlReportError(CLSID_MyClass, _T("No connection to Database."),
IID_IMyClass, E_FAIL);

// Get the Error Text from a resource string

AtlReportError(CLSID_MyClass, IDS_DBERROR, IID_IMyClass, E_FAIL,
_Module.m_hInstResource);

To extract an error string from a failed method, use the Windows function
GetErrorInfo. This is used to retrieve the last IErrorInfo object on the current
thread and clears the current error state.

Although Visual C++ does support an exception
mechanism (try ... catch), it is not recommended

to mix this with COM code. If an exception
unwinds out of a COM interface, there is no

guarantee the client will be able to catch this,
and the most likely result is a crash.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM101

102 • ArcGIS Engine Developer Guide

VISUAL C++

Linking ATL code
One of the primary purposes of ATL is to support the creation of small, fast
objects. To support this, ATL gives the developer a number of choices when
compiling and linking the source code. Choices must be made about how to link
or dynamically access the C runtime (CRT) libraries, the registration code, and the
various ATL utility functions. If no CRT calls are made in the code, this can be
removed from the link. If CRT calls are made and the linker switch
_ATL_MIN_CRT is not removed from the link line, the following error will be
generated during the build:
LIBCMT.lib(crt0.obj) : error LNK2001: unresolved external symbol _main

ReleaseMinSize/History.dll : fatal error LNK1120: 1 unresolved externals

Error executing link.exe.

When compiling a debug build, there will probably not be a problem; however,
depending on the code written, there may be problems when compiling a release
build. If you receive this error either remove the CRT calls or change the linker
switches.

If the utilities code is dynamically loaded at runtime, you must ensure that the
appropriate DLL (ATL.dll) is installed and registered on the user’s system. The
ArcGIS 9 runtime installation will install ATL.dll. The table below shows the
various choices and the related linker switches.

Utilities Registrar

Debug static dynamic

RelMinSize
dynamic dynamic

RelMinDepend
static static

CRT

yes

no

no

Symbols

_ATL_MIN_CRT
_ATL_DLL

_ATL_MIN_CRT
_ATL_STATIC_REGISTRY

By default, there are build configurations for ANSI and Unicode builds. A com-
ponent that is built with ANSI compilation will run on Windows 9.x; however,
considering that ArcGIS is only supported on Unicode operating systems
(Windows NT®, Windows 2000, and Windows XP), these configurations are
redundant. To delete a configuration in Visual Studio, click Build > Configura-
tions. Then delete Win32 Debug, Win32 Release MinSize, and Win32 Release
MinDependency.

Registering a COM component
The ATL project wizard generates the standard Windows entry points for regis-
tration. This code will register the DLL’s type library and execute a registry script
file (.rgs) for each COM object within the DLL. Additional C++ code to perform
other registration tasks can be inserted into these functions.
STDAPI DllRegisterServer(void)

{

// Registers object in .rgs, typelib, and all interfaces in typelib

// TRUE instructs the type library to be registered.

return _Module.RegisterServer(TRUE);

}

STDAPI DllUnregisterServer(void)

{

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM102

Chapter 4 • Developer environments • 103

VISUAL C++

return _Module.UnregisterServer(TRUE);

}

ATL provides a text file format, .rgs, that is parsed by the ATL’s registrar compo-
nent when a DLL is registered and unregistered. The .rgs file is built into a DLL
as a custom resource. The file can be edited to add additional registry entries and
contains ProgID, ClassID, and component category entries. The syntax describes
keys, values, names, and subkeys to be added to or removed from the registry. The
format can be summarized as follows:
[NoRemove | ForceRemove | val] Name | [= s 'Value' | d 'Value' | b 'Value']

{

.. optional subkeys for the registry

}

NoRemove signifies that the registry key should not be removed on unregistration.
ForceRemove will ensure the key and subkeys are removed before registering the
new keys. The s, d, and b values indicate string (enclosed with apostrophes),
double word (32-bit integer value), and binary registry values. A typical registra-
tion script is shown below.
HKCR

{

SimpleObject.SimpleCOMObject.1 = s 'SimpleCOMObject Class'

{

CLSID = s '{2AFFC10E-ECFB-4697-8B3D-0405650B7CFB}'

}

SimpleObject.SimpleCOMObject = s 'SimpleCOMObject Class'

{

CLSID = s '{2AFFC10E-ECFB-4697-8B3D-0405650B7CFB}'

CurVer = s 'SimpleObject.SimpleCOMObject.1'

}

NoRemove CLSID

{

ForceRemove {2AFFC10E-ECFB-4697-8B3D-0405650B7CFB} = s 'SimpleCOMObject
Class'

{

ProgID = s 'SimpleObject.SimpleCOMObject.1'

VersionIndependentProgID = s 'SimpleObject.SimpleCOMObject'

InprocServer32 = s '%MODULE%'

{

val ThreadingModel = s 'Apartment'

}

'TypeLib' = s '{855DD226-5938-489D-986E-149600FEDD63}'

'Implemented Categories'

{

{7DD95801-9882-11CF-9FA9-00AA006C42C4}

}

}

}

}

NoRemove CLSID ensures the registry key CLSID is never removed. This is the
subkey that all COM objects use to register their ProgIDs and GUIDs, so its

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM103

104 • ArcGIS Engine Developer Guide

VISUAL C++

removal would result in a serious corruption of the registry. InprocServer32 is the
standard COM mechanism that relates a component GUID to a DLL file; ATL
will insert the correct module name using the %MODULE% variable. Other
entries under the GUID specify the ProgID, threading model, and type library to
use with this component.

To register a COM coclass into a component category, there are two approaches.
The recommended approach is illustrated above: place GUIDs for component
categories beneath an Implemented Categories key, which in turn is under the
GUID of the coclass. The second approach is to use ATL macros in an objects
header file: BEGIN_CATEGORY_MAP, IMPLEMENTED_CATEGORY, or
END_CATEGORY_MAP. However, these macros do not correctly remove
registry entries as explained in the Microsoft Developer Network (MSDN) article
Q279459 BUG: ‘Component Category Registry Entries Not Removed in ATL
Component’. A header file is supplied with the GUIDs of all the component
categories used by ArcGIS; this is available in \Program
Files\ArcGIS\include\CatIDs\ArcCATIDs.h.

Debugging ATL code
In addition to the standard Visual Studio facilities, ATL provides a number of
debugging options with specific support for debugging COM objects. The output
of these debugging options is displayed in the Visual C++ Output window. The
QueryInterface call can be debugged by setting the symbol _ATL_DEBUG_QI,
AddRef, and Release calls with the symbol _ATL_DEBUG_INTERFACES, and
leaked objects can be traced by monitoring the list of leaked interfaces at termi-
nation time when the _ATL_DEBUG_INTERFACES symbol is defined. The
leaked interfaces list has entries like the following:
 INTERFACE LEAK: RefCount = 1, MaxRefCount = 3, {Allocation = 10}

On its own, this does not tell you much apart from the fact that one of your
objects is leaking because an interface pointer has not been released. However,
the Allocation number allows you to automatically break when that interface is
obtained by setting the m_nIndexBreakAt member of the CComModule at server
startup. This in turn calls the function DebugBreak to force the execution of the
code to stop at the relevant place in the debugger. For this to work, the program
flow must be the same.
extern "C"

BOOL WINAPI DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID /
lpReserved/)

{

if (dwReason == DLL_PROCESS_ATTACH)

{

_Module.Init(ObjectMap, hInstance, &LIBID_HISTORYLib);

DisableThreadLibraryCalls(hInstance);

_Module.m_nIndexBreakAt = 10;

}

else if (dwReason == DLL_PROCESS_DETACH)

{

_Module.Term();

}

If the GUID of a component is changed during
development or the type library name is

changed, then it is important to keep the .rgs
content consistent with these changes. Other-
wise, the registry will be incorrect and object

creation can fail.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM104

Chapter 4 • Developer environments • 105

VISUAL C++

return TRUE;

}

Boolean types
Historically, ANSI C did not have a Boolean data type and used int value instead,
where 0 represents false and nonzero represents true. However, the bool data
type has now become part of ANSI C++. COM APIs are language independent
and define a different Boolean type, VARIANT_BOOL. In addition, Win32 API
uses a different bool type. It is important to use the correct type at the appropri-
ate time. The following table summarizes their usage:

Type True Value False Value Where Defined When to Use

bool false (0)true (1) Defined by
compiler

This is an intrinsic compiler type so there is
more potential for the compiler to optimize
use. This type can also be promoted to
an int value. Expressions (e.g., i!=0) return
a type of Bool. Typically used for class
member variables and local variables.

BOOL (int) TRUE (1) FALSE (0) Windows Data
Type (defined in

windef.h)

Used with Windows API functions, often as
a return value to indicate success or failure.

Used in COM APIs for boolean values. Also
used within VARIANT types, if the VARIANT
type is VT_BOOL, then the VARIANT value
(boolVal) is populated with a
VARIANT_BOOL. Take care to convert a
bool class member variable to the correct
VARIANT_BOOL value. Often the
conditional test "hook - colon" operator is
used. For example where bRes is defined
as a bool, then to set a result type:
*pVal = bRes ? VARIANT_TRUE :
VARIANT_FALSE;

VARIANT_BOOL
(16bit short)

VARIANT_
TRUE (-1)

VARIANT_
FALSE (0)

COM boolean
values (wtypes.h)

String types
Considering that strings (sequences of text characters) are a simple concept, they
have unfortunately become a complex and confusing topic in C++. The two main
reasons for this confusion are the lack of C++ support for variable length strings
combined with the requirement to support ANSI and Unicode character sets
within the same code. As ArcGIS is only available on Unicode platforms, it may
simplify development to remove the ANSI requirements.

The C++ convention for strings is an array of characters terminated with a 0.
This is not always good for performance when calculating lengths of large strings.
To support variable length strings, the character arrays can be dynamically allo-
cated and released on the heap, typically using malloc and free or new and delete.
Consequently, a number of wrapper classes provide this support; CString defined
in MFC and WTL is the most widely used. In addition, for COM usage the BSTR
type is defined and the ATL wrapper class CComBSTR is available.

To allow for international character sets, Microsoft Windows migrated from an
8-bit ANSI character string (8-bit character) representation (found on
Windows 95, Windows 98, and Windows Me platforms) to a 16-bit Unicode
character string (16-bit unsigned short). Unicode is synonymous with wide char-
acters (wchar_t). In COM APIs, OLECHAR is the type used and is defined to be
wchar_t on Windows. Windows operating systems, such as Windows NT,
Windows 2000, and Windows XP, natively support Unicode characters. To allow
the same C++ code to be compiled for ANSI and Unicode platforms, compiler

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM105

106 • ArcGIS Engine Developer Guide

VISUAL C++

switches are used to change Windows API functions (for example,
SetWindowText) to resolve to an ANSI version (SetWindowTextA) or a Unicode
version (SetWindowTextW). In addition, character-independent types (TCHAR
defined in tchar.h) were introduced to represent a character; on an ANSI build
this is defined to be a char, and on a Unicode build this is a wchar_t, a typedef
defined as unsigned short. To perform standard C string manipulation, there are
typically three different definitions of the same function; for example, for a case-
insensitive comparison, strcmp provides the ANSI version, wcscmp provides the
Unicode version, and _tcscmp provides the TCHAR version. There is also a fourth
version—_mbscmp—which is a variation of the 8-bit ANSI version that will
interpret multibyte character sequences (MBCS) within the 8-bit string.
// Initialize some fixed length strings.

char* pNameANSI = "Bill"; // 5 bytes (4 characters plus a terminator)

wchar_t* pNameUNICODE = L"Bill"; // 10 bytes (4 16-bit characters plus a
16-bit terminator)

TCHAR* pNameTCHAR = _T("Bill"); // either 5 or 10 depending on compiler
settings

COM APIs represent variable length strings with a BSTR type; this is a pointer to
a sequence of OLECHAR characters, which is defined as Unicode characters and
is the same as a wchar_t. A BSTR must be allocated and released with the
SysAllocString and SysFreeString windows functions. Unlike C strings, they can
contain embedded zero characters, although this is unusual. The BSTR also has a
count value, which is stored four bytes before the BSTR pointer address. The
CComBSTR wrappers are often used to manage the lifetime of a string.

Do not pass a pointer to a C style array of Unicode characters (OLECHAR or
wchar_t) to a function expecting a BSTR. The compiler will not raise an error as
the types are identical. However, the function receiving the BSTR can behave
incorrectly or crash when accessing the string length, which will be random
memory values.
ipFoo->put_WindowTitle(L"Hello"); // This is bad!
ipFoo->put_WindowTitle(CComBSTR(L"Hello")); // This correctly initializes

and passes a BSTR.

ATL provides conversion macros to switch strings between ANSI (A), TCHAR
(T), Unicode (W), and OLECHAR (OLE). In addition, the types can have a
const modifier (C). These macros use the abbreviations shown in brackets with a
“2” between them. For example, to convert between OLECHAR (such as an
input BSTR) to const TCHAR (for use in a Windows function), use the OLE2CT
conversion macro. To convert ANSI to Unicode, use A2W. These macros require
the USES_CONVERSION macro to be placed at the top of a method; this will
create some local variables that are used by the conversion macros. When the
source and destination character sets are different and the destination type is not
a BSTR, the macro allocates the destination string on the call stack (using the
_alloca runtime function). It’s important to realize this especially when using
these macros within a loop; otherwise, the stack may grow large and run out of
stack space.

STDMETHODIMP CFoo::put_WindowTitle(BSTR bstrTitle)

{

USES_CONVERSION;

if (::SysStringLen(bstrTitle) == 0)

return E_INVALIDARG;

To check if two CComBSTR strings are different,
do not use the not equal (“!=”) operator. The

“==” operator performs a case-sensitive compari-
son of the string contents; however, “!=” will

compare pointer values and not the string
contents, typically returning false.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM106

Chapter 4 • Developer environments • 107

VISUAL C++

::SetWindowText(m_hWnd, OLE2CT(bstrTitle));

return S_OK;

}

Implementing noncreatable classes
Noncreatable classes are COM objects that cannot be created by CoCreateInstance.
Instead, the object is created within a method call of a different object, and an
interface pointer to the noncreatable class is returned. This type of object is
found in abundance in the geodatabase model. For example, FeatureClass is
noncreatable and can only be obtained by calling one of a number of methods;
one example is the IFeatureWorkspace::OpenFeatureClass method.

One advantage of a noncreatable class is that it can be initialized with private
data using method calls that are not exposed in a COM API. Below is a simplified
example of returning a noncreatable object:

// Foo is a cocreatable object.

IFooPtr ipFoo;

HRESULT hr = ipFoo.CreateInstance(CLSID_Foo);

// Bar is a noncreatable object; cannot use ipBar.CreateInstance(CLSID_Bar).

IBarPtr ipBar;

// Use a method on Foo to create a new Bar object.

hr = ipFoo->CreateBar(&ipBar);

ipBar->DoSomething();

The steps required to change a cocreatable ATL class into a noncreatable class are
shown below:

1. Add “noncreatable” to the .idl file’s coclass attributes.
[

uuid(DCB87952-0716-4873-852B-F56AE8F9BC42),

noncreatable

]

coclass Bar

{

[default] interface IUnknown;

interface IBar;

};

2. Change the class factory implementation to fail any cocreate instances of the
noncreatable class. This happens via ATL’s object map in the main DLL
module.
BEGIN_OBJECT_MAP(ObjectMap)

OBJECT_ENTRY(CLSID_Foo, CFoo) // Creatable object

OBJECT_ENTRY_NON_CREATEABLE(CLSID_Bar, CBar) // Noncreatable object

END_OBJECT_MAP()

3. Optionally, the registry entries can be removed. First, remove the registry
script for the object from the resources (Bar.rgs in this example). Then change
the class definition DECLARE_REGISTRY_RESOURCEID(IDR_BAR) to
DECLARE_NO_REGISTRY().

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM107

108 • ArcGIS Engine Developer Guide

VISUAL C++

4. To create the noncreatable object inside a method, use the CComObject
template to supply the implementation of CreateInstance.
// Get NonCreatable object Bar (implementing IBar) from COM object Foo.

STDMETHODIMP CFoo::CreateBar(IBar **pVal)

{

if (pVal==0) return E_POINTER;

// Smart pointer to noncreatable object Bar

IBarPtr ipBar = 0;

// C++ Pointer to Bar, with ATL template to supply CreateInstance
implementation

CComObject<CBar>* pBar = 0;

HRESULT hr = CComObject<CBar>::CreateInstance(&pBar);

if (SUCCEEDED(hr))

{

// Increment the ref count from 0 to 1 to protect the object

// from being released in any initialization code.

pBar->AddRef();

// Call C++ methods (not exposed to COM) to initialize the Bar object.

pBar->InitialiseBar(10);

// QI to IBar and hold a smart pointer reference to the object Bar.

hr = pBar->QueryInterface(IID_IBar, (void**)&ipBar);

pBar->Release();

}

// Return IBar pointer to the caller.

*pVal = ipBar.Detach();

return S_OK;

}

ATL in Visual C++ .NET
Visual C++ version 6 is used for the majority of this help. However, with the
release of Visual C++ .NET, there are enhancements and changes that are rel-
evant to the ArcGIS ATL developer. Some of these are summarized below.

Attribute-based programming—This is a major change introduced in VC7.
Attributes are inserted in the source code enclosed in square brackets—for ex-
ample, [coclass]. Attributes are designed to simplify COM programming and
.NET framework common language runtime development. When you include
attributes in your source files, the compiler works with provider DLLs to insert
code or modify the code in the generated object files. There are attributes that aid
in the creation of .idl files, interfaces, type libraries, and other COM elements. In
the integrated development environment (IDE), attributes are supported by the
wizards and by the Properties window. The ATL wizards make extensive use of
attributes to inject the ATL boilerplate code into the class. Consequently, typical

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM108

Chapter 4 • Developer environments • 109

VISUAL C++

COM coclass header files in VC7 contain much less ATL code than at VC6. As
IDL is generated from attributes, there is typically no .idl file present in COM
projects as before, and the .idl file is generated at compile time.

Build configurations—There are only two default build configurations in VC7;
these are ANSI Debug- and Release-based builds. As ArcGIS is only available on
Unicode platforms, it is recommended to change these by modifying the project
properties. The general project properties page has an option for Character Set.
Change this from Use Multi-Byte Character Set to Use Unicode Character Set.

Character conversion macros—The character conversion macros
(USES_CONVERSION, W2A, W2CT, and so forth) have improved alternative
versions. These no longer allocate space on the stack, so they can be used in loops
without running out of stack space. The USES_CONVERSION macro is also no
longer required. These macros are now implemented as classes and begin with a
“C”—for example, CW2A, CW2CT.

Safe array support—This is available with CComSafeArray and
CComSafeArrayBound classes.

Module level global—The module-level global CComModule _module has
been split into a number of related classes, for example, CAtlComModule and
CAtlWinModule. To retrieve the resource module instance, use the following
code: _AtlBaseModule.GetResourceInstance();

String support—General variable length string support is now available through
CString in ATL. This is defined in the header files atlstr.h and cstringt.h. If ATL
is combined with MFC, this defaults to MFC’s CString implementation.

Filepath handling—A collection of related functions for processing the com-
ponents of filepaths is available through the CPath class defined in atlpath.h.

ATLServer—This is a new selection of ATL classes designed for writing Web
applications, XML Web services, and other server applications.

#import issues—When using #import, a few modifications are required. For
example, the #import of esriSystem requires an exclude or rename of GetObject,
and the #import of esriGeometry requires an exclude or rename of ISegment.

ATL REFERENCES

The Microsoft Developer Network provides a wealth of documentation, articles,
and samples that are installed with Visual Studio products. ATL reference docu-
mentation for Visual Studio version 6 is under:

MSDN Library - October 2001 / Visual Tools and Languages / Visual Studio 6.0
Documentation / Visual C++ Documentation / Reference / Active Template Library

Additional documentation is also available on the MSDN Web site at
http://www.msdn.microsoft.com

You may also find the following books to be useful:

Grimes, Richard. ATL COM Programmer’s Reference. Chicago: Wrox Press Inc.,
1988.

Grimes, Richard. Professional ATL COM Programming. Chicago: Wrox Press Inc.,
1988.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM109

110 • ArcGIS Engine Developer Guide

VISUAL C++

Grimes, Richard, Reilly Stockton, Alex Stockton, and Julian Templeman. Begin-
ning ATL 3 COM Programming. Chicago: Wrox Press Inc., 1999.

King, Brad, and George Shepherd. Inside ATL. Redmond, WA: Microsoft Press,
1999.

Rector, Brent, Chris Sells, and Jim Springfield. ATL Internals. Reading, MA:
Addison–Wesley, 1999.

SMART TYPES

Smart types are objects that behave as types. They are C++ class implementations
that encapsulate a data type, wrapping it with operators and functions that make
working with the underlying type easier and less error prone. When these smart
types encapsulate an interface pointer, they are referred to as smart pointers. Smart
pointers work with the IUnknown interface to ensure that resource allocation and
deallocation are correctly managed. They accomplish this by various functions,
construct and destruct methods, and overloaded operators. There are numerous
smart types available to the C++ programmer. The two main smart types covered
here are Direct-To-COM and Active Template Library.

Smart types can make the task of working with COM interfaces and data types
easier, since many of the API calls are moved into a class implementation; how-
ever, they must be used with caution and never without a clear understanding of
how they are interacting with the encapsulated data type.

Direct-To-COM smart types
The smart type classes supplied with DTC are known as the Compiler COM
Support Classes and consist of:

• _com_error—This class represents an exception condition in one of the COM
support classes. This object encapsulates the HRESULT and the IErrorInfo
COM exception objects.

• _com_ptr_t—This class encapsulates a COM interface pointer. See below for
common uses.

• _bstr_t—This class encapsulates the BSTR data type. The functions and opera-
tors on this class are not as rich as the ATL CComBSTR smart type; hence, this
is not normally used.

• _variant_t—This class encapsulates the VARIANT data type. The functions
and operators on this class are not as rich as the ATL CComVariant smart type;
hence, this is not normally used.

To define a smart pointer for an interface, you can use the macro
_COM_SMARTPTR_TYPEDEF like this:

_COM_SMARTPTR_TYPEDEF(IFoo, __uuidof(IFoo));

The compiler expands this as follows:
typedef _com_ptr_t< _com_IIID<IFoo, __uuidof(IFoo)> > IFooPtr;

Once declared, it is simply a matter of declaring a variable as the type of the
interface and appending Ptr to the end of the interface. Below are some common
uses of this smart pointer that you will see in the numerous C++ samples.
// Get a CLSID GUID constant.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM110

Chapter 4 • Developer environments • 111

VISUAL C++

extern "C" const GUID __declspec(selectany) CLSID_Foo = \

 {0x2f3b470c,0xb01f,0x11d3,{0x83,0x8e,0x00,0x00,0x00,0x00,0x00,0x00}};

// Declare Smart Pointers for IFoo, IBar, and IGak interfaces.

_COM_SMARTPTR_TYPEDEF(IFoo, __uuidof(IFoo));

_COM_SMARTPTR_TYPEDEF(IBar, __uuidof(IBar));

_COM_SMARTPTR_TYPEDEF(IGak, __uuidof(IGak));

STDMETHODIMP SomeClass::Do()

{

 // Create Instance of Foo class and QueryInterface (QI) for IFoo interface.

 IFooPtr ipFoo;

 HRESULT hr = ipFoo.CreateInstance(CLSID_Foo);

 if (FAILED(hr)) return hr;

 // Call method on IFoo to get IBar.

 IBarPtr ipBar;

 hr = ipFoo->get_Bar(&ipBar);

 if (FAILED(hr)) return hr;

 // QI IBar interface for IGak interface.

 IGakPtr ipGak(ipBar);

 // Call method on IGak.

 hr = ipGak->DoSomething();

 if (FAILED(hr)) return hr;

 // Explicitly call Release().

 ipGak = 0;

 ipBar = 0;

 // Let destructor call IFoo’s Release.

 return S_OK;

}

One of the main advantages of using the DTC smart pointers is that they are
automatically generated from the #import compiler statement for all interface
and coclass definitions in a type library. For more details on this functionality, see
the later section ‘Importing ArcGIS type libraries’.

It is possible to create an object implicitly in a DTC smart pointer’s constructor,
for example:
IFooPtr ipFoo(CLSID_Foo)

However, this will raise a C++ exception if there is an error during object cre-
ation—for example, if the DLL containing the object implementation was
accidentally deleted. This exception will typically be unhandled and cause a crash.
A more robust approach is to avoid exceptions in COM, call CreateInstance
explicitly, and handle the failure code, for example:

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM111

112 • ArcGIS Engine Developer Guide

VISUAL C++

IFooPtr ipFoo;
HRESULT hr = ipFoo.CreateInstance(CLSID_Foo);
if (FAILED(hr))

return hr; // Return object creation failure code to caller.

Active Template Library smart types
ATL defines various smart types, as seen in the list below. You are free to com-
bine both the ATL and DTC smart types in your code. However, it is typical to
use the DTC for smart pointers, as they are easily generated by importing type
libraries. For BSTR and VARIANT types, the ATL versions for CComBSTR and
CComVariant are typically used.

ATL smart types include:

• CComPtr—encapsulates a COM interface pointer by wrapping the AddRef and
Release methods of the IUnknown interface

• CComQIPtr—encapsulates a COM interface and supports all three methods of
the IUnknown interface: QueryInterface, AddRef, and Release

• CComBSTR—encapsulates the BSTR data type

• CComVariant—encapsulates the VARIANT data type

• CRegKey—provides methods for manipulating Windows registry entries

• CComDispatchDriver—provides methods for getting and setting properties and
calling methods through an object’s IDispatch interface

• CSecurityDescriptor—provides methods for setting up and working with the
Discretionary Access Control List (DACL)

This section examines the first four smart types and their uses. The example code
below, written with ATL smart pointers, looks like the following:
// Get a CLSID GUID constant.

extern "C" const GUID __declspec(selectany) CLSID_Foo = \

 {0x2f3b470c,0xb01f,0x11d3,{0x83,0x8e,0x00,0x00,0x00,0x00,0x00,0x00}};

STDMETHODIMP SomeClass::Do ()

{

 // Create Instance of Foo class and QI for IFoo interface.

 CComPtr<IFoo> ipFoo;

 HRESULT hr = CoCreateInstance(CLSID_Foo, NULL, CLSCTX_INPROC_SERVER,
IID_IFoo, (void **)&ipFoo);

 if (FAILED(hr)) return hr;

 // Call method on IFoo to get IBar.

 CComPtr<IBar> ipBar;

 HRESULT hr = ipFoo->get_Bar(&ipBar);

 if (FAILED(hr)) return hr;

 // IBar interface for IGak interface

 CComQIPtr<IGak> ipGak(ipBar);

 // Call method on IGak.

 hr = ipGak->DoSomething();

The equality operator (“==”) may have different
implementations when used during smart

pointer comparisons. The COM specification
states object identification is performed by

comparing the pointer values of IUnknown. The
DTC smart pointers will perform necessary QI
and comparison when using the “==” operator.

However, the ATL smart pointers will not do
this, so you must use the ATL IsEqualObject

method.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM112

Chapter 4 • Developer environments • 113

VISUAL C++

 if (FAILED(hr)) return hr;

 // Explicitly call Release().

 ipGak = 0;

 ipBar = 0;

 // Let destructor call Foo's Release.

 return S_OK;

}

The most common smart pointer seen in the Visual C++ samples is the DTC type.
In the examples below, which illustrate the BSTR and VARIANT data types, the
DTC pointers are used. When working with CComBSTR, use the text mapping
L“” to declare constant OLECHAR strings. CComVariant derives directly from
the VARIANT data type, meaning that there is no overloading with its implemen-
tation, which in turn simplifies its use. It has a rich set of constructors and func-
tions that make working with VARIANTs straightforward; there are even meth-
ods for reading and writing from streams. Be sure to call the Clear method before
reusing the variable.
 ipFoo->put_Name(CComBSTR(L"NewName"));

 if FAILED(hr)) return hr;

 // Create a VT_I4 variant (signed long).

 CComVariant vValue(12);

 // Change its data type to a string.

 hr = vValue.ChangeType(VT_BSTR);

 if (FAILED(hr)) return hr;

Some method calls in IDL are marked as being optional and take a variant param-
eter. However, in Visual C++, these parameters still have to be supplied. To
signify that a parameter value is not supplied, a variant is passed specifying an
error code or type DISP_E_PARAMNOTFOUND:
 CComBSTR documentFilename(L"World.mxd");

 CComVariant noPassword;

 noPassword.vt = VT_ERROR;

 noPassword.scode = DISP_E_PARAMNOTFOUND;

 HRESULT hr = ipMapControl->LoadMxFile(documentFilename, noPassword);

When working with CComBSTR and CComVariant, the Detach function releases
the underlying data type from the smart type so it can be used when passing a
result as an [out] parameter of a method. The use of the Detach method with
CComBSTR is shown below:
STDMETHODIMP CFoo::get_Name(BSTR* name)

{

 if (name==0) return E_POINTER;

 CComBSTR bsName(L"FooBar");

 *name = bsName.Detach();

}

CComVariant myVar(ipSmartPointer) will result in a variant type of Boolean
(VT_BOOL) and not a variant with an object reference (VT_UNKNOWN) as

CComVariant(VARIANT_TRUE) will create a
short integer variant (type VT_I2) and not a

Boolean variant (type VT_BOOL) as expected.
You can use CComVariant(true) to create a

Boolean variant.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM113

114 • ArcGIS Engine Developer Guide

VISUAL C++

expected. It is better to pass unambiguous types to constructors, that is, types
that are not themselves smart types with overloaded cast operators.
// Perform QI of IUnknown.
IUnknownPtr ipUnk = ipSmartPointer;
// Ensure IUnknown* constructor of CComVariant is used.
CComVariant myVar2(ipUnk.GetInterfacePtr());

A common practice with smart pointers is to use Detach to return an object from
a method call. When returning an interface pointer, the COM standard is to
increment reference count of the [out] parameter inside the method implementa-
tion. It is the caller’s responsibility to call Release when the pointer is no longer
required. Consequently, care must be taken to avoid calling Detach directly on a
member variable. A typical pattern is shown below:
STDMETHODIMP CFoo::get_Bar(IBar **pVal)

{

 if (pVal==0) return E_POINTER;

 // Constructing a local smart pointer using another smart pointer

 // results in an AddRef (if pointer is not 0).

 IBarPtr ipBar(m_ipBar);

 // Detach will clear the local smart pointer, and the

 // interface is written into the output parameter.

 *pVal = ipBar.Detach();

 // This can be combined into one line:

 // *pVal = IBarPtr(m_ipBar).Detach();

 return S_OK;

}

The above pattern has the same result as the following code. Note that a condi-
tional test for a zero pointer is required before AddRef can be called. Calling
AddRef (or any method) on a zero pointer will result in an access violation
exception and typically crash the application:
STDMETHODIMP CFoo::get_Bar(IBar **pVal)

{

 if (pVal==0) return E_POINTER;

 // Copy the interface pointer (no AddRef) into the output parameter.

 *pVal = m_ipBar;

 // Make sure interface pointer is nonzero before calling AddRef.

 if (*pVal)

 *pVal->AddRef();

 return S_OK;

}

When using a smart pointer to receive an object from an [out] parameter on a

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM114

Chapter 4 • Developer environments • 115

VISUAL C++

method, use the smart pointer “&” dereference operator. This will cause the
previous interface pointer in the smart pointer to be released. The smart pointer is
then populated with the new [out] value. The implementation of the method will
have already incremented the object reference count. This will be released when
the smart pointer goes out of scope:
 {

 IFooPtr ipFoo1, ipFoo2;

 ipFoo1.CreateInstance(CLSID_Foo);

 ipFoo2.CreateInstance(CLSID_Foo);

 // Initialize ipBar Smart pointer from Foo1.

 IBarPtr ipBar;

 ipFoo1->get_Bar(&ipBar);

 // The "&" dereference will call Release on ipBar.

 // ipBar is then repopulated with a new instance of IBar.

 ipFoo2->get_Bar(&ipBar);

 }

 // ipBar goes out of scope, and the smart pointer destructor calls Release.

Naming conventions

Type names
All type names (class, struct, enum, and typedef) begin with an uppercase letter and
use mixed case for the rest of the name:
 class Foo : public CObject { . . .};

 struct Bar { . . .};

 enum ShapeType { . . . };

 typedef int* FooInt;

Typedefs for function pointers (callbacks) append Proc to the end of their names.
 typedef void (*FooProgressProc)(int step);

Enumeration values all begin with a lowercase string that identifies the project; in
the case of ArcObjects, this is esri, and each string occurs on a separate line:
 typedef enum esriQuuxness

 {

 esriQLow,

 esriQMedium,

 esriQHigh

 } esriQuuxness;

Function names
Name functions using the following conventions:

• For simple accessor and mutator functions, use Get<Property> and
Set<Property>:

 int GetSize();

 void SetSize(int size);

• If the client is providing storage for the result, use Query<Property>:
 void QuerySize(int& size);

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM115

116 • ArcGIS Engine Developer Guide

VISUAL C++

• For state functions, use Set<State> and Is<State> or Can<State>:
 bool IsFileDirty();

 void SetFileDirty(bool dirty);

 bool CanConnect();

• Where the semantics of an operation are obvious from the types of argu-
ments, leave type names out of the function names.

Instead of:
 AddDatabase(Database& db);

consider using:
 Add(Database& db);

Instead of:
 ConvertFoo2Bar(Foo* foo, Bar* bar);

consider using:
 Convert(Foo* foo, Bar* bar)

• If a client relinquishes ownership of some data to an object, use
Give<Property>. If an object relinquishes ownership of some data to a
client, use Take<Property>:

 void GiveGraphic(Graphic* graphic);

 Graphic* TakeGraphic(int itemNum);

• Use function overloading when a particular operation works with different
argument types:

 void Append(const CString& text);

 void Append(int number);

Argument names
Use descriptive argument names in function declarations. The argument name
should clearly indicate what purpose the argument serves:
 bool Send(int messageID, const char* address, const char* message);

DEBUGGING TIPS IN DEVELOPER STUDIO

Visual C++ comes with a feature-rich debugger. These tips will help you get the
most from your debugging session.

Backing up after failure
When a function call has failed and you’d like to know why (by stepping into
it), you don’t have to restart the application. Use the Set Next Statement
command to reposition the program cursor back to the statement that failed
(right-click the statement to bring up the debugging context menu). Then step
into the function.

Edit and Continue
Visual Studio 6 allows changes to source code to be made during a debugging
session. The changes can be recompiled and incorporated into the executing code
without stopping the debugger. There are some limitations to the type of changes
that can be made; in this case, the debug session must be restarted. This feature is

Here are some suggestions for a naming
convention. These help identify the variables’

usage and type and so reduce coding errors. This
is an abridged Hungarian notation:

[<scope>_]<type><name>

c

m

Prefix

g

<empty>

Static class member (including constants)

Instance class members

Variable scope

Globally static variable

local variable or struct or public class
member

<type>

Boolean

Data Type

byte or unsigned char

short used as size

DWORD, double word or unsigned long

int (integer)

long

a pointer

string

function

handle

ASCIIZ null-terminated string

WORD unsigned int

short used as coordinates

b

Prefix

by

cx/cy

dw

i

l

p

s

fn

h

sz

w

x, y

doubled

floatf

smart pointerip

<name> describes how the variable is used or
what it contains. The <scope> and <type>

portions should always be lowercase, and the
<name> should use mixed case:

m_hWnd

Variable Name

ipEnvelope

m_pUnkOuter

c_isLoaded

g_pWindowList

a handle to HWND

Description

a smart pointer to a COM interface

a pointer to an object

a static class member

a global pointer to an object

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM116

Chapter 4 • Developer environments • 117

VISUAL C++

enabled by default; the settings are available in the Settings command of the
project menu. Click the C/C++ tab, then click General in the Category dropdown
list. In the Debug info dropdown list, click Program Database for Edit and
Continue.

Unicode string display
To set your debugger options to display Unicode strings, click the Tools menu,
click Options, click Debug, then check the Display Unicode Strings check box.

Variable value display
Pause the cursor over a variable name in the source code to see its current
value. If it is a structure, click the Eyeglasses icon or press Shift+F9 to bring up
the QuickWatch dialog box or drag and drop it into the Watch window.

Undocking windows
If the Output window (or any docked window, for that matter) seems too
small to you, try undocking it to make it a real window by right-clicking it and
toggling the Docking View item.

Conditional break points
Use conditional break points when you need to stop at a break point only once
some condition is reached—for instance, when a for loop reaches a particular
counter value. To do so, set the break point normally, then bring up the
Breakpoints window (Ctrl+B or Alt+F9). Select the specific break point you just
set, then click the Condition button to display a dialog box in which you specify
the break point condition.

Preloading DLLs
You can preload DLLs that you want to debug before executing the program.
This allows you to set break points up front rather than waiting until the DLL
has been loaded during program execution. To do this, click Project, click Set-
tings, click Debug, click Category, then click Additional DLLs. Then, click in the
list area to add any DLLs you want to preload.

Changing display formats
You can change the display format of variables in the QuickWatch dialog box or
in the Watch window using the formatting symbols in the following table.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM117

118 • ArcGIS Engine Developer Guide

VISUAL C++

d, i

Symbol

signed decimal integer

Format

0xF000F065

Value

-268373915

Displays

u unsigned decimal integer 0x0065 101

o unsigned octal integer 0xF065 0170145

x, X hexadecimal integer 61541 0x0000F065

l, h long or short prefix for d, I, u, o, x, X 00406042, hx 0x0C22

f signed floating-point 3./2. 1.500000

e signed scientific notation 3./2. 1.500000e+00

g e or f, whichever is shorter 3./2. 1.5

c single character 0x0065 'e'

s string 0x0012FDE8 "Hello"

su Unicode string "Hello"

hr string 0 S_OK

To use a formatting symbol, type the variable name followed by a comma and the
appropriate symbol. For example, if var has a value of 0x0065, and you want to
see the value in character form, type “var,c” in the Name column of the Watch
window. When you press Enter, the character format value appears: var,c = ‘e’.
Likewise, assuming that hr is a variable holding HRESULTs, view a human-
readable form of the HRESULT by typing “hr,hr” in the Name column.

You can use the formatting symbols shown in the following table to format the
contents of memory locations.

ma

Symbol

mw

mu

64 ASCII characters

Format

8 words

2-byte characters (Unicode)

0x0012ffac
.4...0...".0W&..
.....1W&.0.:W..1
...."..1.JO&.1.2
.."..1...0y....1

Value

0x0012ffac
34B3 00CB 3084 8094
22FF 308A 2657 0000

0x0012fc60
8478 77f4 ffff ffff
0000 0000 0000 0000

m
16 bytes in hex, followed by 16 ASCII
characters

0x0012ffac
B3 34 CB 00 84 30 94 80
FF 22 8A 30 57 26 00 00 .4...0....".0W&..

mb
16 bytes in hex, followed by 16 ASCII
characters

0x0012ffac
B3 34 CB 00 84 30 94 80
FF 22 8A 30 57 26 00 00 .4...0...".0W&..

md 4 double-words
0x0012ffac
00CB34B3 80943084 308A22FF 00002657

With the memory location formatting symbols, you can type any value or expres-
sion that evaluates a location. To display the value of a character array as a string,
precede the array name with an ampersand, &yourname. A formatting character
can also follow an expression:
• rep+1,x
• alps[0],mb

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM118

Chapter 4 • Developer environments • 119

VISUAL C++

• xloc,g
• count,d
To watch the value at an address or the value to which a register points, use the
BY, WO, or DW operator:
• BY returns the contents of the byte pointed at.
• WO returns the contents of the word pointed at.
• DW returns the contents of the doubleword pointed at.
Follow the operator with a variable, register, or constant. If the BY, WO, or DW
operator is followed by a variable, then the environment watches the byte, word,
or doubleword at the address contained in the variable.

You can also use the context operator { } to display the contents of any location.

To display a Unicode string in the Watch window or the QuickWatch dialog box,
use the su format specifier. To display data bytes with Unicode characters in the
Watch window or the QuickWatch dialog box, use the mu format specifier.

Keyboard shortcuts
There are numerous keyboard shortcuts that make working with the Visual
Studio Editor faster. Some of the more useful keyboard shortcuts follow.

The text editor uses many of the standard shortcut keys used by Windows
applications, such as Word. Some specific source code editing shortcuts are
listed below.

Correctly indent selected code based on surrounding lines.

Action

Find the matching brace.

Display list of members.

Complete the word, once the number of letters entered allows the editor to recognize it. Useful when
completing function and variable names.

Indents selection one tab stop to the right.

Indents selection one tab to the left.

Alt+F8

Shortcut

Ctrl+]

Ctrl+J

Ctrl+Spacebar

Tab

Shift+Tab

Below is a table of common keyboard shortcuts used in the debugger.

Add or remove breakpoint from current line.

Action

Remove all breakpoints.

Disable breakpoints.

Display auto window and move cursor into it.

Display call stack window and move cursor into it.

Display locals window and move cursor into it.

Display auto window and move cursor into it.

End debugging session.

Execute code one statement at a time, stepping into functions.

Execute code one statement at a time, stepping over functions.

Restart a debugging session.

Resume execution from current statement to selected statement.

Run the application.

Run the application without the debugger.

Set the next statement.

Stop execution.

F9

Shortcut

Ctrl+Shift+F9

Ctrl+F9

Ctrl+Alt+A

Ctrl+Alt+C

Ctrl+Alt+L

Ctrl+Alt+A

Shift+F5

F11

F10

Ctrl+Shift+F5

Ctrl+F10

F5

Ctrl+F5

Ctrl+Shift+F10

Ctrl+Break

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM119

120 • ArcGIS Engine Developer Guide

VISUAL C++

Loading the following shortcuts can greatly increase your productivity with the
Visual Studio development environment.

Close a menu or dialog box, cancel an operation in progress, or place focus in the current document window.

Action

Create a new file.

Create a new project.

Cycle through the MDI child windows one window at a time.

Display the auto window and move the cursor into it.

Display the call stack window and move the cursor into it.

Display the document outline window and move the cursor into it.

Display the find window.

Display the find window. If there is no current Find criteria, put the word under your cursor in the find box.

Display the immediate window and move the cursor into it. Not available if you are in the text editor window.

Display the locals window and move the cursor into it.

Display the output window and move the cursor into it

Display the project explorer window and move the cursor into it.

Display the properties window and move the cursor into it.

Open a file.

Open a project.

Print all or part of the document.

Save all of the files, projects, or documents.

Select all.

Save the current document or selected item or items.

Esc

Shortcut

Ctrl+Shift+N

Ctrl+N

Ctrl+F6 or
Ctrl+Tab

Ctrl+Alt+A

Ctrl+Alt+C

Ctrl+Alt+T

Ctrl+H

Ctrl+F

Ctrl+Alt+I

Ctrl+Alt+L

Ctrl+Alt+O

Ctrl+Alt+J

Ctrl+Alt+P

Ctrl+Shift+O

Ctrl+O

Ctrl+P

Ctrl+Shift+S

Ctrl+S

Ctrl+A

Navigating through online help topics
Right-click a blank area of a toolbar to display a list of all the available
toolbars. The Infoviewer toolbar contains up and down arrows that allow you
to cycle through help topics in the order in which they appear in the table of
contents. The left and right arrows cycle through help topics in the order that
you visited them.

IMPORTING ARCGIS TYPE LIBRARIES

To reference ArcGIS interfaces, types, and objects, you will need to import the
definitions into Visual C++ types. The #import command automates the creation
of the necessary files required by the compiler. The #import was developed to
support Direct-To-COM. When importing ArcGIS library types, there are a
number of parameters that must be passed.
#pragma warning(push)

#pragma warning(disable : 4192) /* Ignore warnings for types that are
 duplicated in win32 header files. */

#pragma warning(disable : 4146) /* Ignore warnings for use of minus on
 unsigned types. */

#import "\Program Files\ArcGIS\com\esriSystem.olb"

/* Type library to generate C++ wrappers. */ \

 raw_interfaces_only, /* Don't add raw_ to method names. */ \

 raw_native_types, /* Don't map to DTC smart types. */ \

 no_namespace, /* Don't wrap with C++ name space. */ \

 named_guids, /* Named guids and declspecs. */ \

 exclude("OLE_COLOR", "OLE_HANDLE", "VARTYPE")

/* Exclude conflicting types. */

#pragma warning(pop)

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM120

Chapter 4 • Developer environments • 121

VISUAL C++

The main use of #import is to create C++ code for interface definitions and
GUID constants (LIBID, CLSID, and IID) and to define smart pointers. The
exclude (OLE_COLOR, OLE_HANDLE, VARTYPE) is required because
Windows defines these to be unsigned longs, which conflicts with the ArcGIS
definition of long—this was required to support Visual Basic as a client of
ArcObjects, since Visual Basic has no support for unsigned types. There are no
issues with excluding these.

You can view the code generated by #import in the type library header (.tlh) files,
which are similar in format to a .h file. You may also find a type library imple-
mentation (.tli) file, which corresponds to a .cpp file. These files can be large but
are only regenerated when the type libraries change.

There are many type libraries at ArcGIS 9 for different functional areas. You can
start by importing those that contain the definitions that you require. However,
#import does not automatically include all other definitions that the imported
type library requires. For example, when importing the type library esriGeometry,
it will contain references to types that are defined in esriSystem, so esriSystem
must be imported before esriGeometry.

A complete list of library dependencies can be found in the Overview topic for
each library.

Choosing the minimum set of type libraries helps reduce compilation time, al-
though this is not always significant. Here are some steps to help determine the
minimum number of type libraries required:

1. Do a compilation and look at the “missing type definition” errors generated
from code, for example, ICommand not found.

2. Place a #import statement for the library you need a reference for into your
stdafx.h file. Use the LibraryLocator utility or component help to assist in this
task.

3. Compile the project a second time.

4. The compiler will issue errors for types it cannot resolve in the imported type
libraries; these are typically type definitions, such as WKSPoint or interfaces
that are inherited into other interfaces. For example, if working with geom-
etry objects, such as points, start by importing esriGeometry. The compiler will
issue various errors such as:
c:\temp\sample\debug\esrigeometry.tlh(869) : error C2061: syntax error :

identifier 'WKSPoint'

Looking up the definition of WKSPoint, you see it is defined in esriSystem.
Therefore, importing esriSystem before esriGeometry will resolve all these
issues.

Below is a typical list of imports for working with the ActiveX controls.
#pragma warning(push)

#pragma warning(disable : 4192) /* Ignore warnings for types that are
duplicated in win32 header files. */

#pragma warning(disable : 4146) /* Ignore warnings for use of minus on
unsigned types. */

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM121

122 • ArcGIS Engine Developer Guide

VISUAL C++

#import "C:\Program Files\ArcGIS\com\esriSystem.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids, exclude("OLE_COLOR",
"OLE_HANDLE", "VARTYPE")

#import "C:\Program Files\ArcGIS\com\esriSystemUI.olb"
raw_interfaces_only, raw_native_types, no_namespace, named_guids

#import "C:\Program Files\ArcGIS\com\esriGeometry.olb"
raw_interfaces_only, raw_native_types, no_namespace, named_guids

#import "C:\Program Files\ArcGIS\com\esriDisplay.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "C:\Program Files\ArcGIS\com\esriOutput.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "C:\Program Files\ArcGIS\com\esriGeoDatabase.olb"
raw_interfaces_only, raw_native_types, no_namespace, named_guids

#import "C:\Program Files\ArcGIS\com\esriCarto.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

// Some of the Engine controls

#import "C:\Program Files\ArcGIS\bin\TOCControl.ocx" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "C:\Program Files\ArcGIS\bin\ToolbarControl.ocx"
raw_interfaces_only, raw_native_types, no_namespace, named_guids

#import "C:\Program Files\ArcGIS\bin\MapControl.ocx" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "C:\Program Files\ArcGIS\bin\PageLayoutControl.ocx"
raw_interfaces_only, raw_native_types, no_namespace, named_guids

// Additionally for 3D controls

#import "C:\Program Files\ArcGIS\com\esri3DAnalyst.olb"
raw_interfaces_only, raw_native_types, no_namespace, named_guids

#import "C:\Program Files\ArcGIS\com\esriGlobeCore.olb"
raw_interfaces_only, raw_native_types, no_namespace, named_guids

#import "C:\Program Files\ArcGIS\bin\SceneControl.ocx"
raw_interfaces_only, raw_native_types, no_namespace, named_guids

#import "C:\Program Files\ArcGIS\bin\GlobeControl.ocx"
raw_interfaces_only, raw_native_types, no_namespace, named_guids

#pragma warning (pop)

A similar issue arises when writing IDL that contains definitions from other type
libraries. In this situation, use importlib just after the library definition. For
example, writing an external command for ArcMap would require you to create a
COM object implementing ICommand. This definition is in esriSystemUI and is
imported into the IDL as follows:
 library WALKTHROUGH1CPPLib

 {

 importlib("stdole32.tlb");

 importlib("stdole2.tlb");

 importlib("C:\Program Files\ArcGIS\com\esriSystemUI.olb");

 coclass ZoomIn

 {

 [default] interface IUnknown;

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM122

Chapter 4 • Developer environments • 123

VISUAL C++

 interface ICommand;

 }

 };

ATL AND THE ACTIVEX CONTROLS

This section covers how to use ATL to add controls to a dialog box. Although
ATL is focused on providing COM support, it also supplies some useful Windows
programming wrapper classes. One of the most useful is CWindow, a wrapper
around a window handle (HWND). The method names on CWindow correspond
to the Win32 API functions. For example:
HWND buttonHWnd = GetDlgItem(IDC_BUTTON1); // Get window handle of

 button.

CWindow myButtonWindow(buttonHWnd); // Attach window handle
 to CWindow class.

myButtonWindow.SetWindowText(_T("Button Title")); // Win32 function to
 change button caption

CWindow is a generic wrapper for all window handles, so for specific Windows
messages to window common controls, such as buttons, tree views, or edit boxes,
one approach is to send window messages directly to the window, for example:
// Set button to be checked (pushed in or checkmarked, depending on button style)

myButtonWindow.SendMessage(BM_SETCHECK, BST_CHECKED);

However, there are some wrapper classes for these standard window common
controls in a header file atlcontrols.h. This is available as part of an ATL sample
ATLCON supplied in MSDN. See the article “HOWTO: Using Class Wrappers to
Access Windows Common Controls in ATL”, available for download from
Microsoft. This header file is an early version of Windows Template Libraries.

Visual Studio Resource Editor can be used to design and position Windows
common controls and ActiveX controls on a dialog box. To create and manipulate
the dialog box, a C++ class is typically created that inherits from CAxDialogImpl.
This class provides the plumbing to create and manage the ActiveX control on a
window. The ATL wizard can be used to supply the majority of the boilerplate
code. The steps to create a dialog box and add an ActiveX control in an ATL
project are discussed below.

1. Click the menu command Insert/New ATL Object.

2. Click the Miscellaneous category, then click the Dialog object.

3. A dialog box resource and a class inheriting from CAxDialogImpl will be
added to your project.

4. Right-click the dialog box in Resource view and click Insert ActiveX Control.
This will display a list of available ActiveX controls.

5. Double-click a control in the list to add that control to the dialog box.

6. Right-click the control and click Properties to set the control’s design-time
properties.

For a general discussion of ATL, see the earlier
section ‘ATL in brief ’.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM123

124 • ArcGIS Engine Developer Guide

VISUAL C++

Accessing a control on a dialog box through a COM interface
To retrieve a handle to the control that is hosted on a form, use the GetDlgControl
ATL method that is inherited from CAxDialogImpl to take a resource ID and
return the underlying control pointer:
ITOCControlPtr ipTOCControl;

GetDlgControl(IDC_TOCCONTROL1, IID_ITOCControl, (void**) &ipTOCControl);

ipTOCControl->AboutBox();

Listening to events from a control
The simplest way to add events is to use the class wizard. Right-click the control
and choose Events. Next, click the resource ID of the control, then click the
event (for example, OnMouseDown). Next click Add Handler. Finally, ensure the
dialog box begins listening to events by adding AtlAdviseSinkMap(this,TRUE) to
OnInitDialog. To finish listening to events, add a message handler for OnDestroy and
add a call to AtlAdviseSinkMap(this, FALSE).

Creating a control at run time
The CAxWindow class provides a mechanism to create and host ActiveX controls
in a similar manner to any other window class. This may be desirable if the parent
window of the control is also created at runtime.
AtlAxWinInit();

CAxWindow wnd;

// m_hWnd is the parent window handle.

// rect is the size of ActiveX control in client coordinates.

// IDC_MYCTL is a unique ID to identify the controls window.

RECT rect = {10,10,400,300};

wnd.Create(m_hWnd, rect, _T("esriReaderControl.ReaderControl"),
WS_CHILD|WS_VISIBLE, 0, IDC_MYCTL);

Setting the buddy control property
The ToolbarControl and TOCControl need to be associated with a “buddy” control
on the dialog box. This is typically performed in the OnInitDialog windows mes-
sage handler of a dialog box.

Make sure dialog boxes that host ActiveX
controls inherit from CAxDialogImpl and not

CDialogImpl. If this mistake is made, the
DoModal method of the dialog box simply exits

with no obvious cause.

Make sure applications that use windows
common controls, such as treeview, correctly call
InitCommonControlsEx to load the window

class. Otherwise, the class will not function
correctly.

Make sure applications using COM objects call
CoInitialize. This initializes COM in the

application. Without this call, any CoCreate calls
will fail.

For a detailed discussion on handling events in
ATL, see the later section ‘Handling COM events

in ATL’.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM124

Chapter 4 • Developer environments • 125

VISUAL C++

LRESULT CEngineControlsDlg::OnInitDialog(UINT uMsg, WPARAM wParam, LPARAM
lParam, BOOL& bHandled)

{

 // Get the Control's interfaces into class member variables.

 GetDlgControl(IDC_TOOLBARCONTROL, IID_IToolbarControl, (void **)
&m_ipToolbarControl);

 GetDlgControl(IDC_TOCCONTROL, IID_ITOCControl, (void **) &m_ipTOCControl);

 GetDlgControl(IDC_PAGELAYOUTCONTROL, IID_IPageLayoutControl, (void **)
&m_ipPageLayoutControl);

 // Connect to the controls.

 AtlAdviseSinkMap(this, TRUE);

 // Set buddy controls.

 m_ipTOCControl->SetBuddyControl(m_ipPageLayoutControl);

 m_ipToolbarControl->SetBuddyControl(m_ipPageLayoutControl);

 return TRUE;

}

Known limitations of Visual Studio C++ Resource Editor and ArcGIS
ActiveX controls

Disabled buddy property on property page
In Visual Studio C++ you cannot set the Buddy property of the TOCControl and
the ToolbarControl through the General property page. Visual C++ does not sup-
port controls finding other controls at design time. However, this step can be
performed in code in the OnInitDialog method.

ToolbarControl not resized to the height of one button
In other environments (Visual Basic 6, .NET) the ToolbarControl will automati-
cally resize to be one button high. However, in Visual Studio C++ 6 it can be any
size. In MFC and ATL, the ActiveX host classes do not allow controls to deter-
mine their own size.

Design-time property pages disappearing when displaying context-sensitive
help
When viewing the controls property page at design time, right-clicking and click-
ing “What’s This?” will cause the help tip to display; however, the property pages
will then close. This is a limitation of the Visual Studio floating windows com-
bined with the floating tip window from HTML help. Clicking the Help button
provides the same text for the whole property page.

MFC AND THE ACTIVEX CONTROLS

There are many choices for how to work with ArcGIS ActiveX controls in Visual
C++, the first of which is what framework to use to host the controls (for
example, ATL or MFC). A second decision is where the control will be hosted
(Dialog, MDI application, and so forth). This section discusses MFC and hosting
the control on a dialog box.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM125

126 • ArcGIS Engine Developer Guide

VISUAL C++

Creating an MFC dialog box-based application
If you do not have a dialog box in your application or component, here are the
steps to create an MFC dialog box application.

1. Launch Visual Studio C++ 6 and click New.

2. Click the Projects tab and choose MFC AppWizard (exe). Enter the project
name and location and click OK.

3. For Step 1 of the wizard: From the radio buttons, change the application type
to Dialog Based. Click Next.

4. For Step 2 of the wizard: The default project features are fine, although you
can uncheck AboutBox to simplify the application. Ensure that the option to
support ActiveX controls is checked. Click Next.

5. For Step 3 of the wizard: The default settings on this page are fine. The MFC
DLL is shared. Click Next.

6. For Step 4 of the wizard: This shows you what the wizard will generate. Click
Finish.

You should now have a simple dialog box-based application. In the resource view,
you will see “TODO: Place Dialog Controls Here”. You can place buttons, list
boxes, and so forth, in this dialog box, and the dialog box can also host ActiveX
controls; there are two approaches to doing this, as discussed below. You can also
compile and run this application.

Hosting controls on an MFC dialog box and accessing them using
IDispatch
1. Right-click the MFC dialog box and click Insert ActiveX control.

2. Double-click a control from the list box. The control appears on the dialog
box with a default size.

3. Size and position the control as required.

4. Repeat steps 1 through 3 for each control.

5. You can right-click the control and choose Properties to
set the control’s design-time properties.

6. To access the control in code, you will need ArcGIS
interface definitions for IMapControl, for example. To do
this use the #import command in your stdafx.h file. See
the section ‘Importing ArcGIS type libraries’ on how to
do this.

7. MFC provides control hosting on a dialog box; this will
translate Windows messages, such as WM_SIZE, into
appropriate control method calls. However, to be able to
make calls on a control, there are a few steps you must
perform to go from a resource ID to a controls interface.
The following code illustrates setting the TOCControl’s
Buddy to be the MapControl:Inserting ActiveX controls on a dialog box in

Visual Studio C++ Design time. The
TOCControl and MapControl have been

added to the dialog box. The ToolbarControl is
next.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM126

Chapter 4 • Developer environments • 127

VISUAL C++

// Code to set the Buddy property of the TOCControl to be the MapControl

// Get a pointer to the PageLayoutControl and TOCControl.

IPageLayoutControlPtr ipPageLayoutControl;

GetDlgControl(IDC_PAGELAYOUTCONTROL1, IID_IPageLayoutControl, (void**)
&ipPageLayoutControl);

ITOCControlPtr ipTOCControl;

GetDlgControl(IDC_TOCCONTROL1, IID_ITOCControl, (void**) &ipTOCControl);

// Get the IDispatch of the PageLayoutControl.

IDispatchPtr ipBuddyDisp = ipPageLayoutControl;

// Set the TOCControls Buddy to the map control.

ipTOCControl->putref_Buddy(ipBuddyDisp);

8. To catch events from the controls, double-click the control on the form and
supply the name of a method to be called. By default, the wizard will add an
extra word “On” to the beginning of the event handler. Remove this to avoid
the event handler’s name from becoming “OnOnMouseDownMapcontrol1”.
The wizard will then automatically generate the necessary MFC sink map
macros to listen to events.

Adding controls to an MFC dialog box using IDispatch wrappers
As all ActiveX controls support IDispatch, this is the typical approach to add an
ActiveX control to an MFC project:

1. Click Project, click Add, then click Components and Controls.

2. Click Registered ActiveX Controls.

3. Double-click to select a control (for example, ESRI
TOCControl), then click OK to insert a component.
Click OK to generate wrappers. This will add a button
for the control to the Controls toolbar in Visual Studio.

4. Additional source files are added to your project (for
example, toccontrol.cpp and toccontrol.h). These files
contain a wrapper class (for example, CTOCControl) to
provide methods and properties to access the control.
This class will invoke the control through the IDispatch
calling mechanism. Note that IDispatch does incur some
performance overhead to package parameters when
making method and property calls. The wrapper class
inherits from an MFC CWnd class that hosts an ActiveX
control.

5. Repeat steps 1 through 4 to add each control to the
project’s Controls toolbar.

6. Choose a control from the Controls toolbar and drag it
onto the dialog box.

7. Right-click the control and click Properties. This will allow design-time
properties to be set on the control. NOTE: In Visual Studio C++, you cannot
set the Buddy property of the TOCControl and the ToolbarControl.

The design environment showing the
TOCControl, MapControl, and

ToolbarControl has been added to the
Controls toolbar and to the dialog box.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM127

128 • ArcGIS Engine Developer Guide

VISUAL C++

This environment does not support controls finding other controls at design
time. However, this step can be performed in code using the OnInitDialog
method.
// Note no addref performed with GetControlUnknown, so no need to release

this pointer.

LPUNKNOWN pUnk = m_mapcontrol.GetControlUnknown();

LPDISPATCH pDisp =

0;pUnk->QueryInterface(IID_IDispatch, (void **) &pDisp);

// Set TOCControls buddy to be MapControl.

m_toccontrol.SetRefBuddy(pDisp);

pDisp->Release();

8. Right-click the control and choose Class Wizard to launch the class wizard.
Click the Member Variables tab and click the resource ID corresponding to the
control to give the control a member variable name. The dialog box class
member variable can now be used to invoke methods and properties on the
control.

9. To catch control events, click the Message Maps tab of the class wizard and
choose the resource ID of the control. In the list of messages, click the event
to catch—for example, OnBeginLabelEdit. Double-click this event and a
handler for it will be added to your dialog box class. By default, the wizard
will add an extra word, “On”, to the beginning of the event handler. Remove
this to avoid the event handler name becoming OnOnBeginLabelEditToccontrol1.

HANDLING COM EVENTS IN ATL

Below is a summary of terminology used here when discussing COM events in
Visual C++ and ATL.

Inbound interface—This is the normal case where a COM object implements a
predefined interface.

Do not use the method GetIDispatch (inher-
ited from MFC’s CCmdTarget) on the wrapper

classes; it is intended for objects implementing
IDispatch and not the wrapper classes that are

calling IDispatch. Instead, to get a control’s
IDispatch, use

m_mapcontrol.GetControlUnknown()
followed by QueryInterface to IDispatch. See

the above example of setting the Buddy
property.

Visual Studio C++ Class Wizard. Adding member
variables to the dialog box for the ActiveX

controls.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM128

Chapter 4 • Developer environments • 129

VISUAL C++

Outbound interface—This is an interface of methods that a COM object will
fire at various times. For example, the Map coclass will fire an event on the
IActiveViewEvents in response to changes in the map.

Event source—The source COM object will fire events to an outbound interface
when certain actions occur. For example, the Map coclass is a source of
IActiveViewEvents and will fire the IActiveViewEvents::ItemAdded event when a
new layer is added to the map. The source object can have any number of clients,
or event sink objects, listening to events. Also, a source object may have more than
one outbound interface; for example, the Map coclass also fires events on an
IMapEvents interface. An event source will typically declare its outbound inter-
faces in IDL with the [source] tag.

Event sink—A COM object that listens to events is said to be a sink for events.
The sink object implements the outbound interface; this is not always advertised
in the type libraries because the sink may listen to events internally. An event sink
typically uses the connection point mechanism to register its interest in the events of
a source object.

Connection point—COM objects that are the source of events typically use the
connection point mechanism to allow sinks to hook up to a source. The connec-
tion point interfaces are the standard COM interfaces IConnectionPointContainer and
IConnectionPoint.

Fire event—When a source object needs to inform all the sinks of a particular
action, the source is said to fire an event. This results in the source iterating all
the sinks and making the same method call on each. For example, when a layer is
added to a map, the Map coclass is said to fire the ItemAdded event. So all the
objects listening to the Map’s outbound IActiveViewEvents interface will be called
on their implementation of the ItemAdded method.

Advise and unadvise events—To begin receiving events, a sink object is said
to advise a source object that it needs to receive events. When events are no
longer required, the sink will unadvise the source.

The ConnectionPoint mechanism
The source object implements the IConnectionPointContainer interface to allow sinks
to query a source for a specific outbound interface. The following steps are
performed to begin listening to an event. ATL implements this with the AtlAdvise
method.

1. The sink will QI the source object’s IConnectionPointContainer and call
FindConnectionPoint to supply an interface ID for outbound interfaces. To be
able to receive events, the sink object must implement this interface.

2. The source may implement many outbound interfaces and will return a pointer
to a specific connection point object implementing IConnectionPoint to repre-
sent one outbound interface.

3. The sink calls IConnectionPoint::Advise, passing a pointer to its own IUnknown
implementation. The source will store this with any other sinks that may be
listening to events. If the call to Advise was successful, the sink will be given
an identifier—a simple unsigned long value called a cookie—to give back to
the source at a later point when it no longer needs to listen to events.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM129

130 • ArcGIS Engine Developer Guide

VISUAL C++

The connection is now complete; methods
will be called on any listening sinks by the
source. The sink will typically hold onto
an interface pointer to the source, so when
a sink has finished listening it can be
released from the source object by calling
IConnectionPoint::Unadvise. This is imple-
mented with AtlUnadvise.

IDispatch events versus pure COM events
An outbound interface can be a pure dispatch interface. This means instead of
the source calling directly onto a method in a sink, the call is made via the
IDispatch::Invoke mechanism. The IDispatch mechanism has a performance over-
head to package parameters compared to a pure vtable COM call. However, there
are some situations where this must be used. ActiveX controls must implement
their default outbound interface as a pure IDispatch interface; for example,
IMapControlEvents2 is a pure dispatch interface. Also, Microsoft Visual Basic 6 can

only be a source of pure IDispatch events. The connection point
mechanism is the same as for pure COM mechanisms, the main
difference being in how the events are fired.

ATL provides some macros to assist with listening to IDispatch
events; this is discussed on MSDN under ‘Event Handling and
ATL’. There are two templates available, IDispEventImpl and
IDispEventSimpleImpl, that are discussed in the following sec-
tions.

Using IDispEventImpl to listen to events
The ATL template IDispEventImpl will use a type library to
“crack” the IDispatch calls and process the arguments into C++
method calls. The Visual Studio Class wizard can provide this
mechanism automatically when adding an ActiveX control to a
dialog box. Right-click the Control and click Events. In the Class
wizard, choose the resource ID of the control, choose the event,
then click Add Handler.

The following code illustrates the event handling code added by the wizard, with
some modifications to ensure advise and unadvise are performed.
#pragma once

#include "resource.h" // Main symbols

#include <atlhost.h>

//

// CMyDialog

class CMyDialog :

 public CAxDialogImpl<CMyDialog>,

 public IDispEventImpl<IDC_MAPCONTROL1, CMyDialog>

{

Connection point mechanism for hooking source
to sink objects

There is a bug in the wizard: it does not add
the advise and unadvise code to the dialog box.

To fix this issue, add a message handler for
OnDestroy. Then in the OnInitDialog handler,

call AtlAdviseSinkMap with a TRUE second
parameter to begin listening to events. Place a
corresponding call to AtlAdviseSinkMap (with

FALSE as the second parameter) in the
OnDestroy handler. This is discussed further in
the MSDN article “BUG: ActiveX Control Events

Are Not Fired in ATL Dialog (Q190530)”.

Visual Studio C++ Class Wizard. Adding event
handler to an ActiveX control on a dialog box.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM130

Chapter 4 • Developer environments • 131

VISUAL C++

 public

enum { IDD = IDD_MYDIALOG };

BEGIN_MSG_MAP(CMyDialog)

 MESSAGE_HANDLER(WM_INITDIALOG, OnInitDialog)

 // Add a handler to ensure event unadvise occurs.

 MESSAGE_HANDLER(WM_DESTROY, OnDestroy)

 COMMAND_ID_HANDLER(IDOK, OnOK)

 COMMAND_ID_HANDLER(IDCANCEL, OnCancel)

END_MSG_MAP()

 LRESULT OnInitDialog(UINT uMsg, WPARAM wParam, LPARAM lParam, BOOL&
bHandled)

 {

 // Calls IConnectionPoint::Advise() for each control on the dialog box
with sink map entry

 AtlAdviseSinkMap(this, TRUE);

 return 1; // Let the system set the focus.

 }

 LRESULT OnDestroy(UINT uMsg, WPARAM wParam, LPARAM lParam, BOOL& bHandled)

 {

 // Calls IConnectionPoint::Unadvise() for each control on the dialog box
with sink map entry

 AtlAdviseSinkMap(this, FALSE);

 return 0;

 }

 LRESULT OnOK(WORD wNotifyCode, WORD wID, HWND hWndCtl, BOOL& bHandled)

 {

 EndDialog(wID);

 return 0;

 }

 LRESULT OnCancel(WORD wNotifyCode, WORD wID, HWND hWndCtl, BOOL& bHandled)

 {

 EndDialog(wID);

 return 0;

 }

 // ATL callback from SinkMap entry

 VOID __stdcall OnMouseDownMapcontrol1(LONG button, LONG shift, LONG x,
LONG y, DOUBLE mapX, DOUBLE mapY)

 {

 MessageBox(_T("MouseDown!"));

 }

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM131

132 • ArcGIS Engine Developer Guide

VISUAL C++

BEGIN_SINK_MAP(CMyDialog)

 // Make sure the Event Handlers have __stdcall calling convention.

 // The 0x1 is the Dispatch ID of the OnMouseDown method.

 SINK_ENTRY(IDC_MAPCONTROL1, 0x1, OnMouseDownMapcontrol1)

END_SINK_MAP()

};

Using IDispEventSimpleImpl to listen to events
As the name of this template suggests, it is a simpler version of IDispEventImpl.
The type library is no longer used to turn the IDispatch arguments into a C++
method call. While this may be a simpler implementation, it now requires the
developer to supply a pointer to a structure describing the format of the event
parameters. This structure is typically placed in the .cpp file. For example, here is
the structure describing the parameters of an OnMouseDown event for the
MapControl:
_ATL_FUNC_INFO g_ParamInfo_MapControl_OnMouseDown =

{

 CC_STDCALL, // Calling convention

 VT_EMPTY, // Return type

 6, // Number of arguments

 {VT_I4, VT_I4, VT_I4, VT_I4, VT_R8, VT_R8} // VariantArgument types

};

The header file now inherits from IDispEventSimpleImpl and uses a different
macro, SINK_ENTRY_INFO, in the SINK_MAP. Also, the events interface ID is
required; #import can be used to define this symbol. Note that a dispatch inter-
face is normally prefixed with DIID instead of IID.
#pragma once

#include "resource.h" // Main symbols

#include <atlhost.h>

// Reference to structure defining event parameters

extern _ATL_FUNC_INFO g_ParamInfo_MapControl_OnMouseDown;

//

// CMyDialog2

class CMyDialog2 :

 public CAxDialogImpl<CMyDialog2>,

 public IDispEventSimpleImpl<IDC_MAPCONTROL1, CMyDialog2,
&DIID_IMapControlEvents2>

{

public:

// Message handler code removed, it is the same as CMyDialog using
IDispEventSimple

BEGIN_SINK_MAP(CMyDialog2)

 // Make sure the Event Handlers have __stdcall calling convention.

 // The 0x1 is the Dispatch ID of the OnMouseDown method.

 SINK_ENTRY_INFO(IDC_MAPCONTROL1, // ID of event source

The following issues with events are documented
on the MSDN Knowledge Base when using

IDispEventImpl. Fixes to ATL code are shown in
MSDN for these issues; however, it is not always

desirable to modify or copy ATL header files. In
this case, IDispEventSimpleImpl can be used

instead.
BUG: Events Fail in ATL Containers when Enum

Used as Event Parameter (Q237771)
BUG: IDispEventImpl Event Handlers May Give

Strange Values for Parameters (Q241810)

See the ‘Importing ArcGIS type libraries’ section
earlier in this chapter for an explanation of

#import.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM132

Chapter 4 • Developer environments • 133

VISUAL C++

DIID_IMapControlEvents2, // Interface to listen to

0x1, // Dispatch ID of MouseDown

OnMapControlMouseDown, // Method to call when event arrives

&g_ParamInfo_MapControl_OnMouseDown) // Parameter info for method call

END_SINK_MAP()

};

Listening to more than one IDispatch event interface on a COM
object
If a single COM object needs to receive events from more than one IDispatch
source, then this can cause compiler issues with ambiguous definitions of the
DispEventAdvise method. This is not normally a problem in a dialog box, as
AtlAdviseSinkMap will handle all the connections. The ambiguity can be avoided
by introducing different typedefs each time IDispEventSimpleImpl is inherited. The
following example illustrates a COM object called CListen, which is a sink for
dispatch events from a MapControl and a PageLayoutControl.
#pragma once

#include "resource.h" // Main symbols

// This is the parameter information.

extern _ATL_FUNC_INFO g_ParamInfo_MapControl_OnMouseDown;

extern _ATL_FUNC_INFO g_ParamInfo_PageLayoutControl_OnMouseDown;

//

// Define some typedefs of the dispatch template.

//

class CListen; // Forward definition

typedef IDispEventSimpleImpl<0, CListen, &DIID_IMapControlEvents2>

 IDispEventSimpleImpl_MapControl;

typedef IDispEventSimpleImpl<1, CListen, &DIID_IPageLayoutControlEvents>

 IDispEventSimpleImpl_PageLayoutControl;

//

// CListen

class ATL_NO_VTABLE CListen :

 public CComObjectRootEx<CComSingleThreadModel>,

 public CComCoClass<CListen,&CLSID_Listen>,

 public IDispEventSimpleImpl_MapControl,

 public IDispEventSimpleImpl_PageLayoutControl,

 public IListen

{

public:

 CListen()

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM133

134 • ArcGIS Engine Developer Guide

VISUAL C++

 {

 }

DECLARE_REGISTRY_RESOURCEID(IDR_LISTEN)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CListen)

 COM_INTERFACE_ENTRY(IListen)

END_COM_MAP()

// Associated source and dispatchID to a method call

BEGIN_SINK_MAP(CListen)

 SINK_ENTRY_INFO(0, // ID of event source

DIID_IMapControlEvents2, // Interface to listen to

 0x1, // Dispatch ID to receive

 OnMapControlMouseDown, // Method to call when event arrives
 &g_ParamInfo_MapControl_OnMouseDown) // Parameter info for

 method call

 SINK_ENTRY_INFO(1,

 DIID_IPageLayoutControlEvents,

 0x1,

 OnPageLayoutControlMouseDown,

 &g_ParamInfo_PageLayoutControl_OnMouseDown)

END_SINK_MAP()

// IListen

public:

 STDMETHOD(SetControls)(IUnknown* pMapControl, IUnknown*
pPageLayoutControl);

 STDMETHOD(Clear)();

private:

 void __stdcall OnMapControlMouseDown(long button, long shift, long x, long
y, double mapX, double mapY);

 void __stdcall OnPageLayoutControlMouseDown(long button, long shift, long
x, long y, double pageX, double pageY);

 IUnknownPtr m_ipUnkMapControl;

 IUnknownPtr m_ipUnkPageLayoutControl;

};

The implementation of CListen contains the following code to start listening to
the controls; the typedef avoids the ambiguity of the DispEventAdvise implemen-
tation.
 // Start listening to the MapControl.

 IUnknownPtr ipUnk = pMapControl;

 HRESULT hr = IDispEventSimpleImpl_MapControl::DispEventAdvise(ipUnk);

 if (SUCCEEDED(hr))

 m_ipUnkMapControl = ipUnk; // Store pointer to MapControl for Unadvise.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM134

Chapter 4 • Developer environments • 135

VISUAL C++

 // Start listening to the PageLayoutControl.

 ipUnk = pPageLayoutControl;

 hr = IDispEventSimpleImpl_PageLayoutControl::DispEventAdvise(ipUnk);

 if (SUCCEEDED(hr))

 m_ipUnkPageLayoutControl = ipUnk; // Store pointer to PageLayoutControl
 for Unadvise.

The implementation of CListen also contains the following code to UnAdvise
and stop listening to the controls.
 // Stop listening to the MapControl.

 if (m_ipUnkMapControl!=0)

 IDispEventSimpleImpl_MapControl::DispEventUnadvise(m_ipUnkMapControl);

 m_ipUnkMapControl = 0;

 if (m_ipUnkPageLayoutControl!=0)

 IDispEventSimpleImpl_PageLayoutControl::DispEventUnadvise(m_ipUnkPageLayoutControl);

 m_ipUnkPageLayoutControl= 0;

Creating a COM events source
For an object to be a source of events, it will need to provide an implementation
of IConnectionPointContainer and a mechanism to track which sinks are listening to
which IConnectionPoint interfaces. ATL provides this through the
IConnectionPointContainerImpl template. In addition, ATL provides a wizard to
generate code to fire IDispatch events for all members of a given dispatch events
interface. Below are the steps to modify an ATL COM coclass to support a con-
nection point:

1. First ensure that your ATL coclass has been compiled at least once. This will
allow the wizard to find an initial type library.

2. In Class view, right-click the COM object and click Implement Connection
Point.

3. Either use a definition of events from the IDL in the project or click Add
Typelib to browse for another definition.

4. Check the outbound interface to be implemented in the coclass.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM135

136 • ArcGIS Engine Developer Guide

VISUAL C++

5. Clicking OK will modify your ATL class and generate the proxy classes in a
header file, with a name ending in CP, for firing events.

If the wizard fails to run, use the following example, which illustrates a
coclass that is a source of ITOCControlEvents, a pure dispatch interface.
#pragma once

#include "resource.h" // Main symbols

#include "TOCControlCP.h" // Include generated connection point class
for firing events.

//

// CMyEventSource

class ATL_NO_VTABLE CMyEventSource :

public CComObjectRootEx<CComSingleThreadModel>,

public CComCoClass<CMyEventSource,&CLSID_MyEventSource>,

public IMyEventSource,

public CProxyITOCControlEvents< CMyEventSource >, // Generated
 ConnectionPoint class

public IConnectionPointContainerImpl< CMyEventSource > // Implementation
 of Connection point Container

{

public:

CMyEventSource()

{

}

DECLARE_REGISTRY_RESOURCEID(IDR_MYEVENTSOURCE)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CMyEventSource)

COM_INTERFACE_ENTRY(IMyEventSource)

COM_INTERFACE_ENTRY(IConnectionPointContainer) // Allow QI to this
interface.

END_COM_MAP()

// List of available connection points

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM136

Chapter 4 • Developer environments • 137

VISUAL C++

BEGIN_CONNECTION_POINT_MAP(CMyEventSource)

CONNECTION_POINT_ENTRY(DIID_ITOCControlEvents)

END_CONNECTION_POINT_MAP()

};

The connection point class (TOCControlEventsCP.h in the above example) contains
code to fire an event to all sink objects on a connection point.

There is one method in the class for each event beginning “Fire_”. Each method
will build a parameter list of variants to pass as an argument to the dispatch
Invoke method. Each sink is iterated, and a pointer to the sink is stored in a
vector m_vec member variable inherited from IConnectionPointContainerImpl. Note
that m_vec can contain pointers to 0; this must be checked before firing the
event.
template <class T>

class CProxyITOCControlEvents : public IConnectionPointImpl<T,
&DIID_ITOCControlEvents, CComDynamicUnkArray>

{

public:

 VOID Fire_OnMouseDown(LONG button, LONG shift, LONG x, LONG y)

 {

 // Package each of the parameters into an IDispatch argument list.

 T* pT = static_cast<T*>(this);

 int nConnectionIndex;

 CComVariant* pvars = new CComVariant[4];

 int nConnections = m_vec.GetSize();

 // Iterate each sink object.

 for (nConnectionIndex = 0; nConnectionIndex < nConnections;
nConnectionIndex++)

 {

 pT->Lock();

 CComPtr<IUnknown> sp = m_vec.GetAt(nConnectionIndex);

 pT->Unlock();

 IDispatch* pDispatch = reinterpret_cast<IDispatch*>(sp.p);

 // Note m_vec can contain 0 entries, so it is important to check for
this.

 if (pDispatch != NULL)

 {

 // Build up the argument list.

 pvars[3] = button;

 pvars[2] = shift;

 pvars[1] = x;

 pvars[0] = y;

 DISPPARAMS disp = { pvars, NULL, 4, 0 };

 // Fire the dispatch method. 0x1 is the DispatchId for MouseDown.

 pDispatch->Invoke(0x1, IID_NULL, LOCALE_USER_DEFAULT,
DISPATCH_METHOD, &disp, NULL, NULL, NULL);

 }

 }

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM137

138 • ArcGIS Engine Developer Guide

VISUAL C++

 delete[] pvars; // Clean up the parameter list.

 }

 VOID Fire_OnMouseUp(LONG button, LONG shift, LONG x, LONG y)

 {

 // ... Other events

To fire an event from the source, call Fire_OnMouseDown when required.

A similar approach can be used for firing events to a pure COM (non-IDispatch)
interface. The wizard will not generate the connection point class, so this must be
written by hand; the following example illustrates a class that will fire an
ITOCBuddyEvents::ActiveViewReplaced event; ITOCBuddyEvents is a pure COM,
non-IDispatch interface. The key difference is that there is no need to package
the parameters; a direct method call can be made.
template < class T >

class CProxyTOCBuddyEvents : public IConnectionPointImpl< T,
&IID_ITOCBuddyEvents, CComDynamicUnkArray >

{

 // This class based on the ATL-generated connection point class

public:

 void Fire_ActiveViewReplaced(IActiveView* pNewActiveView)

 {

 T* pT = static_cast< T* >(this);

 int nConnectionIndex;

 int nConnections = this->m_vec.GetSize();

 for (nConnectionIndex = 0; nConnectionIndex < nConnections;
nConnectionIndex++)

 {

 pT->Lock();

 CComPtr< IUnknown > sp=this->m_vec.GetAt(nConnectionIndex);

 pT->Unlock();

 ITOCBuddyEvents* pTOCBuddyEvents = reinterpret_cast< ITOCBuddyEvents*
>(sp.p);

 if (pTOCBuddyEvents)

 pTOCBuddyEvents->ActiveViewReplaced(pNewActiveView);

 }

 }

};

IDL declarations for an object that supports events
When an object is exported to a type library, the event interfaces are declared by
using the [source] tag against the interface name. For example, an object that fires
ITOCBuddyEvents declares:
[source] interface ITOCBuddyEvents;

If the outbound interface is a dispatch events interface, dispinterface is used in-
stead of interface. In addition, a coclass can have a default outbound interface;
this is specified with the [default] tag. Default interfaces are identified by some
design environments (for example, Visual Basic 6). Following is the declaration
for the default outbound events interface:
[default, source] dispinterface IMyEvents2;

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM138

Chapter 4 • Developer environments • 139

VISUAL C++

Event circular reference issues
After a sink has performed an advise on the source, there is typically a COM
circular reference. This occurs because the source has an interface pointer to a
sink to fire events, and this keeps the sink alive. Similarly, a sink object has a
pointer back to the source so it can perform the unadvise at a later point. This
keeps the source alive. Therefore, these two objects will never be released and
may cause substantial memory leaks. There are a number of ways to tackle this
issue:

• Ensure the advise and unadvise are made on a method or Windows message
that is guaranteed to happen in pairs and is independent of an object’s life
cycle. For example, in a coclass that is also receiving Windows messages, use
the Windows messages OnCreate (WM_CREATE) and OnDestroy
(WM_DESTROY) to advise and unadvise.

• If an ATL dialog box class needs to listen to events, one approach is to make
the dialog box a private COM class and implement the events interface di-
rectly on the dialog box. ATL allows this without much extra coding. This
approach is illustrated below. The dialog box class creates a CustomizeDialog
coclass and listens to ICustomizeDialogEvents. The OnInitDialog and OnDestroy
methods (corresponding to Windows messages) are used to advise and
unadvise on CustomizeDialog.
class CEngineControlsDlg :

public CAxDialogImpl<CEngineControlsDlg>,

public CComObjectRoot, // Make Dialog Class a COM Object as well.

public ICustomizeDialogEvents // Implement this interface directly on
 this object.

CEngineControlsDlg() : m_dwCustDlgCookie(0) {} // Initialize cookie for
 event listening.

 // ... Event handlers and other standard dialog code has been removed ...

BEGIN_COM_MAP(CEngineControlsDlg)

COM_INTERFACE_ENTRY(ICustomizeDialogEvents) // Make sure QI works for
 this event interface.

END_COM_MAP()

// ICustomizeDialogEvents implementation to receive events on this
 dialog box.

STDMETHOD(OnStartDialog)();

STDMETHOD(OnCloseDialog)();

ICustomizeDialogPtr m_ipCustomizeDialog; // The source of events

DWORD m_dwCustDlgCookie; // Cookie for
 CustomizeDialogEvents.

}

The dialog box needs to be created like a noncreatable COM object, rather
than on the stack as a local variable. This allocates the object on the heap and
allows it to be released through the COM reference counting mechanism.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM139

140 • ArcGIS Engine Developer Guide

VISUAL C++

// Create dialog class on the heap using ATL CComObject template.

CComObject<CEngineControlsDlg> *myDlg;

CComObject<CEngineControlsDlg>::CreateInstance(&myDlg);

myDlg->AddRef(); // Keep dialog box alive until you're done with it.

myDlg->DoModal(); // Launch the dialog box; when method returns, dialog
 box has exited.

myDlg->Release(); // Typically, the refcount now goes to 0 and frees the
 dialog object.

• Implement an intermediate COM object for use by the sink; this is sometimes
called a listener or event helper object. This object typically contains no imple-
mentation but simply uses C++ method calls to forward events to the sink
object. The listener has its reference count incremented by the source, but the
sink’s reference count is unaffected. This breaks the cycle, allowing the sink’s
reference count to reach 0 when all other references are released. As the sink
executes its destructor code, it instructs the listener to unadvise and release
the source.

An alternative to using C++ pointers to communicate between listener and sink
is to use an interface pointer that is a weak reference. That is, the listener con-
tains a COM pointer to the sink but does not increment the sink’s reference
count. It is the responsibility of the sink to ensure that this pointer is not ac-
cessed after the sink object has been released.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM140

Chapter 4 • Developer environments • 141

.NET APPLICATION PROGRAMMING INTERFACE

WHAT IS THE .NET FRAMEWORK?

The .NET Framework is an integral Windows component that supports building
and running the next generation of applications and XML Web services. The
.NET Framework is designed to fulfill the following objectives:

• Provide a consistent object-oriented programming environment whether
object code is stored and executed locally, executed locally but Internet-
distributed, or executed remotely.

• Provide a code execution environment that minimizes software deployment
and versioning conflicts.

• Provide a code execution environment that guarantees safe execution of code,
including code created by an unknown or semitrusted third party.

• Provide a code execution environment that eliminates the performance prob-
lems of scripted or interpreted environments.

• Make the developer experience consistent across widely varying types of
applications, such as Windows-based applications and Web-based applications.

• Build all communication on industry standards to ensure that code based on
the .NET Framework can integrate with any other code.

The .NET Framework has two main components: the common language runtime
and the .NET Framework class library. The common language runtime is the
foundation of the .NET Framework. You can think of the runtime as an agent
that manages code at execution time, providing core services, such as memory
management, thread management, and remoting, while also enforcing strict type
safety and other forms of code accuracy that ensure security and robustness. In
fact, the concept of code management is a fundamental principle of the runtime.
Code that targets the runtime is known as managed code, while code that does
not target the runtime is known as unmanaged code.

The class library, the other main component of the .NET Framework, is a com-
prehensive, object-oriented collection of reusable types that you can use to
develop applications ranging from traditional command-line or graphical user
interface applications to applications based on the latest innovations provided by
ASP.NET, such as Web Forms and XML Web services.

The .NET Framework can be hosted by unmanaged components that load the
common language runtime into their processes and initiate the execution of
managed code, thereby creating a software environment that can exploit both
managed and unmanaged features. The .NET Framework not only provides
several runtime hosts but also supports the development of third-party runtime
hosts.

For example, ASP.NET hosts the runtime to provide a scalable, server-side
environment for managed code. ASP.NET works directly with the runtime to
enable ASP.NET applications and XML Web services, both of which are dis-
cussed later in this topic.

Internet Explorer is an example of an unmanaged application that hosts the
runtime (in the form of a MIME type extension). Using Internet Explorer to
host the runtime enables you to embed managed components or Windows Forms

This section, ‘What is the .NET Framework?’,
summarizes the Microsoft overview of the .NET

Framework available online as part of the
MSDN Library. The complete text is available at

http://www.msdn.microsoft.com.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM141

142 • ArcGIS Engine Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

controls in HTML documents. Hosting the runtime in this way makes managed
mobile code (similar to Microsoft ActiveX controls) possible, but with significant
improvements that only managed code can offer, such as semitrusted execution
and secure isolated file storage.

The following sections describe the main components and features of the .NET
Framework in greater detail.

Features of the common language runtime
The common language runtime manages memory, thread execution, code execu-
tion, code safety verification, compilation, and other system services. These
features are intrinsic to the managed code that runs on the common language
runtime.

Regarding security, managed components are awarded varying degrees of trust,
depending on a number of factors that includes their origin, such as the Internet,
enterprise network, or local computer. This means that a managed component
might or might not be able to perform file access operations, registry access
operations, or other sensitive functions, even if it is being used in the same active
application.

The runtime enforces code access security. For example, users can trust that an
executable embedded in a Web page can play an animation onscreen or sing a song
but cannot access their personal data, file system, or network. The security fea-
tures of the runtime thus enable legitimate Internet-deployed software to be
exceptionally feature rich.

The runtime also enforces code robustness by implementing a strict type-and-
code-verification infrastructure called the common type system (CTS). The CTS
ensures that all managed code is self-describing. The various Microsoft and third-
party language compilers generate managed code that conforms to the CTS. This
means that managed code can consume other managed types and instances, while
strictly enforcing type fidelity and type safety.

In addition, the managed environment of the runtime eliminates many common
software issues. For example, the runtime automatically handles object layout and
manages references to objects, releasing them when they are no longer being used.
This automatic memory management resolves the two most common application
errors: memory leaks and invalid memory references.

The runtime also accelerates developer productivity. For example, programmers
can write applications in their development language of choice, yet take full
advantage of the runtime, the class library, and components written in other
languages by other developers. Any compiler vendor who chooses to target the
runtime can do so. Language compilers that target the .NET Framework make
the features of the .NET Framework available to existing code written in that
language, greatly easing the migration process for existing applications.

While the runtime is designed for the software of the future, it also supports
software of today and yesterday. Interoperability between managed and
unmanaged code enables developers to continue to use necessary COM compo-
nents and DLLs.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM142

Chapter 4 • Developer environments • 143

.NET APPLICATION PROGRAMMING INTERFACE

The runtime is designed to enhance performance. Although the common language
runtime provides many standard runtime services, managed code is never inter-
preted. A feature called just-in-time (JIT) compiling enables all managed code to
run in the native machine language of the system on which it is executing. Mean-
while, the memory manager removes the possibilities of fragmented memory and
increases memory locality-of-reference to further increase performance.

Finally, the runtime can be hosted by high-performance, server-side applications,
such as Microsoft SQL Server and Internet Information Services (IIS). This
infrastructure enables you to use managed code to write your business logic, while
still enjoying the superior performance of the industry’s best enterprise servers
that support runtime hosting.

.NET Framework class library
The .NET Framework class library is a collection of reusable types that tightly
integrate with the common language runtime. The class library is object oriented,
providing types from which your own managed code can derive functionality.
This not only makes the .NET Framework types easy to use but also reduces the
time associated with learning new features of the .NET Framework. In addition,
third-party components can integrate seamlessly with classes in the .NET Frame-
work.

For example, the .NET Framework collection classes implement a set of inter-
faces that you can use to develop your own collection classes. Your collection
classes will blend seamlessly with the classes in the .NET Framework.

As you would expect from an object-oriented class library, the .NET Framework
types enable you to accomplish a range of common programming tasks, including
string management, data collection, database connectivity, and file access. In
addition to these common tasks, the class library includes types that support a
variety of specialized development scenarios. For example, you can use the .NET
Framework to develop the following types of applications and services:

• Console applications

• Windows GUI applications (Windows Forms)

• ASP.NET applications

• XML Web services

• Windows services

For example, the Windows Forms classes are a comprehensive set of reusable
types that vastly simplify Windows GUI development. If you write an ASP.NET
Web Form application, you can use the Windows Forms classes.

Client application development
Client applications are the closest to a traditional style of application in Win-
dows-based programming. These are the types of applications that display win-
dows or forms on the desktop, enabling a user to perform a task. Client applica-
tions include applications such as word processors and spreadsheets as well as
custom business applications such as data entry and reporting tools. Client appli-
cations usually employ windows, menus, buttons, and other GUI elements, and

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM143

144 • ArcGIS Engine Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

they likely access local resources, such as the file system, and peripherals such as
printers.

Another kind of client application is the traditional ActiveX control (now re-
placed by the managed Windows Forms control) deployed over the Internet as a
Web page. This application is much like other client applications: it is executed
natively, has access to local resources, and includes graphical elements.

In the past, developers created such applications using C or C++ in conjunction
with the Microsoft Foundation Classes or with a rapid application development
(RAD) environment such as Microsoft Visual Basic. The .NET Framework
incorporates aspects of these existing products into a single, consistent develop-
ment environment that drastically simplifies the development of client applica-
tions.

The Windows Forms classes contained in the .NET Framework are designed to
be used for GUI development. You can easily create command windows, buttons,
menus, toolbars, and other screen elements with the flexibility necessary to
accommodate shifting business needs.

For example, the .NET Framework provides simple properties to adjust visual
attributes associated with forms. In some cases the underlying operating system
does not support changing these attributes directly, and in these cases the .NET
Framework automatically re-creates the forms. This is one of many ways in
which the .NET Framework integrates the developer interface, making coding
simpler and more consistent.

Unlike ActiveX controls, Windows Forms controls have semitrusted access to a
user’s computer. This means that binary or natively executing code can access
some of the resources on the user’s system, such as GUI elements and limited file
access, without being able to access or compromise other resources. Because of
code access security, many applications that once needed to be installed on a user’s
system can now be safely deployed through the Web. Your applications can imple-
ment the features of a local application while being deployed like a Web page.

Server application development
Server-side applications in the managed world are implemented through runtime
hosts. Unmanaged applications host the common language runtime, which allows
your custom managed code to control the behavior of the server. This model
provides you with all the features of the common language runtime and class
library while gaining the performance and scalability of the host server.

Server-side managed code
ASP.NET is the hosting environment that enables developers to use the .NET
Framework to target Web-based applications. However, ASP.NET is more than a
runtime host; it is a complete architecture for developing Web sites and Internet-
distributed objects using managed code. Both Web Forms and XML Web services
use IIS and ASP.NET as the publishing mechanism for applications, and both
have a collection of supporting classes in the .NET Framework.

XML Web services, an important evolution in Web-based technology, are distrib-
uted, server-side application components similar to common Web sites. However,

This section does not address licensing consider-
ations and is intended only to illustrate the

possibilities of server application development
using the .NET API. While the ArcGIS Engine
Developer Kit can be used to develop applica-

tions that run on single-use computers and that
may or may not leverage ArcSDE-, ArcGIS

Server-, or ArcIMS-based services, custom
components deployed on a server require an

ArcGIS Server license. Contact your ESRI
regional office or international distributor for

more information.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM144

Chapter 4 • Developer environments • 145

.NET APPLICATION PROGRAMMING INTERFACE

unlike Web-based applications, XML Web services components have no UI and
are not targeted for browsers such as Internet Explorer and Netscape Navigator.
Instead, XML Web services consist of reusable software components designed to
be consumed by other applications, such as traditional client applications, Web-
based applications, or even other XML Web services. As a result, XML Web
services technology is rapidly moving application development and deployment
into the highly distributed environment of the Internet.

If you have used earlier versions of Active Server Pages (ASP) technology, you
will immediately notice the improvements that ASP.NET and Web Forms offer.
For example, you can develop Web Forms pages in any language that supports the
.NET Framework. In addition, your code no longer needs to share the same file
with your HTTP text (although it can continue to do so if you prefer). Web
Forms pages execute in native machine language because, like any other managed

application, they take full advantage of the
runtime. In contrast, unmanaged ASP pages are
always scripted and interpreted. ASP.NET pages
are faster, more functional, and easier to develop
than unmanaged ASP pages because they interact
with the runtime like any managed application.

The .NET Framework also provides a collection
of classes and tools to aid in development and

consumption of XML Web services applications. XML Web services are built on
standards such as SOAP, a remote procedure-call protocol; XML, an extensible
data format; and WSDL, the Web Services Description Language. The .NET
Framework is built on these standards to promote interoperability with non-
Microsoft solutions.

For example, the Web Services Description Language tool included with the
.NET Framework SDK can query an XML Web service published on the Web,
parse its WSDL description, and produce C# or Visual Basic source code that
your application can use to become a client of the XML Web service. The source
code can create classes derived from classes in the class library that handle all the
underlying communication using SOAP and XML parsing. Although you can use
the class library to consume XML Web services directly, the Web Services De-
scription Language tool and the other tools contained in the SDK facilitate your
development efforts with the .NET Framework.

If you develop and publish your own XML Web service, the .NET Framework
provides a set of classes that conform to all the underlying communication stan-
dards, such as SOAP, WSDL, and XML. Using those classes enables you to focus
on the logic of your service, without concerning yourself with the communica-
tions infrastructure required by distributed software development.

Finally, like Web Forms pages in the managed environment, your XML Web
service will run with the speed of native machine language using the scalable
communication of IIS.

INTEROPERATING WITH COM

Code running under the .NET Framework’s control is called managed code;
conversely, code executing outside the .NET Framework is termed unmanaged

This diagram illustrates a basic network schema
with managed code running in different server

environments. Servers, such as IIS and SQL
Server, can perform standard operations while

your application logic executes the managed
code.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM145

146 • ArcGIS Engine Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

code. COM is one example of unmanaged code. The .NET Framework interacts
with COM via a technology known as COM Interop.

For COM Interop to work, the Common Language Runtime (CLR) requires
metadata for all the COM types. This means that the COM type definitions
normally stored in the type libraries need to be converted to .NET metadata. This
is easily accomplished with the Type Library Importer utility (tlbimp.exe), which
ships with the .NET Framework SDK. This utility generates interop assemblies
containing the metadata for all the COM definitions in a type library. Once
metadata is available, .NET clients can seamlessly create instances of COM types
and call its methods as though they were native .NET instances.

Primary interop assemblies
Primary interop assemblies (PIAs) are the official, vendor-supplied, .NET type
definitions for interoperating with underlying COM types. Primary interop assem-
blies are strongly named by the COM library publisher to guarantee uniqueness.

ESRI provides primary interop assemblies for all the ArcObjects type libraries
that are implemented with COM. ArcGIS .NET developers should only use those
primary interop assemblies that are installed in the Global Assembly Cache (GAC)
during install if version 1.1 of the .NET Framework is detected. ESRI only
supports the interop assemblies that ship with ArcGIS. You can identify a valid
ESRI assembly by its public key (8FC3CC631E44AD86).

COM wrappers
The .NET runtime provides wrapper classes to make both managed and

unmanaged clients believe
they are communicating
with objects within their
respective environment.
When managed clients call
a method on a COM
object, the runtime creates
a runtime callable wrapper
(RCW) that handles the
marshalling between the
two environments. Simi-
larly, the .NET runtime
creates COM-callable

wrappers for the reverse case, COM clients communicating with .NET compo-
nents. The illustration above outlines this process.

Exposing .NET components to COM
When creating .NET components that COM clients will make use of, follow the
guidelines listed below to ensure interoperability.

• Avoid using parameterized constructors.

• Avoid using static methods.

• Define event source interfaces in managed code.

The ArcGIS installation program also installs the
Microsoft Stdole.dll PIA, providing interop for

OLE font and picture classes, which are used by
some ESRI libraries.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM146

Chapter 4 • Developer environments • 147

.NET APPLICATION PROGRAMMING INTERFACE

• Include HRESULTs in user-defined exceptions.

• Supply GUIDs for types that require them.

• Expect inheritance differences.

For more information, review ‘Interoperating with Unmanaged Code’ in the
MSDN help collection.

Performance considerations
COM Interop clearly adds a new layer of overhead to applications, but the over-
all cost of interoperating between COM and .NET is small and often unnotice-
able. However, the cost of creating wrappers and having them marshall between
environments does add up; if you suspect COM Interop is the bottleneck in your
application’s performance, try creating a COM worker class that wraps all the
chatty COM calls into one function that managed code can invoke. This improves
performance by limiting the marshalling between the two environments.

COM to .NET type conversion
Generally speaking, the type library importer imports types with the same name
they originally had in COM. All imported types are additionally added to a
namespace that has the following naming convention: ESRI.ArcGIS plus the
name of the library. For example, the namespace for the Geometry library is
ESRI.ArcGIS.Geometry. All types are identified by their complete namespace and
type name.

Classes, interfaces, and members
All COM coclasses are converted to managed classes; the managed classes have
the same name as the original with ‘Class’ appended. For example, the Point
coclass is PointClass.

All classes also have an interface with the same name as the coclass that corre-
sponds to the default interface for the coclass. For example, the PointClass has a
Point interface. The type library importer adds this interface so clients can register
event sinks.

The .NET classes also have class members that .NET supports, but COM does
not. Each member of each interface the class implements is added as a class
member. Any property or method a class implements can be accessed directly
from the class rather than having to cast to a specific interface. Since interface
member names are not unique, name conflicts are resolved by adding the interface
name and an underscore as a prefix to the name of each conflicting member.
When member names conflict, the first interface listed with the coclass remains
unchanged.

Properties in C# that have by-reference or multiple parameters are not supported
with the regular property syntax. In these cases, it is necessary to use the accessor
methods instead. The following code excerpt shows an example.
 ILayer layer = mapControl.get_Layer(0);

 MessageBox.Show(layer.Name);

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM147

148 • ArcGIS Engine Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

Events
The type library importer creates several types that enable managed applications
to sink to events fired by COM classes. The first type is a delegate that is named
after the event interface plus an underscore followed by the event name, then the
word EventHandler. For example, the SelectionChanged event defined on the
IActiveViewEvents interface has the following delegate defined:
IActiveViewEvents_SelectionChangedEventHandler. The importer also creates an
event interface with an ‘_Event’ suffix added to the end of the original interface
name. For example, IActiveViewEvents generates IActiveViewEvents_Event. Use the
event interfaces to set up event sinks.

Non-OLE automation-compliant types
COM types that are not OLE automation compliant generally do not work in
.NET. ArcGIS contains a few noncompliant methods, and these cannot be used
in .NET. However, in most cases, supplemental interfaces have been added that
have the offending members rewritten compliantly. For example, when defining
an envelope via a point array, you can’t use IEnvelope::DefineFromPoints; instead,
you must use IEnvelopeGEN::DefineFromPoints.
[VB.NET]

Dim pointArray(1) As IPoint

pointArray(0) = New PointClass

pointArray(1) = New PointClass

pointArray(0).PutCoords(0, 0)

pointArray(1).PutCoords(100, 100)

Dim env As IEnvelope

Dim envGEN As IEnvelopeGEN

env = New EnvelopeClass

envGEN = New EnvelopeClass

' Won't compile

env.DefineFromPoints(2, pointArray)

' Doesn't work

env.DefineFromPoints(2, pointArray(0))

' Works

envGEN.DefineFromPoints(pointArray)

[C#]

IPoint[] pointArray = new IPoint[2];

pointArray[0] = new PointClass();

pointArray[1] = new PointClass();

pointArray[0].PutCoords(0,0);

pointArray[1].PutCoords(100,100);

IEnvelope env = new EnvelopeClass();

IEnvelopeGEN envGEN = new EnvelopeClass();

// Won't compile

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM148

Chapter 4 • Developer environments • 149

.NET APPLICATION PROGRAMMING INTERFACE

env.DefineFromPoints(3, ref pointArray);

// Doesn't work

env.DefineFromPoints(3, ref pointArray[0]);

// Works

envGEN.DefineFromPoints(ref pointArray);

Class Interfaces
Class interfaces are created to help VB programmers transition to .NET; they are
also commonly used in code produced by the Visual Basic .NET Upgrade Wizard
or the code snippet converter in Visual Studio .NET.

