
Building a Robust Relational Implementation of Topology

Erik Hoel, Sudhakar Menon, and Scott Morehouse

Environmental Systems Research Institute
380 New York Street
Redlands, CA 92373

{ehoel,smenon,smorehouse}@esri.com

Abstract. Topologically structured data models often form the core of many users’
spatial databases. Topological structuring is primarily used to ensure data integrity; it
describes how spatial objects share geometry. Supporting topology within the context
of a relational database imposes additional requirements – the complex topological
model must retain integrity across transactional boundaries. This can be a problematic
requirement given the complexities associated with implementing safe referential
integrity structures in relational databases (e.g., bulk data loading into a topologically
structured model) [19, 5]. Common implementation techniques such as allowing
dangling pointers (i.e., null foreign keys) complicates the issues for client
applications that consume these models. In this paper, we revisit the problem of
building a robust and scalable relational implementation of a topologically structured
data model. We propose a different approach to representing such models that avoids
many of the traditional relational database problems associated with maintaining
complex semantic models.

1 Introduction

Topological data structures have been used to represent geographic information for over
thirty years [7, 24]. The topological model has been the basis of a number of operational
systems (see, for example TIGER/db [4], ARC/INFO [22], or TIGRIS [14]). These
systems have been based on binary file and in-memory data structures and support a
single-writer editing model on geographic libraries organized as a set of individual map
sheets or tiles.

Recent developments in geographic information systems have moved to database-
centered information models. One aspect of this work has been to replace the file system
with a relational database engine as the persistence mechanism for geographic information.
However, replacement of the physical I/O layer is only one aspect to consider when
designing a "database GIS". Other aspects of the database concept must also be
considered.
• What is the generic spatial information model and what are the associated spatial

operators?
• How does the design support multiple, simultaneous writers?
• How is the semantic integrity of the data model declared, maintained, and enforced?
• How to design a system which performs well and can scale to support hundreds of

simultaneous users?

In Advances in Spatial and Temporal Databases. Proceedings of the 8th International
Symposium on Spatial and Temporal Databases. SSTD 2003. Santorini Island, Greece,
July 2003, Springer-Verlag Lecture Notes in Computer Science 2750.

2 E. Hoel, S. Menon, and S. Morehouse

• How to design a system which can support very large continuous spatial databases,
containing millions of geographically interrelated objects (e.g., the road network of the
United States or the land ownership fabric of Austria)?

Database GIS involves more than simply exporting classic GIS data structures to a
normalized relational schema. Database GIS must also address the functional aspects of
being a database as well: the integrity model, the transaction model, and
performance/scalability issues. Otherwise database GIS implementations run the risk of
becoming "off-line data repositories" (at best) or "write-only databases" (at worst).

The representation of topological data models using relational database concepts and
engines should be of interest to the database research community as well as to geographic
information scientists. The data model serves as an excellent case study for considering
problems of information modeling and, especially, for evaluating architectures for the
management of semantic integrity.

In this paper, we describe a design for modeling GIS topology using relational concepts
and database engines. This design is the basis for our implementation of topology in the
ArcGIS geographic information system.

In the first section, we introduce the logical model of GIS topology. We then consider a
physical database implementation using the conventional notions for mapping entities and
relationships to tables and the conventional primary key / foreign key referential integrity
model. Problems in this approach are discussed. We then present an alternative
implementation of the topology model which uses an unconventional approach to the
problem of database integrity and transaction management.

2 What is GIS Topology?

Topological data structures for representing geographic information are a standard topic in
geographic information science (see [Güti95], for example, for an excellent definition of
the mathematical theory underlying this information model). In general, the topological
data model represents spatial objects (point, line, and area features) using an underlying set
of topological primitives. These primitives, together with their relationships to one another
and to the features, are defined by embedding the feature geometries in a single planar
graph. Such datasets are said to be "topologically integrated".

The model associates one or more topological primitives (i.e., nodes, edges, and faces
[16]; or 0-cells, 1-cells, and 2-cell in the TIGER parlance [3, 8]) with spatial objects of
varying geometry type (i.e., points, lines, and polygons respectively). More specifically, a
feature with point geometry is associated with a single node element, a feature with line
geometry is associated with one or more edge elements, and a feature with polygon
geometry is associated with one or more face elements. This is depicted in Fig. 1 as the
generic topology model.