However, it is generally recommended that you avoid using the class interfaces in
the ESRI interop assemblies, as they may change in future versions of ArcGIS.
This section explains a little more about class interfaces.

In Visual Basic 6, the details of default interfaces were hidden from the user, and
a programmer could instantiate a variable and access the members of its default
interface without performing a specific QI for that interface; for example, the
VB 6 code below instantiates the StdFont class and sets a variable equal to the
default interface (IStdFont) of that class:
[VB 6.0]

Dim fnt As New Stdole.StdFont

However, .NET does not provide this same ability. To allow VB developers a
more seamless introduction to .NET, the type library importer in .NET adds ‘class
interfaces’ to each interop assembly, allowing COM objects to be used with this
same syntax inside .NET. When an object library is imported, a class interface
RCW is created for each COM class; the name of the class interface is the same as
the COM class—for example, Envelope.

All the members of the default interface of the COM class are added to this class
interface; also, if the COM class has a source interface (is the source of events),
then the class interface will also include all the events of this interface, which
helps a programmer to link up events.

A second RCW is created that represents the underlying COM class; the name of
this is the same as the COM class with a suffix of ‘Class’, for example,
EnvelopeClass. The class interface is linked to the class by an attribute, which
indicates the class to which it belongs. This attribute is recognized by the .NET
compilers, which allows a programmer to instantiate a class by using its class
interface.

The exception is classes that have a default interface of IUnknown or IDispatch,
which are never exposed on RCW classes as the members are called internally by
the .NET Framework runtime. In this case, the next implemented interface is
exposed on the class interface instead. As most ArcObjects define IUnknown as
their default interface, this affects most ArcObjects classes. For example, the
Point COM class in the esriGeometry object library lists the IPoint interface as its
first implemented interface. In .NET, this class is accessed by using the Point class
interface, which inherits the IPoint interface, and the PointClass class.

The code below shows that by declaring a variable type as a Point class interface,

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM149

150 • ArcGIS Engine Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

that variable can be used to access the IPoint::PutCoords method from this class
interface.
[VB.NET]

Dim thePt As ESRI.ArcGIS.Geometry.Point = New ESRI.ArcGIS.Geometry.Point()

thePt.PutCoords(10,8)

[C#]

ESRI.ArcGIS.Geometry.Point thePt = newESRI.ArcGIS.Geometry.Point();

thePt.PutCoords(10,8);

The inherited interface of a class interface is not guaranteed to remain the same
between versions of ArcGIS and, therefore, it is recommended that you avoid
using the above syntax.

You can view these types in the VB .NET Object Browser. Notice that using
Visual Basic .NET, PointClass is not shown by default but can be made visible by
selecting the Show Hidden Members option. In the C# Object Browser, you can
see more clearly the class interface Point and its inherited interface IPoint and the
class PointClass.

.NET PROGRAMMING TECHNIQUES AND CONSIDERATIONS

This section contains several programming tips and techniques to help developers
who are moving to .NET.

Casting between interfaces (QueryInterface)
.NET uses casting to jump from one interface to another interface on the same
class. In COM this is called QueryInterface. VB.NET and C# cast differently.

VB.NET
There are two types of casts, implicit and explicit. Implicit casts require no
additional syntax, whereas explicit casts require cast operators.

geometry = point ' Implicit cast

geometry = CType(point, IGeometry) ' Explicit cast

When casting between interfaces, it’s perfectly acceptable to use implicit casts
because there is no chance of data loss as there is when casting between numeric
types. However, when casts fail, an exception (System.InvalidCastException) is
thrown; to avoid handling unnecessary exceptions, it’s best to test if the object
implements both interfaces beforehand. The recommended technique is to use the
TypeOf keyword, which is a comparison clause that tests whether an object is
derived from or implements a particular type, such as an interface. The example
below performs an implicit conversion from an IPoint to an IGeometry only if at
runtime it is determined that the Point class implements IGeometry.

Dim point As New PointClass

Dim geometry As IGeometry

If (TypeOf point Is IGeometry) Then

geometry = point

End If

If you prefer using the Option Strict On statement to restrict implicit conver-
sions, use the CType function to make the cast explicit. The example below adds
an explicit cast to the code sample above.

Dim point As New PointClass

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM150

Chapter 4 • Developer environments • 151

.NET APPLICATION PROGRAMMING INTERFACE

Dim geometry As IGeometry

If (TypeOf point Is IGeometry) Then

geometry = CType(point, IGeometry)

End If

C#
In C#, the best method for casting between interfaces is to use the as operator.
Using the as operator is a better coding strategy than a straight cast because it
yields a null on a conversion failure rather than raising an exception.

The first line of code below is a straight cast. This is acceptable practice if you
are absolutely certain the object in question implements both interfaces; if the
object does not implement the interface you are attempting to get a handle to,
.NET will throw an exception. A safer model to use is the as operator, which
returns a null if the object cannot return a reference to the desired interface.

IGeometry geometry = point; // Straight cast

IGeometry geometry = point as IGeometry; // As operator

The example below shows how to handle the possibility of a returned null inter-
face handle.

IPoint point = new PointClass();

IGeometry geometry = point;

IGeometry geometry = point as IGeometry;

if (geometry != null)

{

Console.WriteLine(geometry.GeometryType.ToString());

}

Binary compatibility
Most existing ArcGIS Visual Basic 6 developers are familiar with the notion of
binary compatibility. This compiler flag in Visual Basic ensures that components
maintain the same GUID each time they are compiled. When this flag is not set, a
new GUID is generated for each class every time the project is compiled. This has
the adverse side effect of having to then re-register the components in their
appropriate component categories.

To keep from having the same problem in .NET, you can use the GUIDAttribute
class to manually specify a GUID for a class. Explicitly specifying a GUID guar-
antees that it will never change. If you do not specify a GUID, the type library
exporter will automatically generate one when you first export your components
to COM, and although the exporter is meant to keep using the same GUIDs on
subsequent exports, it’s not guaranteed to do so.

The example below shows a GUID attribute being applied to a class.
[VB.NET]

<GuidAttribute("9ED54F84-A89D-4fcd-A854-44251E925F09")> _

Public Class SampleClass

'

End Class

[C#]

[GuidAttribute("9ED54F84-A89D-4fcd-A854-44251E925F09")]

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM151

152 • ArcGIS Engine Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

Public class SampleClass

{

//

}

Events
An event is a message sent by an object to signal the occurrence of an action. The
action could be caused by user interaction, such as a mouse click, or it could be
triggered by some other program logic. The object that raises (triggers) the event
is called the event sender. The object that captures the event and responds to it is
called the event receiver.

In event communication, the event sender class does not know which object or
method will receive (handle) the events it raises. What is needed is an intermedi-
ary (or pointer-like mechanism) between the source and the receiver. The .NET
Framework defines a special type (<Delegate>) that provides the functionality
of a function pointer.

A delegate is a class that can hold a reference to a method. Unlike other classes, a
delegate class has a signature, and it can hold references only to methods that
match its signature. A delegate is thus equivalent to a type-safe function pointer
or a callback.

To consume an event in an application, you must provide an event handler (an
event-handling method) that executes program logic in response to the event and
register the event handler with the event source. The event handler must have the
same signature as the event delegate. This process is referred to as event wiring.

The ArcObjects code excerpt below shows a custom command wiring up to a
MapControl object’s selection changed event. For simplicity, the event is wired up
in the OnClick event.
[VB.NET]

' Can't use WithEvents because the outbound interface is not the

' default interface

' IActiveViewEvents is the sink event interface.

' SelectionChanged is the name of the event.

' IActiveViewEvents_SelectionChangedEventHandler is the delegate name.

' Declare the delegate.

Private SelectionChanged As IActiveViewEvents_SelectionChangedEventHandler

Private m_map As Map

Private m_pHookHelper As IHookHelper

Public Overloads Overrides Sub OnCreate(ByVal hook As Object)

m_pHookHelper.Hook = hook

End Sub

Public Overrides Sub OnClick()

m_map = m_pHookHelper.FocusMap

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM152

Chapter 4 • Developer environments • 153

.NET APPLICATION PROGRAMMING INTERFACE

' Create an instance of the delegate, and add it to SelectionChanged event.

SelectionChanged = New
IActiveViewEvents_SelectionChangedEventHandler(AddressOf OnSelectionChanged)

AddHandler m_map_SelectionChanged, SelectionChanged

End Sub

' Event handler

Private Sub OnSelectionChanged()

MessageBox.Show("Selection Changed")

End Sub

Error handling
The error handling construct in Visual Studio .NET is known as structured
exception handling. The constructs used may be new to Visual Basic users but
should be familiar to users of C++ or Java.

Structured exception handling is straightforward to implement, and the same
concepts are applicable to either VB.NET or C#. VB.NET allows backward
compatibility by also providing unstructured exception handling via the familiar
On Error GoTo statement and Err object, although this model is not discussed in
this section.

Exceptions
Exceptions are used to handle error conditions in Visual Studio .NET. They
provide information about the error condition.

An exception is an instance of a class that inherits from the System.Exception
base class. Many different types of exception classes are provided by the .NET
Framework, and it is also possible to create your own exception classes. Each
type extends the basic functionality of the System.Exception class by allowing
further access to information about the specific type of error that has occurred.

An instance of an Exception class is created and thrown when the .NET Frame-
work encounters an error condition. You can deal with exceptions by using the
Try, Catch, Finally construct.

Try, Catch, Finally
This construct allows you to catch errors that are thrown within your code. An
example of this construct is shown below. An attempt is made to rotate an
envelope, which throws an error.
[VB.NET]

Dim env As IEnvelope = New EnvelopeClass()

env.PutCoords(0D, 0D, 10D, 10D)

Dim trans As ITransform2D = env

trans.Rotate(env.LowerLeft, 1D)

Catch ex As System.Exception

MessageBox.Show("Error: " + ex.Message)

' Perform any tidy up of code.

End Try

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM153

154 • ArcGIS Engine Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

[C#]

{

IEnvelope env = new EnvelopeClass();

env.PutCoords(0D, 0D, 10D, 10D);

ITransform2D trans = (ITransform2D) env;

trans.Rotate(env.LowerLeft, 1D);

}

catch (System.Exception ex)

{

MessageBox.Show("Error: " + ex.Message);

}

{

// Perform any tidy up of code.

}

You place a try block around code that may fail. If the application throws an
error within the Try block, the point of execution will switch to the first Catch
block.

The Catch block handles a thrown error. The application executes the Catch
block when the Type of a thrown error matches the Type of error specified by
the Catch block. You can have more than one Catch block to handle different
kinds of errors. The code shown below checks first if the exception thrown is a
DivideByZeroException.
[VB.NET]

...

Catch divEx As DivideByZeroException

' Perform divide by zero error handling.

Catch ex As System.Exception

' Perform general error handling.

...

[C#]

...

catch (DivideByZeroException divEx)

{

// Perform divide by zero error handling.

}

catch (System.Exception ex)

{

// Perform general error handling.

}

...

If you do have more than one Catch block, note that the more specific exception,
Types, should precede the general System.Exception, which will always succeed
the type check.

The application always executes the Finally block, either after the Try block
completes or after a Catch block, if an error was thrown. The Finally block
should, therefore, contain code that must always be executed, for example, to

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM154

Chapter 4 • Developer environments • 155

.NET APPLICATION PROGRAMMING INTERFACE

clean up resources such as file handles or database connections.

If you do not have any cleanup code, you do not need to include a Finally block.

Code without exception handling
If a line of code not contained in a Try block throws an error, the .NET runtime
searches for a Catch block in the calling function, continuing up the call stack
until a Catch block is found.

If no Catch block is specified in the call stack, the exact outcome may depend on
the location of the executed code and the configuration of the .NET runtime.
Therefore, it is advisable to include at least a Try, Catch, Finally construct for all
entry points to a program.

Errors from COM components
The structured exception handling model differs from the HRESULT model used
by COM. C++ developers can easily ignore an error condition in an HRESULT if
they want; in Visual Basic 6, however, an error condition in an HRESULT popu-
lates the Err object and raises an error.

The .NET runtime’s handling of errors from COM components is somewhat
similar to the way COM errors were handled at VB6. If a .NET program calls a
function in a COM component (through the COM interop services) and returns
an error condition as the HRESULT, the HRESULT is used to populate an
instance of the COMException class. This is then thrown by the .NET runtime,
where you can handle it in the usual way, by using a Try, Catch, Finally block.

Therefore, it is advisable to enclose all code that may raise an error in a COM
component within a Try block with a corresponding Catch block to catch a
COMException. Below is the first example rewritten to check for an error from a
COM component.
[VB.NET]

Dim env As IEnvelope = New EnvelopeClass()

env.PutCoords(0D, 0D, 10D, 10D)

Dim trans As ITransform2D = env

trans.Rotate(env.LowerLeft, 1D)

Catch COMex As COMException

If (COMex.ErrorCode = -2147220984) Then

MessageBox.Show("You cannot rotate an Envelope")

MessageBox.Show _

("Error " + COMex.ErrorCode.ToString() + ": " + COMex.Message)

End If

Catch ex As System.Exception

MessageBox.Show("Error: " + ex.Message)

...

[C#]

{

IEnvelope env = new EnvelopeClass();

env.PutCoords(0D, 0D, 10D, 10D);

ITransform2D trans = (ITransform2D) env;

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM155

156 • ArcGIS Engine Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

trans.Rotate(env.LowerLeft, 1D);

}

catch (COMException COMex)

{

if (COMex.ErrorCode == -2147220984)

MessageBox.Show("You cannot rotate an Envelope");

MessageBox.Show ("Error " + COMex.ErrorCode.ToString() + ": " +
COMex.Message);

}

catch (System.Exception ex)

{

MessageBox.Show("Error: " + ex.Message);

}

...

The COMException class belongs to the System.Runtime.InteropServices
namespace. It provides access to the value of the original HRESULT via the
ErrorCode property, which you can test to find out which error condition oc-
curred.

Throwing errors and the exception hierarchy
If you are coding a user interface, you may want to attempt to correct the error
condition in code and try the call again. Alternatively, you may want to report the
error to the user to let them decide which course of action to take; you can make
use of the Message property of the Exception class to identify the problem.

However, if you are writing a function that is only called from other code, you
may want to deal with an error by creating a specific error condition and propa-
gating this error to the caller. You can do this using the Throw keyword.

To throw the existing error to the caller function, write your error handler using
the Throw keyword, as shown below.
[VB.NET]

Catch ex As System.Exception

...

[C#]

catch (System.Exception ex)

{

 throw;

}

...

If you want to propagate a different or more specific error back to the caller, you
should create a new instance of an Exception class, populate it appropriately, and
throw this exception back to the caller. The example shown below uses the
ApplicationException constructor to set the Message property.
[VB.NET]

Catch ex As System.Exception

 Throw New ApplicationException _

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM156

Chapter 4 • Developer environments • 157

.NET APPLICATION PROGRAMMING INTERFACE

 ("You had an error in your application")

...

[C#]

catch (System.Exception ex)

{

 throw new ApplicationException("You had an error in your application");

}

...

If you do this, however, the original exception is lost. To allow complete error
information to be propagated, the Exception class includes the InnerException
property. This property should be set to equal the caught exception, before the
new exception is thrown. This creates an error hierarchy. Again, the example
shown below uses the ApplicationException constructor to set the
InnerException and Message properties.
[VB.NET]

Catch ex As System.Exception

Dim appEx As System.ApplicationException = _

New ApplicationException("You had an error in your application", ex)

Throw appEx

...

[C#]

catch (System.Exception ex)

{

System.ApplicationException appEx =

new ApplicationException("You had an error in your application", ex);

throw appEx;

}

...

In this way, the function that eventually deals with the error condition can access
all the information about the cause of the condition and its context.

If you throw an error, the application will execute the current function’s Finally
clause before control is returned to the calling function.

System.__ComObject and casting to strongly typed RCWs
Sometimes you may find that casting a variable fails when you think it should
succeed (the solution is often to declare variables as interface Types and avoid the
use of class types, for example, use IStyleGallery rather than StyleGalleryClass).
You may also have come across the System.__ComObject type and wonder where
it comes from. This topic should help you to understand these issues; in particu-
lar, you may encounter problems when attempting to create the AppRef class in
.NET—this issue is related to the System.__ComObject wrapper and is also
covered below.

Types and Runtime Callable Wrappers
In .NET, each class, interface, enumeration, and so on, is described by its Type.
The Type class, which is part of the .NET Framework, holds information about

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM157

158 • ArcGIS Engine Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

the data and function members of a datatype. When you create a new COM
object in .NET via interop, you get a reference to your object that is wrapped in a
strongly typed runtime callable wrapper (RCW). A RCW is a wrapper that can
hold a reference to a COM object inside a .NET application.

To understand what this means, look at the following code extract; a variable
called sym is declared as the ISimpleMarkerSymbol interface Type and is then set to
a new SimpleMarkerSymbolClass. Then the Type of the variable sym is retrieved
and written to the debug window. If you were to run this code, you would find
that the Type of sym is SimpleMarkerSymbolClass, as you might expect; the vari-
able holds a reference to the ISimpleMarkerSymbol interface of the
SimpleMarkerSymbolClass RCW.
[C#]

ESRI.ArcGIS.Display.ISimpleMarkerSymbol sym = new
ESRI.ArcGIS.Display.SimpleMarkerSymbolClass();

Debug.WriteLine(sym.GetType().FullName);

[Visual Basic .NET]

Dim sym As ESRI.ArcGIS.Display.ISimpleMarkerSymbol = New
ESRI.ArcGIS.Display.SimpleMarkerSymbolClass

Debug.WriteLine(CType(sym, Object).GetType.FullName)

In a different coding situation, you may get a reference to a RCW from another
property or method. For example, in the similar code below, the Symbol property
of a renderer (ISimpleRenderer interface) is retrieved, where the renderer uses a
single SimpleMarkerSymbol to draw.
[C#]

ESRI.ArcGIS.Display.ISimpleMarkerSymbol sym = rend.Symbol as
ESRI.ArcGIS.Display.ISimpleMarkerSymbol;

Debug.WriteLine(sym.GetType().FullName);

[Visual Basic .NET]

Dim sym As ESRI.ArcGIS.Display.ISimpleMarkerSymbol = rend.Symbol

Debug.WriteLine(CType(sym, Object).GetType.FullName)

Although you might expect to get the same output as before, you will actually
find that the reported Type of sym is System.__ComObject.

The System.__ComObject Type
The difference between the two excerpts of code above is that in the first you
create the symbol using the New (or new) keyword and the Type
SimpleMarkerSymbolClass. When the code is compiled, the exact Type of the
variable is discovered by the compiler using Reflection, and metadata about that
Type is stored in the compiled code. When the code runs, the runtime then has all
the information (the metadata) that describes the exact Type of the variable.

However, in the second example, you set the sym variable from the Symbol
property of the ISimpleRenderer interface. When this code is compiled, the only
metadata that the compiler can find is that the Symbol property returns an
ISymbol reference; the Type of the actual class of object cannot be discovered.
Although you can perform a cast to get the ISimpleMarkerSymbol interface of the
sym variable (or any other interface that the symbol implements), the .NET
runtime does not have the metadata required at runtime to discover exactly what
the Type of the variable is. In this case, when you access the Symbol property, the

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM158

Chapter 4 • Developer environments • 159

.NET APPLICATION PROGRAMMING INTERFACE

.NET runtime wraps the COM object reference in a generic RCW called
System.__ComObject. This is a class internal to the .NET Framework that can be
used to hold a reference to any kind of COM object; its purpose is to act as the
RCW for an unknown Type of COM object.

Casting
Looking again at the second example, even if you actually know the exact Type
of class to which you have a reference, the .NET runtime still does not have the
metadata required to cast the variable to a strongly typed RCW; this can be seen
in the following code, as attempting a cast to the SimpleMarkerSymbolClass Type
would fail.
[C#]

// The following line would result in sym2 being null as the cast would
fail.

ESRI.ArcGIS.Display.SimpleMarkerSymbolClass sym2 = sym as
ESRI.ArcGIS.Display.SimpleMarkerSymbolClass;

[Visual Basic .NET]

' The following line would result in a runtime error as the implicit cast
would fail.

Dim sym2 As ESRI.ArcGIS.Display.SimpleMarkerSymbol = sym

However, as the System.__ComObject class is specifically designed to work with
COM objects, it is always able to perform a QI to any COM interfaces that are
implemented by an object. Therefore, casting to specific interfaces (as long as they
are implemented on the object) will be successful.
[C#]

ESRI.ArcGIS.Display.ISimpleMarkerSymbol sym3 = sym as
ESRI.ArcGIS.Display.ISimpleMarkerSymbol;

[Visual Basic .NET]

Dim sym3 As ESRI.ArcGIS.Display.ISimpleMarkerSymbol = sym

Singletons and System.__ComObject

In the examples above, a strongly typed RCW is created when you instantiate the
COM object by using the ‘new’ keyword, whereas if the object is preexisting, the
Type of the RCW is the generic System.__ComObject. Sometimes when you use
the ‘new’ keyword to instantiate a COM object, you are actually getting a refer-
ence to an object that already exists—this happens when you attempt to instanti-
ate a singleton class that has previously been instantiated. The .NET framework is
unable to wrap in a strongly typed RCW an instance of an object that has previ-
ously been wrapped in the generic System.__ComObject RCW. If your code has
encountered such a situation, you may receive an error such as

‘Unable to cast object of type System.__ComObject to type <Typename>’.
[C#]

ESRI.ArcGIS.Display.IStyleGallery sg = new
ESRI.ArcGIS.Framework.StyleGalleryClass();

[Visual Basic .NET]

Dim sg As ESRI.ArcGIS.Display.IStyleGallery = = New
ESRI.ArcGIS.Framework.StyleGalleryClass

This error may occur even though you have declared your variable using the
interface name rather than the class name, as shown above. The problem occurs

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM159

160 • ArcGIS Engine Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

because when your code instantiates an object, the .NET runtime first attempts
to wrap the object in the strongly typed class Type (the Type stated after the new
keyword) before attempting a cast to the interface type. The cast to the strongly
typed RCW cannot succeed as the COM object has previously been wrapped in
the generic System.__ComObject wrapper. This may occur in situations beyond
your control. For example, other ArcObjects tools written in .NET from other
third parties may wrap an object in the generic wrapper, causing your code to fail.

The solution is to use the Activator class (as shown below) to safely wrap single-
ton objects in a strongly typed RCW when you first get a reference to them.
Additionally, you should generally always declare variables holding RCWs using an
interface rather than a class Type.

Using the Activator class to create singletons
If you use the CreateInstance method of the Activator class instead of the new
keyword to instantiate singletons, you can avoid such errors, as the Activator is
able to get the required metadata to perform the cast.
[C#]

Type t = Type.GetTypeFromProgID("esriFramework.StyleGallery");

System.Object obj = Activator.CreateInstance(t);

IStyleGallery sg = obj as IStyleGallery;

[Visual Basic .NET]

Dim t As Type = Type.GetTypeFromProgID("esriFramework.StyleGallery")

Dim obj As System.Object = Activator.CreateInstance(t)

Dim pApp As ESRI.ArcGIS.Display.IStyleGallery = obj

You can use this technique to instantiate the AppRef class—remember, however,
that the AppRef class can only be created within an ArcGIS application. (The
Type is the generic System.__ComObject RCW.)
[C#]

Type t = Type.GetTypeFromProgID("esriFramework.AppRef");

System.Object obj = Activator.CreateInstance(t);

ESRI.ArcGIS.Framework.IApplication pApp = obj as
ESRI.ArcGIS.Framework.IApplication;

[Visual Basic .NET]

Dim t As Type = Type.GetTypeFromProgID("esriFramework.AppRef")

Dim obj As System.Object = Activator.CreateInstance(t)

Dim pApp As ESRI.ArcGIS.Framework.IApplication = obj

For more information about RCWs and interop, you may wish to refer to the
book by Adam Nathan, .NET and COM—The Complete Interoperability Guide, Sams
Publishing, 2002.

Working with resources

Using strings and embedded images directly (no localization)
If your customization does not support localization now and you do not intend
for it to support localization later, you can use strings and images directly without
the need for resource files. For example, strings can be specified and used directly
in your code:
[VB.NET]

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM160

Chapter 4 • Developer environments • 161

.NET APPLICATION PROGRAMMING INTERFACE

Me.TextBox1.Text = "My String"

[C#]

this.textBox1.Text = "My String";

Image files (BMPs, JPEGs, PNGs, and so forth) can be embedded in your assem-
bly as follows:

1. Right-click the project in the Solution Explorer, click Add, then click Add
Existing Item.

2. In the Add Existing Item dialog box, browse to your image file and click
Open.

3. In the Solution Explorer, select the image file you just added, then press F4 to
display its properties.

4. Set the Build Action property to Embedded Resource.

Now you can reference the image in your code. For example, the following
code creates a bitmap object from the first embedded resource in the assembly:

[VB.NET]

Dim res() As String = GetType(Form1).Assembly.GetManifestResourceNames()

If (res.GetLength(0) > 0)

Dim bmp As System.Drawing.Bitmap = New System.Drawing.Bitmap(_

GetType(Form1).Assembly.GetManifestResourceStream(res(0)))

...

[C#]

string[] res = GetType().Assembly.GetManifestResourceNames();

if (res.GetLength(0) > 0)

{

System.Drawing.Bitmap bmp = new System.Drawing.Bitmap(

GetType().Assembly.GetManifestResourceStream(res[0]));

 ...

Creating resource files
Before attempting to provide localized resources, you should ensure you are
familiar with the process of creating resource files for your .NET projects. Even
if you do not intend to localize your resources, you can still use resource files
instead of using images and strings directly as described above.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM161

162 • ArcGIS Engine Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

Visual Studio .NET projects use an XML-based file format to contain managed
resources. These XML files have the extension .resx and can contain any kind of
data (images, cursors, and so forth) as long as the data is converted to ASCII
format. RESx files are compiled to .resources files, which are binary representa-
tions of the resource data. Binary .resources files can be embedded by the com-
piler into either the main project assembly or a separate satellite assembly that
contains only resources.

The following options are available to create your resource files. Each is discussed
below.

• Creating a .resx file for string resources

• Creating resource files for image resources

• Compiling a .resx file into a .resources file

Creating a .resx file for string resources
If all you need to localize is strings—not images or cursors—you can use Visual
Studio .NET to create a new .resx file that will be compiled automatically into a
.resources module embedded in the main assembly.

1. Right-click the project name in the Solution Explorer, click Add, then click
Add New Item.

2. In the Add New Item dialog box, click Assembly Resource File.

3. Open the new .resx file in Visual Studio, and add name–value pairs for the
culture-specific strings in your application.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM162

Chapter 4 • Developer environments • 163

.NET APPLICATION PROGRAMMING INTERFACE

4. When you compile your project, the .resx file will be compiled into a .re-
sources module inside your main assembly.

Creating resource files for image resources
The process of adding images, icons, or cursors to a resources file in .NET is more
complex than creating a file containing only string values, because the tools
currently available in the Visual Studio .NET IDE can only be used to add string
resources.

However, a number of sample projects are available with the Visual Studio .NET
Framework SDK that can help you work with resource files. One such sample is
the Resource Editor (ResEditor).

The ResEditor sample can be used to add images, icons, imagelists, and strings to
a resource file. The tool cannot be used to add cursor resources. Files can be
saved as either .resx or .resource files.

Creating resource files programmatically
You can create XML .resx files containing resources programmatically by using
the ResXResourceWriter class (part of the .NET framework). You can create
binary .resources files programmatically by using the ResourceWriter class (also part
of the .NET framework). These classes will allow more flexibility to add the
kind of resources you require.

These classes may be particularly useful if you want to add resources that cannot
be handled by the .NET Framework SDK samples and tools, for example, cur-
sors. The basic usage of the two classes is similar: first, create a new resource
writer class specifying the filename, then add resources individually by using the
AddResource method.

The code below demonstrates how you could create a new .resx file using the
ResXResourceWriter class and add a bitmap and cursor to the file.
[VB.NET]

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM163

164 • ArcGIS Engine Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

Dim img As System.Drawing.Image = CType(New
System.Drawing.Bitmap("ABitmap.bmp"), System.Drawing.Image)

Dim cur As New System.Windows.Forms.Cursor("Pencil.cur")

Dim rsxw As New System.Resources.ResXResourceWriter("en-AU.resx")

rsxw.AddResource("MyBmp_jpg", img)

rsxw.AddResource("Mycursor_cur", cur)

rsxw.Close()

[C#]

System.Drawing.Image img = (System.Drawing.Bitmap) new
System.Drawing.Bitmap("ABitmap.bmp");

System.Windows.Forms.Cursor cur = new
System.Windows.Forms.Cursor("Pencil.cur");

System.Resources.ResXResourceWriter rsxw = new
System.Resources.ResXResourceWriter("en-GB.resx");

rsxw.AddResource("MyBmp_jpg", img);

rsxw.AddResource("Mycursor_cur", cur);

rsxw.Close();

The PanTool developer sample (Samples\Map Analysis\Tools) includes a script—
MakeResources—that shows you how to use the ResXResourceWriter class to
write bitmaps, cursor files, and strings into a .resx file. It also shows you how to
read from a .resx file using the ResXResourceReader class. The sample includes a
.resx file that holds a bitmap, two cursors, and three strings.

Compiling a .resx file into a .resources file
XML-based .resx files can be compiled to binary .resources files either by using
the Visual Studio IDE or the ResX Generator (ResXGen) sample in the tutorial.

• Any .resx file included in a Visual Studio project will be compiled to a
.resources module when the project is built. See the ‘Using resources with
localization’ section below for more information on how multiple resource
files are used for localization.

• You can convert a .resx file into a .resources file independently of the build
process using the .NET Framework SDK command resgen, for example:
resgen PanToolCS.resx PanToolCS.resources

Using resources with localization
This section explains how you can localize resources for your customizations.

How to use resources with localization
In .NET, a combination of a specific language and country/region is called a
culture. For example, the American dialect of English is indicated by the string
“en-US”, and the Swiss dialect of French is indicated by “fr-CH”.

If you want your project to support various cultures (languages and dialects), you
should construct a separate .resources file containing culture-specific strings and
images for each culture.

When you build a .NET project that uses resources, .NET embeds the default
.resources file in the main assembly. Culture-specific .resources files are compiled

The ResEditor sample is provided by Microsoft
as source code. You must build the sample first if
you want to create resource files using this tool.

You can find information on building the SDK
samples under the SDK subdirectory of your

Visual Studio .NET installation.

A list of tools useful for working with resources
can be found in the Microsoft .NET Framework

documentation.

Additional information on the ResEditor sample
can be found in the Microsoft .NET Framework

documentation.

More information on the ResXGen can be found
in the Microsoft .NET Framework documenta-

tion.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM164

Chapter 4 • Developer environments • 165

.NET APPLICATION PROGRAMMING INTERFACE

into satellite assemblies (using the naming convention <Main Assembly
Name>.resources.dll) and placed in subdirectories of the main build directory.
The subdirectories are named after the culture of the satellite assembly they
contain. For example, Swiss–French resources would be contained in a fr-CH
subdirectory.

When an application runs, it automatically uses the resources contained in the
satellite assembly with the appropriate culture. The appropriate culture is deter-
mined from the Windows settings. If a satellite assembly for the appropriate
culture cannot be found, the default resources (those embedded in the main
assembly) will be used instead.

The following sections give more information on creating your own .resx and
.resources files.

Embedding a default .resources file in your project
1. Right-click the project name in the Solution Explorer, click Add, then click

Add Existing Item to navigate to your .resx or .resources file.

2. In the Solution Explorer, choose the file you just added and press F4 to
display its properties.

3. Set the Build Action property to Embedded Resource.

This will ensure that your application always has a set of resources to fall back
on if there isn’t a resource DLL for the culture your application runs in.

Creating .resources.dll files for cultures supported by your project
1. First, ensure you have a default .resx or .resources file in your project.

2. Take the default .resx or .resources file and create a separate localized file for
each culture you want to support.

• Each file should contain resources with the same Names; the Value of each
resource in the file should contain the localized value.

• Localized resource files should be named according to their culture, for
example, <BaseName>.<Culture>.resx or
<BaseName>.<Culture>.resources.

3. Add the new resource files to the project, ensuring each one has its Build
Action set to Embedded Resource.

4. Build the project.

The compiler and linker will create a separate satellite assembly for each
culture. The satellite assemblies will be placed in subdirectories under the
directory holding your main assembly. The subdirectories will be named by
culture, allowing the .NET runtime to locate the resources appropriate to the
culture in which the application runs.

The main (default) resources file will be embedded in the main assembly.

The Visual Basic .NET and C# flavors of the Pan
Tool developer sample illustrate how to localize

resources for German language environments.
The sample can be found in the Developer

Samples\ArcMap\Commands and Tools\Pan Tool
folder. Strictly speaking, the sample only requires

localized strings, but the images have been
changed for the “de” culture as well, to serve as

illustration.

A batch file named buildResources.bat has been
provided in the Pan Tool sample to create the
default .resources files and the culture-specific

satellite assemblies.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM165

166 • ArcGIS Engine Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

Assembly versioning and redirection
When new ArcGIS libraries are installed onto a machine, the corresponding
primary interop assemblies (PIA) are updated as well to ensure that the available
PIAs always correspond to the current libraries.

.NET applications that are built using a specific version of a strongly named
assembly will attempt to bind to the same version of that assembly at runtime
because a strong name includes the version number of the assembly.

To allow applications that bind to ArcGIS assemblies to find the new PIAs
without the need for developers to recompile against these new versions, ArcGIS
installs publisher policy files for each PIA. A publisher policy file is an assembly
that redirects the assembly binding process to use a new assembly version. These
policy files are installed to the general assembly cache (GAC) alongside the ESRI
PIAs.

For example, you will find the policy file policy.9.0.ESRI.ArcGIS.System.dll,
which redirects all assembly binding calls for the ESRI.ArcGIS.System.dll PIA
from all 9.0 and service pack assembly versions to the new current assembly
version.

ARCGIS DEVELOPMENT USING .NET

Using .NET you can customize the ArcGIS applications, create standalone appli-
cations that use ESRI’s types, and extend ESRI’s types. For example, you can
create a custom tool for ArcMap, a standalone application that uses the
MapControl, or a custom layer. This section discusses several key issues related to
developing with ArcGIS and .NET.

Registering .NET components with COM
Extending ArcGIS applications with custom .NET components requires register-
ing the components in the COM registry and exporting the .NET assemblies to a
type library (TLB). When developing a component, there are two ways to per-
form this task: you can use the RegAsm utility that ships with the .NET Frame-
work SDK or Visual Studio .NET, which has a Register for COM Interop com-
piler flag.

The example below shows an EditTools assembly being registered with COM.
The /tlb parameter specifies that a type library should also be generated and the
/codebase option indicates that the path to the assembly should be included in
the registry settings. Both of these parameters are required when extending the
ArcGIS applications with .NET components.
regasm EditTools.dll /tlb:EditTools.tlb /codebase

Visual Studio .NET performs this same operation automatically if you set the
Register for COM Interop compiler flag; this is the simplest way to perform the
registration on a development machine. To check a project’s settings, click Project
Properties from the Project menu, then look at the Build property under Configu-
ration Properties. The last item, Register for COM Interop, should be set to True.

Registering .NET classes in COM component categories
Much of the extensibility of ArcGIS relies on COM component categories. In
fact, most custom ArcGIS components must be registered in component catego-
ries appropriate to their intended context and function for the host application to

Deploying an application using XCOPY will not
copy the settings in the machine configuration

file.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM166

Chapter 4 • Developer environments • 167

.NET APPLICATION PROGRAMMING INTERFACE

make use of their functionality. For example, all ArcMap commands and tools
must be registered in the ESRI Mx Commands component category. There are a
few different ways you can register a .NET component in a particular category,
but before doing so, the .NET components must be registered with COM. See the
‘Registering .NET components with COM’ section above for details.

Customize dialog box
Custom .NET ArcGIS commands and tools can quickly be added to toolbars via
the Add From File button on the Customize dialog box. In this case, you simply
have to browse for the TLB and open it. The ArcGIS framework will automati-
cally add the classes you select in the type library to the appropriate component
category.

Categories utility
Another option is to use the Component Categories Manager (Categories.exe). In
this case you select the desired component category in the utility, browse for your
type library, and choose the appropriate class.

COM Register Function
The final and recommended solution is to add code to your .NET classes that will
automatically register them in a particular component category whenever the
component is registered with COM. The .NET Framework contains two at-
tribute classes (ComRegisterFunctionAttribute and ComUnregisterFunctionAttribute)
that allow you to specify methods that will be called whenever your component
is being registered or unregistered. Both methods are passed the CLSID of the
class currently being registered, and with this information you can write code
inside the methods to make the appropriate registry entries or deletions. Register-
ing a component in a component category requires that you also know the com-
ponent category’s unique ID (CATID).

The code excerpt below shows a custom ArcMap command that automatically
registers itself in the MxCommands component category whenever the .NET
assembly in which it resides is registered with COM.

public sealed class AngleAngleTool: BaseTool

{

[ComRegisterFunction()]

static void Reg(String regKey)

{

Microsoft.Win32.Registry.ClassesRoot.CreateSubKey(regKey.
Substring(18)+ "\\Implemented Categories\\" + "{B56A7C42-83D4-11D2-A2E9-
080009B6F22B}");

 }

 [ComUnregisterFunction()]

 static void Unreg(String regKey)

 {

 Microsoft.Win32.Registry.ClassesRoot.DeleteSubKey(regKey.Substring(18)+
"\\Implemented Categories\\" + "{B56A7C42-83D4-11D2-A2E9-080009B6F22B}");

 }

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM167

168 • ArcGIS Engine Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

To simplify this process, ESRI provides classes for each component category
ArcGIS exposes with static functions to register and unregister components. Each
class knows the GUID of the component category it represents, so registering
custom components is greatly simplified. For more details on using these classes,
see the ‘Working with the ESRI .NET component category classes’ section below.

Simplifying your code using the ESRI.ArcGIS.Utility assembly
Part of the ArcGIS developer kit includes a number of .NET utility classes that
facilitate .NET development by taking advantage of a few .NET capabilities
including object inheritance and static functions.

Working with the ESRI .NET base classes
ESRI provides two abstract base classes (BaseCommand and BaseTool) to help you
create new custom commands and tools for ArcGIS. The classes are abstract
classes (marked as MustInherit in Visual Basic .NET), which means that although
the class may contain some implementation code, it cannot itself be instantiated
directly and can only be used by being inherited by another class. Both base classes
are defined in the ESRI.ArcGIS.Utility assembly and belong to the
ESRI.ArcGIS.Utility.BaseClasses namespace.

These base classes simplify the creation of custom commands and tools by pro-
viding a default implementation for each of the members of ICommand and ITool.
Instead of stubbing out each member and providing implementation code, you
only have to override the members that your custom command or tool requires.
The exception is ICommand::OnCreate; this member must be overridden in your
derived class.

Using these base classes is the recommended way to create commands and tools
for ArcGIS applications in .NET languages. You can create similar COM classes
from first principles; however, you should find the base class technique to be a
quicker, simpler, less error-prone method of creating commands and tools.

Syntax
Both base classes also have an overloaded constructor, allowing you to quickly set
many of the properties of a command or tool, such as Name and Category, via
constructor parameters.

The overloaded BaseCommand constructor has the following signature:
[VB.NET]

Public Sub New(_

ByVal bitmap As System.Drawing.Bitmap _

ByVal caption As String _

ByVal category As String _

ByVal helpContextId As Integer _

ByVal helpFile As String _

ByVal message As String _

ByVal name As String _

ByVal tooltip As String)

[C#]

public BaseCommand(

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM168

Chapter 4 • Developer environments • 169

.NET APPLICATION PROGRAMMING INTERFACE

System.Drawing.Bitmap bitmap,

string caption,

string category,

int helpContextId,

string helpFile,

string message,

string name,

string toolTip,

);

The overloaded BaseTool constructor has the following signature:
[VB.NET]

Public Sub New(_

ByVal bitmap As System.Drawing.Bitmap _

ByVal caption As String _

ByVal category As String _

ByVal cursor As System.Windows.Forms.Cursor _

ByVal helpContextId As Integer _

ByVal helpFile As String _

ByVal message As String _

ByVal name As String _

ByVal tooltip As String _

)

[C#]

public BaseTool(

System.Drawing.Bitmap bitmap,

string caption,

string category,

System.Windows.Forms.Cursor cursor,

int helpContextId,

string helpFile,

string message,

string name,

string toolTip,

);

Inheriting the base classes
You can use these parameterized constructors when you write your new classes,
for example, as shown below for a new class called PanTool that inherits the
BaseTool class.
[VB.NET]

Public Sub New()

MyBase.New(Nothing, "Pan", "My Custom Tools", _

System.Windows.Forms.Cursors.Cross, 0, "", "Pans the map.",
"PanTool", "Pan")

End Sub

[C#]

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM169

170 • ArcGIS Engine Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

public PanTool() : base (null,"Pan", "My Custom Tools",

System.Windows.Forms.Cursors.Cross, 0, "","Pans the map.", "PanTool",
"Pan")

{

 ...

}

Setting base class members directly
As an alternative to using the parameterized constructors, you can set the mem-
bers of the base class directly.

The base classes expose their internal member variables to the inheritor class, one
per property, so you can directly access them in your derived class. For example,
instead of using the constructor to set the Caption or overriding the Caption
function, you can set the m_caption class member variable declared in the base
class.
[VB.NET]

Public Sub New()

MyBase.New()

MyBase..m_bitmap = New
System.Drawing.Bitmap([GetType]().Assembly.GetManifestResourceStream("Namespace.Pan.bmp"))

MyBase..m_cursor = System.Windows.Forms.Cursors.Cross

MyBase..m_category = "My Custom Tools"

MyBase..m_caption = "Pan"

MyBase..m_message = "Pans the map."

MyBase..m_name = "PanTool"

MyBase..m_toolTip = "Pan"

End Sub

[C#]

public PanTool()

{

base.m_bitmap = new
System.Drawing.Bitmap(GetType().Assembly.GetManifestResourceStream("Namespace.Pan.bmp"));

base.m_cursor = System.Windows.Forms.Cursors.Cross;

base.m_category = "My Custom Tools";

base.m_caption = "Pan";

base.m_message = "Pans the map.";

base.m_name = "PanTool";

base.m_toolTip = "Pan";

}

Overriding members
When you create custom commands and tools that inherit a base class, you will
more than likely need to override a few members. When you override a member
in your class, the implementation code that you provide for that member will be
executed instead of the default member implementation inherited from the base
class. For example, the OnClick method in the BaseCommand has no implementa-
tion code at all, as OnClick will not do anything by default. This may be suitable
for a tool but is probably not for a command.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM170

Chapter 4 • Developer environments • 171

.NET APPLICATION PROGRAMMING INTERFACE

To override any member, you can right-click the member of the base class in the
Solution Explorer window, click Add, then click Override to stub out the mem-
ber as overridden. Note that if you right-click the member of the underlying
interface (ICommand or ITool) instead of the base class member, the overridden
member will not include the overrides keyword, and the method will instead be
shadowed.
[VB.NET]

Public Overrides Sub OnClick()

' Your OnClick

End Sub

[C#]

public override void OnClick()

{

// Your OnClick

}

Alternatively, to override a member of the base class, click Overrides from the
dropdown list on the right in the Code Window Wizard bar, then choose the
member you want to override from the left dropdown list. This will stub out the
member as overridden.

What do the base classes do by default?
The table below shows the base class members that have a significant base class
implementation, along with a description of that implementation. Override these
members when the base class behavior is not consistent with your customization.
For example, Enabled is set to True by default; if you want your custom com-
mand enabled only when a specific set of criteria has been met, you must over-
ride this property in your derived class.

Member Description

ICommand::Bitmap The given bitmap is made transparent based on the
pixel value at position 1,1. The bitmap is null until
set by the derived class.

ICommand::Category If null, sets the category "Misc."

ICommand::Checked Set to False.

ICommand::Enabled Set to True.

ITool::OnContextMenu Set to False.

ITool::Deactivate Set to True.

Working with the ESRI .NET component category classes

To help register .NET components in COM component categories, ESRI provides
the ESRI.ArcGIS.Utility.CATIDs namespace, which has classes that represent
each of the ArcGIS component categories. Each class knows its CATID and
exposes static methods (Register and Unregister) for adding and removing com-
ponents. Registering your component becomes as easy as adding COM registration
methods with the appropriate attributes and passing the received CLSID to the
appropriate static method.

The example below shows a custom Pan tool that registers itself in the ESRI Mx
Commands component category. Notice in this example that

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM171

172 • ArcGIS Engine Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

MxCommands.Register and MxCommands.Unregister are used instead of
Microsoft.Win32.Registry.ClassesRoot.CreateSubKey and
Microsoft.Win32.Registry.ClassesRoot.DeleteSubKey.
[VB.NET]

Public NotInheritable Class PanTool

Inherits BaseTool

<ComRegisterFunction()> _

Public Shared Sub Reg(ByVal regKey As [String])

MxCommands.Register(regKey)

End

<ComUnregisterFunction()> _

Public Shared Sub Unreg(ByVal regKey As [String])

MxCommands.Unregister(regKey)

End Sub

[C#]

public sealed class PanTool : BaseTool

{

[ComRegisterFunction()]

static void Reg(string regKey)

{

MxCommands.Register(regKey);

}

[ComUnregisterFunction()]

static void Unreg(string regKey)

{

MxCommands.Unregister(regKey);

}

Working with OLE StdFont and StdPicture classes
Some ArcObjects libraries make use of classes and interfaces defined within the
standard OLE libraries from Microsoft. To use these members within .NET, you
should add to your project a reference to the Stdole.dll primary interop assembly,
which is included as part of the .NET support during an ArcGIS installation.
This PIA allows you to define StdFont and StdPicture classes, for example:
[C#]

stdole.IFontDisp fnt = (stdole.IFontDisp) new stdole.StdFontClass();

fnt.Name = "Arial";

fnt.Size = 20.0F;

ESRI.ArcGIS.Display.TextSymbol textSym = new
 ESRI.ArcGIS.Display.TextSymbolClass();

textSym.Font = fnt;

[Visual Basic .NET]

Dim fnt As stdole.IFontDisp = New stdole.StdFontClass()

fnt.Name = "Arial"

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM172

Chapter 4 • Developer environments • 173

.NET APPLICATION PROGRAMMING INTERFACE

fnt.Size = 20.0

Dim textSym As ESRI.ArcGIS.Display.TextSymbol = New
 ESRI.ArcGIS.Display.TextSymbolClass()

textSym.Font = fnt

Sometimes, however, you may have an existing .NET Font, Bitmap, or Icon class
that you wish to convert to use as a Font or Picture in an ESRI method. The
ESRI.ArcGIS.Utility.COMSupport namespace, which is part of the
ESRI.ArcGIS.Utility.dll assembly, provides the OLE class, which may help you to
perform such conversions.

Note that these members depend on the System.Windows.Forms.AxHost class
and as such are only suitable for use within a project that has a reference to the
System.Windows.Forms.dll assembly.

Below you can find the syntax information for the members of the
ESRI.ArcGIS.Utility.COMSupport.OLE class—these are static (shared in
VB.NET) members and, therefore, can be called without the need to instantiate
the OLE class.

GetIFontDispFromFont: This method can be used to convert an existing .NET
System.Drawing.Font object into an Stdole.StdFont object.
[C#]

 public static object GetIFontDispFromFont (System.Drawing.Font font)

[Visual Basic .NET]

 Public Shared GetIFontDispFromFont (ByVal font As System.Drawing.Font) As
Object

GetIPictureDispFromBitmap: This method can be used to convert an existing
.NET System.Drawing.Bitmap object into an Stdole.StdPicture object.
[C#]

 public static object GetIPictureDispFromBitmap (System.Drawing.Bitmap bitmap)

[Visual Basic .NET]

 Public Shared GetIPictureDispFromBitmap (ByVal bitmap As
 System.Drawing.Bitmap) As Object

GetIPictureDispFromIcon: This method can be used to convert an existing
.NET System.Drawing.Icon object into an Stdole.StdPicture object.
[C#]

 public static object GetIPictureDispFromIcon (System.Drawing.Icon icon)

[Visual Basic .NET]

 Public Shared GetIPictureDispFromIcon (ByVal icon As System.Drawing.Icon)
As Object

Below are some examples of using the members of the OLE class.
[C#]

System.Drawing.Font dotNetFont = new System.Drawing.Font("Castellar", 25.0F);

ESRI.ArcGIS.Display.ITextSymbol textSym = new
ESRI.ArcGIS.Display.TextSymbolClass() as ESRI.ArcGIS.Display.ITextSymbol;

textSym.Font =
ESRI.ArcGIS.Utility.COMSupport.OLE.GetIFontDispFromFont(dotNetFont) as
stdole.IFontDisp;

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM173

174 • ArcGIS Engine Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

System.Drawing.Bitmap dotNetBmp = new
System.Drawing.Bitmap(@"C:\Temp\MyBitmap.bmp");

ESRI.ArcGIS.Display.IPictureMarkerSymbol bmpSym = new
ESRI.ArcGIS.Display.PictureMarkerSymbolClass() as
ESRI.ArcGIS.Display.IPictureMarkerSymbol;

bmpSym.Picture =
ESRI.ArcGIS.Utility.COMSupport.OLE.GetIPictureDispFromBitmap(dotNetBmp) as
stdole.IPictureDisp;

System.Drawing.Icon dotNetIcon = new
System.Drawing.Icon(@"C:\Temp\MyIcon.ico");

ESRI.ArcGIS.MapControl.IMapControlDefault map = this.axMapControl1.Object
as ESRI.ArcGIS.MapControl.IMapControlDefault;

map.MouseIcon =
ESRI.ArcGIS.Utility.COMSupport.OLE.GetIPictureDispFromIcon(dotNetIcon) as
stdole.IPictureDisp;

map.MousePointer =
ESRI.ArcGIS.SystemUI.esriControlsMousePointer.esriPointerCustom;

[Visual Basic .NET]

Dim dotNetFont As New System.Drawing.Font("Castellar", 25.0F)

Dim textSym As ESRI.ArcGIS.Display.ITextSymbol = New
ESRI.ArcGIS.Display.TextSymbolClass

textSym.Font =
ESRI.ArcGIS.Utility.COMSupport.OLE.GetIFontDispFromFont(dotNetFont)

Dim dotNetBmp As System.Drawing.Bitmap = New
System.Drawing.Bitmap("C:\Temp\MyBitmap.bmp")

Dim bmpSym As ESRI.ArcGIS.Display.IPictureMarkerSymbol = New
ESRI.ArcGIS.Display.PictureMarkerSymbolClass

bmpSym.Picture =
ESRI.ArcGIS.Utility.COMSupport.OLE.GetIPictureDispFromBitmap(dotNetBmp)

Dim dotNetIcon As System.Drawing.Icon = New
System.Drawing.Icon("C:\Temp\MyIcon.ico")

Dim map As ESRI.ArcGIS.MapControl.IMapControlDefault =
Me.AxMapControl1.Object

map.MouseIcon =
ESRI.ArcGIS.Utility.COMSupport.OLE.GetIPictureDispFromIcon(dotNetIcon)

map.MousePointer =
ESRI.ArcGIS.SystemUI.esriControlsMousePointer.esriPointerCustom

Shutting down ArcGIS .NET applications
To help unload COM references in .NET applications, the AOUninitialize class
provides the static (shared in VB.NET) function Shutdown. This class is part of
the ESRI.ArcGIS.Utility.COMSupport namespace in the ESRI.ArcGIS.Utility.dll
assembly.

For more information on shutting down ArcGIS .NET applications, see ‘Releas-
ing COM References’ in this chapter.
[C#]

ESRI.ArcGIS.Utility.COMSupport.AOUninitialize.Shutdown();

[Visual Basic .NET]

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM174

Chapter 4 • Developer environments • 175

.NET APPLICATION PROGRAMMING INTERFACE

ESRI.ArcGIS.Utility.COMSupport.AOUninitialize.Shutdown()

Extending the server
When using .NET to create a COM object for use in the GIS server, there are
some specific guidelines you need to follow to ensure that you can use your object
in a server context and that it will perform well in that environment. The guide-
lines below apply specifically to COM objects you create to run within the server.

• You must explicitly create an interface that your COM class implements.
Unlike Visual Basic 6, .NET will not create an implicit interface for your
COM class that you can use when creating the object in a server context.

• Your COM class should be marshalled using the Automation marshaller. You
specify this by adding AutomationProxyAttribute to your class with a value of
true.

• Your COM class should generate a dual class interface. You specify this by
adding ClassInterfaceAttribute to your class with a value of
ClassInterfaceType.AutoDual.

• To ensure that your COM object performs well in the server, it must inherit
from ServicedComponent, which is in the System.EnterpriseServices assembly.
This is necessary due to the current COM interop implementation of the
.NET Framework.

For more details and an example of a custom Server COM object written in
.NET, see Chapter 4, ‘Developing ArcGIS Server applications’, in the ArcGIS
Server Administrator and Developer Guide.

Releasing COM references

ArcGIS Engine and ArcGIS Desktop applications
An unexpected crash may occur when a standalone application attempts to shut
down. For example, an application hosting a MapControl with a loaded map
document will crash on exit. The crashes result from COM objects hanging
around longer than expected. To avoid crashes, all COM references must be
unloaded prior to shutdown. To help unload COM references, a static Shutdown
function has been added to the ESRI.ArcGIS.Utility assembly. The following
code excerpt shows the function in use.
[VB.NET]

Private Sub Form1_Closing(ByVal sender As Object, ByVal e As
System.ComponentModel.CancelEventArgs) Handles MyBase.Closing

 ESRI.ArcGIS.Utility.COMSupport.AOUninitialize.Shutdown()

End Sub

[C#]

private void Form1_Closing(object sender, CancelEventArgs e)

{

ESRI.ArcGIS.Utility.COMSupport.AOUninitialize.Shutdown();

}

The AOUninitialize.Shutdown function handles most of the shutdown problems in
standalone applications, but you may still experience problems as there are COM
objects that require explicit releasing; in these cases, call

This section does not address licensing consider-
ations and is intended only to illustrate the

possibilities of server application development
using the .NET API. While the ArcGIS Engine
Developer Kit can be used to develop applica-

tions that run on single-use computers and that
may or may not leverage ArcSDE-, ArcGIS

Server-, or ArcIMS-based services, custom
components deployed on a server require an

ArcGIS Server license. Contact your ESRI
regional office or international distributor for

more information.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM175

176 • ArcGIS Engine Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

System.Runtime.InteropServices.Marshal.ReleaseComObject to decrement the reference
count, allowing the application to terminate cleanly. The StyleGallery is one such
object, and the following example documents how to handle references to this
class.
[VB.NET]

 Sub Main()

 Dim styCls As ESRI.ArcGIS.Display.IStyleGallery = New
ESRI.ArcGIS.Framework.StyleGalleryClass

 ' Use the StyleGalleryClass here ...

 Release(styCls)

 End Sub

 Sub Release(ByVal comObj As Object)

 Dim refsLeft As Integer = 0

 Do

 refsLeft = System.Runtime.InteropServices.Marshal.ReleaseComObject(comObj)

 Loop While (refsLeft > 0)

 End Sub

[C#]

 private void MyFunction()

 {

 ESRI.ArcGIS.Display.IStyleGallery styCls = new
ESRI.ArcGIS.Framework.StyleGalleryClass() as

 ESRI.ArcGIS.Display.IStyleGallery;

 // Use the StyleGalleryClass here ...

 Release(styCls as object);

 }

 void Release(object comObj)

 {

 int refsLeft = 0;

 do

 {

 refsLeft = Marshal.ReleaseComObject(comObj);

 }

 while (refsLeft > 0);

 }

Working with geodatabase cursors in ArcGIS Server
Some objects that you can create in a server context may lock or use resources
that the object frees only in its destructor. For example, a geodatabase cursor may
acquire a shared schema lock on a file-based feature class or table on which it is
based or may hold on to an SDE stream.

While the shared schema lock is in place, other applications can continue to query
or update the rows in the table, but they cannot delete the feature class or modify
its schema. In the case of file-based data sources, such as shapefiles, update
cursors acquire an exclusive write lock on the file, which will prevent other
applications from accessing the file for read or write. The effect of these locks is
that the data may be unavailable to other applications until all of the references
on the cursor object are released.

This section does not address licensing consider-
ations and is intended only to illustrate the

possibilities of server application development
using the .NET API. While the ArcGIS Engine
Developer Kit can be used to develop applica-

tions that run on single-use computers and that
may or may not leverage ArcSDE-, ArcGIS

Server-, or ArcIMS-based services, custom
components deployed on a server require an

ArcGIS Server license. Contact your ESRI
regional office or international distributor for

more information.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM176

Chapter 4 • Developer environments • 177

In the case of SDE data sources, the cursor holds on to an SDE stream, and if
the application has multiple clients, each may get and hold on to an SDE stream,
eventually exhausting the maximum allowable streams. The effect of the number
of SDE streams exceeding the maximum is that other clients will fail to open
their own cursors to query the database.

Because of the above reasons, it’s important to ensure that your reference to any
cursor your application opens is released in a timely manner. In .NET, your refer-
ence on the cursor (or any other COM object) will not be released until garbage
collection kicks in. In a Web application or Web service that services multiple
concurrent sessions and requests, relying on garbage collection to release refer-
ences on objects will result in cursors and their resources not being released in a
timely manner.

To ensure a COM object is released when it goes out of scope, the WebControls
assembly contains a helper object called WebObject. Use the ManageLifetime
method to add your COM object to the set of objects that will be explicitly
released when the WebObject is disposed. You must scope the use of WebObject
within a using block. When you scope the use of WebObject within a using block,
any object (including your cursor) that you have added to the WebObject using the
ManageLifetime method will be explicitly released at the end of the using block.

The following example demonstrates this coding pattern:
[VB.NET]

Private SubSystem.object doSomething_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles doSomething.Click

Dim webobj As WebObject = New WebObject

Dim ctx As IServerContext = Nothing

Try

Dim serverConn As ServerConnection = New ServerConnection("doug", True)

Dim som As IServerObjectManager = serverConn.ServerObjectManager

ctx = som.CreateServerContext("Yellowstone", "MapServer")

Dim mapsrv As IMapServer = ctx.ServerObject

Dim mapo As IMapServerObjects = mapsrv

Dim map As IMap = mapo.Map(mapsrv.DefaultMapName)

Dim flayer As IFeatureLayer = map.Layer(0)

Dim fClass As IFeatureClass = flayer.FeatureClass

Dim fcursor As IFeatureCursor = fClass.Search(Nothing, True)

webobj.ManageLifetime(fcursor)

Dim f As IFeature = fcursor.NextFeature()

Do Until f Is Nothing

' Do something with the feature.

f = fcursor.NextFeature()

Loop

Finally

ctx.ReleaseContext()

webobj.Dispose()

.NET APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM177

178 • ArcGIS Engine Developer Guide

End Try

End Sub

[C#]

private void doSomthing_Click(object sender, System.EventArgs e)

{

using (WebObject webobj = new WebObject())

{

ServerConnection serverConn = new ServerConnection("doug",true);

IServerObjectManager som = serverConn.ServerObjectManager;

IServerContext ctx = som.CreateServerContext("Yellowstone","MapServer");

IMapServer mapsrv = ctx.ServerObject as IMapServer;

IMapServerObjects mapo = mapsrv as IMapServerObjects;

IMap map = mapo.get_Map(mapsrv.DefaultMapName);

IFeatureLayer flayer = map.get_Layer(0) as IFeatureLayer;

IFeatureClass fclass = flayer.FeatureClass;

IFeatureCursor fcursor = fclass.Search(null, true);

webobj.ManageLifetime(fcursor);

IFeature f = null;

while ((f = fcursor.NextFeature()) != null)

{

// Do something with the feature.

}

ctx.ReleaseContext();

}

}

The WebMap, WebGeocode, and WebPageLayout objects also have a ManageLifetime
method. If you are using, for example, a WebMap and scope your code in a using
block, you can rely on these objects to explicitly release objects you add with
ManageLifetime at the end of the using block.

Deploying .NET ArcGIS customizations
All ArcGIS Engine and Desktop customizations require an ArcGIS installation on
all client machines. The ArcGIS installation must include the ESRI primary
interop assemblies, which the setup program installs in the global assembly cache.
For example, deploying a standalone GIS application that only requires an
ArcGIS Engine license requires an ArcGIS Engine installation on all target ma-
chines.

Standalone applications
Deploying standalone applications to either ArcGIS Engine or Desktop clients
involves copying over the executable to the client machine. Copying over the
executable can be as simple as using xcopy or more involved such as creating a
custom install or setup program. Note that aside from the ArcGIS primary
interop assemblies and the .NET Framework assemblies, all dependencies must
also be packaged and deployed.

.NET APPLICATION PROGRAMMING INTERFACE

Note that .NET Support is a separate option in
the ArcGIS installation; this needs to be selected
during installation on both the development and

target machines for .NET customizations to
succeed. If you did not install .NET Support

originally, you can run the installation program
again and choose the Modify option to add

features to your ArcGIS installation.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM178

Chapter 4 • Developer environments • 179

ArcGIS components
Components that extend the ArcGIS applications are trickier to deploy than
standalone applications because they must be registered with COM and in specific
component categories. As discussed earlier, implementing COMRegisterFunction
and COMUnregisterFunctions facilitates deployment by providing self category
registration, but this only occurs when the components are registered.

There are two techniques for registering components with COM. One option is to
run the register assembly utility (RegAsm.exe) that ships with the .NET Frame-
work SDK. This is typically not a viable solution as client machines may or may
not have this utility and it’s difficult to automate. The second and recommended
approach is to add an automatic registration step to a custom setup or install
program.

The key to creating a custom install program that both deploys and registers
components is the System.Runtime.InteropServices.RegistrationServices class. This class
has the members RegisterAssembly and UnregisterAssembly, which register and
unregister managed classes with COM. These are the same functions the RegAsm
utility uses. Using these functions inside a custom installer class along with a
setup program is the complete solution.

The basic steps below outline the creation of a deployable solution. NOTE: The
steps assume you are starting with a solution that already contains a project with
at least one COM-enabled class.

1. In Visual Studio .NET, add a new Installer Class and name it accordingly.

Override the Install and Uninstall functions that are implemented in the
Installer base class and use the RegistrationServices class’s RegisterAssembly and
UnregisterAssembly methods to register the components. Make sure you use the
SetCodeBase flag; this indicates that the code base key for the assembly should
be set in the registry.
[VB.NET]

Public Overrides Sub Install(ByVal stateSaver As
System.Collections.IDictionary)

 MyBase.Install(stateSaver)

 Dim regsrv As New RegistrationServices

 regsrv.RegisterAssembly(MyBase.GetType().Assembly,
AssemblyRegistrationFlags.SetCodeBase)

.NET APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM179

180 • ArcGIS Engine Developer Guide

End Sub

Public Overrides Sub Uninstall(ByVal savedState As
System.Collections.IDictionary)

 MyBase.Uninstall(savedState)

 Dim regsrv As New RegistrationServices

 regsrv.UnregisterAssembly(MyBase.GetType().Assembly)

 End Sub

End Class

[C#]

public override void Install(IDictionary stateSaver)

{

 base.Install (stateSaver);

 RegistrationServices regSrv = new RegistrationServices();

 regSrv.RegisterAssembly(base.GetType().Assembly,
AssemblyRegistrationFlags.SetCodeBase);

}

public override void Uninstall(IDictionary savedState)

{

 base.Uninstall (savedState);

 RegistrationServices regSrv = new RegistrationServices();

 regSrv.UnregisterAssembly(base.GetType().Assembly);

}

2. Add a setup program to your solution.

a. In the Solution Explorer, right-click the new project and click Add >
Project Output. Choose the project you want to deploy and choose Primary
output.

b. From the list of detected dependencies that is regenerated, remove all
references to ESRI primary interop assemblies (for example,
ESRI.ArcGIS.System) and stdole.dll. The only items typically left in the list
are your TLB and Primary output from <AssemblyName><Version>’,
which represent the DLL or EXE you are compiling.

.NET APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM180

Chapter 4 • Developer environments • 181

c. The final steps involve associating the custom installation steps configured
in the new installer class with the setup project. To do this, right-click the
setup project in the Solution Explorer and click View Custom Actions.

d. In the resulting view, right-click the Install folder and click Add Custom
Action. Double-click the Application folder, then double-click the Primary
output from the <AssemblyName><Version> item. This step associates the
custom install function created earlier with the setup’s custom install ac-
tion.

e. Repeat the last step for the setup’s uninstall.

3. Finally, rebuild the entire solution to generate the setup executable file. Run-
ning the executable on a target machine installs the components and registers
them with COM. The COMRegisterFunction routines then register the compo-
nents in the appropriate component categories.

ArcGIS Server deployments
To deploy Web applications developed on a development server to product
production servers, use the built-in Visual Studio .NET tools.

1. In the Solution Explorer, click your project.

2. Click the Project menu, then click Copy Project.

3. In the Copy Project dialog box, specify the deployment location.

4. Click OK.

In addition to copying the project, you must copy and register any related DLLs
containing custom COM objects onto your Web server and all the GIS server’s
server object container (SOC) machines.

.NET APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM181

182 • ArcGIS Engine Developer Guide

The ArcGIS API for the Java platform is a programming interface that
interoperates with ArcObjects and is specifically designed to target Java develop-
ers. Java technology is both a platform and an object-oriented programming
language developed by Sun Microsystems that comes in three versions and con-
sists of two components:

Versions:

• Java 2 Platform, Standard Edition (J2SE)

• Java 2 Platform, Enterprise Edition (J2EE)

• Java 2 Platform, Micro Edition (J2ME)

Components:

• Java Virtual Machine (JVM)—Java runtime and client/server compilers.

• Java application programming interface—Suite of core, integration, and user
interface toolkits.

The Java language is important because it is an open standard. All implementa-
tions of the programming language must meet the specifications provided for the
JVM. This enables applications to run on any hardware platforms that host the
JVM.

PLATFORM CONFIGURATION

This section will describe all the necessary configurations needed to be productive
with the Java API including class path and environment settings.

Java developer kit
To develop with ArcObjects using the ArcGIS API for Java, you must have the
Java 2 Platform Standard Software developer kit (J2SDK) installed. All of your
J2SDK tools are located in the install directory. You can either explicitly invoke
them from that directory or add it to your PATH environment variable. Adding
the directory to your PATH variable involves two steps:

1. Create a new environment variable named JAVA_HOME.
JAVA_HOME=[path to JDK install directory]

For example:
JAVA_HOME=c:\j2sdk

2. Edit the PATH variable to include the bin directory of JAVA_HOME.
PATH=...;%JAVA_HOME%\bin

To compile server-based applications, such as servlets and EJBs, you will also
need to install and include the Java 2 Enterprise Edition toolkit in your class
path. Java application servers generally provide this, or you can get the reference
implementation provided by Sun Microsystems.

ArcGIS Engine
ArcGIS API for Java developer kit uses standard Java Native Interface (JNI) to
access core ArcObjects components. This requires some native libraries to be in
your path when compiling and running applications. You must be sure to include
the correct paths to invoke interoperability into native ArcObjects. The native
*.dll or *.so files are located in the bin subdirectory under ArcGIS.

JAVA APPLICATION PROGRAMMING INTERFACE

Setting the JAVA_HOME variable is not
absolutely necessary; however, some Java IDEs

and Java tools require it be set.

The PATH environment variable is a list of
directory paths for executables such as javac,

java, and javadoc. When an executable is
specified without a path, this variable is used to

help locate that executable.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM182

Chapter 4 • Developer environments • 183

On Windows, your path should include ...\ArcGIS\bin.

ESRI recommends setting an ARCENGINEHOME environment variable.
Although this is not a requirement to use the ArcGIS Engine Developer Kit, the
developer samples all use this variable to ensure your class path settings are accu-
rate.

On Solaris and Linux, ARCENGINEHOME and all required ArcGIS paths are
set by sourcing one of the init_engine scripts.

• When using C-shell, use this command:

source /path/to/arcgis/init_engine.csh

• When using bash or bourne shell, use this command instead:

source /path/to/arcgis/init_engine.sh

Setting the ARCENGINEHOME variable on Windows:
ARCENGINEHOME=[path to ArcGIS install directory]

For example:
ARCENGINEHOME=c:\ArcGIS

Editing the path enables your system to use the native resource libraries that ship
with the ArcGIS Engine Runtime. Edit the PATH directory to include the
jre\bin directory of ARCENGINEHOME.

On Windows:
PATH=...;%ARCENGINEHOME%\java\jre\bin

Class path
The ArcGIS API for Java provides Java Archive (JAR) files and the native
runtime libraries. These JAR files are located on disk at
%ARCENGINEHOME%\java on Windows and $ARCENGINEHOME/java
on Solaris and Linux.

All Java applications built with any of the ArcGIS developer kits must have the
jintegra.jar file referenced in the respective application’s class path. This file
contains all of the class files for the runtime library that handle interoperability to
COM.

In addition, individual arcgis_xxx.jar files should be added to your class path as
needed. For example, applications that leverage the PageLayout bean included
with ArcObjects require that the arcgis_pagelayoutbean.jar file be added to the
class path.

As an optional convenience, you can use the JARs in
%ARCENGINEHOME%\java\opt or $ARCENGINEHOME/java/opt instead
of a long list of arcgis_xxx.jar files. These two convenience JARs are:

• arcobjects.jar—contains all of the non-UI class files in one complete archive.

• arcgis_visualbeans.jar—contains all of the UI class files in one complete
archive.

ANT
The ArcGIS SDK for Java includes numerous sample applications, each of which
is delivered with ANT scripts. ANT is a Java-based build tool that uses build

JAVA APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM183

184 • ArcGIS Engine Developer Guide

scripts written in XML. You can either load these samples into your preferred
development environment or use the ANT scripts to compile and run them.

If you want to use ANT scripts, you should have a working ANT installation.
For the ArcGIS Engine samples, any ANT version 1.5.3 or higher will work. For
your convenience, a version of ant, called arcgisant, is included under the
ArcGIS\DeveloperKit\tools directory on Windows and the arcgis/developerkit/
tools directory on Solaris and Linux.

The ANT scripts included with the samples require certain additional environ-
ment settings:

• ANT_HOME should point to your ANT installation directory. For example:
 ANT_HOME=C:\ArcGIS\DeveloperKit\tools\ant

Solaris and Linux developers can source arcgis/developerkit/tools/
setenv_ant.csh or setenv_ant.sh, which sets this variable and includes arcgisant’s
bin directory in the PATH.

JRE
The ArcGIS Engine and Server developer kits include a version of the Java
Runtime Environment (JRE). This enables you to run any ArcGIS Java applica-
tion as long as all the necessary settings described above are local to the runtime.
You will notice the necessary *.dll files in the bin directory and the necessary *.jar
files in the library extension directory. All you need to do to get started with this
runtime environment is ensure that the bin directory is added to your PATH
environment variable:
PATH=...;\ArcGIS\java\jre\bin

JAVA PROGRAMMING TECHNIQUES

This section provides you with some fundamental concepts of the Java program-
ming language. It assumes you understand general programming concepts but are
relatively new to Java.

Features of the Java Virtual Machine
The JVM specification provides a platform-independent, abstract computer for
executing code. The JVM knows nothing about the Java language; instead, it
understands a particular binary format, the class file that contains instructions in
the form of bytecodes. The Java Virtual Machine specification provides an envi-
ronment that both compiles and interprets programs. The compiler takes a .java
file, produces a series of bytecodes, and stores them in a .class file, and the Java
interpreter executes the bytecodes stored in the .class file.

Each implementation of the JVM interacts with the operating system. The JVM
handles such things as memory allocation, garbage collection, and security moni-
toring.

Java Native Interfaces
Even though Java programs are designed to run on multiple platforms, there may
be times where the standard Java class library doesn’t support platform-depen-
dent features needed by a particular application or a Java program needs to imple-
ment a lower-level program and have the Java program call it. The JNI is a stan-
dard cross-platform programming interface provided by the Java language. It

JAVA APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM184

Chapter 4 • Developer environments • 185

enables you to write Java programs that can operate with applications and librar-
ies written in other programming languages, such as C or C++. This is the tech-
nology used to bridge native ArcObjects with the ArcGIS API for Java.

To initialize your Java environment for native usage of ArcObjects, every ArcGIS
Engine—Java application must call the static initializeEngine method on the
EngineInitializer class. This should be the first call you do, even before AoInitialize.
public static void main(String[] args){

 /* always initialize ArcGIS Engine for native usage */

 EngineInitializer.initializeEngine();

 ...

}

ARCGIS DEVELOPMENT USING JAVA

This section is intended for developers using the Java SDK for ArcGIS Engine.
The SDK provides interoperability with ArcObjects, allowing a developer to
access ArcObjects as though they were Java objects. The API is not limited to any
specific Java Virtual Machine or platform and uses standard Java Native Interface
to access ArcObjects. The ArcGIS API for Java exposes the complete functional-
ity of ArcObjects via Java classes and interfaces, which allows Java developers to
write once, run anywhere, and also benefit from ArcObjects component reuse.
The ArcGIS API for Java provides proxy classes that are generated from
ArcObjects components type libraries, which allow interoperability with the
underlying components. These proxy classes expose ArcObjects properties, meth-
ods, and events via their Java equivalents.

Import directives
Java import statements allow fully qualified class names to be shortened to their
simple names. The code snippets in the following sections use simple class names
and assume the corresponding import statements are in effect:
import com.esri.arcgis.system.beans.reader.*;

import com.esri.arcgis.system.datasourcesfile.*;

import com.esri.arcgis.system.*;

import com.esri.arcgis.system.geodatabase.*;

import com.esri.arcgis.system.geometry.*;

Multiplatform development
For multiplatform compatibility, the data and pathnames you use must be in all
lowercase letters. You will encounter problems if any letters are uppercase.

Interfaces
Native ArcObjects uses an interface-based programming model. The concept of
an interface is fundamental to ArcObjects and emphasizes four points:

1. An interface is not a class.

2. An interface is not an object.

3. Interfaces are strongly typed.

4. Interfaces are immutable.

ArcObjects interfaces are abstract, meaning there is no implementation associated

JAVA APPLICATION PROGRAMMING INTERFACE

To see how the initializeEngine method is used
as the first call, refer to the Java developer

samples in ArcGIS Developer Help.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM185

186 • ArcGIS Engine Developer Guide

with an interface. Objects use type inheritance; the code associated with an
interface comes from the class implementation.

This model shares some features of the Java interface model. An interface in the
Java language is a specification of methods that an object declares it implements.
A Java interface does not include instance variables or implementation code.

The ArcGIS API for Java has two objects for every ArcObjects interface: a
corresponding interface and an interface proxy class. The interface is named in the
ArcObjects style, prefixed with an I. The interface proxy class appends the term
proxy to the name. An example of this mapping is provided below:

ArcObjects Interface

interface IArea : IUnknown
public class IAreaProxy implements IArea{}

Java Representation

public interface IArea{}

The proxy classes are used internally by the ArcGIS API for Java to provide
implementation to respective interfaces. An application developer should never
use the default constructor of these classes as it holds no implementation.
ArcObjects requires developers to go through an interface to access objects. The
Java language does not use this model; subsequently, the ArcGIS API for Java has
two ways of accessing objects—by interface or by class.
/* use the class implementing com.esri.arcgis.geometry.Point();

IPoint iPoint = new Point();

/* access object through class */

Point cPoint = new Point();

You cannot access objects through the default interface proxy class:
IPointProxy proxyPoint = new IPointProxy(); // incorrect usage

This will be discussed in more depth in subsequent sections.

ArcObjects interfaces are immutable and subsequently never versioned. An
interface is never changed once it is defined and published. When an interface
requires additional methods, the API defines a new interface by the same name
with a version number appended to it as described in the following table.

interface IGeometry2 : IGeometry

interface IGeometry3 : IGeometry2

interface IGeometry4 : IGeometry3

ArcObjects Interface

interface IGeometry : IUnknown
public interface IGeometry2 extends IGeometry{}

public interface IGeometry3 extends IGeometry2{}

public interface IGeometry4 extends IGeometry3{}

Java Representation
public interface IGeometry{}

Classes
In the ArcObjects model, classes provide the implementation of the defined
interfaces. ArcObjects provides three types of classes: abstract classes, classes, and
coclasses. These class types can be distinguished through the object model diagrams
provided in ArcGIS Developer Help. It is important to be familiar with them
before you begin to use the three class types.

In ArcObjects, an abstract class cannot be used to create new objects and are
absent in the ArcGIS API for Java. These classes are specifications in ArcObjects
for instances of subclasses through type inheritance. An abstract class enumerates
what interfaces are to be implemented by the implementing subclass but does not

JAVA APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM186

Chapter 4 • Developer environments • 187

provide an implementation to those interfaces. For each abstract class in
ArcObjects there are subclasses that provide the implementation.

A class cannot be publicly created in ArcObjects; however, objects of this class
type can be created as a property of another class or instantiated by objects from
another class. In the ArcGIS API for Java, the default constructor normally used
to create a class is undefined for ArcObjects classes.
/* The constructor for FeatureClass() is unsupported. */

FeatureClass fc = new FeatureClass(); // incorrect usage

The following example illustrates this behavior while guiding you through the
process of opening a feature class.
IWorkspaceFactory wf = new ShapefileWorkspaceFactory();

IFeatureWorkspace fw = new
IFeatureWorkspaceProxy(wf.openFromFile("\\path\\to\\data", 0));

/* Create a Feature Class from FeatureWorkspace. */

IFeatureClass fc = fw.openFeatureClass("featureclass name");

In ArcObjects, a coclass is a publicly creatable class. This means that you can
create your own objects merely by declaring a new object as shown below.
/* Create an Envelope from the Envelope coclass. */

Envelope env = new Envelope();

Structs
A structure defines a new data type made up of elements called members. Java
does not have structures as complex data types. The Java language provides this
functionality through classes; you can simply declare a class with the appropriate
instance variables. For each structure in ArcObjects, there is a representative Java
class with publicly declared instance variables matching the structure members as
outlined below.

 double x

 double y

 double z

}

ArcObjects Struct

struct WKSPointZ

 public double x;

 public double y;
 public double z;

}

Java Representation

public class _WKSPointZ {

You can work with these classes like any other class in Java:
_WKSPointZ pt = new _WKSPointZ();

pt.x = 2.23;

pt.y = -23.14;

pt.z = 4.85;

System.out.println(pt.x + " " + pt.y + " " + pt.z);

Enumerations
Versions of the Java 2 SDK prior to version 5 do not have enum types. To emu-
late enumerations in Java, a class or interface must be created that holds con-
stants. For each enumeration in native ArcObjects, there is a Java interface with
publicly declared static integers representing the enumeration value.

JAVA APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM187

188 • ArcGIS Engine Developer Guide

 esriXAxis = 0

 esriYAxis = 1

 esriZAxis = 2
}

ArcObjects Struct
enum esri3DAxis

 public static final int esriXAxis = 0;
 public static final int esriYAxis = 1;

 public static final int esriZAxis = 2;

}

Java Representation

public interface esri3DAxis {

You can now refer to the esriXAxis constant using the following notation:
esri3DAxis.esriXAxis;

Variants
The variant data type can contain a wide array of subtypes. With variants all
types can be contained within a single type variant. Everything in the Java pro-
gramming language is an object. Even primitive data types can be encapsulated
inside objects if required. Every class in Java extends java.lang.Object; conse-
quently, methods in ArcObjects that take variants as parameters can be passed any
object type in the ArcGIS API for Java.

Calling methods with “variant” objects as parameters
For methods that take variants as parameters, any object types can be passed, as
all objects derive from java.lang.Object. As this is considered a “widening cast,” an
explicit cast to Object is not needed. If you want to pass primitives as parameters
to methods, when variants are required, the corresponding primitive wrapper
class can be used.

Using methods that return variants
When using variant objects returned by methods, explicitly “downcast” those
objects to the corresponding wrapper object. For example, if expecting a String,
downcast to java.lang.String; if expecting a short, downcast to short’s wrapper
class, that is, java.lang.Short, as shown in the code below.
ICursor spCursor = spTable.ITable_search(spQueryFilter, false);

/* Iterate over the rows. */

IRow spRow = spCursor.nextRow();

while (spRow != null) {

Short ID = (Short) (spRow.getValue(1));

String name = (String) (spRow.getValue(2));

Short baseID = (Short) (spRow.getValue(3));

 System.out.println("ID="+ ID +"\t name="+ name +"\tbaseID="+ baseID);

/* Move to the next row. */

spRow = spCursor.nextRow();

}

IRowBuffer is a superinterface of IRow and defines the getValue(int) method as:
public Object getValue(int index)

 throws IOException,

 AutomationException

The value of the field with the specified index.

Parameters:

index - The index (in)

Returns:

return value. A Variant

JAVA APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM188

Chapter 4 • Developer environments • 189

The return value is an Object, specified by the javadoc as “variant”. Therefore, the
value can be downcasted to String or Short, depending on their type in the
geodatabase being queried.

Casting
ArcObjects follows an interface-based programming style. Many methods use
interface types as parameters and have interfaces as return values. When the
return value of a method is an interface type, the method returns an object
implementing that interface. When a method takes an interface type as parameter,
it can take in any object implementing that interface. This style of programming
has the advantage that the same method can work with many different object
types, provided they all implement the same interface.

For example, IFeature.getShape() method returns an object implementing IGeometry.
The object returned could potentially be any one of the following classes that
implement IGeometry: BezierCurve, CircularArc, EllipticArc, Envelope,
GeometryBag, Line, MultiPatch, Multipoint, Path, Point, Polygon, Polyline, Ray,
Ring, Sphere, TriangleFan, Triangles, or TriangleStrip.

Casting is used to convert between types. There are three types of potential casts
you, as a developer, may be tempted to use with the Java API:
1. Interface to concrete class casting
2. Interface cross-casting
3. Interface downcasting
It is important to understand that objects returned from methods within
ArcObjects can behave differently than objects implicitly defined in your code
because the object reference is not held in the JVM.

If you have a method, doSomeProcessingOnPolygon(Polygon p), that operates only on
Polygon objects, and you want to pass the object obtained as a result of
IFeature.getShape, you need a way to convert the “type” of the object from
IGeometry to Polygon. In Java, this is done using a class cast operation:
/* incorrect usage: will give ClassCastException */

Polygon poly = (Polygon)geom;

However, if you use the same code with the ArcGIS API for Java, you will get a
ClassCastException. The reason for the exception is that the “geom” object refer-
ence is actually a reference to the native ArcObjects component. As a conse-
quence of the interoperability between Java and the native ArcObjects compo-
nents, the logic of casting this object reference to the Polygon object resides in the
constructor of the Polygon object and not in the JVM.

Every class in the ArcGIS API for Java has a constructor that takes in a single
object as a parameter. This constructor can create the corresponding object using
the reference to the ArcObjects component. Therefore, to achieve the equivalent
of a class casting when using the ArcGIS API for Java, use the “object construc-
tor” of the class being casted to.
Polygon poly = new Polygon(geom);

The following code illustrates the object constructor being used to cast the geom
object to a Polygon:

JAVA APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM189

190 • ArcGIS Engine Developer Guide

IFeature feature = featureClass.getFeature(i);

IGeometry geom = feature.getShape();

if (geom.getGeometryType() == esriGeometryType.esriGeometryPolygon){

 /* Note: "Polygon p = (Polygon) geom;" will give ClassCastException */

 Polygon poly = new Polygon(geom);

 doSomeProcessingOnPolygon(poly);

}

The polygon object poly thus constructed will implement all interfaces imple-
mented by the Polygon class. Consequently, you can call methods belonging to any
of the implemented interfaces on the poly object.

You could write all your code using the object constructors alone, but there are
times when it might be better to cast an object implementing a particular inter-
face, not to a class type, but to another interface implemented by that object.

Continuing the previous example, suppose you want to use the
doSomeProcessingOnPolygon(Polygon p) method not only on Polygon objects but on
other objects implementing IArea, such as Envelope and Ring. You could write a
generic doSomeProcessingOnArea(IArea area) method that works on all objects
implementing IArea. As Polygon, Envelope, and Ring objects all implement the IArea
interface, you could pass in those objects to this generic method, thereby prevent-
ing the need to write additional methods for each object type, such as
doSomeProcessingOnEnvelope(Envelope env) and doSomeProcessingOnRing(Ring ring). To
accomplish this, you would need to cast from the IGeometry type to the IArea
type. In Java, this is typically done using interface cross-casting.
/* Incorrect usage: will give ClassCastException */

IArea area = (IArea) geom ;

However, for the same reason noted in the class cast above, such a cast would fail
with a ClassCastException. To be able to cast to the ArcObjects interface, you will
need to use the interface proxy classes discussed earlier in this section. In the
ArcGIS API for Java, you achieve the equivalent of an interface cross-casting by
using the InterfaceProxy of the interface being casted to.
IArea area = new IAreaProxy(geom);

The following code shows the use of an InterfaceProxy class to cross-cast the geom
object to IArea:
IFeature feature = featureClass.getFeature(i);

IGeometry geom = feature.getShape();

/* Note: "IArea area = (IArea) geom;" will give ClassCastException */

IArea area = new IAreaProxy(geom);

doSomeProcessingOnArea(area);

Using the IAreaProxy class as shown in the code above allows you to access the
object through its IArea interface so that it can then be passed to a method that
takes an argument of type IArea. Thus, in this particular example, one method
can deal with three different object types. However, only methods belonging to
the IArea interface will be valid for the area object. To call other methods of the
object, you will need to either class-cast to the appropriate object type using its
object constructor or get a reference to the other interfaces using the
InterfaceProxy classes.

JAVA APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM190

Chapter 4 • Developer environments • 191

Instanceof
The instanceof operator in Java allows a developer to determine if its first operand
is an instance of its second.
operand1 instanceof operand2

You can use instanceof in ArcObjects when the logic behind the type is held in
Java. You cannot use instanceof when the type is held in ArcObjects, as the logic
of determining whether an object is an instance of a specified type resides in the
constructors of that object type and not the JVM.
 Point point = new Point();

 point.putCoords(10, 10);

 if(point instanceof IGeometry){

 System.out.println(" point is a IGeometry");

 geom = point;

 }

 if(point instanceof IClone){

 System.out.println(" point is a IClone");

 }

The above code works since the type information is held in Java for Point.Java.
When you construct a Point object, a proxy class for each implemented interface is
also constructed. This allows you to use instanceof on any of these types. Develop-
ers would have access to any methods on Point implementing the IGeometry or
IClone interfaces.

This is backwards compatible as well:
 if(geom instanceof Polyline){

 System.out.println(" geom is a Polyline");

 }

 else if(geom instanceof Point){

 System.out.println(" geom is a Point");

 pnt = (IPoint)geom; // allowable cast as the type is held in JVM

 }

Since a direct cast of the geom object into Point was created, the geom object is of
type Point and instanceof can be used to check this information. However, since
the type information was known before it was checked above, it is not extremely
useful. What would be useful is to apply the above logic on methods that return
objects of superinterfaces.

Consider the IWorkspaceFactory.openFromFile method, which returns an IWorkspace.
Since the object returned is a Java object that implements IWorkspace, you cannot
check if the returned object is of any of the known implementing classes that
implement IWorkspace. In this case, to check for type information, you should call
a method on the returned object that is expected. If the method does not throw
an exception, it is of that type. This occurs because the logic on this object is
declared at runtime and is held inside the underlying ArcObjects component.
 RasterWorkspaceFactory rasterWkspFactory = new RasterWorkspaceFactory();

 IWorkspace wksp = rasterWkspFactory.openFromFile(aPath, 0);

 if(wksp instanceof RasterWorkspace){

 /* Code does not execute as logic is in ArcObjects. */

JAVA APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM191

192 • ArcGIS Engine Developer Guide

 System.out.println(" wksp is a RasterWorkspace");

 rasWksp = (RasterWorkspace)wksp;

 }

 else{

 try{

 rasWksp = (RasterWorkspace)wksp;

 rasWksp.openRasterDataset(aRaster);

 }catch(Exception e){

 /* Code executes if wksp is not a RasterWorkspace. */

 System.out.println(" wksp is not a RasterWorkspace");

 }

 }

Methods that take out parameters
ArcObjects provides many methods that return more than one value. The ArcGIS
API for Java requires sending single element arrays as parameters to such meth-
ods. Basically, you pass in single element arrays of the object that you want to be
returned, and ArcObjects fills in the first elements of those arrays with the return
value. Upon returning from the method call, the first element of the array con-
tains the value that has been set during the method call. One such method that
you will be using in this section is the toMapPoint of IARMap interface. Take a
look at the javadoc of this method:
public void toMapPoint(int x,

 int y,

 double[] xCoord,

 double[] yCoord)

throws IOException,

 AutomationException

Converts a point in device coordinates (typically pixels) to coordinates in
map units.

Converts the x and y screen coordinates supplied in pixels to x and y map
coordinates. The returned map coordinates will be in MapUnits.

Parameters:

x - The x (in)

y - The y (in)

xCoord - The xCoord (in/out: use single element array)

yCoord - The yCoord (in/out: use single element array)

Notice that the parameters xCoord and yCoord are marked as “in/out: use single
element array”. To use this method, the first two parameters are the x and y
coordinates in pixel units. The next two parameters are actually used to get return
values from the method call. You pass in single-dimensional single element double
arrays:

double [] dXcoord = {0.0};

double [] dYcoord = {0.0};

When the method call completes, you can query the values of dXcoord[0] and
dYcoord[0]. These values will be modified by the method and will actually refer to
the x and y coordinates in map units. A practical example of this method call is

JAVA APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM192

Chapter 4 • Developer environments • 193

to update the status bar with the current map coordinates as the mouse moves
over the control.
public void updateStatusBar(

IARControlEventsOnMouseMoveEvent params,

IARControl arControl,

JLabel statusLabel) throws IOException {

/*

* Create two single-dimension arrays of type double to serve as

* "out" parameters in a call to toMapPoint.

*/

double[] dXcoord = {0.0};

double[] dYcoord = {0.0};

int screenX = params.getX();

int screenY = params.getY();

IARMap arMap = arControl.getARPageLayout().getFocusARMap();

arMap.toMapPoint(screenX, screenY, dXcoord, dYcoord);

statusLabel.setText("Map x,y: " + dXcoord[0] + ", " + dYcoord[0]);

}

The ArcGIS API for Java will not allow developers to populate an array with a
superclass type, even when it has been cast to a superclass type. Consider the
following Java example:
Integer[] integers = { new Integer(0), new Integer(1), new Integer(2)};

Object[] integersAsObjects = (Object[])integers;

integersAsObjects[0] = new Object();

The above is not allowed and will cause an ArrayStoreException. Consider the
following ArcObjects example:
Polyline[] polyline = {new Polyline()};

tin.interpolateShape(breakline, polyline, null);

Polyline firstPolyLine = polyline[0];

The above is not allowed and will cause the same ArrayStoreException as the
earlier example. Take a look at the interpolateShape method of ISurface and analyze
what is going on here.
public void interpolateShape(IGeometry pShape,

 IGeometry[] ppOutShape,

 Object pStepSize)

throws IOException,

 AutomationException

 Parameters:

 pShape - A reference to a com.esri.arcgis.geometry.IGeometry (in)

 ppOutShape - A reference to a com.esri.arcgis.geometry.IGeometry
 (out: use single element array)

 pStepSize - A Variant (in, optional, pass null if not required)

 Throws:

 IOException - If there are communications problems.

 AutomationException - If the remote server throws an exception.

IGeometry is a superinterface to IPolyline, and the Polyline class implements both
interfaces. In the first attempt you tried to send a single element Polyline array into
a method that requires an in/out IGeometry parameter. This causes an

JAVA APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM193

194 • ArcGIS Engine Developer Guide

ArrayStoreException as ArcObjects is attempting to populate an IPolyline array with
an IGeometry object, attempting to place a superclass type into a subclass array.
The correct way to use this method is outlined below:
/* Set up the array and call the method. */

IGeometry[] geoArray = {new Polyline()};

tin.interpolateShape(breakline, geoArray, null);

/* "Cast" the first array element as a Polyline - this is

 * the equivalent of calling QueryInterface on IGeometry.

 */

IPolyline firstPolyLine = new IPolylineProxy(geoArray[0]);

Non-OLE automation-compliant types
A few ArcObjects types are not OLE automation-compliant. They contain meth-
ods that do not work in the ArcGIS API for Java. The API addresses each of
these situations in one of two ways:

1. Supplemental interfaces have been added that have the offending methods
overwritten in an automation-compliant way. These new interfaces are named
by appending them with the letters “GEN”, implying that they are generic for
all supported APIs. In these cases, the noncompliant interface is deprecated
with a link to the appropriate GEN interface. In the following example,
“somePoints” is an array of Point with two Point objects in it.
 /* Not automation compatible - throws exception */

 IEnvelope env = new Envelope();

 env.defineFromPoints(2, somePoints[0]);

 /* Automation compatible */

 IEnvelopeGEN envGEN = new Envelope();

 envGEN.defineFromPoints(somePoints);

2. A singleton utility class implements bridge interfaces. Since each utility class
can handle methods from multiple noncompliant interfaces, there is no naming
convention for the utility classes. The bridge interfaces handle the effort of
converting between noncompliant and compliant methods. In these cases, the
noncompliant methods are deprecated, with a link to the appropriate bridge
method in the utility class. To call the bridge method, simply pass in the
noncompliant object as the first argument. In this example,
myPointCollection4 is an instance of IPointCollection4, and
somePointStructures is an array of WKSPointZ objects with four objects in
it.
 /* Not automation compatible - throws exception */

 myPointCollection4.addWKSPointZs (4, somePointStructures[0]);

 /* Automation compatible */

 GeometryEnvironment geomEnv = new GeometryEnvironment();

 geomEnv.addWKSPointZs(myPointCollection4, somePointStructures);

Using visual beans
The ArcGIS API for Java provides a set of reusable components as prebuilt
pieces of software code designed to provide graphical functions. As a visual beans
developer, you only need to write code to “buddy” them into your ArcGIS En-

JAVA APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM194

Chapter 4 • Developer environments • 195

gine application. The use of beans creates a bridge between Java and the ActiveX
controls provided by ArcGIS. These visual components are Java Swing compo-
nents that contain heavyweight AWT components. They conform to the
JavaBeans component architecture, allowing them to be used as drag-and-drop
components for designing Java GUIs in JavaBean-compatible IDEs. To success-
fully use the ArcGIS Java Beans, the static initializer
EngineInitializer.initializeVisualBeans must be the first method call in Main. Due to
the initialization dependencies of the ArcGIS Engine SDK for Java, your applica-
tion is not guaranteed to function properly if usage of
EngineInitializer.initializeVisualBeans is not correct.

Mixing heavyweight and lightweight components
One of the primary goals of the Swing architecture was that it be based on the
existing AWT architecture. This allows developers to mix both kinds of compo-
nents in the same application. When using the JavaBeans for ArcObjects with
Swing components, care should be taken while mixing the heavyweight and
lightweight components. For guidelines, refer to the article ‘Mixing heavy and
light components’ at http://java.sun.com/products/jfc/tsc/articles/mixing/.

If using Swing components, disable lightweight popups where the option is
available, using code similar to:
 jComboBox.setLightWeightPopupEnabled(false);

 jPopupMenu.setLightWeightPopupEnabled(false);

Listening to events
All JavaBeans for ArcObjects are capable of firing events. For instance, the
ARControl bean fires the following events:
void onAction(IARControlEventsOnActionEvent theEvent)

void onAfterScreenDraw(IARControlEventsOnAfterScreenDrawEvent theEvent)

void onBeforeScreenDraw(IARControlEventsOnBeforeScreenDrawEvent theEvent)

void onCurrentViewChanged(IARControlEventsOnCurrentViewChangedEvent
theEvent)

void onDocumentLoaded(IARControlEventsOnDocumentLoadedEvent theEvent)

void onDocumentUnloaded(IARControlEventsOnDocumentUnloadedEvent
theEvent)

void onDoubleClick(IARControlEventsOnDoubleClickEvent theEvent)

void onFocusARMapChanged(IARControlEventsOnFocusARMapChangedEvent
theEvent)

void onKeyDown(IARControlEventsOnKeyDownEvent theEvent)

void onKeyUp(IARControlEventsOnKeyUpEvent theEvent)

void onMouseDown(IARControlEventsOnMouseDownEvent theEvent)

void onMouseMove(IARControlEventsOnMouseMoveEvent theEvent)

void onMouseUp(IARControlEventsOnMouseUpEvent theEvent)

To add and remove listeners for the events, the beans have methods of the form
addXYZEventListener and removeXYZEventListener. Adapter classes are provided as
a convenience for creating listener objects.

public void addIARControlEventsListener(IARControlEvents theListener)
throws IOException

public void removeIARControlEventsListener(IARControlEvents
theListener)

throws IOException

JAVA APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM195

196 • ArcGIS Engine Developer Guide

JAVA APPLICATION PROGRAMMING INTERFACE

The following code uses an anonymous inner class with the
IARControlEventsAdapter to add event listeners for onDocumentLoaded and
onDocumentUnloaded events to the arControl object:
arControl = new ARControl();

...

/*wire up the events for arControl*/

arControl.addIARControlEventsListener(new IARControlEventsAdapter(){

public void onDocumentLoaded(IARControlEventsOnDocumentLoadedEvent evt)
throws IOException{

/*set the statusbar text to point to the currently loaded document*/
java.awt.EventQueue.invokeLater(

new Runnable() {

public void run() {

statusLabel.setText(

" Document filename: "+ arControl.getDocumentFilename());

}

}

);

}

public void onDocumentUnloaded(

IARControlEventsOnDocumentUnloadedEvent evt) throws IOException{

/*set the statusbar text to empty string*/

java.awt.EventQueue.invokeLater(

new Runnable() {

public void run() {

statusLabel.setText("");

}

}

);

}

});

It is worthwhile to note that the events fired by the beans are custom events for
which the listeners are provided as part of the ArcGIS API for Java. Adding
listeners from the java.awt.event package, such as MouseListener, to the beans will
not be helpful as the JavaBeans do not fire those events. Instead, you could use
similar events, such as onMouseDown, onMouseUp, and onMouseMove, provided by
the corresponding event listener, which in the case of ARControl is
IARControlEvents.

In addition, these custom events are not fired from within Java’s event dispatch
thread. Whenever you wish to change the state of a pure Java GUI component
from within one of these events, be sure to do so via java.awt.EventQueue’s
invokeLater method. On the other hand, the ArcGIS components do not run in
Java’s event dispatch thread. Because of this, you can change their state directly
from within any of the custom ArcGIS events. For example, you could call
Map.refresh from within an ITransformEventsListener without using invokeLater.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM196

Chapter 4 • Developer environments • 197

C++ is an object-oriented programming language that evolved in the mid-1980s
from its predecessor, C. C++ is endowed with many features that give the lan-
guage an unrivaled expressive power, such as object orientation with inheritance,
operator overloading, virtual functions, templates, and a library of useful and
often necessary functions called the Standard Template Library (STL). The C++
language has been standardized by the International Organization for Standardiza-
tion (ISO) and several influential national standards organizations.

Developers may consider using the ArcGIS C++ API, as opposed to one of the
other APIs, for the following reasons:

• Execution speed—C++ code typically executes faster than the equivalent
Java, Visual Basic, C#, and VB.NET code.

• Cross-platform compatibility—Visual Basic, Visual C++, VB.NET, and C# are
currently used primarily on the Windows platform. C++ and Java are inher-
ently more cross-platform.

• Prior familiarity—If you already have a good deal of experience using the
language, then C++ is a logical choice.

This section is intended to serve two main purposes:

1. To familiarize you with general C++ coding style and debugging.

2. To provide an introduction to the ArcGIS C++ API, detailing specific usage
requirements and recommendations for working with the ArcObjects pro-
gramming platform.

C++ DEVELOPMENT TECHNIQUES

Smart types
Smart types are objects that behave like types. They are C++ class implementa-
tions that encapsulate a data type, wrapping it with operators and functions that
make working with the underlying type easier and less error prone. When these
smart types encapsulate an interface pointer, they are referred to as smart pointers.
Smart pointers work with the IUnknown interface to ensure that resource alloca-
tion and deallocation are correctly managed. They accomplish this by various
functions, construct and destruct methods, and overloaded operators.

Smart types can make the task of working with COM interfaces and data types
easier, since many of the API calls are moved into a class implementation; how-
ever, they must be used with caution and never without a clear understanding of
how they are interacting with the encapsulated data type.

The smart types supplied with the C++ API consist of:

• _com_ptr_t—This class encapsulates a COM interface pointer, creating a smart
pointer.

• CComBSTR—This class encapsulates the BSTR data type.

• CComVariant—This class encapsulates the VARIANT data type.

To define a smart pointer for an interface, you can use the macro
_COM_SMARTPTR_TYPEDEF like this:
 _COM_SMARTPTR_TYPEDEF(IFoo, __uuidof(IFoo));

C++ APPLICATION PROGRAMMING INTERFACE

C++ API versus Visual C++ API: Do not confuse
the C++ API with the Visual C++ COM API. If

developing only on Windows, the Visual C++
COM API has advantages over the pure C++ API.

The C++ API is primarily aimed at UNIX and
cross-platform development.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM197

198 • ArcGIS Engine Developer Guide

The compiler expands this as follows:
typedef _com_ptr_t< _com_IIID<IFoo, __uuidof(IFoo)> > IFooPtr;

Once declared, it is simply a matter of declaring a variable as the type of the
interface and appending Ptr to the end of the interface. Below are some common
uses of this smart pointer that you will see in the numerous C++ samples.
// Get a CLSID GUID constant.

extern "C" const GUID __declspec(selectany) CLSID_Foo = \

 {0x2f3b470c,0xb01f,0x11d3,{0x83,0x8e,0x00,0x00,0x00,0x00,0x00,0x00}};

// Declare Smart Pointers for IFoo, IBar, and IGak interfaces.

_COM_SMARTPTR_TYPEDEF(IFoo, __uuidof(IFoo));

_COM_SMARTPTR_TYPEDEF(IBar, __uuidof(IBar));

_COM_SMARTPTR_TYPEDEF(IGak, __uuidof(IGak));

HRESULT SomeClass::Do()

{

 // Create Instance of Foo class and QueryInterface (QI) for IFoo interface.

 IFooPtr ipFoo;

 HRESULT hr = ipFoo.CreateInstance(CLSID_Foo);

 if (FAILED(hr)) return hr;

 // Call method on IFoo to get IBar.

 IBarPtr ipBar;

 hr = ipFoo->get_Bar(&ipBar);

 if (FAILED(hr)) return hr;

 // QI IBar interface for IGak interface.

 IGakPtr ipGak(ipBar);

 // Call method on IGak.

 hr = ipGak->DoSomething();

 if (FAILED(hr)) return hr;

 // Explicitly call Release().

 ipGak = 0;

 ipBar = 0;

 // Let destructor call IFoo's Release.

 return S_OK;

}

When working with CComBSTR, use the text mapping L“” to declare constant
OLECHAR strings. To display a CComBSTR at the command line, use wcerr.
You will need to include iostream to use wcerr.
CComBSTR bsName(L"Matt");

std::wcerr << L"The name is " << (BSTR) bsName << std::endl;

CComVariant derives directly from the VARIANT data type, meaning that there is
no overloading with its implementation, which in turn simplifies its use. It has a
rich set of constructors and functions that make working with VARIANTs
straightforward; there are even methods for reading and writing from streams. Be

C++ APPLICATION PROGRAMMING INTERFACE

If you have used smart pointers before, you
might have seen differences in the implementa-
tion of the equality (“==”) operator for smart

pointer comparisons. The COM specification
states object identification is performed by

comparing the pointer values of IUnknown. The
smart pointers will perform necessary QI and

comparison when using the “==” operator.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM198

Chapter 4 • Developer environments • 199

sure to call the Clear method before reusing the variable.
ipFoo->put_Name(CComBSTR(L"NewName"));

if FAILED(hr)) return hr;

// Create a VT_I4 variant (signed long).

CComVariant vValue(12);

// Change its data type to a string.

hr = vValue.ChangeType(VT_BSTR);

if (FAILED(hr)) return hr;

Some method calls in IDL are marked as being optional and take a variant param-
eter. However, in C++ (and VC++) these parameters still have to be supplied. To
signify that a parameter value is not supplied, a variant is passed specifying an
error code or type DISP_E_PARAMNOTFOUND:
CComBSTR documentFilename(L"World.mxd");

CComVariant noPassword;

noPassword.vt = VT_ERROR;

noPassword.scode = DISP_E_PARAMNOTFOUND;

HRESULT hr = ipMapControl->LoadMxFile(documentFilename, noPassword);

However, if you do have a value that you want to pass in for the variant, use the
smart type, CComVariant.
int val = 1;

CComVariant smartVal(val);

ipRowBuffer->put_Value(2, smartVal);

When working with CComBSTR and CComVariant, the Detach function releases
the underlying data type from the smart type and can be used when passing a
result as an [out] parameter of a method. The use of the Detach method with
CComBSTR is shown below:
HRESULT CFoo::get_Name(BSTR* name)

{

 if (name==0) return E_POINTER;

 CComBSTR bsName(L"FooBar");

 *name = bsName.Detach();

}

A common practice with smart pointers is to use Detach to return an object from
a method call. When returning an interface pointer the COM standard is to
increment reference count of the [out] parameter inside the method implementa-
tion. It is the caller’s responsibility to call Release when the pointer is no longer
required. Consequently, care must be taken to avoid calling Detach directly on a
member variable. A typical pattern is shown below:
HRESULT CFoo::get_Bar(IBar **pVal)

{

 if (pVal==0) return E_POINTER;

 // Constructing a local smart pointer using another smart pointer

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM199

200 • ArcGIS Engine Developer Guide

 // results in an AddRef (if pointer is not 0).

 IBarPtr ipBar(m_ipBar);

 // Detach will clear the local smart pointer and the

 // interface is written into the output parameter.

 *pVal = ipBar.Detach();

 // This can be combined into one line:

 // *pVal = IBarPtr(m_ipBar).Detach();

 return S_OK;

}

The above pattern has the same result as the following code. Note that a condi-
tional test for a 0 pointer is required before AddRef can be called; calling
AddRef (or any method) on a 0 pointer will result in an access violation excep-
tion and typically crash the application:
HRESULT CFoo::get_Bar(IBar **pVal)

{

 if (pVal==0) return E_POINTER;

 // Copy the interface pointer (no AddRef) into the output parameter.

 *pVal = m_ipBar;

 // Make sure the interface pointer is nonzero before calling AddRef.

 if (*pVal)

 *pVal->AddRef();

 return S_OK;

}

When using a smart pointer to receive an object from an [out] parameter on a
method, use the smart pointer “&” de-reference operator. This will cause the
previous interface pointer in the smart pointer to be released. The smart pointer is
then populated with the new [out] value. The implementation of the method will
have already incremented the object reference count. This will be released when
the smart pointer goes out of scope:
{

 IFooPtr ipFoo1, ipFoo2;

 ipFoo1.CreateInstance(CLSID_Foo);

 ipFoo2.CreateInstance(CLSID_Foo);

 // Initialize ipBar Smart pointer from Foo1.

 IBarPtr ipBar;

 ipFoo1->get_Bar(&ipBar);

 // The "&" de-reference will call Release on ipBar.

 // ipBar is then repopulated with a new instance of IBar.

 ipFoo2->get_Bar(&ipBar);

}

// ipBar goes out of scope, and the smart pointer destructor calls Release.

If you have used smart pointers before, you
might have seen differences in the implementa-
tion of the equality (“==”) operator for smart

pointer comparisons. The COM specification
states object identity is performed by comparing

the pointer values of IUnknown. The smart
pointers will perform necessary QI and compari-

son when using the “==” operator.

CComVariant(VARIANT_TRUE) will create a
short integer variant (type VT_I2) and not a

Boolean variant (type VT_BOOL) as expected.
You can use CComVariant(true) to create a

Boolean variant.

CComVariant myVar(ipSmartPointer) will result
in a variant type of Boolean (VT_BOOL) and

not a variant with an object reference
(VT_UNKNOWN) as expected. It is better to

pass unambiguous types to constructors—that is,
types that are not smart types with overloaded

cast operators.
// Perform QI of IUnknown.

IUnknownPtr ipUnk = ipSmartPointer;
// Ensure we use IUnknown* constructor of

CComVariant.
CComVariant myVar2(ipUnk.GetInterfacePtr());

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM200

Chapter 4 • Developer environments • 201

Naming conventions

Type names
All type names (class, struct, enum, and typedef) begin with an uppercase letter and
use mixed case for the rest of the name:
class Foo : public CObject { . . .};

struct Bar { . . .};

enum ShapeType { . . . };

typedef int* FooInt;

Typedefs for function pointers (callbacks) append Proc to the end of their names.
typedef void (*FooProgressProc)(int step);

Enumeration values all begin with a lowercase string that identifies the project; in
the case of ArcObjects this is esri, and each string occurs on separate lines:
typedef enum esriQuuxness

{

 esriQLow,

 esriQMedium,

 esriQHigh

} esriQuuxness;

Function names
Name functions using the following conventions:

For simple accessor and mutator functions, use Get<Property> and
Set<Property>:
int GetSize();

void SetSize(int size);

If the client is providing storage for the result, use Query<Property>:
void QuerySize(int& size);

For state functions, use Set<State> and Is<State> or Can<State>:
bool IsFileDirty();

void SetFileDirty(bool dirty);

bool CanConnect();

Where the semantics of an operation are obvious from the types of arguments,
leave type names out of the function names.

Instead of:
AddDatabase(Database& db);

consider using:
Add(Database& db);

Instead of:
ConvertFoo2Bar(Foo* foo, Bar* bar);

consider using:
Convert(Foo* foo, Bar* bar)

If a client relinquishes ownership of some data to an object, use
Give<Property>. If an object relinquishes ownership of some data to a client,
use Take<Property>:

C++ APPLICATION PROGRAMMING INTERFACE

Here are some suggestions for a naming
convention. These help identify the variable’s

usage and type and thus reduce coding errors.
This is an abridged Hungarian notation:

[<scope>_]<type><name>

c

m

Prefix

g

<empty>

Static class member (including constants)

Instance class members

Variable scope

Globally static variable

local variable or struct or public class
member

<type>

Boolean

Data Type

byte or unsigned char

short used as size

DWORD, double word or unsigned long

int (integer)

long

a pointer

string

function

handle

ASCIIZ null-terminated string

WORD unsigned int

short used as coordinates

b

Prefix

by

cx/cy

dw

i

l

p

s

fn

h

sz

w

x, y

doubled

floatf

smart pointerip

<name> describes how the variable is used or
what it contains. The <scope> and <type>

portions should always be lowercase, and the
<name> should use mixed case:

m_hWnd

Variable Name

ipEnvelope

m_pUnkOuter

c_isLoaded

g_pWindowList

a handle to HWND

Description

a smart pointer to a COM interface

a pointer to an object

a static class member

a global pointer to an object

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM201

202 • ArcGIS Engine Developer Guide

void GiveGraphic(Graphic* graphic);

Graphic* TakeGraphic(int itemNum);

Use function overloading when a particular operation works with different
argument types:
void Append(const CString& text);

void Append(int number);

Argument names
Use descriptive argument names in function declarations. The argument name
should clearly indicate what purpose the argument serves:
bool Send(int messageID, const char* address, const char* message);

Debugging tips in Developer Studio

Visual C++ comes with a feature-rich debugger. These tips will help you get the
most from your debugging session.

Backing up after failure
When a function call has failed and you’d like to know why (by stepping into
it), you don’t have to restart the application. Use the Set Next Statement
command to reposition the program cursor back to the statement that failed
(right-click the statement to bring up the debugging context menu). Then, just
step into the function.

Edit and Continue
Visual Studio 6 allows changes to source code to be made during a debugging
session. The changes can be recompiled and incorporated into the executing code
without stopping the debugger. There are some limitations to the type of changes
that can be made; in this case the debug session must be restarted. This feature is
enabled by default; the settings are available in Settings of the project menu.
Click the C/C++ tab and click General from the Category dialog box. In the
Debug info dialog box, click Program Database for Edit and Continue.

Unicode string display
Set your debugger options to display Unicode strings (click the Tools menu,
click Options, click Debug, then check the Display Unicode Strings check box).

Variable value display
Pause the cursor over a variable name in the source code to see its current
value. If it is a structure, click it and bring up the QuickWatch dialog box (click
the Eyeglasses button or press Shift+F9) or drag and drop it into the Watch
window.

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM202

Chapter 4 • Developer environments • 203

Undocking windows
If the Output window (or any docked window, for that matter) seems too
small to you, try undocking it to make it a real window. Right-click it and
toggle the Docking View item.

Conditional break points
Use conditional break points when you need to stop at a break point once some
condition is reached (for example, a for-loop reaching a particular counter value).
To do so, set the break point normally, then bring up the Breakpoints window
(Ctrl+B or Alt+F9). Select the specific break point you just set and click the
Condition button to display a dialog box in which you specify the break point
condition.

Preloading DLLs
You can preload DLLs that you want to debug before executing the program.
This allows you to set break points up front rather than wait until the DLL has
been loaded during program execution. (Click Project, click Settings, click Debug,
click Category, then click Additional DLLs.) Then, click in the list area below to
add any DLLs you want to have preloaded.

Changing display formats
You can change the display format of variables in the QuickWatch dialog box or
in the Watch window using the formatting symbols in the following table.

d, i

Symbol

signed decimal integer

Format

0xF000F065

Value

-268373915

Displays

u unsigned decimal integer 0x0065 101

o unsigned octal integer 0xF065 0170145

x, X hexadecimal integer 61541 0x0000F065

l, h long or short prefix for d, I, u, o, x, X 00406042, hx 0x0C22

f signed floating-point 3./2. 1.500000

e signed scientific notation 3./2. 1.500000e+00

g e or f, whichever is shorter 3./2. 1.5

c single character 0x0065 'e'

s string 0x0012FDE8 "Hello"

su Unicode string "Hello"

hr string 0 S_OK

To use a formatting symbol, type the variable name followed by a comma and the
appropriate symbol. For example, if var has a value of 0x0065, and you want to
see the value in character form, type “var,c” in the Name column on the tab of
the Watch window. When you press Enter, the character-format value appears:
var,c = ‘e’. Likewise, assuming that hr is a variable holding HRESULTs, view a
human-readable form of the HRESULT by typing “hr,hr” in the Name column.

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM203

204 • ArcGIS Engine Developer Guide

You can use the formatting symbols shown in the following table to format the
contents of memory locations.

ma

Symbol

mw

mu

64 ASCII characters

Format

8 words

2-byte characters (Unicode)

0x0012ffac
.4...0...".0W&..
.....1W&.0.:W..1
...."..1.JO&.1.2
.."..1...0y....1

Value

0x0012ffac
34B3 00CB 3084 8094
22FF 308A 2657 0000

0x0012fc60
8478 77f4 ffff ffff
0000 0000 0000 0000

m
16 bytes in hex, followed by 16 ASCII
characters

0x0012ffac
B3 34 CB 00 84 30 94 80
FF 22 8A 30 57 26 00 00 .4...0....".0W&..

mb
16 bytes in hex, followed by 16 ASCII
characters

0x0012ffac
B3 34 CB 00 84 30 94 80
FF 22 8A 30 57 26 00 00 .4...0...".0W&..

md 4 double-words
0x0012ffac
00CB34B3 80943084 308A22FF 00002657

With the memory location formatting symbols, you can type any value or expres-
sion that evaluates to a location. To display the value of a character array as a
string, precede the array name with an ampersand, &yourname. A formatting
character can also follow an expression:
• rep+1,x
• alps[0],mb
• xloc,g
• count,d
To watch the value at an address or the value pointed to by a register, use the BY,
WO, or DW operator:
• BY returns the contents of the byte pointed at.
• WO returns the contents of the word pointed at.
• DW returns the contents of the doubleword pointed at.
Follow the operator with a variable, register, or constant. If the BY, WO, or DW
operator is followed by a variable, then the environment watches the byte, word,
or doubleword at the address contained in the variable.

You can also use the context operator { } to display the contents of any location.

To display a Unicode string in the Watch window or the QuickWatch dialog box,
use the su format specifier. To display data bytes with Unicode characters in the
Watch window or the QuickWatch dialog box, use the mu format specifier.

You can apply formatting symbols to structures,
arrays, pointers, and objects as unexpanded

variables only. If you expand the variable, the
specified formatting affects all members. You

cannot apply formatting symbols to individual
members.

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM204

Chapter 4 • Developer environments • 205

Keyboard shortcuts
There are numerous keyboard shortcuts that make working with the Visual
Studio editor faster. Some of the more useful keyboard shortcuts follow.

The text editor uses many of the standard shortcut keys used by Windows
applications such as Word. Some specific source code editing shortcuts are listed
below.

Correctly indent selected code based on surrounding lines.

Action

Find the matching brace.

Display list of members.

Complete the word, once the number of letters entered allows the editor to recognize it. Useful when
completing function and variable names.

Indents selection one tab stop to the right.

Indents selection one tab to the left.

Alt+F8

Shortcut

Ctrl+]

Ctrl+J

Ctrl+Spacebar

Tab

Shift+Tab

Below is a table of common keyboard shortcuts used in the debugger.

Add or remove breakpoint from current line.

Action

Remove all breakpoints.

Disable breakpoints.

Display auto window and move cursor into it.

Display call stack window and move cursor into it.

Display locals window and move cursor into it.

Display auto window and move cursor into it.

End debugging session.

Execute code one statement at a time, stepping into functions.

Execute code one statement at a time, stepping over functions.

Restart a debugging session.

Resume execution from current statement to selected statement.

Run the application.

Run the application without the debugger.

Set the next statement.

Stop execution.

F9

Shortcut

Ctrl+Shift+F9

Ctrl+F9

Ctrl+Alt+A

Ctrl+Alt+C

Ctrl+Alt+L

Ctrl+Alt+A

Shift+F5

F11

F10

Ctrl+Shift+F5

Ctrl+F10

F5

Ctrl+F5

Ctrl+Shift+F10

Ctrl+Break

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM205

206 • ArcGIS Engine Developer Guide

Loading the following shortcuts can greatly increase your productivity with the
Visual Studio development environment.

Close a menu or dialog box, cancel an operation in progress, or place focus in the current document window.

Action

Create a new file.

Create a new project.

Cycle through the MDI child windows one window at a time.

Display the auto window and move the cursor into it.

Display the call stack window and move the cursor into it.

Display the document outline window and move the cursor into it.

Display the find window.

Display the find window. If there is no current Find criteria, put the word under your cursor in the find box.

Display the immediate window and move the cursor into it. Not available if you are in the text editor window.

Display the locals window and move the cursor into it.

Display the output window and move the cursor into it

Display the project explorer window and move the cursor into it.

Display the properties window and move the cursor into it.

Open a file.

Open a project.

Print all or part of the document.

Save all of the files, projects, or documents.

Select all.

Save the current document or selected item or items.

Esc

Shortcut

Ctrl+Shift+N

Ctrl+N

Ctrl+F6 or
Ctrl+Tab

Ctrl+Alt+A

Ctrl+Alt+C

Ctrl+Alt+T

Ctrl+H

Ctrl+F

Ctrl+Alt+I

Ctrl+Alt+L

Ctrl+Alt+O

Ctrl+Alt+J

Ctrl+Alt+P

Ctrl+Shift+O

Ctrl+O

Ctrl+P

Ctrl+Shift+S

Ctrl+S

Ctrl+A

Navigating through online Help topics
Right-click a blank area of a toolbar to display a list of all the available
toolbars. The Infoviewer toolbar contains up and down arrows that allow you
to cycle through help topics in the order in which they appear in the table of
contents. The left and right arrows cycle through help topics in the order that
you visited them.

ARCGIS DEVELOPMENT USING C++

The upcoming sections are intended for developers using C++ to develop with
ArcGIS Engine. The ArcGIS Engine Developer Kit gives developers access to
ArcObjects and is designed to satisfy requirements for C++ development projects
that require ArcObjects without the ArcGIS Desktop applications.

Building an understanding of COM and ArcObjects
The C++ API for ArcGIS gives the C++ developer access to the ArcObjects
components used to build the ArcGIS family of products; these components are
themselves written in C++ using the COM framework. While it is not necessary
to write any COM code to use the C++ API, a basic understanding of how COM
objects work is necessary to use ArcObjects. If you are unfamiliar with the
ArcObjects framework, the first two sections of this chapter, ‘The Microsoft
Component Object Model’ and ‘Developing with ArcObjects’, are recommended
reading.

Getting help
For help on the objects used in this API (interfaces, classes, and so on), refer to
the ArcGIS Developer Help for C++ that is installed with ArcGIS Engine. If
you accepted the default installation options, the help system can be accessed as
follows:

C++ APPLICATION PROGRAMMING INTERFACE

In addition to the Start Menu > Programs
shortcut, the C++ version of ArcGIS Developer

Help can also be accessed from your ArcGIS
Engine installation directory. Open it by navigat-

ing to <ArcGIS install directory>\
DeveloperKit\Help\COM and double-clicking

ArcGISDevHelpVC.chm.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM206

Chapter 4 • Developer environments • 207

Windows
Go to Start menu > Programs > ArcGIS > Developer Help > C++ Help. Or you
can open the C++ version of ArcGIS Developer Help from your ArcGIS Engine
installation directory by navigating to \DeveloperKit\Help\COM and double-
clicking ArcGISDevHelpVC.chm.

Solaris and Linux
Run <install location>/developerkit/viewArcGISDevHelpC++.

GETTING STARTED WITH C++ AND ARCOBJECTS

The C++ API can be a powerful tool for ArcObjects programming; however,
there are some steps to take to get started with it. All of the documents men-
tioned in this section are in the help system as individual pages and can be found
through the index. The goal of this document is to provide a single work flow
that takes you through the steps of choosing a development environment, leaving
you with a basic understanding of how to use the C++ API. Before you begin,
you will want to make sure that your desired application is one that can be com-
pleted with the C++ API. Make sure your plans fall within the limitations of the
C++ API, which can be found in the ‘Limitations’ section in this chapter.

Pre-ArcObjects C++ configuration steps
Make sure that you are using a supported product and platform for the C++ API
by checking the supported products and platforms. You should also verify that
your C++ compiler is among those supported.

This section is intended to give you a starting point for learning the API. How-
ever, its purpose is not to teach you how to set up a Windows, Solaris, or Linux
machine for C++ development, and it assumes that you can already compile a
simple C++ program on your computer. The following steps provide a quick
check to determine if your computer is at this point. For each of them, you will
use this code snippet:
 #include <iostream>

 int main(int argc, char** argv)

 {

 std::cerr << "Hello world" << std::endl;

 }

• Windows:

1. Open your development environment of choice (either Visual Studio 6 or
Visual Studio .NET 2003 [7.1]).

2. The way you create your new project will depend on the IDE you are using.

In VS6:

a. Start a new Win32 Console Application called configtest. Create it as an
empty project.

b. Add to the project a new C++ source file named configtest, and paste in the
code from above.

C++ APPLICATION PROGRAMMING INTERFACE

For general information on consuming and
extending with the APIs, see the discussion in

Chapter 2 , ‘ArcGIS software architecture’, and in
particular the section ‘ ArcGIS application

programming interfaces’.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM207

208 • ArcGIS Engine Developer Guide

C++ APPLICATION PROGRAMMING INTERFACE

In VS .NET 2003:

a. You want a simple C++ program, so use the wizard that you will use for
your C++ API development: the C/C++ Console Application wizard. This
wizard is not the same as the Win32 Console Project and Console Applica-
tion (.NET) wizards. To access the C/C++ Console Application wizard,
you must install Academic Tools for VS .NET 2003. This is available from
the downloads page at http://msdn.microsoft.com/academic/default.aspx. Once
you have installed the wizard, open a new Visual C++ project of the type
C/C++ Console Application and name it configtest.

b. Replace the contents of the existing configtest.cpp file with the code
above.

3. Press Ctrl+F5, and click Yes to build the .exe file. A window should open that
says Hello world.

4. If you had trouble with any of the steps above, your system is not yet config-
ured for C++ programming, and you should refer to your system documenta-
tion or system support personnel to get it set up.

• Solaris and Linux:

1. Open your text editor and paste the code snippet from above. Save it as
configtest.cpp.

2. At the command prompt, type one of the following:

• Solaris: “CC -o configtest configtest.cpp” (without the quotes)

• Linux: “g++ -o configtest configtest.cpp” (without the quotes)

3. A new file, configtest, will be created. Run it by typing “./configtest” (again
without the quotes).

4. Hello world will be displayed.

5. If you had trouble with any of the steps above, your system is not yet config-
ured for C++ programming, and you should refer to your system documenta-
tion or system support personnel to get it set up.

Platform configuration
1. First you will need to pick your development platform: Windows, Solaris, or

Linux. This will be a decision based on your ArcObjects programming inten-
tions, as well as your experience.

• Windows: If you are planning to write command-line ArcObjects applica-
tions and most of your programming experience is on Windows, you should
use Windows as your platform. Your code will still be cross-platform; you will
just need to recompile it on Linux and Solaris.

However, if you plan to write an application with the Motif or GTK widget
ArcGIS controls, you will not be able to develop on Windows as those con-
trols are only available on UNIX. To develop with the ArcGIS controls on
Windows, you will need to use another API and its controls, such as the
Visual C++ COM API and the COM controls.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM208

Chapter 4 • Developer environments • 209

You have a choice of development and compiler options for Windows, and
your next step is going to be reading the documentation on the supported
development environment you will be using. Your options are:

° Visual Studio 6 and the Visual Studio 6.0 C++ compiler

° Visual Studio .NET 2003 and the Visual Studio .NET 2003 C++ com-
piler (7.1)

° Using Visual Studio command-line tools (nmake) with either the Visual
Studio 6.0 or .NET 2003 (7.1) compiler

Once you have read that documentation, continue with Step 2.

• Solaris: If you are planning to write ArcGIS control applications, or if you
plan to write command-line ArcObjects applications, and you are most famil-
iar with Solaris, you should use Solaris as your platform. Your command-line
code will still be cross-platform: you will just need to recompile it on Linux
and Windows.

On Solaris you will be developing with the make utility and the Sun
WorkShop (Forte) 6 update 2 C++ compiler. However, your development
steps will depend on whether you are writing a command-line application or a
control application. If you would like to write a Solaris control application,
you will decide if you are going to write a Motif ArcGIS control application
or a GTK ArcGIS control application. Both have benefits and disadvantages,
as documented in ‘Choosing between Motif and GTK’.

Your next step is to read the documentation pertaining to the development
environment you will be using:

° Command-line applications with the make utility

° Motif ArcGIS control applications with the make utility

° GTK ArcGIS control applications with the make utility

Once you have read that documentation, continue with Step 2.

• Linux: If you are planning to write ArcGIS control applications, or if you
plan to write command-line ArcObjects applications, and you are most famil-
iar with Linux, you should use Linux as your platform. Your command-line
code will still be cross-platform: you will just need to recompile it on Solaris
and Windows.

On Linux you will be developing with the make utility and the GCC
version 3.2 C++ compiler. However, your development steps will depend on
whether you are writing a command-line application or a control application.
If you would like to write a Linux control application, you will decide if you
are going to write a Motif ArcGIS control application or a GTK ArcGIS
control application. Both have benefits and disadvantages, as documented in
‘Choosing between Motif and GTK’.

Your next step is to read the documentation pertaining to the development
environment you will be using:

° Command-line applications with the make utility

° Motif ArcGIS control applications with the make utility

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM209

210 • ArcGIS Engine Developer Guide

° GTK ArcGIS control applications with the make utility

Once you have read that documentation, continue with Step 2.

2. Now that you know what platform you will be developing on, install the
ArcGIS Engine Developer Kit on that platform, if you have not done so
already. Make sure to register your ArcGIS Engine!

3. Before beginning with a new API, it can be helpful to have some idea why
things might not be working. Some of the common configuration mistakes are
covered in the ‘Troubleshooting’ section in this chapter.

4. You should now have a computer configured for C++ development and know
how to set up, compile, and run ArcObjects C++ code in your development
environment of choice. The next step is to become familiar with ArcObjects
and the C++ API.

Getting to work
1. If you are programming on either Solaris or Linux, you now need to initialize

your ArcGIS Engine.

You should also be aware that if a C++ API application crashes on Solaris or
Linux, you need to run mwcleanup, as discussed in ‘Solaris and Linux post-
crash cleanup’ in this chapter.

2. ArcObjects is based on the Microsoft Component Object Model, or COM, and
successful ArcObjects programming requires a basic understanding of COM.
Read ‘Building an understanding of COM and ArcObjects’ earlier in this
chapter for information on developing COM knowledge and the ArcGIS
system. The resources in that document are only a brief introduction. A more
complete understanding of the ArcObjects system can be developed through
the overviews in the Library Reference for each of the ArcGIS libraries and
by taking ESRI courses targeted at ArcObjects programmers.

3. Now you will begin to get into the details of the ArcObjects C++ API. To get
started, step through one of these walkthroughs. The walkthrough you com-
plete should reflect your ArcObjects C++ goals:

• For command-line application programmers (Windows, Solaris, or
Linux): See the section ‘Building a command-line C++ application’ in
Chapter 6.

• For ArcGIS control application programmers (Solaris or Linux): See the
section ‘Building applications with C++ and Motif widgets’ in Chapter 6.

4. You should now be able to write your own applications using the ArcObjects
C++ API. If you are programming on either Solaris or Linux, or if you are
programming on Windows using the Visual Studio command-line tools, you
will need to write a makefile to go with your application. Template makefiles
have been provided for your use. Select the makefile appropriate for your
developer environment and modify it as discussed in the platform configura-
tion document you were directed to above.

• Windows command-line programming with nmake

• Solaris command-line programming with make

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM210

Chapter 4 • Developer environments • 211

• Linux command-line programming with make

• Solaris Motif ArcGIS control programming with make

• Linux Motif ArcGIS control programming with make

• Solaris GTK ArcGIS control programming with make

• Linux GTK ArcGIS control programming with make

Similarly, if you wrote code on one platform and now want to transfer it to
another, simply copy your code to the supported platform you want to trans-
fer it to, select and modify the appropriate makefile from above, and compile
and run the application on the new platform.

5. This introduction has not covered every piece of the C++ API. Another tool
provided for you are the samples. To further your C++ API knowledge, as
well as your understanding of the ArcObjects framework, read through and
try some of the samples. For information on how to use the C++ samples, see
the online Help topic ‘How to Use the C++ Samples’, and to find samples for
C++ you can use the samples query page in the online Help.

Although not all of the samples are written in C++, they are still useful for
learning the ArcObjects framework and the recommended method calls to use
in development. You may find code written in Visual Basic that does a task
you would like to do in C++. See the section ‘Converting from Visual Basic to
C++’ in this chapter for some tips on converting VB code to C++.

6. There are important C++ API topics that have not been covered in this
introduction. As you need additional information, refer to the following
documents:

• Some of the functions specific to the C++ API have been introduced to
you through the walkthroughs and samples, but the complete documenta-
tion on them is in the ‘Recommended function usage’ section in this chap-
ter.

• Recommended C++ programming techniques:

° Smart types

° Naming conventions

° Debugging tips in Developer Studio

• Recommended ArcObjects programming practices:

° Cocreating an object with a smart pointer reference after the smart
pointer is declared

° ESRI System interfaces

° Raw pointers in function signatures

° Return ArcObjects from functions

° Inline query interface

° Replicating the functionality of instanceof (Java) or TypeOf (Visual
Basic)

° Getting a feature’s field values from type VARIANT

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM211

212 • ArcGIS Engine Developer Guide

• Programming with Motif:

° Getting started with Motif programming

° Motif ArcGIS control programming

• Programming with GTK:

° Getting started with GTK programming

° GTK ArcGIS control programming

• Event handling on ArcGIS controls

• Walkthroughs discussing additional areas of the C++ API can be found in
the developer help system under Development Environments > C++ >
Walkthroughs. They include how to write custom commands, tools, and
events.

• Error handling

INITIALIZING THE SOLARIS AND LINUX ARCGIS ENGINE

With your machine ready for C++ development, there is only a single step to
prepare for ArcGIS Engine development, and that is to source the <Your Instal-
lation directory>/arcgis/init_engine.sh (or .csh, depending on your shell of
choice). If you prefer, that can be done in your shell’s RC file (.cshrc or .bashrc,
for example). Otherwise, you must source that file once per shell.

If you have the engine installed and registered, but you are getting the error
message “Error: Could not open include file <ArcSDK.h>.”, try sourcing the
init_engine script.

Supported compilers

On Windows, the Visual Studio 6.0 and Visual Studio .NET 2003 compilers are
supported by the ArcGIS C++ API.

On Solaris, the Sun Workshop (Forte) 6 update 2 compiler is supported.

On Linux, the supported compiler is GCC version 3.2.

Development environments
As an ArcGIS C++ API developer, you can choose any development environ-
ment as long as you use a supported compiler. However, if you want to use an
integrated development environment (IDE) on Windows, either
Visual Studio 6.0 or Visual Studio .NET 2003 (7.1) is recommended. If you
don’t want to use an IDE, you can write your code in any text editor and compile
it from the command line. If you choose this option, it is recommended that you
use the Windows nmake utility, the Solaris make utility, or the Linux make utility,
accessed from the corresponding command prompt. Your choice of development
environment depends entirely on your personal preference and the tools available.
This section focuses on each of these options, as well as the option of using
Motif or GTK in your Solaris and Linux applications.

C++ APPLICATION PROGRAMMING INTERFACE

You are also able to mix and match by coding in
one development environment and compiling in

another. For example, you can write code in
Visual Studio but compile and build it via a

script utilizing the command-line tools. Keep in
mind, however, that Motif and GTK code will not

compile or run on Windows.

If your GCC compiler on Linux has not been
installed in a standard location, some of your

compiled applications may not be able to find
libstdc++.so at runtime. In this case, you will

need to add this library’s directory (usually <gcc-
install-dir>lib) to your LD_LIBRARY_PATH

environment variable.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM212

Chapter 4 • Developer environments • 213

ARCGIS DEVELOPMENT IN THE VISUAL STUDIO 6.0 IDE

Setting up your application
To begin creating your ArcGIS Engine application in Visual Studio 6.0, start
Microsoft Visual C++ and use the Win32 Console Application wizard to create
an empty project. Click File > New > Win32 Console Application, type in the
name of the project, and choose its location.

Next, set the required project options. On the C/C++ tab of the Project Menu >
Settings dialog box, click Preprocessor from the Category combo box. In the
Additional Include Directories text box, type the path to ArcSDK.h. In addition,
type in the location of the ArcGIS Engine OLB files. Don’t forget to separate the
two paths with a semicolon.

Go to the Preprocessor Definitions text box and type “ESRI_WINDOWS” to
define the ESRI_WINDOWS symbol. Similar to the include directories, symbols
need to be separated with commas.

It is recommended that you use the /GX and /NOLOGO compiler flags. /GX
enables synchronous exception handling, and /NOLOGO prevents display of a
compiler startup banner and informational compiler messages. Activate /GX by
opening the project Property Pages, navigating to C/C++ > C++ Language, and
checking Enable exception handling. Set /NOLOGO by checking the Suppress
Startup Banner and Information Messages option from the menu bar, Project >
Settings > C/C++ tab > Customize category.

Finally, go to Project > Add to Project > New to add some files to the project;
these will eventually contain your code. Select the type of file you want to add
and give it a name. Add as many files as you need for your application. You are
ready to write your code. Don’t forget to start by including ArcSDK.h!

Compiling your application
To compile an ArcGIS Engine application in Visual Studio 6.0, press F7 or click
Build > Build YourApplicationName.exe.

Running your application
Before you can run an ArcGIS Engine command-line application from within
Visual Studio 6.0, you need to set up the arguments. Arguments are added to your
program by customizing your project settings; go to the Project menu > Settings
> Debug tab and add any arguments to the Program arguments text box.

Once the arguments are added, run the application by clicking Build > Execute
YourApplicationName.exe or by pressing Ctrl+F5. To run the application in
debug mode, click Build > Start Debug > Go, or press F5.

ARCGIS DEVELOPMENT IN THE VISUAL STUDIO .NET 2003 IDE

Setting up your application
The easiest way to program with the C++ API in .NET is to use the C/C++
Console Application wizard. This wizard is not the same as the Win32 Console
Project and Console Application (.NET) wizards. To access the C/C++ Console
Application wizard, you must install Academic Tools for VS .NET 2003. This is
available from the downloads page at http://msdn.microsoft.com/academic/

C++ APPLICATION PROGRAMMING INTERFACE

The ArcSDK.h and ArcGIS Engine OLB files are
installed in the <ArcGIS install

directory>\include\CPPAPI and <ArcGIS install
directory>\com folders, respectively.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM213

214 • ArcGIS Engine Developer Guide

default.aspx. Once you have installed the wizard, click New > Project > Visual
C++ Projects > C/C++ Console Application.

Now you are ready to proceed with your project options. First, add some addi-
tional include directories. Do this by clicking Project Menu > Properties > C/
C++ folder > General. In the Additional Include Directories text box, type the
path to ArcSDK.h. In addition, type in the location of the ArcGIS Engine OLB
files. Remember to separate the paths with a semicolon! You can also click the
ellipses to add new directories.

Next, click Preprocessor and in the Preprocessor Definitions text box type
“ESRI_WINDOWS” to define the ESRI_WINDOWS symbol. You can also click
the ellipses to define symbols.

Now you are ready to write your code. Don’t forget to start by including
ArcSDK.h!

Compiling your application
To compile an ArcGIS Engine application in Visual Studio .NET 2003, click
Build > Build Solution.

Running your application
Before you can run an ArcGIS Engine command-line application from within
Visual Studio .NET 2003, you need to set up the arguments. Arguments are
added to your program by customizing your project settings; go to the Project
menu > Properties > Debugging item and add any arguments to Command Argu-
ments. Make sure the configuration you are working on is selected in the configu-
ration combo box.

Finally, run the application by clicking Debug > Start Without Debugging or by
pressing Ctrl+F5. If you want to run the application in debug mode, click Debug
> Start, or press F5.

ARCGIS DEVELOPMENT WITH NMAKE AND THE WINDOWS COM-
MAND PROMPT

Setting up a compiler for use from the command prompt
From the command prompt you have your choice of supported compilers; your
first step will be to choose one and prepare it for use. The command-line build
tools of Visual Studio are not available by default, so you need to use a provided
batch file, vcvars32.bat, to configure one of the Visual Studio compilers for
command-line compilation and execution.

Accessing the Visual Studio 6.0 compiler from the command line
The command-line build tools of Visual Studio are not available by default.
However, a batch file, vcvars32.bat, is provided to make them available. The
vcvars32.bat file must be run each time you open a new command prompt.
Alternatively, you can create your own batch file that runs vcvars32.bat and
opens a command prompt that is ready for development. Each process is de-
scribed below.

• Run vcvars32.bat from a command prompt.

C++ APPLICATION PROGRAMMING INTERFACE

The vcvars32.bat file’s default location is
Program Files\Microsoft Visual Studio\VC98\Bin.

The ArcSDK.h and ArcGIS Engine .olb files are
installed in the <ArcGIS install

directory>\include\CPPAPI and <ArcGIS install
directory>\com folders, respectively.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM214

Chapter 4 • Developer environments • 215

1. Open a command prompt and use the “cd” command to change to the
directory containing vcvars32.bat.

2. Type “vcvars32.bat” to run the batch file.

3. For development, use the “cd” command to change to the directory con-
taining your code and begin. The Visual Studio command-line build tools
will be available from your command prompt.

4. For execution, run your .exe file with any necessary parameters.

• Create a batch file to run vcvars32.bat for you.

1. Navigate to the directory in which you want to store the batch file.

2. Right-click in the directory and click New > Text Document.

3. Change the name of the file to end in .bat (cmdpromptdevel.bat, for ex-
ample) and click Yes to confirm the name change.

4. Right-click the file and click Edit.

5. Find vcvars32.bat, right-click the file, and click Edit.

6. Copy all of the text in vcvars32.bat into the batch file you created and
opened above, and close vcvars32.bat.

7. Add the following line to your batch file:
%SystemRoot%\system32\cmd.exe

 This line opens a command prompt.

8. When you want to develop from the command line, double-click your
batch file. A command prompt will open with the necessary environment
already set up for you. You can also create a shortcut to your batch file and
add it to the Start menu or a toolbar.

9. For development, use the “cd” command to change to the directory con-
taining your code and begin. The Visual Studio command-line build tools
will be available from your command prompt.

10. For execution, run your .exe file with any necessary parameters.

Accessing the Visual Studio .NET 2003 compiler from the command
line
The command-line build tools of Visual Studio are not available by default.
However, Visual Studio .NET 2003 includes a command prompt that makes the
tools available. To open the command prompt and access these tools, go to the
Start menu > All Programs > Microsoft Visual Studio .NET 2003 > Visual
Studio .NET Tools > Visual Studio .NET 2003 Command Prompt.

When opened, the prompt automatically runs a batch file, vcvars32.bat, that
makes the build tools available. The vcvars32.bat file’s default location is
\Program Files\Microsoft Visual Studio .NET 2003\Vc7\bin.

Setting up your application
Open your favorite text editor and begin writing your code. Use a makefile to set
the following include directories and compiler options.

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM215

216 • ArcGIS Engine Developer Guide

1. Use the /I compiler option to add
\Program Files\ArcGIS\include\CPPAPI and \Program Files\ArcGIS\Com
as additional include directories.

2. Use the /D compiler option to define the ESRI_WINDOWS symbol to direct
the compiler to read the Windows support headers from within
ArcSDK.h.

3. Use the /GX compiler flag to enable synchronous exception handling.

4. Use the /NOLOGO compiler flag to prevent display of a compiler
startup banner and informational compiler messages.

Customizing the template makefile
As a convenience, a template makefile—Makefile.Windows—is included with
ArcGIS Engine for your use. The following steps highlight the specific areas of
the file that must be customized for it to be used in your development process.
The modifications shown are based on an application that is written in single
code and header files, my_application.cpp and my_application.h, and produces an
executable that takes in a single file at runtime.

1. Throughout the makefile, update the program name, currently ‘basic_sample’,
to reflect your application name. In this example, my_application is the pro-
gram name.
Set up the program name

PROGRAM = my_application.exe

…

Program name updates — source and object file lists

CPPSOURCES = my_application.cpp

CPPOBJECTS = my_application.obj

…

Program name updates – dependencies list

my_application.obj: my_application.cpp my_application.h

2. The compiler options outlined in Steps 2 through 4 above have been set for
you; however, you need to complete Step 1 yourself to prepare the template
for use in your applications.
…

Setting up the include directories

INCLUDEDIRS = \

/I "C:\Program Files\ArcGIS\include\CPPAPI" \

/I "C:\Program Files\ArcGIS\Com"

…

Setting up the compiler options

CPPFLAGS = /DESRI_WINDOWS $(INCLUDEDIRS) /nologo /GX

3. Provide dependencies lists for your application.
…

Program name updates –- dependencies list

my_application.obj: my_application.cpp my_application.h

With your makefile prepared, you are ready to write your code. Don’t forget to
start by including ArcSDK.h!

C++ APPLICATION PROGRAMMING INTERFACE

Although the compiler options have already been
set in the template, the line is included here to

illustrate the use of the built-in CPPFLAGS
macro.

This line was also shown in Step 1 to illustrate
the update of the program name.

The comment text used here to describe the
code of the makefile has been modified from the

actual comments within the file to reflect the
steps being taken.

The template makefile, Makefile.Windows, can
be found in ArcGIS Developer Help under

Development Environments > C++ > Makefiles.

These steps assume that you have installed to
the default location. If you didn’t install to the

default location, find and use your install location
to add the \include\CPPAPI and \Com folders as

include directories.

If desired, you can utilize the template
Makefile.Windows provided with ArcGIS Engine

in ArcGIS Developer Help. Refer to the next
section for details on this sample file.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM216

Chapter 4 • Developer environments • 217

Compiling your application
Once Makefile.Windows is ready to compile your application, you can compile
from the command line by typing “nmake /f Makefile.Windows”.

Running your application
You can either invoke your application directly or through the makefile. If you
choose to invoke it directly, you will need to provide command-line parameters
from the command line. To use the makefile to run an ArcGIS Engine command-
line application, you must set up the command-line parameters in the makefile.
Update your makefile to include variables for each input parameter and a run
target.

An example of these modifications is shown below:
Setting up the program argument

INPUT = C:\Data\inputfile

…

Setting up a run target

run:

$(PROGRAM) $(INPUT)

Once Makefile.Windows is ready for use with your application, you will be able
to run it from the command line by typing “nmake /f Makefile.Windows run”.

ARCGIS DEVELOPMENT WITH MAKE AND THE SOLARIS/LINUX
COMMAND PROMPT

Setting up a compiler for use from the command prompt
Sun WorkShop (Forte) 6 update 2 (CC) for Solaris; GCC version 3.2 (g++) for
Linux

Initializing ArcGIS Engine
With your machine ready for C++ development, there is only a single step to
prepare for ArcGIS Engine development, and that is to source the arcgis/
init_engine.sh (or .csh, depending on your shell of choice). If you prefer, that can
be done in your shell’s RC file (.cshrc or .bashrc, for example). Otherwise, you
must source that file once per shell.

Setting up your application
Open your favorite text editor and begin writing your code. Use a makefile to set
the following include directories, library options, and compiler options.

If desired, you can utilize the template makefiles provided with ArcGIS Engine.
Makefile.Solaris provides a starting point for Solaris command-line applications,
and Makefile.Linux will get you started with Linux command-line applications.
Refer to the next section for details on these templates.

Below, $(ARCENGINEHOME) is used to refer to the root directory of your
ArcGIS Engine install and should be defined once you have sourced arcgis/
init_engine.sh (or .csh). For examples of each of these steps, see the template
makefiles: Makefile.Solaris and Makefile.Linux.

C++ APPLICATION PROGRAMMING INTERFACE

If your GCC compiler on Linux has not been
installed in a standard location, some of your

compiled applications may not be able to find
libstdc++.so at runtime. In this case, you will

need to add this library’s directory (usually <gcc-
install-dir>/lib) to your LD_LIBRARY_PATH

environment variable.

If desired, you can utilize the template
Makefile.Solaris or Makefile.Linux provided with
ArcGIS Engine in ArcGIS Developer Help. Refer
to the next section for details on these sample

files.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM217

218 • ArcGIS Engine Developer Guide

1. Use the -I compiler option to add some additional include directories:

• $(ARCENGINEHOME)/include

• (Linux) /usr/X11R6/include (or the correct version for your installation)

2. Use the -L linker option to specify some additional library directories:

• $(ARCENGINEHOME)/bin

• (Linux) /usr/X11R6/lib (or the correct version for your installation)

3. Use the -l linker option link against the arcsdk library.

4. Use the -D compiler option to define the ESRI_UNIX symbol to direct the
compiler to read the UNIX support headers from within ArcSDK.h.

Customizing the templates Makefile.Solaris and Makefile.Linux
As a convenience, template makefiles, named Makefile.Solaris for Solaris com-
mand-line applications and Makefile.Linux for Linux command-line applications,
are included with ArcGIS Engine for your use. The following steps highlight the
specific areas of those files that must be customized for you to use them in your
development process. The modifications shown are based on an application that
is written in a single code and a single header file, my_application.cpp and
my_application.h, and produces an executable that takes in a single file at
runtime.

1. Throughout the makefile, update the program name, currently ‘basic_sample’,
to reflect your application name. In this example, the program name is
my_application.

 # Set up the program name

 PROGRAM = my_application

 ...

 # Program name updates - source list

 CXXSOURCES = my_application.cpp

 ...

 # Program name updates - objects, dependencies, and compilation commands

 my_application.o: my_application.cpp my_application.h

$(CXX) $(CXXFLAGS) -c -o my_application.o my_application.cpp

2. Update the dependencies list for your application. This line was also shown
above to illustrate the update of the program name. However, it may also
involve adding additional parameters and lists if the application you are
writing is broken up into more files.

 ...

 # Program name updates - objects, dependencies, and compilation commands

 my_application.o: my_application.cpp my_application.h

$(CXX) $(CXXFLAGS) -c -o my_application.o my_application.cpp

With your makefile prepared, you are ready to write your code. Don’t forget to
start by including ArcSDK.h!

C++ APPLICATION PROGRAMMING INTERFACE

The template makefiles, Makefile.Solaris and
Makefile.Linux, can be found in ArcGIS Developer
Help under Development Environments > C++

> Makefiles.

The comment text used here to describe the
code of the makefile has been modified from the

actual comments within the file to reflect the
steps being taken.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM218

Chapter 4 • Developer environments • 219

Compiling your application
Once Makefile.Solaris or Makefile.Linux is ready to compile your application, you
can compile from the command line by typing “make -f Makefile.Solaris” or
“make -f Makefile.Linux”, as appropriate.

Running your application
You can either invoke your application directly or through the makefile. If you
choose to invoke it directly, you will need to provide command-line parameters
from the command line. To use the makefile to run an ArcGIS Engine command-
line application, you must set up the command-line parameters in the makefile.
Update your makefile to include variables for each input parameter and a run
target.

An example of these modifications is shown below:
Setting up the program argument

INPUT = /mycomputer/data/inputfile

...

Setting up a run target

run:

 $(PROGRAM) $(INPUT)

Once Makefile.Solaris or Makefile.Linux is ready for use with your application,
you will be able to run from the command line by typing “make -f
Makefile.Solaris run” or “make -f Makefile.Linux run”, as appropriate.

ARCGIS MOTIF DEVELOPMENT WITH MAKE AND THE SOLARIS/
LINUX COMMAND PROMPT

Setting up a compiler for use from the command prompt
Sun WorkShop (Forte) 6 update 2 (CC) for Solaris; GCC version 3.2 (g++) for
Linux

Initializing ArcGIS Engine
With your machine ready for C++ development, there is only a single step to
prepare for ArcGIS Engine development, and that is to source the arcgis/
init_engine.sh (or .csh, depending on your shell of choice). If you prefer, that can
be done in your shell’s RC file (.cshrc or .bashrc, for example). Otherwise, you
must source that file once per shell.

Setting up your application
Setting up an ArcGIS Engine C++ Motif application is exactly like setting up an
ArcGIS Engine C++ application—there are only a few additional libraries to add
to the makefile. For those of you familiar with ArcGIS Engine C++ program-
ming, you will only need to add motifctl, aoctl, Xm, Xt, and X11 as libraries to
link against (that is, add them with the -l flag, as shown in Step 3 below). If you
are not familiar with ArcGIS Engine C++ programming, all the steps you need to
take in preparing your application are discussed below.

Open your favorite text editor and begin writing your code. Use a makefile to set
the following include directories, library options, and compiler options.

C++ APPLICATION PROGRAMMING INTERFACE

If your GCC compiler on Linux has not been
installed in a standard location, some of your

compiled applications may not be able to find
libstdc++.so at runtime. In this case, you will

need to add this library’s directory (usually <gcc-
install-dir>/lib) to your LD_LIBRARY_PATH

environment variable.

If desired, you can utilize the template
Makefile.SolarisMotif or Makefile.LinuxMotif

provided with ArcGIS Engine in ArcGIS Developer
Help. Refer to the next section for details on

these sample files.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM219

220 • ArcGIS Engine Developer Guide

If desired, you can utilize the template makefiles provided with ArcGIS Engine.
Makefile.SolarisMotif provides a starting point for Solaris Motif applications,
and Makefile.LinuxMotif will get you started with Linux Motif applications.
Refer to the next section for details on these templates.

Below, $(ARCENGINEHOME) is used to refer to the root directory of your
ArcGIS Engine install and should be defined once you have sourced arcgis/
init_engine.sh (or .csh). For examples of each of these steps, see the template
makefiles: Makefile.SolarisMotif and Makefile.LinuxMotif.

1. Use the -I compiler option to add some additional include directories:

• $(ARCENGINEHOME)/include

• (Linux) /usr/X11R6/include (or the correct version for your installation)

2. Use the -L linker option to specify some additional library directories:

• $(ARCENGINEHOME)/bin

• (Linux) /usr/X11R6/lib (or the correct version for your installation)

3. Use the -l linker option link against some libraries:

• (Linux) pthread

• Xm

• Xt

• X11

• arcsdk

• motifctl

• aoctl

4. Use the -D compiler option to define the ESRI_UNIX symbol to direct the
compiler to read the UNIX support headers from within ArcSDK.h.

Customizing the templates Makefile.SolarisMotif and
Makefile.LinuxMotif
As a convenience, template makefiles, named Makefile.SolarisMotif for Solaris
Motif applications and Makefile.LinuxMotif for Linux Motif applications, are
included with ArcGIS Engine for your use. The following steps highlight the
specific areas of those files that must be customized for you to use them in your
development process. The modifications shown are based on an application that
is written in a single code and a single header file, my_application.cpp and
my_application.h, and produces an executable that takes in a single file at
runtime.

1. Throughout the makefile, update the program name, currently ‘motif_sample’,
to reflect your application name. In this example, the program name is
my_application.

 # Set up the program name

 PROGRAM = my_application.exe

 ...

C++ APPLICATION PROGRAMMING INTERFACE

The comment text used here to describe the
code of the makefile has been modified from the

actual comments within the file to reflect the
steps being taken.

The template makefiles, Makefile.SolarisMotif
and Makefile.LinuxMotif, can be found in ArcGIS

Developer Help under Development Environ-
ments > C++ > Makefiles.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM220

Chapter 4 • Developer environments • 221

 # Program name updates - source list

 CXXSOURCES = my_application.cpp

 ...

 # Program name updates - objects, dependencies, and compilation commands

 my_application.o: my_application.cpp my_application.h

$(CXX) $(CXXFLAGS) -c -o my_application.o my_application.cpp

2. Update the dependencies list for your application. This line was also shown
above to illustrate the update of the program name. However, it may also
involve adding additional parameters and lists if the application you are
writing is broken up into more files.

 ...

 # Program name updates - objects, dependencies, and compilation commands

 my_application.o: my_application.cpp my_application.h

$(CXX) $(CXXFLAGS) -c -o my_application.o my_application.cpp

With your makefile prepared, you are ready to write your code. Don’t forget to
start by including ArcSDK.h!

Compiling your application
Once Makefile.SolarisMotif or Makefile.LinuxMotif is ready to compile your
application, you can compile from the command line by typing “make -f
Makefile.SolarisMotif ” or “make -f Makefile.LinuxMotif ”, as appropriate.

Running your application
You can either invoke your application directly or through the makefile. If you
choose to invoke it directly, you will need to provide command-line parameters
from the command line. To use the makefile to run your ArcGIS Engine applica-
tion, type “make -f Makefile.SolarisMotif run” or “make -f
Makefile.LinuxMotif run”, as appropriate.

ARCGIS GTK DEVELOPMENT WITH MAKE AND THE SOLARIS/LINUX
COMMAND PROMPT

Setting up a compiler for use from the command prompt
Sun WorkShop (Forte) 6 update 2 (CC) for Solaris; GCC version 3.2 (g++) for
Linux

For Solaris GTK users, we recommend that you download the GNOME desktop
from http://wwws.sun.com/software/star/gnome/index.html.

Initializing ArcGIS Engine
With your machine ready for C++ development, there is only a single step to
prepare for ArcGIS Engine development, and that is to source the arcgis/
init_engine.sh (or .csh, depending on your shell of choice). If you prefer, that can
be done in your shell’s RC file (.cshrc or .bashrc, for example). Otherwise, you
must source that file once per shell.

C++ APPLICATION PROGRAMMING INTERFACE

If your GCC compiler on Linux has not been
installed in a standard location, some of your

compiled applications may not be able to find
libstdc++.so at runtime. In this case, you will

need to add this library’s directory (usually <gcc-
install-dir>/lib) to your LD_LIBRARY_PATH

environment variable.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM221

222 • ArcGIS Engine Developer Guide

Setting up your application
Setting up an ArcGIS Engine C++ GTK application is like setting up an ArcGIS
Engine C++ application. There are only a few additional libraries, includes, and
flags to add to the makefile. For those of you familiar with ArcGIS Engine C++
programming, you will need to add gtkctl and aoctl as libraries to link against
(that is, add them with the -l flag, as shown in Step 3 below). In addition, you
will need to add the GTK CFLAGS and LDFLAGS, which will be generated by
a package management script called pkg-config. If you are not familiar with
ArcGIS Engine C++ programming, all the steps you need to take in preparing
your application are discussed below.

Open your favorite text editor and begin writing your code. Use a makefile to set
the following include directories, library options, and compiler options.

Below, $(ARCENGINEHOME) is used to refer to the root directory of your
ArcGIS Engine install and should be defined once you have sourced arcgis/
init_engine.sh (or .csh). For examples of each of these steps, see the template
makefiles: Makefile.SolarisGTK and Makefile.LinuxGTK.

1. Use the -I compiler option to add some additional include directories:

• $(ARCENGINEHOME)/include

• (Linux) /usr/X11R6/include (or the correct version for your installation)

2. Use the -L linker option to specify some additional library directories:

• $(ARCENGINEHOME)/bin

• (Linux) /usr/X11R6/lib (or the correct version for your installation)

3. Use the -l linker option link against some libraries:

• arcsdk

• gtkctl

• aoctl

4. Use the -D compiler option to define the ESRI_UNIX symbol to direct the
compiler to read the UNIX support headers from within ArcSDK.h.

5. Generate GTK compiler and linker arguments with pkg-config:

• $(shell pkg-config gtk+-2.0 —cflags)

• $(shell pkg-config gtk+-2.0 —libs)

C++ APPLICATION PROGRAMMING INTERFACE

If desired, you can utilize template makefiles
provided with the ArcGIS Engine.

Makefile.SolarisGTK provides a starting point for
Solaris GTK applications, and Makefile.LinuxGTK
will get you started with Linux GTK applications.

Refer to the next section for details on these
templates.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM222

Chapter 4 • Developer environments • 223

Customizing the templates Makefile.SolarisGTK and
Makefile.LinuxGTK
As a convenience, template makefiles, named Makefile.SolarisGTK for Solaris
GTK applications and Makefile.LinuxGTK for Linux GTK applications, are
included with ArcGIS Engine for your use. The following steps highlight the
specific areas of those files that must be customized for you to use them in your
development process. The modifications shown are based on an application that
is written in a single code and a single header file, my_application.cpp and
my_application.h, and produces an executable that takes in a single file at
runtime.

1. Throughout the makefile, update the program name, currently ‘gtk_sample’, to
reflect your application name. In this example, the program name is
my_application.
 # Set up the program name

 PROGRAM = my_application

 ...

 # Program name updates - source list

 CXXSOURCES = my_application.cpp

 ...

 # Program name updates - objects, dependencies, and compilation
commands

 my_application.o: my_application.cpp my_application.h

$(CXX) $(CXXFLAGS) -c -o my_application.o my_application.cpp

2. Update the dependencies list for your application. This line was also shown
above to illustrate the update of the program name. However, it may also
involve adding additional parameters and lists if the application you are
writing is broken up into more files.
 ...

 # Program name updates - objects, dependencies, and compilation
commands

 my_application.o: my_application.cpp my_application.h

$(CXX) $(CXXFLAGS) -c -o my_application.o my_application.cpp

With your makefile prepared, you are ready to write your code. Don’t forget to
start by including ArcSDK.h!

Compiling your application
Once Makefile.SolarisGTK or Makefile.LinuxGTK is ready to compile your
application, you can compile from the command line by typing “make -f
Makefile.SolarisGTK” or “make -f Makefile.LinuxGTK”, as appropriate.

Running your application
You can either invoke your application directly or through the makefile. If you
choose to invoke it directly, you will need to provide command-line parameters
from the command line. To use the makefile to run your ArcGIS Engine applica-
tion, type “make -f Makefile.SolarisGTK run” or “make -f Makefile.LinuxGTK
run”, as appropriate.

C++ APPLICATION PROGRAMMING INTERFACE

The template makefiles, Makefile.SolarisGTK
and Makefile.LinuxGTK, can be found in ArcGIS

Developer Help under Development
Environments > C++ > Makefiles.

The comment text used here to describe the
code of the makefile has been modified from the

actual comments within the file to reflect the
steps being taken.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM223

224 • ArcGIS Engine Developer Guide

RECOMMENDED FUNCTION USAGE

The C++ API provides its own implementation of some functions. Below are the
names and descriptions of the general API functions and examples of their use.
For additional information on the Motif- and GTK-specific functions, see the
sections ‘Motif ArcGIS control programming’ and ‘GTK ArcGIS control pro-
gramming’, respectively.

General API functions (described below)
• AoInitialize

• AoUninitialize

• AoExit

• AoCreateObject

• AoAllocBSTR

• AoFreeBSTR

• AoToolbarAddCommand

• AoToolbarAddTool

Motif-specific API functions
• MwCtlAppMainLoop

• MwCtlGetInterface

GTK-specific API functions
• gtk_axctl_new

• gtk_axctl_get_interface

• gtk_axctl_initialize_message_queue

AoInitialize, AoUninitialize, and AoExit
• AoInitialize—used where CoInitialize would be used in COM programming.

extern "C" HRESULT AoInitialize(LPVOID pvReserved);

This function initializes ArcGIS Engine. The initialization must be done prior
to ArcObjects being used and in addition to the use of the IAoInitialize inter-
face, which handles licensing for the application.

• AoUninitialize—used where CoUninitialize would be used in COM program-
ming.
extern "C" void AoUninitialize(void);

This function uninitializes ArcGIS Engine.

• AoExit—used where exit would be used in non-ArcObjects code, as well as
where return would be used in main.
extern "C" VOID AoExit (int number);

AoExit must be called before an application is exited. This allows portability
to supported operating systems that require AoExit to correctly clean up
various ArcGIS Engine elements.

C++ APPLICATION PROGRAMMING INTERFACE

For the sake of simplicity the code snippets given
don’t always check HRESULTs, although as a

developer you should always do so.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM224

Chapter 4 • Developer environments • 225

The following example illustrates how the three functions discussed above should
be used within an application.
int main (int argc, char* argv[])

{

// Initialize ArcGIS Engine and COM.

::AoInitialize(NULL);

// ArcGIS Engine licensing

{

IAoInitialize ipInit(CLSID_AoInitialize);

esriLicenseStatus status;

ipInit->Initialize(esriLicenseProductCodeEngine, &status);

// ArcObjects code here

ipInit->Shutdown();

}

// Uninitialize ArcGIS Engine and COM.

::AoUninitialize();

// Exit the application.

AoExit(0);

}

AoCreateObject
• AoCreateObject—used where CoCreateInstance would be used in COM pro-

gramming.
extern "C" HRESULT AoCreateObject(REFCLSID rclsid,

 LPUNKNOWN pUnkOuter,

 DWORD dwClsContext,

 REFIID riid,

 LPVOID *ppv);

When using smart pointers, this function will not be needed. However, you
can create an instance of an object without smart pointers by using this func-
tion, as shown in the following code:
// Create a Workspace Factory without using smart pointers.

IWorkspaceFactory *pWorkspaceFactory;

hr = ::AoCreateInstance(CLSID_ShapefileWorkspaceFactory, 0,

 CLSCTX_INPROC_SERVER,

 IID_IWorkspaceFactory,

 (void **)&pWorkspaceFactory);

AoAllocBSTR and AoFreeBSTR
• AoAllocBSTR replaces SysAllocString.

extern "C" BSTR AoAllocBSTR(const OLECHAR *sz);

• AoFreeBSTR replaces SysFreeString.
extern "C" void AoFreeBSTR(BSTR bstr);

C++ APPLICATION PROGRAMMING INTERFACE

In this code, both AoInitialize and IAoInitialize
are used. These are not the same thing:

AoInitialize is the API call discussed above, while
IAoInitialize is an ArcObjects interface used in

licensing.

Note that IAoInitialize must be scoped so that
it will be out of scope before AoUninitialize is

called.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM225

226 • ArcGIS Engine Developer Guide

When using the smart type CComBSTR, the above two functions will not be
needed. However, you can create and free BSTRs with them, as illustrated in the
following example:
// Display the feature type as "simple" or "other".

BSTR bsFeatureType;

esriFeatureType featType;

pFeatureClass->get_FeatureType(&featType);

switch (featType)

{

case esriFTSimple :

bsFeatureType = ::AoAllocBSTR(L"simple");

break;

default:

bsFeatureType = ::AoAllocBSTR(L"other");

}

std::wcerr << L"Feature Type : " << (BSTR) bsFeatureType << std::endl;

::AoFreeBSTR(bsFeatureType);

AoToolbarAddCommand and AoToolbarAddTool
• AoToolbarAddCommand replaces IToolbar->AddItem when adding a custom

command. The custom command class must inherit from CAoCommandBase.
extern "C" HRESULT AoToolbarAddCommand(IToolbarControl* pToolbarControl,

 CAoCommandBase* commandBase,
 enum esriCommandStyles style);

• AoToolbarAddTool replaces IToolbar->AddItem when adding a custom tool.
The custom tool class must inherit from CAoToolBase.
extern "C" RESULT AoToolbarAddTool(IToolbarControl* pToolbarControl,

 CAoToolBase* commandBase,
 enum esriCommandStyles style);

For examples on the use of AoToolbarAddCommand and AoToolbarAddTool, see
‘Creating custom commands and tools’.

ARCOBJECTS C++ PRACTICES

The following are some recommendations for programming with the ArcGIS
C++ API.

Getting a feature’s field values from type VARIANT
A feature’s field values are passed back as type VARIANT, requiring you to do
some processing to get the actual values. The following example loops through all
of a feature’s fields and prints out the feature’s value for each field. Only certain
field types are handled by the code shown here (for example, 2-byte integers,
4-byte integers, and BSTR strings); however, you could choose to handle other
types as determined by the needs of your application.
// ipFeature is of type IFeaturePtr, and it is assumed it has already

// been declared and instantiated above.

IFieldsPtr ipFields;

hr = ipFeature->get_Fields(&ipFields);

long fieldCount;

hr = ipFields->get_FieldCount(&fieldCount);

IFieldPtr ipField;

C++ APPLICATION PROGRAMMING INTERFACE

For the sake of simplicity, the code snippets
given don’t always check HRESULTs, although as

a developer you should always do so.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM226

Chapter 4 • Developer environments • 227

CComVariant fieldValue;

for (long i=0; i<fieldCount; i++)

{

hr = ipFields->get_Field(i, &ipField);

hr = ipFeature->get_Value(i, &fieldValue);

// Get field's value based on its type.

switch (fieldValue.vt)

{

case VT_I2:

std::cerr << fieldValue.iVal << std::endl;

break;

case VT_I4:

std::cerr << fieldValue.lVal << std::endl;

break;

case VT_R4:

std::cerr << fieldValue.fltVal << std::endl;

 break;

case VT_R8:

std::cerr << fieldValue.dblVal << std::endl;

 break;

 case VT_BSTR:

 std::wcerr << fieldValue.bstrVal << std::endl;

 break;

default:

 std::wcerr << "Field type not supported.\n";

 break;

}

}

Cocreating an object with a smart pointer reference after the smart
pointer is declared
A class is often cocreated at the same time that a smart pointer is declared:
IFooPtr ipFoo(CLSID_Foo);

However, in certain cases, it may be necessary for you to declare the smart
pointer first and cocreate the class later. This can be accomplished in the manner
below. Notice the use of the ‘dot’ member selection operator, as opposed to the
arrow member selection operator that is usually used with smart pointer types:
IFooPtr ipFoo;

// More code would be here.

ipFoo.CreateInstance(CLSID_Foo);

Inline query interface
You can use the built-in smart types to QI to other supported interfaces of a
coclass on which you have an interface:
// ipTin is of type ITinPtr and is an interface to an instance of

// the Tin coclass.

// The Tin coclass supports both the ITin and ITinSurface interfaces.

// GetVolume is a method on the ITinSurface interface.

((ITinSurfacePtr) ipTin)->GetVolume(…);

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM227

228 • ArcGIS Engine Developer Guide

Replicating the functionality of instanceof (Java) or TypeOf (Visual
Basic)
It is common to have an interface pointer that could point to one of several
coclasses. You can find out more information about the coclass by attempting to
QI to other interfaces using if/else logic. For example, both the RasterDataset and
FeatureDataset coclasses implement IDataset. If you are passed IDataset as a func-
tion parameter, you can determine which coclass the IDataset references as fol-
lows:
void Foo (IDataset *pDataset)

{

 IFeatureDatasetPtr ipFeatureDataset(pDataset);

 if (ipFeatureDataset != 0)

 {

 // Use IFeatureDataset methods.

 }

 else

 {

 IRasterDataset2Ptr ipRasterDataset(pDataset);

 if (ipRasterDataset!= 0)

 {

 // Use IRasterDataset2 methods.

 }

 }

}

Raw pointers in function signatures
Rather than having a smart pointer in the function signature, consider using a raw
pointer to save the overhead of a call to the smart pointer constructor upon
invocation of the function. You can still pass smart pointer objects to functions
since each smart pointer has an overloaded pointer operator that returns the
underlying raw pointer. The following example illustrates this:
HRESULT DoRasterOp(IRaster* pRaster); // Function dec: raw pointer

IRasterPtr ipRaster;

HRESULT hr = DoRasterOp(ipRaster); // Pass in smart pointer

Return ArcObjects from functions
This tip builds on the previous one. In this case, raw pointers are used in the
function declaration, and a double indirection is used for the object that will be
returned. This allows you to alter what the pointer you are passed points to.
Next, initialize a smart pointer object with the value you want to return and
assign it to the pointer you were passed.
HRESULT GetTinWorkspace(char* path, ITinWorkspace** ppTinWorkspace)

{

if (!ppTinWorkspace)

return E_POINTER;

HRESULT hr = S_OK;

IWorkspaceFactoryPtr ipWorkspaceFactory(CLSID_TinWorkspaceFactory);

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM228

Chapter 4 • Developer environments • 229

IWorkspacePtr ipWork;

hr = ipWorkspaceFactory->OpenFromFile(CComBSTR(path), 0, &ipWork);

if (FAILED(hr) || ipWork == 0)

return E_FAIL;

// Initialize ipTinWorkspace with ipWork.

ITinWorkspacePtr ipTinWorkspace(ipWork);

*ppTinWorkspace = ipTinWorkspace;

// AddRef() if the assignment worked.

if (*ppTinWorkspace)

(*ppTinWorkspace)->AddRef();

return hr;

}

ESRI System interfaces
The System library within ArcGIS Engine, which is included with ArcSDK.h,
contains a number of interfaces that simplify programming. It contains compo-
nents that expose services used by the other ArcGIS libraries.

Groups of objects in interfaces without STL
ArcObjects contains several interfaces for managing groups of objects. Although
they are not all discussed here, the examples given illustrate some that can greatly
simplify your work with COM objects in C++. Standard Template Library types
similar to some of these exist; however, these interfaces are often simpler than
their STL counterparts and are already set up to be used with COM objects. For
additional details on any of the interfaces below, see ArcGIS Developer Help for
C++.

• IArray—provides access to members that control a simple array of objects.
There are multiple related interfaces, such as IDoubleArray and IVariantArray.
The following code snippet shows how to add the geometries of the features
in a FeatureCursor to an array.
// ipFeatureLayer is of type IFeatureLayerPtr and ipQueryFilter is of

// type IQueryFilterPtr. Both have already been declared and

// instantiated.

IArrayPtr ipCacheArray (CLSID_Array);

IFeatureCursorPtr ipFeatureCursor;

ipFeatureLayer->Search(ipQueryFilter, VARIANT_FALSE, &ipFeatureCursor);

IFeaturePtr ipFeature;

while (ipFeatureCursor->NextFeature(&ipFeature) == S_OK)

{

 IGeometryPtr ipGeom;

 ipFeature->get_ShapeCopy(&ipGeom);

 ipCacheArray->Add((IUnknownPtr) ipGeom);

}

C++ APPLICATION PROGRAMMING INTERFACE

Notice the call to AddRef. This is required to
ensure that resources are managed properly.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM229

230 • ArcGIS Engine Developer Guide

C++ APPLICATION PROGRAMMING INTERFACE

• ISet—provides access to members that control a simple set of unique objects.
For example, the following code snippet cycles through a map’s layers and
attempts to add all of the unique feature class workspaces that aren’t being
edited to a set.
// ipMap is of type IMapPtr and was previously declared and instantiated.

ISetPtr ipSet(CLSID_Set);

ILayerPtr ipLayer;

IFeatureLayerPtr ipFeatLayer;

IFeatureClassPtr ipFeatClass;

IDatasetPtr ipDataset;

IWorkspacePtr ipWorkspace;

IWorkspaceEditPtr ipWorkspaceEdit;

long layerCount;

hr = ipMap->get_LayerCount(&layerCount);

for (long i=0; i<layerCount; i++)

{

hr = ipMap->get_Layer(i, &ipLayer);

ipFeatLayer = ipLayer;

// Layer might not be a feature layer.

if (ipFeatLayer == 0 || FAILED(hr)) continue;

hr = ipFeatLayer->get_FeatureClass(&ipFeatClass);

 // Layer could reference bogus data.

if (ipFeatClass == 0 || FAILED(hr)) continue;

ipDataset = ipFeatClass;

hr = ipDataset->get_Workspace (&ipWorkspace);

 ipWorkspaceEdit = ipWorkspace;

// Some data is not editable.

if (ipWorkspaceEdit == 0 || FAILED(hr)) continue;

VARIANT_BOOL beingEdited;

hr = ipWorkspaceEdit->IsBeingEdited(&beingEdited);

if (!beingEdited)

{

// Only adds unique workspaces

hr = ipSet->Add(ipWorkspace);

}

}

Copy objects
The IClone interface is helpful when comparing and copying objects, saving time,
and computing resources. Many coclasses support the IClone interface. See the
documentation for IClone in ArcGIS Developer Help for details. The following
code snippet clones a Point object:
// ipMouseClickPoint is of type IPointPtr and was previously declared

// and instantiated.

IClonePtr ipClone (ipMouseClickPoint);

IClonePtr ipCloned;

ipClone->Clone(&ipCloned);

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM230

Chapter 4 • Developer environments • 231

IUID
There are several methods in ArcObjects that take an IUID object as a parameter.
An IUID object is a globally unique identifier object. It can be either a GUID, as
shown in the example below, or a ProgID.
IUIDPtr ipUID(CLSID_UID);

IEnumLayerPtr ipEnumLayer;

// Use IGeoFeatureLayer's GUID.

hr = ipUID->put_Value(CComVariant(L"{E156D7E5-22AF-11D3-9F99-
00C04F6BC78E}"));

hr = ipMap->get_Layers(ipUID, VARIANT_TRUE, &ipEnumLayer);

ERROR HANDLING

COM methods return an HRESULT to signify the success or failure of a call, as
discussed in the ‘Developing with ArcObjects’ section earlier in this chapter.
When you are programming with the C++ API, you should check the returned
HRESULT of all calls to COM objects.

There are a few common HRESULTs that can be returned.

• S_OK signifies success.

• E_FAIL indicates a failure.

• E_NOTIMPL indicates a method is not implemented.

There are some macros that can be used to test the returned HRESULT.

• bool FAILED(HRESULT)
For example, if the opening of a workspace in which you want to process
data fails, you will not be able to use the data. At that point, you should exit
the application to avoid a crash later.
// Open the workspace.

IWorkspaceFactoryPtr ipWorkspaceFactory(CLSID_RasterWorkspaceFactory);

IWorkspacePtr ipWorkspace;

HRESULT hr = ipWorkspaceFactory->OpenFromFile(inPath, 0, &ipWorkspace);

if (FAILED(hr) || ipWorkspace == 0)

{

std::cerr << "Could not open the workspace." << std::endl;

return E_FAIL;

}

• bool SUCCEEDED(HRESULT)
For example, if you are going to create a new raster dataset, you must first
know that no dataset already exists with the desired name. To find out if such
a dataset exists, try to open it. If it succeeds, you know that you cannot create
a new dataset with that name.
// Check for existence of a dataset with the desired output name.

// If such exists, you can't create a new one with the name.

IRasterDatasetPtr ipExistsCheck;

hr = ipRastWork->OpenRasterDataset(outFile, &ipExistsCheck);

if (SUCCEEDED(hr))

{

C++ APPLICATION PROGRAMMING INTERFACE

You might notice that the samples and scenarios
do not follow the Good Error Handling practices

outlined here. This is done simply to increase
code readability since error checking is not the

focus of those bits of code.

For further details on GUIDs, see ‘The Microsoft
Component Object Model’ section earlier in this

chapter.

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM231

232 • ArcGIS Engine Developer Guide

std::cerr << "A dataset with the output name already exists!"
 << std::endl;

return E_FAIL;

}

CONVERTING FROM VISUAL BASIC TO C++

While many samples are provided in multiple languages, the bit of code you
would like to use might only be available in Visual Basic. If you encounter this,
here are some tips to convert that code into C++. However, these are not com-
plete bits of code, and variables are not always defined. They are just examples
of how to translate a pattern in VB into C++ syntax.

A few notes on variable names:

VB

Dim pWsFact As _
IWorkspaceFactory
pWsFact = New _
RasterWorkspaceFactor

Set pWs = pWsFact._
OpenFromFile(sDir, 0)

Set pRasterDataset = _
pWs.OpenRaster_
Dataset(sFile)

Set pFieldEdit = pField

pFieldEdit.Name = "Shape"

Set pFieldEdit.Geometry_
Def = pGeomDef

fcount = pfields.FieldCount

if (TypeOf m_ipDisplay_
Feedback Is INewMulti_
PointFeedback) Then

C++ Notes

IWorkspaceFactoryPtr ipWsFact (CLSID_Raster
WorkspaceFactory); // if creating at declaration
OR
IWorkspaceFactoryPtr ipWsFact;// if creating
later than defined
ipWsFact.CreateInstance (CLSID_Raster
WorkspaceFactory);

ipWsFact->OpenFromFill(CComBSTR(sDir),
0, &ipWs);

((IRasterWorkspacePtr) ipWksp)->OpenRaster
Dataset(CComBSTR(sFile), ppRasterDataset);

IFieldEditPtr ipFieldEdit(ipField); // ipFieldEdit not
yet declared
OR
ipFieldEdit = ipField; // ipFieldEdit previously
declared

ipFieldEdit->put_Name (CComBSTR(shape
FieldName));

ipFieldEdit->putref_GeometryDef(ipGeomDef);

ipFields->get_FieldCount(&lFieldCount);

INewMultiPointFeedbackPtr ipNewMultiPoint
Feedback (m_ipDisplayFeedback);
if (ipNewMultiPointFeedback != 0)

Coding practice depends
on when the instance
is created.

C++ requires an explicit
cast to CComBSTR, and
ipWs must be created
previously and passed in
(even if still NULL).

Inline query interfacem to
IRasterWorkspace from
IWorkspace.

Coding practice depends
on where the instance is
given its value.

Use "put_" for
assignments.

If VB uses "Set" in the
assignment, you will use
"putref_" in C++.

Use "get_" to retrieve
information. Notice you
will need to pass in
a reference.

• “p” prefix—variable is a pointer.

• “pp” prefix—variable is a pointer to a pointer.

• “ip” prefix—variable is a smart pointer.

TROUBLESHOOTING

Problems finding or opening the include file “ArcSDK.h”
If your sample is not compiling because it cannot open ArcSDK.h, make sure
that you have the correct argument for the include directory. If you installed to
the default directory, it should be either \Program Files\ArcGIS\include\CPPAPI
(for Windows) or /arcgis/include (for Linux and Solaris). If it is correct and it is
still not working, make sure the file is in that directory.

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM232

Chapter 4 • Developer environments • 233

If it is in the correct location and you are using either Solaris or Linux, the next
thing to try is running arcgis/init_engine.sh (or .csh). The message may mean that
$ARCENGINEHOME/include isn’t in the compiler’s include path. In the
samples, our makefiles typically take care of adding this for you. However, if
$ARCENGINEHOME isn’t set, it will fail, and it is set in the arcgis/init_engine
script.

Error: Please define either ESRI_WINDOWS or ESRI_UNIX
You need to inform the compiler of which set of header files to use. On Win-
dows, you need to define the ESRI_WINDOWS symbol. On Solaris and Linux,
you need to define the ESRI_UNIX symbol. If you are using a makefile (either
with nmake on Windows or make on Solaris or Linux), you will set this with the
“D” compiler flag. In Visual Studio 6.0, you set it on the C/C++ tab of the
Project Menu > Settings dialog box by selecting “Preprocessor” from the Cat-
egory combo box and adding “ESRI_WINDOWS” to the “Preprocessor Defini-
tions” textbox. In Visual Studio .NET 2003, the symbol is defined in the Project
Menu > Properties dialog box in the C/C++ folder by clicking Preprocessor and
adding “ESRI_WINDOWS” to the Preprocessor Definitions textbox.

Windows-specific errors
• Cannot open type library file esriSystem.olb

This Windows error means that your sample is not compiling because it cannot
open an ESRI OLB file. Make sure that you have the correct argument for the
COM include directory, which is ArcGIS\Com in a default installation. If it is
correct and it is still not working, make sure the file is in that directory.

• Code is compiling but will not run. Sometimes I get an odd “abnor-
mal program termination” error.
On Windows, if samples or your own code compiles but fails to run, make
sure you registered your ArcGIS Engine. Run the SoftwareAuthorization tool
found in Start > All Programs > ArcGIS and follow its prompts.

Solaris- and Linux-specific errors
• Error: No valid runtime license was found.

This means that you have not registered your ArcGIS Engine. Run the
SoftwareAuthorization tool found in arcgis/authorizeSoftware and follow its
prompts.

• fatal: libarcsdk.so: open failed: No such file or directory (Solaris)

OR

/usr/bin/ld: cannot find -larcsdk (Linux)

This tells you that $ARCENGINEHOME/bin isn’t in the
LD_LIBRARY_PATH, which is set up when you run the arcgis/init_engine.sh
(or .csh) script. Run the init_engine script.

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:32 PM233

234 • ArcGIS Engine Developer Guide

LIMITATIONS

When using the C++ API, only command-line applications are cross-platform.

On Solaris and Linux, controls in the form of Motif widgets have been provided
and GUI applications can be built. The Motif applications will not run on Win-
dows. However, GUI applications can be built on Windows with the COM API,
including Visual C++, and several ActiveX controls provide GIS functionality to
standalone GUI applications. For details, see the Visual C++ section of the help
system.

SOLARIS AND LINUX POST-CRASH CLEANUP

If an application does not exit cleanly, it is possible that processes will remain. To
tidy up these processes, use the mwcleanup utility. Typing “mwcleanup” at the
command line will kill all running ArcGIS applications and clean up all X proper-
ties.

CHOOSING BETWEEN MOTIF AND GTK

If you would like to write a control application on Solaris or Linux, you have
two widget sets to choose from: Motif and GTK. One major factor in whether
you should use Motif or GTK will be your programming experience: if you are
already familiar with one, that will make your ArcObjects experience easier. In
addition, each has both benefits and disadvantages.

Pros

Motif

multiplatform availability

traditional UNIX look and feel

well supported and documented

preinstalled on Solaris

long-established industry standard

GTK

multiplatform availability

widely used for newer projects

fairly easy to program

standard part of most Linux distributions

active development

Cons

Motif

difficult to program

little active development

support for Linux is lacking

dated design

GTK

noncentralized support

documentation is lacking

support for Solaris is quite new

MOTIF PROGRAMMING

Getting started with Motif programming
Motif widget ArcGIS controls have been provided for C++ developers. To use
them, you must understand some basics of Motif programming. This is not by any
means a complete resource; the variety of Motif widgets and their resources,
which you have available to you as a programmer, are not discussed here. How-
ever, this should give you a place to start figuring out the Motif-specific bits of
the C++ API and samples.

Seven steps of Motif programming
When writing a Motif program, there are seven steps that need to be done.

1. Initialize the Motif Toolkit.

2. Create the widgets.

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:33 PM234

Chapter 4 • Developer environments • 235

3. Manage the widgets.

4. Implement event listening and callback functions for widgets.

5. Display the widgets.

6. Begin the event handling loop.

7. Shut down the application.

To illustrate each of these steps, you will create a simple Motif application.

Motif Program: Simple PushButton
This application will be a single button that displays the number of times the
button was clicked repeatedly to cerr (for example, if double-clicked it will
display “2 clicks”). Start a new file that will be your program. Here that file will
be called pbExample.cpp.

To use the Motif Toolkit you will need to include the Motif header file. The
Motif PushButton widget you will be using requires Xm/PushB.h (each widget’s
header file includes Xm/Xm.h, but it is good practice to include it anyway). For
the display of “pushed”, you will need to include iostream. Xm/Protocols.h will
be used for the callbacks. You will also need a main function. Set these up in your
new file, so that it looks like this:
#include <iostream>

#include <Xm/Xm.h>

#include <Xm/PushB.h>

#include <Xm/Protocols.h>

int main(int argc, char* argv[])

{

 return 0;

}

at the top of your new file.

Step 1: Initialize the Motif Toolkit
Your first initialization step is to set the language procedure for Xt. Do so by
calling XtSetLanguageProc. Then you will initialize the Motif Toolkit with a call
to XtVaAppInitialize. This call does a few things: connects the application to the
display; gets any standard command-line arguments; sets up resources; and creates
and returns the top-level window widget, which will be the parent of all other
widgets in this applicaiton.

A deeper understanding of these calls is not necessary to using Motif as it is used
in samples. However, if you would like further information on the parameters
passed into either function, see the Motif Programming Manual resource listed at
the end of this topic.
int main(int argc, char* argv[])

{

 XtSetLanguageProc(NULL, NULL, NULL);

 XtAppContext app_context;

 Widget topLevel = XtVaAppInitialize(&app_context, "XApplication",

 NULL, 0, &argc, argv, NULL, NULL);

C++ APPLICATION PROGRAMMING INTERFACE

In ArcGIS Engine applications, you must use
AoInitialize as well, placing the call before any

ArcObjects usage.

The code shown in gray has already been
entered in previous steps. It is given here to

illustrate the accurate placement of the code you
are adding in this step.

Ch04_EngineAPIs.pmd 1/25/2005, 4:33 PM235

236 • ArcGIS Engine Developer Guide

 return 0;

}

Step 2: Create the widgets
With the toolkit initialized, you can create the single widget you are using in this
application. There are two ways to create widgets:

• Using a function specific to the particular widget:
XmCreatePushButton()

• Using a function for generic widget creation (and sometimes managing it at
the same time):
XtVaCreateWidget()

XtVaCreateManagedWidget()

Although you will see both in the C++ samples for Motif, here you will use the
second method, but will not manage the widget at its creation (simply to separate
that step for the purpose of this introduction).
int main(int argc, char* argv[])

{

 XtSetLanguageProc(NULL, NULL, NULL);

 XtAppContext app_context;

 Widget topLevel = XtVaAppInitialize(&app_context, "XApplication",

 NULL, 0, &argc, argv, NULL, NULL);

 XmString label = XmStringCreateLocalized("Push the button.");

 Widget button = XtVaCreateWidget("button",

 xmPushButtonWidgetClass, topLevel,

 XmNlabelString, label,

 NULL);

 XmStringFree(label);

 return 0;

}

The parameters have the following roles:

• “button”—the name of the widget in the resource database, which can be used
for specifications in a resource file. If a label is not provided, it will act as the
widget’s label.

• xmPushButtonWidgetClass—the class of the widget to be created. For example,
to create an ArcGIS control widget, you would give mwCtlWidgetClass.

• topLevel—the parent of the widget, which must be a manager widget that was
already created.

• XmNlabelString, label, NULL—resource settings. For more information on the
resources available on different widgets and how to use them, see the Motif
reference at the end of this topic. Some common resources used in the C++
samples for Motif are those to set the size and placement of the widget. In
addition, there is a custom resource that goes with the ArcGIS controls:
MwNprogID.

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:33 PM236

Chapter 4 • Developer environments • 237

Step 3: Manage the widgets
For the child to appear in the application, it must be managed. A single call,
XtManageChild, will do this for you, placing control of the widget in its parent’s
hands. This must be done for each widget. Place this line of code after the call to
XmStringFree, as shown.
XmStringFree(label);

XtManageChild(button);

Note: Even if a child is managed, it will not appear if its parent is not managed.

Step 4: Implement event listening and callback functions for widgets
You now have a button, but for that to be useful you must hook it to some
functionality. Widgets are attached to behavior at certain events through special
callback functions. You can add callbacks to a widget after it is created and either
before or after it is managed. As done in most of the C++ samples for Motif,
here you add the callback before it is managed.
XmStringFree(label);

XtAddCallback(button, XmNactivateCallback, ClickCallback, NULL);

XtManageChild(button);

These parameters have the following roles:

• button—the widget to add the callback to.

• XmNactivateCallback—the callback resource, defined by Motif to correspond
to certain events. Here you will pick activation of the button. For other
options, see the Motif reference at the end of this topic.

• ClickCallback—pointer to the function to call on the event.

• NULL—Client data to pass into the callback function. Here there is no data
the function will need, so NULL is passed.

Callback functions
For the callback to work, you must implement the function that is being called
on the event. Callbacks have a specific function signature, as follows:
void myCallbackName(Widget w, XtPointer client_data, XtPointer call_data)

The parameters are:

• w—the widget that was activated for this callback to be called.

• client_data—any data passed into the function, as indicated in the last param-
eter of XtAddCallback.

• call_data—a structure containing data specific to the type of widget with
which the callback is associated.

For this example, place this function after main in pbExample.cpp, and have it
print to cerr the number of repeated clicks on this button (for example, “2
clicks” if double-clicked). Remember to also place a forward declaration of it
before main.

C++ APPLICATION PROGRAMMING INTERFACE

Make sure that the data passed to client_data
will be in scope later when the callback routine

is executed.

Ch04_EngineAPIs.pmd 1/25/2005, 4:33 PM237

238 • ArcGIS Engine Developer Guide

To get the number of clicks, you must access the call_data, which has the type
XmPushButtonCallbackStruct. To do so, you will need to cast the XtPointer to this
callback struct type, then you can get the integer member click_count.
void ClickCallback(Widget w, XtPointer client_data, XtPointer call_data)

{

 XmPushButtonCallbackStruct* data = (XmPushButtonCallbackStruct*) call_data;

 std::cerr << data->click_count << std::endl;

}

Step 5: Display the widgets
Your application’s look and functionality are now written, but to create the
actual window for your widget you need to call XtRealizeWidget right before you
start the event loop, as you will do in the next step. This call is only needed on the
top-level widget, which will then recursively realize the rest of the widgets.
XtManageChild(button);

XtRealizeWidget(topLevel);

Step 6: Begin the event handling loop
The next step for this application is to turn control of the application over to Xt,
which will manage the events. This code will idle until a user generates an event.
XtRealizeWidget(topLevel);

XtAppMainLoop(app_context);

For ArcGIS control programming, MwCtlAppMainLoop must be used in the place
of XtAppMainLoop, as you will see in ArcGIS C++ code.

Step 7: Shut down the application
As mentioned above, this application will run indefinitely unless it receives an
event that tells it to do otherwise. To allow proper shutdown of the application,
you will handle the window manager message that the window is going to be
closed.

After the button is managed and before the event loop is started in main, you will
listen for that window manager message:
XtManageChild(button);

Atom wm_delete_window = XmInternAtom(XtDisplay(g_topLevel),
 "WM_DELETE_WINDOW", FALSE);

XmAddWMProtocolCallback(g_topLevel, wm_delete_window, CloseAppCallback,
 NULL);

You will also provide the callback that has the application close when that event
is heard. As for the other callback, make sure you place a forward declaration
before main.
void CloseAppCallback(Widget w, XtPointer client_data, XtPointer call_data)

{

 exit(0);

}

C++ APPLICATION PROGRAMMING INTERFACE

For ArcGIS Engine C++ programming, you must
use AoExit in place of exit. You must call
AoUninitialize before shutting down the

application with AoExit.

For ArcGIS control programming,
MwCtlAppMainLoop must be used in the

place of XtAppMainLoop, as you will see in
ArcGIS C++ code.

Ch04_EngineAPIs.pmd 1/25/2005, 4:33 PM238

Chapter 4 • Developer environments • 239

C++ APPLICATION PROGRAMMING INTERFACE

Trying it out
To compile your Motif program, you will need to link against libraries for Motif,
Xt, and X11, in that order. If you are programming on Solaris, you will compile
with the Sun Workshop (Forte), and if you are programming on Linux you will
use GCC.
CC pbExample.cpp -o pbExample -lXm -lXt -lX11

Run the program:
./pbExample

As you click the button, you will see counts appear in your terminal window.

Now that you have a feeling for Motif programming, look at the C++ samples
for Motif, and see these steps applied there.

Additional resources
• Heller, Dan, Paula M. Ferguson, and David Brennan. Motif Programming

Manual (The Definitive Guides to the X Window System, Volume 6A) 2nd
Edition. O’Reilly & Associates. 1994.

Motif ArcGIS control programming
The Solaris and Linux SDK also provides a set of Motif widgets that may be
used to embed the ArcGIS controls in a Motif application. Due to the limitations
of Motif, this code will only run on Solaris and Linux systems. If visual compo-
nents are needed on Windows, you will need to use Visual C++, the COM API,
and ActiveX controls.

Header files
To use the Motif ArcGIS controls, you will need to include both the ArcGIS
Engine header file, ArcSDK.h, and the ArcGIS Engine Motif controls header
file, Ao/AoMotifControls.h.

Control types and their details

Control

Globe Control

Map Control

PageLayout Control

Reader Control

Scene Control

TOC Control

Toolbar Control

MwNprogID

AoPROGID_GlobeControl

AoPROGID_MapControl

AoPROGID_PageLayoutControl

AoPROGID_ReaderControl

AoPROGID_SceneControl

AoPROGID_TOCControl

AoPROGID_ToolbarControl

Interface Type

IGlobeControl

IMapControl3

IPageLayoutControl

IARControl

ISceneControl

ITOCControl

IToolbarControl

API functions and arguments
• For each ArcGIS Engine Control interface, there is a smart pointer defined for

you. Instead of IMapControl3*, you can use IMapControl3Ptr.

• MwCtlAppMainLoop replaces XtAppMainLoop.
extern "C" void MwCtlAppMainLoop(XtAppContext app);

• MwCtlGetInterface is used to get the control’s interface pointer.
HRESULT MwCtlGetInterface(Widget w, IUnknown** ppUnk);

Ch04_EngineAPIs.pmd 1/25/2005, 4:33 PM239

240 • ArcGIS Engine Developer Guide

• mwCtlWidgetClass—argument to give the widget class for all ActiveX control
widgets

• MwNprogID—argument to pair with AoPROGID_<ControlName>Control

Control widget creation example
The following example demonstrates creating a map control that fills the entire
Motif mainForm (defined outside this code snippet) and retrieves a smart pointer
for the control. The bold sections highlight functions and resources discussed
above. The #define statements are necessary to prevent type name conflicts be-
tween X and ArcGIS Engine.
// Motif Headers

#define String esriXString

#define Cursor esriXCursor

#define Object esriXObject

#define ObjectClass esriXObjectClass

#include <Xm/Xm.h>

#include <Xm/MainW.h>

#include <Xm/Form.h>

#include <Xm/Protocols.h>

#undef String

#undef Cursor

#undef Object

#undef ObjectClass

// ArcObjects Headers

// Engine

#include <ArcSDK.h>

// Controls

#include <Ao/AoMotifControls.h>

int main(int argc, char* argv[])

{

 ...

 Widget mapWidget = XtVaCreateWidget("mapWidget",

 mwCtlWidgetClass, mainForm,

 XmNtopAttachment, XmATTACH_FORM,

 XmNbottomAttachment, XmATTACH_FORM,

 XmNleftAttachment, XmATTACH_FORM,

 XmNrightAttachment, XmATTACH_FORM,

 MwNprogID, AoPROGID_MapControl,

 NULL);

 IMapControl3Ptr ipMapControl;

 HRESULT hr = MwCtlGetInterface(mapWidget, (IUnknown**)&ipMapControl);

 ...

}

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:33 PM240

Chapter 4 • Developer environments • 241

C++ APPLICATION PROGRAMMING INTERFACE

Setting the size of a control widget
If you would like to set your control widget to have a specific size, you will need
to do this after the widget itself is created. Do not use XmNheight and
XmNwidth in the XtVaCreateWidget section. Due to internal limitations, that
will cause undetermined behavior in the controls. Instead, set the size of your
widget after it is created with a call to XtVaSetValues. For example, to set the
above mapControl to be 200x200, add the line:
XtVaSetValues(mapWidget, XmNheight, 200, XmNwidth, 200, NULL);

after the call to XtVaCreateWidget.

GTK PROGRAMMING

Getting started with GTK programming
GIMP Toolkit (GTK) widget ArcGIS controls have been provided for C++
developers. To use them, you must understand some basics of GTK programming.
This is not by any means a complete resource; the variety of GTK widgets and
their resources, which you have available to you as a programmer, are not dis-
cussed here. However, this should give you a place to start figuring out the GTK-
specific bits of the C++ API and samples.

Seven steps of GTK programming
When writing a GTK program, there are seven steps that need to be done.

1. Initialize GTK.

2. Create the widgets.

3. Place the widgets.

4. Implement event listening and callback functions for widgets.

5. Show the widgets.

6. Begin the event handling loop.

7. Shut down the application.

To illustrate each of these steps, you will create a simple GTK application.

GTK Program: Simple PushButton
This application will be a single button that displays which button on the mouse
was used to click on the button widget. Start a new file that will be your pro-
gram. Here that file will be called pbExample.cpp.

To use GTK you will need to include the GTK header file: gtk/gtk.h. For the
display of the number of the button clicked, you will need to include iostream.
You will also need a main function. Set these up in your new file, so that it looks
like this:
 #include <iostream>

 #include <gtk/gtk.h>

 int main(int argc, char* argv[])

 {

 return 0;

 }

Ch04_EngineAPIs.pmd 1/25/2005, 4:33 PM241

242 • ArcGIS Engine Developer Guide

C++ APPLICATION PROGRAMMING INTERFACE

Step 1: Initialize GTK
Initialize GTK with a call to gtk_init(&argc, &argv);. This call does a few things:
sets up resources, initializes everything needed to work with GTK, and parses
some command-line options.
 int main(int argc, char* argv[])

 {

 gtk_init(&argc, &argv);

 return 0;

 }

Step 2: Create the widgets
With the toolkit initialized, you can create the single widget you are using in this
application. First you will need to create the window in which you will place the
button. Then you will create the button itself with gtk_button_new_with_label,
since you want a labeled button in this example.
 int main(int argc, char* argv[])

 {

 gtk_init(&argc, &argv);

 GtkWidget *window, *button;

 window = gtk_window_new(GTK_WINDOW_TOPLEVEL);

 button = gtk_button_new_with_label("Push the button.");

 return 0;

 }

Step 3: Place the widgets
For the widgets to show up, they must be added to the main window as follows:
 button = gtk_button_new_with_label("Push the button.");

 gtk_container_add(GTK_CONTAINER(window), button);

To use multiple widgets in an application, they must be packed. This is done with
horizonal or vertical boxes or panes. Some of the calls related to packing include
gtk_box_pack_start(), gtk_hbox_new(), gtk_vpaned_new(), and
gtk_paned_add1(). Since this example only uses a single widget, this step is not
needed. For additional information on it, see either the reference at the end or
the samples.

Step 4: Implement event listening and callback functions for widgets
You now have a button, but for that to be useful you must hook it to some
functionality. Widgets are attached to behavior at certain events through special
callback functions. You can add callbacks to a widget after it is created.
 button = gtk_button_new_with_label("Push the button.");

 g_signal_connect(G_OBJECT(button), "button_press_event",
G_CALLBACK(ClickCallback), NULL);

These parameters have the following roles:

• button—the widget that will give off the signal you are watching for.

In ArcGIS Engine applications, you must use
AoInitialize as well, placing the call before any

ArcObjects usage.

The code shown in gray has already been
entered in previous steps. It is given here to

illustrate the accurate placement of the code you
are adding in this step.

Ch04_EngineAPIs.pmd 1/25/2005, 4:33 PM242

Chapter 4 • Developer environments • 243

• “button_press_event”—the signal to respond to. Here you will listen for the
button being pressed. For other options, see the GTK reference at the end of
this topic.

• ClickCallback—the function to call when the signal is received.

• NULL—data to pass into the callback function. Here there is no data the
function will need, so NULL is passed.

Callback functions
For the callback to work, you must implement the function that is being called
on the event. Callbacks will generally follow the following function signature:
void callback_func(GtkWidget *widget, gpointer callback_data);

However, as in this case, you will sometimes want additional information about
the event. To get that information, the following function signature can be used:
void ClickCallback(GtkWidget *widget, GdkEventButton *event, gpointer

callback_data);

The parameters are:

• widget—the widget that gave the signal

• event—tells what button press or release event triggered the function

• callback_data—any data passed into the function, as indicated in the last
parameter of g_signal_connect

For this example, place this function after main in pbExample.cpp, and have it
print to cerr which mouse button was used to click (for example, “button:
1”). Remember to also place a forward declaration of it before main.

To get the button that was clicked, you must use the information in the
GdkEventButton struct.
 void ClickCallback(GtkWidget *widget, GdkEventButton *event,

gpointer callback_data)

 {

 // show which button was clicked

 std::cerr << "button pressed: " << event->button << std::endl;

 }

Step 5: Show the widgets
Your application’s look and functionality are now written, but to create the
actual window for your widget you need to call show_all_ right before you start
the event loop, as you will do in the next step. You can either call
gtk_widget_show on each widget, or you can call gtk_widget_show_all on the
top-level widget, which will then recursively realize the rest of the widgets.
 g_signal_connect(G_OBJECT(button), "button_press_event",

G_CALLBACK(ClickCallback), NULL);

 gtk_widget_show_all(window);

C++ APPLICATION PROGRAMMING INTERFACE

Make sure that the data passed to
callback_data will be in scope later when the

callback routine is executed.

Ch04_EngineAPIs.pmd 1/25/2005, 4:33 PM243

244 • ArcGIS Engine Developer Guide

Step 6: Begin the event handling loop
The next step for this application is to idle until a user generates an event.
 gtk_widget_show_all(window);

 gtk_main();

Step 7: Shut down the application
As mentioned above, this application will run indefinitely unless it receives an
event that tells it to do otherwise. To allow proper shutdown of the application,
you will handle the signals that tell you the window is going to be closed.

After the widgets are shown and before the event loop is started by gtk_main,
you will listen for those signals:
 gtk_widget_show_all(window);

 g_signal_connect(G_OBJECT(window), "delete_event", G_CALLBACK(delete_event),
NULL);

 g_signal_connect(G_OBJECT(window), "destroy", G_CALLBACK(destroy_event), NULL);

You will also provide the callbacks DeleteEvent and DestroyEvent that have the
application close when the signals are recieved. As for the other callback, make
sure you place a forward declaration before main.
 static void destroy_event(GtkWidget *widget, gpointer data)

 {

 gtk_main_quit();

 }

 static gboolean delete_event(GtkWidget *widget, GdkEvent *event,
gpointer data)

 {

 return FALSE; // must return false to trigger destroy event for window

 }

Trying it out
To compile your GTK program, you will need to link against libraries for GTK,
Xt, and X11, in that order. If you are programming on Solaris, you will compile
with the Sun Workshop (Forte), and if you are programming on Linux you will
use GCC.

Solaris:

CC pbExample.cpp -o pbExample ‘pkg-config gtk+-2.0 —cflags —libs‘

Linux:

g++ pbExample.cpp -o pbExample ‘pkg-config gtk+-2.0 —cflags —libs‘

Run the program:
 ./pbExample

As you click the button, you will see the number of the button you pressed
appear in your terminal window.

Now that you have a feeling for GTK programming, look at the C++ samples for
GTK, and see these steps applied there.

C++ APPLICATION PROGRAMMING INTERFACE

For ArcGIS Engine C++ programming, you must
call AoExit before returning. You must call

AoUninitialize before shutting down the
application with AoExit.

Ch04_EngineAPIs.pmd 1/25/2005, 4:33 PM244

Chapter 4 • Developer environments • 245

Additional resources
• www.gtk.org

GTK ARCGIS control programming
The Solaris and Linux SDK also provides a set of GTK widgets that may be used
to embed the ArcGIS controls in a GTK application. Due to the limitations of
GTK, this code will only run on Solaris and Linux systems. If visual components
are needed on Windows, you will need to use Visual C++, the COM API, and
ActiveX controls.

Header files
For an ArcGIS GTK control application, you will need to include Ao/
GtkControls.h in addition to your ArcGIS Engine and GTK includes (ArcSDK.h
and gtk/gtk.h, respectively).

Control types and their details

Control

Globe Control

Map Control

PageLayout Control

Reader Control

Scene Control

TOC Control

Toolbar Control

ProgID

AoPROGID_GlobeControl

AoPROGID_MapControl

AoPROGID_PageLayoutControl

AoPROGID_ReaderControl

AoPROGID_SceneControl

AoPROGID_TOCControl

AoPROGID_ToolbarControl

Interface Type

IGlobeControl

IMapControl3

IPageLayoutControl

IARControl

ISceneControl

ITOCControl

IToolbarControl

API functions and arguments
• For each ArcGIS Engine Control interface, there is a smart pointer defined for

you. Instead of IMapControl3*, you can use IMapControl3Ptr.

• gtk_axctl_new is used to create the GTK ArcGIS Control Widget.
GtkWidget *gtk_axctl_new(ControlDataPtr cd);

• gtk_axctl_get_interface is used to get the control’s interface pointer.
HRESULT gtk_axctl_get_interface(GtkWidget *axctl, IUnknown **ppUnk);

• gtk_axctl_initialize_message_queue is used to enable MainWin message deliv-
ery before starting the main GTK loop with gtk_main.
void gtk_axctl_initialize_message_queue();

Control widget creation example
The following example demonstrates creating and placing a map control that fills
the entire GTK form window (defined outside this code snippet) and retrieves a
smart pointer for the control. The bold sections highlight functions and resources
discussed above.
// ArcObjects Headers

// Engine

#include <ArcSDK.h>

// Controls

#include <Ao/AoGtkControls.h>

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:33 PM245

246 • ArcGIS Engine Developer Guide

int main(int argc, char* argv[])

{

 ...

 GtkWidget* mapWidget;

 IMapControl3Ptr ipMapControl;

 mapWidget = gtk_axctl_new(AoPROGID_MapControl);

 gtk_axctl_get_interface(mapWidget, (IUnknown **)&ipMapControl);

 gtk_widget_set_size_request(mapWidget, -1, -1);

 gtk_container_add(GTK_CONTAINER(window), mapWidget);

 ...

}

EVENT HANDLING ON ARCGIS CONTROLS

Events occur any time there is interaction with an application during its runtime.
When a new map is loaded, when the mouse moves inside the control window, or
when a keyboard button is pressed are examples of when events occur, and at
such times the information regarding the event is reported. If the application is
listening for events, it will execute code associated with the event that has oc-
curred.

To make an application that responds to events on the controls without having a
tool or command selected, you will not only need to tell the application what to
do when such events are received, but will also have to tell the computer to be
listening for and reacting to such events. This document details how to listen for
the events, but does not go into detail on how to write your event class. For help
on writing an event class, see ‘Writing a MapControl Event class’ and ‘Writing a
Transform Event class’ in the developer help system under Development Envi-
ronments > C++ > Walkthroughs.