In Advances in Spatial and Temporal Databases. Proceedings of the 8th International
Symposium on Spatial and Temporal Databases. SSTD 2003. Santorini Island, Greece,
July 2003, Springer-Verlag Lecture Notes in Computer Science 2750.

Building a Robust Relational Implementation of Topology 3

Topological Primitives

Point
geometry

Line
geometry

Polygon
geometry

Node
geometry

Edge
geometry

Face
geometry

* * *

2 * * 2

*1 *

Fig. 1. Generic topology model

There are additional relationships between the topological elements themselves as is also
shown in Fig. 1. A node element may or may not be associated with a collection of edge
elements. A face element may be associated with one or more edge elements. Finally, an
edge element is associated with two node elements and two face elements. The
relationships between nodes and faces may either be implicit or explicit. We have
represented these relationships between nodes and faces as implicit within Fig. 1.

A concrete example, showing a specific instance of this model is shown in Fig. 2. The
database consists of three classes which represent real geographic entities: Parcels, Walls,
and Buildings. In the example, there is one instance of each class. In practice, these classes
could contain millions of instances. The wall and the building are coincident with the
western boundary of the parcel as shown.

B1
F2 F1

P1

E1

E3

N1

N2

N3

N4

E2

E4

E5

W1

ID

P1 (0,0),(0,3),(0,7),(0,8),(8,8),(8,0),(0,0)

Vertices

F1, F2

Faces

-E5,+E4,-E2,+E1

Edges

Parcels

ID

W1 (0,10),(0,7),(0,3),(0,0)

Vertices

+E2,-E4,+E5

Edges

Walls

ID

B1 (0,3),(0,7),(5,7),(5,3),(0,3)

Vertices

F2

Faces

+E3,+E4

Edges

Buildings

ID

N1 (0,0)

Vertex

-E1,-E5

Edges

Nodes

-

Features

N2 (0,3) +E4,-E3,+E5 -

N3 (0,7) -E2,-E3,-E4 -

N4 (0,10) +E1,+E2 -

ID

E1

Edges

-

Features

(0,10),(8,10),(8,0),(0,0)

Vertices

N4

From

N1

To

F0

Left

F1

Right

E2 W1(0,10),(0,7) N4 N3 F1 F0

E3 -(0,7),(5,7),(5,3),(0,3) N3 N2 F1 F2

E4 W1(0,3),(0,7) N2 N3 F1 F2

E5 W1(0,3),(0,0) N2 N1 F1 F0

ID

F0

Faces

-

Features

(0,0),(8,0),(8,10),(0,10),(0,0)

Vertices

+E2,-E4,+E5,-E1

Edges

F1 P1(0,10),(8,10),(8,0),(0,0),(0,3),(5,3),(0,7),(0,10) +E1,-E5,-E3,-E2

F2 P1,B1(0,7),(5,7),(5,3),(0,3),(0,7) +E3,+E4
Fig. 2. An instance of the generic topology model

In Advances in Spatial and Temporal Databases. Proceedings of the 8th International
Symposium on Spatial and Temporal Databases. SSTD 2003. Santorini Island, Greece,
July 2003, Springer-Verlag Lecture Notes in Computer Science 2750.

4 E. Hoel, S. Menon, and S. Morehouse

It is interesting to note that the objects have both set and list-based properties. For
example, the geometry of an edge is defined by a list of coordinates and the object
references to the edges participating in a line feature (e.g., W1) are ordered and oriented to
properly represent the orientation of the linear feature. Edges and vertices of polygons are
oriented clockwise (with the interior of the polygon on the right). For clarity, we have
showed attributes, such as object geometries, redundantly in multiple object classes. In
some physical implementations of the model, these geometries would only be stored once,
on edge primitives for example, and instantiated via queries for other features.

After examining this example, it is clear that the logical topology model is a complex
graph model, containing ordered object associations based on the geometric embedding of
the objects in two-dimensional space. It should also be clear that common queries, such as
"draw a map of all buildings" or "find features contained within a given parcel" require
ordered navigations of relationships, not simply set operations.