If, however, you want to use a tool or a command, you will not need to listen for
events. Custom tools and commands interact with the controls through their own
functions, which are called upon similar events. See ‘Creating a custom command
using AoBaseCommand’ or ‘Creating a custom tool using AoBaseTool’ in the
developer help system under Development Environments > C++ >
Walkthroughs.

Events on the controls
To handle control events you will need to write a class that inherits from the
events with which you want to interact. For the main events on a control, which
implement IDispatch, your C++ API event classes will inherit from a helper
interface. Listening for these events is then simplified. The events this applies to
are listed in the table below. For all other event types, you will implement a class
that inherits from the ArcObjects interface with the events you want to listen
for. Then you will listen for the events as outlined under ‘Other ArcObjects
events—Implemented with custom interfaces’ below.

Once you have implemented your class, you will need to have your application
listen for the events. To do so, you will use IEventHelper, which passes informa-
tion between your application and the events, handling reference counting for
you.

C++ APPLICATION PROGRAMMING INTERFACE

Although there are also Motif and GTK events,
interacting with ArcObjects (such as popup
menus) through those events is not recom-

mended. Instead, you should interact through the
ArcObjects event interfaces.

Ch04_EngineAPIs.pmd 1/25/2005, 4:33 PM246

Chapter 4 • Developer environments • 247

Initiating the listening process
Once you have written your event class, you will need to set up your application
to listen for the events. This is a two-step process:

1. IEventListenerHelper->Startup: sets up a link between the sink (your object,
such as a MapControl) and the listener helper object.

This step will need to be done before realizing the top-level widget and enter-
ing the main application loop.

2. IEventListenerHelper->AdviseEvents: sets up a link between the listener helper
object and the source of the events—for example, IActiveViewEvents. Since
the main events on the controls are implemented using IDispatch, you will pass
in NULL for the interface to listen to, as shown in the example below.

Where this step is taken will depend on the type of object on which you want to
listen. If you are listening on an object that does not change—for example, a
MapControl—you can do this right after you call Startup on the events. If, how-
ever, you want to listen to an object that will change during a single run of the
application, such as the ActiveView, you will want to make this call each time
that object changes. For example, to listen to events on a MapControl’s
ActiveView, you would want to make this call in the MapControl’s OnMapReplaced
event. This does mean that you would also need to implement the MapControl’s
main events.

Ending the listening process
For your application to exit cleanly, you will need to stop your application from
listening for events before you shut it down. This is again a two-step process:

1. IEventListenerHelper->Shutdown: removes the link between the sink (your
object, such as a MapControl) and the listener helper object.

2. IEventListenerHelper->UnadviseEvents: removes the link between the listener
helper object and the source of the events—for example, IActiveViewEvents.

Since these steps will only need to be taken when the application is closed, both
calls will be made from the callback that listens for the application to be closed,
before IAoInitialize’s shutdown is called and before the application is uninitialized.

Main control events—Implemented with IDispatch
To handle the main events of the controls, write a class that inherits from a
helper interface that implements the events you are going to listen for. For ex-
ample, to listen for IPageLayoutControlEvents, write a class that inherits from
IPageLayoutControlEventsHelper. For further implementation details, see the
walkthrough ‘Writing a MapControl Event class’ in the developer help system
under Development Environments > C++ > Walkthroughs. You will then listen
for the events by using the helper interface IEventListenerHelper.

Include files
To use these events, you will need to include Ao/AoControls.h in your event
class’s header file.

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:33 PM247

248 • ArcGIS Engine Developer Guide

Implementation details
To initiate listening for control-specific events, create an instance of your event
class. Then create a new instance of IEventListenerHelper with a listener class ID
that matches your event type. Call IEventListenerHelper->Startup, then
IEventListenerHelper->AdviseEvents. Notice that NULL is passed into the
AdviseEvents call because a dispatch interface is being used. Your application is
now set up to listen for the events you have implemented in your event class.

Before shutting down the application, you will need to call IEventsListenerHelper-
> UnadviseEvents, then IEventsListenerHelper->Shutdown. Remember to delete any
associated global variables, such as the instance of your class, and to set any
global interface pointers to 0.

Control

Globe control

Map control

PageLayout control

Reader control

Scene control

Table of Contents control

Toolbar control

Inherit from Event Listener Class ID

IGlobeControlEventHelper

IMapControlEvents2Helper

IPageLayoutControlEventsHelper

IARControlEventsHelper

ISceneControlEventsHelper

ITOCControlEventsHelper

IToolbarControlEventsHelper

CLSID_GlobeControlEventsListener

CLSID_MapControlEvents2Listener

CLSID_PageLayoutControlEventsListener

CLSID_ARControlEventsListener

CLSID_SceneControlEventsListener

CLSID_TOCControlEventsListener

CLSID_ToolbarControlEventsListener

Example
// Set up event listening

// PageLayoutControlEvents is a custom class that inherits from
// IPageLayoutControlEventsHelper

// g_pageLayoutEvents is a global PageLayoutControlEvents*

// g_ipPageLayoutControlEventHelper is a global IEventListenerHelperPtr

// g_ipPageLayoutControl is a global IPageLayoutControlPtr

g_pageLayoutEvents = new PageLayoutControlEvents();

g_ipPageLayoutControlEventHelper.CreateInstance(CLSID_PageLayoutControlEventsListener);

g_ipPageLayoutControlEventHelper->Startup(
 static_cast<IPageLayoutControlEventsHelper*> (g_pageLayoutEvents));

g_ipPageLayoutControlEventHelper->AdviseEvents(g_ipPageLayoutControl, NULL);

...

// You will need to clean up the events. This is done when the application
// is given the signal to close.

g_ipPageLayoutControlEventHelper->UnadviseEvents();

g_ipPageLayoutControlEventHelper->Shutdown();

g_ipPageLayoutControlEventHelper = 0;

delete g_pageLayoutEvents;

// Shutdown application with IAoInitialize's Shutdown

Other ArcObjects events—Implemented with custom interfaces
To listen for the other events that the controls send, write a class that inherits
from the ArcObjects interface that implements the events with which you want
to interact. For example, to listen for ICustomizeDialogEvents, write a class that
inherits from that interface. For further implementation details, see the
walkthrough ‘Writing a Transform Event class’ in the developer help system
under Development Environments > C++ > Walkthroughs.

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:33 PM248

Chapter 4 • Developer environments • 249

Include files
To use these events, you will need to include Ao/AoControls.h in your event
class’s header file.

Implementation details
To initiate listening for these events, you first need to get the interface on which
to Advise (in the example below, IActiveView). Create an instance of your event
class. Call both IEventListenerHelper->Startup and
IEventListenerHelper->AdviseEvents. For these events, you will need to inform
AdviseEvents of the UID of the type of events to listen for, as these events use
custom interfaces and not a dispatch implementation.

Before shutting down the application, you will need to call
IEventsListenerHelper->UnadviseEvents, then IEventsListenerHelper->Shutdown.
Remember to delete any associated global variables, such as the instance of your
class, and to set any global interface pointers to 0.

• The listener class IDs of the other events will be in the form:
 CLSID_<Coclass>Listener

For example, to listen for ActiveViewEvents, use
CLSID_ActiveViewEventsListener as the class ID.

• Inherit from the ArcObjects interface that implements the events—
IActiveViewEvents, for example.

Example
// Set up event listening

// ActiveViewEvents is a custom class that inherits from IActiveViewEvents

// g_activeviewEvents is a global ActiveViewEvents*

// g_ipActViewEventHelper is a global IEventListenerHelperPtr

// g_ipMapControl is a global IMapControl2Ptr

g_activeviewEvents = new ActiveViewEvents();

g_ipActViewEventHelper.CreateInstance(CLSID_ActiveViewEventsListener);

g_ipActViewEventHelper->Startup(static_cast<ActiveViewEvents*>
 (g_activeviewEvents));

CComBSTR bsGUID;

::StringFromIID(IID_IActiveViewEvents, &bsGUID);

IUIDPtr ipUID(CLSID_UID);

ipUID->put_Value(CComVariant(bsGUID));

IActiveViewPtr ipActiveView;

g_ipMapControl->get_ActiveView(&ipActiveView);

g_ipActViewEventHelper->AdviseEvents(ipActiveView, ipUID);

...

// You will need to clean up the events. This is done when the application
 is given the signal to close.

g_ipActViewEventHelper->UnadviseEvents();

g_ipActViewEventHelper->Shutdown();

g_ipActViewEventHelper = 0;

delete activeviewEvents;

// Shut down application with IAoInitialize's Shutdown

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:33 PM249

250 • ArcGIS Engine Developer Guide

CREATING CUSTOM COMMANDS AND TOOLS

With ArcGIS Engine, you can write custom commands and tools to add to your
applications. They allow you to easily add custom functionality to your ArcGIS
control applications without having to listen for all the events on the controls. To
create a new command or tool, you will use the esriSystemUI ICommand interface.
Through the ICommand interface, you will be able to set the properties and behav-
ior for your command or tool. Some of the properties that you can set through
the ICommand interface are the command’s name, bitmap, caption, category,
statusbar message, tooltip, enabled state, and checked state. It also defines the
action taken when your command is clicked. For a custom tool, you will also use
the esriSystemUI ITool interface. Through the ITool interface, you will be able to
specify what cursor to use; what to do when the mouse button is pressed, re-
leased, or double-clicked; what to do when the mouse is moved; what to do
when a key is pressed down or released; and what to do when a screen display in
the application is refreshed.

Since commands are a GUI tool to interact with ArcGIS controls, C++ custom
commands will only work on Solaris and Linux. If you want to write a command
or tool to plug into ArcMap or ArcCatalog, you will need to use a different
language such as Visual C++.

Your custom command will be a button or menu that performs a simple action
when clicked or selected. If you only want to have an action performed when the
custom toolbar button is clicked (as, for example, a zoom to full extent com-
mand), you only need to write a custom command. To create custom commands
with the C++ API, there is a helper class for ICommand that your command class
will inherit from: CAoCommandBase. This is defined in arcgis/include/Ao/
AoCommandBase.h and includes AoToolbarAddCommand, which you will use to
place your custom command on a ToolbarControl.

Your custom tool will be a button or menu that interacts with the controls when
it is selected. If you are looking to interact with the ArcGIS controls’ display—
for example, as the zoom in tool does—you will need to write a custom tool. To
create custom tools with the C++ API, there is a helper class for ICommand and
ITool that your tool class will inherit from: CAoToolBase. This is defined in arcgis/
include/Ao/AoToolBase.h and includes AoToolbarAddTool, which you will use to
place your custom tool on a ToolbarControl.

When you write your custom command or tool class, you will first stub out and
implement all members of ICommand (for commands and tools) and ITool (for
tools). This document does not go into detail on how to write your command or
tool class. For help on writing the class, see ‘Creating a custom command using
AoBaseCommand’ or ‘Creating a custom tool using AoBaseTool’, which can be
found in the developer help system under Development Environments > C++ >
Walkthroughs.

Once your command or tool class has been implemented, you can add it into your
application that has a toolbar. For the purposes of this document,
ipToolbarControl will refer to your application’s toolbar, which is already set up
and placed earlier in the code. Your command class will be referred to as
MyCommandClass, and your tool class will be referred to as MyToolClass.

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:33 PM250

Chapter 4 • Developer environments • 251

1. Your first step will be to include the header file for your command or tool and
update the makefile to reflect this addition.

2. Next create an instance of your command or tool.
 // Create an instance of your command

 MyCommandClass* myCommand = new MyCommandClass();

 // Create an instance of your tool

 MyToolClass* myTool = new MyToolClass();

3. Now place your command or tool onto your application’s toolbar.
 // Place the command onto the toolbar

 AoToolbarAddCommand(ipToolbarControl, myCommand, esriCommandStyleIconOnly);

 // Place the tool onto the toolbar

 AoToolbarAddTool(ipToolbarControl, myTool, esriCommandStyleIconOnly);

Your options for the third parameter to AoToolbarAddCommand and
AoToolbarAddTool are the same as they are for adding built-in commands and
tools to the toolbar: esriCommandStyleIconOnly, esriCommandStyleTextOnly, and
esriCommandStyleIconAndText.

4. Compile your application. Your command or tool will be on the toolbar, ready
for you to use it.

C++ APPLICATION PROGRAMMING INTERFACE

Ch04_EngineAPIs.pmd 1/25/2005, 4:33 PM251

Ch04_EngineAPIs.pmd 1/25/2005, 4:33 PM252

Licensing and
deployment5

Development of ArcGIS Engine applications cannot be undertaken in isolation

from the testing and deployment of the final application. Prior to testing, ArcGIS

Engine Runtime must be installed and the software authorized for use.

Deployment of the application involves three separate processes: license

initialization within the application, installation of the ArcGIS Engine Runtime

software, and the authorization of its use.

This chapter details each of these processes and examines the licensing and

deployment decisions that you, as the developer, must make prior to distributing

your ArcGIS Engine applications.

Ch05_License.pmd 1/25/2005, 4:34 PM253

254 • ArcGIS Engine Developer Guide

ARCGIS LICENSING OPTIONS

This chapter examines the steps required to successfully install, authorize, build,
and deploy an application with the ArcGIS Engine Developer Kit. The steps
covered are installation, registration, and authorization of the ArcGIS Engine
Developer Kit and ArcGIS Engine Runtime; license configuration of custom
applications; testing custom applications with ArcGIS Engine Runtime; and
deploying custom applications to a end users.

KEY DEFINITIONS

ArcGIS Engine Developer Kit: A component-based software developer product for
building and deploying custom GIS and mapping applications.

ArcGIS Engine Runtime: An end user product that must be installed on any ma-
chine a custom application developed using the ArcGIS Engine Developer Kit is
deployed to.

Licensing: The grant to a party of the right to use a software package or compo-
nent.

Copy Protection: The mechanism used to license the ArcGIS Engine Developer Kit
or ArcGIS Engine Runtime on a per-machine, single-use basis via an ESRI Copy
Protection (*.ecp) file.

Software Authorization: Configuring the ArcGIS Engine Developer Kit or ArcGIS
Engine Runtime with an ESRI Copy Protection (*.ecp) file to ‘unlock’ the under-
lying software components for use.

Deployment: The installation of a component or application to a target machine.

Ch05_License.pmd 1/25/2005, 4:34 PM254

Chapter 5 • Licensing and deployment • 255

PRODUCT LICENSING

On installation of the ArcGIS Engine Developer Kit and ArcGIS Engine
Runtime, you will need to read and agree to the ESRI Master License Agreement
(MLA). The MLA defines the permitted use of the software. A copy of the MLA
can be found in C:\Program Files\ArcGIS\License or at
http://www.esri.com/licenseagreement.

The ArcGIS Engine Developer Kit is a single-use license product, meaning a
license must be dedicated for each computer that has access to the software. With
the ArcGIS Engine Developer Kit, you have the right to develop an unlimited
number of applications on a single computer and deliver the applications to
others. It is illegal to redistribute the ArcGIS Engine Developer Kit registration
number or authorization file.

The ArcGIS Engine Runtime is also a single-use license, meaning it is intended for
dedicated desktop computers. Each machine running a custom application devel-
oped with the ArcGIS Engine Developer Kit will require an ArcGIS Engine
Runtime license or an ArcGIS Desktop license. The ArcGIS Engine Runtime
license does not permit the ArcGIS Engine Runtime to be used for development
purposes, nor can it be deployed on a server machine. The ArcGIS Engine
Runtime setup can be redistributed, but the license and registration number
cannot without authorization from ESRI. Any number of applications can use
the same ArcGIS Engine, as long as they are all installed on the same machine.

RUNTIME LICENSING

There are two types of ArcGIS Engine Runtime licenses—product licenses and
extension licenses. Product licenses include core ESRI software, such as ArcGIS
Engine Runtime, ArcGIS Desktop licenses (ArcView, ArcEditor, ArcInfo), and
ArcGIS Server. Extension licenses include additional ESRI products that build
on those core licenses, such as the Spatial extension for ArcGIS Engine, the
3D Analyst extension, and the Network extension. This book deals solely with
ArcGIS Engine-based development; therefore, ArcGIS Server product and exten-
sion licensing will be ignored. Since, as mentioned in Chapter 1, ArcGIS Engine
Runtime is the platform on which ArcGIS Desktop is built, ArcGIS Desktop
licensing may factor into your application development and is discussed here.

Custom applications that utilize core ArcGIS Engine features can be built to run
against any or all of the following product runtime licenses:

• ArcGIS Engine Runtime

• ArcView

• ArcEditor

• ArcInfo

Applications that utilize extended ArcGIS Engine features require extension
licenses that correspond to the ArcGIS product providing the core license. In
other words, if your application initializes with an ArcGIS Engine Runtime
license, any needed extension licenses must be ArcGIS Engine Runtime exten-
sions, not ArcGIS Desktop extensions.

ARCGIS LICENSING OPTIONS

Licensing and deployment considerations for
ArcGIS Server-based development are discussed

in the ArcGIS Server Administrator and
Developer Guide.

The ArcGIS controls, as part of ArcGIS Engine,
also follow this runtime licensing model.

MapControl, PageLayoutControl, ReaderControl,
TOCControl, and ToolbarControl applications can

utilize the ArcGIS Engine Runtime, ArcView,
ArcEditor, or ArcInfo product licenses. Since

GlobeControl and SceneControl extend core
ArcGIS Engine functionality, they require a

corresponding 3D extension license in addition
to the core product license.

Ch05_License.pmd 1/25/2005, 4:34 PM255

256 • ArcGIS Engine Developer Guide

The extended ArcGIS Engine features and the extension runtime licenses that
can be used to initialize them are:

• Multiuser enterprise geodatabase—ArcGIS Engine Runtime with Geodatabase
Update extension or an ArcEditor or ArcInfo license.

• Visualization of data in 3D, GlobeControl, and SceneControl—ArcGIS
Engine Runtime with 3D extension or an ArcGIS Desktop (ArcView,
ArcEditor, or ArcInfo) license with the 3D Analyst extension.

• Creation and analysis of cell-based raster data—ArcGIS Engine Runtime with
Spatial extension or an ArcGIS Desktop (ArcView, ArcEditor, or ArcInfo)
license with the ArcGIS Spatial Analyst extension.

• Creation and management of network datasets and network-based spatial
analysis—ArcGIS Engine Runtime with the Network extension or an ArcGIS
Desktop (ArcView, ArcEditor, or ArcInfo) license with the ArcGIS Network
Analyst extension.

ArcGIS Engine Runtime with Network extension can:

• Create, update, and delete networks on shapefiles, SDC, and pGDB.

• Solve any network.

ArcGIS Engine Runtime with the Geodatabase Update and the Network exten-
sion can:

• Create, update, and delete networks on shapefiles, SDC, pGDB, and GDB.

• Solve any network.

ARCGIS ENGINE AND ARCGIS DESKTOP LICENSING

One advantage of ArcGIS Engine mentioned in previous chapters is the fact that
it is the platform used for the ArcGIS Desktop applications. This allows for more
flexibility in the licensing of your application. In some cases, you may wish to
deploy an ArcGIS Engine-based application that can utilize either the core
ArcGIS Engine Runtime product and extension licenses or the equivalent ArcGIS
Desktop product and extension licenses.

The following table lists the ArcGIS Engine product or extension license and its
equivalent ArcGIS Desktop license.

ARCGIS LICENSING OPTIONS

All editing of datasets is subject to the standard
editing restrictions in the core ESRI products.

For more detailed descriptions of the features
provided by the ArcGIS Engine extensions, see

Chapter 1, ‘Introducing ArcGIS Engine’.

Methods for leveraging multiple levels of
licensing in this manner are discussed in the

section, ‘License initialization’.

Ch05_License.pmd 1/25/2005, 4:34 PM256

Chapter 5 • Licensing and deployment • 257

ArcGIS Engine License comparison

ArcGIS Engine Runtime is functionally equivalent to
ArcView at the ArcObjects level. ArcGIS Engine Runtime
does not include any of the ArcGIS Desktop applications,
such as ArcMap, but it does include the same core GIS
ArcObjects.
ArcGIS Engine Runtime with the Geodatabase Update
extension is functionally equivalent to ArcEditor at the
ArcObjects level. The Geodatabase Update extension
does not include any of the advanced editing tools
available in ArcMap, but it does provide complete access
to the Geodatabase API for creating, editing, and
managing an enterprise geodatabase.
ArcGIS Engine Runtime with the 3D extension is funct-
ionally equivalent to ArcGIS Desktop with the 3D Analyst
extension at the ArcObjects level. The 3D extension for
ArcGIS Engine does not include the ArcScene or
ArcGlobe applications, but it does provide access to the
GlobeControl and SceneControl for embedding 3D
visualization in custom applications.
ArcGIS Engine Runtime with the Spatial extension is
functionally equivalent to ArcGIS Desktop with the
Spatial Analyst extension at the ArcObjects level. The
Spatial extension for ArcGIS Engine does not include the
ArcGIS Desktop toolbars or commands, but it does
provide the ArcObjects components necessary for raster
cell analysis.
ArcGIS Engine Runtime with the Network extension is
functionally equivalent to ArcGIS Desktop with the
Network Analyst extension at the ArcObjects level. The
ArcGIS Engine Network extension does not include the
ArcGIS Desktop toolbars or commands, but it does
provide the ArcObjects components necessary for
creating custom applications that solve on any network.

ArcGIS Desktop
ArcGIS Engine Runtime

ArcGIS Engine with
 Geodatabase Update
 extension

ArcGIS Engine with
 3D extension

ArcGIS Engine
 Runtime with the
 Network extension

ArcGIS Engine with
 Spatial extension

ArcView

ArcEditor

ArcGIS Desktop
 (ArcView, ArcEditor,
 or ArcInfo) with
 3D Analyst

ArcGIS Desktop
 (ArcView, ArcEditor,
 or ArcInfo) with
 Spatial Analyst

ArcGIS Desktop
 (ArcView, ArcEditor,
 or ArcInfo) with
 Network Analyst

ARCGIS LICENSING OPTIONS

Ch05_License.pmd 1/25/2005, 4:34 PM257

258 • ArcGIS Engine Developer Guide

The ArcGIS Engine Developer Kit is a software developer product containing all
the developer components and resources required for building and deploying
custom standalone desktop GIS and mapping applications. The ArcGIS Engine
Developer Kit contains the following CDs:

• ArcGIS Engine Developer Kit: ArcGIS Engine and software developer kit for
the COM, .NET, Java, and C++ APIs along with supporting developer re-
sources. There is a separate CD for Windows, Red Hat and SUSE Linux, and
Sun Solaris.

• ArcGIS Engine Runtime: Redistributable version of ArcObjects needed to
run applications developed with the ArcGIS Engine Developer Kit. There is a
separate CD for Windows, Red Hat and SUSE Linux, and Sun Solaris.

• ESRI Software Documentation Library: Digital versions (PDF) of all ArcGIS
user guides associated with the ArcGIS system.

• ESRI Data and Maps: Media kit containing many types of map data at any
scales of geography.

The ArcGIS Engine Developer Kit ships with registration numbers for building
custom solutions and one copy of the ArcGIS Engine Runtime (including exten-
sions) for testing purposes. You should receive an ECP registration number with
the product packaging or via e-mail for the following:

• ArcGIS Engine Developer Kit (includes the design-time ArcGIS Engine and
all extensions)

• ArcGIS Engine Runtime for testing

• ArcGIS Engine Runtime Geodatabase Update extension for testing

• ArcGIS Engine Runtime 3D extension for testing

• ArcGIS Engine Runtime Spatial extension for testing

• ArcGIS Engine Runtime Network extension for testing

INSTALLATION OF ARCGIS ENGINE DEVELOPER KIT

To install it, insert the ArcGIS Engine Developer Kit CD into the CD drive to
automatically start the setup program and follow the setup instructions. If any
other ArcGIS products are installed on the machine, the install will default to the
same location. ArcGIS COM libraries will be installed automatically by the install.
If your chosen API is Java or .NET, you will need to install the Java or .NET
ArcGIS Engine support features.

• The .NET feature will install a .NET assembly for each COM library. Prior to
installing the .NET feature, Microsoft .NET Framework 1.1 must be installed
on the machine.

• The Java feature will install a .jar file for each COM library. Prior to installing
the Java feature, JDK 1.4.2 must be installed on the machine.

A separate developer kit can be installed for the COM, .NET, Java, and C++
APIs containing help, object model diagrams, tools, and any specific API compo-
nents. Samples are provided for the ArcGIS Desktop, ArcGIS Engine, and
ArcGIS Server products.

ARCGIS ENGINE DEVELOPER KIT

Ch05_License.pmd 1/25/2005, 4:34 PM258

Chapter 5 • Licensing and deployment • 259

At the end of the installation of the ArcGIS Engine Developer Kit, the Software
Authorization wizard appears, enabling you to either:

• Register the software with ESRI using the ArcGIS Engine Developer Kit
registration code previously supplied, if you have not already done so, to
receive an ESRI Copy Protection (*.ecp) file.

• Finish the registration process by authorizing the software with the .ecp file to
unlock the underlying software components for development use.

REGISTRATION OF ARCGIS ENGINE DEVELOPER KIT

The ArcGIS Engine Developer Kit and the ArcGIS Engine Runtime need to be
registered with ESRI and authorized for use on a per-machine, single-use basis via
an .ecp file to unlock the underlying software components for use. This registra-
tion is a two-step process:

Copy protection for ArcGIS Engine Developer Kit
To receive an ESRI Copy Protection file for the ArcGIS Engine Developer Kit,
the registration code supplied with the product packaging must be registered with
ESRI. The products can be registered either during installation or after installa-
tion via:

• The ESRI Customer Service Web site at http://service.esri.com.

• The Software Authorization Wizard at
<install_location>\bin\SoftwareAuthorization.exe.

ARCGIS ENGINE DEVELOPER KIT

 The registration codes supplied with the product
packaging for ArcGIS Engine Runtime testing can

be registered at the same time the ArcGIS
Engine Developer Kit is registered.

Ch05_License.pmd 1/25/2005, 4:34 PM259

260 • ArcGIS Engine Developer Guide

Software authorization for ArcGIS Engine Developer Kit
To complete the registration process the ArcGIS Engine Developer Kit must be
authorized with the .ecp file to unlock the underlying software components for
development use. The product can be authorized by:

• Using the Software Authorization Wizard found in
<install_location>\bin\SoftwareAuthorization.exe to navigate to the .ecp
file.

• Registering the ArcGIS Engine Developer Kit online at http://service.esri.com
gives you the option to dynamically authorize the product over the Internet.
In this case, no .ecp file will be sent.

• The Authorization Summary tool in
<install_location>\bin\AuthorizationSummary.exe can be used to verify the
license configuration of the ArcGIS Engine Developer Kit. All levels of
functionality are available for you to develop with including the extension
functionality.

ARCGIS ENGINE DEVELOPER KIT

Ch05_License.pmd 1/25/2005, 4:34 PM260

Chapter 5 • Licensing and deployment • 261

The licensing and deployment models for custom applications must be considered
before application development begins, alongside the functional requirements of
the application, because a number of end user software and license configurations
are possible.

LICENSING CONCEPTS

After you’ve determined which licensing options your application requires and
which ones it will be able to run against, you must make sure that your applica-
tion initializes those licenses correctly. This section describes the license initializa-
tion process, illustrates how a multiple license initialization would work, and
provides a number of sample initialization processes.

Key concepts
• License initialization must be performed by the application, at application

start time, before any ArcObjects components are accessed.

• Once an application has been initialized with a license, it cannot be
reinitialized; an application is initialized with a license for the duration of its
execution.

• The extension licenses available to an application come from the same license
server as the license used to initialize the application; extension licenses on
different license servers are not available to the application.

• Extension licenses can be either checked out for the duration of the
application’s life or can be checked out and checked in when required by the
application.

• Always attempt to consume the lowest level license.

Each standalone application developed using ArcObjects must initialize itself
with a suitable ArcGIS license to ensure it runs successfully on any machine to
which it is deployed. The license initialization must be performed by the applica-
tion, at application start time, before any ArcObjects components are accessed.
Failure to initialize results in application errors.

As discussed in the previous section, there are two types of licenses to consider
when initializing an application: product licenses and, if an application uses any
of the ArcGIS extension features, extension licenses. Each of these types of
licenses is made available in certain license flavors—Engine Single Use, Desktop
Concurrent Use, and Desktop Single Use.

• Engine Single Use—Provides access to ArcGIS Engine and its extension
licenses. Each single-use license is only available to the machine on which it is
installed.

• Desktop Concurrent Use—FlexLM technology is used to provide concurrent
access to the ArcGIS Desktop products—ArcView, ArcEditor, ArcInfo, and
its extensions. The licenses can be available to multiple machines; they are
stored on a license manager and checked out when being used.

• Desktop Single Use—Provides access to Single Use ArcView, ArcEditor, and
ArcInfo licenses. Like the Engine Single Use licenses, each one is available
only to the machine on which it is installed. Even though this is significantly

APPLICATION DEVELOPMENT AND LICENSE INITIALIZATION

A license server is defined as the machine
providing the license.

Each of the sample applications that you build in
Chapter 6, ‘Developer scenarios’, illustrates the

license initialization process.

While every standalone application must be
initialized, the following examples illustrate

situations that do not qualify as standalone and,
therefore, don’t need to be initialized as

described:

• The application is a DLL that will be incorpo-
rated into an application that will itself perform

the license configuration.

• The application is an extension to ArcMap or
another third-party application. The extension is

responsible for license management.

Ch05_License.pmd 1/25/2005, 4:34 PM261

262 • ArcGIS Engine Developer Guide

different from the Desktop Concurrent Use licensing, they actually utilize the
same technology. This means that there is no mechanism for you, as an ArcGIS
Engine developer, to differentiate between a Single Use and a Desktop Con-
current license, and hence, you would treat them the same.

Once an application has been initialized with a license, it cannot be reinitialized;
an application is initialized with a license for the duration of its life. For ex-
ample, you can’t write an application that starts up with an ArcView license and
later switches to ArcEditor.

When initializing an application with a license, the following must be considered:

• The types of product licenses with which the application can run. For ex-
ample, an enterprise geodatabase editing application will not be able to run
with an ArcGIS Engine license or an ArcView license. However, it will be
able to run with an ArcGIS Engine with a Geodatabase Update extension
license, an ArcEditor license, or an ArcInfo license.

• The types of product licenses available to the application. For example, an
application that can be run with an ArcGIS Engine license will also run with
an ArcView, ArcEditor, and ArcInfo license. However, you may not want to
consume an ArcInfo license with such an application.

When an application is initialized with a particular product license, a connection
is made to a license server. All subsequent calls to check extensions out and in are
made to the same license server. As such, you cannot use a combination of li-
censes from different license servers or Engine Single Use.

• If an application is initialized with a Desktop Concurrent license, the applica-
tion will subsequently only be able to access that Desktop Concurrent license
server and its extension licenses.

• If an application is initialized with a Desktop Single Use license, the applica-
tion will subsequently only be able to access that single-use license server and
its extension licenses.

• If an application is initialized with the Engine Single Use license on your
machine, the application will subsequently only be able to access the Engine
Single Use extension licenses.

It is possible before initialization has been performed to query the license servers
(Desktop Concurrent or Single Use) and Engine Single Use to see if the licenses
you require are available. If all the licenses you require are available using Engine
Single Use, then it is recommended you use it instead of the Desktop Concurrent
and Desktop Single Use licenses. This means you will not limit the Desktop
Concurrent licenses available to any other users.

THE INITIALIZATION PROCESS

The initialization of an application with a license must be performed in the
following order:

1. Check whether the product license is available.

2. Check whether extension licenses are available (if required).

3. Initialize the application with the product license.

APPLICATION DEVELOPMENT AND LICENSE INITIALIZATION

As noted in the previous section, using an
ArcView license with an ArcGIS Engine applica-
tion will give you access to all the functionality
available to a standard ArcGIS Engine license.
Likewise, using an ArcEditor license with an

ArcGIS Engine application that performs
multiuser geodatabase editing will give you

access to all the functionality available to an
ArcGIS Engine license with the Geodatabase

Update extension.

Applications built with any of the ArcGIS controls
must also adhere to this license initialization

process. MapControl, PageLayoutControl,
ReaderControl, TOCControl, and ToolbarControl
applications require the ArcGIS Engine Runtime,
ArcView, ArcEditor, or ArcInfo product licenses.

Since GlobeControl and SceneControl extend
core ArcGIS Engine functionality, they require a
corresponding 3D extension license in addition

to the core product license.

Ch05_License.pmd 1/25/2005, 4:34 PM262

Chapter 5 • Licensing and deployment • 263

4. As required, perform extension checkouts and check-ins.

5. Shut down the application.

Step 1: Check product license availability
The product license that is chosen determines the functionality the application
will be able to access. Once the product license has been initialized, it cannot be
changed for the duration of the application’s life.

• If the product you require is not licensed, you may optionally initialize the
application with a higher product license.

• If there are no appropriate product licenses available, the application should
inform the user of the issue and either allow the user to resolve the issue or
exit the application.

Step 2: Check extension license availability
If an application has been designed to use extension functionality, it may check
for the availability of extension licenses before the application is initialized.
Checking the availability of an extension license must be done in conjunction
with the product license that the application will ultimately be initialized with, as
not every extension license is available with every product license.

If an extension required by the application for it to run successfully is not avail-
able, the application should inform the user of the issue and exit the application.

• If the extension functionality is not necessary for the application to function
and the extension license is unavailable, the application should disable to the
user the functionality dependent on the extension.

Step 3: Initialize the application
Once it has been established that the appropriate product and extension licenses
are available, the application should be initialized with the product license. Once
initialized it is not possible to reinitialize the application.

Step 4: Check extensions in and out
Extensions can either be checked out when an application requires the extension
functionality and checked in once the application has finished with the function-
ality or checked out directly after the application is initialized and checked back
in before shutdown. The way that the extensions are checked in and out will
depend on the type of product license with which the application was initialized.

• If the application was initialized with either of the Engine Single Use li-
censes, any extensions used by the application will also be Engine Single Use.
As such, any extensions can be checked out directly after the application is
initialized and checked back in before shutdown.

• If the application was initialized with a license server and the extensions are
required by the application for it to run successfully, the extensions should be
checked out directly after the application is initialized and checked back in
before shutdown.

APPLICATION DEVELOPMENT AND LICENSE INITIALIZATION

Ch05_License.pmd 1/25/2005, 4:34 PM263

264 • ArcGIS Engine Developer Guide

• If the application was initialized with a license server and the extension
functionality is not necessary for the application to function, the extensions
can either be checked out directly after the application is initialized or checked
out as the extension functionality is required. When the extension is checked
in, the functionality should be disabled.

Step 5: Shutdown
Before an application is shut down, the AoInitialize object must be shut down.
This ensures that any ESRI libraries that have been used are unloaded.

WHY DOES INITIALIZATION FAIL?

If a product or extension fails to check out, the license status indicates the reason
for the failure. Licenses can fail to check out for the following reasons:

• A product is not licensed.

• A license is unavailable because it is already being used (Desktop Concurrent
licenses only).

• An unexpected license failure due to system administration problems.

• The license is already initialized. An application is initialized with a product
license for the duration of its life. It is possible to check with which product
license an application has been initialized. For example, if an application
containing some enterprise geodatabase editing has been initialized with an
Engine Single Use with Geodatabase Update extension or an ArcEditor or
ArcInfo license, the editing functionality can be enabled. If, however, the
application has been initialized with an Engine Single Use or ArcView license,
the editing functionality must be disabled.

APPLICATION DEVELOPMENT AND LICENSE INITIALIZATION

Ch05_License.pmd 1/25/2005, 4:34 PM264

Chapter 5 • Licensing and deployment • 265

APPLICATION DEVELOPMENT AND LICENSE INITIALIZATION

For a detailed description on how to use the
LicenseControl, see Chapter 3, ‘Developing with

ArcGIS controls’, and Chapter 6, ‘Developer
scenarios’.

LICENSE CONFIGURATION

There are two ways to configure a custom application with a license: using the
LicenseControl and programmatically.

Use the LicenseControl to automatically perform license initialization within
simple graphical user interface applications using the MapControl,
PageLayoutControl, TOCControl, ToolbarControl, ReaderControl, SceneControl,
or GlobeControl in the COM and .NET APIs. If greater control is required over
license initialization, particularly when checking extension licenses in and out (the
LicenseControl will check out extension licenses for the duration of an
application’s life), consider programmatically performing license initialization.

To programmatically perform license initialization use the AoInitialize object and
the IAoInitialize and ILicenseInformation interfaces it implements. The ESRI Li-
cense Initializer Visual Basic 6 and Visual Studio .NET add-ins can be used to
automatically generate and add license initialization code to a custom application.
See Appendix B, ‘ArcGIS developer resources’, for further information about the
add-ins or the licensing samples found in
<install_location>\DeveloperKit\Samples\Licensing_and_Extension_Checking.

EXAMPLE A—MINIMUM LICENSE IS ARCGIS ENGINE WITH 3D AND
SPATIAL EXTENSIONS

In this example, the application requires at minimum an ArcGIS Engine license.
In addition, this developer has decided that if an ArcGIS Engine license is not
available, the application could run with an ArcView or ArcEditor license in-
stead. The application also requires 3D and spatial extension functionality for it
to run successfully, so both of these extensions need to be checked out for the
duration of the application.

In this case, the application will first attempt to initialize against the ArcGIS
Engine product license. If that fails, it will attempt to initialize against an
ArcView license, and if still unsuccessful, the application will finally attempt to
initialize against the ArcEditor product license. The following sections outline the
steps that must be taken to initialize the application with a license.

Attempting initialization with the ArcGIS Engine product license
As noted above, to run successfully the application requires at minimum an
ArcGIS Engine product license along with the corresponding 3D and Spatial
extension licenses. The application’s first attempt at initialization should be
against this minimal level of product licensing. The application’s attempts at
initialization follow the process discussed earlier.

1. Check whether an ArcGIS Engine product license is available. If yes, proceed
to the next step in the initialization process. If not, discontinue this attempt
and restart initialization with any secondary level of allowable product licens-
ing.

2. Determine whether a 3D extension license is available for the ArcGIS Engine
product license.

ApplicationAoInitialize
IAoInitialize

The coclass AoInitialize and the IAoInitialize
and ILicenseInformation interfaces it imple-

ments are designed to give support to a
developer for license initialization.

Step 2: Check extension license
availability

Step 1: Check product license
availability

In this example, even though ArcInfo would also
provide the functionality required, the developer

has opted not to initialize with an ArcInfo
license. It would be unnecessary to consume an

ArcInfo license for this simple application.

Ch05_License.pmd 1/25/2005, 4:34 PM265

266 • ArcGIS Engine Developer Guide

APPLICATION DEVELOPMENT AND LICENSE INITIALIZATION

If yes, proceed with checks for any other needed extensions. If not, discon-
tinue this attempt and restart initialization with any secondary level of allow-
able product licensing.

3. Since Spatial extension functionality is also required for this application, check
whether a Spatial extension license is available for the ArcGIS Engine product
license.

If yes, proceed with checks for any other needed extensions. If not, discon-
tinue this attempt and restart initialization with any secondary level of allow-
able product licensing.

4. In this case, no other extension licenses are needed. Proceed to the next step
in the initialization process.

5. Check out the ArcGIS Engine product license by initializing the application.
If the license checked out, proceed to the next step in the initialization
process. If the license failed to check out, discontinue this attempt and
restart initialization with any secondary level of allowable product licensing.

6. Check out the 3D extension for the ArcGIS Engine product license. If the
license checked out, proceed with checkout for any other needed extensions.
If the license failed to check out, discontinue this attempt and restart initial-
ization with any secondary level of allowable product licensing.

7. Check out the Spatial extension for the ArcGIS Engine product license. If the
license checked out, proceed with checkout for any other needed extensions.

If the license failed to check out, discontinue this attempt and restart initial-
ization with any secondary level of allowable product licensing.

8. In this case, no other extension licenses are needed. If the extension licenses
are checked out, the application has been successfully configured with licenses.

9. The final step in the initialization process is ensuring that the licenses are
released when the application is shut down.

Attempting initialization with the ArcView product license
In this example, a secondary level of licensing is available if the first ArcGIS
Engine product level fails to initialize correctly. The application once again at-
tempts to initialize by following the defined process.

1. Check whether an ArcView product license is available. If yes, proceed to the
next step in the initialization process. If not, discontinue this attempt and
restart initialization with any tertiary level of allowable product licensing.

2. Determine whether a 3D Analyst extension license is available with the
ArcView product license. If yes, proceed with checks for any other needed
extensions. If not, discontinue this attempt and restart initialization with
any tertiary level of allowable product licensing.

3. Check whether an ArcGIS Spatial Analyst extension license is available with
the ArcView product license. If yes, since no other extensions are needed,
proceed to the next step in the initialization process. If not, discontinue this
attempt and restart initialization with any tertiary level of allowable product
licensing.

Step 3: Initialize the application

Step 4: Check extensions in and
out

Step 5: Shutdown

Step 1: Check product license
availability

Step 2: Check extension license
availability

Ch05_License.pmd 1/25/2005, 4:34 PM266

Chapter 5 • Licensing and deployment • 267

APPLICATION DEVELOPMENT AND LICENSE INITIALIZATION

4. Check out the ArcView product license by initializing the application. If the
license checked out, proceed to the next step in the initialization process. If
not, discontinue this attempt and restart initialization with any tertiary level
of allowable product licensing.

5. Check out the 3D Analyst extension. If the license checked out, proceed with
checkout for any other needed extensions. If the license failed to check out,
discontinue this attempt and restart initialization with any tertiary level of
allowable product licensing.

6. Check out the ArcGIS Spatial Analyst extension. Since no other extension
licenses are needed, if the licenses are checked out, the application has been
successfully configured with licenses. If not, discontinue this attempt and
restart initialization with any tertiary level of allowable product licensing.

7. The final step in the initialization process is ensuring that the licenses are
released when the application is shut down.

Attempting initialization with the ArcEditor product license
In this example, if both the first (ArcGIS Engine) and second (ArcView) product
levels fail to initialize correctly, a third level of licensing—ArcEditor—is avail-
able. The application makes a final attempt to initialize by following the defined
process.

1. Check whether an ArcEditor product license is available. If yes, proceed to
the next step in the initialization process. If not, discontinue this final at-
tempt. The application cannot run successfully at this time.

2. Determine whether a 3D Analyst extension license is available with the
ArcEditor product license. If yes, proceed with checks for any other needed
extensions. If not, discontinue this final attempt. The application cannot run
successfully at this time.

3. Check whether an ArcGIS Spatial Analyst extension license is available with
the ArcEditor product license. If yes, since no other extensions are needed,
proceed to the next step in the initialization process. If not, discontinue this
final attempt. The application cannot run successfully at this time.

4. Check out the ArcEditor product license by initializing the application. If the
license checked out, proceed to the next step in the initialization process. If
the license failed to check out, discontinue this final attempt. The application
cannot run successfully at this time.

5. Check out the 3D Analyst extension. If the license checked out, proceed with
checkout for any other needed extensions. If the license failed to check out,
discontinue this final attempt. The application cannot run successfully at this
time.

6. Check out the ArcGIS Spatial Analyst extension. Since no other extension
licenses are needed, if the licenses are checked out, the application has been
successfully configured with licenses. If not, discontinue this final attempt.
The application cannot run successfully at this time.

7. The final step in the initialization process is ensuring that the licenses are
released when the application is shut down.

Step 3: Initialize the application

The checkout of licenses may fail even though
the availability check was successful. This is

particularly possible in cases in which Desktop
Concurrent licenses were initially available but

may have since been checked out by another
application.

Step 2: Check extension license
availability

Step 4: Check extensions in and
out

The checkout of licenses may fail even though
the availability check earlier in the process was

successful. This is particularly possible in cases
where Desktop Concurrent licenses—instead of

Single Use ones—were initially available but
may have since been checked out by another

application.

Step 5: Shutdown

Step 3: Initialize the application

Step 4: Check extensions in and
out

Step 1: Check product license
availability

Step 5: Shutdown

Ch05_License.pmd 1/25/2005, 4:34 PM267

268 • ArcGIS Engine Developer Guide

APPLICATION DEVELOPMENT AND LICENSE INITIALIZATION

EXAMPLE B—MINIMUM LICENSE IS ARCGIS ENGINE WITH
GEODATABASE UPDATE AND SPATIAL EXTENSIONS

In the next example, the application is an enterprise geodatabase editing applica-
tion and, therefore, requires the minimum of an ArcGIS Engine with
Geodatabase Update extension license. Additionally, this developer has decided
that if an ArcGIS Engine with Geodatabase Update extension license is not
available, the application could run with an ArcEditor or ArcInfo license instead.
The application also requires spatial extension functionality for it to run success-
fully, so the extension needs to be checked out for the duration of the applica-
tion. In this case, the application will first attempt to initialize against the ArcGIS
Engine with Geodatabase Update extension product license. If that fails, it will
attempt to initialize against an ArcEditor license, and if still unsuccessful, the
application will finally attempt to initialize against the ArcInfo product license.
The following sections outline the steps taken to initialize the application with a
license.

Attempting initialization with the ArcGIS Engine with Geodatabase
Update product license
As noted above, to run successfully the application requires at minimum an
ArcGIS Engine with Geodatabase Update extension product license along with
the corresponding Spatial extension license. The application’s first attempt at
initialization should be against this minimal level of product licensing.

The application’s attempts at initialization follow the process discussed earlier:

1. Check whether an ArcGIS Engine with Geodatabase Update extension prod-
uct license is available. If yes, proceed to the next step in the initialization
process.

If not, discontinue this attempt and restart initialization with any secondary
level of allowable product licensing.

2. Check whether an Spatial extension license is available with the ArcGIS
Engine with Geodatabase Update extension product license. If yes, proceed
to the next step in the initialization process. If not, discontinue this attempt
and restart initialization with any secondary level of allowable product licens-
ing.

3. Check out the ArcGIS Engine with Geodatabase Update extension product
license by initializing the application. If the license checked out, proceed to
the next step in the initialization process. If the license failed to check out,
discontinue this attempt and restart initialization with any secondary level of
allowable product licensing.

4. Check out the Spatial extension. Since no other extension licenses are needed,
if the license checked out, the application has been successfully configured
with licenses.

If the license failed to check out, discontinue this attempt and restart initial-
ization with any secondary level of allowable product licensing.

5. The final step in the initialization process is ensuring that the licenses are
released when the application is shut down.

Step 4: Check extensions in and
out

Step 1: Check product license
availability

Step 3: Initialize the application

Step 2: Check extension license
availability

Step 5: Shutdown

Ch05_License.pmd 1/25/2005, 4:34 PM268

Chapter 5 • Licensing and deployment • 269

APPLICATION DEVELOPMENT AND LICENSE INITIALIZATION

Attempting initialization with the ArcEditor product license
In this example, a secondary level of licensing is available if the first ArcGIS
Engine product level fails to initialize correctly. The application once again at-
tempts to initialize by following the defined process.

1. Check whether an ArcEditor product license is available. If yes, proceed to
the next step in the initialization process. If not, discontinue this attempt and
restart initialization with any tertiary level of allowable product licensing.

2. Check whether an ArcGIS Spatial Analyst extension license is available with
the ArcEditor product license. If yes, proceed to the next step in the initial-
ization process. If not, discontinue this attempt and restart initialization with
any tertiary level of allowable product licensing.

3. Check out the ArcEditor product license by initializing the application.
If the license checked out, proceed to the next step in the initialization pro-
cess.

If the license failed to check out, discontinue this attempt and restart initial-
izationwith any tertiary level of allowable product licensing.

4. Check out the ArcGIS Spatial Analyst extension. Since no other extension
licenses are needed, if the license checked out, the application has been suc-
cessfully configured with licenses.

If the license failed to check out, discontinue this attempt and restart initial-
ization with any tertiary level of allowable product licensing.

5. The final step in the initialization process is ensuring that the licenses are
released when the application is shut down.

Attempting initialization with the ArcInfo product license
In this example, if both the first (ArcGIS Engine) and second (ArcEditor) prod-
uct levels fail to initialize correctly, a third level of licensing is available, ArcInfo.
The application makes a final attempt to initialize by following the defined
process.

1. Check whether an ArcInfo product license is available. If yes, proceed to the
next step in the initialization process. If not, discontinue this final attempt.
The application cannot run successfully at this time.

2. Check whether an ArcGIS Spatial Analyst extension license is available with
the ArcInfo product license. If yes, proceed to the next step in the initializa-
tion process. If not, discontinue this final attempt. The application cannot run
successfully at this time.

3. Check out the ArcInfo product license by initializing the application. If the
license failed to check out, discontinue this final attempt. The application
cannot run successfully at this time.

4. Check out the ArcGIS Spatial Analyst extension. Since no other extension
licenses are needed, if the licenses are checked out, the application has been
successfully configured with licenses. If the license failed to check out,
discontinue this final attempt. The application cannot run successfully at this
time.

The checkout of licenses may fail even though
the availability check was successful. This is

particularly possible in cases where Desktop
Concurrent licenses were initially available but

may have since been checked out by another
application.

Step 1: Check product license
availability

Step 2: Check extension license
availability

Step 3: Initialize the application

Step 4: Check extensions in and
out

Step 4: Check extensions in and
out

The checkout of licenses may fail even though
the availability check earlier in the process was

successful. This is particularly possible in cases in
which Desktop Concurrent licenses—instead of

Single Use ones—were initially available but
may have since been checked out by another

application.

Step 5: Shutdown

Step 1: Check product license
availability

Step 2: Check extension license
availability

Step 3: Initialize the application

Ch05_License.pmd 1/25/2005, 4:34 PM269

270 • ArcGIS Engine Developer Guide

APPLICATION DEVELOPMENT AND LICENSE INITIALIZATION

5. The final step in the initialization process is ensuring that the licenses are
released when the application is shut down.

EXAMPLE C—MINIMUM LICENSE IS ARCGIS ENGINE. OPTIONAL
NETWORK FUNCTIONALITY AVAILABLE

Once again the example application requires a minimum of an ArcGIS Engine
license. The developer has decided that if an ArcGIS Engine license is not avail-
able, the application could run with an ArcView, ArcEditor, or ArcInfo license
instead. Similar to the previous examples, this application also includes extension
functionality—Network—but, in this case, the extension is not required simply
to run the application; instead, it enables additional functionality. As such the
Network extension will be checked out dynamically during the use of the appli-
cation rather than at application startup.

Once again the application will first attempt to initialize against the ArcGIS
Engine product license. If that fails, it will make additional attempts to initialize
against an ArcView license, an ArcEditor license, and if still unsuccessful, the
application will finally attempt to initialize against the ArcInfo product license.
The following sections outline the steps taken to initialize the application with a
license.

Attempting initialization with the ArcGIS Engine product license
As indicated above, to run successfully the application requires at minimum an
ArcGIS Engine product license. While Network functionality is available within
the application, its extension license can be checked out when needed rather than
for the duration of the session. The application’s first attempt at initialization
should be against this minimal level of product licensing. The application’s at-
tempts at initialization follow the process discussed earlier.

1. Check whether an ArcGIS Engine product license is available. If yes, proceed
to the next step in the initialization process. If not, discontinue this attempt
and restart initialization with any secondary level of allowable product licens-
ing.

2. Check whether a Network extension license is available with the ArcGIS
Engine product license. If yes, proceed to the next step in the initialization
process. If not, proceed to the next step in the initialization process.

3. Check out the ArcGIS Engine product license by initializing the application.
If the license checked out, proceed to the next step in the initialization pro-
cess. If the license failed to check out, discontinue this attempt and restart
initialization with any secondary level of allowable product licensing.

Since this application dynamically checks out the Network extension, this step
is not performed at this time. Instead, the license will be checked out during
usage of Network functionality. See the section ‘Using Network functionality’
below for details on this process.

In this example, no licenses beyond the ArcGIS Engine product license need
to be checked out, so if that license checked out, the application has been
successfully configured with licenses.

4. The final step in the initialization process is ensuring that the licenses are
released when the application is shut down.

Step 5: Shutdown

Step 1: Check product license
availability

Step 2: Check extension license
availability

Step 4: Check extensions in and
out

Step 3: Initialize the application

Step 5: Shutdown

Ch05_License.pmd 1/25/2005, 4:34 PM270

Chapter 5 • Licensing and deployment • 271

APPLICATION DEVELOPMENT AND LICENSE INITIALIZATION

Attempting initialization with the ArcView product license
In this example, a secondary level of licensing is available if the first ArcGIS
Engine product level fails to initialize correctly. The application once again at-
tempts to initialize by following the defined process:

1. Check whether an ArcView product license is available. If yes, proceed to the
next step in the initialization process. If not, discontinue this attempt and
restart initialization with any tertiary level of allowable product licensing.

2. Check whether an ArcGIS Network extension license is available with the
ArcView product license. If yes, proceed to the next step in the initialization
process. If not, discontinue this attempt and restart initialization with any
tertiary level of allowable product licensing.

3. Check out the ArcView product license by initializing the application. If the
license checked out, proceed to the next step in the initialization process. If
the license failed to check out, discontinue this attempt and restart initializa-
tion with any tertiary level of allowable product licensing.

Since this application dynamically checks out the ArcGIS Network extension,
this step is not performed at this time. Instead, the license will be checked out
during usage of Network functionality. See the section ‘Using Network
functionality’ below for details on this process.

In this example, no licenses beyond the ArcGIS Engine product license need
to be checked out, so if that license checked out, the application has been
successfully configured with licenses.

4. The final step in the initialization process is ensuring that the licenses are
released when the application is shut down.

Attempting initialization with the ArcEditor product license
In this example, if both the first (ArcGIS Engine) and second (ArcView) product
levels fail to initialize correctly, a third level of licensing—ArcEditor—is avail-
able. The application makes another attempt to initialize by following the defined
process:

1. Check whether an ArcEditor product license is available. If yes, proceed to
the next step in the initialization process. If not, discontinue this attempt and
restart initialization with any fourth level of allowable product licensing.

2. Check whether an ArcGIS Network extension license is available with the
ArcEditor product license. If yes, proceed to the next step in the initialization
process. If not, discontinue this attempt and restart initialization with any
fourth level of allowable product licensing.

3. Check out the ArcEditor product license by initializing the application. If the
license checked out, proceed to the next step in the initialization process. If
the license failed to check out, discontinue this attempt and restart initializa-
tion with any fourth level of allowable product licensing.

Since this application dynamically checks out the ArcGIS Network extension,
this step is not performed at this time. Instead, the license will be checked out
during usage of Network functionality. See the section ‘Using Network
functionality’ below for details on this process.

Step 1: Check product license
availability

Step 2: Check extension license
availability

Step 4: Check extensions in and
out

Step 3: Initialize the application

Step 5: Shutdown

Step 1: Check product license
availability

Step 2: Check extension license
availability

Step 3: Initialize the application

Ch05_License.pmd 1/25/2005, 4:34 PM271

272 • ArcGIS Engine Developer Guide

APPLICATION DEVELOPMENT AND LICENSE INITIALIZATION

In this example, no licenses beyond the ArcGIS Engine product license need
to be checked out, so if that license checked out, the application has been
successfully configured with licenses.

4. The final step in the initialization process is ensuring that the licenses are
released when the application is shut down.

Attempting initialization with the ArcInfo product license
If the first (ArcGIS Engine), second (ArcView), and third (ArcEditor) product
levels fail to initialize correctly, one final level of licensing—ArcInfo—is avail-
able.

The application makes a final attempt to initialize by following the defined
process.

1. Check whether an ArcInfo product license is available. If yes, proceed to the
next step in the initialization process. If not, discontinue this attempt and
restart initialization with any fourth level of allowable product licensing.

2. Check whether an ArcGIS Network extension license is available with the
ArcInfo product license. If yes, proceed to the next step in the initialization
process. If not, discontinue this attempt and restart initialization with any
fourth level of allowable product licensing.

3. Check out the ArcInfo product license by initializing the application. If the
license checked out, proceed to the next step in the initialization process. If
the license failed to check out, discontinue this attempt and restart initializa-
tion with any fourth level of allowable product licensing.

Since this application dynamically checks out the ArcGIS Network extension,
this step is not performed at this time. Instead, the license will be checked out
during usage of Network functionality. See the section ‘Using Network
functionality’ below for details on this process.

In this example, no licenses beyond the ArcGIS Engine product license need
to be checked out, so if that license checked out, the application has been
successfully configured with licenses.

4. The final step in the initialization process is ensuring that the licenses are
released when the application is shut down.

Using Network functionality
During each of the initialization attempts in this example, the checkout of the
Network extension did not occur during application startup. Instead, the check-
out occurs dynamically when the Network functions are accessed within the
application. This means that the Network license continues to be available to
other users when not in use by this application.

As discussed earlier in the chapter, the extension license must be of the same
product type as the base license. If the application initialized with an ArcGIS
Engine product license, then the Network functionality cannot be initialized
unless an ArcGIS Engine extension license for Network is available. When the
application user attempts to perform any Network functions, the application
performs the following steps to activate the needed functions:

Step 5: Shutdown

Step 4: Check extensions in and
out

Step 1: Check product license
availability

Step 2: Check extension license
availability

Step 4: Check extensions in and
out

Step 3: Initialize the application

Step 5: Shutdown

Ch05_License.pmd 1/25/2005, 4:34 PM272

Chapter 5 • Licensing and deployment • 273

APPLICATION DEVELOPMENT AND LICENSE INITIALIZATION

1. Check whether the Network extension is already checked out. If the license is
checked out, the application can use the Network functionality. If the license
is not checked out, check the license out.

2. Check out the Network extension. If the license failed to check out, then the
application cannot use the Network functionality. If the license is checked
out, the application can use the Network extension.

After developing a custom standalone application, it should be tested with
ArcGIS Engine Runtime before it is deployed to end user machines. Supplied as
part of the ArcGIS Engine Developer Kit is a redistributable version of the
ArcGIS Engine Runtime and registration numbers for the runtime testing of
custom applications.

The checkout of licenses may fail even though
the availability check was successful. This is

particularly possible in cases where Desktop
Concurrent licenses were initially available but

may have since been checked out by another
application.

Ch05_License.pmd 1/25/2005, 4:34 PM273

274 • ArcGIS Engine Developer Guide

INSTALLATION OF ARCGIS ENGINE RUNTIME FOR TESTING

To install it, insert the ArcGIS Engine Runtime CD in the CD drive and use
Windows Explorer to navigate to the CD drive. Follow the instructions of the
ArcGIS Engine Runtime Setup. If any other ArcGIS products are installed on the
machine, the install will default to the same location. ArcGIS COM libraries will
be installed automatically by the install. If your custom application was devel-
oped with the .NET or Java APIs, you will need to install the Java or .NET
ArcGIS Engine support features.

• The .NET feature will install a .NET assembly for each COM library. Prior to
installing the .NET feature, Microsoft .NET Framework 1.1 must be installed
on the machine.

• The Java feature will install a .jar file for each COM library. Prior to installing
the Java feature, JDK 1.4.2 must be installed on the machine.

REGISTRATION OF ARCGIS ENGINE RUNTIME FOR TESTING

ArcGIS Engine Runtime, just like the ArcGIS Engine Developer Kit, needs to be
registered with ESRI and authorized for use on a per-machine, single-use basis via
a .ecp file to unlock the underlying software components for runtime use. This
registration is a two-step process.

Copy protection for ArcGIS Runtime for testing
To receive an ESRI Copy Protection file for ArcGIS Engine Runtime, one or
more testing registration numbers supplied with the product packaging must be
registered with ESRI. You may have already registered the testing registration
codes when registering the ArcGIS Engine Developer Kit. The products can be
registered either before installation or after installation via:

• The ESRI Customer Service Web site: http://service.esri.com.

• The Software Authorization Wizard at
<install_location>\bin\SoftwareAuthorization.exe.

TESTING WITH ARCGIS ENGINE RUNTIME

The registration codes supplied with the product
packaging for ArcGIS Engine Runtime testing

can be registered at the same time the ArcGIS
Engine Developer Kit is registered.

Ch05_License.pmd 1/25/2005, 4:34 PM274

Chapter 5 • Licensing and deployment • 275

Software authorization for ArcGIS Runtime for testing
To complete the registration process, ArcGIS Engine Runtime must be authorized
with the .ecp file to unlock the underlying software components for runtime use.
As a developer, you did this yourself when you installed and set up the ArcGIS
Engine Developer Kit. Once you had installed the software, a Software Authori-
zation wizard opened and prompted you to navigate to the .ecp file issued when
you registered the product. Only after completing the software authorization
were you able to develop and run custom ArcGIS Engine applications.

The product can be authorized by:

• Using the Software Authorization Wizard at <install_location>\bin to navi-
gate to the .ecp file.

• Registering the ArcGIS Engine Runtime online at http://service.esri.com gives
you the option to dynamically authorize the product over the Internet. In this
case, no .ecp file will be sent.

TESTING WITH ARCGIS ENGINE RUNTIME

Ch05_License.pmd 1/25/2005, 4:34 PM275

276 • ArcGIS Engine Developer Guide

The Authorization Summary tool at
<install_location>\bin\AuthorizationSummary.exe can be used to verify the
license configuration of the ArcGIS Engine Runtime and its extensions.

Once the functionality and the license initialization have been tested for the
custom application, a setup may be created to deploy the application to end user
machines. This setup may incorporate the custom application, map documents
and data, additional components and resources, the ArcGIS Engine Runtime
setup, and the automatic authorization of the ArcGIS Engine Runtime software.
This is discussed in more details in the following ‘Deployment’ section. The setup
itself should be tested to simulate the end user experience.

TESTING WITH ARCGIS ENGINE RUNTIME

Ch05_License.pmd 1/25/2005, 4:34 PM276

Chapter 5 • Licensing and deployment • 277

To successfully deploy custom applications to end user machines, ArcGIS Engine
Runtime will need to be installed, the custom application will need to be in-
stalled, and ArcGIS Engine Runtime may need to be software authorized depend-
ing on the current machine license configurations.

DEPLOYING ARCGIS ENGINE RUNTIME

The ArcGIS Engine Runtime must be installed on every end user machine to
which a custom application is deployed. This includes machines that may have
ArcGIS Desktop installed, where the custom application will initialize itself with
an ArcGIS Desktop license. As a purchaser of the ArcGIS Engine Developer Kit,
you can freely distribute ArcGIS Engine Runtime, either on a CD or within your
custom applications installation program. See Appendix D, ‘Installing ArcGIS
Engine Runtime on Windows, Solaris, and Linux’, for further details on installing
ArcGIS Engine Runtime.

DEPLOYING CUSTOM APPLICATIONS

The method used to create a setup for the custom application will have been
decided on at the beginning of the development project and will depend on your
organization, the end user requirements, and any previous experience you have of
creating setups. The custom setup may use Microsoft Windows Installer (MSI)
technology, may be a scripted setup or may simply be a batch file that is distrib-
uted on a CD to the end user.

The following is an example of a batch file that installs both the ArcGIS Engine
Runtime and a custom application from setups on a CD, then launches the soft-
ware authorization wizard for the end user.

COPY PROTECTION AND SOFTWARE AUTHORIZATION FOR END
USERS

The final step in developing and deploying ArcGIS Engine applications is to
ensure that all client machines have the correct license configuration to support
your ArcGIS Engine application. This section details the various ways end users
and developers can “authorize” the ArcGIS Engine Runtime components on
client systems.

The custom application is deployed to an end
user machine that does not have ArcGIS Engine

Runtime installed but has ArcGIS Desktop
installed. In this case ArcGIS Engine Runtime

must be installed on the machine, but the
custom application initializes itself with the

existing ArcGIS Desktop license.

DEPLOYMENT

Ch05_License.pmd 1/25/2005, 4:34 PM277

278 • ArcGIS Engine Developer Guide

Software authorization is the process of unlocking the underlying ArcGIS Engine
Runtime software components. As a developer, you did this yourself when you
installed and set up the ArcGIS Engine Developer Kit. Once you had installed
the software, a Software Authorization wizard opened. It asked that you navigate

to the authorization file (.ecp) that had been
issued to you when you registered the product.
Only after the authorization file was read and
accepted were you able to design and run
applications that use ArcGIS Engine compo-
nents. All deployed applications must be
authorized in a similar manner, although there
are a number of different ways to achieve
authorization.

As discussed earlier in this chapter, every
application you build and deploy must first
initialize itself with a suitable license. The store
of suitable licenses that your application initial-
izes itself against are contained within the
software authorization or keycode file, which-
ever is applicable, on the client machine or
network. If your application attempts to
initialize against a license that is not contained
in the authorization file or if all instances of
the needed license have been checked out, then
your application will not be able to run.

You, as the developer, must think in advance about how your clients will acquire
and access an authorization or keycode file suitable to run your application. Your
clients may fall into three categories:

• Licensed ArcGIS Desktop users who have access to the license features that
your application uses.

• Those that will acquire the ArcGIS Engine Runtime software, its authoriza-
tions, or both directly from ESRI.

• Those who will receive the ArcGIS Engine Runtime software and authoriza-
tions packaged within your application and have no direct contact with ESRI.

The following sections discuss the software authorization process for each of
these three user types.

ARCGIS DESKTOP USERS

If your client is a licensed ArcGIS Desktop user, you and your client would go
through the following process to install and run an application that you built:

1. You review and confirm licensing requirements of your application—
ArcView, ArcEditor, or ArcInfo (single use or concurrent) along with any
necessary extensions.

2. Your client confirms that it has the applicable ArcGIS Desktop authorization
or keycode files available for use with your application, as determined in the
previous step.

DEPLOYMENT

The custom application is deployed to an end
user machine that does not have the ArcGIS
Engine Runtime installed. This is the easiest

deployment method for the developer because
the end user must install, register, and authorize

the ArcGIS Engine Runtime software.

License initialization must be built into your
application. For more information, see the earlier

section ‘License initialization’.

The Software Authorization Wizardopens after
installing the ArcGIS Engine Developer Kit.

However, installations of ArcGIS Engine Runtime
do not trigger the Software Authorization

Wizard to start automatically.

Ch05_License.pmd 1/25/2005, 4:34 PM278

Chapter 5 • Licensing and deployment • 279

3. You or your client installs your custom ArcGIS Engine application , together
with the ArcGIS Engine Runtime if its not already installed. See the previous
‘Installation of ArcGIS Engine Runtime for testing’ section for more details.

4. Upon application startup, it initializes and checks out an available license from
the client’s previously existing authorization or keycode file.

USER ACQUIRES ARCGIS ENGINE RUNTIME DIRECTLY FROM ESRI

The second type of end user purchases, authorizes, or both the ArcGIS Engine
Runtime software themselves. You and your client would go through the follow-
ing process to install and run an application that you built:

1. You review and confirm licensing required by your application.

2. Your client purchases ArcGIS Engine Runtime and any needed extensions
(3D, Geodatabase, Spatial, Network, and so on), as determined in the previ-
ous step.

3. Your client registers the ArcGIS Engine product, and extensions if necessary,
with ESRI (http://www.service.esri.com).

4. Your client receives an authorization file (.ecp) from ESRI and saves it to
their computer.

5. Your client installs the ArcGIS Engine
Runtime software.

6. Once the installation is complete, your
client opens the Software Authorization
Wizard.

• On Windows, your client navigates to
the \ArcGIS\bin folder and runs the
SoftwareAuthorization.exe file it con-
tains.

• On Solaris and Linux, your client navi-
gates to the \ArcGIS folder and runs the
AuthorizeSoftware file it contains.

7. When asked by the Software Authorization
Wizard, your client navigates to the loca-
tion of their authorization file.

8. You or your client installs your custom
ArcGIS Engine application.

9. Upon application startup, it initializes and checks out an available license from
the client’s authorization file.

DEPLOYMENT

If your clients don’t register and receive their
authorization file in advance, the Software

Authorization Wizard directs them to do so.

Ch05_License.pmd 1/25/2005, 4:34 PM279

280 • ArcGIS Engine Developer Guide

USER HAS NO DIRECT INVOLVEMENT WITH ESRI

The final type of end user has no direct contact with ESRI. Instead your applica-
tion calls the SoftwareAuthorization.exe file or the IAuthorizeLicense object,
contained in your installation program or application, to unlock the functionality
of ArcGIS Engine. This would require that you hard code the authorization
keycode into your program. The advantage of this method is that the software
will be authorized silently and does not require prompting your user for any
registration information. In this case, you and your client would go through the
following process to install and run an application that you built:

1. You review and confirm licensing required by your application.

2. You purchase the necessary redistributable ArcGIS Engine Runtime product
and any needed extensions (3D, Geodatabase, Spatial, and so on), as deter-
mined in the previous step.

3. You register the ArcGIS Engine product, and extensions if necessary, with
ESRI (http://www.service.esri.com).

4. You receive a redistributable authorization file (.ecp) and add its features to
the code for your application.

5. Your client installs your custom-built ArcGIS Engine application. This:

a.Installs ArcGIS Engine Runtime software

b.Automatically runs the Software Authorization Wizard or uses the coclass
AoAuthorizeLicense and the IAuthorizeLicense interface it implements

6. Upon application startup, it initializes and checks out an available license from
the client’s authorization file.

DEPLOYMENT

See ArcGIS Developer Help for more information
on the IAuthorizeLicense interface.

IAuthorize-
License AoAuthorize-

License

The custom application is deployed to an end
user machine. The custom setup itself installs

and authorizes the ArcGIS Engine Runtime
software so the end user has no contact with

ESRI.

To run the SoftwareAuthorization tool from
within your application’s installation program,

use the following argument:
/LIF <filename> /S

The /S triggers the tool to run silently with no
user interface displaying.

Use restrictions

Although the redistribution of authoriza-
tion files within your application is

documented here, there are restrictions
upon its use:

• If your application will be used solely within
your organization, you can redistribute in this
manner. However, you cannot distribute it in

excess of the number of licenses you have
purchased.

• If the application will be used or sold to a
third party, use of a ‘redistributed’ authorization
file violates the standard ESRI Software Master

License Agreement, and an individual contract
must be negotiated. Contact the ESRI Business
Partner Group or your international distributor

for information on such licensing.

For additional information on your right to use
and deploy ArcGIS Engine applications, see
footnotes 12 and 23 of the ESRI Software

Master License Agreement.

Ch05_License.pmd 1/25/2005, 4:34 PM280

Developer
scenarios6

Throughout this book, you have been introduced to

several programming concepts, patterns, and APIs. This chapter is intended to

apply these concepts by walking you through some application development

scenarios. Each of the scenarios builds and deploys an application using the tools

and APIs available in ArcGIS Engine. Each scenario is available complete as an

ArcGIS developer sample included in the ArcGIS Engine Developer Kit.

The developer scenarios included are:

• building applications with ActiveX • building applications with visual JavaBeans •

building applications with Windows Controls • building applications with C++ and

Motif widgets • building a command-line Java application • building a command-

line C++ application

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM281

282 • ArcGIS Engine Developer Guide

This walkthrough is for developers who want to build and deploy an application
using ActiveX. It describes the process of building and deploying an application
using the ArcGIS controls.

You can find this sample in:
<install_location>\DeveloperKit\samples\Developer_Guide_Scenarios\
Building_an_ArcGIS_Controls_Map_Viewer_ApplicationVisual_Basic.zip

PROJECT DESCRIPTION

The goal of this scenario is to demonstrate and familiarize you with the steps
required to develop and deploy a GIS application using the standard ArcGIS
controls within a COM API. This scenario uses the MapControl,
PageLayoutControl, TOCControl, ToolbarControl, and LicenseControl as
ActiveX Controls within the Microsoft Visual Basic 6.0 development environ-
ment. C++, Java, and .NET programmers should refer to the following scenarios
available later in this chapter: ‘Building a command-line C++ application’, ‘Build-
ing applications with visual JavaBeans’, ‘Building a command-line Java applica-
tion’, and ‘Building applications with Windows Controls’.

This scenario demonstrates the steps required to create a GIS application for
viewing preauthored ESRI map documents, or MXDs. The scenario covers the
following techniques:

• Loading and embedding the ArcGIS controls in Microsoft Visual Basic 6.0

• Loading preauthored map documents into the MapControl and
PageLayoutControl

• Setting ToolbarControl and TOCControl buddy controls

• Handling form resize

• Adding Control commands and tools to the ToolbarControl

• Creating popup menus

• Managing label editing in the TOCControl

• Drawing shapes on the MapControl

• Creating a custom tool to work with the MapControl, PageLayoutControl,
and ToolbarControl

• Customizing the ToolbarControl

• License configuration using the LicenseControl

• Deploying the application onto a Windows operating system

CONCEPTS

This scenario is implemented using the Microsoft Visual Basic 6.0 development
environment and uses the ArcGIS controls as ActiveX components. ActiveX
refers to a set of technologies that enables software components written in
different languages to work together in a networked environment. Each ActiveX
ArcGIS control has events, properties, and methods that can be accessed once the
control is embedded within an ActiveX container such as a Visual Basic form.
The objects and functionality within each control can be combined with other
ESRI ArcObjects and custom controls to create customized end user applications.

ActiveX is another term for a Microsoft Compo-
nent Object Model object. All of ArcObjects is

based on COM, and the ArcGIS controls are
COM objects.

BUILDING APPLICATIONS WITH ACTIVEX

Rather than walk through this scenario, you can
get the completed application from the samples

installation location. The sample is installed as
part of the ArcGIS developer samples.

The ArcGIS developer samples are not included
in the typical installation of the ArcGIS Engine

Developer Kit. If you do not have them installed,
rerun the Developer Kit Install wizard, click

Custom or Modify, and click the samples feature
under Software developer kit.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM282

Chapter 6 • Developer scenarios • 283

The scenario could have been written in any other COM development environ-
ment that fully supports ActiveX including Microsoft Visual C++ and Microsoft
Visual Basic for Applications. Visual Basic, while not providing all the functional-
ity of a development environment such as Visual C++, was chosen because it
appeals to a wider audience. Whichever development environment you use, your
future success with the ArcGIS controls depends on your skill in both the pro-
gramming environment and ArcObjects.

The MapControl, PageLayoutControl, TOCControl, and ToolbarControl are used
in this scenario to provide the user interface of the application, and the
LicenseControl is used to configure the application with an appropriate license.
The ArcGIS controls are used in conjunction with other ArcObjects and control
commands by the developer to create a GIS viewing application.

DESIGN

The scenario has been designed to highlight how the ArcGIS controls interact
with each other and to expose a part of each ArcGIS control’s object model to
the developer.

Each ActiveX ArcGIS control has a set of property pages that can be accessed
once the control is embedded within an ActiveX container. These property pages
provide shortcuts to a selection of a control’s properties and methods and allow a
developer to build an application without writing any code. This scenario does
not use the property pages, but rather builds up the application programmatically.
For further information about the property pages, refer to ArcGIS Developer
Help.

REQUIREMENTS

To successfully follow this scenario you need the following (the requirements for
deployment are covered later in the ‘Deployment’ section):

• An installation of the ArcGIS Engine Developer Kit with an authorization
file enabling it for development use.

• An installation of the Microsoft Visual Basic 6.0 development environment
and an appropriate license.

• Familiarity with Microsoft Windows operating systems and a working knowl-
edge of Microsoft Visual Basic 6.0. While the scenario provides some informa-
tion about how to use the ArcGIS controls in Microsoft Visual Basic 6.0, it is
not a substitute for training in the development environment.

• While no experience with other ESRI software is required, previous experi-
ence with ArcObjects and a basic understanding of ArcGIS applications, such
as ArcMap and ArcCatalog, are advantageous.

• Access to the sample data and code that comes with this scenario. This is
located at:
<install_location>\DeveloperKit\samples\Developer_Guide_Scenarios\
Building_an_ArcGIS_Controls_Map_Viewer_ApplicationVisual_Basic.zip

BUILDING APPLICATIONS WITH ACTIVEX

The ArcGIS developer samples are not included
in the typical installation of the ArcGIS Engine

Developer Kit. If you do not have them installed,
rerun the Developer Kit Install wizard, click

Custom or Modify, and click the samples feature
under Software Developer Kit.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM283

284 • ArcGIS Engine Developer Guide

The controls and libraries used in this scenario are as follows:

• LicenseControl • Carto Object Library

• MapControl • Display Object Library

• PageLayoutControl • Geometry Object Library

• TOCControl • ToolbarControl

• SystemUI Object Library

In Visual Basic, these control and library names are prefixed with ‘esri’.

IMPLEMENTATION

The implementation below provides you with all the code you will need to
successfully complete the scenario. It does not provide step-by-step instructions
to develop applications in Visual Basic 6.0, as it assumes that you have a working
knowledge of the development environment already.

Loading the ArcGIS controls
Before you start to program your application, the ArcGIS controls and the other
ArcGIS Engine library references that the application will use should be loaded
into the development environment.

1. Start Visual Basic and create a new Standard EXE project from the New
project dialog box.

2. Click the Project menu and click Components.

3. In the Components dialog box, check ESRI MapControl, ESRI
PageLayoutControl, ESRI TOCControl, ESRI ToolbarControl, and ESRI
LicenseControl. Click OK.

The ESRI Automatic References Visual Basic Add-
In can be used to quickly select and reference
the ArcGIS controls and other ArcGIS Engine

libraries that you frequently use in Visual
Basic 6.0. To load the add-in click Add-In

Manager from the Add-Ins menu, click ESRI
Automatic References, and check the load

behavior check boxes. To then display the Add-In,
click ESRI Automatic References from the Add-Ins

menu.

BUILDING APPLICATIONS WITH ACTIVEX

ESRIMapControl

ESRIPageLayoutControl

ESRITOCControl

ESRIToolbarControl

ESRILicenseControl

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM284

Chapter 6 • Developer scenarios • 285

The controls will now appear in the Visual Basic toolbox.

4. Click the Project menu again and click References.

5. In the References dialog box, check ESRI Carto Object Library, ESRI Display
Object Library, ESRI Geometry Object Library, and ESRI SystemUI Object
Library. Click OK.

Embedding the ArcGIS controls in a container
Before you can access each control’s properties, methods, and events, each control
needs embedding within an ActiveX container. Once the controls are embedded
within the form, they will shape the application’s user interface.

1. Open the Visual Basic Form.

2. Double-click the MapControl button in the Visual Basic toolbox to add a
MapControl to a form.

3. Repeat to add the PageLayoutControl, TOCControl, and ToolbarControl.

4. Resize and reposition each control on the form as shown.

BUILDING APPLICATIONS WITH ACTIVEX

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM285

286 • ArcGIS Engine Developer Guide

Loading map documents into the PageLayoutControl and
MapControl
Individual data layers or preauthored ESRI map documents can be loaded into
the MapControl and PageLayoutControl. You can either load the sample map
document provided or you can load your own map document. Later you will add
a dialog box to browse to a map document.

1. Double-click the form to display the code window.

2. Click the Form_Load event and enter the following code. (If you are using
your own map document, substitute the filename.)
Private Sub Form_Load()

 ' Check and load a preauthored map document into the PageLayoutControl
using relative paths.

 Dim sFileName As String

 sFileName = "..\..\..\..\..\..\Data\ArcGIS_Engine_Developer_Guide\Gulf
of St. Lawrence.mxd"

 If PageLayoutControl1.CheckMxFile(sFileName) Then

 PageLayoutControl1.LoadMxFile sFileName

 End If

End Sub

3. Click the PageLayoutControl_ OnPageLayoutReplaced event and enter the
following code to load the same map document into the MapControl. The
OnPageLayoutReplaced event will be triggered whenever a document is
loaded into the PageLayoutControl.
Private Sub PageLayoutControl1_OnPageLayoutReplaced(ByVal newPageLayout
As Variant)

 ' Load the same preauthored map document into the MapControl.

 MapControl1.LoadMxFile PageLayoutControl1.DocumentFilename

 ' Set the extent of the MapControl to the full extent of the data.

 MapControl1.Extent = MapControl1.FullExtent

End Sub

Setting the TOCControl and ToolbarControl buddy controls
For the purpose of this application, the TOCControl and ToolbarControl will
work in conjunction with the PageLayoutControl rather than the MapControl. To
do this the PageLayoutControl must be set as the buddy control. The
TOCControl uses the buddy’s ActiveView to populate itself with maps, layers,
and symbols, while any command, tool, or menu items present on the
ToolbarControl will interact with the buddy control’s display.

1. Double-click the form to display the code window.

BUILDING APPLICATIONS WITH ACTIVEX

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM286

Chapter 6 • Developer scenarios • 287

2. Select the Form_Load event and enter the following after the load document
code:
Private Sub Form_Load()

 ' Check and load a preauthored map document into the PageLayoutControl
using relative paths.

 Dim sFileName As String

 sFileName = "..\..\..\..\..\..\Data\ArcGIS_Engine_Developer_Guide\Gulf
of St. Lawrence.mxd"

 If PageLayoutControl1.CheckMxFile(sFileName) Then

 PageLayoutControl1.LoadMxFile sFileName

 End If

 ' Set buddy controls.

 TOCControl1.SetBuddyControl PageLayoutControl1

 ToolbarControl1.SetBuddyControl PageLayoutControl1

End Sub

3. Run the application. The map document has been loaded into the
PageLayoutControl, and the TOCControl lists the data layers in the map
document. Use the TOCControl to toggle layer visibility by checking and
unchecking the boxes. By default, the focus map of the map document is
loaded into the MapControl. At this point the ToolbarControl is empty be-
cause no commands have been added to it. Try resizing the form, and note that
the controls do not change size.

Handling form resize
When the form is resized at run time, the PageLayoutControl and MapControl do
not automatically resize themselves. To resize the controls so that they always fill
the extent of the form, you must respond to the Form_Resize event. If the
PageLayoutControl or MapControl contain a lot of data, redrawing this data
during the Form_Resize can be costly. To increase performance you can suppress
the data redraw until the resizing is complete. During the resize a stretched
bitmap will be drawn instead.

BUILDING APPLICATIONS WITH ACTIVEX

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM287

288 • ArcGIS Engine Developer Guide

1. Double-click the form to display the code window.

2. Click the Form_Resize event and enter the following code:
Private Sub Form_Resize()

 Dim dWidth As Double, dheight As Double, dMargin As Double

 ' Set the margin size.

 dMargin = TOCControl1.Left

 ' Resize the PageLayoutControl.

 dheight = Form1.ScaleHeight - PageLayoutControl1.Top - dMargin

 If dheight > 0 Then PageLayoutControl1.Height = dheight

 dWidth = Form1.ScaleWidth - TOCControl1.Width - (dMargin * 2)

 If dWidth > 0 Then PageLayoutControl1.Width = dWidth

 ' Resize the MapControl.

 dheight = Form1.ScaleHeight - MapControl1.Top - dMargin

 If dheight > 0 Then MapControl1.Height = dheight

End Sub

3. Click the Form_Load event and add the following code at the end of the
procedure:
Private Sub Form_Load()

 ' Set buddy controls…

 ' Suppress drawing while resizing.

 MapControl1.SuppressResizeDrawing False, Form1.hWnd

 PageLayoutControl1.SuppressResizeDrawing False, Form1.hWnd

End Sub

4. Run the application and try resizing the form.

Adding commands to the ToolbarControl
ArcGIS Engine comes with more than 120 commands and tools that work with
the MapControl, the PageLayoutControl, and the ToolbarControl directly. These
commands and tools provide you with a lot of frequently used GIS functionality
for map navigation, graphics management, and feature selection. You will now
add some of these commands and tools to your application.

1. Double-click the form to display the code window.

2. Click the Form_Load event and add the following code before the load docu-
ment code:
Private Sub Form_Load()

 Dim sProgID As String

 ' Add generic commands.

 sProgID = "esriControlTools.ControlsOpenDocCommand"

 ToolbarControl1.AddItem sProgID, , , False, , esriCommandStyleIconOnly

BUILDING APPLICATIONS WITH ACTIVEX

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM288

Chapter 6 • Developer scenarios • 289

 ' Add PageLayout navigation commands.

 sProgID = "esriControlTools.ControlsPageZoomInTool"

 ToolbarControl1.AddItem sProgID, , , True, , esriCommandStyleIconOnly

 sProgID = "esriControlTools.ControlsPageZoomOutTool"

 ToolbarControl1.AddItem sProgID, , , False, , esriCommandStyleIconOnly

 sProgID = "esriControlTools.ControlsPagePanTool"

 ToolbarControl1.AddItem sProgID, , , False, , esriCommandStyleIconOnly

 sProgID = "esriControlTools.ControlsPageZoomWholePageCommand"

 ToolbarControl1.AddItem sProgID, , , False, , esriCommandStyleIconOnly

 sProgID = "esriControlTools.ControlsPageZoomPageToLastExtentBackCommand"

 ToolbarControl1.AddItem sProgID, , , False, , esriCommandStyleIconOnly

 sProgID = "esriControlTools.ControlsPageZoomPageToLastExtentForwardCommand"

 ToolbarControl1.AddItem sProgID, , , False, , esriCommandStyleIconOnly

 ' Add Map navigation commands.

 sProgID = "esriControlTools.ControlsMapZoomInTool"

 ToolbarControl1.AddItem sProgID, , , True, , esriCommandStyleIconOnly

 sProgID = "esriControlTools.ControlsMapZoomOutTool"

 ToolbarControl1.AddItem sProgID, , , False, , esriCommandStyleIconOnly

 sProgID = "esriControlTools.ControlsMapPanTool"

 ToolbarControl1.AddItem sProgID, , , False, , esriCommandStyleIconOnly

 sProgID = "esriControlTools.ControlsMapFullExtentCommand"

 ToolbarControl1.AddItem sProgID, , , False, , esriCommandStyleIconOnly

 ' Load a preauthored…

End Sub

3. Run the application. The ToolbarControl now contains ArcGIS Engine com-
mands and tools that you can use to navigate the map document loaded into
the PageLayoutControl. Use the page layout commands to navigate around the
actual page layout and the map commands to navigate around the data present
in the data frames. Use the open document command to browse and load
other map documents.

BUILDING APPLICATIONS WITH ACTIVEX

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM289

290 • ArcGIS Engine Developer Guide

Creating a popup menu for the PageLayoutControl
In addition to adding control commands to the ToolbarControl to work with the
buddy control, as in the previous step, you can also create popup menus from the
Control commands. You will add a popup menu to your application that works
with the PageLayoutControl. The popup menu will display whenever the right
mouse button is used on the display area of the PageLayoutControl.

1. Add the following code to the general declarations area of the form:
Option Explicit

Private m_pToolbarMenu As IToolbarMenu ' The popup menu

2. Add the following code to the Form_Load event after the code, adding the
commands to the ToolbarControl but before the load document code.
Private Sub Form_Load()

 ' Add Map navigation commands…

 ' Create a new ToolbarMenu.

 Set m_pToolbarMenu = New ToolbarMenu

 ' Share the ToolbarControl's command pool.

 Set m_pToolbarMenu.CommandPool = ToolbarControl1.CommandPool

 ' Add commands to the ToolbarMenu.

 sProgID = "esriControlTools.ControlsPageZoomInFixedCommand"

 m_pToolbarMenu.AddItem sProgID, , , False, esriCommandStyleIconAndText

 sProgID = "esriControlTools.ControlsPageZoomOutFixedCommand"

 m_pToolbarMenu.AddItem sProgID, , , False, esriCommandStyleIconAndText

 sProgID = "esriControlTools.ControlsPageZoomWholePageCommand"

 m_pToolbarMenu.AddItem sProgID, , , False, esriCommandStyleIconAndText

 sProgID = "esriControlTools.ControlsPageZoomPageToLastExtentBackCommand"

 m_pToolbarMenu.AddItem sProgID, , , True, esriCommandStyleIconAndText

 sProgID = "esriControlTools.ControlsPageZoomPageToLastExtentForwardCommand"

 m_pToolbarMenu.AddItem sProgID, , , False, esriCommandStyleIconAndText

 ' Set the hook to the PageLayoutControl.

 m_pToolbarMenu.SetHook PageLayoutControl1

 ' Load a preauthored…

End Sub

3. Add the following code to the PageLayoutControl1_OnMouseDown event.
Private Sub PageLayoutControl1_OnMouseDown(ByVal button As Long, ByVal
shift As Long, ByVal x As Long, ByVal y As Long, ByVal pageX As
Double, ByVal pageY As Double)

 ' Popup the ToolbarMenu.

 If button = vbRightButton Then

 m_pToolbarMenu.PopupMenu x, y, PageLayoutControl1.hWnd

 End If

End Sub

BUILDING APPLICATIONS WITH ACTIVEX

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM290

Chapter 6 • Developer scenarios • 291

4. Run the application. Right-click the PageLayoutControl display area to display
the popup menu, and navigate around the page layout.

Controlling label editing in the TOCControl
By default, the TOCControl allows users to automatically toggle the visibility of
layers and to change map and layer names as they appear in the table of contents.
You will add code to prevent users from editing a name and replacing it with an
empty string.

1. Add the following code to the beginning of the Form_Load event to trigger
the TOCControl label editing events.
Private Sub Form_Load()

 ' Set label editing to manual.

 TOCControl1.LabelEdit = esriTOCControlManual

 ' Add generic commands…

End Sub

2. Add the following code to the TOCControl1_OnEndLabelEdit event.
Private Sub TOCControl1_OnEndLabelEdit(ByVal x As Long, ByVal y As Long,
ByVal newLabel As String, CanEdit As Boolean)

 ' If the new label is an empty string, then prevent the edit.

 If Trim(newLabel) = "" Then CanEdit = False

End Sub

3. Run the application. To edit a map, layer, heading, or legend class label in the
TOCControl, click it once, and click it a second time to invoke label editing.

BUILDING APPLICATIONS WITH ACTIVEX

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM291

292 • ArcGIS Engine Developer Guide

Try replacing the label with an empty string. You can use the Esc key on the
keyboard at any time during the edit to cancel it.

Drawing shapes on the MapControl
You will now use the MapControl as an overview window and draw the current
extent of the focus map within the PageLayoutControl on its display. As you
navigate around the data within the data frame of the PageLayoutControl, you
will see the MapControl overview window update.

1. Add the following code to the general declarations area of the form.
Option Explicit

Private m_pToolbarMenu As IToolbarMenu

Private m_pEnvelope As IEnvelope ' The envelope drawn on the MapControl

Private m_pFillSymbol As ISimpleFillSymbol ' The symbol used to draw the
' envelope on the MapControl

Private WithEvents m_pTransformEvents As DisplayTransformation
' The PageLayoutControl's focus map events

2. Create a new private subroutine called CreateOverviewSymbol. This is where you
will create the symbol used in the MapControl to represent the extent of the
data in the focus map of the PageLayoutControl. Add the following code to
the subroutine:
Private Sub CreateOverviewSymbol()

 ' Get the IRgbColor interface.

 Dim pColor As IRgbColor

 Set pColor = New RgbColor

 ' Set the color properties.

 pColor.RGB = RGB(255, 0, 0)

 ' Get the ILine symbol interface.

 Dim pOutline As ILineSymbol

 Set pOutline = New SimpleLineSymbol

BUILDING APPLICATIONS WITH ACTIVEX

Navigating around the focus map using the map
navigation tools will change the extent of the

focus map in the PageLayoutControl and cause
the MapControl to update. Navigating around
the page layout with the page layout navigation
tools will change the extent of the page layout

(not the extent of the focus map in the
PageLayoutControl), so the MapControl will

not update.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM292

Chapter 6 • Developer scenarios • 293

 ' Set the line symbol properties.

 pOutline.Width = 1.5

 pOutline.Color = pColor

 ' Get the IFillSymbol interface.

 Set m_pFillSymbol = New SimpleFillSymbol

 ' Set the fill symbol properties.

 m_pFillSymbol.Outline = pOutline

 m_pFillSymbol.Style = esriSFSHollow

End Sub

3. Call the CreateOverviewSymbol subroutine from the Form_Load event before
the TOCControl label editing code.
Private Sub Form_Load()

 ' Create symbol used on the MapControl.

 CreateOverviewSymbol

 ' Set label editing to manual…

End if

4. The default event interface of the PageLayoutControl is the
IPageLayoutControlEvents. These events do not tell you when the extent of the
map within the data frame changes. To do this you will use the
ITransformEvents interface of the PageLayoutControl focus map. Add the
following code to the PageLayoutControl_OnPageLayoutReplaced event
directly above the load document code.
Private Sub PageLayoutControl1_OnPageLayoutReplaced(ByVal newPageLayout
As Variant)

 ' Get the IActiveView of the focus map in the PageLayoutControl.

 Dim pActiveView As IActiveView

 Set pActiveView = PageLayoutControl1.ActiveView.FocusMap

 ' Trap the ITransformEvents of the PageLayoutControl's focus map.

 Set m_pTransformEvents = pActiveView.ScreenDisplay.DisplayTransformation

 ' Get the extent of the focus map.

 Set m_pEnvelope = pActiveView.Extent

 ' Load the same preauthored map document into the MapControl.

 MapControl1.LoadMxFile PageLayoutControl1.DocumentFilename

 ' Set the extent of the MapControl to the full extent of the data.

 MapControl1.Extent = MapControl1.FullExtent

End Sub

5. Add the following code to the m_pTransformEvents_VisibleBoundsUpdated
event. This event is triggered whenever the extent of the map is changed and
is used to set the envelope to the new visible bounds of the map. By refreshing
the MapControl you force it to redraw the shape on its display.

BUILDING APPLICATIONS WITH ACTIVEX

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM293

294 • ArcGIS Engine Developer Guide

Private Sub m_pTransformEvents_VisibleBoundsUpdated(ByVal sender As
esriDisplay.IDisplayTransformation, ByVal sizeChanged As Boolean)

 ' Set the extent to the new visible extent.

 Set m_pEnvelope = sender.VisibleBounds

 ' Refresh the MapControl's foreground phase.

 MapControl1.Refresh esriViewForeground

End Sub

6. Add the following code to the MapControl_OnAfterDraw event to draw the
envelope with the symbol you created earlier onto the MapControl display.
Private Sub MapControl1_OnAfterDraw(ByVal display As Variant, ByVal
viewDrawPhase As Long)

 If m_pEnvelope Is Nothing Then Exit Sub

 ' If the foreground phase has drawn

 Dim pViewDrawPhase As esriViewDrawPhase

 pViewDrawPhase = viewDrawPhase

 If pViewDrawPhase = esriViewForeground Then

 ' Draw the shape on the MapControl.

 MapControl1.DrawShape m_pEnvelope, m_pFillSymbol

 End If

End Sub

7. Run the application. Use the map navigation tools that you added earlier to
change the extent of the focus map in the PageLayoutControl. The new
extent is drawn on the MapControl.

BUILDING APPLICATIONS WITH ACTIVEX

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM294

Chapter 6 • Developer scenarios • 295

Creating a custom tool
Creating custom commands and tools to work with the MapControl and
PageLayoutControl is like creating commands for the ESRI ArcMap application
that you may have done previously. You will create a custom tool that adds a text
element containing today’s date to the PageLayoutControl at the location of a
mouse click. You will, however, create the command to work with the
MapControl and ToolbarControl as well as the PageLayoutControl.

The code for this custom tool is available with the rest of this scenario’s source
code. If you want to use the custom command directly, rather than creating it
yourself, go directly to Step 12.

1. Start Visual Basic and create a new ActiveX DLL project from the New
project dialog box.

2. Name the project EngineScenarioCommands.

3. Click the Project menu again and click References.

4. In the References dialog box, check ESRI Carto Object Library, ESRI Control
Commands Object Library, ESRI Display Object Library, ESRI Geometry
Object Library, ESRI System Object Library, and ESRI SystemUI Object
Library. Click OK.

5. Add a class module to the project and name it AddDateTool.

6. Add in the ControlCommands.res Visual Basic resource file from its location in
this sample’s source code. To do this you will need the VB6 Resource Editor
add-in.

7. Add the following code to the general declarations area of the AddDateTool
class module.
Option Explicit

Implements ICommand

Implements ITool

Private m_pHookHelper As IHookHelper

Private m_pBitmap As IPictureDisp

8. Add the following code to the Class_Initialize and Class_Terminate methods.
Private Sub Class_Initialize()

 ' Load resources.

 Set m_pBitmap = LoadResPicture("Date", vbResBitmap)

 ' Create a HookHelper.

 Set m_pHookHelper = New HookHelper

End Sub

Private Sub Class_Terminate()

 ' Clear variables.

 Set m_pHookHelper = Nothing

 Set m_pBitmap = Nothing

End Sub

BUILDING APPLICATIONS WITH ACTIVEX

The command class is implemented in a
separate ActiveX DLL project rather than inside
the ActiveX EXE project, because the command

will not become a COM class unless it is in a
DLL.

This scenario’s source code is located at
<install_location>\DeveloperKit\samples\
Developer_Guide_Scenarios\Building_an_

ArcGIS_Controls_Map_Viewer_
ApplicationVisual_Basic.zip.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM295

296 • ArcGIS Engine Developer Guide

9. You now need to stub out all of the properties and events of the ICommand
interface, even if you are not going to use some of these. Add the following
code to the ICommand properties and methods.
Private Property Get ICommand_Bitmap() As esriSystem.OLE_HANDLE

 ICommand_Bitmap = m_pBitmap

End Property

Private Property Get ICommand_Caption() As String

 ICommand_Caption = "Add Date"

End Property

Private Property Get ICommand_Category() As String

 ICommand_Category = "CustomCommands"

End Property

Private Property Get ICommand_Checked() As Boolean

 ICommand_Checked = False

End Property

Private Property Get ICommand_Enabled() As Boolean

 If Not m_pHookHelper.ActiveView Is Nothing Then

 ICommand_Enabled = True

 Else

 ICommand_Enabled = False

 End If

End Property

Private Property Get ICommand_HelpContextID() As Long

 ' Not implemented

End Property

Private Property Get ICommand_HelpFile() As String

 ' Not implemented

End Property

Private Property Get ICommand_Message() As String

 ICommand_Message = "Adds a date element to the page layout"

End Property

Private Property Get ICommand_Name() As String

 ICommand_Name = "CustomCommands_Add Date"

End Property

Private Sub ICommand_OnClick()

 ' Not implemented

End Sub

Private Sub ICommand_OnCreate(ByVal Hook As Object)

 Set m_pHookHelper.Hook = Hook

End Sub

BUILDING APPLICATIONS WITH ACTIVEX

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM296

Chapter 6 • Developer scenarios • 297

Private Property Get ICommand_Tooltip() As String

 ICommand_Tooltip = "Add date"

End Property

10. You now need to stub out all of the properties and events of the ITool inter-
face, even if you are not going to use some of these. Add the following code
to the ITool properties and methods:
Private Property Get ITool_Cursor() As esriSystem.OLE_HANDLE

 ' Not implemented

End Property

Private Function ITool_Deactivate() As Boolean

 ITool_Deactivate = True

End Function

Private Function ITool_OnContextMenu(ByVal x As Long, ByVal y As Long) As
Boolean

 ' Not implemented

End Function

Private Sub ITool_OnDblClick()

 ' Not implemented

End Sub

Private Sub ITool_OnKeyDown(ByVal keyCode As Long, ByVal shift As Long)

 ' Not implemented

End Sub

Private Sub ITool_OnKeyUp(ByVal keyCode As Long, ByVal shift As Long)

 ' Not implemented

End Sub

Private Sub ITool_OnMouseDown(ByVal button As Long, ByVal shift As Long,
ByVal x As Long, ByVal y As Long)

 ' Get the active view.

 Dim pActiveView As IActiveView

 Set pActiveView = m_pHookHelper.ActiveView

 ' Create a new text element.

 Dim pTextElement As ITextElement

 Set pTextElement = New TextElement

 ' Create a text symbol.

 Dim pTextSymbol As ITextSymbol

 Set pTextSymbol = New TextSymbol

 ' Create a font.

 Dim pFont As stdole.StdFont

 Set pFont = New stdole.StdFont

 pFont.Name = "Arial"

 pFont.Bold = True

 pFont.Size = 25

BUILDING APPLICATIONS WITH ACTIVEX

The ICommand_OnCreate event is passed a
handle or hook to the application that the

command will work with. In this case it can be a
MapControl, PageLayoutControl, or

ToolbarControl. Rather than adding code into
the OnCreate event to determine the type of
hook that is being passed to the command, you

will use the HookHelper to handle this. A
command or tool needs to know how to handle
the hook it gets passed, so a check is needed to

determine the type of ArcGIS Control that has
been passed. The HookHelper is used to hold the
hook and return the ActiveView regardless of the

type of hook (in this case a MapControl,
PageLayoutControl, or ToolbarControl).

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM297

298 • ArcGIS Engine Developer Guide

 ' Set the symbol properties.

 pTextSymbol.Font = pFont

 ' Set the text element properties.

 pTextElement.Symbol = pTextSymbol

 pTextElement.Text = Date

 ' QI for IElement

 Dim pElement As IElement

 Set pElement = pTextElement

 ' Create a page point.

 Dim pPoint As IPoint

 Set pPoint = pActiveView.ScreenDisplay.DisplayTransformation.ToMapPoint(x, y)

 ' Set the elements geometry.

 pElement.Geometry = pPoint

 ' Add the element to the graphics container.

 pActiveView.GraphicsContainer.AddElement pTextElement, 0

 ' Refresh the graphics.

 pActiveView.PartialRefresh esriViewGraphics, Nothing, Nothing

End Sub

Private Sub ITool_OnMouseMove(ByVal button As Long, ByVal shift As Long,
ByVal x As Long, ByVal y As Long)

 ' Not implemented

End Sub

Private Sub ITool_OnMouseUp(ByVal button As Long, ByVal shift As Long,
ByVal x As Long, ByVal y As Long)

 ' Not implemented

End Sub

Private Sub ITool_Refresh(ByVal hdc As esriSystem.OLE_HANDLE)

 ' Not implemented

End Sub

11. You now need to compile your project into an ActiveX DLL. Give it the
name ControlCommands.dll.

12. Register the ControlCommands.dll.

13. In the Visual Basic Standard executable project that you created at the begin-
ning of this scenario, select the Form_Load event and add the following code
after the code to add the map navigation commands.
Private Sub Form_Load()

 ' Add Map navigation commands…

 ' Add custom date tool.

 sProgID = "EngineScenarioCommands.AddDateTool"

 ToolbarControl1.AddItem sProgID, , , True, , esriCommandStyleIconAndText

BUILDING APPLICATIONS WITH ACTIVEX

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM298

Chapter 6 • Developer scenarios • 299

 ' Create a new ToolbarMenu…

End Sub

14. Run the application and use the AddDateTool to add a text element to the
PageLayoutControl containing today’s date.

Customizing the ToolbarControl
In addition to adding control commands and tools to the ToolbarControl in the
Form_Load event, you can also add them by customizing the ToolbarControl and
using the Customize dialog box. To do this you will place the ToolbarControl in
customize mode and display the Customize dialog box.

1. Add the following code to the general declarations area of the form:
Option Explicit

Private m_pToolbarMenu As IToolbarMenu

Private m_pEnvelope As IEnvelope

Private m_pFillSymbol As IFillSymbol

Private WithEvents m_pTransformEvents As DisplayTransformation

Private WithEvents m_pCustomizeDialogEvents As CustomizeDialog
' The customize dialog events

Private m_pCustomizeDialog As ICustomizeDialog
' The customize dialog box used by the ToolbarControl

2. Add a new subroutine called CreateCustomizeDialog and add the following code
to it. This is where you will create the Customize dialog box. Add the follow-
ing code to the subroutine:
Private Sub CreateCustomizeDialog()

 Set m_pCustomizeDialog = New CustomizeDialog

 Set m_pCustomizeDialogEvents = m_pCustomizeDialog

 ' Set the title.

 m_pCustomizeDialog.DialogTitle = "Customize ToolbarControl Items"

 ' Show the Add from File button.

BUILDING APPLICATIONS WITH ACTIVEX

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM299

300 • ArcGIS Engine Developer Guide

 m_pCustomizeDialog.ShowAddFromFile = True

 ' Set the ToolbarControl that new items will be added to.

 m_pCustomizeDialog.SetDoubleClickDestination ToolbarControl1

End Sub

3. Call the CreateCustomizeDialog subroutine from the Form_Load event before
the call to the CreateOverviewSymbol subroutine.
Private Sub Form_Load()

 ' Create the customize dialog box for the ToolbarControl.

 CreateCustomizeDialog

 ' Create symbol used on the MapControl…

End Sub

4. Add a check box to the Form and give it the name “chkCustomize” and the
caption “Customize”.

5. Add the following code to the chkCustomize_Click event.
Private Sub chkCustomize_Click()

 ' Show or hide the customize dialog box.

 If chkCustomize.Value = 0 Then

 m_pCustomizeDialog.CloseDialog

 Else

 m_pCustomizeDialog.StartDialog ToolbarControl1.hWnd

 End If

End Sub

6. Add the following code to the m_pCustomizeDialogEvents_OnCloseDialog
and m_pCustomizeDialogEvents_OnStartDialog events.
Private Sub m_pCustomizeDialogEvents_OnCloseDialog()

 ToolbarControl1.Customize = False

 chkCustomize.Value = 0

End Sub

Private Sub m_pCustomizeDialogEvents_OnStartDialog()

 ToolbarControl1.Customize = True

End Sub

7. Run the application and check the Customize box to put the ToolbarControl
into customize mode and open the Customize dialog box.

8. On the Commands tab select the Graphic Element category and double-click
the Select Elements command to add it to the ToolbarControl. By right-

BUILDING APPLICATIONS WITH ACTIVEX

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM300

Chapter 6 • Developer scenarios • 301

clicking an item on the ToolbarControl, you can adjust its appearance in terms
of style and grouping.

9. Stop customizing the application. Use the select tool to move the text element
containing today’s date.

BUILDING APPLICATIONS WITH ACTIVEX

In the Customize dialog box the Add From File
button could be used to browse to and select
the Control Commands.dll file you compiled

earlier. The AddDateTool will be added to the
Customize dialog box under the

CustomCommands category.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM301

302 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH ACTIVEX

When developing a standalone executable using
ESRI ArcObjects, it is the responsibility of the

application to check and configure the licensing
options. A license can be configured either using

the LicenseControl or using the coclass
AoInitialize and the IAoInitialize interface it

implements that are designed to support license
configuration. License initialization must be

performed at application start time, before any
ArcObjects functionality is accessed. Failure to do

so will result in application errors. For more
information about licensing see the ‘Licensing

and deployment’ chapter.

LICENSE CONFIGURATION AND DEPLOYMENT

To successfully deploy this application onto another machine, the application
must configure a license. First, it must check that the product license is available,
and second, it must initialize the license. If this license configuration fails, the
application cannot run. License configuration can be performed either using the
LicenseControl or programmatically using the AoInitialize object. For the purpose
of this application, the LicenseControl will be used to handle license configura-
tion.

1. Open the Visual Basic Form.

2. Double-click the LicenseControl button in the Visual Basic toolbox to add the
LicenseControl to the form.

3. Right-click on LicenseControl and click Properties to open the LicenseControl
property pages.

4. Check the ArcGIS Engine product license and check ‘Shutdown this applica-
tion if the selected licenses are not available’. Click OK.

5. Compile the application into an executable.

The LicenseControl will appear on a form at
design time so that it can be selected and its

property pages viewed. However, at runtime the
LicenseControl is invisible so its position on the

form is irrelevant.

This application can be initialized with an ArcGIS
Engine license, but you may optionally initialize

the application with a higher product license. For
example, if you check the ‘ArcGIS Engine’ license
and the ‘ArcView’ license, the LicenseControl will

initially try to initialize the application with an
ArcGIS Engine license (the lower license). If that

license is not available, the LicenseControl will
try to initialize the application with an ArcView
license (the next higher level license checked). If

no product licenses are available, then the
application will fail to initialize.

In this application the LicenseControl will handle
license initialization failure. If the application
cannot be initialized with an ‘ArcGIS Engine’

product license, a License Failure dialog box will
be displayed to the user before the application is

automatically shut down. Alternatively, a
developer can handle license initialization failure

using the ILicenseControl interface members
to obtain information on the nature of the

failure before the application is programmatically
shut down.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM302

Chapter 6 • Developer scenarios • 303

BUILDING APPLICATIONS WITH ACTIVEX

To successfully deploy this application onto a user’s machine:

• The application’s executable and the DLL containing the custom command
will need to be deployed onto the user’s machine.

• The user’s machine will need an installation of the ArcGIS Engine Runtime
and a standard ArcGIS Engine license.

ADDITIONAL RESOURCES

The following resources may help you understand and apply the concepts and
techniques presented in this scenario.

• Additional documentation available in the ArcGIS Engine Developer Kit
including ArcGIS Developer Help, component help, object model diagrams,
and samples to help you get started.

• ArcGIS Developer Online—Web site providing the most up-to-date informa-
tion for ArcGIS Developers including updated samples and technical docu-
ments. Go to http://arcgisdeveloperonline.esri.com.

• ESRI online discussion forums—Web sites providing invaluable assistance
from other ArcGIS developers. Go to http://support.esri.com and click the User
Forums tab.

• Microsoft documentation on the Visual Basic 6 development environment.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM303

304 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

This walkthrough is for developers who want to build and deploy an application
using visual Java components. It describes the process of building and deploying
an application using the visual JavaBeans available in the ArcGIS Engine Devel-
oper Kit.

On Windows you can find this sample in:
<install_location>\DeveloperKit\samples\Developer_Guide_Scenarios\
Building_an_ArcGIS_Controls_Map_Viewer_ApplicationJava.zip

On Solaris and Linux you can find the sample in:
<install_location>/developerkit/samples/Developer_Guide_Scenarios/
Building_an_ArcGIS_Controls_Map_Viewer_ApplicationJava.zip

PROJECT DESCRIPTION

This scenario demonstrates the steps required to create a GIS application for
viewing preauthored ESRI map documents, or MXDs. The scenario covers the
following techniques:

• Setting up the development environment

• Building a GUI using the visual components

• Loading map documents

• Adding commands to the toolbar

• “Buddying up” the ToolbarBean and TOCBean

• Adding toolbar items to the ToolbarBean

• Creating a popup menu using ToolbarMenu

• Controlling Label Editing in the TOCBean component

• Drawing an overview rectangle on the MapBean

• Creating a custom tool

• Customizing the ToolbarBean

• Deploying using an executable JAR

CONCEPTS

The ArcGIS Engine Developer Kit provides reusable visual Java components
corresponding to each ArcGIS Control. This developer scenario will show how
these components can be embedded in a Java GUI to build a map viewer applica-
tion.

The visual components provided by the ArcGIS Engine Developer Kit are heavy-
weight AWT components that conform to the JavaBeans component architecture,
allowing them to be used as drag-and-drop components for designing Java GUIs
in JavaBeans-compatible IDEs. Each component has certain properties and
methods and is capable of firing events. Internally, the Java components use JNI
to host the ArcGIS controls, thereby providing nearly the same speed of execu-
tion as any native application built using the controls. By assembling the ArcGIS
Engine visual components in a Java application and ‘wiring them up’ with each
other and with other ArcObjects components, custom GIS applications can be
rapidly built and deployed on supported ArcGIS Engine platforms.

Rather than walk through this scenario, you can
get the completed application from the samples

installation location. The sample is installed as
part of the ArcGIS developer samples.

The ArcGIS developer samples are not included
in the typical installation of the ArcGIS Engine

Developer Kit. If you don’t have them installed,
rerun the Developer Kit Install wizard, click

Custom or Modify, and click the samples feature
under Software developer kit.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM304

Chapter 6 • Developer scenarios • 305

DESIGN

In this application, the MapBean, PageLayoutBean, TOCBean, and ToolbarBean
components are placed inside a javax.swing.JFrame container and interact with
each other and with other ArcGIS Engine objects to provide GIS viewing capa-
bility. The MapBean serves as an overview map in the corner of the application,
while the PageLayoutBean is the visual centerpiece.

The scenario starts with building a GUI using the BorderLayout layout manager
to position the components. Once the components are added to the JFrame
container, they are connected with each other using the setBuddy method. At this
stage, the application is ready to function as a simple map viewer.

The scenario then extends the functionality of the simple map viewer by building
custom tools and demonstrating event handling. To achieve this, it explores the
API of the visual and other nonvisual ArcGIS Engine components further.

While the components can be used as drag-and-drop JavaBeans in a Java IDE
supporting visual GUI design, in this scenario, the components will be program-
matically placed; this gives a better understanding of the code. For information
on using the components as drag-and-drop beans, refer to ArcGIS Developer
Help.

REQUIREMENTS

To successfully follow this scenario you need the following (the requirements for
deployment are covered later in the ‘Deployment’ section):

• An installation of the ArcGIS Engine Developer Kit (including Java) with an
authorization file enabling it for development use.

• An installation of the Java 2 Platform, Standard Edition Software Develop-
ment Kit, preferably 1.4.2 or later. If you don’t already have one available,
download it from the Java Web site at http://java.sun.com/j2se/downloads.html.

• A Java IDE of your choice or your favorite text editor.

• A beginner to intermediate knowledge of the Java programming language.

• While no experience with other ESRI software is required, previous experi-
ence with ArcObjects and a basic understanding of maps are advantageous.

• Access to the sample data and solution code that comes with this scenario.
<install_location>\DeveloperKit\samples\Developer_Guide_Scenarios\
Building_an_ArcGIS_Controls_Map_Viewer_ApplicationJava.zip

To build this application, the following visual components from the ArcGIS
Engine Developer Kit will be used:

• map.MapBean

• pagelayout.PageLayoutBean

• TOC.TOCBean

• toolbar.ToolbarBean

• toolbar.ToolbarMenu

In the Java API, these are prefixed by ‘com.esri.arcgis.beans’.

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

The visual JavaBeans are not included in the
typical installation of the ArcGIS Engine Devel-

oper Kit. If you do not have them installed, rerun
the Developer Kit Install wizard, click Custom or

Modify, and click the Java feature under ArcGIS
Engine. In addition, for access to the Javadoc and
other Java-specific documentation, click the Java

feature under Software developer kit.

The ArcGIS developer samples are not included
in the typical installation of the ArcGIS Engine

Developer Kit. If you do not have them installed,
rerun the Developer Kit Install wizard, click

Custom or Modify, and click the samples feature
under Software Developer Kit.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM305

306 • ArcGIS Engine Developer Guide

In addition, objects from the following libraries will be used:

• Carto • Geometry • Control commands

• Display • SystemUI

In the Java API, their package names are prefixed by ‘com.esri.arcgis’.

To reference the above-mentioned packages, the following JAR files must be
added to your class path:

• arcobjects.jar, located at <install_location>\ArcGIS\java\opt

• arcgis_visualbeans.jar, located at <install_location>\ArcGIS\java\opt

• jintegra.jar, located at <install_location>\ArcGIS\java

IMPLEMENTATION

To implement this scenario follow the steps below. While the scenario specifically
uses the Gulf of St. Lawrence map document installed with the samples, you can
use your own map document instead. The implementation below provides you
with all the code you will need to successfully complete the scenario. It doesn’t
provide step-by-step instructions to develop applications in Java, as it assumes
that you have a working knowledge of the development environment already.

Setting up the development environment
To compile and run applications using the ArcGIS Engine Developer Kit, your
development environment should be set up as described in the Java API section
of Chapter 4, ‘Developer environments’.

Building a GUI using the visual components
1. Create a new file called MapViewerFrame.java. The MapViewerFrame class

will provide the GUI and functionality of the map viewer application. Imple-
ment this class as a subclass of javax.swing.JFrame.
// MapViewerFrame.java

import java.io.IOException;

import javax.swing.JFrame;

public class MapViewerFrame extends JFrame {

// Constructor

public MapViewerFrame() {

setTitle("MapViewer");

}

public void buildAndShow() throws IOException {

this.setVisible(true);

 }

} // end MapViewerFrame class

2. Create a new file called MapViewer.java. This will provide the main method,
which will construct the MapViewerFrame, give it an initial size, and launch
it:
// MapViewer.java

import java.awt.Dimension;

import java.awt.Toolkit;

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

Use your favorite text editor or IDE to write
your source code.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM306

Chapter 6 • Developer scenarios • 307

import java.awt.event.WindowAdapter;

import java.awt.event.WindowEvent;

import java.io.IOException;

import javax.swing.UIManager;

import com.esri.arcgis.system.AoInitialize;

import com.esri.arcgis.system.EngineInitializer;

import com.esri.arcgis.system.esriLicenseProductCode;

public class MapViewer {

static {

String laf = UIManager.getSystemLookAndFeelClassName();

try {

 UIManager.setLookAndFeel(laf);

 } catch (Exception e) {

 // Ignore

 }

 }

 public static void main(String[] args) throws IOException {

EngineInitializer.initializeVisualBeans();

final AoInitialize aoInit = new AoInitialize();

aoInit.initialize(

esriLicenseProductCode.esriLicenseProductCodeEngine);

MapViewerFrame mapViewerFrame = new MapViewerFrame();

Dimension d = Toolkit.getDefaultToolkit().getScreenSize();

int x = d.width/6;

int y = d.height/6;

int width = d.width*2/3;

int height = d.height*2/3;

mapViewerFrame.setBounds(x, y, width, height);

mapViewerFrame.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {

try {

aoInit.shutdown();

} catch (IOException ex) {

ex.printStackTrace();

}

System.exit(0);

}

});

 mapViewerFrame.buildAndShow();

 }

} // end MapViewer class

3. At this stage you should be able to compile both the MapViewerFrame and
MapViewer Java files. To do so, the Java compiler needs to be told where to
find the referenced Java classes. This is done by specifying the class path.

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

Any application that uses visual JavaBeans
components of the ArcGIS Engine Developer Kit

should include the following three JAR files in its
class path:

…\ArcGIS\java\opt\arcobjects.jar
…\ArcGIS\java\opt\arcgis_ visualbeans.jar

…\ArcGIS\java\jintegra.jar

These files provide the runtime libraries needed
for accessing ArcObjects from Java.

When using a Java IDE, the class path is typically
set by adding the above-mentioned JAR files as

referenced libraries in the Java build path.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM307

308 • ArcGIS Engine Developer Guide

To compile using the command line, use the “cd” command to change to the
directory containing the MapViewerFrame and MapViewer Java code and give
a command similar to:
javac -classpath

<ArcGIS_installation_directory>\java\opt\arcgis_visualbeans.jar;
<ArcGIS_installation_directory>\java\opt\arcobjects.jar;
<ArcGIS_installation_directory>\java\jintegra.jar;. *.java

This compiles the Java program and produces a MapViewerFrame.class and a
MapViewer.class file. If you get NoClassDefFoundError, double-check your class
path and make sure it includes all three required JAR files—arcobjects.jar, arcgis_
visualbeans.jar, and jintegra.jar.

4. Launch the MapViewer class and make sure a blank Java frame comes up
before proceeding to the next step.

5. Next, add member variables for the components to be added to the
MapViewerFrame class and create these components in the constructor.
// MapViewerFrame.java

import java.io.IOException;

import javax.swing.JFrame;

// Add new imports for this step:

import javax.swing.JLabel;

import java.awt.BorderLayout;

import java.awt.Dimension;

import javax.swing.JPanel;

import com.esri.arcgis.beans.TOC.TOCBean;

import com.esri.arcgis.beans.map.MapBean;

import com.esri.arcgis.beans.pagelayout.PageLayoutBean;

import com.esri.arcgis.beans.toolbar.ToolbarBean;

public class MapViewerFrame extends JFrame {

 PageLayoutBean pageLayout;

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

To run the Java program, click the Run button in
your IDE or give the following command from

the command line:

java -classpath
<ArcGIS_installation_directory>\java\
opt\arcgis_visualbeans.jar;
<ArcGIS_installation_directory>\java\opt\
arcobjects.jar;
<ArcGIS_installation_directory>\java\
jintegra.jar;. MapViewer

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM308

Chapter 6 • Developer scenarios • 309

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

 MapBean map;

 TOCBean toc;

 ToolbarBean toolbar;

 JLabel statusLabel;

 // Constructor

public MapViewerFrame() {

 setTitle("MapViewer");

 pageLayout = new PageLayoutBean();

 map = new MapBean();

 toc = new TOCBean();

 toolbar = new ToolbarBean();

 statusLabel = new JLabel(" ");

6. In the MapViewerFrame user interface, the toolbar component will occupy
BorderLayout.NORTH, and the pageLayout component will occupy the
BorderLayout.CENTER position.

The BorderLayout.WEST position will be occupied by both the TOC and map
components. To achieve this, create a new method to build a JPanel contain-
ing the two controls with the desired layout:
// New method to build the left panel

private JPanel buildMapTOCPanel() {

JPanel leftPanel = new JPanel();

JPanel bottomPanel = new JPanel();

leftPanel.setLayout(new BorderLayout());

bottomPanel.setLayout(new BorderLayout());

bottomPanel.setPreferredSize(new Dimension(200,200));

bottomPanel.add(map, BorderLayout.CENTER);

leftPanel.add(toc, BorderLayout.CENTER);

leftPanel.add(bottomPanel, BorderLayout.SOUTH);

return leftPanel;

}

7. In the BorderLayout.SOUTH position of the MapViewerFrame, add a JLabel
to act as a status bar. The buildAndShow() method should look like the
following once you have updated it with all layout locations:
public void buildAndShow()throws IOException {

JPanel mapTOCPanel = buildMapTOCPanel();

this.getContentPane().add(toolbar, BorderLayout.NORTH);

this.getContentPane().add(pageLayout, BorderLayout.CENTER);

this.getContentPane().add(mapTOCPanel, BorderLayout.WEST);

this.getContentPane().add(statusLabel, BorderLayout.SOUTH);

this.setVisible();

}

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM309

310 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

8. Compile and run the application to confirm that the GUI has been laid out as
shown:

A standard Java layout manager (BorderLayout) has been used to position the
components. It manages the layout and sizes of the components for you. You
should be able to resize the window and see that the components get updated
appropriately without requiring any explicit resizing code.

Loading map documents
1. Now that the components have been added, you can load map documents into

the controls. To do this, add the following imports to MapViewerFrame.java:
import com.esri.arcgis.beans.pagelayout.IPageLayoutControlEventsAdapter;

import
com.esri.arcgis.beans.pagelayout.IPageLayoutControlEventsOnPageLayoutReplacedEvent;

2. Add the following code to the end of the buildAndShow method, just before
the call to this.setVisible.
public void buildAndShow() throws IOException {

. . .

. . .

addEventListeners();

// Load a preauthored map document into the PageLayout bean.

String documentPath = new java.io.File("../../../../../../data/
arcgis_engine_developer_guide/gulf of st. lawrence.mxd").getAbsolutePath();

if (pageLayout.checkMxFile(documentPath))

pageLayout.loadMxFile(documentPath,null);

this.setVisible(true);

2. When the document is loaded into the pageLayout bean, an
onPageLayoutReplaced event is generated. You will add code to load the same
map document in the map component in response to this event. In the
addEventListeners() method, add the event listener to the pageLayout compo-
nent for the onPageLayoutReplaced event, as an anonymous inner class, using
IPageLayoutControlEventsAdapter.

For cross-platform compatibility, the filenames
and pathnames used to store data must be

lowercased for Solaris and Linux.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM310

Chapter 6 • Developer scenarios • 311

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

public void addEventListeners() throws IOException {

pageLayout.addIPageLayoutControlEventsListener(

new IPageLayoutControlEventsAdapter() {

 public void onPageLayoutReplaced(

 IPageLayoutControlEventsOnPageLayoutReplacedEvent evt)

 throws IOException{

 map.loadMxFile(pageLayout.getDocumentFilename(), null, null);

 map.setExtent(map.getFullExtent());

 }

});

}

Buddying up the ToolbarBean and TOCBean
Although the components have been added to the JFrame, they do not yet ‘know
about each other’. For the controls to work in sync with each other, the TOC and
toolbar components should know the control with which they are associated.
Otherwise, the toolbar component will not know which component it is ‘con-
trolling’, and the TOC component will not know which component’s table of
contents it should display.

To set up this communication between the components, add the following code
to the buildAndShow() method after the load document code.

public void buildAndShow() throws IOException {

. . .

 // Load a preauthored map document on the pageLayout component.

 String documentPath = new java.io.File(

"../../data/gulf of st. lawrence.mxd").getAbsolutePath();

 if (pageLayout.checkMxFile(documentPath))

pageLayout.loadMxFile(documentPath,null);

 // Set buddy controls to wire up the TOC and Toolbar Beans

 // with the PageLayout Bean.

 toc.setBuddyControl(pageLayout);

toolbar.setBuddyControl(pageLayout);

} this.setVisible(true);

Adding commands to the toolbar
The toolbar control has been added to the user interface. By default, this control
is not populated with any tools. You will begin to add tools in the following
steps.

The ArcGIS Engine Developer Kit comes with more than 120 commands and
tools that work with the MapBean, the PageLayoutBean, and the ToolbarBean.
These commands and tools provide a lot of frequently used GIS functionality for
map navigation, graphics management, and feature selection. You will now add
some of these commands and tools to your application.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM311

312 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

1. To add the prebuilt toolbar commands, add the following imports to
MapViewerFrame.java:
import com.esri.arcgis.controlcommands.ControlsMapFullExtentCommand;

import com.esri.arcgis.controlcommands.ControlsMapPanTool;

import com.esri.arcgis.controlcommands.ControlsMapZoomInTool;

import com.esri.arcgis.controlcommands.ControlsMapZoomOutTool;

import com.esri.arcgis.controlcommands.ControlsOpenDocCommand;

import com.esri.arcgis.controlcommands.ControlsPagePanTool;

import com.esri.arcgis.controlcommands.ControlsPageZoomInTool;

import com.esri.arcgis.controlcommands.ControlsPageZoomOutTool;

import
com.esri.arcgis.controlcommands.ControlsPageZoomPageToLastExtentBackCommand;

import
com.esri.arcgis.controlcommands.ControlsPageZoomPageToLastExtentForwardCommand;

import com.esri.arcgis.controlcommands.ControlsPageZoomWholePageCommand;

import com.esri.arcgis.systemUI.esriCommandStyles;

2. In the buildAndShow() method, add the prebuilt commands to the toolbar
before the addEventListeners() call:
// Add generic commands to the toolbar

toolbar.addItem(new ControlsOpenDocCommand(), 0, -1, false, 0,
esriCommandStyles.esriCommandStyleIconOnly);

toolbar.addItem(new ControlsPageZoomInTool(), 0, -1, false, 0,
esriCommandStyles.esriCommandStyleIconOnly);

toolbar.addItem(new ControlsPageZoomOutTool(), 0, -1, false, 0,
esriCommandStyles.esriCommandStyleIconOnly);

toolbar.addItem(new ControlsPagePanTool(), 0, -1, false, 0,
esriCommandStyles.esriCommandStyleIconOnly);

toolbar.addItem(new ControlsPageZoomWholePageCommand(), 0, -1,
false, 0, esriCommandStyles.esriCommandStyleIconOnly);

toolbar.addItem(new ControlsPageZoomPageToLastExtentBackCommand(),
0, -1, false, 0,
esriCommandStyles.esriCommandStyleIconOnly);

toolbar.addItem(new
ControlsPageZoomPageToLastExtentForwardCommand(), 0,
-1, false, 0,
esriCommandStyles.esriCommandStyleIconOnly);

toolbar.addItem(new ControlsMapZoomInTool(), 0, -1, false, 0,
esriCommandStyles.esriCommandStyleIconOnly);

toolbar.addItem(new ControlsMapZoomOutTool(), 0, -1, false, 0,
esriCommandStyles.esriCommandStyleIconOnly);

toolbar.addItem(new ControlsMapPanTool(), 0, -1, false, 0,
esriCommandStyles.esriCommandStyleIconOnly);

toolbar.addItem(new ControlsMapFullExtentCommand(), 0, -1, false,
0, esriCommandStyles.esriCommandStyleIconOnly);

addEventListeners();

// Load a preauthored map document on the pageLayout component.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM312

Chapter 6 • Developer scenarios • 313

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

3. Run the application.

The map document has been loaded into the pageLayout component, and the
toc component lists the data layers in the map document. Use the toc compo-
nent to toggle layer visibility. By default, the focus map of the map document
is loaded into the map component. Also note that the commands have been
added to the toolbar component.

Creating popup menu using ToolbarMenu
ArcGIS Engine provides a ToolbarMenu component that can be used to add
popup menus to other components, such as MapBean and PageLayoutBean. In
this step, you will add a popup menu to the pageLayout component. The popup
menu will contain prebuilt commands from the com.esri.arcgis.controlcommands
package.

To display the popup menu, an event handler will be added to the pageLayout
component for the onMouseDown event. If the right mouse button is clicked,
the menu will be displayed.

1. Add the following imports to MapViewerFrame.java:
import com.esri.arcgis.beans.toolbar.ToolbarMenu;

import
com.esri.arcgis.beans.pagelayout.IPageLayoutControlEventsOnMouseDownEvent;

import com.esri.arcgis.controlcommands.ControlsPageZoomInFixedCommand;

import com.esri.arcgis.controlcommands.ControlsPageZoomOutFixedCommand;

2. Add a member variable for the ToolbarMenu as shown below:
public class MapViewerFrame extends JFrame{

PageLayoutBean pageLayout;

MapBean map;

TOCBean toc;

ToolbarBean toolbar;

ToolbarMenu popupMenu;

JLabel statusLabel;

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM313

314 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

3. Construct the popupMenu object in a try/catch block:
// Constructor

public MapViewerFrame(){

 setTitle("MapViewer");

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 pageLayout = new PageLayoutBean();

 map = new MapBean();

 toc = new TOCBean();

 toolbar = new ToolbarBean();

 try {

popupMenu = new ToolbarMenu();

 } catch (IOException e) {

e.printStackTrace();

 }

statusLabel = new JLabel(" ");

}

4. Add prebuilt commands from the com.esri.arcgis.controlcommands package to
the popupMenu component, before adding generic commands in the
buildAndShow() method:
// Add popup menu items.

popupMenu.addItem(new ControlsPageZoomInFixedCommand(), 0, -1,
false, esriCommandStyles.esriCommandStyleIconAndText);

popupMenu.addItem(new ControlsPageZoomOutFixedCommand(), 0, -1,
false, esriCommandStyles.esriCommandStyleIconAndText);

popupMenu.addItem(new ControlsPageZoomWholePageCommand(), 0, -1,
false, esriCommandStyles.esriCommandStyleIconAndText);

popupMenu.addItem(new ControlsPageZoomPageToLastExtentBackCommand(), 0, -1,
false, esriCommandStyles.esriCommandStyleIconAndText);

popupMenu.addItem(new ControlsPageZoomPageToLastExtentForwardCommand(),
0, -1, false, esriCommandStyles.esriCommandStyleIconAndText);

 // Add generic commands to the toolbar.

 . . .

5. Associate the popupMenu with the pageLayout component, along with the
code that sets up the buddy controls, in the buildAndShow() method:
// Set buddy controls to wire up the TOC and ToolbarBean

// with the pageLayout object.

toc.setBuddyControl(pageLayout);

toolbar.setBuddyControl(pageLayout);

popupMenu.setHook(pageLayout);

setVisible(true);

}

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM314

Chapter 6 • Developer scenarios • 315

6. In the addEventListeners() method, add an event listener to the pageLayout
component for the onMouseDown event, as an anonymous inner class, using
IPageLayoutControlEventsAdapter:
pageLayout.addIPageLayoutControlEventsListener(

new IPageLayoutControlEventsAdapter(){

public void onPageLayoutReplaced(
IPageLayoutControlEventsOnPageLayoutReplacedEvent evt)
throws IOException{

 map.loadMxFile(pageLayout.getDocumentFilename(), null, null);

 map.setExtent(map.getFullExtent());

 }

public void onMouseDown(IPageLayoutControlEventsOnMouseDownEvent
evt) throws IOException {

 // If Right mouse button(2) is pressed, display the popup menu.

 if(evt.getButton() == 2)

 popupMenu.popupMenu(evt.getX(), evt.getY(), pageLayout.getHWnd());

}

});

7. Run the application.

Right-click the pageLayout component to display the popup menu, and navi-
gate around the page layout.

Controlling label editing in the TOCBean
By default, the TOCBean allows users to automatically toggle the visibility of
layers and to change map and layer names as they appear in the table of contents.
You will add code to prevent users from editing a name and replacing it with an
empty string.

1. Add the following imports to MapViewerFrame.java for classes used in this
step:
import com.esri.arcgis.beans.TOC.ITOCControlEventsAdapter;

import com.esri.arcgis.beans.TOC.ITOCControlEventsOnEndLabelEditEvent;

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM315

316 • ArcGIS Engine Developer Guide

import com.esri.arcgis.beans.TOC.esriTOCControlEdit;

2. In the buildAndShow() method, set the labelEdit to manual:
. . .

// Set label editing to manual.

toc.setLabelEdit(esriTOCControlEdit.esriTOCControlManual);

// Add popup menu items.

. . .

3. In the addEventListeners() method, add an event listener to the toc compo-
nent for the onEndLabelEdit event, as an anonymous inner class, using
ITOCControlEventsAdapter. After adding this, your addEventListeners()
method should look like this:
private void addEventListeners() throws IOException {

 . . .

toc.addITOCControlEventsListener(new ITOCControlEventsAdapter(){

 public void onEndLabelEdit(
ITOCControlEventsOnEndLabelEditEvent labelEditEvt)
throws IOException {

String newLabel = labelEditEvt.getNewLabel();

// If the new label is an empty string, prevent the edit.

if (newLabel.equals(""))

labelEditEvt.setCanEdit(false);

}

});

}

4. Run the application. To edit a map, layer, heading, or legend class label in the
toc component, click it once, then click it a second time to invoke label
editing. Try replacing the label with an empty string. You will be able to re-
place the label with strings other than an empty string. You can use the Esc
key on the keyboard at any time during the edit to cancel it.

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM316

Chapter 6 • Developer scenarios • 317

Drawing an overview rectangle on the MapBean
You will now use the map component as an overview window and draw on its
display the current extent of the focus map within the pageLayout component.
As you navigate around the data within the data frame of the pageLayout com-
ponent, you will see the map component’s overview window update.

1. Add the following imports to MapViewerFrame.java for classes used in this
step:
import com.esri.arcgis.beans.map.IMapControlEvents2Adapter;

import com.esri.arcgis.beans.map.IMapControlEvents2OnAfterDrawEvent;

import com.esri.arcgis.beans.pagelayout.
IPageLayoutControlEventsOnPageLayoutReplacedEvent;

import com.esri.arcgis.carto.Map;

import com.esri.arcgis.carto.esriViewDrawPhase;

import com.esri.arcgis.display.DisplayTransformation;

import com.esri.arcgis.display.ITransformEventsAdapter;

import com.esri.arcgis.display.ITransformEventsVisibleBoundsUpdatedEvent;

import com.esri.arcgis.display.RgbColor;

import com.esri.arcgis.display.SimpleFillSymbol;

import com.esri.arcgis.display.SimpleLineSymbol;

import com.esri.arcgis.geometry.IEnvelope;

2. Add the following class members to MapViewerFrame:
public class MapViewerFrame extends JFrame {

 SimpleFillSymbol fillSymbol; // The symbol used to draw the envelope

 IEnvelope currentExtent; // The envelope drawn on the MapBean

 Map focusMap; // The PageLayoutBean's focus map

 PageLayoutBean pageLayout;

. . .

3. Create a new private method called createOverviewSymbol(). This is where
you will create the symbol used in the map control to represent the extent of
the data in the pageLayout Bean. Add the following method:
private void createOverviewSymbol() throws IOException{

 RgbColor color = new RgbColor();

 color.setRed(255);

 color.setGreen(0);

 color.setBlue(0);

 color.setTransparency((byte)255);

 SimpleLineSymbol outline = new SimpleLineSymbol();

 outline.setWidth(15);

 outline.setColor(color);

 fillSymbol = new SimpleFillSymbol();

 color.setTransparency((byte) 0);

 fillSymbol.setColor(color);

 fillSymbol.setOutline(outline);

}

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM317

318 • ArcGIS Engine Developer Guide

4. Call the createOverviewSymbol from the buildAndShow() method, after the call
setting label editing to manual:
// Set label editing to manual.

toc.setLabelEdit(esriTOCControlEdit.esriTOCControlManual);

// Create symbol used to draw overview on the MapBean.

createOverviewSymbol();

// Add popup menu items.

. . .

5. In the event listener for IPageLayoutControlEvents added in the
addEventListeners() method earlier, get a reference to the pageLayout
component’s focus map. Store the extent of the focusMap in the
currentExtent member variable. This extent will be used to draw the over-
view rectangle on the map component. To achieve this, add the lines of code
below, after loading the map documents and setting its extent in the
onPageLayoutReplaced event handler:
pageLayout.addIPageLayoutControlEventsListener(

new IPageLayoutControlEventsAdapter() {

 public void onPageLayoutReplaced(
 IPageLayoutControlEventsOnPageLayoutReplacedEvent evt)
 throws IOException{

map.loadMxFile(pageLayout.getDocumentFilename(), null, null);

map.setExtent(map.getFullExtent());

focusMap = new Map(pageLayout.getActiveView().getFocusMap());

currentExtent = focusMap.getExtent();

 }

});

6. The default events of the PageLayoutBean are the
IPageLayoutControlEvents. These events do not tell you when the extent of
the map within the data frame changes. To do this you will trap the
ITransformEvents of the PageLayoutBean focus map. Add the following
event listeners to listen to the DisplayTransformation object’s
visibleBoundsUpdated event.

The visibleBoundsUpdated event is triggered whenever the extent of the map
is changed and is used to set the IEnvelope to the new visible bounds of the
map. By refreshing the MapBean you force it to redraw the shape on its dis-
play. Modify the listener you edited in the last step, as shown below:
pageLayout.addIPageLayoutControlEventsListener(

new IPageLayoutControlEventsAdapter() {

 public void onPageLayoutReplaced(
IPageLayoutControlEventsOnPageLayoutReplacedEvent evt)
throws IOException{

map.loadMxFile(pageLayout.getDocumentFilename(), null, null);

map.setExtent(map.getFullExtent());

focusMap = new Map(pageLayout.getActiveView().getFocusMap());

currentExtent = focusMap.getExtent();

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM318

Chapter 6 • Developer scenarios • 319

DisplayTransformation dt = new
 DisplayTransformation(focusMap.getScreenDisplay().getDisplayTransformation());

dt.addITransformEventsListener(new ITransformEventsAdapter(){

public void visibleBoundsUpdated(

ITransformEventsVisibleBoundsUpdatedEvent evt)

throws IOException {

// Set currentExtent to the new visible extent.

currentExtent = evt.getSender().getVisibleBounds();

// Refresh the map components foreground phase.

map.refresh(esriViewDrawPhase.esriViewForeground, null, null);

}

});

 }

7. Add an IMapControlEvents2Listener to the map component that draws the
updated bounds, whenever a map refresh is triggered by the
visibleBoundsUpdated event handler, added in the last step. Add the following
to the addEventListeners() method:
map.addIMapControlEvents2Listener(new IMapControlEvents2Adapter() {

public void onAfterDraw(IMapControlEvents2OnAfterDrawEvent evt)

 throws IOException {

if (evt.getViewDrawPhase() == esriViewDrawPhase.esriViewForeground){

try{

// Draw the shape on the MapBean.

map.drawShape(currentExtent, fillSymbol);

} catch (Exception e) {

System.err.println("Error in drawing shape on
MapBean");

// e.printStackTrace();

}

}

}

});

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM319

320 • ArcGIS Engine Developer Guide

8. Run the application. Use the map navigation tools that you added earlier to
change the extent of the focus map in the pageLayout component, and ob-
serve that the new extent is drawn on the map component as a red rectangle.

Creating a custom tool
You will create a custom tool that can be added to the ToolbarBean. This tool
will add today’s date as a text element to the PageLayoutBean, at the location of
a mouse click.

The tool will be built as a generic tool so it can work with MapBean and
ToolbarBean as well as the PageLayoutBean.

Custom tools can be built as Java classes that implement the following two
interfaces:

com.esri.arcgis.systemUI.ICommand;

com.esri.arcgis.systemUI.ITool;

1. Create a new file called AddDateCommand.java:
// AddDateCommand.java

import com.esri.arcgis.systemUI.ICommand;

import com.esri.arcgis.systemUI.ITool;

public class AddDateCommand implements ICommand, ITool {

} // end AddDateCommand class

Since this class implements the ICommand and ITool interfaces, it will compile only
after all methods belonging to these interfaces have been implemented.

2. Add implementation for all methods defined in ICommand, as shown below.
The implementation of onCreate and onClick methods will be done in the
next step, so you can leave an empty implementation for now.

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

Navigating around the focus map using the map
navigation tools will change the extent of the
focus map in the PageLayoutBean and cause

the MapBean to update. Navigating around the
page layout with the page layout navigation

tools will change the extent of the page layout
(not the extent of the focus map in the

PageLayoutBean), so the MapBean will not
update.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM320

Chapter 6 • Developer scenarios • 321

import java.io.IOException;

import java.text.SimpleDateFormat;

import java.util.Date;

import com.linar.jintegra.AutomationException;

import com.esri.arcgis.carto.IActiveView;

import com.esri.arcgis.carto.TextElement;

import com.esri.arcgis.carto.esriViewDrawPhase;

import com.esri.arcgis.display.TextSymbol;

import com.esri.arcgis.geometry.IPoint;

import com.esri.arcgis.support.ms.stdole.StdFont;

import com.esri.arcgis.systemUI.ICommand;

import com.esri.arcgis.systemUI.ITool;

public class AddDateCommand implements ICommand, ITool {

/*

* see com.esri.arcgis.systemUI.ICommand#isEnabled()

*/

public boolean isEnabled() throws IOException, AutomationException {

return true;

}

/*

 * see com.esri.arcgis.systemUI.ICommand#isChecked()

 */

public boolean isChecked() throws IOException, AutomationException {

return false;

}

/*

 * see com.esri.arcgis.systemUI.ICommand#getName()

 */

public String getName() throws IOException, AutomationException {

return "CustomCommands_Add Date";

}

/*

 * see com.esri.arcgis.systemUI.ICommand#getCaption()

 */

public String getCaption() throws IOException, AutomationException {

return "Add Date";

}

/*

 * see com.esri.arcgis.systemUI.ICommand#getTooltip()

 */

public String getTooltip() throws IOException, AutomationException {

return "Add date";

}

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM321

322 • ArcGIS Engine Developer Guide

/*

 * see com.esri.arcgis.systemUI.ICommand#getMessage()

 */

public String getMessage() throws IOException, AutomationException {

return "Adds a date element to the page layout";

}

/*

 * see com.esri.arcgis.systemUI.ICommand#getHelpFile()

 */

public String getHelpFile() throws IOException, AutomationException {

return null;

}

/*

 * see com.esri.arcgis.systemUI.ICommand#getHelpContextID()

 */

public int getHelpContextID() throws IOException, AutomationException {

return 0;

}

/*

 * see com.esri.arcgis.systemUI.ICommand#getBitmap()

 */

public int getBitmap() throws IOException, AutomationException {

return 0;// We rely on being displayed as text

}

/*

 * see com.esri.arcgis.systemUI.ICommand#getCategory()

 */

public String getCategory() throws IOException, AutomationException {

return "CustomCommands";

}

/*

 * see com.esri.arcgis.systemUI.ICommand#onCreate(java.lang.Object)

 */

public void onCreate(Object obj) throws IOException, AutomationException {

 // To be added later

}

/*

 * see com.esri.arcgis.systemUI.ICommand#onClick()

 */

public void onClick() throws IOException, AutomationException {

} // Ignore

} // end AddDateCommand class

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM322

Chapter 6 • Developer scenarios • 323

3. The onCreate method is passed a reference to the control that the command
works with. In this case, it can be a MapBean, PageLayoutBean, or
ToolbarBean. Rather than adding logic in the onCreate method to determine
the type of object passed to the hook method, you will use the HookHelper
class to handle this. A command or tool needs to know how to handle the
hook it gets passed, so a check is needed to determine the type of ArcGIS
control that has been passed. The HookHelper is used to hold the hook and
return the ActiveView regardless of the type of hook (in this case either a
MapBean, PageLayoutBean, or ToolbarBean).

Import the HookHelper class and add the hookHelper member variable to the
AddDateCommand class:
import com.esri.arcgis.systemUI.ITool;

import com.esri.arcgis.controlcommands.HookHelper;

public class AddDateCommand implements ICommand, ITool{

HookHelper hookHelper;

4. In the onCreate method, construct the hookhelper and use the setHookByRef
method to pass the controls object.
public void onCreate(Object obj) throws IOException, AutomationException
{

// To be added later. Delete this line.

hookHelper = new HookHelper();

hookHelper.setHookByRef(obj);

}

5. Add implementation for all methods defined in the ITool interface to the
AddDateCommand class. Not all methods will be used, but they need to be
implemented to be able to compile the class. In the following code, pay atten-
tion to the onMouseDown method, as this method creates a TextElement
with the current date as its text and adds it to the graphics container of the
hook object.
 /*

 * see com.esri.arcgis.systemUI.ITool#getCursor()

 */

public int getCursor() throws IOException, AutomationException {

return 0;

}

/*

 * see com.esri.arcgis.systemUI.ITool#onMouseDown(int, int, int,
int)

 */

public void onMouseDown(int button, int shift, int x, int y)

throws IOException, AutomationException {

 Date today = new Date();

 // Format the date in the form "Wed 27 Aug, 2003".

 SimpleDateFormat formatter;

 formatter = new SimpleDateFormat("EEE d MMM, yyyy");

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM323

324 • ArcGIS Engine Developer Guide

 String dateString = formatter.format(today);

// Create a font.

 StdFont font = new StdFont();

 font.setName("Arial");

 font.setBold(true);

// Create a text symbol.

 TextSymbol textSymbol = new TextSymbol();

 textSymbol.setFont(font);

 textSymbol.setSize(15);

// Create a text element to be added to the graphics container.

TextElement textElement = new TextElement();

 textElement.setSymbol(textSymbol);

 textElement.setScaleText(false);

 textElement.setText(dateString);

// Add the text element to the graphics container.

 IActiveView activeView = hookHelper.getActiveView();

 IPoint pt =
 activeView.getScreenDisplay().getDisplayTransformation().toMapPoint(x,y);

 textElement.setGeometry(pt);

 activeView.getGraphicsContainer().addElement(textElement, 0);

// Refresh the view.

activeView.partialRefresh(esriViewDrawPhase.esriViewGraphics, null, null);

}

/*

 * see com.esri.arcgis.systemUI.ITool#onMouseMove(int, int, int, int)

 */

public void onMouseMove(int arg0, int arg1, int arg2, int arg3)

throws IOException, AutomationException {

// ignore

}

/*

 * see com.esri.arcgis.systemUI.ITool#onMouseUp(int, int, int, int)

 */

public void onMouseUp(int arg0, int arg1, int arg2, int arg3)

throws IOException, AutomationException {

// ignore

}

/*

 * see com.esri.arcgis.systemUI.ITool#onDblClick()

 */

public void onDblClick() throws IOException, AutomationException {

// ignore

}

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM324

Chapter 6 • Developer scenarios • 325

/*

 * see com.esri.arcgis.systemUI.ITool#onKeyDown(int, int)

 */

public void onKeyDown(int arg0, int arg1)

throws IOException, AutomationException {

// ignore

}

/*

 * see com.esri.arcgis.systemUI.ITool#onKeyUp(int, int)

 */

public void onKeyUp(int arg0, int arg1)

throws IOException, AutomationException {

// ignore

}

/*

 * see com.esri.arcgis.systemUI.ITool#onContextMenu(int, int)

 */

public boolean onContextMenu(int arg0, int arg1)

throws IOException, AutomationException {

return false;

}

/*

 * see com.esri.arcgis.systemUI.ITool#refresh(int)

 */

public void refresh(int arg0) throws IOException, AutomationException {

// ignore

}

/*

 * see com.esri.arcgis.systemUI.ITool#deactivate()

 */

public boolean deactivate() throws IOException, AutomationException {

return true;

}

6. The AddDateCommand class is now complete. Compile it.

7. In MapViewerFrame, add an instance of the AddDateCommand to the
toolbar component in the buildAndShow() method, after the lines of code
that add prebuilt commands to the toolbar:
toolbar.addItem(new ControlsMapFullExtentCommand(), 0, -1, false, 0,
esriCommandStyles.esriCommandStyleIconOnly);

toolbar.addItem(new AddDateCommand(),
0, -1, true, 0, esriCommandStyles.esriCommandStyleTextOnly);

8. Recompile and launch MapViewer class. A new Add date tool will come up
on the toolbar. Select that tool and click the page layout to add today’s date at
that point.

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM325

326 • ArcGIS Engine Developer Guide

Customizing the ToolbarBean
In addition to adding ArcGIS Engine commands and tools to the ToolbarBean
using addItem() as shown above, you can also add them by customizing the
ToolbarBean using the Customize dialog box. To do this, you will place the
Toolbar component in customize mode and display the Customize dialog box.

1. Add the following imports to MapViewerFrame.Java:
import javax.swing.JCheckBox;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import com.esri.arcgis.beans.toolbar.CustomizeDialog;

import com.esri.arcgis.beans.toolbar.ICustomizeDialogEvents;

import
com.esri.arcgis.beans.toolbar.ICustomizeDialogEventsOnCloseDialogEvent;

import
com.esri.arcgis.beans.toolbar.ICustomizeDialogEventsOnStartDialogEvent;

2. Add the class members.
. . .

public class MapViewerFrame extends JFrame {

 JCheckBox customizeCB; // JCheckbox to control toolbar customization

 CustomizeDialog customizeDialog; // The Customize dialog box used by
 // the ToolbarBean constructor.

3. Create a new method “createCustomizeDialog()” to instantiate the Customize
dialog box. Add the following code:
private void createCustomizeDialog() throws IOException {

customizeDialog = new CustomizeDialog();

customizeDialog.setDialogTitle("Customize Toolbar Items");

customizeDialog.setShowAddFromFile(true);

// Set the toolbar that the new items will be added to.

customizeDialog.setDoubleClickDestination(toolbar);

}

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

Note that only tools and commands that are
registered on the system as COM components

can be added to the toolbar using the customize
dialog box. Java commands and tools (like the

one built in the previous step) do not appear in
the Customize dialog box, as they are not

registered as COM components in the system
registry.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM326

Chapter 6 • Developer scenarios • 327

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

4. In the buildandShow() method, call the createCustomizeDialog() method to
instantiate the Customize dialog box. Also instantiate the customizeCB
JCheckBox:
public void buildAndShow() throws IOException {

JPanel mapTOCPanel = buildMapTOCPanel();

createCustomizeDialog();

customizeCB = new JCheckBox("Customize");

5. In the addEventListeners method, add a listener to the customizeCB
JCheckBox to start and close the Customize dialog box:
public void addEventListeners() throws IOException {

...

customizeCB.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e) {

try {

if (customizeCB.isSelected()) {

customizeDialog.startDialog(toolbar.getHWnd());

} else {

customizeDialog.closeDialog();

}

} catch (Exception ee) {

ee.printStackTrace();

}

}

});

...

6. To add the Customize check box to the GUI, modify the buildAndShow
method to add the toolbar and check box to a new JPanel. Add this panel to
the BorderLayout.NORTH position instead of adding just the toolbar in that
position.

JPanel topPanel = new JPanel();

topPanel.setLayout(new BorderLayout());

topPanel.add(toolbar, BorderLayout.CENTER);

topPanel.add(customizeCB, BorderLayout.EAST);

this.getContentPane().add(topPanel, BorderLayout.NORTH);

this.getContentPane().add(toolbar, BorderLayout.NORTH);//delete
this line

this.getContentPane().add(pageLayout, BorderLayout.CENTER);

this.getContentPane().add(mapTOCPanel, BorderLayout.WEST);

7. In the addEventListeners method, add an event listener to the Customize dialog
box to put the toolbar in the customize state when the dialog box is started
and in the normal state when it is closed. Since these events are not generated
by Java’s event dispatching thread, modifications to the customizeCB check
box should be made via the SwingUtilities class:
private void addEventListeners() throws IOException {

...

});

 customizeDialog.addICustomizeDialogEventsListener(new
 ICustomizeDialogEvents(){

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM327

328 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

public void onStartDialog(ICustomizeDialogEventsOnStartDialogEvent
 arg0) throws IOException {

 toolbar.setCustomize(true);

}

public void onCloseDialog(ICustomizeDialogEventsOnCloseDialogEvent
 arg0) throws IOException {

 toolbar.setCustomize(false);

 java.awt.EventQueue.invokeLater (
 new Runnable () {

public void run () {

customizeCB.setSelected(false);

}

}

);

}

});

8. Run the application and check the Customize check box to put the toolbar
into customize mode and open the Customize dialog box.

9. On the Commands tab, select the Graphic Element category and drag the
Select Elements command to the toolbar to add it there. By right-clicking an
item on the toolbar, you can adjust the appearance in terms of style and
grouping.

10. Close the Customize Toolbar Item dialog box to stop customizing the applica-
tion. Use the Select tool to move the text element containing today’s date.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM328

Chapter 6 • Developer scenarios • 329

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

DEPLOYMENT

To successfully deploy this application onto a user’s machine, you will create an
executable JAR file. Users will then be able to launch the application by using the
JRE installed as part of ArcGIS Engine Developer Kit or Runtime by giving the
following command:
java –jar mapviewer.jar

To create an executable JAR:

1. In the directory where the compiled Java class files are present, create a file
called “manifest.txt”.

2. Add the following single line to the manifest.txt file:
Main-Class: MapViewer

3. Make sure to press Enter at the end of the first line.

4. Save the file and open a command window. Use the ‘cd’ command to change
to the directory containing the manifest.txt file.

5. Give the following command to create the executable JAR file:
jar cmf manifest.txt mapviewer.jar *.class

6. A mapviewer.jar file will be created. This is the executable JAR that can be
launched using the JRE included as part of the ArcGIS Engine Developer Kit,
as follows:
"C:\Program Files\ArcGIS\java\jre\bin\java" -jar mapviewer.jar

This command can be bundled in a batch file or shell script to provide a launch
script.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM329

330 • ArcGIS Engine Developer Guide

ADDITIONAL RESOURCES

The following resources may help you understand and apply the concepts and
techniques presented in this scenario.

• Additional documentation available in the ArcGIS Engine Developer Kit
including ArcGIS Developer Help, javadoc, object model diagrams, and samples
to help you get started.

• ArcGIS Developer Online—Web site providing the most up-to-date informa-
tion for ArcGIS developers including updated samples and technical docu-
ments. Go to http://arcgisdeveloperonline.esri.com.

• ESRI online discussion forums—Web sites providing invaluable assistance
from other ArcGIS developers. Go to http://support.esri.com and click the User
Forums tab.

• Sun’s Java Tutorial at http://java.sun.com/docs/books/tutorial/.

• Helpful Web sites for Java in general, such as Javaranch
(http://www.javaranch.com/)—a friendly place for Java greenhorns.

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM330

Chapter 6 • Developer scenarios • 331

This walkthrough is for developers who want to build and deploy an application
using .NET. It describes the process of building and deploying an application
using the ArcGIS controls.

You can find this sample in:
<install_location>\DeveloperKit\samples\Developer_Guide_Scenarios\
Building_an_ArcGIS_Controls_Map_Viewer_ApplicationCSharp.zip

PROJECT DESCRIPTION

The goal of the ‘Building applications with Windows Controls’ scenario is to
demonstrate and familiarize you with the steps required to develop and deploy a
GIS application using the standard ArcGIS controls within the Microsoft Visual
Studio .NET API. The scenario uses the MapControl, PageLayoutControl,
TOCControl, ToolbarControl, and LicenseControl as Windows Controls within
the Microsoft Visual Studio .NET development environment. COM, Java, and
C++ programmers should refer to the following scenarios: ‘Building applications
with ActiveX’, ‘Building applications with visual JavaBeans’, ‘Building a com-
mand-line Java application’, and ‘Building a command-line C++ application’.

The scenario demonstrates the steps required to create a GIS application for
viewing preauthored ESRI map documents, or MXDs. The scenario covers the
following techniques:

• Loading and embedding the ArcGIS controls in Microsoft Visual Studio .NET.

• Loading preauthored map documents into MapControl and
PageLayoutControl.

• Setting ToolbarControl and TOCControl buddy controls.

• Handling form resize.

• Adding ArcGIS Engine commands and tools to the ToolbarControl.

• Creating popup menus.

• Managing label editing in the TOCControl.

• Drawing shapes on the MapControl.

• Creating a custom tool to work with the MapControl, PageLayoutControl,
and ToolbarControl.

• Customizing the ToolbarControl.

• License configuration using the LicenseControl.

• Deploying the application onto a Windows operating system.

CONCEPTS

This scenario is implemented using the Microsoft Visual Studio .NET develop-
ment environment and uses the ESRI interop assemblies to host the ArcGIS
controls inside .NET Windows Controls in a .NET form. These interoperability
assemblies act as a bridge between the unmanaged code of COM and the man-
aged .NET code. Any references to the members of the COM ArcGIS controls
are routed to the interop assemblies and forwarded to the actual COM object.
Likewise, responses from the COM object are routed to the interop assembly and
forwarded to the .NET application. Each ArcGIS Engine control has events,
properties, and methods that can be accessed once embedded within a container,

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

Rather than walk through this scenario, you can
get the completed application from the samples

installation location. The sample is installed as
part of the ArcGIS developer samples.

The ArcGIS developer samples are not included
in the typical installation of the ArcGIS Engine

Developer Kit. If you do not have them installed,
rerun the Developer Kit Install wizard, click

Custom or Modify, and click the samples feature
under Software Developer Kit.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM331

332 • ArcGIS Engine Developer Guide

such as a .NET form. The objects and functionality within each control can be
combined with other ESRI ArcObjects and custom controls to create customized
end user applications.

The scenario has been written in both C# and Visual Basic .NET, though the
following implementation concentrates on the C# scenario. Many developers will
feel more comfortable with Visual Basic .NET, as the code looks familiar to
Visual Basic 6.0, while the syntax of the C# programming language will be
familiar to Java and C++ programmers. Whichever development environment
you use, your future success with the ArcGIS controls depends on your skill in
both the programming environment and ArcObjects.

The MapControl, PageLayoutControl, TOCControl, and ToolbarControl are used
in this scenario to provide the user interface of the application, and the
LicenseControl is used to configure the application with an appropriate license.
The ArcGIS controls are used in conjunction with other ArcObjects and control
commands by the developer to create a GIS viewing application.

DESIGN

The scenario has been designed to highlight how the ArcGIS controls interact
with each other and to expose a part of each ArcGIS control’s object model to
the developer.

Each .NET ArcGIS Engine control has a set of property pages that can be ac-
cessed once the control is embedded within a .NET form. These property pages
provide shortcuts to a selection of a control’s properties and methods and allow a
developer to build an application without writing any code. This scenario does
not use the property pages, but rather builds up the application programmatically.
For further information about the property pages, refer to the ArcGIS Developer
Help.

REQUIREMENTS

To successfully follow this scenario you need the following (the requirements for
deployment are covered later in the Deployment section):

• An installation of the ArcGIS Engine Developer Kit with an authorization
file enabling it for development use.

• An installation of the Microsoft Visual Studio .NET 2003 development
environment and the Microsoft .NET Framework 1.1 and an appropriate
license.

• Familiarity with Microsoft Windows operating systems and a working knowl-
edge of Microsoft Visual Studio .NET and either the C# or Visual Basic .NET
programming language. While the scenario provides some information about
how to use the ArcGIS controls in Microsoft Visual Studio .NET, it is not a
substitute for training in the development environment.

• While no experience with other ESRI software is required, previous experi-
ence with ArcObjects and a basic understanding of ArcGIS applications, such
as ArcMap and ArcCatalog, are advantageous.

• Access to the sample data and code that comes with this scenario. This is
located at:

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM332

Chapter 6 • Developer scenarios • 333

<install_location>\DeveloperKit\samples\Developer_Guide_Scenarios\
Building_an_ArcGIS_Controls_Map_Viewer_ApplicationCSharp.zip

The controls and libraries used in this scenario are as follows:

• ESRI.ArcGIS.AxMapControl • ESRI.ArcGIS.MapControl

• ESRI.ArcGIS.AxPageLayoutControl • ESRI.ArcGIS.PageLayoutControl

• ESRI.ArcGIS.AxTOCControl • ESRI.ArcGIS.TOCControl

• ESRI.ArcGIS.AxToolbarControl • ESRI.ArcGIS.ToolbarControl

• ESRI.ArcGIS.AxLicenseControl • ESRI.ArcGIS.LicenseControl

• ESRI.ArcGIS.Carto • ESRI.ArcGIS.System

• ESRI.ArcGIS.Display • ESRI.ArcGIS.SystemUI

• ESRI.ArcGIS.Geometry • ESRI.ArcGIS.Utility

IMPLEMENTATION

The implementation below provides you with all the code you will need to
successfully complete the scenario. It does not provide step-by-step instructions
to develop applications in Microsoft Visual Studio .NET, as it assumes that you
have a working knowledge of the development environment already.

Loading the ArcGIS controls
Before you start to program your application, the ArcGIS controls and the other
ArcGIS Engine library references that the application will use should be loaded
into the development environment.

1. Start Visual Studio .NET and create a new Visual C# Windows Application
project from the New project dialog box.

2. Name the project ‘Controls’, and browse to a location to save the project.

The AxControlName .NET Framework compo-
nents represent the control that is hosted within

a .NET form, while the esriControlName
assemblies contain the object and interfaces

from inside the control’s type library.

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

The ArcGIS developer samples are not included
in the typical installation of the ArcGIS Engine

Developer Kit. If you do not have them installed,
rerun the Developer Kit Install wizard, click

Custom or Modify, and click the samples feature
under Software Developer Kit.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM333

334 • ArcGIS Engine Developer Guide

The ESRI .NET assemblies will be used to
instantiate and make calls on the objects in the
ESRI object libraries from your C# project using

the COM interoperability services provided by
the .NET framework.

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

3. Right-click in the Windows Forms tab of the Toolbox and click Add/Remove
Items from the context menu.

4. In the Customize Toolbox dialog box, click the .NET Framework Compo-
nents tab and check AxMapControl, AxPageLayoutControl, AxTOCControl,
AxToolbarControl, and AxLicenseControl. Click OK. The controls will now
appear in the Windows Forms tab of the toolbox.

5. Click on the Project menu and click Add Reference.

6. In the Add Reference dialog box, double-click ESRI.ArcGIS.Carto,
ESRI.ArcGIS.Display, ESRI.ArcGIS.Geometry, ESRI.ArcGIS.System,
ESRI.ArcGIS.SystemUI, and ESRI.ArcGIS.Utility. Click OK.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM334

Chapter 6 • Developer scenarios • 335

Embedding the ArcGIS controls in a container
Before you can access each control’s properties, methods, and events, each control
needs embedding within a .NET container. Once the controls are embedded
within the form, they will shape the application’s user interface.

1. Open the .NET form in design mode.

2. Double-click the AxMapControl in the Windows Forms tab of the toolbox to
add a MapControl onto the form.

3. Repeat to add the AxPageLayoutControl, AxTOCControl, and
AxToolbarControl.

4. Resize and reposition each control on the form as shown.

5. Double-click the form to display the form’s code window. Add the following
“using” directives to the top of the code window:
using System;

using System.Windows.Forms;

using ESRI.ArcGIS.SystemUI;

using ESRI.ArcGIS.Carto;

using ESRI.ArcGIS.Display;

using ESRI.ArcGIS.Geometry;

using esriToolbarControl;

using esriTOCControl;

In .NET a variable is fully qualified using a
Namespace. Namespaces are a concept in .NET
that allow objects to be organized hierarchically,

regardless of the assembly they are defined in. To
make code simpler and more readable, the
directives act as shortcuts when referencing

items specified in namespaces.

Remember that C# is case sensitive. If you start
by typing “ESRI.”, the auto completion feature of
IntelliSense will allow you to complete the next

section of code by pressing Tab.

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM335

336 • ArcGIS Engine Developer Guide

Loading map documents into the PageLayoutControl and
MapControl
Individual data layers or preauthored map documents can be loaded into the
MapControl and PageLayoutControl. You can either load the sample map docu-
ment provided, or you can load in your own map document. Later you will add a
dialog box to browse to a map document.

1. Select the Form_Load event and enter the following code (if you are using
your own map document, substitute the correct filename):
private void Form1_Load(object sender, System.EventArgs e)

{

// Load a preauthored map document into the PageLayoutControl using
// relative paths.

string fileName =
@"..\..\..\..\..\..\..\..\Data\\ArcGIS_Engine_Developer_Guide\Gulf of St.
Lawrence.mxd";

if (axPageLayoutControl1.CheckMxFile(fileName))

{

axPageLayoutControl1.LoadMxFile(fileName,"");

}

}

2. Display the form in design mode and select axPageLayoutControl1 from the
Properties window and display the axPageLayoutControl events. Double-click
on the OnPageLayoutReplaced event to add an event handler to the code
window.

3. In the axPageLayoutControl_OnPageLayoutReplaced event, enter the follow-
ing code to load the same map document into the MapControl. The

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM336

Chapter 6 • Developer scenarios • 337

OnPageLayoutReplaced event will be triggered whenever a document is
loaded into the PageLayoutControl.

private void axPageLayoutControl1_OnPageLayoutReplaced(object sender,
ESRI.ArcGIS.PageLayoutControl.IPageLayoutControlEvents_OnPageLayoutReplacedEvent
e)

{

// Load the same preauthored map document into the MapControl.
axMapControl1.LoadMxFile(axPageLayoutControl1.DocumentFilename,null,

null);

// Set the extent of the MapControl to the full extent of the data.

axMapControl1.Extent = axMapControl1.FullExtent;

}

Setting the TOCControl and ToolbarControl buddy controls
For the purpose of this application, the TOCControl and ToolbarControl will
work in conjunction with the PageLayoutControl, rather than the MapControl.
To do this the PageLayoutControl must be set as the buddy control. The
TOCControl uses the buddy’s ActiveView to populate itself with maps, layers,
and symbols, while any command, tool, or menu items present on the
ToolbarControl will interact with the buddy control’s display.

1. In the Form_Load event enter the following after the load document code:
private void Form1_Load(object sender, System.EventArgs e)

{

// Load a preauthored map document into the PageLayoutControl using
 // relative paths.

string fileName =
@"..\..\..\..\..\..\..\..\Data\\ArcGIS_Engine_Developer_Guide\Gulf of St.
Lawrence.mxd";

if (axPageLayoutControl1.CheckMxFile(fileName))

{

axPageLayoutControl1.LoadMxFile(fileName,"");

}

// Set buddy controls.

axTOCControl1.SetBuddyControl(axPageLayoutControl1);

axToolbarControl1.SetBuddyControl(axPageLayoutControl1);

}

2. Build and run the application. The map document is loaded into the
PageLayoutControl, and the TOCControl lists the data layers in the map
document. Use the TOCControl to toggle layer visibility by checking and
unchecking the boxes. By default, the focus map of the map document is
loaded into the MapControl. At this point the ToolbarControl is empty be-
cause no commands have been added to it. Try resizing the form, and note that
the controls do not change size.

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM337

338 • ArcGIS Engine Developer Guide

Handling form resize
When the form is resized at run time the PageLayoutControl and MapControl do
not automatically resize themselves. To resize the controls so that they always fill
the extent of the form, you must anchor the controls to the form. If the
PageLayoutControl or MapControl contain a lot of data, redrawing this data
during the Form_Resize can be costly. To increase performance you can suppress
the data redraw until the resizing is complete. During the resize a stretched
bitmap will be drawn instead.

1. Display the form in design mode and select axPageLayoutControl1 from the
Properties window. Click the anchor property and anchor the
axPageLayoutControl to the top, left, bottom, and right of the form.

2. Anchor the axMapControl to the top, left, and bottom of the form.

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM338

Chapter 6 • Developer scenarios • 339

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

3. Add the following code to the beginning of the Form_Load event:
private void Form1_Load(object sender, System.EventArgs e)

{

// Suppress drawing while resizing.

this.SetStyle(ControlStyles.EnableNotifyMessage,true);

}

4. Add the following constants to the class:
public class Form1 : System.Windows.Forms.Form

{

…

private const int WM_ENTERSIZEMOVE = 0x231;

private const int WM_EXITSIZEMOVE = 0x232;

…

5. Add the following code to override the OnNotifyMessage method.
protected override void OnNotifyMessage(System.Windows.Forms.Message m)

{

base.OnNotifyMessage (m);

if (m.Msg == WM_ENTERSIZEMOVE)

{

axMapControl1.SuppressResizeDrawing(true, 0);

axPageLayoutControl1.SuppressResizeDrawing(true, 0);

}

else if (m.Msg == WM_EXITSIZEMOVE)

{

axMapControl1.SuppressResizeDrawing(false, 0);

axPageLayoutControl1.SuppressResizeDrawing(false, 0);

}

}

6. Build and run the application. Try resizing the form.

Adding commands to the ToolbarControl
ArcGIS Engine comes with more than 120 commands and tools that work with
the MapControl, the PageLayoutControl, and the ToolbarControl directly. These
commands and tools provide you with a lot of frequently used GIS functionality
for map navigation, graphics management, and feature selection. You will now
add some of these commands and tools to your application.

1. In the Form_Load event add the following code before the load document
code.
private void Form1_Load(object sender, System.EventArgs e)

{

string progID;

// Add generic commands.

progID = "esriControlToolsGeneric.ControlsOpenDocCommand";

axToolbarControl1.AddItem(progID, -1 , -1, false, 0,
esriCommandStyles.esriCommandStyleIconOnly);

This method of suppressing resize drawing
works by examining the windows messages sent

to the form. When a form starts resizing,
windows sends the WM_ENTERSIZEMOVE
Windows(messge). At this point you suppress

drawing to the MapControl and
PageLayoutControl and draw using a “stretchy

bitmap”. When Windows sends the
WM_EXITSIZEMOVE the form is released from

resizing and you resume with a full redraw at
the new extent.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM339

340 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

// Add PageLayout navigation commands.

progID = "esriControlToolsPageLayout.ControlsPageZoomInTool";

axToolbarControl1.AddItem(progID, -1, -1, true, 0,
esriCommandStyles.esriCommandStyleIconOnly);

progID = "esriControlToolsPageLayout.ControlsPageZoomOutTool";

axToolbarControl1.AddItem(progID, -1, -1, false, 0,
esriCommandStyles.esriCommandStyleIconOnly);

progID = "esriControlToolsPageLayout.ControlsPagePanTool";

axToolbarControl1.AddItem(progID, -1, -1, false, 0,
esriCommandStyles.esriCommandStyleIconOnly);

progID = "esriControlToolsPageLayout.ControlsPageZoomWholePageCommand";

axToolbarControl1.AddItem(progID, -1, -1, false, 0,
esriCommandStyles.esriCommandStyleIconOnly);

progID =
"esriControlToolsPageLayout.ControlsPageZoomPageToLastExtentBackCommand";

axToolbarControl1.AddItem(progID, -1, -1, false, 0,
esriCommandStyles.esriCommandStyleIconOnly);

progID =
"esriControlToolsPageLayout.ControlsPageZoomPageToLastExtentForwardCommand";

axToolbarControl1.AddItem(progID, -1, -1, false, 0,
esriCommandStyles.esriCommandStyleIconOnly);

// Add Map navigation commands.

progID = "esriControlToolsMapNavigation.ControlsMapZoomInTool";

axToolbarControl1.AddItem(progID, -1, -1, true, 0,
esriCommandStyles.esriCommandStyleIconOnly);

progID = "esriControlToolsMapNavigation.ControlsMapZoomOutTool";

axToolbarControl1.AddItem(progID, -1, -1, false, 0,
esriCommandStyles.esriCommandStyleIconOnly);

progID = "esriControlToolsMapNavigation.ControlsMapPanTool";

axToolbarControl1.AddItem(progID, -1, -1, false, 0,
esriCommandStyles.esriCommandStyleIconOnly);

progID = "esriControlToolsMapNavigation.ControlsMapFullExtentCommand";

axToolbarControl1.AddItem(progID, -1, -1, false, 0,
esriCommandStyles.esriCommandStyleIconOnly);

// Load a preauthored…

}

2. Build and run the application. The ToolbarControl now contains ArcGIS
Engine commands and tools that you can use to navigate the map document
loaded into the PageLayoutControl. Use the page layout commands to navi-
gate around the actual page layout and the map commands to navigate around
the data present in the data frames. Use the open document command to
browse and load other map documents.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM340

Chapter 6 • Developer scenarios • 341

Creating a popup menu for the PageLayoutControl
As well as adding ArcGIS Engine commands to the ToolbarControl to work with
the buddy control, as in the previous step, you can also create popup menus from
the ArcGIS Engine commands. You will add a popup menu that works with the
PageLayoutControl to your application. The popup menu will display whenever
the right mouse button is used on the display area of the PageLayoutControl.

1. Add the following member variable to the class:
public class Form1 : System.Windows.Forms.Form

{

private ESRI.ArcGIS.ToolbarControl.AxToolbarControl
axToolbarControl1;

private ESRI.ArcGIS.TOCControl.AxTOCControl axTOCControl1;

private ESRI.ArcGIS.MapControl.AxMapControl axMapControl1;

private ESRI.ArcGIS.PageLayoutControl.AxPageLayoutControl
axPageLayoutControl1;

private IToolbarMenu m_ToolbarMenu = new ToolbarMenuClass(); // The
popup menu

…

2. Add the following code to the Form_Load event after the code, adding the
commands to the ToolbarControl but before the load document code.
private void Form1_Load(object sender, System.EventArgs e)

{

// Add Map navigation commands…

// Share the ToolbarControl’s command pool.

m_ToolbarMenu.CommandPool = axToolbarControl1.CommandPool;

// Add commands to the ToolbarMenu.

progID = "esriControlToolsPageLayout.ControlsPageZoomInFixedCommand";

m_ToolbarMenu.AddItem(progID, -1, -1, false,
esriCommandStyles.esriCommandStyleIconAndText);

progID = "esriControlToolsPageLayout.ControlsPageZoomOutFixedCommand";

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM341

342 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

m_ToolbarMenu.AddItem(progID, -1, -1, false,
esriCommandStyles.esriCommandStyleIconAndText);

progID = "esriControlToolsPageLayout.ControlsPageZoomWholePageCommand";

m_ToolbarMenu.AddItem(progID, -1, -1, false,
esriCommandStyles.esriCommandStyleIconAndText);

progID =
"esriControlToolsPageLayout.ControlsPageZoomPageToLastExtentBackCommand";

m_ToolbarMenu.AddItem(progID, -1, -1, true,
esriCommandStyles.esriCommandStyleIconAndText);

progID =
"esriControlToolsPageLayout.ControlsPageZoomPageToLastExtentForwardCommand";

m_ToolbarMenu.AddItem(progID, -1, -1, false,
esriCommandStyles.esriCommandStyleIconAndText);

// Set the hook to the PageLayoutControl.

m_ToolbarMenu.SetHook(axPageLayoutControl1);

// Load a preauthored…

}

3. Display the form in design mode, select axPageLayoutControl1 from the
Properties window, and display the axPageLayoutControl events. Double-
click the OnMouseDown event to add an event handler to the code window.

4. In the axPageLayoutControl_OnMouseDown event, add the following code:
private void axPageLayoutControl1_OnMouseDown(object sender,
ESRI.ArcGIS.PageLayoutControl.IPageLayoutControlEvents_OnMouseDownEvent
e)

{

// Popup the ToolbarMenu.

if (e.button == 2)

{

m_ToolbarMenu.PopupMenu(e.x,e.y,axPageLayoutControl1.hWnd);

}

}

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM342

Chapter 6 • Developer scenarios • 343

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

5. Build and run the application. Right-click the PageLayoutControl’s display
area to display the popup menu, and navigate around the page layout.

Controlling label editing in the TOCControl
By default, the TOCControl allows users to automatically toggle the visibility of
layers and to change map and layer names as they appear in the table of contents.
You will add code to prevent users from editing a name and replacing it with an
empty string.

1. Add the following code to the beginning of the Form_Load event.
private void Form1_Load(object sender, System.EventArgs e)

{

// Set label editing to manual.

axTOCControl1.LabelEdit = esriTOCControlEdit.esriTOCControlManual;

// Add generic commands.

}

2. Display the form in design mode, select AxTOCControl1 from the Properties
window, and display the AxTOCControl events. Double-click
OnEndLabelEdit to add an event handler to the code window.

3. Add the following code to the axTOCControl_OnEndLabelEdit event:
private void axTOCControl1_OnEndLabelEdit(object sender,
ESRI.ArcGIS.TOCControl.ITOCControlEvents_OnEndLabelEditEvent e)

{

// If the new label is an empty string, then prevent the edit.

string newLabel = e.newLabel;

if (newLabel.Trim() == "")

{

e.canEdit = false;

}

}

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM343

344 • ArcGIS Engine Developer Guide

Drawing shapes on the MapControl
You will now use the MapControl as an overview window and draw on its
display the current extent of the focus map within the PageLayoutControl. As
you navigate around the data within the data frame of the PageLayoutControl,
you will see the MapControl overview window update.

1. Add the following member variables to the class:
 public class Form1 : System.Windows.Forms.Form

{

private ESRI.ArcGIS.ToolbarControl.AxToolbarControl axToolbarControl1;

private ESRI.ArcGIS.TOCControl.AxTOCControl axTOCControl1;

private ESRI.ArcGIS.MapControl.AxMapControl axMapControl1;

private ESRI.ArcGIS.PageLayoutControl.AxPageLayoutControl
axPageLayoutControl1;

private IToolbarMenu m_ToolbarMenu = new ToolbarMenuClass();

private IEnvelope m_Envelope; // The envelope drawn on the MapControl

private Object m_FillSymbol; // The symbol used to draw the envelope on
the MapControl

private ITransformEvents_VisibleBoundsUpdatedEventHandler
visBoundsUpdatedE; // The PageLayoutControl's focus map events

The variable declared as visBoundsUpdatedE is
a delegate. A delegate is a class that can hold a
reference to a specific method and link this to a

specific event. The linking process between the
event and the method is sometimes known in

.NET as wiring.

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

Navigating around the focus map using the map
navigation tools will change the extent of the

focus map in the PageLayoutControl and cause
the MapControl to update. Navigating around
the page layout with the page layout navigation
tools will change the extent of the page layout

(not the extent of the focus map in the
PageLayoutControl), so the MapControl will

not update.

4. Build and run the application. To edit a map, layer, heading, or legend class
label in the TOCControl, click it once, then click it a second time to invoke
label editing. Try replacing the label with an empty string. You can use the Esc
key on the keyboard at any time during the edit to cancel it.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM344

Chapter 6 • Developer scenarios • 345

2. Create a new function called CreateOverviewSymbol. This is where you will
create the symbol used in the MapControl to represent the extent of the data
in the focus map of the PageLayoutControl. Add the following code to the
function.
private void CreateOverviewSymbol()

{

// Get the IRgbColor interface.

IRgbColor color = new RgbColor();

// Set the color properties.

color.RGB = 255;

// Get the ILine symbol interface.

ILineSymbol outline = new SimpleLineSymbol();

// Set the line symbol properties.

outline.Width = 1.5;

outline.Color = color;

// Get the IFillSymbol interface.

ISimpleFillSymbol simpleFillSymbol = new SimpleFillSymbolClass();

// Set the fill symbol properties.

simpleFillSymbol.Outline = outline;

simpleFillSymbol.Style = esriSimpleFillStyle.esriSFSHollow;

m_FillSymbol = simpleFillSymbol;

}

3. Call the CreateOverviewSymbol function from the Form_Load event before
the TOCControl label editing code.
private void Form1_Load(object sender, System.EventArgs e)

{

// Create symbol used on the MapControl.

CreateOverviewSymbol();

// Set label editing to manual…

}

4. Add the following OnVisibleBoundsUpdated function. This function will be
linked to an event raised whenever the extent of the map is changed and is
used to set the envelope to the new visible bounds of the map. By refreshing
the MapControl you force it to redraw the shape on its display.
private void OnVisibleBoundsUpdated(IDisplayTransformation sender, bool
sizeChanged)

{

// Set the extent to the new visible extent.

m_Envelope = sender.VisibleBounds;

// Refresh the MapControl's foreground phase.

axMapControl1.ActiveView.PartialRefresh(esriViewDrawPhase.
esriViewForeground, null, null);

}

5. The default event interface of the PageLayoutControl is the
IPageLayoutControlEvents. These events do not tell you when the extent of
the map within the data frame changes. To enable this functionality you will

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM345

346 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

use the ITransformEvents interface of the PageLayoutControl focus map. Add
the following code to the PageLayoutControl_OnPageLayoutReplaced event
handler directly above the load document code.
private void axPageLayoutControl1_OnPageLayoutReplaced(object sender,
ESRI.ArcGIS.PageLayoutControl.IPageLayoutControlEvents_OnPageLayoutReplacedEvent
e)

{

// Get the IActiveView of the focus map in the PageLayoutControl.

IActiveView activeView = (IActiveView)
axPageLayoutControl1.ActiveView.FocusMap;

// Trap the ITransformEvents of the PageLayoutControl's focus map.
visBoundsUpdatedE = new

ITransformEvents_VisibleBoundsUpdatedEventHandler(OnVisibleBoundsUpdated);

((ITransformEvents_Event)activeView.ScreenDisplay.
DisplayTransformation).VisibleBoundsUpdated += visBoundsUpdatedE;

// Get the extent of the focus map.

m_Envelope = activeView.Extent;

// Load the same preauthored map document into the MapControl.

axMapControl1.LoadMxFile(axPageLayoutControl1.DocumentFilename,null,
null);

// Set the extent of the MapControl to the full extent of the data.

axMapControl1.Extent = axMapControl1.FullExtent;

}

6. Display the form in design mode and select axMapControl1 from the Proper-
ties window and display the axMapControl events. Double-click
OnAfterDraw to add an event handler to the code window.

7. Add the following code to the axMapControl_OnAfterDraw event handler to
draw the envelope with the symbol you created earlier onto the MapControl’s
display.
private void axMapControl1_OnAfterDraw(object sender,
ESRI.ArcGIS.MapControl.IMapControlEvents2_OnAfterDrawEvent e)

{

if (m_Envelope == null)

{

return;

}

// If the foreground phase has drawn

esriViewDrawPhase viewDrawPhase = (esriViewDrawPhase) e.viewDrawPhase;

if (viewDrawPhase == esriViewDrawPhase.esriViewForeground)

{

IGeometry geometry = m_Envelope;

axMapControl1.DrawShape(geometry, ref m_FillSymbol);

}

}

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM346

Chapter 6 • Developer scenarios • 347

8. Build and run the application. Use the map navigation tools that you added
earlier to change the extent of the focus map in the PageLayoutControl. The
new extent is drawn on the MapControl.

Creating a custom tool
Creating custom commands and tools to work with the MapControl and
PageLayoutControl is very much like creating commands for the ESRI ArcMap
application that you may have done previously. You will create a custom tool that
adds a text element containing today’s date to the PageLayoutControl at the
location of a mouse click. You will, however, create the command to work with
the MapControl and ToolbarControl as well as the PageLayoutControl.

The code for this custom tool is available with the rest of this scenario’s source
code. If you want to use the custom command directly, rather than creating it
yourself, go directly to Step 24.

1. Create a new Visual C# Class Library project from the New project dialog
box.

2. Name the project ‘Commands’, and browse to a location to save the project.

3. Click on the Project menu and click Add Reference.

4. In the Add Reference dialog box, check ESRI.ArcGIS.Carto,
ESRI.ArcGIS.Display, ESRI.ArcGIS.Geometry, ESRI.ArcGIS.System,
ESRI.ArcGIS.SystemUI, ESRI.ArcGIS.Utility, and
ESRI.ArcGIS.ControlCommands.

5. Add one class to the project, named “AddDateTool”.

6. Click the Project menu and click Add Existing Item. Browse to the date.bmp
file from its location in this sample’s source code and add it into your project.

7. Click the date.bmp file in the Solution Explorer window to display its proper-
ties in the Properties window. Change the Build Action property to Embedded
Resource. This bitmap will be used on the face of the command button.

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

This scenario’s source code is located at
<install_location>\DeveloperKit\samples\

Developer_Guide_Scenarios\
Building_an_ArcGIS_Controls_Map_

Viewer_ApplicationCSharp.zip.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM347

348 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

8. Change the namespace of the AddDateTool to be CSharpDotNETCommands.
namespace CSharpDotNETCommands

{

….

9. Add the following using directives to the top of the AddDateTool class code
window.
using System;

using ESRI.ArcGIS.Carto;

using ESRI.ArcGIS.Display;

using ESRI.ArcGIS.Geometry;

using ESRI.ArcGIS.SystemUI;

using ESRI.ArcGIS.esriSystem;

using ESRI.ArcGIS.ControlCommands;

using ESRI.ArcGIS.Utility.BaseClasses;

using System.Runtime.InteropServices;

10. Specify that the AddDateTool class inherits from the ESRI BaseTool abstract
class. Also add the sealed class modifier.
public sealed class AddDateTool : BaseTool

11. Add the following code to AddDateTool class constructor:
public AddDateTool()

{

// Get an array resources in the assembly.

string[] res = GetType().Assembly.GetManifestResourceNames();

// Set the tool properties.

base.m_bitmap = new
System.Drawing.Bitmap(GetType().Assembly.GetManifestResourceStream(res[0]));

base.m_caption = "Add Date";

base.m_category = "CustomCommands";

base.m_message = "Adds a date element to the page layout";

base.m_name = "CustomCommands_Add Date";

base.m_toolTip = "Add date";

}

12. Add the following member variable to the AddDateTool class.
public sealed class AddDateTool : BaseTool

{

// The HookHelper object that deals with the hook passed to the OnCreate
 // event

private IHookHelper m_HookHelper = new HookHelperClass();

…

13. In the Class View window, navigate to the BaseCommand OnCreate method
and right-click to display the context menu. Click Add, then Override to add
the property to the code window.

14. Add the following code to override the OnCreate method.
public override void OnCreate(object hook)

{

m_HookHelper.Hook = hook;

}

The class constructor is a method that is called
when the class is created. It can be used to set

up members of the class. The constructor
method has the same name as the class; it

differs from other methods in that it has no
return type.

Instead of implementing the Bitmap, Caption,
Category, Name, Message, and ToolTip methods

individually, you can set the values that should be
returned from these methods and rely on the

BaseTool class to provide the implementation for
these methods. The other members will be left
to return the default values as implemented by

the BaseTool class.

To override properties and methods in Visual
Basic .NET, select Overrides from the Class

Name combo box and the property or method
name from the Method Name combo box at

the top of the code window.

To change a namespace in Visual Basic .NET,
right-click the project in the Solution Explorer
and select Properties. In the project Property

Pages, select General and change the Root
Namespace. Click OK.

Abstract classes are classes that cannot be
instantiated and frequently contain only partial
implementation code or no implementation at

all. They are closely related to interfaces;
however, they differ significantly from interfaces
in that a class may implement any number of

interfaces, but it can inherit from only one
abstract class. Inheriting the ESRI BaseTool

abstract class will allow you to create commands
and tools more quickly and simply than directly
implementing the esriSystemUI ICommand and

ITool interfaces.

The sealed class modifier states that a class
cannot be inherited from. As this class is not

designed for this purpose, it is prudent to add
this modifier to prevent other classes from

inheriting this class.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM348

Chapter 6 • Developer scenarios • 349

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

15. In the Class View window, navigate to the BaseCommand Enabled property
and right-click to display the context menu. Click Add, then Override to add
the property to the code window.

16. Add the following code to override the default Enabled value as implemented
by the BaseTool class.
public override bool Enabled

{

get

{

// Set the enabled property.

if (m_HookHelper.ActiveView != null)

{

return true;

}

else

{

return false;

}

}

}

17. In the Class View window, navigate to the BaseTool OnMouseDown method
and right-click to display the context menu. Click Add, then Override to add
the property to the code window.

18. Add the following code to the override the default OnMouseDown function-
ality as implemented by the BaseTool class.
public override void OnMouseDown(int Button, int Shift, int X, int Y)

{

base.OnMouseDown (Button, Shift, X, Y);

// Get the active view.

IActiveView activeView = m_HookHelper.ActiveView;

// Create a new text element.

ITextElement textElement = new TextElementClass();

// Create a text symbol.

ITextSymbol textSymbol = new TextSymbolClass();

textSymbol.Size = 25;

// Set the text element properties.

textElement.Symbol = textSymbol;

textElement.Text = DateTime.Now.ToShortDateString();

// QI for IElement.

IElement element = (IElement) textElement;

// Create a page point.

IPoint point = new PointClass();

point = activeView.ScreenDisplay.DisplayTransformation.ToMapPoint(X,Y);

The ICommand_OnCreate event is passed a
handle or hook to the application that the

command will work with. In this case it can be a
MapControl, PageLayoutControl, or

ToolbarControl. Rather than adding code into the
OnCreate event to determine the type of hook
that is being passed to the command, you will

use the HookHelper to handle this. A command
or tool needs to know how to handle the hook

it gets passed, so a check is needed to deter-
mine the type of ArcGIS Control that has been

passed. The HookHelper is used to hold the hook
and return the ActiveView regardless of the type

of hook (in this case a MapControl,
PageLayoutControl, or ToolbarControl).

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM349

350 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

// Set the element's geometry.

element.Geometry = point;

// Add the element to the graphics container.

activeView.GraphicsContainer.AddElement(element, 0);

// Refresh the graphics.

activeView.PartialRefresh(esriViewDrawPhase.esriViewGraphics, null,
null);

}

19. ArcGIS Engine expects the custom command to be a COM class; therefore
you must specify that the .NET class you have created is also exposed as a
COM class by creating a COM callable wrapper for it. In the Solution Ex-
plorer window, right-click the Commands project and select Properties from
the context menu.

20. In the project Property Pages dialog box, select Configuration Properties,
then click Build. In the right pane, change the Register for COM Interop
property to True. Click OK.

21. In the code window of the AddDateTool class add the following code to the
beginning of the AddDateTool class declaration to specify attributes required
by COM.
[ClassInterface(ClassInterfaceType.None)]

[Guid("D880184E-AC81-47E5-B363-781F4DC4528F")]

22. Add the following code to the AddDateTool class after the member variables.
The code defines functions that register and unregister the AddDateTool class
to the ESRI Controls Commands component category using the categories
utility.
// Register in the 'ESRI Controls Commands' component category.

#region Component Category Registration

[ComRegisterFunction()]

[ComVisible(false)]

static void RegisterFunction(String sKey)

{

string fullKey = sKey.Remove(0, 18) + @"\Implemented Categories";

Microsoft.Win32.RegistryKey regKey =
 Microsoft.Win32.Registry.ClassesRoot.OpenSubKey(fullKey, true);

if (regKey != null)

{

 regKey.CreateSubKey("{B284D891-22EE-4F12-A0A9-
B1DDED9197F4}");

}

}

[ComUnregisterFunction()]

[ComVisible(false)]

static void UnregisterFunction(String sKey)

{

string fullKey = sKey.Remove(0, 18) + @"\Implemented Categories";

Microsoft.Win32.RegistryKey regKey =
 Microsoft.Win32.Registry.ClassesRoot.OpenSubKey(fullKey, true);

if (regKey != null)

Setting the Register for COM Interop property
to True will invoke the Assembly Registration

Tool (Regasm.exe). This will add the information
about the class to the registry that a COM

client would expect to find.

If the Register for COM Interop property is
disabled, check that the project is a C# class

library type.

A new GUID can be generated by using the
GuidGen.exe utility included with Visual Studio

.NET or by selecting Create GUID from the
Tools menu. The GUID should be specified in the

format shown, without curly brackets.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM350

Chapter 6 • Developer scenarios • 351

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

{

 regKey.DeleteSubKey("{B284D891-22EE-4F12-A0A9-B1DDED9197F4}");

}

}

#endregion

23. Build the project.

24. In the Visual Studio .NET Windows Application project that you created at
the beginning of this scenario, add the following code after the code to add
the map navigation commands.
private void Form1_Load(object sender, System.EventArgs e)

{

// Add Map navigation commands…

// Add custom date tool.

progID = "CSharpDotNETCommands.AddDateTool";

axToolbarControl1.AddItem(progID, -1, -1, true, 0,
 esriCommandStyles.esriCommandStyleIconAndText);

// Add commands to the ToolbarMenu.

}

25. Build and run the application and use the AddDateTool to add a text element
to the PageLayoutControl containing today’s date.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM351

352 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

Customizing the ToolbarControl
In addition to adding ArcGIS Engine commands and tools to the ToolbarControl
in the Form_Load event, you can also add them by customizing the
ToolbarControl and using the Customize dialog box. To do this you will place the
ToolbarControl in customize mode and display the Customize dialog box.

1. Add the following member variables to the class:
public class Form1 : System.Windows.Forms.Form

{

…

private ITransformEvents_VisibleBoundsUpdatedEventHandler
 visBoundsUpdatedE;
private ICustomizeDialog m_CustomizeDialog = new

 CustomizeDialogClass(); // The CustomizeDialog used by the
 ToolbarControl

private ICustomizeDialogEvents_OnStartDialogEventHandler
 startDialogE; // The CustomizeDialog start event

private ICustomizeDialogEvents_OnCloseDialogEventHandler
 closeDialogE; // The CustomizeDialog close event

2. Create a new function called CreateCustomizeDialog. This is where you will
create the Customize dialog box by adding the following code to the function:
private void CreateCustomizeDialog()

{

// Set the customize dialog box events.

startDialogE = new

ICustomizeDialogEvents_OnStartDialogEventHandler(OnStartDialog);

((ICustomizeDialogEvents_Event)m_CustomizeDialog).OnStartDialog +=
startDialogE;

closeDialogE = new

ICustomizeDialogEvents_OnCloseDialogEventHandler(OnCloseDialog);

((ICustomizeDialogEvents_Event)m_CustomizeDialog).OnCloseDialog +=

closeDialogE;

// Set the title.

m_CustomizeDialog.DialogTitle = "Customize ToolbarControl Items";

// Show the Add from File button.

m_CustomizeDialog.ShowAddFromFile = true;

// Set the ToolbarControl that new items will be added to.

m_CustomizeDialog.SetDoubleClickDestination(axToolbarControl1);

}

3. Call the CreateCustomizeDialog function from the Form_Load event before
the call to the CreateOverviewSymbol subroutine.
private void Form1_Load(object sender, System.EventArgs e)

{

// Create the Customize dialog box for the ToolbarControl.

CreateCustomizeDialog();

// Create symbol used on the MapControl…

}

Visual Studio .NET provides the ability to specify
functions that execute when an assembly

exposed for COM interop is registered and
unregistered on a system. This allows you to

register your class in a component category that
the Customize dialog box will look for.

The ComVisible attribute is set to false to
ensure that this method cannot be called directly

by a COM client. It does not affect the method
being called when the assembly is registered

with COM.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM352

Chapter 6 • Developer scenarios • 353

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

4. Add a check box to the Form and give it the name ‘chkCustomize’ and the
caption ‘Customize’.

5. Display the form in design mode and select chkCustomize from the Properties
window and display the chkCustomize events. Double-click CheckedChanged
to add an event handler to the code window.

6. Add the following code to the chkCustomize_ CheckedChanged event.
private void chkCustomize_CheckedChanged(object sender, System.EventArgs
e)

{

// Show or hide the Customize dialog box.

if (chkCustomize.Checked == false)

{

m_CustomizeDialog.CloseDialog();

axToolbarControl1.Customize = false;

}

else

{

m_CustomizeDialog.StartDialog(axToolbarControl1.hWnd);

axToolbarControl1.Customize = true;

}

}

7. Add the following OnStartDialog and OnCloseDialog event handlers. These
functions will be wired to events raised whenever the Customize dialog box is
opened or closed.
private void OnStartDialog()

{

axToolbarControl1.Customize = true;

}

private void OnCloseDialog()

{

axToolbarControl1.Customize = false;

chkCustomize.Checked = false;

}

8. Build and run the application and check the Customize box to put the
ToolbarControl into customize mode and open the Customize dialog box.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM353

354 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

9. On the Commands tab select the Graphic Element category and double-click
the Select Elements command to add it to the ToolbarControl. By right-
clicking an item on the ToolbarControl, you can adjust its appearance in terms
of style and grouping.

10. Stop customizing the application. Use the select tool to move the text ele-
ment containing today’s date.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM354

Chapter 6 • Developer scenarios • 355

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

LICENSE CONFIGURATION AND DEPLOYMENT

To successfully deploy this application onto another machine, the application
must configure a license. First, it must check that the product license is available,
and second, it must initialize the license. If this license configuration fails, the
application cannot run. License configuration can be performed either using the
LicenseControl or programmatically using the AoInitialize object. For the purpose
of this application, the LicenseControl will be used to handle license configura-
tion.

1. Open the .Net form in design mode.

2. Double-click the AxLicenseControl in the Windows Forms tab of the toolbox
to add a LicenseControl onto the form.

3. Right-click on LicenseControl and click Properties to open the LicenseControl
property pages.

4. Check the ArcGIS Engine product license and check ‘Shutdown this applica-
tion if the selected licenses are not available’. Click OK.

5. Select Form1 from the Properties window and display the Form events.
Double-click the Closing event to add an event handler to the code window.

When developing a standalone executable using
ArcObjects, it is the responsibility of the applica-
tion to check and configure the licensing options.

A license can be configured, using either the
LicenseControl or the coclass AoInitialize and

the IAoInitialize interface it implements, that is
designed to support license configuration. License

initialization must be performed at application
start time, before any ArcObjects functionality is
accessed. Failure to do so will result in applica-

tion errors. For more information about licensing
see Chapter 5, ‘Licensing and deployment’.

The LicenseControl will appear on a form at
design time so that it can be selected and its

property pages viewed. However, at runtime the
LicenseControl is invisible so its position on the

form is irrelevant.

This application can be initialized with an ArcGIS
Engine license, but you may optionally initialize

the application with a higher product license. For
example, if you check the ‘ArcGIS Engine’ license
and the ‘ArcView’ license, the LicenseControl will

initially try to initialize the application with an
ArcGIS Engine license (the lower license). If that

license is not available, the LicenseControl will
try to initialize the application with an ArcView
license (the next higher level license checked). If

no product licenses are available, then the
application will fail to initialize.

In this application the LicenseControl will handle
license initialization failure. If the application
cannot be initialized with an ArcGIS Engine

product license, a License Failure dialog box will
be displayed to the user before the application is

automatically shut down. Alternatively, a
developer can handle license initialization failure

using the ILicenseControl interface members to
obtain information on the nature of the failure
before the application is programmatically shut

down.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM355

356 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH WINDOWS CONTROLS

6. In the Form_Closing event add the following code:
private void Form1_Closing(object sender,
System.ComponentModel.CancelEventArgs e)

{

// Release COM objects.

ESRI.ArcGIS.Utility.COMSupport.AOUninitialize.Shutdown();

}

7. Build the project and build the solution in release mode.

To successfully deploy this application onto a user’s machine:

• The application’s executable and the DLL containing the custom command
will need to be deployed onto the user’s machine. The Assembly Registration
tool (RegAsm.exe) must be used to add information about the custom class to
the registry.

• The user’s machine will need an installation of the ArcGIS Engine Runtime
and a standard ArcGIS Engine license.

• The user’s machine will need an installation of the Microsoft .NET Frame-
work 1.1.

ADDITIONAL RESOURCES

The following resources may help you understand and apply the concepts and
techniques presented in this scenario.

• Additional documentation available in the ArcGIS Engine Developer Kit
including ArcGIS Developer Help, component help, object model diagrams,
and samples to help you get started.

• ArcGIS Developer Online—Web site providing the most up-to-date informa-
tion for ArcGIS developers including updated samples and technical docu-
ments. Go to http://arcgisdeveloperonline.esri.com.

• ESRI online discussion forums—Web sites providing invaluable assistance
from other ArcGIS developers. Go to http://support.esri.com and click the User
Forums tab.

• Microsoft documentation on the Visual Studio .NET development environ-
ment.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM356

Chapter 6 • Developer scenarios • 357

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

This scenario is designed to introduce the ArcGIS Engine C++ API Control
widgets. Its purpose is not to teach how to set up a C++ environment, how to
compile using the make utility, or how to program with the Motif toolkit.
Throughout this scenario it is assumed that the developer has a functional C++
environment and knows how to compile a C++ and Motif program in that
environment. What this scenario does provide are the steps to take and the code
to write to create a standalone ArcGIS controls application for viewing map
documents, complete with a popup menu and custom tool.

You can find this sample in <install_location>/developerkit/samples/
Developer_Guide_Scenarios/Building_an_ArcGIS_Controls_Map_Viewer_
ApplicationMotif_Cpp.zip.

Although only C++ and Motif code samples are shown here, GIMP Toolkit
(GTK) C++ code has also been written and can be found at <install_location>/
developerkit/samples/Developer_Guide_Scenarios/Building_an_ArcGIS_
Controls_Map_Viewer_ApplicationGTK_Cpp.zip.

PROJECT DESCRIPTION

The ‘Building applications with C++ and control widgets’ scenario demonstrates
the steps required to develop and deploy a GIS application using the standard
ArcGIS controls within the ArcGIS Engine C++ API. This scenario uses the
MapControl, PageLayoutControl, TOCControl, and ToolbarControl as Motif
widgets in code written using a standard text editor and compiled using the make
utility.

This scenario demonstrates the steps required to create a GIS application for
viewing preauthored ESRI map documents, or MXDs. The scenario covers the
following techniques:

• Programming with the ArcGIS Engine in a standard text editor

• Programmatically placing the ArcGIS Engine controls in Motif widget forms

• Loading preauthored map documents into the MapControl and
PageLayoutControl

• Setting ToolbarControl and TOCControl buddy controls

• Adding control commands and tools to the ToolbarControl

• Creating popup menus

• Managing label editing in the TOCControl

• Drawing shapes on the MapControl

• Creating a custom tool to work with the MapControl, PageLayoutControl,
and ToolbarControl

• Customizing the ToolbarControl

• Deploying the application on a Solaris or Linux platform

CONCEPTS

This scenario is implemented using a text editor, the make utility, and Motif
widget ArcGIS controls.

Rather than walk through this scenario, you can
get the completed application from the samples

installation location. The sample is installed as
part of the ArcGIS developer samples.

The ArcGIS developer samples are not included
in the typical installation of the ArcGIS Engine

Developer Kit. If you do not have them installed,
rerun the developer kit Install wizard, click

Custom or Modify, and click the samples feature
under Software Developer Kit.

Motif and GTK ArcGIS C++ control widgets are
only available on Solaris and Linux. However, GUI

applications can be built on Windows with the
COM API, including Visual C++, and the ActiveX

ArcGIS controls.

The scenario has also been implemented with
the GTK widget ArcGIS controls. That code can

be found in the ArcGIS Engine Developer Kit.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM357

358 • ArcGIS Engine Developer Guide

The ArcGIS Engine C++ API provides reusable Motif widget components
corresponding to each ArcGIS Engine control. This developer scenario will show
how these components can be embedded in a Motif form to build a map viewer
application.

Motif itself is a specification for how graphical user interfaces should look and
feel. The Open Software Foundation (OSF) Motif Toolkit, used with the
ArcGIS Engine C++ API in this scenario, uses X as the window system and X
Toolkit Intrinsics as the API platform. The Motif widgets discussed here are one
part of the Motif toolkit. Each widget is a reusable and configurable component
of the user interface. The Motif toolkit provides widgets for common tasks, such
as the toggle button used in this scenario. Each built-in Motif widget knows how
to draw itself as well as some generic behavior; for example, the toggle button
knows to call a function when it is clicked. However, it is up to the programmer
to implement the callback function, giving the widget its specific behavior. In
addition to providing widgets the Motif toolkit does other work for the devel-
oper, including handling many user interactions, managing window layout, and
redrawing.

The Motif widget ArcGIS controls are custom widgets made available through
the C++ API of the ArcGIS Engine Developer Kit. Placed in a top-level applica-
tion widget, the controls have events, properties, and methods that the developer
can access, and like the built-in Motif toolkit widgets, each ESRI control widget
knows how to draw itself. The objects and functionality within each control can
be combined with other ESRI ArcObjects as well as with custom controls to
easily create customized end user applications.

This scenario was written in C++ using the Motif toolkit from the Open Soft-
ware Foundation. It was chosen to create an application that would run on a
Solaris or Linux platform. The same application could also be written in Java.
Whichever API you use, your future success with the ArcGIS controls depends
on your skill in both the language and ArcObjects.

DESIGN

This scenario has been designed to highlight how the ArcGIS controls interact
with each other and to expose a part of each ArcGIS control’s object model to
the developer.

The scenario starts with building a GUI using Motif to place and manage the
controls. The controls are then connected to each other through the SetBuddy
methods. At this stage, the application is ready to function as a simple map
viewer. The GUI functionality is then extended through a custom tool and event
handling. To achieve this, the scenario further explores the API of the visual
Motif widgets, as well as the other nonvisual ArcGIS Engine components.

REQUIREMENTS

To successfully follow this scenario you need the following (the requirements for
deployment are covered later in the ‘Deployment’ section):

• An installation of the ESRI ArcGIS Engine Developer Kit with an authoriza-
tion file enabling it for development use.

A buddy control is a control that is designed to
work in conjunction with another control. For

example, the Table of Contents, or TOC, Control
is a buddy of the MapControl.

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

Although the GUI design will be different for
GTK developers, the majority of the rest of the
application code will be the same. Throughout

the scenario, sidebars will highlight areas where
GTK programmers will take different steps.

Each Motif ArcGIS control widget has a
corresponding GTK ArcGIS control widget.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM358

Chapter 6 • Developer scenarios • 359

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

• Your favorite text editor.

• A supported C++ compiler.

o Solaris: Sun WorkShop (Forte) 6 update 2

o Linux: GCC version 3.2

• A configured C++ environment (for example, your compiler configured and
your path set). To test this, see ‘Pre-ArcObjects C++ configuration steps’ in
Chapter 4, ‘Development environments’.

• A configured ArcObjects environment. To get your machine ready for
ArcObjects development, you must source the file <install_location>/
init_engine.sh (or .csh, depending on your shell of choice). If you prefer, that
can be done in your shell’s RC file. Otherwise, you must source that file for
each shell.

• Familiarity with your operating system and a basic foundation in both C++
and Motif programming. Although this scenario uses the Motif toolkit, it is
not intended to teach the basics of Motif programming. For Motif-specific
details, see the Motif Programming Manual resource listed at the end of this
example.

• While no experience with other ESRI software is required, previous experi-
ence with ArcObjects and a basic understanding of ArcGIS applications, such
as ArcMap and ArcCatalog, are advantageous.

• Access to the sample data, code, and makefiles that come with this scenario.
Code and makefiles are located at <install_location>/developerkit/
Building_an_ArcGIS_Controls_Map_Viewer_ApplicationMotif_Cpp.zip. The
sample data is located at <install_location>/developerkit/samples/data/
arcgis_engine_developer_guide.

The controls and ArcGIS libraries used in this scenario are as follows:

• MapControl

• PageLayoutControl

• TOCControl

• ToolbarControl

• Carto Object Library

• System Object Library

• Display Object Library

• SystemUI Object Library

• Geometry Object Library

In Motif C++, you must include the following files to use those controls and
object libraries:

• ArcSDK.h

• Ao/AoMotifControls.h

The ArcGIS developer samples are not included
in the typical installation of the ArcGIS Engine

Developer Kit. If you do not have them installed,
rerun the Developer Kit Install wizard, click

Custom or Modify, and click the samples feature
under Software Developer Kit.

The GTK implementation can be found in the
same directory in

Building_an_ArcGIS_controls_Map_Viewer_
ApplicationGTK_cpp.zip.

In GTK C++ you would include ArcSDK.h and
Ao/AoGTKControls.h. You would use libarcsdk.so,
libgtkctl.so, and libaoctl.so. GTK developers will

also need to link against some GTK libraries and
include some GTK-specific directories. It is

recommended that pkg-config be used for this.
These steps are shown in the provided

Makefile.SolarisGTK.Template and
Makefile.LinuxGTK.Template.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM359

360 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

They also use the Engine Developer Kit libraries:

• libarcsdk.so

• libmotifctl.so

• libaoctl.so

In addition, for Motif you must link against:

• libpthread.so (Linux only)

• libXm.so

• libX11.so

To implement a custom tool, you must include the following file:

• Ao/AoToolBase.h

IMPLEMENTATION

The implementation below provides you with all the code you will need to
successfully complete the scenario. It does not provide step-by-step instructions
for developing C++ applications with Motif, as it assumes that you have a work-
ing knowledge of the development environment already.

During this scenario, the steps assume that you are programming on Solaris.
However, to follow this same scenario on Linux all you will need to do is to use
the Linux makefile, Makefile.LinuxMotif, instead of the Solaris makefile,
Makefile.SolarisMotif.

Creating the makefile
To easily compile the application you make use of a makefile. This scenario is not
designed to teach you the basics of project management with the make utility, so
if you are unfamiliar with them, please see the Oram and Talbott reference at the
end of this scenario.

1. To create the makefile for this scenario, copy either the
Makefile.SolarisMotif.Template (for Solaris programming) or
Makefile.LinuxMotif.Template (for Linux programming). Those files are
located with the code in the Motif_Cpp folder. Remove the “.Template” from
the end of the filename, and replace all instances of “motif_sample” with
“MapViewer.” The Makefile.SolarisMotif.Final and
Makefile.LinuxMotif.Final, in the same directory, show what your makefile
should look like at the end of this scenario.

Creating the Motif Application form by placing the ArcGIS Engine
controls on a Motif Application form
To use the controls, you must create them as Motif widgets and place them into a
Motif application form.

1. Open MapViewer.h, a new file, in your text editor. Place the following lines
to ensure that the class is only declared once. The remainder of code for this
file will fall between #define and #endif.
#ifndef __ENGINE_CONTROL_MOTIF_EXAMPLE__

#define __ENGINE_CONTROL_MOTIF_EXAMPLE__

Makefiles greatly simplify the build process for
large applications. ESRI's Makefile samples don’t
always use all of the functionality available in the

make utility (for example, SUFFIXES and
pattern rules) because they are designed to

work across many different versions of make.
However, the makefiles do use various pre-

defined variables that are available for most
versions of make. These predefined variables

include both commands (for example, CXX and
RM) and command arguments (for example,
CXXFLAGS and LDFLAGS). Consult the docu-

mentation for the make utility for more
information about its advanced features.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM360

Chapter 6 • Developer scenarios • 361

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

#endif // __ENGINE_CONTROL_MOTIF_EXAMPLE__

2. Include the necessary files for the Motif toolkit. Make sure that String, Cur-
sor, Object, and ObjectClass have all been defined as ESRI types, as shown
below:
#define __ENGINE_CONTROL_MOTIF_EXAMPLE__

// Motif Headers

#define String esriXString

#define Cursor esriXCursor

#define Object esriXObject

#define ObjectClass esriXObjectClass

#include <Xm/Xm.h>

#include <Xm/MainW.h>

#include <Xm/Form.h>

#include <Xm/Protocols.h>

#undef String

#undef Cursor

#undef Object

#undef ObjectClass

#endif // __ENGINE_CONTROL_MOTIF_EXAMPLE__

3. Include the Engine C++ API header file:
#undef ObjectClass

// ArcObjects Headers

// Engine

#include <ArcSDK.h>

4. Open MapViewer.cpp, a new file, in your text editor to implement your
application. Include the MapViewer.h file just created.
#include "MapViewer.h"

5. Begin writing the main function. First initialize the ArcGIS Engine with
AoInitialize, then set up the licensing for the product using IAoInitialize >
Initialize(). If a user attempts to run the application without an appropriate
ArcGIS Engine runtime or license, the application will exit. Notice that the
scope is set to prevent ipInit from existing when ::AoUninitialize() is called
later.
int main (int argc, char* argv[])

{

 // Initialize the engine

 ::AoInitialize(NULL);

 {

 IAoInitializePtr ipInit(CLSID_AoInitialize);

 esriLicenseStatus status;

 ipInit->Initialize(esriLicenseProductCodeEngine, &status);

 if (status != esriLicenseCheckedOut)

 AoExit(0);

 }

}

The code shown in gray has already been
entered in previous steps. It is given here to

illustrate the accurate placement of the code you
are adding in this step.

Although the names are similar, AoInitialize()
and the IAoInitialize interface have different

purposes. While AoInitialize() is a C++ API call
that initializes libraries, the IAoInitialize

interface is used to handle licensing for the
application.

For GTK you will need to replace the Motif
headers with a single include of gtk/gtk.h.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM361

362 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

6. To increase code readability, use a helper function FormSetup. You will need to
pass in an XtAppContext, which will be set in that function, as well as the
parameters passed into main.

a. First, place a definition of this file in MapViewer.h. You will also need to
inform the compiler where to find the Resize function, which you will be
using in FormSetup().

 #include <ArcSDK.h>

 void FormSetup(int argc, char* argv[], XtAppContext* app_context);

 extern "C" void XtResizeWidget(Widget, _XtDimension,

 _XtDimension, _XtDimension);

 #endif // __ENGINE_CONTROL_MOTIF_EXAMPLE__

b. After initialization in MapViewer.cpp, call FormSetup, which you will write
in the following steps.

 ::AoInitialize(NULL);

 {

 …

 }

 XtAppContext app_context;

 FormSetup(argc, argv, &app_context);

7. In MapViewer.cpp, after the main function, begin writing FormSetup by setting
the language procedure for your application.
void FormSetup(int argc, char* argv[], XtAppContext* app_context)

{

XtSetLanguageProc(NULL,NULL,NULL);

}

8. Continuing in FormSetup, create the Motif form for the MapViewer.

a. Initialize the Motif toolkit and create your top-level application Motif
widget.

 XtSetLanguageProc(NULL,NULL,NULL);

 // Initialize the Motif toolkit and create the parent widget

 Widget topLevel = XtVaAppInitialize(app_context, "XApplication", NULL,

 0, &argc, argv, NULL, NULL);

 XtVaSetValues(topLevel, XmNtitle, "MapViewer", NULL);

b. Set the application’s initial size to 800 x 640, using the resize function that
you placed in MapViewer.h earlier.

 XtVaSetValues(topLevel, XmNtitle, "MapViewer", NULL);

 // Set the application size by resizing the created widget

 XtResizeWidget(topLevel, 800, 640, 1);

c. Create the main application window after the resize. Create the main form
and attach it to the main window so that it fills the window. The main form
widget will be the parent widget for each of the ESRI Engine Control
widgets.

For the equivalent GTK setup, see
form_setup in the provided MapViewer.cpp

file in the GTK zip file. You will notice that the
GTK function names differ slightly from the

Motif ones. This is to maintain the program-
ming styles associated with each.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM362

Chapter 6 • Developer scenarios • 363

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

 XtResizeWidget(topLevel, 800, 640, 1);

 Widget mainWindow = XtVaCreateWidget("mainwindow",

 xmMainWindowWidgetClass, topLevel,

 NULL);

 Widget mainForm = XtVaCreateWidget("mainform",

 xmFormWidgetClass, mainWindow,

 XmNtopAttachment, XmATTACH_WIDGET,

 XmNtopWidget, mainWindow,

 XmNbottomAttachment, XmATTACH_WIDGET,

 XmNbottomWidget, mainWindow,

 XmNleftAttachment, XmATTACH_WIDGET,

 XmNleftWidget, mainWindow,

 XmNrightAttachment, XmATTACH_WIDGET,

 XmNrightWidget, mainWindow,

 XmNfractionBase, 100,

 NULL);

d. Manage the child widgets.
 Widget mainForm = XtVaCreateWidget(…);

 // Manage the non-parent widgets

 XtManageChild(mainWindow);

 XtManageChild(mainForm);

e. Listen for window manager events to exit the application on command. To
set this up, you will use a callback on the entire application that will re-
spond to window manager protocols. When the window manager’s close
message is received, the CloseAppCallback function is executed. Here just
listen—you will implement the callback function in Step 9.

 XtManageChild(mainForm);

 // Handle the "close" window manager message

 Atom wm_delete_window = XmInternAtom(XtDisplay(topLevel),

 "WM_DELETE_WINDOW", FALSE);

 XmAddWMProtocolCallback(topLevel,
 wm_delete_window, CloseAppCallback,

 NULL);

f. With all the application widgets created and managed and all the callbacks
registered, the application can start running. Realizing the top-level widget
recursively creates the actual windows for all the application widgets. The
call to the function is made at the end of your FormSetup function.

 void FormSetup(…)

 {

 …

 XmAddWMProtocolCallback(topLevel,
 wm_delete_window, CloseAppCallback,

 NULL);

GTK deals with closing differently, as shown in
form_setup of GTK’s MapViewer.cpp.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM363

364 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

 //Start the application running

 XtRealizeWidget(topLevel);

 }

9. In the previous step you set up a callback to listen for window manager proto-
cols to close on command. Now implement the callback for when the applica-
tion is closed.

a. First give a forward declaration of the function. This is placed right after
the declaration for XtResizeWidget at the top of MapViewer.h.

 extern "C" void XtResizeWidget(Widget, _XtDimension,

 _XtDimension, _XtDimension);

 void CloseAppCallback(Widget w, XtPointer client_data,

 XtPointer call_data);

b. Write the function in MapViewer.cpp after FormSetup. Shut down and
uninitialize the ArcGIS Engine Developer Kit, then exit.

 // Function called when WM_DELETE_WINDOW protocol is passed

 void CloseAppCallback(Widget w, XtPointer client_data,

 XtPointer call_data)

 {

 // Uninitialize the engine

 {

 IAoInitializePtr ipInit(CLSID_AoInitialize);

 ipInit->Shutdown();

 }

 ::AoUninitialize();

 AoExit(0);

 }

10. A final ArcGIS Engine C++ API call is required to turn the application over
to the X Toolkit Intrinsics, which handles passing events to the widgets. After
this call, the application code sits idle and waits for user-generated events.
This will end your main function.
int main(int argc, char* argv[])

{

 …

 FormSetup(argc, arcv, &app_context);

 // Start the application running

 XtAppMainLoop(app_context);

}

11. Compile the application by typing “make –f Makefile.SolarisMotif ” at the
command line.

12. Run the application by typing either “make –f Makefile.SolarisMotif run” or
“./MapViewer” at the command line. You will see an empty form titled
MapViewer.

Although it might look like a new instance of
AoInitialize is created, it is a singleton object, so

this returns a pointer to the same AoInitialize
object created before.

The GTK equivalent is gtk_main.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM364

Chapter 6 • Developer scenarios • 365

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

Placing the ArcGIS Engine Controls
Now that you have a Motif form ready, you can create the ArcGIS controls as
Motif widgets and place them on the form.

1. Start by including the ArcGIS controls header file in MapViewer.h:
#include <ArcSDK.h>

// Controls

#include <Ao/AoMotifControls.h>

2. In MapViewer.cpp, continue implementing your application. Set up global
variables for the control interfaces, placing them before main.
// Control Interfaces

IToolbarControlPtr g_ipToolbarControl;

IMapControl3Ptr g_ipMapControl;

ITOCControlPtr g_ipTOCControl;

IPageLayoutControlPtr g_ipPageLayoutControl;

int main(int argc, char* argv[])

3. You are now ready to create the ESRI control widgets for the
PageLayoutControl, MapControl, TOCControl, and ToolbarControl. You will
do this in the FormSetup function after the mainForm is created and before the
widgets are managed. The widget class for all of the ESRI controls is

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM365

366 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

mwCnlWidgetClass, and each widget must be given the MwNProgID that
corresponds to its control type. Place the MapControl and the TOCControl in
their own frames. Set the widget attachments to position the controls into the
application window so that the ToolbarControl is along the top of the appli-
cation, the TOCControl is along the left with the MapControl below it, and
the PageLayoutControl is to the right of the TOCControl. Also set the height
of the toolbar, the width of the TOC, and the dimensions of the map, which
you want constant even if the application is resized.
Widget mainForm = XtVaCreateWidget(…);

// ToolbarControl setup

Widget toolbarWidget = XtVaCreateWidget("toolbarwidget",

 mwCtlWidgetClass, mainForm,

 XmNtopAttachment, XmATTACH_FORM,

 XmNleftAttachment, XmATTACH_FORM,

 XmNrightAttachment, XmATTACH_FORM,

 MwNprogID, AoPROGID_ToolbarControl,

 NULL);

XtVaSetValues(toolbarWidget, XmNheight, 25, NULL);

// Create a sub-form to place TOCControl and MapControl on

Widget leftFormPanel = XtVaCreateWidget("leftformpanel",

 xmFormWidgetClass, mainForm,

 XmNtopAttachment, XmATTACH_WIDGET,

 XmNtopWidget, toolbarWidget,

 XmNbottomAttachment, XmATTACH_FORM,

 XmNleftAttachment, XmATTACH_FORM,

 XmNwidth, 200,

 NULL);

// MapControl setup

Widget mapWidget = XtVaCreateWidget("mapwidget",

 mwCtlWidgetClass, leftFormPanel,

 XmNbottomAttachment, XmATTACH_FORM,

 XmNleftAttachment, XmATTACH_FORM,

 XmNrightAttachment, XmATTACH_FORM,

 MwNprogID, AoPROGID_MapControl,

 NULL);

XtVaSetValues(mapWidget, XmNheight, 200, XmNwidth, 200, NULL);

// TOCControl setup

Widget tocWidget = XtVaCreateWidget("tocwidget",

 mwCtlWidgetClass, leftFormPanel,

 XmNtopAttachment, XmATTACH_FORM,

 XmNleftAttachment, XmATTACH_FORM,

 XmNrightAttachment, XmATTACH_FORM,

 XmNbottomAttachment, XmATTACH_WIDGET,

 XmNbottomWidget, mapWidget,

 MwNprogID, AoPROGID_TOCControl,

 NULL);

XtVaSetValues(tocWidget, XmNwidth, 200, NULL);

GTK ArcGIS control widgets are created with
gtk_axctl_new.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM366

Chapter 6 • Developer scenarios • 367

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

// PageLayoutControl setup

Widget pageWidget = XtVaCreateWidget("pagewidget",

 mwCtlWidgetClass, mainForm,

 XmNtopAttachment, XmATTACH_WIDGET,

 XmNtopWidget, toolbarWidget,

 XmNleftAttachment, XmATTACH_WIDGET,

 XmNleftWidget, leftFormPanel,

 XmNbottomAttachment, XmATTACH_FORM,

 XmNrightAttachment, XmATTACH_FORM,

 MwNprogID, AoPROGID_PageLayoutControl,

 NULL);

 // Manage the non-parent widgets

4. Once the widgets are created, you can get an interface pointer to each control
through Ao<ControlName>ControlGetInterface. Throughout this scenario
smart pointers are used.
// ToolbarControl setup

Widget toolbarWidget = XtVaCreateWidget(…);

XtVaSetValues(toolbarWidget, XmNheight, 25, NULL);

MwCtlGetInterface(toolbarWidget, (IUnknown**)&g_ipToolbarControl);

…

// MapControl setup

g_mapWidget = XtVaCreateWidget(…);

XtVaSetValues(mapWidget, XmNheight, 200, XmNwidth, 200, NULL);

MwCtlGetInterface(mapWidget, (IUnknown**)&g_ipMapControl);

// TOCControl setup

g_tocWidget = XtVaCreateWidget(…);

XtVaSetValues(tocWidget, XmNwidth, 200, NULL);

MwCtlGetInterface(tocWidget, (IUnknown**)&g_ipTOCControl);

// PageLayoutControl setup

g_pageWidget = XtVaCreateWidget(…);

MwCtlGetInterface(pageWidget, (IUnknown**)&g_ipPageLayoutControl);

5. Call XtManageChild on the Control widgets. The parent widget will take care
of the size and placement.
XtManageChild(mainForm);

XtManageChild(leftFormPanel);

XtManageChild(toolbarWidget);

XtManageChild(mapWidget);

XtManageChild(tocWidget);

XtManageChild(pageWidget);

6. Since you are using the ArcGIS controls, you must use a new method for the
main application loop. In main, change XtAppMainLoop to MwCtlAppMainLoop:
// Start the application running

XtAppMainLoop(app_context);

The GTK controls get interface pointers with
gtk_axctl_get_interface.

In GTK there is no ArcGIS-specific method for the
main application loop, and gtk_main continues

to be used. However,
gtk_axctl_initialize_message_queue

must be used before gtk_main to enable
MainWin message delivery.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM367

368 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

MwCtlAppMainLoop(app_context);

7. Before you shut down the application, you need to clean up the global
ArcObjects. Do this by setting the pointer for each control to 0.
void CloseAppCallback(Widget w, XtPointer client_data,

 XtPointer call_data)

{

 g_ipToolbarControl = 0;

 g_ipMapControl = 0;

 g_ipTOCControl = 0;

 g_ipPageLayoutControl = 0;

// Uninitialize the engine

8. Compile the application by typing “make –f Makefile.SolarisMotif ” at the
command line.

9. Run the application by typing either “make run –f Makefile.SolarisMotif ” or
“./MapViewer” at the command line. Notice how the controls have been
placed in the application window. At this point the controls are all empty
because no commands or data have been added. Try resizing the main form,
and see that the TOCControl maintains its width, the ToolbarControl its
height, and the MapControl its dimensions, but the other dimensions and
controls resize themselves.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM368

Chapter 6 • Developer scenarios • 369

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

Loading map documents into the PageLayoutControl and MapControl
Individual data layers or preauthored ESRI map documents can be loaded into the
MapControl and PageLayoutControl. You can either load the sample map docu-
ment provided, or you can load your own map document. Later you will add an
ArcGIS command to the ToolbarControl, which will allow you to browse to a map
document.

1. Programmatically add data to the PageLayoutControl. To do so you will write a
new function, LoadData.

a. Place a forward declaration after the forward declaration for the
CloseAppCallback function at the top of MapViewer.h.
void CloseAppCallback(Widget w, XtPointer client_data,

 XtPointer call_data);

void LoadData();

b. Now define LoadData in MapViewer.cpp after the definition for the
CloseAppCallback function.
void CloseAppCallback(Widget w, XtPointer client_data,

 XtPointer call_data)

{

 …

}

void LoadData()

{

 CComBSTR MX_DATAFILE;

 MX_DATAFILE =

 L"../data/arcgis_engine_developer_guide/gulf of st. lawrence.mxd";

 VARIANT_BOOL bValidDoc;

 g_ipPageLayoutControl->CheckMxFile(MX_DATAFILE, &bValidDoc);

 if (bValidDoc)

 g_ipPageLayoutControl->LoadMxFile(MX_DATAFILE);

}

c. Call LoadData from the main function after the widgets are placed in
FormSetup.
FormSetup(argc, argv, &app_context);

LoadData();

2. You want the same map to appear in the MapControl. When the document in
the PageLayoutControl changes, the contents of the MapControl must be
updated. To do that, you must listen for events in the PageLayoutControl by
writing a class that inherits from IPageLayoutControlEventsHelper. Open a new
text file called PageLayoutControlEvents.h. Place the following code into that
file, making sure to include the macro IUNKNOWN_METHOD_DEFS to
implement IUnknown:
#ifndef __PAGELAYOUTCONTROLEVENTS_H_

#define __PAGELAYOUTCONTROLEVENTS_H_

// ArcObjects Headers

Data can also be loaded to the toolbar’s buddy
at runtime by using

esriControlCommands.ControlsOpenDocCommand,
a command that will be placed on the toolbar

later in this scenario.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM369

370 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

// Engine

#include <ArcSDK.h>

#include <Ao/AoControls.h>

class PageLayoutControlEvents : public IPageLayoutControlEventsHelper

{

public:

// IUnknown

IUNKNOWN_METHOD_DEFS

// IPageLayoutControlEvents

void OnAfterDraw(VARIANT display, long viewDrawPhase);

void OnAfterScreenDraw(long hdc);

void OnBeforeScreenDraw(long hdc);

void OnDoubleClick(long button, long shift, long x, long y,

 double mapX, double mapY);

void OnExtentUpdated(VARIANT displayTransformation,

 VARIANT_BOOL sizeChanged, VARIANT newEnvelope);

void OnFullExtentUpdated(VARIANT displayTransformation,

 VARIANT newEnvelope);

void OnKeyDown(long keyCode, long shift);

void OnKeyUp(long keyCode, long shift);

void OnFocusMapChanged();

void OnPageLayoutReplaced(VARIANT newPageLayout);

void OnPageSizeChanged();

void OnMouseDown(long button, long shift, long x, long y,

 double mapX, double mapY);

void OnMouseMove(long button, long shift, long x, long y,

 double mapX, double mapY);

void OnMouseUp(long button, long shift, long x, long y,

 double mapX, double mapY);

void OnOleDrop(esriControlsDropAction dropAction, VARIANT
 dataObjectHelper, long* effect, long button, long shift,
 long x, long y);

void OnSelectionChanged();

void OnViewRefreshed(VARIANT ActiveView, long viewDrawPhase,

 VARIANT layerOrElement, VARIANT envelope);

};

#endif // __PAGELAYOUTCONTROLEVENTS_H_

3. However, you need to have access to the global PageLayoutControl and
MapControl from MapViewer.cpp. You will define them as extern after the
#include lines. This tells the compiler that they are defined in another file.
This will be accomplished by placing the following code in
PageLayoutControlEvents.h:
#define __PAGELAYOUTCONTROLEVENTS_H_

By using Ao/AoControls.h, this class works with
both GTK and Motif applications.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM370

Chapter 6 • Developer scenarios • 371

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

#include <Ao/AoControls.h>

extern IPageLayoutControlPtr g_ipPageLayoutControl;

extern IMapControl3Ptr g_ipMapControl;

4. Place the following implementation for IPageLayoutControlEventsHelper’s
functions into PageLayoutControlEvents.cpp, another new file. Since they are
void functions, they can be left empty. Implementation for some of them will
be done later in this scenario.
#include "PageLayoutControlEvents.h"

void PageLayoutControlEvents::OnAfterDraw(VARIANT display, long
 viewDrawPhase)

{

}

void PageLayoutControlEvents::OnAfterScreenDraw(long hdc)

{

}

void PageLayoutControlEvents::OnBeforeScreenDraw(long hdc)

{

}

void PageLayoutControlEvents::OnDoubleClick(long button, long shift, long x,

 long y, double mapX, double mapY)

{

}

void PageLayoutControlEvents::OnExtentUpdated(VARIANT displayTransformation,

 VARIANT_BOOL sizeChanged,

 VARIANT newEnvelope)

{

}

void PageLayoutControlEvents::OnFullExtentUpdated(VARIANT
displayTransformation,

VARIANT newEnvelope)

{

}

void PageLayoutControlEvents::OnKeyDown(long keyCode, long shift)

{

}

void PageLayoutControlEvents::OnKeyUp(long keyCode, long shift)

{

}

void PageLayoutControlEvents::OnFocusMapChanged()

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM371

372 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

{

}

void PageLayoutControlEvents::OnPageLayoutReplaced(VARIANT newPageLayout)

{

}

void PageLayoutControlEvents::OnPageSizeChanged()

{

}

void PageLayoutControlEvents::OnMouseDown(long button, long shift, long x,

 long y, double mapX, double mapY)

{

}

void PageLayoutControlEvents::OnMouseMove(long button, long shift, long x,

 long y, double mapX, double mapY)

{

}

void PageLayoutControlEvents::OnMouseUp(long button, long shift, long x,

 long y, double mapX, double mapY)

{

}

void PageLayoutControlEvents::OnOleDrop(esriControlsDropAction dropAction,

 VARIANT dataObjectHelper,

 long* effect, long button,

 long shift, long x, long y)

{

}

void PageLayoutControlEvents::OnSelectionChanged()

{

}

void PageLayoutControlEvents::OnViewRefreshed(VARIANT ActiveView,

 long viewDrawPhase,

 VARIANT layerOrElement,

 VARIANT envelope)

{

}

5. Now you can do the actual update of the MapControl’s ActiveView. Enter
the following code into the OnPageLayoutReplaced event of the
PageLayoutControl, which is called whenever a document is loaded into the
PageLayoutControl. It will be found in PageLayoutControlEvents.cpp, which
you created in the last step.
void PageLayoutControlEvents::OnPageLayoutReplaced(VARIANT newPageLayout)

{

Although all of the functions are left empty, they
must all be defined here to prevent the class

from being an abstract class.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM372

Chapter 6 • Developer scenarios • 373

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

 // Load the same pre-authored map document into the MapControl

 CComBSTR DocFileName;

 IPageLayoutControl2Ptr ipPage2 = g_ipPageLayoutControl;

 ipPage2->get_DocumentFilename(&DocFileName);

 g_ipMapControl->LoadMxFile(DocFileName);

}

6. Since events have been added, you need to tell the main application to listen
for them. Do this by creating an instance of the new class in the main function
of MapViewer.cpp and by using the IEventListenerHelper interface.

a. First, include PageLayoutControlEvents.h at the top of MapViewer.h.
 #include <Ao/AoMotifControls.h>

// Events

#include "PageLayoutControlEvents.h"

b. In MapViewer.cpp, declare the global variables to use in listening for events.
IPageLayoutControlPtr g_ipPageLayoutControl;

// Events

PageLayoutControlEvents* g_pageLayoutEvents;

IEventListenerHelperPtr g_ipPageLayoutControlEventHelper;

c. Place the code to begin listening after the FormSetup in main, and before the
data is loaded.
FormSetup(argc, argv, &app_context);

// Event listening

g_pageLayoutEvents = new PageLayoutControlEvents();

g_ipPageLayoutControlEventHelper.CreateInstance(

 CLSID_PageLayoutControlEventsListener);

g_ipPageLayoutControlEventHelper->Startup(

 static_cast<IPageLayoutControlEventsHelper*>(g_pageLayoutEvents));

g_ipPageLayoutControlEventHelper->AdviseEvents(g_ipPageLayoutControl,
 NULL);

7. Before closing the application, you must clean up the events by calling
UnadviseEvents and Shutdown, as well as deleting the instance of
PageLayoutControlEvents. This is done in CloseAppCallback before the control
interface pointers are set to 0.
// Function called when WM_DELETE_WINDOW protocol is passed

void CloseAppCallback(Widget w, XtPointer client_data, XtPointer call_data)

{

 // End event listening

 g_ipPageLayoutControlEventHelper->UnadviseEvents();

 g_ipPageLayoutControlEventHelper->Shutdown();

 g_ipPageLayoutControlEventHelper = 0;

 delete g_pageLayoutEvents;

g_ipToolbarControl = 0;

In GTK, the event cleanup will be done in
delete_event, a callback used with

destroy_event to close the application.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM373

374 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

8. Update the makefile. Include PageLayoutControlEvents.cpp as a source, add
the header for the events to the MapViewer.o dependencies list, and add a
dependencies list for PageLayoutControlEvents.o.

9. Compile and run the application. The map document is now loaded into the
PageLayoutControl; and the TOCControl lists the data layers in the
MapDocument. By default, the focus map of the map document is loaded into
the MapControl.

Setting the Buddy Control for the TOCControl and ToolbarControl
For the purpose of this application, the TOCControl and ToolbarControl will
work in conjunction with the PageLayoutControl rather than the MapControl. To
do this the PageLayoutControl must be set as the buddy control. The
TOCControl uses the buddy’s ActiveView to populate itself with maps, layers,
and symbols, while any command, tool, or menu items present on the
ToolbarControl will interact with the buddy control’s display.

1. The buddy control is set after the widgets are created and their interface
pointers have been assigned, so you will set each one after FormSetup().
FormSetup(argc, argv, &app_context);

// Buddy the toolbar and TOC with the PageLayoutControl

g_ipToolbarControl->SetBuddyControl(g_ipPageLayoutControl);

g_ipTOCControl->SetBuddyControl(g_ipPageLayoutControl);

// Event listening

2. Remake the application and run it again. Notice that now the TOCControl
displays a layer icon as well as the data for the current document. Use the
TOCControl to toggle layer visibility by checking and unchecking the boxes.
At this point the ToolbarControl is empty because no commands have been
added to it.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM374

Chapter 6 • Developer scenarios • 375

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

Adding commands to the ToolbarControl
ArcGIS Engine comes with more than 120 commands and tools that work with
the MapControl, PageLayoutControl, and ToolbarControl directly. These com-
mands and tools provide you with a lot of frequently used GIS functionality for
map navigation, graphics management, and feature selection. You will now add
some of these commands and tools to your application.

1. Create a new function to add commands and tools to the ToolbarControl.

a. The forward declaration of the function follows that for LoadData() in
MapViewer.h:

 void LoadData();

 void AddToolbarItems();

b. The function implementation for adding the prebuilt commands and tools
goes in MapViewer.cpp after the LoadData function.

 void LoadData()

 {

 …

 }

 void AddToolbarItems()

 {

 long itemIndex;

 CComVariant varTool;

 varTool = L"esriControlCommands.ControlsOpenDocCommand";

ArcGIS Engine also provides commands for use
with the SceneControl and GlobeControl.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM375

376 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

 g_ipToolbarControl->AddItem(varTool, 0, -1, VARIANT_FALSE, 0,

 esriCommandStyleIconOnly, &itemIndex);

 // Add PageLayout Navigation Commands

 varTool = L"esriControlCommands.ControlsPageZoomInTool";

 g_ipToolbarControl->AddItem(varTool, 0, -1, VARIANT_TRUE, 0,

 esriCommandStyleIconOnly, &itemIndex);

 varTool = L"esriControlCommands.ControlsPageZoomOutTool";

 g_ipToolbarControl->AddItem(varTool, 0, -1, VARIANT_FALSE, 0,

 esriCommandStyleIconOnly, &itemIndex);

 varTool = L"esriControlCommands.ControlsPagePanTool";

 g_ipToolbarControl->AddItem(varTool, 0, -1, VARIANT_FALSE, 0,

 esriCommandStyleIconOnly, &itemIndex);

 varTool = L"esriControlCommands.ControlsPageZoomWholePageCommand";

 g_ipToolbarControl->AddItem(varTool, 0, -1, VARIANT_FALSE, 0,

 esriCommandStyleIconOnly, &itemIndex);

 varTool =

 L"esriControlCommands.ControlsPageZoomPageToLastExtentBackCommand";

 g_ipToolbarControl->AddItem(varTool, 0, -1, VARIANT_FALSE, 0,

 esriCommandStyleIconOnly, &itemIndex);

 varTool =

 L"esriControlCommands.ControlsPageZoomPageToLastExtentForwardCommand";

 g_ipToolbarControl->AddItem(varTool, 0, -1, VARIANT_FALSE, 0,

 esriCommandStyleIconOnly, &itemIndex);

 // Add Map Navigation Commands

 varTool = L"esriControlCommands.ControlsMapZoomInTool";

 g_ipToolbarControl->AddItem(varTool, 0, -1, VARIANT_TRUE, 0,

 esriCommandStyleIconOnly, &itemIndex);

 varTool = L"esriControlCommands.ControlsMapZoomOutTool";

 g_ipToolbarControl->AddItem(varTool, 0, -1, VARIANT_FALSE, 0,

 esriCommandStyleIconOnly, &itemIndex);

 varTool = L"esriControlCommands.ControlsMapPanTool";

 g_ipToolbarControl->AddItem(varTool, 0, -1, VARIANT_FALSE, 0,

 esriCommandStyleIconOnly, &itemIndex);

 varTool = L"esriControlCommands.ControlsMapFullExtentCommand";

 g_ipToolbarControl->AddItem(varTool, 0, -1, VARIANT_FALSE, 0,

 esriCommandStyleIconOnly, &itemIndex);

 }

c. Call the new function from main after the controls are buddied.
 g_ipTOCControl->SetBuddyControl(g_ipPageLayoutControl);

 AddToolbarItems();

2. Remake and run the application. The ToolbarControl now contains ArcGIS
Engine commands and tools that you can use to navigate the map document
loaded into the PageLayoutControl. Use the page layout commands to navi-
gate around the page layout and the map commands to navigate around the
data present in the data frames. Use the open document command (all the way
to the left) to browse to and load other map documents. Notice that not all

Information on the ArcGIS Engine control
commands, including GUIDS, descriptions, and

which controls each command can interact with,
can be found in the ArcGIS Engine Developer Kit
Help system under Technical Documents, Names

and Ids, Control Commands.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM376

Chapter 6 • Developer scenarios • 377

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

of the tools are initially enabled. If there is no previous or next extent, you
cannot zoom to it, and if there is no data, there are no features to select.

Creating a popup menu for the MapControl
As well as adding control commands to the ToolbarControl to work with the
buddy control, as in the previous step, you can also create popup menus from the
control commands. You will add a popup menu that works with the
PageLayoutControl to your application. The popup menu will display whenever
the right mouse button is clicked in the display area of the PageLayoutControl.

1. To implement the popup menu, you will use the IToolbarMenu interface. De-
fine the popup menu after the events in MapViewer.cpp.
IEventListenerHelperPtr g_ipPageLayoutControlEventHelper;

IToolbarMenuPtr g_ipPopupMenu;

2. Create an instance of the popup menu, attaching it to the PageLayoutControl.
This is done in main.
g_ipTOCControl->SetBuddyControl(g_ipPageLayoutControl);

// Associate the popup menu with the PageLayoutControl

g_ipPopupMenu.CreateInstance(CLSID_ToolbarMenu);

g_ipPopupMenu->SetHook(g_ipPageLayoutControl);

AddToolbarItems();

3. Remember to clean up g_ipPopupMenu when the application closes.
 // Function called when WM_DELETE_WINDOW protocol is passed

 void CloseAppCallback(Widget w, XtPointer client_data, XtPointer

 call_data)

 {

Instead of using the IToolbarMenu interface,
this could also be done using a Motif popup

menu.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM377

378 • ArcGIS Engine Developer Guide

 // End event listening

 g_ipPageLayoutControlEventHelper->UnadviseEvents();

 g_ipPageLayoutControlEventHelper->Shutdown();

 g_ipPageLayoutControlEventHelper = 0;

 delete g_pageLayoutEvents;

 g_ipPopupMenu = 0;

 g_ipToolbarControl = 0;

4. Place some commands on the popup menu. This is done in the AddPopupItems
function.

a. Again, start with a forward declaration in the header file, MapViewer.h:
 void AddToolbarItems();

 void AddPopupItems();

b. Implement the function at the bottom of MapViewer.cpp.
 void AddToolbarItems()

 {

 …

 }

 void AddPopupItems()

 {

 CComVariant varTool;

 long popupItemIndex;

 varTool = L"esriControlCommands.ControlsPageZoomInFixedCommand";

 g_ipPopupMenu->AddItem(varTool, 0, -1, VARIANT_FALSE,

 esriCommandStyleIconAndText, &popupItemIndex);

 varTool = L"esriControlCommands.ControlsPageZoomOutFixedCommand";

 g_ipPopupMenu->AddItem(varTool, 0, -1, VARIANT_FALSE,

 esriCommandStyleIconAndText, &popupItemIndex);

 varTool = L"esriControlCommands.ControlsPageZoomWholePageCommand";

 g_ipPopupMenu->AddItem(varTool, 0, -1, VARIANT_FALSE,

 esriCommandStyleIconAndText, &popupItemIndex);

 varTool =

 L"esriControlCommands.ControlsPageZoomPageToLastExtentBackCommand";

 g_ipPopupMenu->AddItem(varTool, 0, -1, VARIANT_TRUE,

 esriCommandStyleIconAndText, &popupItemIndex);

 varTool =
 L"esriControlCommands.ControlsPageZoomPageToLastExtentForwardCommand";

 g_ipPopupMenu->AddItem(varTool, 0, -1, VARIANT_FALSE,

 esriCommandStyleIconAndText, &popupItemIndex);

 }

c. Add commands to the popup menu by calling the function just written.
g_ipPopupMenu->SetHook(g_ipPageControl);

AddPopupItems();

AddToolbarItems();

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

Note that only tools and commands that are
registered on the system as COM components

can be added to the popup menu using the
AddItem method. Custom C++ commands and

tools, like the one you will build later, cannot be
added to the popup menu, as they are not

registered as COM components in the system
registry.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM378

Chapter 6 • Developer scenarios • 379

4. To display the popup menu by right-clicking, you will use the
PageLayoutControlEvents class you created earlier.

a. First you need to provide access to the global ToolbarMenu defined in
MapViewer.cpp. Update PageLayoutControlEvents.h with the following
code:

 extern IMapControl3Ptr g_ipMapControl;

 extern IToolbarMenuPtr g_ipPopupMenu;

b. Implement the PageLayoutControlEvent.cpp file’s OnMouseDown event so
that the popup menu displays upon right-clicking in the
PageLayoutControl’s area.

 void PageLayoutControlEvents::OnMouseDown(long button, long shift, long x,
 long y, double mapX, double map Y)

 {

 // Popup the ToolbarMenu

 if (button == 2)

 {

 long lHWndParent;

 g_ipPageLayoutControl->get_hWnd(&lHWndParent);

 g_ipPopupMenu->PopupMenu(x, y, lHWndParent);

 }

 }

5. Remake and run the application. Right-click the PageLayoutControl’s display
area to display the popup menu, and navigate around the page layout.

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

If using a Motif popup menu instead of the
IToolbarMenu interface, this would be done

with a Motif event handler. Mixing Motif widget
implementations with ArcObjects event handling,
or ArcGIS objects with Motif error handling will

result in undetermined behavior and is not
recommended.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM379

380 • ArcGIS Engine Developer Guide

Controlling label editing in the TOCControl
By default, the TOCControl allows users to automatically toggle the visibility of
layers and to change map and layer names as they appear in the table of contents.
You will add code to prevent users from editing a name and replacing it with an
empty string.

1. The TOCControl label editing events must be triggered. To do so, add the
following code to MapViewer.cpp in main after FormSetup.
FormSetup(argc, argv, &app_context);

g_ipTOCControl->put_LabelEdit(esriTOCControlManual);

2. You must listen for events in the TOCControl by writing a class that inherits
from ITOCControlEventsHelper, as you did for the PageLayoutControl earlier.
Start by creating TOCControlEvents.h, a new text file:
#ifndef __TOCCONTROLEVENTS_H_

#define __TOCCONTROLEVENTS_H_

#include <ArcSDK.h>

#include <Ao/AoControls.tlh>

class TOCControlEvents : public ITOCControlEventsHelper

{

public:

// IUnknown

IUNKNOWN_METHOD_DEFS

// ITOCControlEvents

void OnMouseDown(long button, long shift, long x, long y);

void OnMouseUp(long button, long shift, long x, long y);

void OnMouseMove (long button, long shift, long x, long y);

void OnDoubleClick (long button, long shift, long x, long y);

void OnKeyDown (long keyCode, long shift);

void OnKeyUp (long keyCode, long shift);

void OnBeginLabelEdit (long x, long y, VARIANT_BOOL* CanEdit);

void OnEndLabelEdit (long x, long y, BSTR newLabel, VARIANT_BOOL*
 CanEdit);

};

#endif // __TOCCONTROLEVENTS_H_

3. Place the implementation for ITOCControlEventsHelper’s functions into
TOCControlEvents.cpp, another new file. Since they are void functions, they
can be left empty. However, you will implement OnEndLabelEdit. In that
function, tell the TOC to forbid the edit if the new label is an empty string.
#include "TOCControlEvents.h"

void TOCControlEvents::OnMouseDown(long button, long shift, long x, long y)

{

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM380

Chapter 6 • Developer scenarios • 381

}

void TOCControlEvents::OnMouseUp(long button, long shift, long x, long y)

{

}

void TOCControlEvents::OnMouseMove (long button, long shift, long x, long y)

{

}

void TOCControlEvents::OnDoubleClick (long button, long shift, long x, long y)

{

}

void TOCControlEvents::OnKeyDown (long keyCode, long shift)

{

}

void TOCControlEvents::OnKeyUp (long keyCode, long shift)

{

}

void TOCControlEvents::OnBeginLabelEdit (long x, long y,

 VARIANT_BOOL* CanEdit)

{

}

void TOCControlEvents::OnEndLabelEdit (long x, long y, BSTR newLabel,

 VARIANT_BOOL* CanEdit)

{

 if (CComBSTR("") == newLabel)

 *CanEdit = VARIANT_FALSE;

}

4. Now that the events have been implemented, the main application can listen
for them. This is done the same way it was done for the PageLayoutControl’s
events.

a. First include TOCControlEvents.h in MapViewer.h.
 #include "PageLayoutControlEvents.h"

 #include "TOCControlEvents.h"

b. Declare some global variables for the TOCControl events at the top of
MapViewer.cpp.

 IEventListenerHelperPtr g_ipPageLayoutControlEventHelper;

 TOCControlEvents* g_tocEvents;

 IEventListenerHelperPtr g_ipTOCControlEventHelper;

c. Next place the code to start listening for the TOCControlEvents after that for
the PageLayoutControlEvents in MapViewer.cpp’s main.

 g_ipPageLayoutControlEventHelper->AdviseEvents(g_ipPageLayout, NULL);

g_tocEvents = new TOCControlEvents();

 g_ipTOCControlEventHelper.CreateInstance(CLSID_TOCControlEventsListener);

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM381

382 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

 g_ipTOCControlEventHelper->Startup(

 static_cast<ITOCControlEventsHelper*> (g_tocEvents));

 g_ipTOCControlEventHelper->AdviseEvents(g_ipTOCControl, NULL);

5. Don’t forget to clean up the TOC’s events in CloseAppCallback. This is done
the same as it was for the PageLayout’s events.
// End event listening

g_ipPageLayoutControlEventHelper->UnadviseEvents();

g_ipPageLayoutControlEventHelper->Shutdown();

g_ipPageLayoutControlEventHelper = 0;

delete g_pageLayoutEvents;

g_ipTOCControlEventHelper->UnadviseEvents();

g_ipTOCControlEventHelper->Shutdown();

g_ipTOCControlEventHelper = 0;

delete g_tocEvents;

6. Update the makefile. Include TOCControlEvents.cpp as a source, add the
header of the events to the MapViewer.o dependencies list, and add a depen-
dencies list for TOCControlEvents.o.

7. Compile and run the application. To edit a map, layer, heading, or legend class
label in the TOCControl, click it once, then click it a second time to invoke
label editing. Try replacing the label with an empty string. You can use the Esc
key on the keyboard at any time during the edit to cancel it.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM382

Chapter 6 • Developer scenarios • 383

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

Drawing an overview rectangle on the MapControl
You will now use the MapControl as an overview window and draw the current
extent of the focus map within the PageLayoutControl on its display. As you
navigate around the data within the data frame of the PageLayoutControl, you
will see the MapControl overview window update.

1. First add IFillSymbol and IEnvelope interface pointers to the top of
MapViewer.cpp.
IToolbarMenuPtr g_ipPopupMenu;

IFillSymbolPtr g_ipFillSymbol;

IEnvelopePtr g_ipCurrentExtent;

int main(int argc, char* argv[])

2. You will use a new function to create the rectangle used on the MapControl to
highlight the current PageLayoutControl extent.

a. First place the forward declaration in MapViewer.h.
 void AddPopupItems();

 HRESULT CreateOverviewSymbol();

b. Place the implementation of that function at the end of MapViewer.cpp.
 void AddPopupItems()

 {

 …

 }

 HRESULT CreateOverviewSymbol()

 {

 // IRgbColor interface

 IRgbColorPtr ipColor(CLSID_RgbColor);

 ipColor->put_Red(255);

 ipColor->put_Green(0);

 ipColor->put_Blue(0);

 // ILine symbol interface

 ILineSymbolPtr ipOutline(CLSID_SimpleLineSymbol);

 ipOutline->put_Width(2);

 ipOutline->put_Color(ipColor);

 // IFillSymbol properties

 g_ipFillSymbol.CreateInstance(CLSID_SimpleFillSymbol);

 g_ipFillSymbol->put_Outline(ipOutline);

 ((ISimpleFillSymbolPtr) g_ipFillSymbol)->put_Style(esriSFSHollow);

 return S_OK;

 }

c. Create the symbol in the main function of MapViewer.cpp before the
TOCControl label editing code.

 CreateOverviewSymbol();

 g_ipTOCControl->put_LabelEdit(esriTOCControlManual);

Navigating around the focus map using the map
navigation tools will change the extent of the

focus map in the PageLayoutControl and cause
the MapControl to update. Navigating around
the page layout with the page layout navigation
tools will change the extent of the page layout

(not the extent of the focus map in the
PageLayoutControl), so the MapControl will

not update.

Alternatively, symbols can be retrieved from style
galleries. When working with style galleries and

the C++ API, ServerStyleGallery should be used
as it is across platforms.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM383

384 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

d. Remember to clean up the global variables when the application closes.
 // Function called when WM_DELETE_WINDOW protocol is passed

 void CloseAppCallback(Widget w, XtPointer client_data, XtPointer

 call_data)

 {

 …

 delete g_tocEvents;

 g_ipPopupMenu = 0;

 g_ipFillSymbol = 0;

 g_ipCurrentExtent = 0;

 g_ipToolbarControl = 0;

3. To have the MapControl work as an overview window, it must display the full
extent of the data. Since this needs to be done every time there is a new map
document, the following code should be placed into the
PageLayoutControlEvents.cpp file’s OnPageLayoutReplaced event.
void PageLayoutControlEvents::OnPageLayoutReplaced(VARIANT newPageLayout)

{

 // Load the same pre-authored map document into the MapControl

 CComBSTR DocFileName;

 IPageLayoutControl2Ptr ipPage2 = g_ipPageLayoutControl;

 ipPage2->get_DocumentFilename(&DocFileName);

 g_ipMapControl->LoadMxFile(DocFileName);

 // Set the extent of the MapControl to be the full extent

 IEnvelopePtr ipFullExtentEnv;

 g_ipMapControl->get_FullExtent(&ipFullExtentEnv);

 g_ipMapControl->put_Extent(ipFullExtentEnv);

}

4. The global variable g_ipCurrentExtent, which will be used to draw the over-
view on the MapControl, needs to be updated with every new PageLayout. To
implement this, you will need access to the g_ipCurrentExtent global variable
from within the PageLayoutControlEvents class. Add the following into
PageLayoutControlEvents.h:
extern IToolbarMenuPtr g_ipPopupMenu;

extern IEnvelopePtr g_ipCurrentExtent;

5. To update the extent rectangle on the overview map to match the extent
shown in every new PageLayout, you need to set the current extent rectangle to
match the visible extent of the PageLayout’s map. Do this in the
OnPageLayoutReplaced event (in PageLayoutControlEvents.cpp).
void PageLayoutControlEvents::OnPageLayoutReplaced(VARIANT newPageLayout)

{

 // Get the extent of the PageLayout's focus map

 IActiveViewPtr ipActiveView;

 g_ipPageLayoutControl->get_ActiveView(&ipActiveView);

 IMapPtr ipFocusMap;

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM384

Chapter 6 • Developer scenarios • 385

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

 ipActiveView->get_FocusMap(&ipFocusMap);

 IActiveViewPtr ipMapActiveView(ipFocusMap);

 ipMapActiveView->get_Extent(&g_ipCurrentExtent);

 // Load the same pre-authored map document into the MapControl

 …

}

6. The PageLayoutControlEvents do not indicate when the extent of the map
within the data frame changes. To receive that information you will use the
ITransformEvents interface of the PageLayoutControl’s focus map. Implement-
ing a class, TransformEvents, that extends ITransformEvents accomplishes this. It
will need to update the extent envelope and refresh the MapControl in
VisibleExtentUpdated. To do so, your new class will need access to the
g_ipMapControl and g_ipCurrentExtent global variables. Create a new file,
TransformEvents.h, with the following code:
#ifndef __TRANSFORMEVENTS_H_

#define __TRANSFORMEVENTS_H_

// ArcObjects Headers

// Engine

#include <ArcSDK.h>

// Controls

#include <Ao/AoControls.h>

extern IMapControl3Ptr g_ipMapControl;

extern IEnvelopePtr g_ipCurrentExtent;

class TransformEvents : public ITransformEvents

{

 public:

 // IUnknown

 IUNKNOWN_METHOD_DEFS

 // ITransformEvents

 HRESULT BoundsUpdated(IDisplayTransformation* sender);

 HRESULT DeviceFrameUpdated(IDisplayTransformation* sender,

 VARIANT_BOOL sizeChanged);

 HRESULT ResolutionUpdated(IDisplayTransformation* sender);

 HRESULT RotationUpdated(IDisplayTransformation* sender);

 HRESULT UnitsUpdated(IDisplayTransformation* sender);

 HRESULT VisibleBoundsUpdated(IDisplayTransformation* sender,

 VARIANT_BOOL sizeChanged);

};

#endif // __TRANSFORMEVENTS_H_

7. Implement that class by placing the following code in TransformEvents.cpp,
another new file. In particular, pay attention to VisibleBoundsUpdated. This
event is triggered whenever the extent of the map is changed and is used to

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM385

386 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

set the envelope to the new visible bounds of the map. By refreshing the
MapControl you force it to redraw the shape on its display.
#include "TransformEvents.h"

HRESULT TransformEvents::BoundsUpdated(IDisplayTransformation* sender)

{

 return E_NOTIMPL;

}

HRESULT TransformEvents::DeviceFrameUpdated(IDisplayTransformation* sender,

 VARIANT_BOOL sizeChanged)

{

 return E_NOTIMPL;

}

HRESULT TransformEvents::ResolutionUpdated(IDisplayTransformation* sender)

{

 return E_NOTIMPL;

}

HRESULT TransformEvents::RotationUpdated(IDisplayTransformation* sender)

{

 return E_NOTIMPL;

}

HRESULT TransformEvents::UnitsUpdated(IDisplayTransformation* sender)

{

 return E_NOTIMPL;

}

HRESULT TransformEvents::VisibleBoundsUpdated(IDisplayTransformation* sender,
 VARIANT_BOOL sizeChanged)

{

 // Set the extent to the new visible extent

 sender->get_VisibleBounds(&g_ipCurrentExtent);

 // Refresh the MapControl's foreground phase

 HRESULT hr = g_ipMapControl->Refresh(esriViewForeground);

 return hr;

}

8. Although the TransformEvents class has been implemented, those events are not
yet listened for.

a. First, include the new TransformEvents.h header file in MapViewer.h:
 #include "TOCControlEvents.h"

 #include "TransformEvents.h"

b. Next start up these events in MapViewer.cpp’s main, but you will not advise
them there. Remember to place the variable declarations at the top of
MapViewer.cpp.

 TOCControlEvents* g_tocEvents;

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM386

Chapter 6 • Developer scenarios • 387

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

 IEventListenerHelperPtr g_ipTOCControlEventHelper;

 TransformEvents* g_transEvents;

 IEventListenerHelperPtr g_ipTransEventHelper;

 …

 int main (int argc, char* argv[])

 {

 …

 g_ipTOCControlEventHelper->AdviseEvents(g_ipTOCControl, NULL);

 g_transEvents = new TransformEvents();

 g_ipTransEventHelper.CreateInstance(CLSID_TransformEventsListener);

 g_ipTransEventHelper->Startup(

 static_cast<TransformEvents*> (g_transEvents));

 …

 }

9. You need to trap for the TransformEvents from the PageLayoutControlEvents
OnPageLayoutReplaced event.

a. To do this PageLayoutControlEvents will need to know about
g_ipTransEventHelper, so declare it with extern in
PageLayoutControlEvents.h.

 extern IEnvelopePtr g_ipCurrentExtent;

 extern IEventListenerHelperPtr g_ipTransEventHelper;

b. Now advise the events in OnPageLayoutReplaced:
 void PageLayoutControlEvents::OnPageLayoutReplaced(VARIANT newPageLayout)

 {

 // Get the extent of the PageLayout's focus map

 IActiveViewPtr ipActiveView;

 g_ipPageLayoutControl->get_ActiveView(&ipActiveView);

 IMapPtr ipFocusMap;

 ipActiveView->get_FocusMap(&ipFocusMap);

 IActiveViewPtr ipMapActiveView = ipFocusMap;

 ipMapActiveView->get_Extent(&g_ipCurrentExtent);

 // Trap focus map's ITransformEvents

 IScreenDisplayPtr ipScreenDisp;

 ipMapActiveView->get_ScreenDisplay(&ipScreenDisp);

 IDisplayTransformationPtr ipDisplayTrans;

 ipScreenDisp->get_DisplayTransformation(&ipDisplayTrans);

 CComBSTR bsGUID;

 ::StringFromIID(IID_ITransformEvents, &bsGUID);

 IUIDPtr ipUID(CLSID_UID);

 ipUID->put_Value(CComVariant(bsGUID));

 g_ipTransEventHelper->AdviseEvents(ipDisplayTrans, ipUID);

 // Load the same pre-authored map document into the MapControl

 …

 }

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM387

388 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

10. Clean up the transform events in MapViewer.cpp’s CloseAppCallback.
// End event listening

g_ipPageLayoutControlEventHelper->UnadviseEvents();

g_ipPageLayoutControlEventHelper->Shutdown();

g_ipPageLayoutControlEventHelper = 0;

delete g_pageLayoutEvents;

g_ipTOCControlEventHelper->UnadviseEvents();

g_ipTOCControlEventHelper->Shutdown();

g_ipTOCControlEventHelper = 0;

delete g_tocEvents;

g_ipTransEventHelper->UnadviseEvents();

g_ipTransEventHelper->Shutdown();

g_ipTransEventHelper = 0;

delete g_transEvents;

11. Update the makefile to reflect the new source file. Also, add a dependencies
list for TransformEvents.o and add the TransformEvents class to the
PageLayoutControlEvent and MapViewer dependencies lists.

12. To do the actual drawing of the symbol on the MapControl, you need to
listen for the MapControl’s OnAfterDraw event. You will implement an event
class for the MapControl as you have done the PageLayoutControl and
TOCControl. This class will need to know about the global MapControl,
extent, and fill symbol. Start with a new file, MapControlEvents.h:
#ifndef __MAPCONTROLEVENTS_H_

#define __MAPCONTROLEVENTS_H_

// ArcObjects Headers

// Engine

#include <ArcSDK.h>

// Controls

#include <Ao/AoControls.h>

extern IMapControl3Ptr g_ipMapControl;

extern IEnvelopePtr g_ipCurrentExtent;

extern IFillSymbolPtr g_ipFillSymbol;

class MapControlEvents : public IMapControlEvents2Helper

{

 public:

 // IUnknown

 IUNKNOWN_METHOD_DEFS

 // IMapControlEvents

 void OnAfterDraw(VARIANT display, long viewDrawPhase);

 void OnAfterScreenDraw(long hdc);

 void OnBeforeScreenDraw(long hdc);

 void OnDoubleClick(long button, long shift, long x, long y,

 double mapX,double mapY);

 void OnExtentUpdated(VARIANT displayTransformation,

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM388

Chapter 6 • Developer scenarios • 389

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

 VARIANT_BOOL sizeChanged, VARIANT newEnvelope);

 void OnFullExtentUpdated(VARIANT displayTransformation,

 VARIANT newEnvelope);

 void OnKeyDown(long keyCode, long shift);

 void OnKeyUp(long keyCode, long shift);

 void OnMapReplaced(VARIANT newMap);

 void OnMouseDown(long button, long shift, long x, long y,

 double mapX, double mapY);

 void OnMouseMove(long button, long shift, long x, long y,

 double mapX, double mapY);

 void OnMouseUp(long button, long shift, long x, long y,

 double mapX, double mapY);

 void OnOleDrop(esriControlsDropAction dropAction, VARIANT
 dataObjectHelper, long* effect, long button, long
 shift, long x, long y);

 void OnSelectionChanged();

 void OnViewRefreshed(VARIANT ActiveView, long viewDrawPhase,

 VARIANT layerOrElement, VARIANT envelope);

};

#endif // __MAPCONTROLEVENTS_H_

13. Implement those events in MapControlEvents.cpp. Leave all of the functions
blank except OnAfterDraw, in which the rectangle will be drawn on the
MapControl.
#include "MapControlEvents.h"

void MapControlEvents::OnAfterDraw(VARIANT display, long viewDrawPhase)

{

 if (g_ipCurrentExtent == 0)

 return;

 // If the foreground phase has drawn, viewDrawPhase will be 32

 esriViewDrawPhase drawPhase = esriViewDrawPhase(viewDrawPhase);

 if (drawPhase == esriViewForeground)

 {

 // Draw the shape on the MapControl

 CComVariant varSymbol = CComVariant(g_ipFillSymbol);

 g_ipMapControl->DrawShape((IGeometryPtr) g_ipCurrentExtent,
 &varSymbol);

 }

}

void MapControlEvents::OnAfterScreenDraw(long hdc)

{

}

void MapControlEvents::OnBeforeScreenDraw(long hdc)

{

}

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM389

390 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

void MapControlEvents::OnDoubleClick(long button, long shift, long x,

 long y, double mapX, double mapY)

{

}

void MapControlEvents::OnExtentUpdated(VARIANT displayTransformation,

 VARIANT_BOOL sizeChanged,

 VARIANT newEnvelope)

{

}

void MapControlEvents::OnFullExtentUpdated(VARIANT displayTransformation,

 VARIANT newEnvelope)

{

}

void MapControlEvents::OnKeyDown(long keyCode, long shift)

{

}

void MapControlEvents::OnKeyUp(long keyCode, long shift)

{

}

void MapControlEvents::OnMapReplaced(VARIANT newMap)

{

}

void MapControlEvents::OnMouseDown(long button, long shift, long x, long y,

 double mapX, double mapY)

{

}

void MapControlEvents::OnMouseMove(long button, long shift, long x, long y,

 double mapX, double mapY)

{

}

void MapControlEvents::OnMouseUp(long button, long shift, long x, long y,

 double mapX, double mapY)

{

}

void MapControlEvents::OnOleDrop(esriControlsDropAction dropAction,

 VARIANT dataObjectHelper, long* effect,

 long button, long shift, long x, long y)

{

}

void MapControlEvents::OnSelectionChanged()

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM390

Chapter 6 • Developer scenarios • 391

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

{

}

void MapControlEvents::OnViewRefreshed(VARIANT ActiveView, long viewDrawPhase,

 VARIANT layerOrElement,

 VARIANT envelope)

{

}

14. These events need to be listened for as well.

a. First, include the necessary header file in MapViewer.h.
 #include "TransformEvents.h"

 #include "MapControlEvents.h"

b. Listen for the events from MapViewer.cpp in the same way you did for the
other controls.

 IEventListenerHelperPtr g_ipTransEventHelper;

 MapControlEvents* g_mapEvents;

 IEventListenerHelperPtr g_ipMapControlEvent2Helper;

 …

 int main (int argc, char* argv[])

 {

 …

 g_ipTransEventHelper->Startup(

 static_cast<TransformEvents*> (g_transEvents));

 g_mapEvents = new MapControlEvents();

 g_ipMapControlEvent2Helper.CreateInstance(

 CLSID_MapControlEvents2Listener);

 g_ipMapControlEvent2Helper->Startup(

 static_cast<IMapControlEvents2Helper*> (g_mapEvents));

 g_ipMapControlEvent2Helper->AdviseEvents(g_ipMapControl, NULL);

 …

 }

15. Clean up the map’s events in CloseAppCallback as you did for the other events.
// End event listening

g_ipPageLayoutControlEventHelper->UnadviseEvents();

g_ipPageLayoutControlEventHelper->Shutdown();

g_ipPageLayoutControlEventHelper = 0;

delete g_pageLayoutEvents;

g_ipTOCControlEventHelper->UnadviseEvents();

g_ipTOCControlEventHelper->Shutdown();

g_ipTOCControlEventHelper = 0;

delete g_tocEvents;

g_ipTransEventHelper->UnadviseEvents();

g_ipTransEventHelper->Shutdown();

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM391

392 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

g_ipTransEventHelper = 0;

delete g_transEvents;

g_ipMapControlEvent2Helper->UnadviseEvents();

g_ipMapControlEvent2Helper->Shutdown();

g_ipMapControlEvent2Helper = 0;

delete g_mapEvents;

16. Update the makefile to reflect the MapControlEvents source file. Also, add a
dependencies list for MapControlEvents.o and add the MapControlEvents class
to the MapViewer.o dependencies list.

17. Compile and run the application. Use the map navigation tools that you
added earlier to change the extent of the focus map in the
PageLayoutControl. The new extent is drawn on the MapControl as a red
rectangle.

Creating a custom tool
You are not limited to placing the ArcGIS Engine commands and tools on the
ToolbarControl. Next, you will create a custom tool that adds to the
PageLayoutControl a text element containing today’s date at the location of a
mouse click. However, this tool will be created as a generic tool so that it could
instead work with the MapControl and ToolbarControl as well as the
PageLayoutControl.

The code for this custom tool is available with the rest of this scenario’s source
code. If you want to use the custom command directly, rather than creating it
yourself, copy the AddDate.h and AddDate.cpp files, along with the Res folder
from the MapViewer folder, to the directory you are using for this scenario and
proceed to Step 5.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM392

Chapter 6 • Developer scenarios • 393

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

1. In your text editor, start a new file, AddDate.h.

2. In AddData.h, create a new class, AddDateTool, which inherits from
CAoToolBase. Include a public constructor and destructor.
#ifndef __ADD_DATE_H_

#define __ADD_DATE_H_

// ArcObjects Headers

// Engine

#include <ArcSDK.h>

// Controls

#include <Ao/AoControls.h>

// Custom Tool

#include <Ao/AoToolBase.h>

class AddDateTool : public CAoToolBase

{

 public:

 AddDateTool();

 ~AddDateTool();

};

#endif // #define __ADD_DATE_H_

3. Since you are writing a new tool, it must implement both ICommand and ITool,
both defined in CAoToolBase. In AddDate.h you place the declarations for the
functions supported by ICommand and ITool. For this command to work with
all the different controls, you will use the IHookHelper interface, storing the
hook in a private member variable, m_ipHookHelper. You will also provide
member variables for the tool’s icon and bitmap.
class AddDateTool : public CAoToolBase

{

 public:

 AddDateTool();

 ~AddDateTool();

 // ICommand

 HRESULT get_Enabled(VARIANT_BOOL* Enabled);

 HRESULT get_Checked(VARIANT_BOOL* Checked) ;

 HRESULT get_Name(BSTR* Name);

 HRESULT get_Caption(BSTR* Caption);

 HRESULT get_Tooltip(BSTR* Tooltip);

 HRESULT get_Message(BSTR* Message);

 HRESULT get_Bitmap(OLE_HANDLE* bitmapFile);

 HRESULT get_Category(BSTR* categoryName);

 HRESULT OnCreate(IDispatch* hook);

 HRESULT OnClick();

 // ITool

 HRESULT get_Cursor(OLE_HANDLE* cursorName);

 HRESULT OnMouseDown(LONG Button, LONG Shift, LONG X, LONG Y);

Since the non-GUI-specific Ao/AoControls.h and
Ao/AoToolBase.h are used, the custom tool, like

the custom events, will work with both GTK and
Motif applications.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM393

394 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

 HRESULT OnMouseMove(LONG Button, LONG Shift, LONG X, LONG Y);

 HRESULT OnMouseUp(LONG Button, LONG Shift, LONG X, LONG Y);

 HRESULT OnDblClick();

 HRESULT OnKeyDown(LONG keyCode, LONG Shift);

 HRESULT OnKeyUp(LONG keyCode, LONG Shift);

 HRESULT OnContextMenu(LONG X, LONG Y, VARIANT_BOOL* handled);

 HRESULT Refresh(OLE_HANDLE ole);

 HRESULT Deactivate(VARIANT_BOOL* complete);

 private:

 IHookHelperPtr m_ipHookHelper;

 OLE_HANDLE m_hBitmap;

 OLE_HANDLE m_hCursor;

};

#endif // #define FULLEXTENT_H_

4. Open a new file in your text editor, and name it AddDate.cpp. Here you will
implement your custom tool.

a. Include AddDate.h.
 #include "AddDate.h"

b. In the constructor, you will load the bitmap and cursor, as well as create the
IHookHelper. If you want to use the provided icon and mouse cursor, copy
the resources from arcgis/developerkit/samples/
Developer_Guide_Scenarios/ArcGIS_Engine/
Building_an_ArcGIS_Control_Application/Map_Viewer/Res/ to your
code directory.

 #include "AddDate.h"

 AddDateTool::AddDateTool()

 {

 m_ipHookHelper.CreateInstance(CLSID_HookHelper);

 // Load the cursor

 ISystemMouseCursorPtr ipSysMouseCur(CLSID_SystemMouseCursor);

 ipSysMouseCur->LoadFromFile(CComBSTR(L"../Res/date.cur"));

 OLE_HANDLE hTmp;

 HRESULT hr = ipSysMouseCur->get_Cursor(&hTmp);

 if (SUCCEEDED(hr))

 {

 m_hCursor = hTmp;

 }

 // Load the bitmap

 IRasterPicturePtr ipRastPict(CLSID_BasicRasterPicture);

 IPicturePtr ipPict;

 hr = ipRastPict->LoadPicture(CComBSTR(L"../Res/date.bmp"), &ipPict);

 if (SUCCEEDED(hr))

 {

 OLE_HANDLE hBitmap;

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM394

Chapter 6 • Developer scenarios • 395

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

 hr = ipPict->get_Handle(&hBitmap);

 if (SUCCEEDED(hr))

 m_hBitmap = hBitmap;

 }

 }

c. In the destructor, you will clean up all the interface member variables.
 AddDateTool::AddDateTool()

 {

 …

 }

 AddDateTool::~AddDateTool()

 {

 m_ipHookHelper = 0;

 m_hBitmap = 0;

 m_hCursor = 0;

 }

d. You now need to stub out all the functions from ICommand in
AddDate.cpp, even if you are not going to use some of these. Add the
following code to the ICommand properties and methods:

 AddDateTool::~AddDateTool()

 {

 …

 }

 HRESULT AddDateTool::get_Enabled(VARIANT_BOOL* Enabled)

 {

 if (!Enabled)

 return E_POINTER;

 *Enabled = VARIANT_TRUE;

 return S_OK;

 }

 HRESULT AddDateTool::get_Checked(VARIANT_BOOL* Checked)

 {

 if (!Checked)

 return E_POINTER;

 return S_OK;

 }

 HRESULT AddDateTool::get_Name(BSTR* Name)

 {

 if (!Name)

 return E_POINTER;

 *Name = ::AoAllocBSTR(L"CustomCommands_AddDate");

 return S_OK;

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM395

396 • ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

 }

 HRESULT AddDateTool::get_Caption(BSTR* Caption)

 {

 if (!Caption)

 return E_POINTER;

 *Caption = ::AoAllocBSTR(L"Add Date");

 return S_OK;

 }

 HRESULT AddDateTool::get_Tooltip(BSTR* Tooltip)

 {

 if (!Tooltip)

 return E_POINTER;

 *Tooltip = ::AoAllocBSTR(L"Add date");

 return S_OK;

 }

 HRESULT AddDateTool::get_Message(BSTR* Message)

 {

 if (!Message)

 return E_POINTER;

 *Message = ::AoAllocBSTR(L"Adds a date element to the page layout");

 return S_OK;

 }

 HRESULT AddDateTool::get_Bitmap(OLE_HANDLE* bitmap)

 {

 if (!bitmap)

 return E_POINTER;

 if (m_hBitmap != 0)

 {

 *bitmap = m_hBitmap;

 return S_OK;

 }

 return E_FAIL;

 }

 HRESULT AddDateTool::get_Category(BSTR* categoryName)

 {

 if (!categoryName)

 return E_POINTER;

 *categoryName = ::AoAllocBSTR(L"CustomCommands");

 return S_OK;

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM396

Chapter 6 • Developer scenarios • 397

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

 }

 // Create the command and set who it will work with

 HRESULT AddDateTool::OnCreate(IDispatch* hook)

 {

 if (!hook)

 return E_POINTER;

 m_ipHookHelper->putref_Hook(hook);

 return S_OK;

 }

 HRESULT AddDateTool::OnClick()

 {

 return S_OK;

 }

e. Write a function that will format the date for display on the
PageLayoutControl.

i. Before the class in AddDate.h, include the following header files:
 #include <Ao/AoToolBase.h>

 #include <time.h>

 #include <stdio.h>

ii. Add a private function to the AddDate class in AddDate.h to take care
of the formatting.

 OLE_HANDLE m_hCursor;

 char* FormatDate();

iii. Implement the function at the bottom of AddDate.cpp.
 char* AddDateTool::FormatDate()

 {

 time_t dateInfo = time(NULL);

 tm* todaysDate = localtime(&dateInfo);

 int month = todaysDate->tm_mon + 1;

 int day = todaysDate->tm_mday;

 int year = todaysDate->tm_year + 1900;

 char* dateDisplay = new char[12];

 sprintf(dateDisplay, "%d/%d/%d\n", month, day, year);

 return dateDisplay;

 }

f. Continue implementing your custom tool by stubbing out all the properties
and events of the ITool interface before the FormatDate function in
AddDate.cpp. Pay attention to the implementation of the OnMouseDown
method, as it creates the date text element and adds it to the graphics
container of the application.

 HRESULT AddDateTool::OnClick()

 {

 return S_OK;

 }

 The ICommand_OnCreate event is passed a
handle or hook to the application that the

command will work with. In this case it can be a
MapControl, PageLayoutControl, or

ToolbarControl. Rather than adding code to
the OnCreate event to determine the type of

hook that is being passed to the command, you
will use the HookHelper to handle this. A

command or tool needs to know how to handle
the hook it gets passed, so a check is needed to

determine the type of ArcGIS control that has
been passed. The HookHelper is used to hold the
hook and return the ActiveView regardless of the

type of hook (in this case a MapControl,
PageLayoutControl, or ToolbarControl).

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM397

398 • ArcGIS Engine Developer Guide

 HRESULT AddDateTool::get_Cursor(OLE_HANDLE* cursorName)

 {

 if (cursorName == NULL)

 return E_POINTER;

 if (m_hCursor != 0)

 {

 *cursorName = m_hCursor;

 return S_OK;

 }

 return E_FAIL;

 }

 // Add the date to the page layout where the mouse is

 HRESULT AddDateTool::OnMouseDown(LONG Button, LONG Shift, LONG X, LONG Y)

 {

 if (Button == 1)

 {

 // Format the date & create a text element

 char* dateDisplay = FormatDate();

 ITextElementPtr ipDateTextElem(CLSID_TextElement);

 ipDateTextElem->put_Text(CComBSTR(dateDisplay));
 delete[] dateDisplay;

 ITextSymbolPtr ipDateTextSymb(CLSID_TextSymbol);

 // Add it to the text element

 ipDateTextElem->put_Symbol(ipDateTextSymb);

 // Get point in map display coordinates

 IActiveViewPtr ipActiveView;

 m_ipHookHelper->get_ActiveView(&ipActiveView);

 IScreenDisplayPtr ipScreenDisplay;

 ipActiveView->get_ScreenDisplay(&ipScreenDisplay);

 IDisplayTransformationPtr ipDisplayTrans;

 ipScreenDisplay->get_DisplayTransformation(&ipDisplayTrans);

 IPointPtr ipPoint;

 ipDisplayTrans->ToMapPoint(X, Y, &ipPoint);

 // Set the element's geometry

 ((IElementPtr) ipDateTextElem)->put_Geometry(ipPoint);

 // Add element to the page layout's graphics container

 IGraphicsContainerPtr ipGraphicsContainer;

 ipActiveView->get_GraphicsContainer(&ipGraphicsContainer);

 ipGraphicsContainer->AddElement((IElementPtr) ipDateTextElem, 0);

 ipActiveView->PartialRefresh(esriViewGraphics, NULL, NULL);

 }

 return S_OK;

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM398

Chapter 6 • Developer scenarios • 399

 }

 HRESULT AddDateTool::OnMouseMove(LONG Button, LONG Shift, LONG X, LONG Y)

 {

 return E_NOTIMPL;

 }

 HRESULT AddDateTool::OnMouseUp(LONG Button, LONG Shift, LONG X, LONG Y)

 {

 return E_NOTIMPL;

 }

 HRESULT AddDateTool::OnDblClick()

 {

 return E_NOTIMPL;

 }

 HRESULT AddDateTool::OnKeyDown(LONG keyCode, LONG Shift)

 {

 return E_NOTIMPL;

 }

 HRESULT AddDateTool::OnKeyUp(LONG keyCode, LONG Shift)

 {

 return E_NOTIMPL;

 }

 HRESULT AddDateTool::OnContextMenu(LONG X, LONG Y, VARIANT_BOOL* handled)

 {

 return E_NOTIMPL;

 }

 HRESULT AddDateTool::Refresh(OLE_HANDLE ole)

 {

 return E_NOTIMPL;

 }

 HRESULT AddDateTool::Deactivate(VARIANT_BOOL* complete)

 {

 if (!complete)

 return E_POINTER;

 *complete = VARIANT_TRUE;

 return S_OK;

 }

 char* AddDateTool::FormatDate()

 {

 …

 }

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM399

400 • ArcGIS Engine Developer Guide

5. Now that you have a working command, it can be incorporated into the
application.

a. Make the application aware of the new command by including AddDate.h
in MapViewer.h.

 #include "MapControlEvents.h"

 #include "AddDate.h"

b. Create an instance of the command at the top of MapViewer.cpp.
 IEnvelopePtr g_ipCurrentExtent;

 AddDateTool* g_dateTool;

c. The custom AddDate command will be added as the last item on the
toolbar. This is done using the AoToolbarAddTool C++ API function. Place
the call at the end of the AddToolbarItems function of MapViewer.cpp.

 varTool = L"esriControlCommands.ControlsMapFullExtentCommand";

 g_ipToolbarControl->AddItem(varTool, 0, -1, VARIANT_FALSE, 0,

 esriCommandStyleIconOnly, &itemIndex);

 // Add custom date placement command to the tools toolbar

 g_dateTool = new AddDateTool();

 AoToolbarAddTool(g_ipToolbarControl, g_dateTool,

 esriCommandStyleIconOnly);

d. This instance of the tool must be deleted in CloseAppCallback.
 delete g_mapEvents;

 // delete the instance of the tool

 delete g_dateTool;

6. Update the makefile. List AddDate.cpp as a source and create a dependencies
list for AddDate.o. Make sure that the MapViewer.cpp file’s dependency on
AddDate.h is reflected.

7. Remake and run the application. If you used the provided icon, there will be a
new button with a D, underlined twice, on the toolbar. Select your new tool
and click the PageLayoutControl to add a text element containing today’s
date.

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM400

Chapter 6 • Developer scenarios • 401

Customizing the ToolbarControl
In addition to adding Controls commands to the ToolbarControl programmatically,
you can also add them at runtime by customizing the ToolbarControl using the Cus-
tomize dialog box. To do this, you will place the ToolbarControl in customize mode
and display the Customize dialog box.

1. You will place a toggle button next to the ToolbarControl to turn the toolbar
customization mode on and off. To follow Motif standards, you will create a new
panel for the top of the screen, and it will hold both the ToolbarControl and the
toggle button.

a. First, include Xm/ToggleB.h in MapViewer.h.
 #include <Xm/Protocols.h>

 #include <Xm/ToggleB.h>

 #undef String

b. In MapViewer.cpp, add declarations for the toggle button widget. Also declare
the ICustomizeDialog interface pointer.

 IEnvelopePtr g_ipCurrentExtent;

 ICustomizeDialogPtr g_ipCustomizeDialog;

 AddDateTool* g_dateTool;

 Widget g_customizeToggle;

c. In FormSetup, create the toggle button (after mainForm is created) that will allow
you to customize the toolbar as well as its panel. Update the widget attachments
to reflect the new panel, replacing the location of the ToolbarControl.

 // Create a sub-form to place ToolbarControl and customizeToggle on
 Widget topFormPanel = XtVaCreateWidget("topformpanel",

 xmFormWidgetClass, mainForm,

 XmNtopAttachment, XmATTACH_FORM,

 XmNrightAttachment, XmATTACH_FORM,

 XmNleftAttachment, XmATTACH_FORM,

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

Note that only tools and commands that are
registered on the system as COM components
can be added to the toolbar using the Custom-

ize dialog box. Custom C++ commands and
tools, such as the one built in the previous step,
do not appear in the Customize dialog box, as

they are not registered as COM components in
the system registry.

The GTK toggle button’s setup is shown in the
GTK MapViewer.cpp’s form_setup.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM401

402 • ArcGIS Engine Developer Guide

 XmNheight, 25,

 NULL);

 // customizetoggle setup

 XmString label = XmStringCreateLocalized("Customize");

 g_customizeToggle = XtVaCreateWidget("customizetoggle",

 xmToggleButtonWidgetClass, topFormPanel,

 XmNlabelString, label,

 XmNtopAttachment, XmATTACH_FORM,

 XmNrightAttachment, XmATTACH_FORM,

 XmNbottomAttachment, XmATTACH_FORM,

 XmNheight, 25,

 XmNwidth, 150,

 NULL);

 XmStringFree(label);

 // ToolbarControl setup

 Widget toolbarWidget = XtVaCreateWidget("toolbarwidget",
 mwCtlWidgetClass, mainForm,

 mwCtlWidgetClass, topFormPanel,

 XmNtopAttachment, XmATTACH_FORM,

 XmNleftAttachment, XmATTACH_FORM,

 XmNbottomAttachment, XmATTACH_FORM,

 XmNrightAttachment, XmATTACH_FORM,

 XmNrightAttachment, XmATTACH_WIDGET,

 XmNrightWidget, g_customizeToggle,

 MwNprogID, AoPROGID_ToolbarControl,

 NULL);

XtVaSetValues(toolbarWidget, XmNheight, 25, NULL);

 MwCtGetInterface(toolbarwidget, (IUnknown**)&g_ipToolbarControl);

 // Create a sub-form to place TOCControl and MapControl on

 Widget leftformpanel = XtVaCreateWidget("leftformpanel",

 xmFormWidgetClass, mainForm,

 XmNtopAttachment, XmATTACH_WIDGET,

 XmNtopWidget, toolbarWidget,

 XmNtopWidget, topFormPanel,

 XmNbottomAttachment, XmATTACH_FORM,

 XmNleftAttachment, XmATTACH_FORM,

 XmNwidth, 200,

 NULL);

 …

 // PageLayoutControl setup

 pagewidget = XtVaCreateWidget("pagewidget",

 mwCtlWidgetClass, mainform,

 XmNtopAttachment, XmATTACH_WIDGET,

 XmNtopWidget, toolbarWidget,

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM402

Chapter 6 • Developer scenarios • 403

 XmNtopWidget, topFormPanel,

 XmNleftAttachment, XmATTACH_WIDGET,

 XmNleftWidget, leftFormPanel,

 XmNbottomAttachment, XmATTACH_FORM,

 XmNrightAttachment, XmATTACH_FORM,

 MwNprogID, AoPROGID_PageLayoutControl,

 NULL);

 MwCtlGetInterface(pagewidget, (IUnknown**)&g_ipPageLayoutControl);

d. Manage the new widgets when the others are managed.
 XtManageChild(leftFormPanel);

 XtManageChild(topFormPanel);

 XtManageChild(g_customizeToggle);

 XtManageChild(toolbarWidget);

2. Add a new function called CreateCustomizeDialog. This is where you will create
the Customize dialog box.

a. You will place the forward declaration in MapViewer.h.
 HRESULT CreateOverviewSymbol();

 HRESULT CreateCustomizeDialog();

b. Define it at the bottom of MapViewer.cpp.
 HRESULT CreateOverviewSymbol()

 {

 …

 }

 HRESULT CreateCustomizeDialog()

 {

 g_ipCustomizeDialog.CreateInstance(CLSID_CustomizeDialog);

 // Set the title

 g_ipCustomizeDialog->put_DialogTitle(

 CComBSTR(L"Customize Toolbar Items"));

 // Don't show the "Add From File" Button

 // Adding from file is not an option for your custom C++ Commands.
 // The C++ API requires programmatic placement of custom commands
 // onto the toolbar control. With the built-in ArcGIS Engine
 // Commands already visible in the dialog, nothing needs to be
 // added from file.

 g_ipCustomizeDialog->put_ShowAddFromFile(VARIANT_FALSE);

 // Set the ToolbarControl that the new items will be added to

 g_ipCustomizeDialog->SetDoubleClickDestination(g_ipToolbarControl);

 return S_OK;

 }

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM403

404 • ArcGIS Engine Developer Guide

c. Remember to clean up g_ipCustomizeDialog when the application closes.
 // Function called when WM_DELETE_WINDOW protocol is passed

 void CloseAppCallback(Widget w, XtPointer client_data, XtPointer
 call_data)

 {

 …

 delete g_dateTool;

 g_ipPopupMenu = 0;

 g_ipFillSymbol = 0;

 g_ipCurrentExtent = 0;

 g_ipCustomizeDialog = 0;

3. Call CreateCustomizeDialog from the main function sometime after the
ToolbarControl is initialized. If this is done any earlier, the Customize dialog
box will not be associated with the ToolbarControl. For this scenario, call the
function after adding the toolbar items.
AddToolbarItems();

CreateCustomizeDialog();

4. Create a callback function for the toggle button. When the user clicks the
toggle button to the on state, you want to show the Customize dialog box.
When it is clicked off, the Customize dialog box should disappear.

a. Place the forward declaration in MapViewer.h.
 HRESULT CreateCustomizeDialog();

 void ToggleCallback(Widget w, XtPointer client_data, XtPointer call_data);

b. At the bottom of MapViewer.cpp, place the definition of the callback.
 HRESULT CreateCustomizeDialog()

 {

 …

 }

 void ToggleCallback(Widget w, XtPointer client_data, XtPointer call_data)

 {

 XmToggleButtonCallbackStruct *customize =
 (XmToggleButtonCallbackStruct *) call_data;

 long hWnd;

 g_ipToolbarControl->get_hWnd(&hWnd);

 if (customize->set)

 g_ipCustomizeDialog->StartDialog(hWnd);

 else

 g_ipCustomizeDialog->CloseDialog();

 }

c. Also set up the callback right after the customizeToggle has been created in
FormSetup.

 g_customizeToggle = XtVaCreateWidget(…);

 XtAddCallback(g_customizeToggle, XmNvalueChangedCallback, ToggleCallback,
 NULL);

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

If the ArcGIS Engine commands are not appear-
ing in the Customize dialog box, there is a

problem with your registry. Those commands can
be added from the file, and to have that option

in the Customize dialog box, pass
VARIANT_TRUE into put_ShowAddFromFile().

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM404

Chapter 6 • Developer scenarios • 405

5. To put the toolbar into the customize state when the dialog box is started,
listen for the CustomizeDialog events. Implement a class, CustomizeDialogEvents,
which inherits from ICustomizeDialogEvents.

a. First make the header file for the class: CustomizeDialogEvents.h. The class
will need to have access to the global ToolbarControl and the
g_customizeToggle widget. Make sure to include the files needed for the
ToolbarControl and the toggle widget. ICustomizeDialogEvents is declared
with the other classes for the ToolbarControl, so be sure to include
toolbarcontrol.tlh and toolbarcontrol_events.tlh.

 #ifndef __CUSTOMIZEDIALOGEVENTS_H_

 #define __CUSTOMIZEDIALOGEVENTS_H_

 // Motif Headers

 #define String esriXString

 #define Cursor esriXCursor

 #define Object esriXObject

 #define ObjectClass esriXObjectClass

 #include <Xm/Xm.h>

 #include <Xm/MainW.h>

 #include <Xm/Form.h>

 #include <Xm/Protocols.h>

 #include <Xm/ToggleB.h>

 #undef String

 #undef Cursor

 #undef Object

 #undef ObjectClass

 // ArcObjects Headers

 // Engine

 #include <ArcSDK.h>

 // Controls

 #include <Ao/AoControls.h>

 extern IToolbarControlPtr g_ipToolbarControl;

 extern Widget g_customizeToggle;

 class CustomizeDialogEvents : public ICustomizeDialogEvents

 {

 public:

 // IUnknown

 IUNKNOWN_METHOD_DEFS

 // ICustomizeDialogEvents

 HRESULT OnStartDialog();

 HRESULT OnCloseDialog();

 };

 #endif // __CUSTOMIZEDIALOGEVENTS_H_

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

This class will be Motif specific since it must
access the toggle button, a Motif widget. For the
GTK-specific code, see CustomizeDialogEvents.h
and CustomizeDialogEvents.cpp in the GTK zip

file.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM405

406 • ArcGIS Engine Developer Guide

b. Place the implementation for this class into CustomizeDialogEvents.cpp,
making sure you include the header file for the class. Implement the func-
tions so that when the dialog box is opened, the toolbar enters the custom-
ize state, and when it is closed, the toolbar leaves that state. When it is
closed, also make sure to set the toggle button to false, as the dialog box
may be closed with a close button that is on it.

 #include "CustomizeDialogEvents.h"

 HRESULT CustomizeDialogEvents::OnStartDialog()

 {

 g_ipToolbarControl->put_Customize(VARIANT_TRUE);

 return S_OK;

 }

 HRESULT CustomizeDialogEvents::OnCloseDialog()

 {

 g_ipToolbarControl->put_Customize(VARIANT_FALSE);

 XmToggleButtonSetState(g_customizeToggle, false, true);

 return S_OK;

 }

c. Like the other event classes, these events must be listened for. Start by
including the header file in MapViewer.h.

 #include "MapControlEvents.h"

 #include "CustomizeDialogEvents.h"

 #include "AddDate.h"

d. Declare variables for those events at the top of MapViewer.cpp.
 IEventListenerHelperPtr g_ipMapControlEvent2Helper;

 CustomizeDialogEvents* g_customizeEvents;

 IEventListenerHelperPtr g_ipCustomizeEventHelper;

e. Listen for them right after listening for MapControl events.
 g_ipMapControlEvent2Helper->AdviseEvents(ipMapControl, NULL);

 g_customizeEvents = new CustomizeDialogEvents();

 g_ipCustomizeEventHelper.CreateInstance(CLSID_CustomizeDialogEventsListener);

 g_ipCustomizeEventHelper->Startup(
 static_cast<CustomizeDialogEvents*> (g_customizeEvents));

 CComBSTR bsGUID;

 ::StringFromIID(IID_ICustomizeDialogEvents, &bsGUID);

 IUIDPtr ipUID(CLSID_UID);

 ipUID->put_Value(CComVariant(bsGUID));

 g_ipCustomizeEventHelper->AdviseEvents(g_ipCustomizeDialog, ipUID);

f. Clean up the events in CloseAppCallback.
 // End event listening

 g_ipPageLayoutControlEventHelper->UnadviseEvents();

 g_ipPageLayoutControlEventHelper->Shutdown();

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

Although the class itself is Motif or GTK specific,
listening for either one is done the same way.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM406

Chapter 6 • Developer scenarios • 407

 g_ipPageLayoutControlEventHelper = 0;

 delete g_pageLayoutEvents;

 g_ipTOCControlEventHelper->UnadviseEvents();

 g_ipTOCControlEventHelper->Shutdown();

 g_ipTOCControlEventHelper = 0;

 delete g_tocEvents;

 g_ipTransEventHelper->UnadviseEvents();

 g_ipTransEventHelper->Shutdown();

 g_ipTransEventHelper = 0;

 delete g_transEvents;

 g_ipMapControlEvent2Helper->UnadviseEvents();

 g_ipMapControlEvent2Helper->Shutdown();

 g_ipMapControlEvent2Helper = 0;

 delete g_mapEvents;

 g_ipCustomizeEventHelper->UnadviseEvents();

 g_ipCustomizeEventHelper->Shutdown();

 g_ipCustomizeEventHelper = 0;

 delete g_customizeEvents;

6. Update the makefile. Add CustomizeDialogEvents.cpp to the sources list and
add CustomizeDialogEvents.h to the MapViewer.cpp dependencies list. Make
a dependencies list for CustomizeDialogEvents.o.

7. Compile and run the application. Check the customize toggle button to put
the ToolbarControl into customize mode and open the Customize dialog box.

8. On the Commands tab, choose the Graphic Element category and either drag
the Select Elements command to the toolbar or double-click it to add it to the
ToolbarControl. By right-clicking an item on the toolbar, you can adjust the
appearance in terms of style and grouping. Change the icon you have just
added to display both image and text.

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM407

408 • ArcGIS Engine Developer Guide

9. Stop customizing the application. Use the Select tool to move the text ele-
ment containing today’s date.

DEPLOYMENT

To successfully deploy this application onto a user’s machine:

• The user machine will require an installation of the ArcGIS Engine Runtime.

• The user’s machine will need to have its ArcGIS Engine Runtime initialized.

• The executable created at compile time will need to be deployed onto the
user’s machine.

• To run: At the command line, type “./MapViewer”.

ADDITIONAL RESOURCES

The following resources may help you understand and apply the concepts and
techniques presented in this scenario.

• The ArcGIS Engine Developer Kit documentation. This includes component
help, object model diagrams, and samples to help you get started.

• The ESRI ArcObjects Online Web site and the ESRI online discussion forums.

• Heller, Dan, Paula M. Ferguson, and David Brennan. Motif Programming
Manual (The Definitive Guides to the X Window System, Volume 6A)
2nd Edition. O’Reilly & Associates. 1994.

• Oram, Andy, and Steve Talbott. Managing Projects with make, 2nd Edition.
O’Reilly Press.

• www.gtk.org

BUILDING APPLICATIONS WITH C++ AND CONTROL WIDGETS

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM408

Chapter 6 • Developer scenarios • 409

This walkthrough is intended for programmers who want to learn more about the
Java API in ArcGIS Engine. To get the most out of this scenario you should
understand basic Java programming concepts such as classes, inheritance, and
using packages. Some familiarity with ArcObjects will also be helpful, although
not required. Although this scenario does require conceptual knowledge of the
Java language, it does not require a lot of programming experience. The code
used in this example provides an easy entry point to learn about the Java API in
ArcGIS Engine on a small and simple scale.

You can find this sample in:
<install_location>\developerkit\samples\Developer_Guide_Scenarios\
Converting_A_Tin_To_Point_ShapefileJava.zip

PROJECT DESCRIPTION

This scenario will cover several aspects of the ArcGIS Engine API. The goal of
this exercise is to create a standalone command-line application with the ArcGIS
Engine Java API. The application will take as input a TIN representation of a
surface and create a three-dimensional shapefile representing the interpolated TIN
nodes. Once you have completed this scenario, you will understand the tech-
niques required to work with the ArcGIS Engine Java API.

CONCEPTS

Terrain data is collected mostly as a sequence of discrete (x, y, z) data points.
Digital terrain models (DTM) are generally organized such that mass points lie in
a grid pattern or they represent nodes of triangles in an array referred to as a
triangulated irregular network, or TIN. The nodes will be converted to points and
used to create a new feature class. This exercise will use the TIN object and the
ITinAdvanced interface it implements. ITinAdvanced provides access to basic prop-
erties and is a starting point to the underlying data structure. In addition, the
scenario utilizes the GeometryDef and FieldsEdit classes to populate the newly
created feature class.

DESIGN

The application will be written entirely in the Java language. This allows you to
write code once on any platform and deploy the application on any supported
ArcGIS Engine platform. This scenario will use Microsoft Windows XP as the
developer platform but can easily be followed on any UNIX-based developer
platforms.

Ant, a cross-platform Java-based build tool, will be used to build and deploy the
scenario. Ant executes tasks implemented as Java classes, which allow it to inherit
the platform independence of Java. ArcGIS Engine Developer Kit includes an
extended version of Ant called arcgisant. This scenario will use arcgisant, but you
are free to use any version of Ant 1.5.x or greater.

REQUIREMENTS

To successfully follow this scenario you need the following (the requirements for
deployment are covered later in the ‘Deployment’ section):

• An installation of the ArcGIS Engine Developer Kit (including Java) with an
authorization file enabling it for development use.

BUILDING A COMMAND-LINE JAVA APPLICATION

Rather than walk through this scenario, you can
get the completed application from the samples

installation location. The sample is installed as
part of the ArcGIS developer samples.

The ArcGIS developer samples are not included
in the typical installation of the ArcGIS Engine

Developer Kit. If you do not have them installed,
rerun the Developer Kit Install wizard, click

Custom or Modify, and click the samples feature
under Software Developer Kit.

The Java API is not included in the typical
installation of the ArcGIS Engine Developer Kit. If
you do not have it installed, rerun the Developer

Kit Install wizard, click Custom or Modify, and
select the Java feature under ArcGIS Engine. In

addition, for access to the Javadoc and other Java-
specific documentation, select the Java feature

under Software Developer Kit.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM409

410 • ArcGIS Engine Developer Guide

• An installation of the Java 2 Platform, Standard Edition Software Develop-
ment Kit. See http://support.esri.com for information about supported versions
of the J2SE SDK. If you do not already have one available, download it from
the Java Web site at http://java.sun.com/j2se/downloads.html.

• A Java IDE of your choice or your favorite text editor.

• An understanding of basic Java programming concepts such as classes, inherit-
ance, and using packages.

• While no experience with other ESRI software is required, previous experi-
ence with ArcObjects is helpful.

• A TIN dataset.

• Access to the sample data and code that comes with this scenario.
<install_location>\developerKit\samples\DeveloperKit\samples\
Developer_Guide_Scenarios\Converting_A_Tin_To_Point_ShapefileJava.zip

Objects from the following packages will be used:

• com.esri.arcgis.datasourcesfile • com.esri.arcgis.geometry

• com.esri.arcgis.geodatabase • com.esri.arcgis.system

IMPLEMENTATION

To implement this scenario, follow the steps below. This implementation provides
you with all the code you will need to successfully complete the scenario. It does
not provide step-by-step instructions to develop applications in Java, as it as-
sumes that you have a working knowledge of the development environment
already.

Setting up environment variables on Windows
Any Windows user can add, modify, or remove a user environment variable.
Setting such environment variables will make most effective use of this scenario.
You will add three environment variables and their respective executable (bin)
folders to the global PATH variable.

1. Right-click My Computer, then click Properties.

2. Click the Advanced tab.

3. Click Environment Variables.

4. Under System Variables click New.
For Variable name: type “ARCENGINEHOME”.
For Variable value: type in the root level ArcGIS Engine install directory (for
example, “C:\ArcGIS”).

5. Click OK.

6. Under System variables click Path and click Edit.

7. Append the following to the beginning of Variable value:
%ARCENGINEHOME%\bin;

8. Click OK until you have closed all System Properties dialog boxes.

Repeat the steps above to add the following environment variables:

• JAVA_HOME=J2SE SDK install directory

BUILDING A COMMAND-LINE JAVA APPLICATION

The ArcGIS developer samples are not included
in the typical installation of the ArcGIS Engine

Developer Kit. If you do not have them installed,
rerun the Developer Kit Install wizard, click

Custom or Modify, and click the samples feature
under Software Developer Kit.

For cross-platform compatibility, the data and
pathnames used must be lowercased.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM410

Chapter 6 • Developer scenarios • 411

• ANT_HOME=%ARCENGINEHOME\DeveloperKit\tools\ant

Setting up environment variables on Solaris and Linux
To configure your environment on Solaris and Linux you should source two setup
scripts. The init_engine script in the ArcGIS installation directory sets the
ARCENGINEHOME environment variable as well as several required paths.
The setenv_ant script in arcgis/developerkit/tools sets the ANT_HOME variable
to point to arcgisant and includes arcgisant’s bin directory in your PATH.

• If you use C-shell:
source .../arcgis/init_engine.csh

source .../arcgis/developerkit/tools/setenv_ant.csh

• If you use bash or bourne shell:
source .../arcgis/init_engine.sh

source .../arcgis/developerkit/tools/setenv_ant.sh

You should also set the JAVA_HOME environment variable to point to the
install location of your J2SE SDK.

• Using C-shell:
setenv JAVA_HOME [J2SE SDK install directory]

• Using bash or bourne shell:
JAVA_HOME=[J2SE SDK install directory]

Build scripts
Before proceeding with building the application itself, you need to prepare the
build scripts. It is vital to set up the build structure as illustrated to the left for
the scripts to work correctly.

• TintoPoint folder—root folder for the project

• src folder—subfolder containing all of the application’s source code

• build.xml—Ant build script file

• properties.xml—external Ant properties file, which extends the build environ-
ment

• sample.properties—external Java properties file with command-line param-
eters

The three files—build.xml, properties.xml, and sample.properties—must be
created before you can build and run the scenario.

Creating the sample.properties file
Begin by creating the sample.properties file. This file provides the build script
with necessary command-line arguments to successfully execute the application
created in this exercise. This file will use the variable=argument pattern.

1. Create a text file named sample.properties and add the following lines of code
to it. Revise the arguments for the variables input.tin.path and
output.shape.path to match the paths to your TIN dataset and output
shapefile dataset.
TinToPoint

unit.name=TintoPoint

BUILDING A COMMAND-LINE JAVA APPLICATION

To compile and run applications using the ArcGIS
Engine Developer Kit, the PATH environment

variable should include paths to ArcGIS/bin and
J2SE JRE/bin. In addition, ArcGIS Engine Devel-
oper Kit ships with an extended version of Ant
called arcgisant. The path to this tool should

also be included.

Folder and file structure required for the build
scripts to work as desired

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM411

412 • ArcGIS Engine Developer Guide

main.class=engine.scenario.analyst3d.TintoPoint

#TinToPoint command line args

input.tin.path=\<path to TIN dataset>

output.shape.path=\<path to generated shapefile dataset>

2. Save and close the file.

Creating the properties.xml file
The properties.xml file sets Ant properties for the build environment. Ant prop-
erties can be set explicitly or loaded from a file. For simplicity, you will add the
dependent properties from a file, properties.xml.

1. Create an XML file named properties.xml and add the following Ant proper-
ties:
<!— :mode=ant —>

<!— === —>

<!— load environment variables —>

<!— === —>

<property environment="env"/>

<property name="arcengine.home" value="${env.ARCENGINEHOME}" />

<property name="ant.home" value="${engine.home}/developerkit/tools/ant"/>

<!— === —>

<!— directory mappings —>

<!— === —>

<property name="root.dir" location="${basedir}"/>

<property name="src.dir" location="src"/>

<property name="build.dir" location="build"/>

<property name="class.dir" location="${build.dir}/classes"/>

<!— === —>

<!— library dependency settings —>

<!— === —>

<!— library directory mappings —>

<property name="arcgis.dir" location="${engine.home}/java"/>

<!— each library has its own unique directory structure —>

<property name="arcgis.subdir" value="opt"/>

<!— jar file mappings —>

<property name="jintegra.jar" location="${arcgis.dir}/jintegra.jar"/>

<property name="arcobjects.jar" location="${arcgis.dir}/${arcgis.subdir}/
arcobjects.jar"/>

2. Save and close the file.

Creating the build.xml file
Ant build scripts are written in XML and contain one project and at least one
task. Each project defines one or more targets that combine tasks for execution.
In this scenario, the project name is “ArcGIS Engine Developer Scenario”, and its
build script needs to contain the four private and three public targets, as listed
respectively below:

• init—creates the build directory structure.

BUILDING A COMMAND-LINE JAVA APPLICATION

To learn more about private and public targets
used in Ant scripts, see the Ant documentation

available from the Apache Ant Web site,
http://ant.apache.org/.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM412

Chapter 6 • Developer scenarios • 413

• validate-engine—ensures that the ArcGIS Engine developer environment is
properly set.

• compile—compiles the scenario.

• execute—runs the scenario in a separate JVM instance.

• all—the default target, which builds the entire scenario.

• clean—cleans all build products.

• run-scenario—builds and runs the scenario application.

To get an idea of the structure of Ant targets, look at a sample compile target
line by line.
<target name="compile" depends="validate-engine">

As shown in the first line, this target has a name to reference and depends on
another target. To ensure a successful build, the ‘depends’ attribute is used to
confirm that the environment is set correctly.

<!— compile the java code from ${src.dir} into ${class.dir} —>

<javac srcdir="${src.dir}" destdir="${class.dir}">

<classpath refid="compile.classpath"/>

In the last section of this sample target, one of ANT’s core tasks, “javac”, is
created to compile the files in the source directory and place them in the class
directory. The javac task supports a class path task to ensure the class path set-
tings.

The complete sample target, including closure of the XML tags, is as shown
below:
<target name="compile" depends="validate-engine">

<!— compile the java code from ${src.dir} into ${class.dir} —>

<javac srcdir="${src.dir}" destdir="${class.dir}">

<classpath refid="compile.classpath"/>

</javac>

</target>

Now that you have a basic understanding of targets and their usage in Ant,
proceed with creating the build.xml file for this scenario.

1. Create an XML file named build.xml and add the following:
<?xml version="1.0"?>

<!DOCTYPE project[

<!ENTITY properties SYSTEM "file:properties.xml">

]>

<!— :mode=ant —>

<project name="ArcGIS Engine Developer Scenario" default="all"
basedir=".">

 <!— import external XML fragments —>

 &properties;

 <!— import sample properties —>

 <property file="sample.properties"/>

<path id="compile.classpath">

<pathelement location="${jintegra.jar}"/>

BUILDING A COMMAND-LINE JAVA APPLICATION

The entire build script is not discussed in detail
here; to learn more about building Ant scripts
see the Ant documentation available from the

Apache Ant Web site, http://ant.apache.org/.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM413

414 • ArcGIS Engine Developer Guide

<pathelement location="${arcobjects.jar}"/>

</path>

<path id="run.classpath">

<path refid="compile.classpath"/>

<pathelement location="${class.dir}"/>

</path>

<!— === —>

<!— private targets —>

<!— === —>

 <target name="init">

<!— create the time stamp —>

<tstamp/>

<!— create the build directory structure used by compile —>

<mkdir dir="${build.dir}"/>

<mkdir dir="${class.dir}"/>

 </target>

 <target name="validate-engine" depends="init">

<condition property="engine.available">

<and>

<isset property="env.ARCENGINEHOME"/>

</and>

</condition>

<fail message="Missing dependencies: ARCENGINEHOME environment
variable not correctly set" unless="engine.available"/>

 </target>

 <target name="compile" depends="validate-engine">

<!— javac resolver needed to run inside of Websphere Studio —>

<available classname="org.eclipse.core.launcher.Main"
property="build.compiler"

value="org.eclipse.jdt.core.JDTCompilerAdapter"
classpath="${java.class.path}" />

<!— compile the java code from ${src.dir} into ${class.dir} —>

<javac srcdir="${src.dir}" destdir="${class.dir}">

<classpath refid="compile.classpath"/>

</javac>

 </target>

 <target name="execute" depends="compile" if="input.tin.path">

<java classname="${main.class}" failonerror="true"
 fork="true">

<classpath refid="run.classpath"/>

<!— values must be set correctly in sample.properties —>

<arg value="${input.tin.path}"/>

<arg value="${output.shape.path}"/>

</java>

 </target>

<!— === —>

<!— public targets —>

BUILDING A COMMAND-LINE JAVA APPLICATION

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM414

Chapter 6 • Developer scenarios • 415

<!— === —>

 <target name="all" depends="compile" description="build everything">

<echo message="application built"/>

 </target>

 <target name="clean" description="clean all build products">

<!— delete the ${build} directory trees —>

<delete dir="${build.dir}"/>

<echo message="build directory gone!"/>

 </target>

 <target name="run-scenario" depends="execute" description="execute the
sample with args set in sample.properties"/>

</project>

2. Save and close the file.

Testing your build environment
Now that you’ve set up all the necessary files for building your application, test it
before proceeding.

1. Open a command prompt and use the “cd” command to change to the root
folder of your project. For example:
cd C:\TintoPoint

2. You should have all the build script files located in this root directory.

3. Type “arcgisant” at the command prompt.

4. You should receive output similar to the following:
Buildfile: build.xml

 init:

 [mkdir] Created dir: Q:\dop\dev\ant\projects\engine.scenario\build

 [mkdir] Created dir: Q:\dop\dev\ant\projects\
engine.scenario\build\classes

 validate-engine:

 compile:

BUILD FAILED

 file:Q:/dop/dev/ant/projects/engine.scenario/build.xml:49: srcdir
"Q:\dop\dev\ant\projects\engine.scenario\src" does not exist!

Total time: 1 second

The build should fail since you do not have any source to build yet. If you look
on disk at your project directory, you should notice a build folder was created.
This is where all build products will be generated.

Clean up the build with the following command:
arcgisant clean

This should generate output similar to the following:
Buildfile: build.xml

clean:

 [delete] Deleting directory Q:\dop\dev\ant\projects\engine.scenario\build

 [echo] build directory gone!

BUILDING A COMMAND-LINE JAVA APPLICATION

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM415

416 • ArcGIS Engine Developer Guide

BUILD SUCCESSFUL

Total time: 1 second

Now that your build environment is prepared, you can proceed with writing the
Java source code for the example application.

Creating the TintoPoint main class
1. Begin your source code by adding the signature for the main class in this exer-

cise:
package engine.scenario.analyst3d;

public class TintoPoint{}

The class will eventually have three private static methods and one public main
entry point. For the sake of simplicity, private static methods are used to do the
work for the application. While some Java developers believe that when a
method can be either static or an instance, an instance method should be utilized,
this scenario uses the simplest approach—static methods. Each of these methods
will be covered in upcoming sections.

Next, look at what imports are required by the class.

As discussed earlier, this scenario uses the datasourcesfile, geodatabase, geometry,
and system Java packages.

• datasourcesfile—provides workspace factories and workspaces for vector data
formats supported by the geodatabase API. You will use the
ShapefileWorkspaceFactory class in this exercise to create your generated 3D
shapefile.

• geodatabase—provides all definitions relating to data access including TINs
and feature classes. You will be using the GeometryDef class to define spatial
qualities for your generated feature class.

• geometry—contains the core geometry objects, as well as spatial reference
information. In this scenario, you will use the Point class as a representation of
all the TIN nodes in your input TIN dataset.

• system—contains objects that expose services used by the other libraries
within ArcGIS Engine. You will use the AoInitializer object to initialize and
uninitialize your application.

2. Below the package declaration you made above, import the classes as shown.
Use fully qualified imports so you can see explicitly which classes from the
ArcGIS Engine—Java API you are working with.
import java.io.File;

import java.io.IOException;

import com.esri.arcgis.datasourcesfile.ShapefileWorkspaceFactory;

import com.esri.arcgis.geodatabase.Field;

import com.esri.arcgis.geodatabase.Fields;

import com.esri.arcgis.geodatabase.GeometryDef;

import com.esri.arcgis.geodatabase.IEnumTinNode;

import com.esri.arcgis.geodatabase.IFeatureBuffer;

import com.esri.arcgis.geodatabase.IFeatureClass;

import com.esri.arcgis.geodatabase.IFeatureClassProxy;

BUILDING A COMMAND-LINE JAVA APPLICATION

The datasourcesfile, geodatabase, geometry, and
system Java packages are the equivalent of the
DataSourcesFile, GeoDatabase, Geometry, and

System libraries of ArcGIS Engine.

Use your favorite text editor or IDE to write
your source code.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM416

Chapter 6 • Developer scenarios • 417

import com.esri.arcgis.geodatabase.IFeatureCursor;

import com.esri.arcgis.geodatabase.IFeatureWorkspace;

import com.esri.arcgis.geodatabase.IFeatureWorkspaceProxy;

import com.esri.arcgis.geodatabase.IFieldEdit;

import com.esri.arcgis.geodatabase.IFields;

import com.esri.arcgis.geodatabase.IFieldsEdit;

import com.esri.arcgis.geodatabase.ITinAdvanced;

import com.esri.arcgis.geodatabase.ITinNode;

import com.esri.arcgis.geodatabase.IWorkspaceFactory;

import com.esri.arcgis.geodatabase.Tin;

import com.esri.arcgis.geodatabase.esriFeatureType;

import com.esri.arcgis.geodatabase.esriFieldType;

import com.esri.arcgis.geodatabase.esriTinQualification;

import com.esri.arcgis.geometry.IPoint;

import com.esri.arcgis.geometry.ISpatialReference;

import com.esri.arcgis.geometry.Point;

import com.esri.arcgis.geometry.esriGeometryType;

import com.esri.arcgis.system.AoInitialize;

import com.esri.arcgis.system.EngineInitializer;

import com.esri.arcgis.system.esriLicenseExtensionCode;

import com.esri.arcgis.system.esriLicenseProductCode;

Now that the imports have all been made, you can add methods to your class.

Adding the tinToPoint method
This method performs most of the work for the application. It will take, as
parameters, a path to your TIN file, the name of the TIN, a path to an output
shapefile, and a name for the output shapefile.

1. Create the signature for the tinToPoint method as follows:
/**

 * @param tinPath – path to input tin data source

 * @param tinName – name of input tin data source

 * @param shapePath – path to output shapefile data source

 * @param shapeFile – name of output shapefile data source

*/

private static void tinToPoint(String tinPath, String tinName,
String shapePath, String shapeFile){

Initially, you need to open your TIN dataset from its file location, which is passed
as a parameter to the method, by instantiating a new Tin class. The Tin class
implements many interfaces; you will use methods provided by the ITinAdvanced
and IGeoDataset interfaces. By calling the init() method, exposed by the
ITinAdvanced interface, you can open the specified TIN.

2. Instantiate the new Tin class by adding the following code below the signature
for your method.
try{

// Get tin from tin file.

ITinAdvanced tinAdv = new Tin();

String path = tinPath + File.separator + tinName;

System.out.println(" - Path to Tin: " + path);

tinAdv.init(path);

BUILDING A COMMAND-LINE JAVA APPLICATION

The ITinAdvanced interface requires an ArcGIS
Engine Runtime license with 3D extension or an
ArcGIS 3D Analyst extension when deployed. You
will add code for detecting for this license and

checking it out later in this exercise.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM417

418 • ArcGIS Engine Developer Guide

System.out.println(" - Calculating ... ");

Tin tin = new Tin(tinAdv);

3. Next, get the spatial reference of the Tin and send it as a parameter to a
createBasicFields() method that will be defined in the next section. In addition,
you need to send a geometry type point since your resulting feature class will
be a point feature class.
ISpatialReference tinSpatialRef = tin.getSpatialReference();

IFields fields = createBasicFields(esriGeometryType.esriGeometryPoint,
 false, true, tinSpatialRef);

4. Now that the basic fields have been generated, the next step is to create an
output shapefile. WorkspaceFactory is used as a dispenser of workspaces to
create an instance of a ShapefileWorkspaceFactory class. The IFeatureWorkspace
interface is used to access and manage datasets. You will cross-cast to the
returned object that implements IWorkspace by creating an instance of the
IFeatureWorkspaceProxy class using its object constructor. Finally, your output
shapefile is generated using the createFeatureClass() method to create a
standalone feature class.
 // Create output shapefile.

IWorkspaceFactory wkspFactory = new ShapefileWorkspaceFactory();

 IFeatureWorkspace featureWksp = new IFeatureWorkspaceProxy(

wkspFactory.openFromFile(shapePath, 0));

 IFeatureClass outFC = new IFeatureClassProxy(
featureWksp.createFeatureClass(shapeFile,

fields,

null,

null,

esriFeatureType.esriFTSimple,

"Shape",

""));

5. The final step in creating this method is to populate the newly created feature
class with the value of the nodes from your input TIN. The
makeNodeEnumerator() method returns enumerations of nodes based on an
extent and a criteria. The extent used is that of the input TIN dataset, and all
data inside the TIN is used as the criteria. Once an enumeration object is filled
with your TIN nodes, use a FeatureCursor as a data access object to iterate over
the set of rows in your newly created feature class and a FeatureBuffer object to
hold the state of the row. Next, create an instance of the Point class and
populate it with your TIN nodes by instantiating an ITinNode interface with
the objects returned by your enumeration. While your node is not null, loop
through them and populate your feature class.
 // Get tin node enum.

IEnumTinNode nodeEnum = tin.makeNodeEnumerator(tin.getExtent(),
esriTinQualification.esriTinInsideDataArea, null);

//Store node to shapefile.

IFeatureCursor outCursor = outFC.IFeatureClass_insert(true);

IFeatureBuffer outBuffer = outFC.createFeatureBuffer();

IPoint point = new Point();

ITinNode node = nodeEnum.IEnumTinNode_next();

BUILDING A COMMAND-LINE JAVA APPLICATION

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM418

Chapter 6 • Developer scenarios • 419

while(node != null){

 node.queryAsPoint(point);

 outBuffer.setShapeByRef(point);

 outCursor.insertFeature(outBuffer);

 node = nodeEnum.IEnumTinNode_next();

}

outCursor.flush();

tinAdv.setEmpty();

6. Finish the code for the tintoPoint method by catching any exceptions.
System.out.println(" - Path to Generated Shapefile: " +

shapePath +

File.separator +

shapeFile);

}catch (Exception ex) {

ex.printStackTrace();

 }

}

You’ve now completed the code that results in a new shapefile representing the
nodes of the input TIN on disk.

7. Review the code for the full method below to make sure yours matches.
/**

 * @param tinPath – path to input tin data source

 * @param tinName – name of input tin data source

 * @param shapePath – path to output shapefile data source

 * @param shapeFile – name of output shapefile data source

*/

private static void tinToPoint(String tinPath,

String tinName,

String shapePath,

String shapeFile){

try{

// Get tin from tin file.

ITinAdvanced tinAdv = new Tin();

String path = tinPath + File.separator + tinName;

System.out.println(" - Path to Tin: " + path);

tinAdv.init(path);

System.out.println(" - Calculating ... ");

Tin tin = new Tin(tinAdv);

 ISpatialReference tinSpatialRef = tin.getSpatialReference();

 IFields fields = createBasicFields(esriGeometryType.esriGeometryPoint,

false,

true,

tinSpatialRef);

 // Create output shapefile.

 IWorkspaceFactory wkspFactory = new ShapefileWorkspaceFactory();

 IFeatureWorkspace featureWksp = new IFeatureWorkspaceProxy(

wkspFactory.openFromFile(shapePath, 0));

BUILDING A COMMAND-LINE JAVA APPLICATION

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM419

420 • ArcGIS Engine Developer Guide

 IFeatureClass outFC = new IFeatureClassProxy(
featureWksp.createFeatureClass(shapeFile, fields, null, null,

esriFeatureType.esriFTSimple, "Shape", "”));

 // Get tin node enum.

 IEnumTinNode enum = tin.makeNodeEnumerator(tin.getExtent(),

esriTinQualification.esriTinInsideDataArea,

null);

 // Store node to shapefile.

 IFeatureCursor outCursor = outFC.IFeatureClass_insert(true);

 IFeatureBuffer outBuffer = outFC.createFeatureBuffer();

 IPoint point = new Point();

 ITinNode node = enum.IEnumTinNode_next();

 while(node != null){

 node.queryAsPoint(point);

 outBuffer.setShapeByRef(point);

 outCursor.insertFeature(outBuffer);

 node = enum.IEnumTinNode_next();

 }

outCursor.flush();

 tinAdv.setEmpty();

System.out.println(" - Path to Generated Shapefile: " +

shapePath +

File.separator +

shapeFile);

}catch (Exception ex) {

ex.printStackTrace();

 }

}

Creating the basic fields for the 3D shapefile
Now that the method that performs the conversion from TIN to shapefile has
been created, the next step is to define the schema structure for the output 3D
shapefile. The tinToPoint() method defined above uses the createBasicFields method
you create here to generate a fields object and sends it as a parameter to the
createFeatureClass() method.

1. Create the signature for this method as follows:
/**

 * @param shapeType - a geometry object type

 * @param hasM - m-value precision defined

 * @param hasZ - z-value precision defined

 * @param spatialRef - Spatial Reference

 *

 * @return IFields - a collection of columns in a table

 */

private static IFields createBasicFields(int shapeType, boolean hasM,

boolean hasZ, ISpatialReference spatialRef){

2. Use a GeometryDef object to define spatial qualities of your feature class. The
most fundamental spatial quality that the method will take as a parameter is

BUILDING A COMMAND-LINE JAVA APPLICATION

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM420

Chapter 6 • Developer scenarios • 421

the geometry type. Create new fields using the IFieldsEdit interface and return
this object.
try {

Fields fields = new Fields();

IFieldsEdit fieldsEdt = fields;

Field field = new Field();

IFieldEdit fieldEdt = field;

GeometryDef geometryDef = new GeometryDef();

double dGridSize;

if (spatialRef.hasXYPrecision()) {

double[] xmin = {0};

double[] ymin = {0};

double[] xmax = {0};

double[] ymax = {0};

spatialRef.getDomain(xmin, xmax, ymin, ymax);

double dArea = (xmax[0] - xmin[0]) * (ymax[0] - ymin[0]);

dGridSize = Math.sqrt(dArea / 100);

}else {

dGridSize = 1000;

}

geometryDef.setGeometryType(shapeType);

geometryDef.setHasM(hasM);

geometryDef.setHasZ(hasZ);

geometryDef.setSpatialReferenceByRef(spatialRef);

geometryDef.setGridCount(1);

geometryDef.setGridSize(0,dGridSize);

// Add oid field - must come before geometry field.

fieldEdt = new Field();

fieldEdt.setName("OBJECTID");

fieldEdt.setAliasName("OBJECTID");

fieldEdt.setType(esriFieldType.esriFieldTypeOID);

fieldsEdt.addField(fieldEdt);

// Add Geometry field.

fieldEdt = new Field();

fieldEdt.setName("SHAPE");

fieldEdt.setIsNullable(true);

fieldEdt.setType(esriFieldType.esriFieldTypeGeometry);

fieldEdt.setGeometryDefByRef(geometryDef);

fieldEdt.setRequired(true);

fieldsEdt.addField(fieldEdt);

return fieldsEdt;

}catch (IOException ex) {

ex.printStackTrace();

return null;

}

}

BUILDING A COMMAND-LINE JAVA APPLICATION

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM421

422 • ArcGIS Engine Developer Guide

Initializing ArcObjects
Every application built with the ArcGIS Engine Developer Kit must initialize
ArcObjects at a product level, including any appropriate extension licenses. The
AoInitialize object is used to accomplish this task. This class initializes the
ArcObjects runtime environment and must be the first ArcObjects component
created. Two methods will be called from this object:

• initialize(int product code)—This method takes an integer value representing a
product code. The Java API provides an interface called esriLicenseProductCode,
which exposes static integer fields representing the different ESRI product
levels. See the javadoc description for a full list of products.

• CheckOutExtension(int extensioncode)—This method takes an integer value repre-
senting an extension license code. The Java API provides an interface called
esriLicenseExtensionCode, which exposes static integer fields representing the
different ESRI extension products available.

This application requires an ArcGIS Engine Runtime license with 3D Analyst
extension license.

1. Declare a static AoInitialize variable and create the signature for this method as
follows:
private static AoInitialize aoInit;

private static void licenseCheckOut(){}

2. Implement the private method.
/**

 * Initialize ArcObjects product usage and check out

 * available 3D Analyst extension license.

*/

private static void licenseCheckOut(){

 try{

 aoInit = new AoInitialize();

 aoInit.initialize(esriLicenseProductCode.esriLicenseProductCodeEngine);

 aoInit.checkOutExtension(esriLicenseExtensionCode.
esriLicenseExtensionCode3DAnalyst);

 }catch(IOException e){

 System.out.println("Program Exit: Unable to initialize ArcObjects");

 System.exit(0);

 }

}

Putting it all together
Now that the private methods have all been constructed, you need to create an
entry point for your application. This main method will take command-line
arguments and pass them to the tinToPoint method created in earlier steps.

BUILDING A COMMAND-LINE JAVA APPLICATION

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM422

Chapter 6 • Developer scenarios • 423

1. First, insert some logic to ensure that you have the correct number of argu-
ments in the form of an if/else code block.
/*

 * Description:

 * Main Method - Application Entry Point

 */

public static void main(String[] args) {

if(args.length != 2){

System.out.println("Tin to Point: ArcGIS Engine Developer
Scenario");

System.out.println("Usage: TintoPoint [Path-to-tin] [Path-to-output-
shapefile]");

System.exit(0);

}else{

System.out.println("Tin to Point: ArcGIS Engine Developer Sample");

String inDataset = args[0];

String outDataset = args[1];

This application takes two arguments: an input full path to your TIN dataset and
a full path to the generated output shapefile. Once the application determines the
correct amount of arguments, they can be split into the path and name format
required by the tinToPoint() method generated earlier.

2. Add in the following code below the if/else code break you just created.
String inDataPath = inDataset.substring(0,
inDataset.lastIndexOf(File.separator));

String inDataName = inDataset.substring(
inDataset.lastIndexOf(File.separator) + 1);

String outDataPath = outDataset.substring(0,
outDataset.lastIndexOf(File.separator));

String outDataName = outDataset.substring(
outDataset.lastIndexOf(File.separator) + 1);

The next step in creating the main method is to initialize the programming envi-
ronment. In the ArcGIS Java API, this is handled by calling the static class
EngineInitializer. This class is a facade class exposed by the Java API to ensure
optimal use of native ArcObjects for Java. Following that, the static
licenseCheckOut() method described above must be called.

3. Add the following code to the main method.
EngineInitializer.initilizeEngine();

licenseCheckOut();

4. The last step is to call the static worker method tintoPoint() and pass in the
string parameters.
tinToPoint(inDataPath, inDataName, outDataPath, outDataName);

try {

aoInit.shutdown();

} catch (IOException ex) {

ex.printStackTrace();

}

System.out.println("Tin to Point - Done");

}

}

BUILDING A COMMAND-LINE JAVA APPLICATION

This exercise does not implement any logic that
determines whether the arguments being passed

are valid strings or datapaths. This validation
process may be beneficial when developing a

production application.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM423

424 • ArcGIS Engine Developer Guide

The code for the command-line application is now complete.

DEPLOYMENT

There are many options for deploying your Java application, and while you are
free to choose any method you are comfortable with, this scenario utilizes the
Ant build scripts you created earlier.

Redo the build steps you tested earlier.

1. Open a command prompt and use the “cd” command to change to the root
folder of your project. For example:
cd C:\TintoPoint

2. You should have all the build script files located in this root directory.

3. Type “arcgisant” at the command prompt.

4. You should receive output similar to the following:
Buildfile: build.xml

init

validate-engine:

compile:

execute:

 [java] Tin to Point: ArcGIS Engine Developer Sample

 [java] - Path to Tin: Q:\dop\data\imagery\tin\bachtin

 [java] - Calculating ...

 [java] - Path to Generated Shapefile:
Q:\dop\data\workspace\newshp.shp

 [java] Tin to Point - Done

run-scenario:

BUILD SUCCESSFUL

Total time: 9 seconds

If for any reason your build fails, ensure you have your environment correctly set
and parameters correctly set in the sample.properties file. If your build does not
compile, ensure that your source code is correct.

TROUBLESHOOTING

If your build returns the following:
Buildfile: build.xml

init:

validate-engine:

compile:

execute:

 [java] Tin to Point: ArcGIS Engine Developer Scenario

 [java] Usage: TintoPoint [Path-to-tin] [Path-to-output-shapefile]

run-scenario:

BUILD SUCCESSFUL

then your source code has successfully compiled, but you have not provided path
variables in the sample.properties file.

BUILDING A COMMAND-LINE JAVA APPLICATION

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM424

Chapter 6 • Developer scenarios • 425

If your build returns the following:
Buildfile: build.xml

init:

validate-engine:

compile:

execute:

 [java] Tin to Point: ArcGIS Engine Developer Sample

 [java] java.lang.StringIndexOutOfBoundsException: String index out of
 range: -1

 [java] at java.lang.String.substring(String.java:1444)

 [java] at engine.scenario.analyst3d.TintoPoint.main(Unknown Source)

 [java] Exception in thread "main"

BUILD FAILED

file:Q:/dop/dev/ant/projects/engine.scenario/build.xml:53: Java returned: 1

Total time: 1 second

then your source code has compiled, but you have not provided valid variable
strings representing your data paths. Ensure that you have provided data paths in
the following format:

• C:\\data\\imagery\\tin\\bachtin

• C:\\data\\workspace\\newshp.shp

ADDITIONAL RESOURCES

The following resources may help you understand and apply the concepts and
techniques presented in this scenario.

• Additional documentation available in the ArcGIS Engine Developer Kit
including ArcGIS Developer Help, component help, object model diagrams,
and samples to help you get started.

• ArcGIS Developer Online—Web site providing the most up-to-date informa-
tion for ArcGIS developers including updated samples and technical docu-
ments. Go to http://arcgisdeveloperonline.esri.com.

• ESRI online discussion forums—Web sites providing invaluable assistance
from other ArcGIS developers. Go to http://support.esri.com and click the User
Forums tab.

Java enjoys a huge community with many resources for its developers. The fol-
lowing is a list of URLs that most developers keep in their toolkit. These links,
while correct at publication, are subject to change.

• Sun’s Java and JDK FAQ (http://java.sun.com/products/jdk/faq.html)—High-
level introductory FAQs about Java.

• Sun’s Java (http://java.sun.com/)—The source for Java technology.

• Sun’s Java Tutorial (http://java.sun.com/docs/books/tutorials)—Online version
of the book from Addison–Wesley. Learning all about Java.

• Thinking in Java (http://www.mindview.net/Books/TIJ)—Online version of the
book from Prentice Hall. Very good for learning about object-oriented pro-
gramming concepts in Java.

BUILDING A COMMAND-LINE JAVA APPLICATION

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM425

426 • ArcGIS Engine Developer Guide

The Apache Ant project is an extremely successful open source project and carries
the trademark of many resources.

• The Apache Ant Project (http://ant.apache.org)—This is where the Ant project
lives.

• Java Development with Ant (http://www.manning.com/antbook)—Excellent book
covering Ant 1.5.

• Ant in Anger (http://ant.apache.org/ant_in_anger.html)—This document de-
scribes stategies and some basic examples of how to use Ant.

• jGuru (http://www.jguru.com/forums/home.jsp?topic=Ant)—jGuru hosts an inter-
active Ant discussion forum.

BUILDING A COMMAND-LINE JAVA APPLICATION

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM426

Chapter 6 • Developer scenarios • 427

BUILDING A COMMAND-LINE C++ APPLICATION

This scenario is designed to introduce the ArcGIS Engine C++ API for cross-
platform applications. To get the most out of this scenario, you should under-
stand basic C/C++ programming concepts such as the preprocessor, functions,
and memory management. Some familiarity with ArcObjects will also be helpful,
although not required. Although this scenario does require conceptual knowledge
of the C++ language, it does not require a lot of programming experience. The
code used in this example provides an easy entry point to learn about the C++
API to ArcGIS Engine on a small and simple scale.

The purpose of this scenario is not to teach how to set up a C++ environment or
how to compile on each supported operating system. Throughout this scenario it
is assumed that you have a functional C++ environment and know how to
compile a C++ program in that environment. What this scenario does provide is
the steps to take and the code to write to create a command-line application that
computes the slope of a given digital elevation model.

You can find this sample in:
<install_location>\DeveloperKit\samples\Developer_Guide_Scenarios\
Computing_the_Slope_of_a_Raster_DatasetCpp.zip

PROJECT DESCRIPTION

This scenario covers some aspects of the ArcGIS Engine C++ API. The goal of
the RasterSlope scenario is to create a standalone command-line application with
the ArcGIS C++ API. The application will take as input a digital elevation model
(DEM) and will build and persist the slope map raster dataset. Once you have
completed this scenario, you will understand the techniques required to work
with the ArcGIS Engine C++ API, including using the Spatial extension. In
particular, the scenario covers the following techniques:

• Programming with the ArcGIS Engine C++ developer kit in a standard text
editor.

• Parsing command-line arguments.

• Enabling extensions—in particular, the Spatial extension.

• Performing the calculation of slope on a raster dataset.

• Persisting the resultant raster dataset.

• Deploying the application on all platforms supported by the ArcGIS Engine
C++ API.

CONCEPTS

Slope datasets are often used as inputs in physical process models. Slope is com-
monly expressed in degrees or as a percentage. In the slope calculation a param-
eter (zFactor) can specify the number of ground x,y units in one z unit. This
allows you to create a slope dataset with different z units from the input surface.
To build the slope dataset, you will use the RasterSurfaceOp class and the
ISurfaceOp interface it implements. You will also use the Raster class and the
IRasterBandCollection interface it implements to persist the resulting raster dataset.

The role of the software is to calculate the slope of a given raster dataset. The

Rather than walk through this scenario, you can
get the completed application from the samples

installation location. The sample is installed as
part of the ArcGIS developer samples.

The ArcGIS developer samples are not included
in the typical installation of the ArcGIS Engine

Developer Kit. If you do not have them installed,
rerun the Developer Kit Install wizard, click

Custom or Modify, and click the samples feature
under Software Developer Kit.

For a more in-depth explanation of slope, see
the Burrough and McDonnell reference listed in
the 'Additional resources' section at the end of

this scenario.

Although this scenario steps you through C++
development, solution code is also available in

other programming languages, including C#, Java,
Visual Basic 6, Visual Basic .NET, and Visual

C++.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM427

428 • ArcGIS Engine Developer Guide

BUILDING A COMMAND-LINE C++ APPLICATION

user’s job is to provide a console at which to run the scenario, as well as a digital
elevation model on which to run the scenario. Since this is a cross-platform
application, the console can be on any supported platform.

DESIGN

The application will be written entirely in the C++ language. This allows you, as
the developer, to write code once on any supported platform and deploy the
application on all supported ArcGIS Engine platforms. This scenario uses
Microsoft Windows XP as the developer platform and nmake to compile and run
the application from the command line, using the .NET 2003 compiler. How-
ever, the same code will work on any other supported platform if built accord-
ingly. VS6 and VS7 .NET 2003 projects, as well as makefiles for both Solaris and
Linux, are included with the solution code available in the developer kit.

In the design, some safeguards were taken to ensure that the application remained
cross-platform. They include avoiding function calls and data types defined
outside the ArcGIS Engine and the C++ API as well as platform-independent
path processing. For example, it should not matter whether the user has “/” or
“\” as the path separator in the arguments to the application as long as the path
separated is used by the operating system on which the application is being ex-
ecuted. In addition, C++ standards need to be followed to avoid compiler depen-
dencies.

REQUIREMENTS

To successfully follow this scenario you need the following:

• An installation of the ArcGIS Engine Developer Kit (including Native C++)
with an authorization file enabling it for development use.

• A text editor, such as Notepad or Microsoft Visual C++.

• A supported C/C++ compiler. This scenario uses the Microsoft Visual C++
Compiler .NET 2003 (7.1). For setup details and additional supported compil-
ers, see the C++ API section of Chapter 4, ‘Developer environments’, or the
online Help.

• A configured ArcObjects environment. For setup details, see the C++ API
section of Chapter 4, ‘Developer environments’, or the online Help.

• ArcSDK.h: the ArcGIS Engine C++ API header file.

• A familiarity with the operating system you have chosen to work on and a
basic foundation in C++ programming.

• While no experience with other ESRI software is required, previous experi-
ence with ArcObjects and a basic understanding of maps is advantageous.

• Access to the solution code and makefiles that come with this scenario. This is
located at:
<install_location>\DeveloperKit\samples\Developer_Guide_Scenarios\
Computing_the_Slope_of_a_Raster_DatasetCpp.zip

• An ArcGIS Spatial Analyst or ArcGIS Engine Runtime with Spatial extension
license is required for the application to run once deployed.

• To run the application, you will need a raster dataset.

For more detailed information, see the ‘C++
application programming interface’ section of

Chapter 4, ‘Developer environments’.

The ArcGIS developer samples are not included
in the typical installation of the ArcGIS Engine

Developer Kit. If you do not have them installed,
rerun the Developer Kit Install wizard, click

Custom or Modify, and click the samples feature
under Software Developer Kit.

The C++ API is not included in the typical
installation on Windows of the ArcGIS Engine
Developer Kit. If you do not have it installed,
rerun the Developer Kit Install wizard, click

Custom or Modify, and select the Native C++
feature under Software Developer Kit.

For cross-platform compatibility, the data and
pathnames used must be lowercased.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM428

Chapter 6 • Developer scenarios • 429

IMPLEMENTATION

The implementation below provides you with all the code you will need to
successfully complete the scenario. It does not provide step-by-step instructions
to compile C++ applications, as it assumes that you already have a working
knowledge of your chosen development environment. Error checking has been
left out to increase code readability.

This scenario’s sample application demonstrates ArcGIS Engine Spatial extension
functionality; the full source code is available in the samples included in the
ArcGIS Engine Developer Kit. Here are the files discussed in this scenario:

• RasterSlope.cpp—Main C++ source file.

• RasterSlope.h—Main C++ header file.

• Makefile.Windows.template—nmake utility file template. During this exer-
cise, you will copy this file from the solution code and rename it
Makefile.Windows. You will then update it while following the scenario.

• Makefile.Windows—nmake utility file that specifies compiler settings and
rules, file dependencies, input arguments, and an execution rule for our appli-
cation. In the solution code, this file is the completed makefile for the sce-
nario. As you work through the scenario, the name will refer to the makefile
you are building.

• PathUtilities.cpp—Platform-independent path processing helper function
implementation file.

• PathUtilities.h—Platform-independent path processing helper function header
file.

The following files are provided for your use if you choose another compilation
option: Makefile.Solaris and Makefile.Solaris.Template, Makefile.Linux and
Makefile.Linux.Template, vs6.dsp and vs6.dsw, and vs7.sln and vs7.vcproj.

Creating your build environment
This scenario uses nmake to build and deploy its application. To utilize nmake,
you must write a makefile for it to execute. This scenario is not designed to teach
you the basics of project management with the nmake utility. However, this
scenario will step you through the parts of the makefile that must be customized
for each application you build.

First, copy Makefile.Windows.template from this scenario’s solution code to your
coding directory. Once you have the file copied to your coding directory, follow
the steps outlined below to prepare it for use:

1. Rename your copy of Makefile.Windows.template to ‘Makefile.Windows’.

2. Open the newly renamed Makefile.Windows.

3. Update PROGRAM to be RasterSlope.exe.

4. Update INCLUDEDIRS macro, which contains the include directories to pass
to the compiler, to reflect where you installed ArcGIS Engine.

5. Update CPPSOURCES to be RasterSlope.cpp.

6. Update CPPOBJECTS to be RasterSlope.obj.

The C++ API section of Chapter 4, ‘Developer
environments’, has a detailed discussion of error
checking. You are encouraged to read it for more

information.

A template copy of Makefile.Windows, like the
one provided in this scenario's solution code, is

included in the ArcGIS Engine Developer Kit and
can be accessed from the help system under

Development Environments > C++ > Makefiles
as Makefile.Windows.

BUILDING A COMMAND-LINE C++ APPLICATION

If you are unfamiliar with the nmake utility, see
the Microsoft Developer Network for further

information.

Replacing all instances of basic_sample in your
Makefile.Windows file with RasterSlope will
complete steps 3 and 5 through 7 listed at

right.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM429

430 • ArcGIS Engine Developer Guide

7. Update the dependencies line from basic_sample.obj to be for RasterSlope.obj
and to depend on RasterSlope.cpp and RasterSlope.h.

You are now ready to compile with nmake. When this scenario directs you to do
so, you will need to use the “f ” flag to specify the name of the makefile that
should be used. At the command line, you will type:
nmake /f Makefile.Windows.

Setting execution parameters
To use the makefile to facilitate running the scenario, the parameters need to be
stored within it and a target must be set to run the application. To set up your
makefile to do this, you need to update the parameters to match the data you
wish to process and the name you want the output to be given.

1. Near the beginning of Makefile.Windows, find the lines:
#

Command line parameters: Edit these parameters so that you can

easily run the sample by typing "nmake /f Makefile.Windows run".

#

You will need to:

(1) Describe parameters here. ex: IN_SHAPEFILE is the input shapefile

(2) Define parameters below this comment box.

ex: IN_SHAPEFILE = "c:\data\shapefile.shp"

(3) Add the parameters to the run target at the end of this file

ex: $(PROGRAM) $(IN_SHAPEFILE)

#

2. Below it, add parameters for running this sample. For example, if your input
raster is “C:\MyComputer\Rasters\RasterDataset” and your output dataset is
going to be named “tempslope”, you will add the following lines:
IN_RASTER = "C:\MyComputer\Rasters\RasterDataset"

OUT_RASTER = "tempslope"

3. At the end of Makefile.Windows there is a run target that currently only
executes the program. Update that run target to also pass in the input param-
eters. If you used the variable names IN_RASTER and OUT_RASTER as shown in the
example above, the run target should now look as follows:
#

Run target: "nmake /f Makefile.Windows run" to execute the application

#

run:

 $(PROGRAM) $(IN_RASTER) $(OUT_RASTER)

You are now ready to run the application with nmake. When this scenario directs
you to do so, you will need to use the “f ” flag to specify the name of the makefile
that should be used. On a Windows system, you will type:
nmake /f Makefile.Windows run

BUILDING A COMMAND-LINE C++ APPLICATION

The command-line build tools of Visual Studio
(nmake, cl, link, for example) are not available

by default. However, a batch file provided by
Microsoft makes them available in Windows. This
batch file, called vcvars32.bat, must be run each
time you open a new command prompt. You can
automate this process by either creating a batch

file that runs the Visual Studio 6.0 version of
vcvars32.bat and opens a command prompt that

is ready for development or by using the Visual
Studio .NET 2003 Command Prompt, which
runs vcvars32.bat for you. For details, see the

C++ API section in Chapter 4, ‘Developer
environments’.

To compile with another development environ-
ment, see Chapter 4, ‘Developer environments’,

or the online Help.

Equivalent lines will be found in the makefiles
for each supported platform.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM430

Chapter 6 • Developer scenarios • 431

This will have the same effect as typing “RasterSlope.exe
C:\MyComputer\Rasters\RasterDataset tempslope” with command-line argu-
ments at the command line.

Processing the arguments
The user provides the input and output file information for this application at
runtime (either through the makefile or at the command line). To get the specifics
of that information to use it in the program, some argument processing must be
done.

1. Create a new file, RasterSlope.h, in your text editor. Place the contents of the
file in a #ifndef and #define section. Include a standard C++ header file so
that information, such as a usage message, can be displayed to the user.
#ifndef __RASTERSLOPE_ESRISCENARIO_h__

#define __RASTERSLOPE_ESRISCENARIO_h__

#include <iostream>

#endif // __RASTERSLOPE_ESRISCENARIO_h__

2. In another new file, RasterSlope.cpp, begin implementing your slope applica-
tion. First include the header file you created in the last step. Then start writ-
ing the main function. For now, just process the arguments in it. Make sure the
correct number of arguments was entered, else print out a usage message and
exit. Since the first argument will be the program name, it can be ignored. The
second argument is the input data, and the third is the resulting slope file. You
will check if the arguments passed are valid later in the program’s execution.
#include "RasterSlope.h"

int main(int argc, char* argv[])

{

 if (argc != 3)

{

std::cerr << "Usage: RasterSlope [sourceFile] [outputFile]"

<< std::endl;

return 0;

}

char* source = argv[1];

char* result = argv[2];

return 0;

}

3. However, you will need to have the pathname and filename of the input in
separate locations. To get this information, you will create a new file, in which
you will place the path parsing utility functions. Start a new file,
PathUtilities.h, and declare a helper function to get the parent directory and
another to get the filename.
#ifndef __PATHUTILITIES_ESRISCENARIO_H__

#define __PATHUTILITIES_ESRISCENARIO_H__

BUILDING A COMMAND-LINE C++ APPLICATION

There are three ways to scope members in a
namespace. The following are examples of each

using cerr, a member of namespace std:

1. using namespace std;
2. using std::cerr;

3. std::cerr << "Prepend namespace";

The third method is used throughout this
scenario.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM431

432 • ArcGIS Engine Developer Guide

#include <iostream>

#include <ArcSDK.h>

// Extract the shapefile name from the full path of the file.

HRESULT GetFileFromFullPath(const char* inFullPath, BSTR* outFileName);

// Remove the filename from the full path and return the directory.

HRESULT GetParentDirFromFullPath(const char* inFullPath,
 BSTR* outFilePath);

#endif // __PATHUTILITIES_ESRISCENARIO_H__

4. Implement the path utility functions in the new file PathUtilities.cpp.
#include "PathUtilities.h"

// Function to remove the filename from the full path and return the

// path to the directory. Caller is responsible for freeing the memory

// in outFilePath (or pass in a CComBSTR, which has been cast to a BSTR

// to let the CComBSTR handle memory management).

HRESULT GetParentDirFromFullPath(const char* inFullPath,
 BSTR* outFilePath)

{

if (!inFullPath || !outFilePath)

return E_POINTER;

// Initialize output.

*outFilePath = 0;

const char *pathEnd = strrchr(inFullPath, '/'); // UNIX

if (pathEnd == 0)

pathEnd = strrchr(inFullPath, '\\'); // Windows

if (pathEnd == 0)

return E_FAIL;

int size = strlen(inFullPath) - strlen(pathEnd);

char *tmp = new char[size+1];

strncpy(tmp, inFullPath, size);

*(tmp+size) = '\0';

CComBSTR bsTmp (tmp);

delete[] tmp;

if (!bsTmp)

return E_OUTOFMEMORY;

*outFilePath = bsTmp.Detach();

return S_OK;

}

// Function to extract the file (or directory) name from the full path

// of the file. Caller is responsible for freeing the memory in

BUILDING A COMMAND-LINE C++ APPLICATION

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM432

Chapter 6 • Developer scenarios • 433

// outFileName (or pass in a CComBSTR, which has been cast to a BSTR

// to let the CComBSTR handle memory management).

HRESULT GetFileFromFullPath(const char* inFullPath, BSTR *outFileName)

{

if (!inFullPath || !outFileName)

return E_POINTER;

*outFileName = 0;

const char* name = strrchr(inFullPath, '/'); // UNIX

if (name == 0)

name = strrchr(inFullPath, '\\'); // Windows

if (name == 0)

return E_FAIL;

name++;

char* tmp = new char[strlen(name)+1];

strcpy(tmp, name);

CComBSTR bsTmp (tmp);

delete[] tmp;

if (!bsTmp)

return E_OUTOFMEMORY;

*outFileName = bsTmp.Detach();

return S_OK;

}

5. Use the functions in PathUtilities.h to parse the input.

a. Update RasterSlope.h to include PathUtilities.h so that you can use the
functions you wrote above. Find:
#include <iostream>

 and below it, add:
#include "PathUtilities.h"

b. In RasterSlope.cpp’s main program, parse the input to get the path and the
filename. Find:
char* result = argv[2];

return 0;

 Between these two lines, insert:
// Parse path.

CComBSTR sourceFilePath;

CComBSTR sourceFileName;

HRESULT hr = GetParentDirFromFullPath(source, &sourceFilePath);

if (FAILED(hr) || sourceFilePath.Length() <= 0)

{

std::cerr << "Couldn't parse source file path." << std::endl;

return 0;

BUILDING A COMMAND-LINE C++ APPLICATION

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM433

434 • ArcGIS Engine Developer Guide

}

hr = GetFileFromFullPath(source, &sourceFileName);

if (FAILED(hr) || sourceFileName.Length() <= 0)

{

std::cerr << "Couldn't parse source file name." << std::endl;

return 0;

}

6. Update the makefile to reflect the new PathUtilities.cpp and PathUtilities.h
files, including RasterSlope’s dependency on it.

7. Compile and run the application. It should simply exit and not appear to do
anything although it is parsing the arguments.

Accessing ArcGIS Engine
To use ArcGIS Engine, it must be initialized and the proper files included. When
done using ArcGIS Engine, it must be uninitialized.

1. At the top of RasterSlope.h, but below the inclusions for iostream and
PathUtilities.h, add an inclusion for ArcSDK.h. It should now appear as
follows:
#include <iostream>

#include "PathUtilities.h"

#include <ArcSDK.h>

2. AoExit() must be called before the application is exited. This allows portability
to supported operating systems that require AoExit() to correctly clean up
various ArcGIS Engine and COM elements. Update RasterSlope.cpp’s main to
use this function instead of return.
int main(int argc, char* argv[])

{

 if (argc != 3)

 {

std::cerr << "Usage: RasterSlope [sourceFile] [outputFile]"

 << std::endl;

AoExit(0);

return 0;

 }

 char* source = argv[1];

 char* result = argv[2];

 ...

 {

std::cerr << "Couldn't parse source file path." << std::endl;

AoExit(0);

return 0;

 }

 hr = GetFileFromFullPath(source, &sourceFileName);

 if (FAILED(hr) || sourceFileName.Length() <= 0)

 {

std::cerr << "Couldn't parse source file name." << std::endl;

BUILDING A COMMAND-LINE C++ APPLICATION

The code shown in gray has already been
entered in previous steps. It is given here to

illustrate the accurate placement of the code you
are adding in this step.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM434

Chapter 6 • Developer scenarios • 435

AoExit(0);

return 0;

}

AoExit(0);

return 0;

}

3. Write helper functions that initialize and shut down the engine. These are
general functions that you can use in any command-line application.

a. In RasterSlope.h:
#include <ArcSDK.h>

bool InitializeWithExtension(esriLicenseProductCode product,

 esriLicenseExtensionCode extension);

void ShutdownApp(esriLicenseExtensionCode license);

b. At the bottom of RasterSlope.cpp:
bool InitializeWithExtension(esriLicenseProductCode product,

 esriLicenseExtensionCode extension)

{

::AoInitialize(0);

IAoInitializePtr ipInit(CLSID_AoInitialize);

esriLicenseStatus licenseStatus = esriLicenseFailure;

ipInit->IsExtensionCodeAvailable(product, extension, &licenseStatus);

if (licenseStatus == esriLicenseAvailable)

{

ipInit->Initialize(product, &licenseStatus);

if (licenseStatus == esriLicenseCheckedOut)

ipInit->CheckOutExtension(extension, &licenseStatus);

}

return (licenseStatus == esriLicenseCheckedOut);

}

void ShutdownApp(esriLicenseExtensionCode license)

{

// Scope ipInit so released before AoUninitialize call

{

IAoInitializePtr ipInit(CLSID_AoInitialize);

esriLicenseStatus status;

ipInit->CheckInExtension(license, &status);

ipInit->Shutdown();

}

::AoUninitialize();

}

Command-line applications can be run against any ArcGIS Engine installation—
Runtime or developer kit—or any installation of the ArcGIS Desktop products
(ArcView, ArcEditor, or ArcInfo). However, this particular application requires a
Spatial license in addition to the core license. Depending on the core product

BUILDING A COMMAND-LINE C++ APPLICATION

It appears that a new instance of AoInitialize is
created in ShutdownApp(). However, it is a

singleton object and so returns a pointer to the
AoInitialize object that was previously created.

Ch06_DevScenarios.pmd 1/25/2005, 4:37 PM435

436 • ArcGIS Engine Developer Guide

license being used, Engine or Desktop, either the Spatial extension for ArcGIS
Engine Runtime or an ArcGIS Spatial Analyst extension must also be available.
Your application must confirm the availability of, then check out, the necessary
licenses as required.

4. In RasterSlope.cpp’s main(), initialize ArcGIS Engine and set up the licensing
for the product. Next, shut down and uninitialize ArcGIS Engine. These lines
of code can be placed after the command-line arguments have been processed;
that part of the application does not need access to ArcGIS Engine and, if the
arguments are invalid, there is no reason to start ArcGIS Engine.
if (FAILED(hr) || sourceFileName.Length() <= 0)

{

std::cerr << "Couldn't parse source file name." << std::endl;

AoExit(0);

}

if (!InitializeWithExtension(esriLicenseProductCodeEngine,
 esriLicenseExtensionCodeSpatialAnalyst))

if (!InitializeWithExtension(esriLicenseProductCodeArcView,

 esriLicenseExtensionCodeSpatialAnalyst))

if (!InitializeWithExtension(esriLicenseProductCodeArcEditor,

 esriLicenseExtensionCodeSpatialAnalyst))

if (!InitializeWithExtension(esriLicenseProductCodeArcInfo,
 esriLicenseExtensionCodeSpatialAnalyst))

{

std::cerr << "Exiting Application: Engine Initialization
 failed. No suitable license found."

<< std::endl;

ShutdownApp(esriLicenseExtensionCodeSpatialAnalyst);

AoExit(0);

}

// Insert code here.

ShutdownApp(esriLicenseExtensionCodeSpatialAnalyst);

AoExit(0);

5. Compile the application using the nmake utility as you did earlier in the sce-
nario.

6. Run the application. It still appears not to do anything; however, it is now
performing the license checking.

Computing the slope
At this point, you’ve determined the dataset on which to compute the slope and
accessed ArcGIS Engine. Now, the slope calculation can be performed. This
action is done in a separate function, CalculateSlope(), which is called from main.

1. Place a declaration for CalculateSlope() in RasterSlope.h. Give it an HRESULT
return type so that it can be used for error checking.
void ShutdownApp(esriLicenseExtensionCode license);

BUILDING A COMMAND-LINE C++ APPLICATION

Any additional extension functionality must use
an extension license that matches the core

license being used at that time. If the application
initially accesses an ArcGIS Engine Runtime

license, it must use the 3D or Spatial extensions
for ArcGIS Engine if required. If the application

initially accesses an ArcGIS Desktop license
(ArcView, ArcEditor, or ArcInfo), it must use
ArcGIS 3D Analyst or ArcGIS Spatial Analyst

extension licenses if required.

This is a placeholder comment to indicate where
additional code will be placed later in the

exercise.

Ch06_DevScenarios.pmd 1/25/2005, 4:38 PM436

Chapter 6 • Developer scenarios • 437

HRESULT CalculateSlope(BSTR inPath, BSTR inName, BSTR outFile);

2. After the ShutdownApp() function in RasterSlope.cpp, add the implementation
for CalculateSlope(). Place the function only in this step. Upcoming steps will
continue to place code into the CalculateSlope() function, unless otherwise
indicated.
HRESULT CalculateSlope(BSTR inPath, BSTR inName, BSTR outFile)

{

}

3. Open the input raster workspace.
HRESULT CalculateSlope(BSTR inPath, BSTR inName, BSTR outFile)

{

// Open the workspace.

IWorkspaceFactoryPtr ipWorkspaceFactory
(CLSID_RasterWorkspaceFactory);

IWorkspacePtr ipWorkspace;

HRESULT hr = ipWorkspaceFactory->OpenFromFile(inPath, 0, &ipWorkspace);

if (FAILED(hr) || ipWorkspace == 0)

{

std::cerr << "Could not open the workspace factory." << std::endl;

return E_FAIL;

}

4. Query interface to get access to the raster-specific workspace functionality and
open the input raster dataset.
HRESULT hr = ipWorkspaceFactory->OpenFromFile(inPath, 0, &ipWorkspace);

if (FAILED(hr) || ipWorkspace == 0)

{

std::cerr << "Could not open the workspace factory." << std::endl;

return E_FAIL;

}

// Open the raster dataset.

IRasterWorkspacePtr ipRastWork(ipWorkspace);

IRasterDatasetPtr ipRastDataset;

hr = ipRastWork->OpenRasterDataset(inName, &ipRastDataset);

if (FAILED(hr) || ipRastDataset == 0)

{

std::cerr << "Could not open the raster dataset." << std::endl;

return E_FAIL;

}

5. To perform the slope calculation, use the ISurfaceOp interface’s Slope() function.
To do this you need to access the ISurfaceOp interface on the workspace. To set
up that workspace, query interface to IRasterAnalysisEnvironment.
hr = ipRastWork->OpenRasterDataset(inName, &ipRastDataset);

if (FAILED(hr) || ipRastDataset == 0)

{

std::cerr << "Could not open the raster dataset." << std::endl;

return E_FAIL;

}

BUILDING A COMMAND-LINE C++ APPLICATION

Ch06_DevScenarios.pmd 1/25/2005, 4:38 PM437

438 • ArcGIS Engine Developer Guide

// Set up the ISurfaceOp interface to calculate slope.

IRasterAnalysisEnvironmentPtr ipRastAnalEnv(CLSID_RasterSurfaceOp);

ipRastAnalEnv->putref_OutWorkspace(ipWorkspace);

ISurfaceOpPtr ipSurfOp(ipRastAnalEnv);

6. You are now ready to perform the slope calculation and end the
CalculateSlope() function. Return the HRESULT returned by that function to
indicate if the calculation was successful.
ISurfaceOpPtr ipSurfOp(ipRastAnalEnv);

IGeoDatasetPtr ipGeoDataIn(ipRastDataset);

IGeoDatasetPtr ipGeoDataOut;

HRESULT slopeHR = ipSurfOp->Slope(ipGeoDataIn,
 esriGeoAnalysisSlopeDegrees,

 0,

 &ipGeoDataOut);

if (FAILED(slopeHR) || ipGeoDataOut == 0)

{

std::cerr << “slopeHR = “ << slopeHR << std::endl;

return slopeHR;

}

return slopeHR;

7. CalculateSlope() has now been completely implemented and is ready for use. In
the main function, after the engine has been initialized, call the CalculateSlope()
function. Delete the placeholder comment.
// Insert code here

hr = CalculateSlope(sourceFilePath, sourceFileName, CComBSTR(result));

if (FAILED(hr))

std::cerr << "The slope calculation failed." << std::endl;

else

std::wcerr << L"The slope of " << (BSTR) sourceFileName
 << L" has been calculated." << std::endl;

ShutdownApp(esriLicenseExtensionCodeSpatialAnalyst);

8. Compile the application, then run it. Notice that the output data’s path infor-
mation is never used and that the result of the slope calculation is not stored
anywhere.

Persisting the result
When the slope is computed, the result is only created in memory. To save it, you
must programmatically persist it to disk.

1. Since you cannot create a new raster dataset where one already exists, make
sure that the output slope file does not exist yet. This can be done in the
CalculateSlope() function by trying to open a workspace with the desired name.
If such an open is successful, then there is already a dataset with that name.

BUILDING A COMMAND-LINE C++ APPLICATION

Ch06_DevScenarios.pmd 1/25/2005, 4:38 PM438

Chapter 6 • Developer scenarios • 439

To perform this check, place the following code after the input dataset is
opened in CalculateSlope().
hr = ipRastWork->OpenRasterDataset(inName, &ipRastDataset);

if (FAILED(hr) || ipRastDataset == 0)

{

std::cerr << "Could not open the raster dataset." << std::endl;

return E_FAIL;

}

// Check for existence of a dataset with the desired output name.

IRasterDatasetPtr ipExistsCheck;

hr = ipRastWork->OpenRasterDataset(outFile, &ipExistsCheck);

if (SUCCEEDED(hr))

{

std::cerr << "A dataset with the output name already exists!"
 << std::endl;

return E_FAIL;

}

// Set up the ISurfaceOp interface to calculate slope.

2. Once its been determined that no such dataset exists, you can save the one
created by the slope operation. The save is done through the
IRasterBandCollection interface after the slope is computed.
HRESULT CalculateSlope(BSTR inPath, BSTR inName, BSTR outFile)

{

…

HRESULT slopeHR = ipSurfOp->Slope(ipGeoDataIn,
esriGeoAnalysisSlopeDegrees,

0,

&ipGeoDataOut);

if (FAILED(slopeHR) || ipGeoDataOut == 0)

{

std::cerr << "slopeHR = " << slopeHR << std::endl;

return slopeHR;

}

// Persist the result.

IRasterBandCollectionPtr ipRastBandColl(ipGeoDataOut);

IDatasetPtr ipOutDataset;

ipRastBandColl->SaveAs(outFile, ipWorkspace, CComBSTR(L"GRID"),

 &ipOutDataset);

 return slopeHR;

}

3. Compile and run the application. Browse to where the slope data was created.
A new ESRI grid was generated with your output name.

BUILDING A COMMAND-LINE C++ APPLICATION

Ch06_DevScenarios.pmd 1/25/2005, 4:38 PM439

440 • ArcGIS Engine Developer Guide

DEPLOYMENT

The final part of the development process is your application’s successful deploy-
ment to an end user’s machine. Doing so requires the following:

• An installation of ArcGIS Engine Runtime with Spatial extension on the user
machine.

• The user’s machine will need to have its ArcGIS Engine Runtime initialized.

• A copy of the application’s executable, created at compile time, residing on
the end user’s machine.

Once these requirements are in place, your end user will be able to create a slope
file for any dataset just by typing the following at the command line:
RasterSlope <inputRaster> <outputRaster>

where inputRaster is the full path (including filename) to the raster datafile and
outputRaster is the name of the output slope file to be created.

Alternatively, your end user can use the nmake utility to run the sample. To do so,
an appropriate makefile with the correct arguments must be made and the fol-
lowing entered at the command line:
nmake /f Makefile.Windows run

ADDITIONAL RESOURCES

The following resources may help you understand and apply the concepts and
techniques presented in this scenario.

• Additional documentation available in the ArcGIS Engine Developer Kit
including ArcGIS Developer Help, component help, object model diagrams,
and samples to help you get started.

• ArcGIS Developer Online—Web site providing the most up-to-date informa-
tion for ArcGIS developers including updated samples and technical docu-
ments. Go to http://arcgisdeveloperonline.esri.com.

• ESRI online discussion forums—Web sites providing invaluable assistance
from other ArcGIS developers. Go to http://support.esri.com and click the User
Forums tab.

• Burrough, Peter A., and Rachel A. McDonnell. Principles of Geographical Infor-
mation Systems. Oxford University Press. 1998.

BUILDING A COMMAND-LINE C++ APPLICATION

The output slope file is created in the same
directory as its parent raster file.

Your end user will have the option of compiling
with any supported compiler, as you did during

this scenario.

Ch06_DevScenarios.pmd 1/25/2005, 4:38 PM440

441

Reading the
object model

diagramsA

The ArcObjects object model diagrams (OMDs) are an important

supplement to the information you receive in object browsers. This appendix

describes the diagram notation used throughout this book and in the object

model diagrams that are accessed through ArcGIS Developer Help.

appendixa_OMD.pmd 1/25/2005, 4:41 PM441

442 • ArcGIS Engine Developer Guide

OBJECT MODEL KEY

Types of Classes

An abstract class cannot be used to create new objects, it is a
specification for instances of subclasses (through type
inheritance.)

A coclass can directly create objects by declaring a new object.

A class cannot directly create objects, but objects of a class can
be created as a property of another class or instantiated by
objects from another class.

Types of Relationships

Associations represent relationships between classes. They
have defined multiplicities at both ends.

Type inheritance defines specialized classes of objects that
share properties and methods with the superclass and have
additional properties and methods. Note that interfaces in
superclasses are not duplicated in subclasses.

Instantiation specifies that one object from one class has a
method with which it creates an object from another class.

Composition is a relationship in which objects from the "whole"
class control the lifetime of objects from the "part" class.

An N-ary association specifies that more than two classes are
associated. A diamond is placed at the intersection of the
association branches.

A Multiplicity is a constraint on the number of objects that can
be associated with another object. Association and composition
relationships have multiplicities on both sides. This is the notation
for multiplicities:

 1 - One and only one (if none shown, one is implied)

 0..1 - Zero or one

 M..N - From M to N (positive integers)

 * or 0..* - From zero to any positive integer

 1..* - From one to any positive integer

Object model key

Interface key

Property Get
Property Put
Property Get/Put
Property Put by Reference

Function
Event function

AbstractClass

Type inheritance

Instantiation

Association

Composition

1..*
Multiplicity

Class

Inbound interface

Outbound interface

Interface:Inherited interface

Properties

Methods

Inbound interface

Outbound interface

Interface:Inherited interface

Properties

Methods

CoClass
Inbound interface

Outbound interface

Interface:Inherited interface

Properties

Methods

Special Interfaces

(Optional) represents interfaces that are inherited by some subclasses
but not all. The subclasses list the optional interfaces they implement.

(Instance) represents interfaces that are only on specific instances of
the class.

(<classname>) indicates the name of the helper class required to
support this event interface in Visual Basic.

The diagram notation used in this book and the ArcObjects object model dia-
grams is based on the Unified Modeling Language (UML) notation, an industry
diagramming standard for object-oriented analysis and design, with some modifi-
cations for documenting COM-specific constructs.

The object model diagrams are an important supplement to the information you
receive in object browsers. Your development environment, Visual Basic or other,
lists all of the classes and members but doesn’t show the structure or relation-
ships of those classes. These diagrams complete your understanding of the
ArcObjects components.

Object model diagram key showing the types of
ArcObjects and the relationships between them.

You can access the object model diagrams from
the ArcGIS Developer Help system's contents

pane by clicking Library Reference, the library of
choice, and the Object Model Diagram link; or

from their file location, by default
<install_location>\DeveloperKit\Diagrams.

appendixa_OMD.pmd 1/25/2005, 4:41 PM442

Appendix A • Reading the object model diagrams • 443

There are three types of classes shown in the UML diagrams: abstract classes,
coclasses, and classes.

abstract
class

class

Type
inheritance

Instantiation

Association

Composition

1..*

Multiplicity

coclass

A coclass represents objects that you can directly create using the object declara-
tion syntax in your development environment. In Visual Basic, this is written
with the Dim pFoo As New FooObject syntax.

Dim pWSName as iworkspacename 'Declare the interface you will use to
 access the object

Set pwsname = new workspacename 'Creates a new instance of the
 WorkSpaceName class

Dim pPoint as iPoint

Set pPoint = new Point

Dim pGeometry as iGeometry

Set pGeometry = new Point

A class can’t directly create new objects, but objects of a class can be created as a
property of another class or by functions from another class.
Dim pName as IName

Dim pFeatClass As IFeatureClass

Set pFeatClass = pName.Open

An abstract class can’t be used to create new objects; it is a specification for sub-
classes. An example is that a “line” could be an abstract class for “primary line”
and “secondary line” classes. Abstract classes are important for developers who
want to create a subclass of their own; they show which interfaces are required
and which are optional for the type of class they are implementing. Required
interfaces must be implemented on any subclass of the abstract class to ensure the
new class behaves correctly in the ArcObjects system.

Dim pGeometry as IGeometry

Set pGeometry = New Point

If typeof pGeometry is IGeometry the

 Msgbox "This is a Geometry object"

End if

RELATIONSHIPS

Among abstract classes, coclasses, and classes, there are several types of class
relationships possible—associations, type inheritance, instantiation, composition,
and n-ary associations.

Associations

Associations represent relationships between classes. They have defined multiplici-
ties at both ends.

CLASSES AND RELATIONSHIPS

The example discussed here—primary and
secondary line classes that each meet the

specification of the abstract line class—is an
illustration of type inheritance. Type inheritance

is discussed in detail later in this appendix.

To keep the object model diagrams as simple
and usable as possible, only key relationships, or

associations, are shown.

appendixa_OMD.pmd 1/25/2005, 4:41 PM443

444 • ArcGIS Engine Developer Guide

A multiplicity is a constraint on the number of objects that can be associated with
another object. This is the notation for multiplicities:

1—One and only one. Showing this multiplicity is optional; if none is shown, “1”
is implied.

0..1—Zero or one.

M..N—From M to N (positive integers).

* or 0..*—From zero to any positive integer.

1..*—From one to any positive integer.

Type inheritance

Type inheritance defines specialized classes that share properties and methods with the
superclass and have additional properties and methods.

Line

Primary
line

Secondary
line

This diagram shows that a primary line (creatable class) and secondary line
(creatable class) are types of a line (abstract class).

Instantiation

Instantiation specifies that one object from one class has a method with which it
creates an object from another class.

TransformerPole

A pole object might have a method to create a transformer object.

Composition

Composition is a stronger form of aggregation in which objects from the “whole”
class control the lifetime of objects from the “part” class.

CrossarmPole
1..*

A pole contains one or many crossarms. In this design, a crossarm can’t be re-
cycled when the pole is removed. The pole object controls the lifetime of the
crossarm object.

CLASSES AND RELATIONSHIPS

1..*

1..*Owner Land parcel

In this diagram, an owner can own one or many
land parcels, and a land parcel can be owned by

one or many owners.

appendixa_OMD.pmd 1/25/2005, 4:41 PM444

Appendix A • Reading the object model diagrams • 445

N-ary association

An n-ary association specifies that more than two classes are associated. A diamond
is placed at the intersection of the association branches.

ICursor

Cursor

IQueryFilter
IPersistStream

esriClone.IClone
(esriSystem)

QueryFilter

ISelectionSet

SelectionSet
ISelectionSet2

IQueryFilter

CLASSES AND RELATIONSHIPS

appendixa_OMD.pmd 1/25/2005, 4:41 PM445

446 • ArcGIS Engine Developer Guide

Interfaces are the access points for development with COM objects. There are
inbound interfaces, which expose the properties and methods of a class, and
outbound interfaces, which allow the class to interact with other classes.

CoClass
Inbound interface

Outbound interface

Interface:Inherited interface

Properties

Methods

INTERFACE INHERITANCE

Since interfaces in ArcObjects are COM interfaces, they all inherit from
IUnknown, the basis for COM itself. Additionally, as illustrated in the diagrams,
some interfaces inherit from other ArcObjects interfaces. If one interface is
inherited by another interface, then the members of the initial interface are also
members of the inheriting interface. For example, since IPoint inherits from
IGeometry, the members of the IGeometry interface are also members of the IPoint
interface. This inheritance allows you to access the IPoint interface and use the
members of IGeometry directly, without needing to query interface to the
IGeometry interface.

Interface inheritance is used extensively to, in effect, add functionality to existing
interfaces. Although the rules of COM dictate that an interface signature, once
deployed, can’t change, a new interface can be created that inherits from the
original interface. For example, the IEditor2 interface extends the IEditor interface
with additional members.

INBOUND INTERFACES

Some inbound interfaces are shown on the diagrams with special notations that
provide information in addition to the usual list of members.

Interfaces defined in other libraries

If the interface name is prefixed with a library name, such as esriSystem.IName,
then the interface is inherited from a library other than the one implementing it.
The library name reflects the library in which the interface is defined. In the
column at left, the Name abstract class, an object in the GeoDatabase library, is
shown. As shown by the library name prefix, the interface implemented by Name
is actually defined in the System library.

Optional interfaces

Some interfaces can be inherited optionally by other classes. For example, ab-
stract classes can have optional interfaces that may be included or excluded from
its subclasses. These are designated by the prefix (Optional). If you are creating
your own GxView class, you don’t need to implement the IGxViewPrint interface
to be a GxView class; however, you do need to implement the IGxView interface.

As a developer, if you intend to utilize an optional interface, you must verify that
the interface was implemented by the object with which you are working. At-
tempts to access an optional interface that is not implemented will produce the

INTERFACES AND MEMBERS

A detailed discussion of COM and the
IUnknown interface can be found in the

Microsoft Component Object Model section of
Chapter 4, ‘Developer environments’.

The Name abstract class and the interface it
implements

IGeometry inherits from IUknown and, in turn,
IPoint inherits from IGeometry

The GxView class includes a number of
interfaces that implemented optionally.

IGxView
(optional) esri-

Catalog.IGx-
CatalogEvents
(optional) esri-

Catalog.IGx-
SelectionEvents

(optional) IGx-
ViewPrint

GxView

Name
esriSystemName

Geometry
IGeometry

IClone
IGeometry : IUnknown

Properties

Methods

Point
IPoint IPoint : IGeometry

Properties

Methods

ISupportErrorInfo

appendixa_OMD.pmd 1/25/2005, 4:41 PM446

Appendix A • Reading the object model diagrams • 447

error message “Run-time error ‘13’ ; Type mismatch”.
Dim pGxApp As IGxApplication

Set pGxApp = Application

Dim pGxV As IGxView

Set pGxV = pGxApp.TreeView

'Optional interface for GxViews

Dim pGxVP As IGxViewPrint

'Attempting to QI to this will result in a runtime error

Set pGxVP = pGxV

Interfaces implemented in select instances

Some classes have been designed to have varying implementations instead of
having multiple classes that inherit from a single base or abstract class. In these
cases, certain interfaces are implemented in select instances. For example, the
RasterDataset class can be instantiated by different Workspace classes depending on
the type of data being accessed. When file-based data is used to instantiate a
RasterDataset class, the ITemporaryDataset interface is implemented; however, if
ArcSDE software-based data is used to instantiate the RasterDataset class, the
IRasterPyramid2 interface isn’t implemented.

Interfaces that are implemented in select instances are designated with the prefix
(Instance). Attempts to access a selected instance interface that hasn’t been
implemented will produce a “Run-time error ‘13’ ; Type mismatch”.

 Dim pWsFact As IWorkspaceFactory

 Dim pWs As IRasterWorkspace

 Dim pRasterDataset As IRasterDataset

 'Open the workspace

 Set pWsFact = New RasterWorkspaceFactory

 Set pWs = pWsFact.OpenFromFile("D:\data\canada", 0)

 'Open the raster dataset

 Set pRasterDataset = pWs.OpenRasterDataset("Dem")

 'Test if interface is implemented before QI

 Dim pTempDS As ITemporaryDataset

 If TypeOf pRasterDataset Is ITemporaryDataset Then

 Set pTempDS = pRasterDataset

 End If

OUTBOUND INTERFACES

Outbound interfaces, also known as event interfaces, provide notification when a
certain event occurs. Interaction with the members of an outbound interface
requires that another object exists to catch the event occurrences; this is com-
monly referred to as an event sink. Event sinks have code that responds when
certain events occur, an editing operation, for example. In Visual Basic, the
creation of classes that will act as sinks to an outbound interface requires that the
outbound interface declaration include the name of the class that implements the
interface.

Private WithEvents EditEvents as Editor

Although the object variable has been declared with the class that will be raising
the events, it points to nothing. The object variable must be initialized using the

INTERFACES AND MEMBERS

The RasterDataset class and the interfaces it
implements when instantiated by file-based and

ArcSDE software-based data

esriGeoDatabase.-
IRasterDataset

esriGeoDatabase.-
IRasterDataset2

esriGeoDatabase.-
IRasterDatasetEdit

IRasterBand-
Collection

IRasterPyramid
ISaveAs

(Instance-File)
ITemporaryDataset

(Instance-File)
IWorldFileExport

(Instance-DB)
IRasterPyramid2

RasterDataset

appendixa_OMD.pmd 1/25/2005, 4:41 PM447

448 • ArcGIS Engine Developer Guide

INTERFACES AND MEMBERS

Editor class contains several outbound interfaces

Interface key

Property Get
Property Put
Property Get/Put
Property Put by Reference

Function
Event function

Set statement linking it to the existing Editor object.
Public Sub SetEvents()

 Dim pID as New UID

 pID = "esriEditor.Editor"

 Set m_pEditor = Application.FindExtensionByCLSID(pID)

 Set EditEvents = m_pEditor

Secondary outbound interfaces (nondefault)

When a class implements more than one outbound event, the secondary interface
name is preceded by a classname, (EditEvents2)IEditEvents2 for example, where
the classname indicates the name of a Helper class. The Helper class is an artifi-
cial coclass that solves the Visual Basic problem with multiple outbound inter-
faces on an object. When working with a nondefault outbound interface for
EditEvents2 in Visual Basic 6, declare the variable as follows:

Private WithEvents pEditEvents2 as EditEvents2

INTERFACE MEMBERS

The members of an interface include its properties, which specify the state of an
object, and its methods, which perform some action.

Properties are designated as read-only (get), write-only (put), or read–write (get/
put). Additionally, the value of a property may be a simple data type, a long for
the x-value of a point object, or another class, such as a coordinate system class
(GeographicCoordinateSystem, for example) for the SpatialReference property.

Each property on the diagram is listed with the data type required or returned.
The symbolization and syntax of properties that can be set with an object will
vary based on whether the property is put by value (put) or put by reference. If
ObjectG is assigned to a property by value on ObjectM, then ObjectG is con-
tained within ObjectM. When an object is passed by reference, an association is
formed between the two objects. This is advantageous because an object can be
reused in many associations, using less memory space.

Dim psphere As ISphere

Set psphere = New Sphere

Dim ppoint As IPoint

Set ppoint = New point

psphere.Center = ppoint

Dim pspatref As ISpatialReference

Set pspatref = New GeographicCoordinateSystem

'This won't compile

'psphere.SpatialReference = pspatref

Set psphere.SpatialReference = pspatref

Properties and their symbols

IActiveViewEvents
IAttributeTransfer-

Type
IEditEvents

(EditEvents2)
IEditEvents2

(EditEvents3)
IEditEvents3
IEdit Layers

Editor

appendixa_OMD.pmd 1/25/2005, 4:41 PM448

Appendix A • Reading the object model diagrams • 449

In this example, the abstract
class Name implements the
IName interface; its inheritance
relationship to all other name
objects indicates that they each
implement the IName interface
as well. Although neither the
FeatureClassName nor
WorkspaceName coclass shows
the IName interface in the
diagrams, you know it is there
because of this inheritance. The
Open() method on the IName
interface is used to instantiate
the FeatureClass object. This

usage guarantees that the new FeatureClass object is properly created and in-
cludes all necessary information.

The case below illustrates its importance clearly: opening a shapefile dataset to
extract a feature class is not as simple as just reading the database records.

Dim pwrkspc As IWorkspaceName

Set pwrkspc = New WorkspaceName

pwrkspc.PathName = "D:\data\canada"

pwrkspc.WorkspaceFactoryProgID = _
"esriDataSourcesFile.shapefileworkspacefactory.1"

'***

Dim pdatasetname As IDatasetName

Set pdatasetname = New FeatureClassName

pdatasetname.Name = "Canada.dbf"

Set pdatasetname.WorkspaceName = pwrkspc

Dim pname As IName

Set pname = pdatasetname

Dim pfeatclass As IFeatureClass

Set pfeatclass = pname.Open

''Check FeatureType property to ensure you have a featureclass object

MsgBox pfeatclass.FeatureType

An association is shown in the code above where the WorkspaceName object was
set to the WorkspaceName property of the FeatureClassName object. As noted
earlier, for simplicity’s sake, many of the associations in ArcObjects aren’t drawn
on the diagrams. In fact, this association between the WorkspaceName and
FeatureClassName classes isn’t shown on the GeoDatabase library object model
diagram; however, it can be seen in the IName interface detail for the
WorkspaceName property since the symbol used is a Property Put by Reference.
Since the WorkspaceName class is being held as a reference and not in a composi-
tion relationship, the object’s lifespan will not be controlled by the
FeatureClassName object. If you were to use the code below to set the
FeatureClassName object to nothing, the WorkspaceName class would still exist.

Set pfeatclass = Nothing

If Not pwrkspc Is Nothing Then

 MsgBox "Object still exists"

End If

PUTTING IT TOGETHER—AN EXAMPLE

The Name abstract class, WorkspaceName and
Tablename coclasses, and FeatureClass objects

and their relationships

*

*

Name
esriSystemName

IWorkspaceName
(optional) IDatabaseCompact

IWorkspaceName2
Workspace-

Name

IFeatureClassName
ITopologyClassName FeatureClass-

Name

IFeatureClass

FeatureClass

appendixa_OMD.pmd 1/25/2005, 4:41 PM449

appendixa_OMD.pmd 1/25/2005, 4:41 PM450

451

ArcGIS developer
resourcesB

ESRI has created two essential resources for ArcGIS developers: the ArcGIS

software developer kit and ArcGIS Developer Online

(http://ArcGISDeveloperOnline.esri.com).

AppendixB.pmd 1/25/2005, 4:43 PM451

452 • ArcGIS Engine Developer Guide

ARCGIS SOFTWARE DEVELOPER KIT

The ArcGIS software developer kit (SDK) is the collection of diagrams, utilities,
add-ins, samples, and documentation geared to help developers implement cus-
tom ArcGIS functionality.

ARCGIS DEVELOPER HELP SYSTEM

The ArcGIS Developer Help system is the gateway to all the SDK documentation
including help for the add-ins, developer tools, and samples; in addition, it serves
as the complete syntactical reference for all object libraries.

Each supported API has a version of the help system that works in concert with
it. Regardless of the API you choose to use, you will see the appropriate library
reference syntax and have a help system that is integrated with your development
environment. For example, if you are a Visual Basic 6 developer you will use
ArcGISDevHelp.chm, which has the VB6 syntax and integrates with the VB6
IDE, thereby providing F1 help support in the Code Window.

The help systems reside in the
DeveloperKit\Help folder but are
typically launched from the start
menu or F1 help in Visual Basic 6
and Visual Studio .NET 2003. The
graphic to the left shows the start
menu options for opening the help
systems.

SAMPLES

The ArcGIS developer kit contains more than 600 samples, many of which are
written in several languages. The samples are described in the help system, and the
source code and project files are installed in the DeveloperKit\samples folder.
The help system’s table of contents for the samples section mirrors the samples
directory structure.

The help system organizes samples by functionality. For example, all the
Geodatabase samples are grouped under
Samples\Geodatabase. Most first-tier groupings
are further subdivided. You can also find
samples in the SDK using the ‘Query the
Samples’ topic in the help system, which lists all
the samples alphabetically; in addition, you can
sort the list by language. For example, you can
elect to only list the available Java samples.

Installing the samples source code and project
files is an option in the install. The samples are
installed under the
ArcGIS\DeveloperKit\samples folder. If you
don’t have this folder on your computer, you
can rerun the install program and check
Samples under Developer Kit.

A typical SDK installation

AppendixB.pmd 1/25/2005, 4:43 PM452

Appendix B • ArcGIS developer resources • 453

ARCGIS SOFTWARE DEVELOPER KIT

DEVELOPER TOOLS

The ArcGIS developer tools are executables that ESRI has provided to facilitate
your ArcObjects development. You may find some of these tools essential. For
example, if you are a Visual Basic 6 desktop developer, you will likely use the
Categories.exe tool to register components in component categories.

Each of the developer tools is installed in the DeveloperKit\tools folder except
for the Component Category Manager, which is located in the ArcGIS\bin folder.
Please refer to ArcGIS Developer Help for a detailed discussion of each tool and
instructions for their use.

Tools available with each ArcGIS developer kit

• Component Categories Manager—Registers components within a specific
component category.

• Fix Registry Utility—Fixes corruptions in the Component Categories section
of the registry.

• GUID Tool—Generates GUIDs, in registry format, for use within source
code.

• Library Locator—Identifies object library containing a specified interface,
coclass, enumeration, or structure.

Additional tools available in the Desktop developer kit

• ESRI Object Browser—Advanced object browser.

• Extract VBA—Extracts VBA code from a corrupt map document (.mxd).

ADD-INS

The ESRI add-ins automate some of the tasks performed by the software engi-
neer when developing with ArcObjects, as well as provide tools that make debug-
ging code easier. ESRI provides add-ins for the Visual Basic 6 IDE and the Visual
Studio .NET IDE.

Visual Basic 6 add-ins

The following Visual Basic 6 add-ins are available but only installed if you select
them during the installation process:

• ESRI Align Controls With Tab Index—Ensures control creation order
matches tab index.

• ESRI Automatic References—Automatically adds ArcGIS library references.

• ESRI Code Converter—Converts projects from ArcGIS 8.x to ArcGIS 9.x.

• ESRI Command Creation Wizard—Facilitates the creation of commands and
tools.

• ESRI Compile and Register—Aids in compiling components and registering
these in desired component categories.

• ESRI ErrorHandler Generator—Automates the generation of error handling
code.

Installation dialog box for selecting the Visual
Basic add-ins.

AppendixB.pmd 1/25/2005, 4:43 PM453

454 • ArcGIS Engine Developer Guide

• ESRI ErrorHandler Remover—Removes the error handlers from the source
files.

• ESRI Interface Implementer—Automatically stubs out implemented inter-
faces.

• ESRI Line Number Generator—Adds line numbers to the appropriate lines
within source files.

• ESRI Line Number Remover—Removes the line numbers from source files.

• ESRI License Initializer—Automatically generates and adds license initializa-
tion code to an ArcObjects project.

Visual Studio .NET add-ins

The following .NET add-ins are automatically installed during setup if a version
of Visual Studio .NET 2003 is detected:

• ESRI Component Category Registrar—Stubs out registration functions to
enable self component category registration.

• ESRI Guid Generator—Inserts a GUID attribute.

• ESRI Automatic References—Automatically adds ArcGIS library references.

• ESRI License Initializer—Automatically generates and adds license initializa-
tion code to an ArcObjects project.

ARCGIS SOFTWARE DEVELOPER KIT

AppendixB.pmd 1/25/2005, 4:43 PM454

Appendix B • ArcGIS developer resources • 455

ARCGIS DEVELOPER ONLINE WEB SITE

ArcGIS Developer Online is the place to find the most up-to-date ArcGIS 9
developer information including sample code, technical documents, object model
diagrams, and the complete object library reference.

The Web site is a reflection of the ArcGIS Developer Help system except it is
online and therefore more current. The Web site has some additional features
including an advanced search utility that enables you to control the scope of your
searches. For example, you can create a search that only scans the library refer-
ence portion of the help system.

Visit the site today (http://arcgisdeveloperonline.esri.com).

AppendixB.pmd 1/25/2005, 4:43 PM455

AppendixB.pmd 1/25/2005, 4:43 PM456

457

ConConConConConvvvvvererererertingtingtingtingting
personalpersonalpersonalpersonalpersonal

geodatabasesgeodatabasesgeodatabasesgeodatabasesgeodatabasesC

There are two kinds of geodatabases: personal geodatabases and multiuser geodatabases.

Multiuser geodatabases are also known as ArcSDE-based geodatabases. While ArcGIS Engine

is supported on UNIX, these platforms do not support the use of personal geodatabases

(*.mdb). Your personal geodatabases must be converted to an ArcSDE geodatabase or a

supported file-based format, such as shapefiles, coverages, or raster data, before you can use

that data to serve a map on Solaris or Linux.

ArcCatalog allows you to copy data from a personal geodatabase and paste it to an ArcSDE

geodatabase. You can copy entire feature datasets or individual feature classes, raster

catalogs, or individual rasters and tables. For every feature dataset, feature class, raster

catalog, or individual raster or table you copy and paste, the result is an equivalent feature

class, raster catalog, and individual raster or table in the destination geodatabase with all the

features or records from the source data.

This appendix describes the steps involved in this process as well as the procedure to convert

a personal geodatabase to a file-based shapefile, coverage, or individual raster.

AppendixC.pmd 1/25/2005, 4:44 PM457

458 • ArcGIS Engine Developer Guide

COPYING A PERSONAL GEODATABASE AS AN ARCSDE
GEODATABASE

1. Open ArcCatalog.

2. In the tree view or contents view, browse to the location where the personal
geodatabase (*.mdb) is stored. If the file is located on a UNIX machine, you
should have access to that file from Windows and have sufficient permissions
for reading the data.

3. Select the personal geodatabase to be copied. Right-click the feature dataset,
feature class, raster data, and table you want to copy.

4. Click Copy.

5. Right-click the ArcSDE geodatabase you want to copy the data to.

6. Click Paste. A dialog box appears that indicates what data is being copied. Any
name conflicts are automatically resolved and highlighted in red.

You can also copy and paste data by clicking the
data in the ArcCatalog tree or contents view,

dragging it to another location, and dropping it.

To copy a geometric network or a topology class
and all the participating feature classes, copy and

paste the network or topology class only. This
will copy all the participating feature classes

along with it. You cannot copy and paste
individual feature classes participating in a

network or topology.

CONVERTING DATA FOR USE WITH THE GIS SERVER ON UNIX

AppendixC.pmd 1/25/2005, 4:44 PM458

Appendix C • Converting personal geodatabases • 459

CONVERTING DATA FOR USE WITH THE GIS SERVER ON UNIX

7. Type over the target name to change any of the resolved names.

8. If you want to control how the new feature classes and tables are created and
stored, click a keyword and choose a new one from the dropdown list.

9. Click OK to copy the data into new feature classes and tables.

EXPORTING FROM A PERSONAL GEODATABASE FEATURE
DATASET OR FEATURE CLASS TO A SHAPEFILE OR COVERAGE

1. Open ArcCatalog. (This step is not required if the data is converted to an
ArcSDE Feature class.)

2. In the Catalog tree or contents view, browse to the location where the per-
sonal geodatabase (*.mdb) is stored. If the file is located on a UNIX machine,
you should have access to that file from Windows and have sufficient permis-
sions for reading the data.

3. Right-click the personal geodatabase to be exported. Click Export and To
Shapefile (Multiple) or To Coverage depending on your preference.

This will export all feature classes contained in the personal geodatabase. To
export tables, select the tables to be exported and click the option To dBase
(multiple).

AppendixC.pmd 1/25/2005, 4:44 PM459

460 • ArcGIS Engine Developer Guide

CONVERTING DATA FOR USE WITH THE GIS SERVER ON UNIX

4. A dialog box appears that indicates what data is being copied. Enter the
location of output directory where the shapefiles or coverages will be created.

As this data is to be used with ArcGIS Engine on UNIX/Linux, be aware that
the name of the data and path to the data should be all lowercase.

5. Click OK to copy the data into shapefile or coverage features and .dbf tables.

EXPORTING FROM PERSONAL GEODATABASE RASTER DATA TO A
FILE-BASED RASTER FORMAT

ArcCatalog can be used to convert personal geodatabase raster data into a TIFF,
ERDAS IMAGINE, ESRI Grid, or MrSID raster format.

1. Open ArcCatalog. (This step is not required if the data is converted to
ArcSDE raster.)

2. In the Catalog tree or contents view, browse to the location where the per-
sonal geodatabase (*.mdb) is stored. If the file is located on a UNIX machine,
you should have access to that file from Windows and have sufficient permis-
sions for reading the data.

AppendixC.pmd 1/25/2005, 4:44 PM460

Appendix C • Converting personal geodatabases • 461

CONVERTING DATA FOR USE WITH THE GIS SERVER ON UNIX

3. Right-click the personal geodatabase raster to be exported. Click Export and
click Raster To Different Format for TIFF, ERDAS IMAGINE, and ESRI
Grid formats (choose Export and Raster to MrSID for exporting to MrSID
imagery).

4. A dialog box appears that indicates the input raster and an option to choose
the output directory where the output raster will be created. Choose the
output folder name, filename for raster data, and extension. Depending on the
extension of the filename (*.img, *.tif), an ERDAS IMAGINE or TIFF image
will be created. When the extension is left blank, an ESRI grid file will be
created.

AppendixC.pmd 1/25/2005, 4:44 PM461

462 • ArcGIS Engine Developer Guide

Updating links to data in an ArcMap document

1. Open the map document in ArcMap.

2. For the layer that requires update in data path, open the layer properties dialog
box (right-click the layer and click Properties). Use the Set Data Source
button on the Source tab of the layer’s Properties dialog box and choose the
desired ArcSDE feature, shapefile, or coverage data. If using shapefile or
coverage data, make sure the data path and filenames are all in lowercase.

3. Repeat step 2 for each layer.

4. Save the map document.

If using relative paths to data, then the map is ready to serve with ArcGIS
Engine. Fully qualified UNIX paths to the data are also supported. For addi-
tional information on updating Windows paths to UNIX, refer to the topic
‘Data and cross-platform development’ in ArcGIS Developer Help.

For information on related topics, see ‘How to convert geodatabase annotation
to coverage annotation’, ‘Copying feature datasets, classes, and tables to another
geodatabase’, and ‘Exporting raster formats’ in the ArcGIS Desktop Help.

CONVERTING DATA FOR USE WITH THE GIS SERVER ON UNIX

AppendixC.pmd 1/25/2005, 4:44 PM462

Installing ArcGIS
Engine Runtime

on Windows,
Solaris, and Linux

D

In most cases you will develop applications that, at minimum, initialize

against the ArcGIS Engine Runtime product and extension licenses. Under

such circumstances, the next step in the deployment process for your

application is the installation of ArcGIS Engine Runtime. The ArcGIS

Engine Runtime setup program is available for installation on Microsoft

Windows, Sun Solaris, and Linux operating systems. This appendix briefly

introduces the technology used to create the installation program for

ArcGIS Engine Runtime on the applicable operating system and discusses

the various installation mechanisms for the runtime on either Solaris and

Linux or Windows platforms.

AppendixD.pmd 1/25/2005, 4:45 PM463

464 • ArcGIS Engine Developer Guide

This section specifically discusses installation on Windows; the next discusses
installation on Solaris and Linux.

ABOUT THE ARCGIS ENGINE RUNTIME INSTALLATION PROGRAM

The ArcGIS Engine Runtime installation program, or setup, was created using
Windows Installer (MSI) technology from Microsoft. This technology uses a
package file (.msi) and a client-side installer service (msiexec.exe). Windows
Installer is a service that runs on your operating system. This service enables the
operating system to manage the installation and uses the information contained
within the package file to install the software.

The msiexec.exe program is a component of Windows Installer. Msiexec.exe uses
a Dynamic Link Library, Msi.dll, to read the package files (.msi), apply transforms
(.mst), and incorporate command-line options.

An MSI-based setup consists of features. A feature is an individual portion of the
application’s total functionality that may be installed independently. The ArcGIS
Engine Runtime setup consists of the following installation features:

ArcEngine

JavaRuntime

DotNetRuntime

ArcGIS Engine

ArcGIS Engine—Java Runtime

ArcGIS Engine .NET Runtime

ArcGIS Engine

Java Archives

.NET Assemblies

Feature Descriptive Feature Name Description

All ArcGIS Engine-based applications depend on an installation of the
ArcEngine feature. Applications built using the Java and .NET APIs for ArcGIS
Engine require installations of the JavaRuntime and DotNetRuntime features,
respectively, in addition to the ArcEngine feature.

ArcGIS Engine Runtime is supported on Windows 2000, Windows XP Profes-
sional, and Windows 2003 Server.

For additional or updated information regarding ArcGIS Engine Runtime system
requirements, visit http://support.esri.com.

INSTALLING ARCGIS ENGINE RUNTIME

As mentioned above, ArcGIS Engine software-based applications require that
ArcGIS Engine Runtime be installed on the end user’s machine. Installation of
the runtime can be handled in either of two ways:

1. Your end user runs the ArcGIS Engine Runtime setup directly from the CD.

2. You include the ArcGIS Engine Runtime setup within your own application’s
installation program.

The following sections document the general requirements for the installation of
the ArcGIS Engine Runtime, no matter which of the two types of installation
mechanism you choose, and the steps necessary to install the runtime successfully
using your chosen mechanism.

INSTALLING ARCGIS ENGINE RUNTIME ON WINDOWS

More information on Windows Installer can be
found in the Windows Installer Software
Development Kit. Download the kit at

http://www.microsoft.com/msdownload/
platformSDK/sdkupdate/.

The available ARCGIS Engine Runtime setup
features are illustrated in the table on the right.

Solaris and Linux are also supported. For details
on the system requirements for these operating

systems, see the next section, ‘Installing ArcGIS
Engine Runtime on Solaris and Linux’.

You cannot redistribute individual ArcGIS Engine
Runtime files; the installation mechanisms

discussed in this appendix are the only means of
installing ArcGIS Engine Runtime files.

AppendixD.pmd 1/25/2005, 4:45 PM464

Appendix D • Installing ArcGIS Engine Runtime on Windows, Solaris, and Linux • 465

General requirements
Irrespective of the installation method you chose for ArcGIS Engine Runtime,
you should be aware of the following:

• Prerequisites—If your ArcGIS Engine-based application was built using
the .NET API, the .NET Framework 1.1 must be installed on your user’s
machine prior to installing the ArcGIS Engine Runtime.

• Older versions of ArcGIS software—ArcGIS Engine Runtime cannot be
installed on any machine that already contains versions of ArcGIS products
prior to the version you will be installing. This includes ArcIMS, ArcGIS
Desktop, ArcGIS Workstation, ArcReader, ArcGIS Engine Runtime, ArcGIS
Server, .NET ADF, and Java ADF.

• Existing installation of ArcGIS Engine Runtime—If the ArcGIS
Engine Runtime setup is launched, and ArcGIS Engine Runtime already exists
on the machine, the setup will execute as a maintenance installation.

• Installation location—Each of the ArcGIS 9 products (ArcGIS Engine
Runtime, ArcGIS Engine Developer Kit, ArcGIS Desktop, ArcReader
standalone, and ArcGIS Server) installs to the same installation directory. The
first ArcGIS 9 product installed determines the installation location for all
subsequent ArcGIS 9 products. For example, if ArcGIS Desktop is installed
to C:\Desktop, the installation location for all ArcGIS 9 products is
C:\Desktop\ArcGIS. If ArcGIS Engine Runtime is installed after ArcGIS
Desktop, the opportunity to browse to an installation location is not provided.
The initial ArcGIS Desktop installation has predetermined the installation
location for all future ArcGIS 9 products. Therefore, in this example, ArcGIS
Engine Runtime will also be installed to C:\Desktop\ArcGIS.

• Disk space—If you run out of disk space while installing an ArcGIS 9 prod-
uct, you must uninstall all ArcGIS 9 products and reinstall them to a location
where more disk space is available. ArcGIS 9 products (excluding ArcSDE,
ArcIMS, and ArcInfo Workstation) cannot be installed to different locations.

End user installs ArcGIS Engine Runtime on their system
In this case, your user installs the ArcGIS Engine Runtime either directly from
the CD ESRI provided with the ArcGIS Engine product or from a CD that you
created by copying the contents of the ArcGIS Engine Runtime CD image to it.

You should distribute the following steps or similar instructions to your users:

1. Confirm that any currently installed ArcGIS products are the same version as
the Engine Runtime setup to be installed. To check if any of these products
are installed on the machine and verify the version number:

a. Click Start, Control Panel, and open the Add/Remove Programs dialog box.

b. If ArcGIS Engine Runtime is listed in the programs list, it has been installed
on the machine. Confirm that ArcGIS Engine Runtime is the correct ver-
sion. Click Support Information to determine the product version number.
Close the window and proceed to the installation steps for <your applica-
tion name here> if needed.

INSTALLING ARCGIS ENGINE RUNTIME ON WINDOWS

For additional ArcGIS Engine Runtime CDs,
contact ESRI Customer Service at
www.esri.com, or in the USA call

888-377-4575, or contact your local ESRI
regional office.

You can obtain a redistributable version of the
.NET Framework 1.1 from the Microsoft Web

site at http://msdn.microsoft.com/
netframework/downloads/

framework1_1redist/.

You cannot redistribute individual ArcGIS Engine
Runtime files; the installation mechanisms

discussed in this appendix are the only means of
installing ArcGIS Engine Runtime files.

AppendixD.pmd 1/25/2005, 4:45 PM465

466 • ArcGIS Engine Developer Guide

c. If no ArcGIS products are shown in the programs list, proceed to Step 2. If
ArcGIS products are shown in the programs list, click Support Information
to view the version of the product.

d. If the versions displayed are the same, proceed to Step 2. If the versions
displayed are not the same, the products need to be removed before install-
ing ArcGIS Engine Runtime. Do not proceed to Step 2 until these products
have been uninstalled.

2. Launch the ArcGIS Engine Runtime installation program by navigating to the
CD drive location and double-clicking the setup.exe file.

3. In the installation, click Next if all Windows applications are closed.

4. Review and accept the license agreement and click Next to proceed with the
installation.

5. Choose the installation type and click Next to continue.

If the ArcGIS Engine-based application to be installed requires Java, choose
Custom to manually select the JavaRuntime feature or choose Complete to
install all ArcGIS Engine Runtime installation features.

6. Follow any further instructions of the ArcGIS Engine Runtime installation
until it indicates that the installation is complete. If you installed, and intend
to use, the Java feature, proceed to Step 7. If not, the installation of ArcGIS
Engine Runtime is now complete. Proceed to the installation steps for <your
application name here> if needed.

INSTALLING ARCGIS ENGINE RUNTIME ON WINDOWS

A Typical installation includes the ArcEngine
feature. In addition, if the .NET Framework is
detected, the DotNetRuntime feature will be

installed.

If your ArcGIS Engine-based application utilizes
Java, your user can select Custom and manually

choose the JavaRuntime feature. As noted above
a Complete installation also installs the

JavaRuntime feature.

When Complete is selected all available ArcGIS
Engine Runtime features are installed. If the

.NET Framework prerequisite is not detected,
the DotNetRuntime feature will be excluded.

The Select Installation Type panel of the ArcGIS
Engine Runtime installation wizard is illustrated

on the right. The possible types are discussed
below.

If the ArcGIS Engine Runtime setup is launched,
and ArcGIS Engine Runtime already exists on the

machine, the setup will execute as a mainte-
nance installation.

AppendixD.pmd 1/25/2005, 4:45 PM466

Appendix D • Installing ArcGIS Engine Runtime on Windows, Solaris, and Linux • 467

7. The JavaRuntime feature of ArcGIS Engine Runtime requires some additional
postinstallation steps to be performed.
a. Click Start, Control Panel, and System. Double-click System Properties

to open its dialog box.
b. Click Environment Variables on the Advanced tab.
c. In the System variables window, click the Path variable and click Edit.
d. Scroll to the end of the Variable value text box, and add the path to the

ArcGIS\Bin directory. Separate it from previous entries with a semicolon.
e. Continuing on at the end of the same text box, use a semicolon

separator and add in the path to the ArcGIS\Java\jre\bin directory.

The installation of ArcGIS Engine Runtime is now complete. Proceed to the
installation steps for <your application name here> if needed.

Installing an ArcGIS Engine Runtime service pack
If your application also requires an ArcGIS Engine service pack, you can either
instruct your user to download the service pack from http:\\support.esri.com, or
you can provide the service pack (.msp file) on the ArcGIS Engine Runtime CD
that you provided.

You should distribute the following steps or similar instructions to your users (the
steps assume ArcGIS Engine Runtime is already on the target machine.):

1. Check whether the ArcGIS Engine Runtime service pack required has been
installed to the target machine by doing the following:

a. Click Start > Run. Type “Regedit” to open the Registry Editor.

b. Check for the SPNumber registry key under the following registry hive:
 HKEY_LOCAL_MACHINE\SOFTWARE\ESRI\. The SPNumber value
 reflects the service pack number installed.

2. Install the service pack using the following command line:
msiexec.exe /p <location of msp file>\ArcGIS<Product>.msp REINSTALL=ALL
REINSTALLMODE=omus

ArcGIS Engine Runtime setup is included in your application’s instal-
lation program
The second way to distribute the ArcGIS Engine Runtime is for you to incorpo-
rate its setup into your own ArcGIS Engine software-based application’s installa-
tion program. This is possible because ArcGIS Engine Runtime can be installed
without a graphical user interface by running the setup using Windows Installer
command-line parameters. This process utilizes the .msi file and client-side in-
staller service (msiexec.exe) command-line parameters.

INSTALLING ARCGIS ENGINE RUNTIME ON WINDOWS

If the JavaRuntime feature was not installed
during the initial installation of ArcGIS Engine
Runtime, it can be installed at a later date by
opening the Add/Remove Programs dialog box,
clicking Change on the ArcGIS Engine Runtime
listing, then clicking Modify. When the Select

Features dialog box opens, right-click on the Java
feature and choose Will be installed on local

hard drive.

ArcGIS service packs are cumulative.

AppendixD.pmd 1/25/2005, 4:45 PM467

468 • ArcGIS Engine Developer Guide

The table below illustrates some available msiexec.exe command-line parameters:

/l

/a

/x

/q

/? or /h

Package | ProductCode

Package

Package | ProductCode

n | b | r | f

Installs or configures a product.

Administrative installation option. Installs a product on the network.

Uninstalls a product.

Sets user interface level.

Note that the ! option is available with Windows Installer 2.0 and works
only with basic UI. It is not valid with full UI.

No UI
No UI
Basic UI. Use qb! to hide the Cancel button.
Reduces UI with no modal dialog box displayed at the end of
 the installation.
Full UI and any authored FatalError, UserExit, or Exit modal
 dialog boxes at the end.
No UI except for a modal dialog box displayed at the end.
Basic UI with a modal dialog box displayed at the end. The
 modal box is not displayed if the user cancels the installation.
 Use qb+! or qb!+ to hide the Cancel button.
Basic UI with no modal dialog boxes. Please note that /qb+- is
 not a supported UI level. Use qb-! or qb!- to hide the
 Cancel button.

q
qn
qb
qr

qf

qn+
qb+

qb-

Displays copyright information for Windows Installer.

Option Parameters Description

These commands can be used to perform various installation functions. The
features available to install are specified with the ADDLOCAL parameter. As
shown earlier, ArcGIS Engine has the following installation features:

ArcEngine

JavaRuntime

DotNetRuntime

ArcGIS Engine

ArcGIS Engine—Java Runtime

ArcGIS Engine .NET Runtime

ArcGIS Engine

Java Assemblies

.NET Assemblies

Feature Descriptive Feature Name Description

Some example functions and the commands used to achieve them follow:

• A typical installation to a nondefault location without a user interface
Msiexec.exe /i <setup location>\setup.msi /qn InstallDir=C:\Mysetup

• A typical installation to a nondefault installation location with a basic user
interface (progress bar)
Msiexec.exe /i <setup location>\setup.msi /qb InstallDir=C:\Mysetup

• A complete installation to the default installation location without a user
interface
Msiexec.exe /i <setup location>\setup.msi /qn ADDLOCAL=All

• A custom installation without a user interface consisting of the ArcGIS
Engine and .NET installation features
Msiexec.exe /i <setup location>\setup.msi /qn
ADDLOCAL=ArcEngine,DotNetRuntime

These command-line parameters can be used to include the ArcGIS Engine
Runtime setup in your application’s setup in any of the following three meth-
ods—at the end of an MSI-based setup, within a batch file, or within a scripted
setup. Each will be discussed in more detail later in this section.

If your application requires an ArcGIS Engine Runtime service pack, the follow-
ing standard command lines can be used to apply a service pack (these examples
are for installing ArcGIS Engine Runtime 9.0 service pack 1):

INSTALLING ARCGIS ENGINE RUNTIME ON WINDOWS

Source for the table on the right: http://
msdn.microsoft.com/library/default.asp?url=/

library/en-us/msi/setup/
command_line_options.asp.

For more Windows Installer command param-
eters, see http://msdn.microsoft.com.

AppendixD.pmd 1/25/2005, 4:45 PM468

Appendix D • Installing ArcGIS Engine Runtime on Windows, Solaris, and Linux • 469

• To apply a service pack to an existing ArcGIS Engine Runtime installation on
a local machine:

msiexec.exe /p <msp file location>\ArcGISEngine90sp1.msp
REINSTALL=ALL REINSTALLMODE=omus

• To apply a service pack to an admin installation of ArcGIS Engine Runtime:

msiexec.exe /a <location of admin installation>\setup.msi /p <msp
location>\ArcGISEngine90sp1.msp

In addition to the general requirements listed earlier that apply to any installation
of ArcGIS Engine Runtime, the following are applicable to installs that are
incorporated within other applications:

• Prerequisites—The ArcGIS Engine Runtime setup uses Windows
Installer 2.0. To utilize command-line parameters to install ArcGIS Engine
Runtime, Windows Installer 2.0 must be installed and running on the target
machine. The setup.msi file automatically checks for Windows Installer 2.0; if
it is not detected a message box is displayed. Even if you are including the
ArcGIS Engine Runtime setup in a non-MSI-based setup, Windows
Installer 2.0 must be installed on the machine. The ArcGIS Engine Runtime
setup uses the Windows Installer technology.

• Compatible setup programs—If the ArcGIS Engine Runtime setup will
be launched at the end of an MSI-based setup, you must create your MSI
setup using Windows Installer 2.0 or higher to be compatible with the ArcGIS
Engine Runtime setup.

• Nested MSIs—The ArcGIS Engine Runtime MSI cannot be nested within
an MSI. Each product, including ArcGIS Engine Runtime, must be listed
individually in Add/Remove Programs.

Your setup process should follow these steps:

1. Before launching the ArcGIS Engine Runtime setup, you need to check
whether ArcGIS Engine Runtime and any needed optional features—
JavaRuntime and DotNetRuntime—have already been installed to the target
machine. If your application also requires an ArcGIS Engine Runtime service
pack, you need to check that the current service pack is on the user’s machine.

a. For ArcGIS Engine Runtime, check for the following registry key:
HKEY_LOCAL_MACHINE\Software\ESRI\ArcGIS Engine Runtime

If the key exists, then ArcGIS Engine Runtime has already been installed
on the target machine and you may not need to launch the ArcGIS Engine
Runtime setup. Continue to Step 1b if your application requires the Java
feature or Step 1c if your application requires the .NET feature; otherwise,
proceed with the installation of your application.

If the key does not exist, then ArcGIS Engine Runtime has not been in-
stalled. Continue to Step 1b if your application requires the Java
feature or Step 1c if your application requires the .NET feature; otherwise,
proceed to Step 2.

• If ArcGIS Engine Runtime 9.0 is required, the RealVersion registry key under
HKEY_LOCAL_MACHINE\Software\ESRI\ArcGIS Engine Runtime\ will
have a value of 9.0.

INSTALLING ARCGIS ENGINE RUNTIME ON WINDOWS

The Windows Installer 2.0 setup is available
from <ArcGIS Engine Runtime

CD>\Support\MSI\instmsiw.exe.

Your application setup program should not launch
the ArcGIS Engine Runtime setup if it is already

installed on the machine.

AppendixD.pmd 1/25/2005, 4:45 PM469

470 • ArcGIS Engine Developer Guide

• If ArcGIS Engine Runtime 9.1 is required, the RealVersion registry key under
HKEY_LOCAL_MACHINE\Software\ESRI\ArcGIS Engine Runtime\ will
have a value of 9.1.

b. For Java, check the following registry entry:

 For 9.0:
HKEY_CLASSES_ROOT\Installer\Features\7A1A3A9178A2BC74EB114EA6B5DB1C1B

For 9.1:
 HKEY_CLASSES_ROOT\Installer\Features\BE4BB2A7FG2185944AB7F1350406D01A

The JavaRuntime string value represents the Java installation feature of
ArcGIS Engine Runtime.

If the value displayed is
"JavaRuntime"="ArcEngine"

then JavaRuntime is installed. Proceed to Step 1c if your application re-
quires the .NET feature; otherwise, proceed with the installation of your
application.

If the value displayed is
"JavaRuntime"="|ArcEngine"

or
"JavaRuntime"="!ArcEngine"

then JavaRuntime is not installed. Proceed to Step 1c if your application
requires the .NET feature; otherwise, proceed to Step 2.

c. For .NET, check the following registry entry:

For 9.0:
HKEY_CLASSES_ROOT\Installer\Features\7A1A3A9178A2BC74EB114EA6B5DB1C1B

For 9.1:
 HKEY_CLASSES_ROOT\Installer\Features\BE4BB2A7FG2185944AB7F1350406D01A

The DotNetRuntime string value represents the .NET installation feature
of ArcGIS Engine Runtime.

If a DotNetRuntime string value is not displayed under this registry key,
then the prerequisite—.NET Framework 1.1—was not installed on the
machine at the time the ArcGIS Engine Runtime setup was originally run.

If the value displayed is
"DotNetRuntime"="ArcEngine"

then DotNetRuntime is installed. Proceed with the installation of your
application.

If the value displayed is
"DotNetRuntime"="|ArcEngine"

or
"DotNetRuntime"="!ArcEngine"

then DotNetRuntime is not installed. Proceed to Step 2.

INSTALLING ARCGIS ENGINE RUNTIME ON WINDOWS

AppendixD.pmd 1/25/2005, 4:45 PM470

Appendix D • Installing ArcGIS Engine Runtime on Windows, Solaris, and Linux • 471

2. Launch the ArcGIS Engine Runtime setup at the end of an MSI-based setup,
within a batch file, or within a scripted setup.

If your application requires the Java Runtime or DotNetRuntime features of
the ArcGIS Engine Runtime, you will need to install them using the
ADDLOCAL Windows Installer command within your script. For example:
ADDLOCAL=DotNetRuntime

or
ADDLOCAL=JavaRuntime

If you choose to install only the DotNetRuntime or JavaRuntime feature, and
the core ArcGIS Engine Runtime (ArcEngine feature) does not exist on the
target machine, the setup will automatically install the ArcEngine feature as
well as the selected optional feature. Java is an optional installation feature
and is not installed with a typical ArcGIS Engine Runtime installation. The
.NET feature, on the other hand, is included in the typical install if the .NET
Framework is detected on the target machine.

Launching the ArcGIS Engine Runtime installation at the end of an MSI-based
setup
Launching the ArcGIS Engine Runtime installation program at the end of an
MSI-based setup is an example of installing the necessary ArcGIS Engine runtime
features without having your user perform the installation themselves directly
from the ESRI-provided ArcGIS Engine Runtime CD. The following example
illustrates this particular installation mechanism.

In example 1, the ArcGIS Engine Runtime setup launches once your end user
clicks Finish to complete the installation of your application. The MSI authoring
tools included with Wise for Windows Installer are used to add custom actions
behind the Finish button. This example assumes that the ArcGIS Engine
Runtime setup resides in the same location as your application’s setup program.
In this case, setup.exe resides in a folder named ArcEngine.

Example 1 (ArcGIS Engine Runtime 9.0 or 9.1 is required.)

Follow these steps to launch the setup.exe file for ArcGIS Engine Runtime
when it’s located in an ArcEngine folder on your application’s media:

1. Create Properties MSI_PATH and ArcEngineExists and initialize them to 1 in
the Property table.

2. Perform a system check for ArcGIS Engine Runtime at the beginning of your
setup program. The system check should search for the RealVersion registry
key and set the property ArcEngineExists to True if the registry value re-
turned is 9.0 (for applications built on 9.0) or 9.1 (for applications built on
9.1).
HKEY_LOCAL_MACHINE\Software\ESRI\ArcGIS Engine Runtime

INSTALLING ARCGIS ENGINE RUNTIME ON WINDOWS

If .NET Framework 1.1 is not detected on the
machine, the DotNetRuntime feature will not be

installed.

The later section, ‘Launching the ArcGIS Engine
Runtime installation within a batch file,’ illus-

trates the usage of these commands.

Later sections provide examples illustrating each
of these methods of installing the ArcGIS Engine

Runtime.

AppendixD.pmd 1/25/2005, 4:45 PM471

472 • ArcGIS Engine Developer Guide

3. Create a Custom action called Launch_Engine_MSI. Use the Execute Program
From Path type of custom action. Set the Property in this custom action to
MSI_PATH. The path to execute the program from is the path specified in the
Property field—in this case, MSI_PATH. Leave Command Line blank, as
setup.exe is being launched.

4. In the Exit dialog box of your application’s setup program, add two actions
behind the Finish button control.

The first action sets the MSI_PATH property to
[SourceDir]ArcEngine\setup.exe. This will change depending on where the
ArcGIS Engine Runtime setup is located on the media. In this example,
setup.exe is located on the CD in a folder named ArcEngine.

INSTALLING ARCGIS ENGINE RUNTIME ON WINDOWS

In the example on the right, MSI_PATH will
change depending on where the ArcGIS Engine
Runtime setup is located on the media. In this
example, Setup.msi is located on the CD in a

folder named ArcEngine.

AppendixD.pmd 1/25/2005, 4:45 PM472

Appendix D • Installing ArcGIS Engine Runtime on Windows, Solaris, and Linux • 473

INSTALLING ARCGIS ENGINE RUNTIME ON WINDOWS

The second action calls the Launch_Engine_MSI that you previously created.

Both of these custom actions should execute only if the property
ArcEngineExists does not equal True.

Example 2 (ArcGIS Engine Runtime 9.0 or 9.1 and a service pack are required.)

In this example, ArcGIS Engine Runtime and a service pack are required by your
application. This example results in two scenarios. Scenario 1 takes into account
the users that do not have ArcGIS Engine Runtime and the service pack installed.
Scenario 2 takes into account the users that have ArcGIS Engine Runtime in-
stalled but do not have the service pack installed. Both these scenarios will re-
quire the following on your CD:

1. An admin installation that has been patched with the service pack.

2. The required ArcGIS Engine Runtime service pack (msp file).

The custom actions for scenarios 1 and 2 (described in the steps below) can be
combined in the Finish button of your application’s setup program. The Finish
button of your application’s setup program can then deal with both of these
scenarios.

For scenario 1, you will have to provide an admin installation on the CD that
consists of the original .msi file that has been patched with the required service
pack. When deploying ArcGIS Engine Runtime in this particular deployment
method, you cannot launch the original setup.msi file followed by a .msp file
(service pack file).

On your CD you must provide an admin installation of ArcGIS Engine Runtime
with the service pack applied. This will create a patched setup.msi file that you
can install on your user’s machine. The patched setup.msi file will contain both
the entire ArcGIS Engine Runtime files and those files updated by the service
pack. This is required for those users that do not have ArcGIS Engine Runtime
and the required service pack on their machine.

To create an admin installation:

a. Install ArcGIS Engine Runtime using the following command line:
msiexec /a <Engine Runtime CD>\setup.msi

b. Apply the service pack to this admin location using the command line (in the
following example, Engine 9.0 service pack 1 is applied): msiexec /a <loca-
tion of admin installation>\setup.msi /p <location of msp
file>ArcGISEngine90sp1.msp REINSTALL=ALL
REINSTALLMODE=omus

c. Copy the entire contents of your admin installation—which will now have
the service pack applied—to your application’s CD for redistribution.

During the admin installation of ArcGIS Engine
Runtime, you will be able to specify where you
want the files installed. An admin installation

does not write to your registry; it just creates a
new image of the files required for clients to

install.

AppendixD.pmd 1/25/2005, 4:45 PM473

474 • ArcGIS Engine Developer Guide

Follow these steps to launch the setup.exe file for ArcGIS Engine Runtime when
it’s located in an ArcEngine folder on your application’s media:

1. Create Properties MSI_PATH and ArcEngineExists and initialize them to 1 in
the Property table.

2. Perform a system check for ArcGIS Engine Runtime at the beginning of your
setup program. The system check should search for the RealVersion and
SPNumber registry key and set the property ArcEngineExists to True if the
registry values returned match your requirement.

3. Create a custom action called Launch_Engine_MSI. Use the Execute Program
From Path type of custom action. Set the Property in this custom action to
MSI_PATH. The path to execute the program from is the path specified in the
Property field—in this case, MSI_PATH. Leave Command Line blank, as
setup.exe is being launched.In the Exit dialog box of your application’s setup
program, add two actions behind the Finish button control.

In the Exit dialog box of your application’s setup program, add two actions
behind the Finish button control.

INSTALLING ARCGIS ENGINE RUNTIME ON WINDOWS

AppendixD.pmd 1/25/2005, 4:45 PM474

Appendix D • Installing ArcGIS Engine Runtime on Windows, Solaris, and Linux • 475

The first action sets the MSI_PATH property to
[SourceDir]ArcEngine\Setup.exe. This will change depending on where the
ArcGIS Engine Runtime setup is located on the media. In this example,
Setup.exe is located on the CD in a folder named ArcEngine. The setup.exe
file will be the admin installation with the required service pack applied.

The second action calls the Launch_Engine_MSI that you previously created.

Both these custom actions should execute only if the property
ArcEngineExists does not equal True. ArcEngineExists should equal True only
if ArcGIS Engine Runtime and the service pack are detected on the target
machine.

For scenario 2, you will have to provide the required ArcGIS Engine Runtime
service pack (.msp file) on the CD. When deploying ArcGIS Engine Runtime in
this particular deployment method, your user will have ArcGIS Engine Runtime
already on the target machine, and only the service pack is required.

Follow these steps to launch the ArcGIS Engine Runtime service pack when it’s
on your application’s media:

1. Create Properties MSP_PATH, MSIEXEC_PATH, and InstallSP and initialize
them to 1 in the Property table.

2. Perform a system check for ArcGIS Engine Runtime and the service pack at
the beginning of your setup program. The system check should search for the
ArcGIS Engine Runtime RealVersion registry key and SPNumber registry
key. The InstallSP property should be set to True if the RealVersion registry
key value matches your requirement, but the SPNumber registry key value
does not match your requirement. In this case, the machine has the ArcGIS
Engine Runtime product installed but does not have the required service pack.

3. Create a custom action called Launch_Engine_SP_1. You can change the
number to whichever version of the ArcGIS Engine Runtime service pack
your application requires. This example is installing ArcGIS Engine Runtime
service pack 1. This custom action will launch the service pack (.msp file)
using the following syntax:

msiexec.exe /p <location of service pack>\ArcGISEngine90sp1.msp /qn

INSTALLING ARCGIS ENGINE RUNTIME ON WINDOWS

AppendixD.pmd 1/25/2005, 4:45 PM475

476 • ArcGIS Engine Developer Guide

4. Use the Execute Program from Path type of custom action. Set the Property
in this custom action to MSIEXEC_PATH. The path to execute the program
from is the path specified in the Property field, in this case MSIEXEC_PATH.
The command line will be [MSP_PATH]. MSP_PATH is the path to the
ArcGIS Engine Runtime service pack 1 .msp file that will be available on the
media. Using the above syntax, MSIEXEC_PATH will be
[SystemFolder]msiexec.exe. MSP_PATH will be /p <location of service
pack>\ArcGISEngine90sp1.msp /qn. These two properties will be defined in
the Exit dialog box’s Finish button.

5. In the Exit dialog box of your application’s setup program, add three actions
behind the Finish button control.

6. The first action sets the MSIEXEC_PATH property to
[SystemFolder]msiexec.exe.

7. The second action sets the MSP_PATH to /p
[SourceDir]ArcEngine\ArcGISEngine90sp1.msp /qn. MSP_PATH will
change depending on where the ArcGIS Engine Runtime service pack is
located on the media. In this example, ArcGISEngine90sp1.msp is located on
the CD in a folder named ArcEngine.

INSTALLING ARCGIS ENGINE RUNTIME ON WINDOWS

AppendixD.pmd 1/25/2005, 4:45 PM476

Appendix D • Installing ArcGIS Engine Runtime on Windows, Solaris, and Linux • 477

8. The third action calls the Launch_Engine_SP_1 that you previously created.

These three custom actions should execute only if the property LaunchSP
does not equal True.

Launching the ArcGIS Engine Runtime installation within a scripted setup
A second way you can install ArcGIS Engine Runtime within your own applica-
tion is via a scripted setup that utilizes the available command-line parameters.
The example script below was created using the Wise InstallMaster setup
authoring software. It includes the installation of ArcGIS Engine Runtime and
service pack 1.
Rem Set variable

Set variable MSI_PATH to <CDROM>\ArcEngine\setup.msi

Set variable MSP_PATH to <CDROM>\ArcGISEngine90sp1.msp

Rem launch ArcGIS Engine Runtime setup program silently – No UI

Execute %SYS32%\msiexec.exe /i %MSI_PATH% /qn (Wait)

Rem launch ArcGIS Engine Runtime service pack silently – No UI

Execute %SYS32%\msiexec.exe /p %MSP_PATH% /qn (Wait)

Launching the ArcGIS Engine Runtime installation within a batch file
Yet another way that the ArcGIS Engine Runtime setup can be combined with
your application’s installation program is within batch files. The following ex-
ample again takes advantage of the available command-line parameters and
implements them within a batch file rather than a scripted setup. This example
includes the installation of ArcGIS Engine Runtime and service pack 1.
REM ############################

REM Set variables

SET MSI_PATH=<CDROM>\ArcEngine\Setup.msi

SET MSP_PATH=<CDROM>\ArcGISEngine90sp1.msp

REM ############################

REM Launch MSI Silently - NO UI

msiexec.exe /i "%MSI_PATH%" /qn

msiexec.exe /p "%MSP_PATH%” /qn

REM Launch MSI Silently - Reduced UI

msiexec.exe /i "%MSI_PATH%" /qb

msiexec.exe /p "%MSP_PATH%" /qb

REM Launch MSI Silently - No UI except for a modal dialog box displayed at
the end.

msiexec.exe /i "%MSI_PATH%" /qn+

msiexec.exe /p "%MSP_PATH%" /qn+

INSTALLING ARCGIS ENGINE RUNTIME ON WINDOWS

In the example on the right, MSI_PATH will
change depending on where the ArcGIS Engine
Runtime setup is located on the media. In this
example, Setup.msi is located on the CD in a

folder named ArcEngine. MSP_PATH will change
depending on where the ArcGIS Engine Runtime

service pack is located. In this example, the
service pack is located on the CD.

AppendixD.pmd 1/25/2005, 4:45 PM477

478 • ArcGIS Engine Developer Guide

The following examples also show the use of a batch file; however, these illus-
trate the command-line parameters that should be used to install the ArcGIS
Engine Runtime Java or .NET features, respectively:

JavaRuntime:
REM ############################

REM Set variables

SET MSI_PATH=<CDROM>\Setup.msi

REM ############################

REM Launch MSI Silently - NO UI

msiexec.exe /i "%MSI_PATH%" /qn ADDLOCAL=JavaRuntime

DotNetRuntime:
REM ############################

REM Set variables

SET MSI_PATH=<CDROM>\Setup.msi

REM ############################

REM Launch MSI Silently - NO UI

msiexec.exe /i "%MSI_PATH%" /qn ADDLOCAL=DotNetRuntime

ARCGIS ENGINE RUNTIME START MENU SHORTCUTS

By default, a complete installation of ArcGIS Engine Runtime 9.1 or later will
create the following shortcuts on the ArcGIS start menu:

• Software authorization

• Authorization summary

The following command-line parameters provide options to not display these
shortcuts on the start menu.

SHORTCUTS = YES This option will install the shortcuts.

SHORTCUTS = NO This option will not install the shortcuts.

In the following example, ArcGIS Engine Runtime is installed silently without
shortcuts:

msiexec.exe /i <location of setup>\setup.msi /qn SHORTCUTS=NO

UNINSTALLING ARCGIS ENGINE RUNTIME

These are some points to consider before uninstalling ArcGIS Engine Runtime:

• ArcGIS Engine Runtime should be uninstalled using the Control Panel, not by
deleting files from disk.

• Do not uninstall ArcGIS Engine Runtime during the uninstallation of your
developed application.

• You should recommend strongly to your users that they manually uninstall
ArcGIS Engine Runtime only when they know there are no third-party appli-
cations using it.

INSTALLING ARCGIS ENGINE RUNTIME ON WINDOWS

In the example on the right, if .NET
Framework 1.1 is not detected on the machine,

the DotNetRuntime feature will not be installed.

AppendixD.pmd 1/25/2005, 4:45 PM478

Appendix D • Installing ArcGIS Engine Runtime on Windows, Solaris, and Linux • 479

INSTALLING ARCGIS ENGINE RUNTIME ON SOLARIS AND LINUX

The previous section discussed installation on Windows; this section discusses
installation on Solaris and Linux.

ABOUT THE ARCGIS ENGINE RUNTIME INSTALLATION PROGRAM

The ArcGIS Engine Runtime installation program, or setup, was created using
ZeroG InstallAnywhere technology. This technology creates multiplatform pack-
ages that install and configure software on ArcGIS Engine Runtime-supported
platforms (Solaris and Linux). The packages are launched using a properties file.
The properties file contains installation parameters and indicate a silent mode of
installation.

The ArcGIS Engine Runtime setup consists of features. A feature is an individual
portion of the application’s total functionality that may be installed indepen-
dently. The ArcGIS Engine Runtime setup consists of the following installation
features:

ArcGIS Engine Runtime

Java Runtime

ArcGIS Engine components

ArcGIS Engine Java components

Feature Description

All ArcGIS Engine software-based applications depend on an installation of the
ArcEngine feature. Applications built using the Java API for ArcGIS Engine
require installation of the JavaRuntime feature in addition to the ArcEngine
feature.

ArcGIS Engine Runtime is supported on Sun Solaris 8 and 9 and Red Hat Linux
AS/ES 3.0.

For additional or updated information regarding ArcGIS Engine Runtime system
requirements, visit http://support.esri.com.

INSTALLING ARCGIS ENGINE RUNTIME

As mentioned above, ArcGIS Engine-based applications require that ArcGIS
Engine Runtime be installed on the end user’s machine. Installation of the
runtime can be handled in either of two ways:

1. Your end user runs the ArcGIS Engine Runtime setup directly from the CD.

2. You include the ArcGIS Engine Runtime setup within your own application’s
installation program.

The following sections document the general requirements for the installation of
the runtime, no matter which of the two types of installation mechanism you
choose, and the steps necessary to install the runtime successfully using your
chosen mechanism.

General requirements
Irrespective of the installation method you chose for ArcGIS Engine Runtime,
you should be aware of the following:

• Older versions of ArcGIS software—ArcGIS Engine Runtime cannot be
installed on any machine that already contains versions of ArcGIS products
prior to the version you will be installing. This includes ArcIMS with ArcMap
Server, ArcGIS Engine Developer Kit, ArcReader, ArcGIS Server, and
ArcGIS Engine Runtime.

The available ArcGIS Engine Runtime setup
features are illustrated in the table on the right.

Windows is also supported. For details on its
system requirements, see the previous section,

‘Installing ArcGIS Engine Runtime on Windows’.

You cannot redistribute individual ArcGIS Engine
Runtime files; the installation mechanisms

discussed in this appendix are the only means of
installing ArcGIS Engine Runtime files.

AppendixD.pmd 1/25/2005, 4:45 PM479

480 • ArcGIS Engine Developer Guide

INSTALLING ARCGIS ENGINE RUNTIME ON SOLARIS AND LINUX

For additional ArcGIS Engine Runtime CDs,
contact ESRI Customer Service at
www.esri.com, or in the USA call

888-377-4575, or contact your local ESRI
regional office.

• Existing installation of ArcGIS Engine Runtime—If the ArcGIS
Engine Runtime setup is launched, and ArcGIS Engine Runtime already exists
on the machine, a message is displayed informing the user that the product
should be installed to the same installation directory as the existing ArcGIS
Engine Runtime.

• Installation location—Each of the ArcGIS 9 products (ArcGIS Engine
Runtime, ArcGIS Engine Developer Kit, ArcReader, and ArcGIS Server)
install to the same installation directory. The first ArcGIS 9 product installed
determines the installation location for all subsequent ArcGIS 9 products. For
example, if ArcReader is installed to
/disk1/ArcGIS9, the installation location for all ArcGIS 9 products is /disk1/
ArcGIS9/ArcGIS. If ArcGIS Engine Runtime is installed after ArcReader,
the opportunity to browse to an installation location is not be provided. The
initial ArcReader installation has predetermined the installation location for all
future ArcGIS 9 products. Therefore, in this example, ArcGIS Engine
Runtime will also be installed to /disk1/ArcGIS9/ArcGIS.

• Disk space—If you run out of disk space while installing an ArcGIS 9
product, you must uninstall all ArcGIS 9 products (listed above) and reinstall
them to a location where more disk space is available. ArcGIS 9 products
(excluding ArcSDE, ArcIMS, and ArcInfo Workstation) cannot be installed to
different locations.

End user installs ArcGIS Engine Runtime on their system
In this case, your user installs the ArcGIS Engine Runtime either directly from
the CD ESRI provided with the ArcGIS Engine product or from a CD that you
created by copying the contents of the ArcGIS Engine Runtime CD image to it.

If you create a custom CD that contains your own content as well as the ArcGIS
Engine Runtime setup, the ArcGIS Engine Runtime directory structure must
remain intact.

For example, the ArcGIS Engine Runtime CD image is as follows:
<CD_ROOT>

 ArcGISEngineRT/

 Setup

 support/

If you repackage the ArcGIS Engine Runtime CD image, your image may look
similar to this:
<CD_ROOT>

 ThirdPartyStuff/

 MoreThirdPartyStuff/

 SomeArbitraryFolderName/

 ArcGISEngineRT/

 Setup

 support/

Whether you create a custom CD or provide your user with the ArcGIS Engine
Runtime CD furnished by ESRI, you should distribute the following steps or
similar instructions to your users:

If the ArcMap Server component of ArcIMS 9 is
already installed, ArcGIS 9 products will default

to the ArcIMS installation location.

You cannot redistribute individual ArcGIS Engine
Runtime files; the installation mechanisms

discussed in this appendix are the only means of
installing ArcGIS Engine Runtime files.

AppendixD.pmd 1/25/2005, 4:45 PM480

Appendix D • Installing ArcGIS Engine Runtime on Windows, Solaris, and Linux • 481

INSTALLING ARCGIS ENGINE RUNTIME ON SOLARIS AND LINUX

1. Check whether ArcGIS Engine Runtime and the optional Java feature (if
needed) have already been installed to the target machine by doing the follow-
ing:

a. Open the $HOME/ESRI.properties.<machinename> file.
If the file exists, continue to Step 1b. If not, the ArcGIS Engine Runtime
has not been installed; continue to Step 2.

b. Check for the following property:
Z_ArcGISEngineRT_INSTALL_DIR

If it is listed, then ArcGIS Engine Runtime is installed on the target ma-
chine and you may not need to launch the ArcGIS Engine Runtime setup.
Continue to Step 1c if your application requires the Java feature; otherwise,
close the file and proceed to the installation steps for <your application
name here> if needed.

If the property is not listed, the ArcGIS Engine Runtime has not been
installed. Continue to Step 2.

c. Navigate to the installation location indicated by the
Z_ArcGISEngineRT_INSTALL_DIR property. If the
/java/arcgis_system.jar file is present, the ArcGIS Engine Runtime Java
feature is installed on the machine. Proceed to the installation steps for
<your application name here> if needed.

If the file is not present, the JavaRuntime feature for ArcGIS Engine
Runtime has not been installed. Continue to Step 2.

2. Confirm that any currently installed ArcGIS products are the same version as
the version you are installing. This includes ArcIMS with ArcMap Server,
ArcGIS Engine Developer Kit, ArcReader, ArcGIS Engine Runtime, and
ArcGIS Server. To check if any of these products are installed on the machine
and verify the version number:

a. Open the $HOME/ESRI.properties.<machinename> file.

b. Look for the Z_REAL_VERSION property to determine the versions of
ArcGIS products installed on the machine.

c. If the versions displayed are the same, proceed to Step 3. If the versions
displayed are not the same, the products need to be removed before install-
ing ArcGIS Engine Runtime. Do not proceed to Step 3 until these products
have been uninstalled.

3. Launch the ArcGIS Engine Runtime installation program by executing the
Setup file.

4. Click Next on the Welcome dialog box, review and accept the license agree-
ment, then click Next to proceed with the installation.

If the ArcGIS Engine Runtime setup is launched,
and ArcGIS Engine Runtime already exists on the
machine, the installation dialog boxes will display

a message informing you that the product will
be installed to the same installation directory as

the existing ArcGIS Engine Runtime.

The Choose Install Type panel of the ArcGIS
Engine Runtime installation wizard is illustrated

on the right. The possible types are discussed
below.

AppendixD.pmd 1/25/2005, 4:45 PM481

482 • ArcGIS Engine Developer Guide

INSTALLING ARCGIS ENGINE RUNTIME ON SOLARIS AND LINUX

5. Choose the installation type and click Next to continue.

If the ArcGIS Engine software-based application to be installed requires
Java, choose Custom to manually select the JavaRuntime feature or choose
Complete to install all ArcGIS Engine Runtime installation features.

6. Follow any further instructions of the ArcGIS Engine Runtime installation
wizard until it indicates that the installation is complete. If you installed, and
intend to use, the Java feature, proceed to Step 7. If not, the installation of
ArcGIS Engine Runtime is now complete. Proceed to the installation steps for
<your application name here> if needed.

7. The JavaRuntime feature of ArcGIS Engine Runtime requires some additional
postinstallation steps to be performed. Helper scripts, init_engine.xxx, are
provided for this step.

• If you use C-shell, source init_engine.csh.
• If you use bash or bourne shell, source init_engine.sh.

The installation of ArcGIS Engine Runtime is now complete. Proceed to the
installation steps for <your application name here> if needed.

ArcGIS Engine Runtime setup is included in your application’s instal-
lation program
The second way to distribute the ArcGIS Engine Runtime is for you to incorpo-
rate its setup into your own ArcGIS Engine software-based application’s installa-
tion program.

This is possible because ArcGIS Engine Runtime can be installed without a
graphical user interface by triggering a silent install using command-line param-
eters in conjunction with a properties file. The command-line parameters trigger
the silent install and specify the path to the properties file, while the properties

A Typical installation includes the ArcEngine
feature only.

If your ArcGIS Engine-based application utilizes
Java, your user can select Custom and manually

choose the JavaRuntime feature. As noted above
a Complete installation also installs the

JavaRuntime feature.

When Complete is selected all available ArcGIS
Engine Runtime features are installed including

the JavaRuntime.

AppendixD.pmd 1/25/2005, 4:45 PM482

Appendix D • Installing ArcGIS Engine Runtime on Windows, Solaris, and Linux • 483

INSTALLING ARCGIS ENGINE RUNTIME ON SOLARIS AND LINUX

file itself establishes the necessary installation parameters. The following tables
illustrate the required command-line parameters and the necessary properties in
the file.
Command-line parameters Description

-s Triggers silent (no user interaction) installation

/path/to/propertiesfile Location of the property file on the CD image

Property Value Notes

INSTALLER_UI SILENT

INSTALL_DIR some/path/on/disk

Required property.
Instructs InstallAnywhere to operate in silent mode.
SILENT must be in uppercase.

Required property.
Can be any valid disk location.

MWRT_MODE Professional Enterprise

Complete Typical

Required property.
Can be any valid disk location.

INSTALL_TYPE Required property.
A Typical install will include the ArcGIS Engine installation
 feature only.
A Complete install will include ArcGIS Engine and Java
 installation features. No other level of detail can be specified.

A completed property file would be similar to the following:
INSTALLER_UI=SILENT

INSTALL_DIR=/disk1/myproduct

MWRT_MODE=Enterprise

INSTALL_TYPE=Typical

Your setup should follow these steps:

1. Before launching the ArcGIS Engine Runtime setup, you need to determine if
ArcGIS Engine Runtime and the optional Java feature (if needed) already
exist on the target machine.

a. Open the $HOME/ESRI.properties.<machinename> file.
If the file exists, continue to Step 1b. If not, the ArcGIS Engine Runtime
has not been installed; continue to Step 2.

b. For ArcGIS Engine Runtime, check for the following property:
Z_ArcGISEngineRT_INSTALL_DIR

If it is listed, then ArcGIS Engine Runtime is installed on the target ma-
chine and you may not need to launch the ArcGIS Engine Runtime setup.
Continue to Step 1c if your application requires the Java feature; otherwise,
close the file and proceed to the installation steps for <your application
name here> if needed.

If the property is not listed, the ArcGIS Engine Runtime has not been
installed. Continue to Step 2.

c. Navigate to the installation location indicated by the
Z_ArcGISEngineRT_INSTALL_DIR property. If the
/java/arcgis_system.jar file is present, the ArcGIS Engine Runtime Java
feature is installed on the machine. Proceed to the installation steps for
<your application name here> if needed.

This table shows command-line parameters
necessary to trigger a silent install of ArcGIS

Engine Runtime.

This table shows properties that must be stored
in a file to install ArcGIS Engine Runtime

without user interaction.

Property names must be uppercase, as shown in
this table.

Your application setup program should not launch
the ArcGIS Engine Runtime setup if it is already

installed on the machine.

AppendixD.pmd 1/25/2005, 4:45 PM483

484 • ArcGIS Engine Developer Guide

INSTALLING ARCGIS ENGINE RUNTIME ON SOLARIS AND LINUX

If the file is not present, the JavaRuntime feature for ArcGIS Engine
Runtime has not been installed. Continue to Step 2.

2. Launch the ArcGIS Engine Runtime installation program by executing the
following statement to launch the ArcGIS Engine Runtime setup silently:
<location of ArcGISEngineRT image>/Setup –s /path/to/propertiesfile

Any errors experienced during the silent install will be captured in a log file. It
is advisable that you interact with the log file to determine if errors have
occurred. The log file will be located in the user’s $HOME directory:
$HOME/ArcGISEngineRT_InstallLog.log

‘Installation log files’, at the end of this section, provides some examples of
the log files.

The following sections provide some examples of incorporating the ArcGIS
Engine Runtime setup within your application’s installation program.

Example A—Installing ArcGIS Engine Runtime using a script
The following is a sample install script that includes an initial check for ArcGIS
Engine Runtime and the Java installation feature, launches the setup silently, and
checks the log file for errors during installation.
#!/bin/sh

#

check to see if ArcGIS Engine Runtime is already installed...

#

machineName='uname -n'

esriPropFile=$HOME/ESRI.properties.$machineName

if [-f $esriPropFile]

then

 # query prop file for the installation location of ArcGIS Engine
Runtime...

 runtimeHome='cat $esriPropFile | grep Z_ArcGISEngineRT_INSTALL_DIR'

 if ["$runtimeHome" = ""]

 then

 echo "ArcGIS Engine Runtime is NOT installed!"

 else

 echo "ArcGIS Engine Runtime IS installed!"

 #

 # check to see if the Java components of ArcGIS Engine Runtime are
installed...

 #

 engineHome='cat $esriPropFile | grep Z_ENGINE_HOME | cut -d= -f2'

 if [-f $engineHome/java/arcgis_system.jar]

 then

 echo "ArcGIS Engine Runtime Java components ARE installed!"

 else

 echo "ArcGIS Engine Runtime Java components ARE NOT installed!"

 fi

 fi

else

If the setup is launched, and ArcGIS Engine
Runtime already exists on the machine, the

setup will execute again. If the setup is executed
silently, the product will automatically be

installed to the same installation directory as
the existing ArcGIS Engine Runtime setup.

AppendixD.pmd 1/25/2005, 4:45 PM484

Appendix D • Installing ArcGIS Engine Runtime on Windows, Solaris, and Linux • 485

INSTALLING ARCGIS ENGINE RUNTIME ON SOLARIS AND LINUX

 echo "ArcGIS Engine Runtime is NOT installed!"

fi

#

launch the ArcGIS Engine Runtime setup silently...

#

sh <location of ArcGISEngineRT image>/Setup -s /path/to/propertiesfile

#

check for errors in the ArcGIS Engine Runtime setup...

#

fatalErrors='cat $HOME/ArcGISEngineRT_InstallLog.log | grep " FATAL ERRORS"'

nonfatalErrors='cat $HOME/ArcGISEngineRT_InstallLog.log | grep "NONFATAL
ERRORS"'

warnings='cat $HOME/ArcGISEngineRT_InstallLog.log | grep "WARNINGS"'

if ["`echo $fatalErrors | cut -d\" \" -f1`" != "0"] ||

 ["`echo $nonfatalErrors | cut -d\" \" -f1`" != "0"] ||

 ["`echo $warnings | cut -d\" \" -f1`" != "0"]

then

 echo "ArcGIS Engine installed WITH ERRORS!"

 echo "Please view the log file for details."

 echo " Log File: $HOME/ArcGISEngineRT_InstallLog.log"

else

 echo "ArcGIS Engine installed without error!"

fi

Example B—Installing ArcGIS Engine Runtime using ZeroG InstallAnywhere
The following is an example using ZeroG InstallAnywhere to launch the ArcGIS
Engine Runtime setup at some point within your application’s setup (if created
using InstallAnywhere). The example includes a check for the presence of
ArcGIS Engine Runtime and the Java installation feature.

1. To perform a system check for ArcGIS Engine Runtime, add an “Execute
Script/Batch File” action with the following parameters:

a. “Suspend execution until operation is complete” checked ON.

b. “Store process’s stdout in:” = a variable name of your choice (for example,
$RT_INSTALLED_OUT$).

c. Script:
 #!/bin/sh

 machineName='uname -n'

 esriPropFile=$DOLLAR$HOME/ESRI.properties.$DOLLAR$machineName

 if [-f $DOLLAR$esriPropFile]

 then

 runtimeHome='cat $DOLLAR$esriPropFile | grep

 Z_ArcGISEngineRT_INSTALL_DIR'

 if ["$DOLLAR$runtimeHome" != ""]

 then

 echo "installed"

 fi

Any errors experienced during the silent install
will be captured in a log file. The log file will be

located in the user’s $HOME directory:

$HOME/ArcGISEngineRT_InstallLog.log

AppendixD.pmd 1/25/2005, 4:45 PM485

486 • ArcGIS Engine Developer Guide

INSTALLING ARCGIS ENGINE RUNTIME ON SOLARIS AND LINUX

 fi

 exit 0

When this command execution is complete, if ArcGIS Engine Runtime is
installed, the value of $RT_INSTALLED_OUT$ will be “installed”.

2. To perform a system check for the Java installation feature, add an “Execute
Script/Batch File” action with the following parameters:

a. “Suspend execution until operation is complete” checked ON.

b. “Store process’s stdout in:” = a variable name of your choice (for example,
$JAVA_INSTALLED_OUT$).

c. Script:
 #!/bin/sh

 machineName='uname -n'

 esriPropFile=$DOLLAR$HOME/ESRI.properties.$DOLLAR$machineName

 if [-f $DOLLAR$esriPropFile]

 then

 runtimeHome='cat $DOLLAR$esriPropFile | grep

 Z_ArcGISEngineRT_INSTALL_DIR'

 if ["$DOLLAR$runtimeHome" != ""]

 then

 engineHome='cat $DOLLAR$esriPropFile | grep Z_ENGINE_HOME |

 cut -d= -f2'

 if [-f $DOLLAR$engineHome/java/arcgis_system.jar]

 then

 echo "installed"

 fi

 fi

 fi

 fi

 exit 0

When this command execution is complete, if the ArcGIS Engine Runtime
Java installation feature is installed, the value of $JAVA_INSTALLED_OUT$
will be “installed”.

3. To launch the ArcGIS Engine Runtime setup within your application’s
InstallAnywhere setup, add an “Execute Command” action with the following
parameters:

a. “Suspend execution until operation is complete” checked ON.

b. “Command line” = <location of ArcGISEngineRT image>/Setup –s /
path/to/properties/file

4. To execute this command conditionally, based on the system check for ArcGIS
Engine Runtime (as described in Step 1 above), add a “Compare
InstallAnywhere Variable” rule with the following parameters:

a. “Operand 1” = $RT_INSTALLED_OUT$

b. Operation = “does not equal”

AppendixD.pmd 1/25/2005, 4:45 PM486

Appendix D • Installing ArcGIS Engine Runtime on Windows, Solaris, and Linux • 487

INSTALLING ARCGIS ENGINE RUNTIME ON SOLARIS AND LINUX

c. “Operand 2” = “installed” (without the quotes)

You can add the Execute Command action at any point within the setup
(Pre-Install, Install, or Post-Install). If your application needs to be installed on
top of ArcGIS Engine Runtime, then you will need to install ArcGIS Engine
Runtime in the Pre-Install step of an InstallAnywhere setup.

INSTALLING ARCGIS ENGINE RUNTIME SERVICE PACKS

The ArcGIS Engine Runtime service packs need to be installed by the end user.
The service packs can be obtained from http:\\support.esri.com.

If you require a service pack for your application, you can advise your users to
download the service packs from http:\\support.esri.com, or you can copy the
service pack (.tar file) to your CD, along with ArcGIS Engine Runtime for redis-
tribution.

INSTALLATION LOG FILES

It is advisable that you interact with the log file to determine if errors have
occurred during installation.

Example A—without errors
Below is an example of an error-free log file.
Install Begin: Wed Aug 27 14:39:57 PDT 2003

Install End: Wed Aug 27 14:44:25 PDT 2003

Created with Zero G's InstallAnywhere 5.5.1 Enterprise Build 2032

Summary

———

Installation: Successful.

30 SUCCESSES

0 WARNINGS

0 NONFATAL ERRORS

0 FATAL ERRORS

Action Notes:

None.

Install Log Detail:

Install Action: InstallAnywhere Variable

 Status: SUCCESSFUL

Install Action: InstallAnywhere Variable

 Status: SUCCESSFUL

Install Action: InstallAnywhere Variable

 Status: SUCCESSFUL

AppendixD.pmd 1/25/2005, 4:45 PM487

488 • ArcGIS Engine Developer Guide

INSTALLING ARCGIS ENGINE RUNTIME ON SOLARIS AND LINUX

Install Action: Evaluating System Requirements...

 Status: SUCCESSFUL

Install Action: Verifying Install Properties

 Status: SUCCESSFUL

Install Action: Reading ESRI properties file...

 Status: SUCCESSFUL

Install Action: Checking for Previous Installation...

 Status: SUCCESSFUL

Install Action:

 Status: SUCCESSFUL

Install Action: Calculating Disk Cost...

 Status: SUCCESSFUL

Install Action: InstallAnywhere Variable

 Status: SUCCESSFUL

Install Action: Determining Install Dir

 Status: SUCCESSFUL

Install Action: InstallAnywhere Variable

 Status: SUCCESSFUL

Install Action: Load Local Registry

 Status: SUCCESSFUL

Install Directory: /mozart1/silent/arcgis/

 Status: SUCCESSFUL

Install Merge Module:
$MODULUS_MM_DIR$\Engine_Build_Output\Merge_Modules\Engine.iam.zip

 Status: SUCCESSFUL

 Additional Notes: NOTE - Installing:
 SubInstaller1.zip

Custom Action: com.esri.ia.actions.IncrementRefCount_Engine

 Status: SUCCESSFUL

Custom Action: com.esri.ia.actions.ReadESRIPropFile

 Status: SUCCESSFUL

Install Directory: /mozart1/silent/arcgis/.Setup/

 Status: SUCCESSFUL

Install Directory: /mozart1/silent/arcgis/.Setup/UninstallArcGISEngineRT/

 Status: SUCCESSFUL

AppendixD.pmd 1/25/2005, 4:45 PM488

Appendix D • Installing ArcGIS Engine Runtime on Windows, Solaris, and Linux • 489

INSTALLING ARCGIS ENGINE RUNTIME ON SOLARIS AND LINUX

 Additional Notes: NOTE - Directory already existed

Install Uninstaller: ArcGISEngineRT (Install All Uninstaller Components)

 Status: SUCCESSFUL

Install File: /mozart1/silent/arcgis/.Setup/UninstallArcGISEngineRT/
 Uninstall_ArcGISEngineRT.lax

 Status: SUCCESSFUL

Install Uninstaller: ArcGISEngineRT (Install All Uninstaller Components)

 Status: SUCCESSFUL

Modify Text File - Single File: New File /mozart1/silent/arcgis/.Setup/
 ArcGISEngineRT.reg

 Status: SUCCESSFUL

Modify Text File - Single File: New File /mozart1/silent/arcgis/.Setup/
 registerArcGISEngineRT

 Status: SUCCESSFUL

Modify Text File - Single File: New File /mozart1/silent/arcgis/
 uninstallArcGISEngineRT

 Status: SUCCESSFUL

Execute Script/Batch file: Registering ArcGIS Engine Runtime

 Status: SUCCESSFUL

Custom Action: com.esri.ia.actions.RegisterProductInstallDir

 Status: SUCCESSFUL

Install Action: Checking for Merge Module Error...

 Status: SUCCESSFUL

Example B—with errors
Below is an example of a log file with errors, signifying an unsuccessful installa-
tion.
Install Begin: Wed Aug 27 14:33:11 PDT 2003

Install End: Wed Aug 27 14:33:11 PDT 2003

Created with Zero G's InstallAnywhere 5.5.1 Enterprise Build 2032

Summary

———

Installation: Unsuccessful.

4 SUCCESSES

AppendixD.pmd 1/25/2005, 4:45 PM489

490 • ArcGIS Engine Developer Guide

0 WARNINGS

0 NONFATAL ERRORS

1 FATAL ERRORS

Action Notes:

None.

Install Log Detail:

Install Action: InstallAnywhere Variable

 Status: SUCCESSFUL

Install Action: InstallAnywhere Variable

 Status: SUCCESSFUL

Install Action: InstallAnywhere Variable

 Status: SUCCESSFUL

Install Action: Evaluating System Requirements...

 Status: SUCCESSFUL

VerifyInstallProperties

 Status: FATAL ERROR

 Additional Notes: FATAL ERROR - MainWin runtime
 mode not specified

UNINSTALLING ARCGIS ENGINE RUNTIME

Uninstall by executing the uninstallArcGISEngineRT file found in the install
directory.

These are some points to consider before uninstalling ArcGIS Engine Runtime:

• ArcGIS Engine Runtime should be uninstalled using the uninstaller provided,
not by deleting files from disk.

• Do not uninstall ArcGIS Engine Runtime during the uninstallation of your
developed application.

• You should recommend strongly to your users that they manually uninstall
ArcGIS Engine Runtime only when they know there are no third-party appli-
cations using it.

INSTALLING ARCGIS ENGINE RUNTIME ON SOLARIS AND LINUX

AppendixD.pmd 1/25/2005, 4:45 PM490

GlossaryE

The following is a glossary of common terms used throughout this

book. While it is not meant to be a comprehensive list, it should

provide you with a quick reference to ArcGIS Engine software-specific

terminology.

Glossary.pmd 1/25/2005, 4:46 PM491

492 • ArcGIS Engine Developer Guide

GLOSSARY

abstract class

Active Server Pages

Active Template Library

add-in

ADF

ADF runtime

apartment

API

application programming
interface

application Web service

ArcGIS Server Web service

arcgisant

ArcObjects

ASCII

ASP

A specification for subclasses that is often shown on object model diagrams to
help give structure to the diagram. An abstract class is not defined in a type
library and cannot be instantiated.
A Microsoft server-side scripting environment that can be used to create and run
dynamic, interactive Web server applications, which are typically coded in
JavaScript or VBScript. An ASP file contains not only the text and HTML tags
that standard Web documents contain, but also commands written in a scripting
language, which can be carried out on the server.

A set of C++ template classes, designed to be small, fast, and extensible.

An extension to a development environment that performs a custom task. ESRI
provides various developer add-ins as part of the ArcGIS developer kit.

Application Developer Framework. The set of custom Web controls and tem-
plates that can be used to build Web applications that communicate with a GIS
server. ArcGIS Server includes an ADF for both .NET and Java.
The components required to run an application built with the ADF. See also ADF.

A group of threads, working within a process, that work within the same con-
text. See also MTA, STA, thread, TNA.
See application programming interface.

A set of routines, protocols, and tools that application developers use to build or
customize a program or set of programs. APIs make it easier to develop a pro-
gram by providing building blocks for a preconstructed interface instead of
requiring direct programming of a device or piece of software. They also guaran-
tee that all programs using a common API will have similar interfaces. APIs can
be built for programming languages such as C, COM, and Java.

A Web service that solves a particular problem, for example, a Web service that
finds all of the hospitals within a certain distance of an address. An application
Web service can be implemented using the native Web service framework of a
Web server, for example, an ASP.NET Web service (WebMethod) or Java Web
service (Axis).

A Web service processed and executed from within an ArcGIS server. Each Web
service is a distinct HTTP endpoint (URL). Administrators can expose
MapServer and GeocodeServer objects as generic ArcGIS Server Web services for
access across the Internet. See also Web service catalog.

The command, provided with the Java ADF, that starts the Apache Ant tool that
builds and deploys Web applications. See also ADF.

A library of software components that makes up the foundation of ArcGIS.
ArcGIS Desktop, ArcGIS Engine, and ArcGIS Server are all built on top of the
ArcObjects libraries.

American Standard Code for Information Interchange. The de facto standard for
the format of text files in computers and on the Internet. Each alphabetic, numeric,
or special character is represented with a seven-bit binary number (a string of
seven 1s and 0s). ASCII defines 128 possible characters.
See Active Server Pages.

Glossary.pmd 1/25/2005, 4:46 PM492

Glossary • 493

GLOSSARY

ASP.NET

assembly

association

ATL

authentication

.bat file

big endian

binary

binding

by value

C++

Cascading Style Sheets

CASE

A programming framework built on the Common Language Runtime that can be
used on a server to build Web applications in any programming language sup-
ported by .NET. See also Active Server Pages.

A package of software and its associated resources. Typically, an ArcGIS Win32
assembly will include executables and DLLs, object libraries, registry files, and
help files for a unit of software. A .NET assembly is a unit of software built
with a .NET language that uses the .NET Framework and the CLR to execute.

Represents relationships between classes. They have defined multiplicities at both
ends.

See Active Template Library.

The process of obtaining identification credentials, such as a name and password,
from a user and validating those credentials against some authority. If the creden-
tials are valid, the entity that submitted the credentials is considered an authenti-
cated identity. Authentication can be used to determine whether an entity has
access to a given resource.

Sometimes referred to as a batch file, a file that contains commands that can be
run in a command window. It is used to perform repetitive tasks and to run
scheduled commands.
A computer hardware architecture in which, within a multibyte numeric repre-
sentation, the most significant byte has the lowest address and the remaining
bytes are encoded in decreasing order of significance. See also little endian.
Any file format for digital data encoded as a sequence of bits (1s and 0s) but not
consisting of a sequence of printable characters (ASCII format). The term is
often used for executable machine code such as a DLL or EXE file that contains
information that can be directly loaded or executed by the computer.

The process of matching the location of a function given a pointer to an object.

A way of passing a parameter to a function such that a temporary copy of the
value of the parameter is created. The function makes changes to this temporary
copy, which is discarded after the function exits. If the parameter is a reference
to an underlying object, any changes made to the underlying object will be pre-
served after the function exits.

A common object-oriented programming language, with many different imple-
mentations designed for different platforms.

A standard for defining the layout or presentation of an HTML or XML docu-
ment. Style information includes font size, background color, text alignment, and
margins. Multiple stylesheets may be applied to “cascade” over previous style
settings, adding to or overriding them. The World Wide Web Consortium (W3C)
maintains the CSS standard. See also World Wide Web Consortium.

Computer-aided software engineering. A category of software that provides a
development environment for programming teams. CASE systems offer tools to
automate, manage, and simplify the development process. Complex tasks that
often require many lines of code are simplified with CASE user interfaces and
code generators.

Glossary.pmd 1/25/2005, 4:46 PM493

494 • ArcGIS Engine Developer Guide

class

class identifier

client

cloning

CLR

CLSID

coclass

COM

COM contract

COM interface

COM-compliant language

command

command bar

command line

component

component category

Component Category
Manager

Component Object Model

A template for a type of object in an object-oriented programming language. A
class may be considered to be a set of objects that share a common structure and
behavior.

A COM term referring to the globally unique number that is used by the system
registry and the COM framework to identify a particular coclass. See also GUID.

An application, computer, or device in a client/server model that makes requests
to a server.

The process of creating a new instance of a class with the same state as an exist-
ing instance.

Common Language Runtime. The execution engine for .NET Framework appli-
cations, providing services, such as code loading and execution and memory
management.

See class identifier.

A template for an object that can be instantiated in memory.

See Component Object Model.

The COM requirement that interfaces, once published, cannot be altered.

A grouping of logically related virtual functions, implemented by a server object,
allowing a client to interact with the server object. Interfaces form the basis of
COM’s communication between objects and the basis of the COM contract.

A language that can be used to create COM components.

Any class in an ArcGIS system that implements the ICommand interface and can
therefore be added to a menu or toolbar in an ArcGIS application.

A toolbar, menu bar, menu, or context menu in an ArcGIS application.

An onscreen interface in which the user types in commands at a prompt. In
geoprocessing, any tool added to the ArcToolbox window can be run from the
command line.
A binary unit of code that can be used to create COM objects.

A section of the registry that can be used to categorize classes by their functional-
ity. Component categories are used extensively in ArcGIS to allow extensibility
of the system.

An ArcGIS utility program (Categories.exe) that can be used to view and manipu-
late component category information.

A binary standard that enables software components to interoperate in a net-
worked environment regardless of the language in which they were developed.
Developed by Microsoft, COM technology provides the underlying services of
interface negotiation, life cycle management (determining when an object can be
removed from a system), licensing, and event services (putting one object into
service as the result of an event that has happened to another object). The
ArcGIS system is created using COM objects.

GLOSSARY

Glossary.pmd 1/25/2005, 4:46 PM494

Glossary • 495

composition

computer-aided software
engineering

container account

container process

Content Standard for Digital
Geospatial Metadata

control

control points

creation time

CSDGM

CSS

custom

data type

database management system

database support

DBMS

DCOM

debug

deeply stateful application

A stronger form of aggregation in which objects from the “whole” class control
the lifetime of objects from the “part” class.

See CASE.

The operating system account that server object container processes run as, which
is specified by the GIS server postinstallation utility. Objects running in a server
container process have the same access rights to system resources as the container
account.

A process in which one or more server objects are running. Container processes
run on SOC machines and are started and shut down by the Server Object Man-
ager (SOM).

A publication authored by the Federal Geographic Data Committee (FGDC) that
specifies the information content of metadata for a set of digital geospatial data.
The purpose of the standard is to provide a common set of terminology and
definitions for concepts related to the metadata. All U.S. government agencies
(federal, state, and local) that receive federal funds to create metadata must
follow this standard.

A component with a user interface. In ArcGIS, the term often refers to the
MapControl, PageLayoutControl, TOCControl, ToolbarControl, or ArcReaderControl,
which are parts of ArcGIS Engine.

See control.

The time it takes to initialize an instance of a server object when server objects
are created in the GIS server either as a result of the server starting or in response
to a request for a server object by a client.

See Content Standard for Digital Geospatial Metadata.

See Cascading Style Sheets.

Functionality provided or created by a party who is not the original software
developer.
The attribute of a variable, field, or column in a table that determines the kind
of data it can store. Common data types include character, integer, decimal,
single, double, and string.
A set of computer programs that organizes the information in a database accord-
ing to a conceptual schema and provides tools for data input, verification, stor-
age, modification, and retrieval.

The proprietary database platforms supported by a program or component.

See database management system.

Distributed Component Object Model. Extends COM to support communication
among objects on different computers on a network.

A command that puts the address standardizer into debugging mode.

An application that uses the GIS server to maintain application state by changing
the state of a server object or its related objects. Deeply stateful applications
require nonpooled server objects.

GLOSSARY

Glossary.pmd 1/25/2005, 4:46 PM495

496 • ArcGIS Engine Developer Guide

default interface

deployment

developer sample

development environment

device context

display

DLL

dockable window

dynamic link library

early binding

EJB

EMF

Enterprise JavaBeans

EOBrowser

event handling

executable file

extension

Federal Geographic Data
Committee

When a COM object is created, the interface that is returned automatically if no
other interface is specified. Most ArcObjects classes specify IUnknown as the
default interface.

The installation of a component or application to a target machine.

A sample contained in the ArcGIS Developer Help system.

A software product used to write, compile, and debug components or applica-
tions.

Represents a surface that can be drawn to, for example, a screen, bitmap, or
printer. In ArcGIS, the Display abstract class is used to abstract a device context.

Often used to refer to subclasses of the Display abstract class. For example,
“when drawing to the display” means when drawing to any of the display
coclasses; “the display pipeline” refers to the sequence of calls made when draw-
ing occurs.
See dynamic link library.

A window that can exist in a floating state or be attached to the main application
window.

A type of file that stores shared code to be used by multiple programs (a code
library). Programs access the shared code by linking to the .dll file when they run,
a process referred to as dynamic linking. A .dll file must be registered for other
programs to locate it. See also register.

A technique that an application uses to access an object. In early binding, an
object’s properties and methods are defined from a class, instead of being checked
at runtime as in late binding. This difference often gives early binding perfor-
mance benefits over late binding. See also late binding.

See Enterprise JavaBeans.

Enhanced Metafile. A spool file format used in printing by the Windows operat-
ing system.

The server-side component architecture for the J2EE platform. EJB enables
development of distributed, transactional, secure, and portable Java applications.

An ArcGIS utility application that can be used to investigate the contents of
object libraries.

Sinking an event interface raised by another class.

A binary file containing a program that can be implemented or run. Executable
files are designated with a .exe extension.

In ArcGIS, an optional software module that adds specialized tools and function-
ality to ArcGIS Desktop. ArcGIS Network Analyst, ArcGIS Network Analyst,
and ArcGIS Business Analyst are examples of ArcGIS extensions.

An organization established by the United States Federal Office of Management
and Budget responsible for coordinating the development, use, sharing, and
dissemination of surveying, mapping, and related spatial data. The committee is

GLOSSARY

Glossary.pmd 1/25/2005, 4:46 PM496

Glossary • 497

FGDC

framework

GDB

GDI

GeocodeServer

geodatabase

geometry

geoprocessing tool

GIS server

GUID

hexadecimal

HKCR

HRESULT

IDE

composed of representatives from federal and state government agencies,
academia, and the private sector. The FGDC defines spatial data metadata stan-
dards for the United States in its Content Standard for Digital Geospatial
Metadata and manages the development of the National Spatial Data Infrastruc-
ture (NSDI).

See Federal Geographic Data Committee.

The existing ArcObjects components that comprise the ArcGIS system.

See geodatabase.

Graphical Device Interface. A standard for representing graphical objects and
transmitting them to output devices, such as a monitor. GDI generally refers to
the Windows GDI API.
An ArcGIS Server software component that provides programmatic access to an
address locator and performs single and batch address matching. It is designed for
use in building Web services and Web applications using ArcGIS Server.
An object-oriented data model introduced by ESRI that represents geographic
features and attributes as objects and the relationships between objects but is
hosted inside a relational database management system. A geodatabase can store
objects, such as feature classes, feature datasets, nonspatial tables, and relation-
ship classes.

The measures and properties of points, lines, and surfaces. In a GIS, geometry is
used to represent the spatial component of geographic features. An ArcGIS
geometry class is one derived from the Geometry abstract class to represent a
shape, such as a polygon or point.

An ArcGIS tool that can create or modify spatial data, including analysis func-
tions (overlay, buffer, slope), data management functions (add field, copy, re-
name), or data conversion functions.
The components of ArcGIS Server that host and run server objects. A GIS server
consists of a server object manager and one or more server object containers.

Globally Unique Identifier. A string used to uniquely identify an interface, class,
type library, or component category. See also class identifier.

A number system using base 16 notation.

HKEY_CLASSES_ROOT registry hive. A Windows registry root key that points
to the HKEY_LOCAL_MACHINE\Software\Classes registry key. It displays
essential information about OLE and association mappings to support drag-and-
drop operations, Windows shortcuts, and core aspects of the Windows user
interface.

A 32-bit integer returned from any member of a COM interface indicating suc-
cess or failure, often written in hexadecimal notation. An HRESULT can also
give information about the error that occurred when calling a member of a COM
interface. Visual Basic translates HRESULTS into errors; Visual C++ developers
work directly with HRESULT values.

See integrated development environment.

GLOSSARY

Glossary.pmd 1/25/2005, 4:46 PM497

498 • ArcGIS Engine Developer Guide

IDispatch

IDL

IID

impersonation

implement

inbound interface

inheritance

in-process

instantiation

integrated development
environment

Interface Definition Language

IUnknown

JavaServer Faces

JavaServer Pages

JavaServer Pages Standard
Tag Library

A generic COM interface that has methods allowing clients to ask which members
are supported. Classes that implement IDispatch can be used for late binding and
ID binding.

See Interface Definition Language.

Interface Identifier. A string that provides the unique name of an interface. An
IID is a type of Globally Unique Identifier. See also GUID.

A process by which a Web application assumes the identity of a particular user
and thus gains all the privileges to which that user is entitled.

Regarding an interface, to provide code for each of the members of an interface
(the interface is defined separately).

An interface implemented by a class, on which a client can call members. See also
outbound interface.

In object-oriented programming, the means to derive new classes or interfaces
from existing classes or interfaces. New classes or interfaces contain all the meth-
ods and properties of another class or interface, plus additional methods and
properties. Inheritance is one of the defining characteristics of an object-oriented
system.

Within the process space of a client application, a class contained in a DLL is in-
process, as objects are loaded into the process space of the client EXE. A compo-
nent contained in a separate EXE is out-of-process. See also out-of-process.

Specifies that one object from one class has a method with which it creates an
object from another class.

A software development tool for creating applications, such as desktop and Web
applications. IDEs blend user interface design and layout tools with coding and
debugging tools, which allows a developer to easily link functionality to user
interface components.
A language used to define COM interfaces. The Microsoft implementation of
IDL may be referred to as MIDL or Microsoft IDL.
All COM interfaces inherit from the IUnknown interface, which controls object
lifetime and provides runtime type support.
A framework for building user interfaces for Java Web applications. JSF is de-
signed to ease the burden of writing and maintaining applications that run on a
Java application server and render their user interfaces back to a target client.
A Java technology that enables rapid development of platform-independent Web-
based applications. JSP separates the user interface from content generation,
enabling designers to change the overall page layout without altering the underly-
ing dynamic content.

A Java technology that encapsulates core functionality common to many Web-
based applications as simple tags. JSTL includes tags for structural tasks, such as
iteration and conditionals, manipulation of XML documents, internationalization
and locale-sensitive formatting, and SQL.

GLOSSARY

Glossary.pmd 1/25/2005, 4:46 PM498

Glossary • 499

JSF

JSP

JSTL

late binding

LIBID

library

license

little endian

macro

map document

MapServer

marshalling

members

memory leak

MTA

n-ary association

See JavaServer Faces.

See JavaServer Pages.

See JavaServer Pages Standard Tag Library.

A technique that an application uses for determining data type at runtime, using
the IDispatch interface, rather than when the code is compiled. Late binding is
generally used by scripting languages. See also early binding.

Library Identifier. A type of GUID consisting of a unique string assigned to a
type library. See also GUID.

In object-oriented programming, a generic, platform-independent term indicating
a logical grouping of classes. ArcGIS is composed of approximately 50 libraries.
Although the term library refers to a conceptual grouping of ArcGIS types,
libraries do have multiple representations on disk: one per development environ-
ment. In COM, OLBs contain all the type information; in .NET, assemblies
contain the type information; and in Java, JAR files contain the type information.

The grant to a party of the right to use a software package or component.

A computer hardware architecture in which, within a multibyte numeric repre-
sentation, the least significant byte has the lowest address and the remaining bytes
are encoded in increasing order of significance. See also big endian.
A computer program, usually a text file, containing a sequence of commands that
are executed as a single command. Macros are used to perform commonly used
sequences of commands or complex operations.

In ArcMap, the file that contains one map; its layout; and its associated layers,
tables, charts, and reports. Map documents can be printed or embedded in other
documents. Map document files have a .mxd extension.
An ArcGIS Server software component that provides programmatic access to the
contents of a map document on disk and creates images of the map contents
based on user requests. It is designed for use in building map-based Web services
and Web applications using ArcGIS Server.
The process that enables communication between a client object and server
object in different apartments of the same process, between different processes,
or between different processes on different machines by specifying how function
calls and parameters are to be passed over these boundaries.

Refers collectively to the properties and methods, or functions, of an interface or
class.

When an application or component allocates a section of memory and does not
free the memory when finished with it, it is said to have a memory leak; the
memory cannot then be used by any other application.
Multiple threaded apartment. An apartment that can have multiple threads
running. A process can only have one MTA. See also apartment, STA, thread,
TNA.

GLOSSARY

Specifies that more than two classes are associated. A diamond is placed at the
intersection of the association branches.

Glossary.pmd 1/25/2005, 4:46 PM499

500 • ArcGIS Engine Developer Guide

1. A set of edge, junction, and turn elements and the connectivity between them,
also known as a logical network. In other words, an interconnected set of lines
representing possible paths from one location to another. A city streets layer is an
example of a network. 2. In computing, a group of computers that share software,
data, and peripheral devices, as in a local or wide area network (LAN or WAN).

In object-oriented programming, an instance of the data structure and behavior
defined by a class.

Similar to Interface Definition Language but used to define the objects contained
in an object library. See also Interface Definition Language, object library.

A binary file that stores information about a logical collection of COM objects
and their properties and methods in a form that is accessible to other applications
at runtime. Using a type library, an application or browser can determine which
interfaces an object supports and invoke an object’s interface methods.

A graphical representation of the types in a library and their relationships.

The process of precreating a collection of instances of classes, such that the
instances can be shared between multiple application sessions at the request level.
Pooling objects allows the separation of potentially costly initialization and
aquisition of resources from the actual work the object does. Pooled objects are
used in a stateless manner.

A programming model in which developers define the data type of a data struc-
ture as well as the functions, or types of operations, that can be applied to the
data structure. Developers can also create relationships between objects. For
example, objects can inherit characteristics from other objects.

See OLE custom control.

See Object Definition Language.

Open Geodata Interoperability Specification. A specification, developed by the
Open GIS Consortium, Inc., to support interoperability of GIS systems in a
heterogeneous computing environment.

See object library.

Object Linking and Embedding. A distributed object system and protocol from
Microsoft that allows applications to exchange information. Applications using
OLE can create compound documents that link to data in other applications. The
data can be edited from the document without switching between applications.
Based on the Component Object Model, OLE allows the development of reus-
able objects that are interoperable across multiple applications.

Also known as an ActiveX control, an OLE custom control is contained in a file
with the extension .ocx. The ArcGIS controls are ActiveX controls.

A utility, available as part of Microsoft Visual Studio, that can be used to view
type information stored in a type library or object library or inside a DLL.

Within the process space of a client application, a component contained in an
EXE is out-of-process; instantiated classes are loaded into the process space of

network

object

Object Definition Language

object library

object model diagram

object pooling

object-oriented programming

OCX

ODL

OGIS

OLB

OLE

OLE custom control

OLEView

out-of-process

GLOSSARY

Glossary.pmd 1/25/2005, 4:46 PM500

Glossary • 501

the EXE in which they are defined rather than into that of the client. See also in-
process.

An interface implemented by a class, on which that object can make calls to its
clients; analogous to a callback mechanism. See also inbound interface.

Portable Document Format. A proprietary file format from Adobe that creates
lightweight text-based, formatted files for distribution to a variety of operating
systems.
A measure of the speed at which a computer system works. Factors affecting
performance include availability, throughput, and response time.

The process by which information indicating the current state of an object is
written to a storage medium such as a file on disk. In ArcObjects, persistence is
achieved via the standard COM interfaces IPersist and IPersistStream or the
ArcObjects interface IPersistVariant.

See data type.

A generic term often referring to the operating system of a machine. May also
refer to a programming language or development environment, such as COM,
.NET, or Java.

An additional read-only data source provided by either ESRI or a third-party
developer. It may be a data source forming part of the core ArcObjects or an
extension.
See Published Map File.

A string value, stored in the system registry, identifying a class by library and class
name, for example, esriCarto.FeatureLayer. The ProgID registry key also contains
the human-readable name of a class, the current version number of the class, and
a unique class identifier. ProgIDs are used in VB object instantiation. See also
class identifier, IID.

A user interface component that provides access to change the properties of an
object or objects.

A local representation of a remote object, supporting the same interfaces as the
remote object. All interaction with the remote object from the local process is
forced via the proxy object. A local object makes calls on the members of a proxy
object as if it were working directly with the remote object.
A file exported by the Publisher extension that can be read by ArcReader. Pub-
lisher Map Files end with a .pmf extension.

A client may request a reference to a different interface on an object by calling
the QueryInterface method of the IUnknown interface.

A spatial data model that defines space as an array of equally sized cells arranged
in rows and columns. Each cell contains an attribute value and location coordi-
nates. Unlike a vector structure, which stores coordinates explicitly, raster coordi-
nates are contained in the ordering of the matrix. Groups of cells that share the
same value represent geographic features. See also vector.

The process by which objects in an object pool are replaced by new instances of

outbound interface

PDF

performance

persistence

pixel type

platform

plug-in data source

PMF

ProgID

property page

proxy object

Published Map File

query interface

raster

recycling

GLOSSARY

Glossary.pmd 1/25/2005, 4:46 PM501

502 • ArcGIS Engine Developer Guide

objects. Recycling allows for objects that have become unusable to be destroyed
and replaced with fresh server objects and to reclaim resources taken up by stale
server objects.

A pointer to an object, interface, or other item allocated in memory. COM objects
keep a running total of the references to themselves via the IUnknown interface
methods AddRef and Release.
A utility, part of the Windows operating system, that allows you to view and edit
the system registry.

To add information about a component to the system registry, generally per-
formed using RegSvr32.

Stores information about system configuration for a Windows machine. COM
uses the registry extensively, storing details of COM components including
ProgIDs and ClassIDs, file location of the binary code, marshalling information,
and categories in which they participate.
A file containing information in Windows Registry format. Double-clicking a .reg
file in Windows will enter the information in the file to the system registry. Often
used to register components to component categories.

A Windows utility that can add information about a component to the system
registry. A component must be registered before it can be used.

To reinstantiate an object and its state from persisted storage.

To draw to a display. The conversion of the geometry, coloring, texturing, light-
ing, and other characteristics of an object into a display image.

The host that provides the services required for compiled code to execute. The
Service Control Manager is effectively the runtime environment for COM. The
Visual Basic Virtual Machine (VBVM) is the runtime environment that runs
Visual Basic code.

A system that does not show negative effects when its size or complexity grows
greater.

Service Control Manager. An administrative tool that enables the creation and
modification of system services. It effectively serves as the runtime environment
for COM.

A set of instructions in plain text, usually stored in a file and interpreted, or
compiled, at runtime. In geoprocessing, scripts can be used to automate tasks,
such as data conversion, or generate geodatabases and can be run from their
scripting application or added to a toolbox. Geoprocessing scripts can be written
in any COM-compliant scripting language, such as Python, JScript, or VBScript.

A form of persistence, in which an object is written out in sequence to a target,
usually a stream. See also persistence.

1. A computer in a network that is used to provide services, such as access to files
or e-mail routing, to other computers in the network. Servers may also be used to
host Web sites or applications that can be accessed remotely. 2. An item that
provides functionality to a client—for example, a COM component or object to a
user application using components or to a database client utility using a database
on a server machine.

reference

Regedit

register

registry

registry file

RegSvr32

rehydrate

render

runtime environment

scalable

SCM

script

serialization

server

GLOSSARY

Glossary.pmd 1/25/2005, 4:46 PM502

Glossary • 503

The operating system account that the server object manager service runs as. The
server account is specified by the GIS server postinstallation utility.

A space on the GIS server where a server object and its associated objects are
running. A server context runs within a server container process. A developer gets
a reference to a server object through the server object’s server context and can
create other objects within a server object’s context.

A location on a file system used by a GIS server for temporary files that are
cleaned up by the GIS server.

A coarse-grained object that manages and serves a GIS resource such as a map or
a locator. A server object is a high-level object that simplifies the programming
model for doing certain operations and hides the fine-grained ArcObjects that do
the work. Server objects also have SOAP interfaces, which makes it possible to
expose server objects as Web services that can be consumed by clients across the
Internet.

Describes whether server objects share processes with other server objects. Server
objects with high isolation run dedicated processes, whereas server objects with
low isolation share processes with other server objects of the same type.
Defines what a server object’s initialization parameters are and what methods and
properties it exposes to developers. At ArcGIS 9, there are two server object
types: MapServer and GeocodeServer.
The process by which a Web application maintains information across a sequence
of requests by the same client to the same Web application.

An application that uses the session state management capabilities of a Web
server to maintain application state and makes stateless use of server objects in
the GIS server. Shallowly stateful applications can use pooled server objects.

A class for which there can only be one instance in any process.

A Visual C++ class implementation that encapsulates an interface pointer, pro-
viding operators and functions that can make working with the underlying type
easier and less error prone.

Simple Object Access Protocol. An XML-based protocol developed by
Microsoft/Lotus/IBM for exchanging information between peers in a decentral-
ized, distributed environment. SOAP allows programs on different computers to
communicate independently of an operating system or platform by using the
World Wide Web’s HTTP and XML as the basis of information exchange. SOAP
is now a W3C specification. See also XML, World Wide Web Consortium.

Server object container. A process in which one or more server objects is running.
SOC processes are started and shut down by the SOM. The SOC processes run on
the GIS server’s container machines. Each container machine is capable of host-
ing multiple SOC processes. See also SOM.

Server object manager. A Windows service that manages the set of server objects
that are distributed across one or more server object container machines. When
an application makes a connection to an ArcGIS Server over a LAN, it is making
a connection to the SOM. See also SOC.

server account

server context

server directory

server object

server object isolation

server object type

session state

shallowly stateful application

singleton

smart pointer

SOAP

SOC

SOM

GLOSSARY

Glossary.pmd 1/25/2005, 4:46 PM503

504 • ArcGIS Engine Developer Guide

See Structured Query Language.

Single threaded apartment. An apartment that only has a single thread. User
interface code is usually placed in an STA. See also apartment, MTA, thread,
TNA.
An application that runs by itself, not within an ArcGIS application.

The current data contained by an object.

An operation that makes changes to an object or one of its associated objects—for
example, removing a layer from a map. See also stateless operation.

An object that stores no state data in between member calls.

An operation that does not make changes to an object—for example, drawing a
map. See also stateful operation.

A mode of data delivery in which objects provide data storage. Stream objects
can contain any type of data in any internal structure. See also persistence.

A syntax for defining and manipulating data from a relational database. Devel-
oped by IBM in the 1970s, SQL has become an industry standard for query
languages in most relational database management systems.

Scene Document. A document saved by ArcScene that has the extension .sxd.

The process of automatically updating certain elements of a metadata file.

A computer to which an application is deployed.

A process flow through an application. An application can have many threads.
See also apartment, MTA, STA, TNA.

Thread neutral apartment. An apartment that has no threads permanently associ-
ated with it; threads enter and leave the apartment as required. See also apart-
ment, MTA, STA, thread.

A command that requires interaction with the user interface before an action is
performed. For example, with the Zoom In tool, you must click or draw a box
over the geographic data or map before it is redrawn at a larger scale. Tools can be
added to any toolbar.
A kind of inheritance in which an interface may inherit from a parent interface.
A client may call the child interface as if it were the parent, as all the same mem-
bers are supported.
A collection of information about classes, interfaces, enumerations, and so on,
that is provided to a compiler for inclusion in a component. Type libraries are also
used to allow features, such as IntelliSense, to function correctly. Type libraries
usually have the extension .tlb.

User interface. The portion of a computer’s hardware and software that facili-
tates human interaction. The UI includes items that can be displayed onscreen
and interacted with by using the keyboard, mouse, video, printer, and data cap-
ture.

Unified Modeling Language. A graphical language for object modeling. See also
CASE.

SQL

STA

standalone application

state

stateful operation

stateless

stateless operation

stream

Structured Query Language

SXD

synchronization

target computer

thread

TNA

tool

type inheritance

type library

UI

UML

GLOSSARY

Glossary.pmd 1/25/2005, 4:46 PM504

Glossary • 505

Uniform Resource Locator. A standard format for the addresses of Web sites. A
URL looks like this: www.esri.com. The first part of the address indicates what
protocol to use, while the second part specifies the IP address or the domain
name where the Web site is located.

The amount of time between when a client gets a reference to a server object and
when the client releases it.

A COM object that encapsulates a large number of fine-grained ArcObjects
method calls and exposes a single coarse-grained method call. Utility COM ob-
jects are installed on a GIS server and called by server applications to minimize
the round-trips between the client application and the GIS server. See also Com-
ponent Object Model.

A data type that can contain any kind of data.

Visual Basic. A programming language developed by Microsoft based on an ob-
ject-oriented form of the BASIC language and intended for application develop-
ment. Visual Basic runs on Microsoft Windows platforms.

Visual Basic for Applications. The embedded programming environment for
automating, customizing, and extending ESRI applications, such as ArcMap and
ArcCatalog. It offers the same tools as Visual Basic in the context of an existing
application. A VBA program operates on objects that represent the application
and can be used to create custom symbols, workspace extensions, commands,
tools, dockable windows, and other objects that can be plugged in to the ArcGIS
framework.

Visual Basic Virtual Machine. The runtime environment used by Visual Basic code
when it runs.
1. A coordinate-based data model that represents geographic features as points,
lines, and polygons. Each point feature is represented as a single coordinate pair,
while line and polygon features are represented as ordered lists of vertices. At-
tributes are associated with each feature, as opposed to a raster data model,
which associates attributes with grid cells. 2. Any quantity that has both magni-
tude and direction. See also raster.

A directory name, used as a URL, that corresponds to a physical directory on a
Web server.

A Microsoft implementation of the C++ language, which is used in the Microsoft
application Visual Studio, producing software that can be used on Windows
machines.

See World Wide Web Consortium.

The amount of time it takes between a client requesting and receiving a server
object.

An application created and designed specifically to run over the Internet.

A file that contains a user interface as well as all the code and necessary files to
use as a starting point for creating a new customized Web application. ArcGIS
Server contains a number of Web application templates.

URL

usage time

utility COM object

variant

VB

VBA

VBVM

vector

virtual directory

Visual C++

W3C

wait time

Web application

Web application template

GLOSSARY

Glossary.pmd 1/25/2005, 4:46 PM505

506 • ArcGIS Engine Developer Guide

The visual component of a Web form that executes its own action on the server.
Web controls are designed specifically to work on Web forms and are similar in
appearance to HTML elements.
Based on ASP.NET technology, Web forms allow the creation of dynamic Web
pages in a Web application. Web forms present their user interface to a client in a
Web browser or other device but generally execute their actions on the server.

A computer that manages Web documents, Web applications, and Web services
and makes them available to the rest of the world.

A software component accessible over the World Wide Web for use in other
applications. Web services are built using industry standards, such as XML and
SOAP, and thus are not dependent on any particular operating system or program-
ming language, allowing access through a wide range of applications.
A collection of ArcGIS Server Web services. A Web service catalog is itself a
Web service with a distinct endpoint (URL) and can be queried to obtain the list
of Web services in the catalog and their URLs. See also ArcGIS Server Web
service.

An organization that develops standards for the World Wide Web and promotes
interoperability between Web technologies such as browsers. Members from
around the world contribute to standards for XML, XSL, HTML, and many other
Web-based protocols.

Web Service Description Language. The standard format for describing the meth-
ods and types of a Web service, expressed in XML.

See XML Metadata Interchange.

Extensible Markup Language. Developed by the World Wide Web Consortium,
XML is a standard for designing text formats that facilitates the interchange of
data between computer applications. XML is a set of rules for creating standard
information formats using customized tags and sharing both the format and the
data across applications.

A standard produced by the Object Management Group that specifies how to
store a UML model in an XML file. ArcGIS can read models in XMI files.

Extensible Style Language. A set of standards for defining XML document
presentation and transformation. An XSL stylesheet may contain information
about how to display tagged content in an XML document, such as font size,
background color, and text alignment. An XSL stylesheet may also contain XSLT
code that describes how to transform the tagged content in an XML document
into an output document with another format. The World Wide Web Consortium
maintains the XSL standards. See also XML, World Wide Web Consortium.

Extensible Style Language Transformations. A language for transforming the
tagged content in an XML document into an output document with another
format. An XSL stylesheet contains the XSLT code that defines each transforma-
tion to be applied. Transforming a document requires the original XML docu-
ment, an XSL document containing XSLT code, and an XSLT parser to execute
the transformations. The World Wide Web Consortium maintains the XSLT
standard. See also XML, XSL, World Wide Web Consortium.

Web control

Web form

Web server

Web service

Web service catalog

World Wide Web Consortium

WSDL

XMI

XML

XML Metadata Interchange

XSL

XSLT

GLOSSARY

Glossary.pmd 1/25/2005, 4:46 PM506

Index • 507

Index

A

Abstract class 61
defined 492

Accessing OMDs 442
Active Server Pages. See also ASP

ASP.NET 493
defined 492

Active Template Library. See ATL
ActiveView object 51
ActiveX DLL 92–93
AddDate class 397
AddDate command 400
AddDateCommand class 320, 323
AddDateTool class 348, 350
AddEventListeners method 316, 319
AddItem method 52
AddPopupItems function 378
AddRef method 112. See also IUnknown
AddResource method 163
AddToolbarItems function 400
Aggregation. See COM: aggregation
American Standard Code for Information Interchange. See

ASCII
AoAllocBSTR function 225
AoCreateObject function 225
AoExit function 224
AoFreeBSTR function 225
AoInitialize function 224, 422
AoUninitialize function 224
Apartment 67–68

defined 492
API 1, 16, 19, 26, 29–31, 34, 35, 37, 70, 185–

195, 357, 358, 409, 427–430. See also C++ API
Application Developer Framework (ADF)

defined 492
runtime

defined 492
Application objects 65, 94
Application programming interface. See also API

defined 492
ArcEditor 435
ArcGIS 9 overview

ArcGIS Desktop
described 2

ArcGIS Engine
described 2

ArcGIS Server
described 2

ArcIMS
described 2

ArcGIS APIs 29
consuming API 29
extending API 29

ArcGIS controls
buddy controls 43
control commands

GlobeHookHelper object 48
HookHelper object 48
OnCreate event 47
SceneHookHelper object 48

document types that can be loaded 44
embeddable components 42
events 43

OnMapReplaced 43
OnOleDrop 43

property pages 42
ArcGIS Desktop 435

architecture
illustrated 25

described 24
extension

defined 496
ArcGIS Developer Online 455
ArcGIS Engine

described 24
object library

3DAnalyst 38
Carto 35
Controls 38
DataSourcesFile 35
DataSourcesGDB 35
DataSourcesOleDB 35
DataSourcesRaster 35
Display 34
GeoAnalyst 38
GeoDatabase 34
GeoDatabaseDistributed 35
Geometry 33
GISClient 34
GlobeCore 38
Location 37
NetworkAnalysis 38
Output 34
Server 34
Spatial Analyst 39
System 33
SystemUI 33

ArcGIS Engine architecture
illustrated 24

ArcGIS Engine capabilities
3D visualization and more

illustrated 14
editing features 12

Index.pmd 1/25/2005, 4:56 PM507

508 • ArcGIS Engine Developer Guide

spatial modeling and analysis
illustrated 13

ArcGIS Engine libraries 33–39
illustrated 32, 36

ArcGIS Engine overview
ArcGIS Engine Runtime 8
software developer kit 6

ArcGIS Engine Runtime
extensions

3D extension 8
Network Analyst extension 9
Spatial extension 8

ArcGIS Engine users
ArcGIS Desktop users 10
ArcGIS Server users 11
standalone application developers 10

ArcGIS SDK
add-ins 453

for VB 6 453
for Visual Studio .NET 454

ArcGIS Developer Help system 452
Developer kit tools

Component Categories Manager 453
ESRI Object Browser 453
Extract VBA 453
Fix Registry Utility 453
GUID Tool 453
Library Locator 453

developer tools 453
samples 452

ArcGIS Server
add-ins

defined 492
architecture

illustrated 25
described 24

ArcGIS software architecture 24
compatibility 27
modularity 25
multiple platform support 27
scalability 26

ArcGIS Spatial Analyst 436
Arcgisant command

defined 492
ArcInfo 435
ArcMap

starting programmatically 95
ArcObjects

defined 492
developing with 70

coding standards 70
COM data types 76
database considerations 74
general coding tips and resources 70
using a type library 76

using component categories 77
framework

defined 497
getting started 207

ArControl object 196
ArcReader

ReaderControl 46
ArcSDE 447
ArcView 435
ASCII

defined 492
ASP 145. See also Active Server Pages: defined
Assembly

defined 493
Association

defined 493
ATL 98

defined 492
hierarchical layers of

illustrated 100
Authentication

defined 493

B

Base classes table 171
BaseCommand class 168
BaseTool class 168, 169, 348, 349
.bat file

defined 493
Big endian

defined 493
Binary

defined 493
Binding 65

defined 493
BSTR 77
BuildandShow method 318
Building a command-line C++ application

additional resources 440
concepts 427
deployment 440
design 428
implementation 429
project description 427
requirements 428

Building a command-line Java application
additional resources 425
concepts 409
deployment 424
design 409
implementation 410
project description 409
requirements 409
troubleshooting 424

Index.pmd 1/25/2005, 4:56 PM508

Index • 509

Building applications
with ActiveX

additional resources 303
concepts 282
deployment 302
design 283
implementation 284
project description 282
requirements 283

with C++ and Motif widgets
additional resources 408
concepts 357
deployment 408
design 358
implementation 360
project description 357
requirements 358

with JavaBeans
additional resources 330
concepts 304
deployment 329
design 305
implementation 306
project description 304
requirements 305

with Windows Controls
concepts 331
design 332
implementation 333
project description 331
requirements 332

C

C runtime. See CRT
C++. See also Visual C++

defined 493
C++ API

ArcGIS development 206
ArcGIS development in the Visual Studio .NET IDE 213
ArcGIS development in the Visual Studio IDE 213
ArcGIS development with nmake and command prompt

214
ArcObjects C++ practices 226
converting from Visual Basic to C++ 232
development techniques 197
error handling 231
getting started 207
initializing the Solaris and Linux ArcGIS Engine 212
limitations 234
Motif programming 234
Solaris and Linux post-crash cleanup 234
table of formatting symbols

changing display formats 203
to format contents of memory locations 204

table of keyboard shortcuts 205
table of source code editing shortcuts 205
troubleshooting 232

CAD 35
CalculateSlope function 436
Callback mechanism 64
Carto library 35

FeatureLayer object 37
Map object 35
MapDocument object 37
MapServer object 37
MxdServer object 37
PageLayout object 35
Renderer object 37

Cascading Style Sheet
defined 493

CASE
defined 493

CAxWindow class 124
CComObject class 100
CComObjectRootEx class 100
CComSafeArray class 109
CComSafeArrayBound class 109
CComxxxThreadModel class 100
Choosing an API

.NET
described 29

C++
described 29

COM
described 29

Java
described 29

Class factory. See COM: class factory
Class identifier. See also CLSID; GUID

defined 494
Classes 60

defined 494
types of 443

Clear method 113, 199
Client

defined 494
Client/Server architecture

described 59
Cloning

defined 494
CloseAppCallback function 363, 369
CLR 146. See also .NET: Common Language Runtime (CLR)
CLSID 96
Coclass 61

defined 494
Coding standards 70. See also Visual Basic: coding

standards; Visual C++: coding guidelines
COM

Active Template Library. See also ATL

Index.pmd 1/25/2005, 4:56 PM509

510 • ArcGIS Engine Developer Guide

aggregation 66–67
background 58–59
class. See Classes
class factory 60
client 59
client storage 72
containment 66–67
contract

defined 494
defined 494
described 58–69
Direct-To-COM. See also DTC
DLL 59
EXE 59
instantiating features 76
instantiating objects 68
interface. See also Interface

defined 494
marshalling 67
server 59

COM interfaces
described 61–62

COM-compliant language
defined 494

COMException class 155, 156
Command

defined 494
Command bar

defined 494
Command line

defined 494
Command object 50, 52
CommandPool

Command objects 53
OnCreate method 53
UID object 53

Common Language Runtime. See CLR
Common object request broker architecture. See CORBA
Common type system. See CTS
Component

defined 494
Component category 68, 77–78, 93

defined 494
Component Category Manager 78

defined 494
Component Object Model. See COM
Composition

defined 495
described 444
example 444

Computer-aided design. See CAD
ComRegisterFunctionAttribute class 167
ComUnregisterFunctionAttribute class 167
Container account

defined 495
Container process

defined 495
Containment. See COM: containment
Content Standard for Digital Geospatial Metadata

defined 495
Control

defined 495
Control points

defined 495
Controls library 38

HookHelper object 38
MapControl 38
PageLayoutControl 38
ReaderControl 38
TOCControl 38
ToolbarControl 38

CORBA 58
CPath class 109
CreateBasicFields method 418, 420
CreateCustomizeDialog function 352, 403
CreateCustomizeDialog method 327
CreateFeatureClass method 420
Creation time. See Server object: creation time
CRT 102
CSDGM. See Content Standard for Digital Geospatial

Metadata
CSS. See Cascading Style Sheet
CTS 142
Cursor

insert 75
recycling 75
update 75

Custom
defined 495

Custom feature 66
CWnd class 127

D

Data types 76–77
defined 495

Database
management system

defined 495
support

defined 495
Dataset class 61
DataSourcesFile library 35
DataSourcesGDB library 35
DataSourcesOleDB library 35
DataSourcesRaster library 35
DBMS. See Database: management system
DCE 60, 63
DCOM

defined 495
Debugging. See also Visual Basic: debugging; Visual C++:

Index.pmd 1/25/2005, 4:56 PM510

Index • 511

debugging
defined 495

Deeply stateful application
defined 495

Delete method 75
DEM 427
Deployment

defined 496
Detach method 199
Developer resources

ArcGIS Developer Help System 20
ArcGIS Developer Online 21
ArcGIS Developer series 20
ESRI Support Center 21
training 21

Developer sample
defined 496

Developing with ArcObjects 70
coding standards 70
COM data types 76
database considerations 74
general coding tips and resources 70
using a type library 76
using component categories 77

Development environment
defined 496

Device context
defined 496
display

defined 496
Digital elevation model. See DEM
Digital terrain model. See DTM
Direct-To-COM. See DTC
Dispatch event

interface 64
Dispatch interface 64
DispEventAdvise method 133
Display class 496
Display library 34

Map object 34
PageLayout object 34

DisplayTransformation object 318
Distributed Component Object Model. See DCOM
DLL 62, 69, 92–93

defined 496
Dockable window

defined 496
DTC 100
DTM 409
Dynamic Link Library. See DLL

E

Early binding
defined 496

Edit operations 74

Editing rules for geodatabase integrity 74–76
Editor class 448
Editor coclass 74
EJB. See Enterprise JavaBeans
EMF

defined 496
EngineInitializer class 185, 423
Enterprise JavaBeans

defined 496
Enumerator interfaces 72, 91
Envelope coclass 72, 190
EOBrowser

defined 496
Err object 153
Error handling 72, 81, 86
Error object 72
EsriLicenseExtensionCode interface 422
EsriLicenseProductCode interface 422
Event handling 73–74, 87–88

defined 496
Exception class 153
Exception handling. See Error handling
Executable file

defined 496

F

Feature
COM instantiation of 76
editing shape of 76

Feature coclass 76
FeatureBuffer object 418
Federal Geographic Data Committee. See FGDC
FGDC

defined 496
Folder and file structure for build

illustration of 411
FormatDate function 397
FormSetup function 363

G

GAC 146
GDB. See Geodatabase
GDI. See Graphical device interface
GeoAnalyst library 38
GeocodeServer

defined 497
Geodatabase

defined 497
editing rules 74–76

GeoDatabase library 34, 446
PlugInDataSource object 34

GeoDatabaseDistributed library 35
Geometry

defined 497

Index.pmd 1/25/2005, 4:56 PM511

512 • ArcGIS Engine Developer Guide

Geometry class 61, 497
Geometry library 33

MultiPoint object 33
Path

described 33
Point object 33
Polygon

described 33
Polygon object 33
Polyline

described 33
Polyline object 33
Ring

described 33
Segment

described 33
GeometryDef class 416, 420
Geoprocessing tool

defined 497
Get 448
Get/Put 448
GetEnvelope method 73
Getting started

choosing API and development environment 16
deploying your application 18
determining type of application 16
developing your application 17

GIS server
defined 497

GISClient library 34
GISClient interface 35

Global Assembly Cache. See GAC
Globally Unique Identifier. See GUID
Globe object 51
GlobeControl

built-in navigation
Navigate property 45

described 45
GlobeViewer object 45
illustration of application 45

GlobeControl and ToolbarControl
illustration of application 47

GlobeCore library 38
Globe object 38
GlobeCamera object 39

GlobeHookHelper object
described 51

Graphical device interface
defined 497

Graphical user interface. See GUI
GUI 10
GUID 52, 60, 68

defined 497
GUIDAttribute class 151
GxView abstract class 446

GxView class 446

H

Hexadecimal
defined 497

HKCR
defined 497

HookHelper class 323
described 51

HRESULT 86
defined 497

Human class 61

I

IActiveView interface 29
IActiveViewEvents interface 93, 129, 148
IAoInitialize interface 224, 355, 361
IApplication interface 64, 94, 95
IArea interface 190
IAreaProxy class 190
IARMap interface 192
IArray interface 229
IClassFactory interface 69, 100
IClone interface 191, 230
ICommand interface

33, 50, 51, 52, 55, 97, 320, 348, 494
ICustomizeDialog interface 401
IDE 108, 212
Identifies interface 72
IDispatch interface 29, 65–66, 69, 73, 100, 112, 499

defined 498
IDL 63, 76–78
IDocument interface 94, 95
IDocumentEvents interface 64
IDocumentEventsDisp interface 64
IDoubleArray interface 229
IEditor interface 446
IEditor2 interface 446
IEnumFeature interface 91
IEnvelope interface 383
IEventListenerHelper interface 373
IExtension interface 77, 93
IFeatureWorkspace interface 418
IFeatureWorkspaceProxy 418
IFieldsEdit interface 421
IFillSymbol interface 293, 345, 383
IGeoDataset interface 417
IGeometry interface 29, 191, 194, 446
IGxView interface 446
IGxViewPrint interface 446
IHookHelper interface 393
IID

defined 498

Index.pmd 1/25/2005, 4:56 PM512

Index • 513

IIS 143
ILineSymbol interface 292, 345, 383
Impersonation

defined 498
Implement

defined 498
In-process

defined 498
Inbound interface

defined 498
Inheritance

defined 498
described 444
example 444
interface inheritance 66
type inheritance. See Type inheritance

Instantiation
defined 498
described 444
example 444

Integrated development environment. See also IDE
defined 498

Interface
and Visual Basic 82–85
default 64, 83

defined 496
deprecated 62
described 60–62
notification interface 72
optional 62
outbound 64, 73–74, 88, 93

Interface Definition Language. See IDL
defined 498

InterfaceProxy class 190
International Standards Organization. See ISO
Internet Information Services. See IIS
Invoke method 65
IPersist interface 501
IPersistStream interface 501
IPersistVariant interface 501
IPoint interface 85, 86, 88, 89, 90, 446
IPolygon interface 72
IRasterBandCollection interface 427, 439
IRasterPyramid2 interface 447
IRgbColor interface 292, 345, 383
IRootLevelMenu interface 72
Is keyword 90
ISet interface 230
IShortcutMenu interface 72
ISO 197
ISupportErrorInfo interface 101
ISurfaceOp interface 427, 437, 438, 439
ITalk interface 61
ItemAdded method 129
ITemporaryDataset interface 447

ITinAdvanced interface 409, 417
ITinNode interface 418
ITool interface 33, 51, 297, 320, 323, 348, 397
IToolbarItem interface 52
IToolbarMenu interface 377, 379
IToolControl interface 33, 52
ITransformEvents interface 346, 385
IUnknown interface 29, 62–63, 63, 64, 82–

85, 100, 110, 112, 197, 498, 501, 502
defined 498

IUnknown methods 100
IVariantArray interface 229
IWorkspaceEdit interface 74
IXxxImpl interface 100

J

J2EE 182
J2ME 182
J2SDK 182
J2SE 182
JAR 183
Java 2 Platform, Enterprise Edition. See J2EE
Java 2 Platform, Micro Edition. See J2ME
Java 2 Platform, Standard Edition. See J2SE
Java 2 Platform Standard Software Developer Kit. See J2SDK
Java API

ArcGIS development 185
platform configuration 182
programming techniques 184

Java Archive files. See JAR
Java Native Interface. See JNI
Java Runtime Environment. See JRE
Java Virtual Machine. See JVM
JavaScript 65
JavaServer Faces

defined 498
JavaServer Pages

defined 498
JavaServer Pages Standard Tag Library

defined 498
JIT 143
JNI 182
JRE 184
Just-in-time. See JIT
JVM 182, 184

L

Late binding
defined 499

LIBID
defined 499

Library
defined 499

License

Index.pmd 1/25/2005, 4:56 PM513

514 • ArcGIS Engine Developer Guide

defined 499
Little endian

defined 499
LoadData function 375
Location library 37

GeocodeServer objects 37

M

Macro
defined 499

MakeNodeEnumerator method 418
ManageLifetime method 177, 178
Map class 93
Map document

defined 499
Map object 51
MapControl

building map navigation functionality 55
described 44
helper methods 45
illustration of application 44
IMxdContents interface 45
LoadMxFile method 45
Map object 44

MapServer
defined 499

MapViewer.java class 306
MapViewerFrame interface 309
MapViewerFrame.java class 306
Marshalling. See also COM: marshalling

defined 499
MBCS 106
MDI 50
Members

defined 499
Memory leak

defined 499
MFC 99
Microsoft Component Object Model

aggregation and containment 66
automation 69
class factory 60
COM and the registry 68
COM classes and interfaces 60
component category 68
components, objects, clients, and servers 59
described 58
globally unique identifiers 60
inbound and outbound interfaces 64
inside interfaces 61
Interface Definition Language 63
interface inheritance 66
IUnknown interface 62
singleton objects 60

threads, apartments, and marshalling 67
type library 63

Microsoft Foundation Class Library. See MFC
Microsoft Interface Definition Language. See IDL
Microsoft Windows Installer. See MSI
MSI 464
MTA 67

defined 499
Multibyte character sequences. See MBCS
Multiple docking interface. See MDI
Multiplicity

described 444
example 444

Multithreaded apartments. See MTA

N

Name abstract class 446
.NET

assembly
defined 493

Common Language Runtime (CLR)
defined 494

NET API
.NET Framework

described 141
.NET programming techniques and considerations 150
ArcGIS development using .NET 166
interoperating with COM 145

Network
defined 500

NetworkAnalysis library 38
Notification interface 72

O

Object
defined 500

Object browser utility 71
Object Definition Language. See also IDL

defined 500
Object library. See also OLB; Type library

defined 500
Object Linking and Embedding Database. See OLE DB
Object Management Group. See OMG
Object model diagram

defined 500
Object-oriented programming

defined 500
Objects

described 59
OCX 76
OGIS

defined 500
OLB 76

Index.pmd 1/25/2005, 4:56 PM514

Index • 515

OLE automation. See Microsoft Component Object Model:
automation

OLE automation data types 30
OLE custom control. See also OCX

defined 500
OLE DB 27
OLEView

defined 500
OMD key 442
OMG 58
OnChanged method 75
OnClick method 170, 320
OnCreate method 50, 320, 348
OnDestroy method 139
OnInitDialog method 125, 139
OnMouseDown event 379
OnMouseDown method 349, 397
OnVisibleBoundsUpdated function 345
Open Group's Distributed Computing Environment. See

DCE
Out-of-process

defined 500
Outbound interface. See also Interface: outbound

defined 501
Outbound interfaces

illustrated 64
Output library 34

P

PageLayout object 51
PageLayoutControl

described 44
helper methods 45
illustration of application 44
IMxdContents interface 45
LoadMxFile method 45
PageLayout object 44

PageLayoutControlEvents class 379
PanTool class 169
Parrot class 61
PDF

defined 501
Performance

defined 501
Persistence

defined 501
PIA 146
Pixel type. See Data types
Platform

defined 501
Plug-in data source

defined 501
PMF 46
Point class 150, 191, 230, 416

Point coclass 85, 86, 88
Polygon class 189, 190
Polyline class 61, 193
Polymorphism 61
Primary interop assemblies. See PIA
ProgID

defined 501
Programmable identifier. See ProgID
Property by reference 73, 85, 87
Property by value 73, 87
Property page

defined 501
Propput method 73
Propputref method 73
Proxy object

defined 501
Published Map File. See also PMF

defined 501
Put 448
Put by reference 448
Put by value 448

Q

QI. See Query interface
Query interface

defined 501
Query performance 75
QueryEnvelope method 72
QueryInterface method 62–63, 112

R

RAD 144
Rapid application development. See RAD
Raster

defined 501
Raster Data Objects. See RDO
RasterDataset class 447
RasterSurfaceOp class 427
RCW 146
RDO 35
ReaderControl

ArcReader 46
illustration of application 46

Recycling
defined 501

Reference
defined 502

Regedit 78
defined 502

Register
defined 502

RegisterAssembly method 179
Registration Services class 179

Index.pmd 1/25/2005, 4:56 PM515

516 • ArcGIS Engine Developer Guide

Registry 68, 78
defined 502
regedit. See also Regedit
script 78

Registry file
defined 502

RegSvr32
defined 502

Rehydrate
defined 502

Release method 112. See also IUnknown interface
Render

defined 502
ResourceWriter class 163
ResXResourceReader class 164
ResXResourceWriter class 163, 164
Ring object 190
Runtime callable wrapper. See RCW
Runtime environment

defined 502

S

Scalable
defined 502

Scene object 51
SceneControl

built-in navigation
Navigate property 45

described 45
illustration of application 45
SceneViewer object 45

SceneHookHelper object
described 51

SCM 67, 68
defined 502

Script
defined 502

SDC 35
SDK

described 452
installation

illustration of file setup 452
Serialization

defined 502
Server

defined 502
described 60

Server account
defined 503

Server context
defined 503

Server directory
defined 503

Server library 34
GISServerConnection object 34

ServerContext object 34
Server object

creation time
defined 495

defined 503
Server object isolation

defined 503
Server object type

defined 503
Service control manager. See SCM
Session state

defined 503
Set 87
Set Next Statement command 116
SetHookByRef method 323
Shallowly stateful application

defined 503
ShapefileWorkspaceFactory class 416, 418
ShutdownApp function 437
Singleton

defined 503
Singleton objects 60, 95
Smart pointer

defined 503
SOAP

defined 503
SOC

defined 503
Software developer kit. See SDK
SOM

defined 503
Spatial Analyst library 39
Spatial Data Compressed. See SDC
Spatial extension 436
STA

defined 504
Standalone application

defined 504
Standard Template Library. See STL
StartEditing method 74
StartEditOperation method 74
State

defined 504
Stateful operation

defined 504
Stateless

defined 504
Stateless operation

defined 504
STL 99, 197
StopEditing method 74
StopEditOperation method 74
Stream

defined 504
Structured Query Language

defined 504

Index.pmd 1/25/2005, 4:56 PM516

Index • 517

SXD
defined 504

Synchronization
defined 504

System.Exception class 153
SystemUI library 33

T

TabIndex property 79
Target computer

defined 504
ThisDocument class 94
Thread 67

defined 504
Thread-neutral apartments. See TNA
ThreadingModel registry entry

values of 67
3DAnalyst library 38

Camera object 38
Map object 38
Scene object 38
Target object 38

Tin class 417
TintoPoint class 416
TinToPoint method 417, 420, 422
TLB 166
TNA 67

defined 504
TOCControl

illustration of application 46
ITOCBuddy interface 46
SetBuddyControl method 46

ToMapPoint method 192
Tool

defined 504
ToolbarControl

building applications 50, 51, 52, 53, 54, 55
CommandPool 53
Commands 50
Customize 53
OperationStack 54
ToolbarItem 52
ToolbarMenu 52
updating commands 52

CommandPool
OnCreate method 55

CommandPool object 55
CustomizeDialog

StartDialog method 54
illustration of application 51
IToolbarBuddy interface

CurrentTool property 47
SetBuddyControl method 47

ToolbarControl and GlobeControl
illustration of application 47

ToolbarMenu
hosting as a popup

illustration 53
Type inheritance 60

defined 504
Type library 63, 76, 85, 94. See also TLB

defined 504
TypeOf keyword 89

U

UI
defined 504

UML 442, 443
defined 504

Unicode 119, 202, 204
Unified Modeling Language. See UML
Universally Unique Identifier (UUID). See GUID
UnregisterAssembly method 179
Update method 52
URL

defined 505
Usage time

defined 505
Using this book

chapter guide 19
Utility COM object

defined 505

V

Variant
defined 505

VB 232. See also Visual Basic
defined 505

VBA. See also Visual Basic; Visual Basic for Applications
defined 505

VBE 82
VBScript 65
VBVM 82. See also Visual Basic: Virtual Machine

defined 505
Vector

defined 505
Vector product format. See VPF
Virtual directory

defined 505
Visual Basic 443. See also VB

arrays 80
coding standards

ambiguous type matching 81
arrays 80
bitwise operators 81
default properties 80
indentation 80
intermodule referencing 80

Index.pmd 1/25/2005, 4:56 PM517

518 • ArcGIS Engine Developer Guide

multiple property operations 80
order of conditional determination 80
parentheses 79
type suffixes 81
variable declaration 79
while wend constructs 82

collection object 91
collections 91
creating COM components 92
data types 77
debugging 96–98

with ATL helper object 98
with Visual C++ 97

error handling 81
event handling 87
getting handle to application 94–96
implementing interfaces 93
interfaces and 82–85
Is keyword 90
Magic example 84
memory management 81
methods 87
parameters 88
passing data between modules 88–89
PictureBox 81
starting ArcMap 95
TypeOf keyword 89
variables

Option Explicit 79
Private 79
Public 79

Virtual Machine 82, 85, 86. See also VBVM
Visual Basic 6 development environment

debugging Visual Basic code 96
described 92
getting to an object 95
implementing interfaces 93
referring to a document 94
running ArcMap with a command-line argument 95
setting references to the ESRI object libraries 94

Visual Basic 6 environment
creating COM components 92
described 79
user interface standards 79

Visual Basic Editor. See VBE
Visual Basic for Applications 64
Visual C++

Active Template Library. See ATL
ATL and the ActiveX Controls 123
ATL references 109
coding guidelines 115–140
coding standards

argument names 116, 202
function names 115, 201
type names 115

data types 77

debugging 116–140, 202–251
debugging tips in Developer Studio 116
defined 505
handling COM events in ATL 128
importing ArcGIS type libraries 120
MFC and the ActiveX Controls 125
naming conventions 115
smart types 110
working with ATL 99

Visual Studio .NET
illustrated 16

VPF 35
VTable 65, 93

W

Wait time
defined 505

Web application
defined 505

Web application template
defined 505

Web control
defined 506

Web form
defined 506

Web server
defined 506

Web service
application 492
ArcGIS Server 492
defined 506

Web service catalog
defined 506

WebGeocode object 178
WebMap object 178
WebPageLayout object 178
WebSphere Studio

illustrated 16
Windows Template Library. See WTL
Workspace coclass 74
World Wide Web Consortium

defined 506
WSDL

defined 506
WTL 99

X

XML
defined 506

XML Metadata Interchange
defined 506

XSL
defined 506

Index.pmd 1/25/2005, 4:56 PM518

Index • 519

XSLT
defined 506

Index.pmd 1/25/2005, 4:56 PM519

Index.pmd 1/25/2005, 4:56 PM520

	ArcGIS Engine Developer Guide
	Contents
	Chapter 1: Introducing ArcGIS Engine
	ArcGIS 9 overview
	Overview of ArcGIS Engine
	Who can use ArcGIS Engine?
	ArcGIS Engine capabilities
	Getting started
	Using this book
	Developer resources

	Chapter 2: ArcGIS software architecture
	ArcGIS software architecture
	ArcGIS application programming interfaces
	ArcGIS Engine libraries

	Chapter 3: Developing with ArcGIS Controls
	Working with the ArcGIS controls
	Building applications with the ArcGIS controls

	Chapter 4: Developer environments
	The Microsoft Component Object Model
	Developing with ArcObjects
	The Visual Basic 6 environment
	The Visual Basic 6 development environment
	Visual C++

	.NET application programming interface
	Java application programming interface
	C++ application programming interface

	Chapter 5: Licensing and deployment
	ArcGIS licensing options
	ArcGIS Engine Developer Kit
	Application development and license initialization
	Testing with ArcGIS Engine Runtime
	Deployment

	Chapter 6: Developer scenarios
	Building applications with ActiveX
	Building applications with visual JavaBeans
	Building applications with Windows Controls
	Building applications with C++ and control widgets
	Building a command-line Java application
	Building a command-line C++ application

	Appendix A: Reading the object model diagrams
	Object model key
	Classes and relationships
	Interfaces and members
	Putting it together--An example

	Appendix B: ArcGIS developer resources
	ArcGIS software developer kit
	ArcGIS Developer Online Web site

	Appendix C: Converting personal geodatabases
	Converting data for use with the GIS Server on UNIX

	Appendix D: Installing ArcGIS Engine Runtime on Windows, Solaris, and Linux
	Installing ArcGIS Engine Runtime on Windows
	Installing ArcGIS Engine Runtime on Solaris and Linux

	Glossary
	Index