Given the inherent complexity of this representation, it is important to reflect upon why
people want topology in their spatial datasets in the first place – i.e., what are the
fundamental requirements. At a high level, topology is employed in order to:

• Manage shared geometry (i.e., constrain how features share geometry).
• Define and enforce data integrity rules (e.g., no gaps between features, no overlapping

features, and so on).
• Support topological relationship queries and navigation (e.g., feature adjacency or

connectivity).
• Support sophisticated editing tools (tools that enforce the topological constraints of the

data model).
• Construct features from unstructured geometry (i.e., polygons from lines).

The logical topology model provides a theoretical basis for this functionality. For example,
the constraint "buildings must not overlap one another" can be expressed by the topology
constraint "faces may only be associated with a single feature of type building". Similarly,
the problem of creating polygons from unstructured lines can be stated as: "calculate
edges, faces, and nodes from lines; create a feature on top of each resulting face".

In GIS, topology has historically been viewed as a physical spatial data structure that
directly implements the objects of the logical topology model. However, it is important to
realize that this physical data structure is only useful because it is a tool for data integrity
management, spatial queries / navigation and other operators. It is possible to consider
alternate implementations of the logical topology model which also support this
functionality. In effect, topology must be considered as a complete data model (objects,
integrity rules, and operators), not simply as storage format or set of record types.

3 Conventional Physical Implementation

The logical topology model can be implemented for relational database engines in a
straight forward fashion as a normalized relational model with explicit representation of
topological primitives using keys (primary and foreign) to model the topological
relationships (see Fig. 3). We can call this the conventional relational topology model.

In Advances in Spatial and Temporal Databases. Proceedings of the 8th International
Symposium on Spatial and Temporal Databases. SSTD 2003. Santorini Island, Greece,
July 2003, Springer-Verlag Lecture Notes in Computer Science 2750.

Building a Robust Relational Implementation of Topology 5

Join Tbls

Topological Primitives

Point x Node
fid
nodeId

Line x Edge
fid
edgeId

Polygon x Face
fid
faceId

Node
geometry

Edge
geometry
from, to
left, right

Face
Geometry()

* * *

2 * * 2

Point
fid
Geometry()

Line
fid
Geometry()

Polygon
fid
Geometry()

*1 *

Fig. 3. Conventional relational topology model with join tables (e.g., Line x Edge)

This implementation uses referential integrity constraints [13, 20] to declare integrity rules
for the topology. Join tables are employed to support many-to-many relationships between
the features and their associated topological primitives (in databases which support array
types, the join tables may be replaced by lists of foreign keys embedded in the feature and
primitive tables). In addition, the geometry of the features is normalized - that is, it is
assembled from their associated topological primitives. Fig. 4 illustrates our sample
dataset example in this model.

B1
F2 F1

P1

E1

E3

N1

N2

N3

N4

E2

E4

E5

W1

ID

P1

Parcels
ID

W1

Walls
ID

B1

Buildings

ID

N1

Nodes

N2

N3

N4

ID

E1

Edges

(0,10),(8,10),(8,0),(0,0)

Vertices

N4

From

N1

To

F0

Left

F1

Right

E2 (0,10),(0,7) N4 N3 F1 F0

E3 (0,7),(5,7),(5,3),(0,3) N3 N2 F1 F2

E4 (0,3),(0,7) N2 N3 F1 F2

E5 (0,3),(0,0) N2 N1 F1 F0

ID

F0

Faces

F1

F2

Parcel

P1

Parcel x Face

F1

Face

P1 F2

Wall

W1

Wall x Edge

E2

Edge Order

1 +

Orientation

W1 E4 2 -

W1 E5 3 +

Parcel

B1

Building x Face

F2

Face

Fig. 4. An example instance of the conventional relational implementation

There are a number of advantages to this physical implementation. First, there is a direct
and rather trivial mapping to the logical topology model. There is conceptual comfort for
many users because all of the topological primitives are explicitly persisted, as are many of

In Advances in Spatial and Temporal Databases. Proceedings of the 8th International
Symposium on Spatial and Temporal Databases. SSTD 2003. Santorini Island, Greece,
July 2003, Springer-Verlag Lecture Notes in Computer Science 2750.

6 E. Hoel, S. Menon, and S. Morehouse

the primitive topological relationships. The geometry itself is only represented once within
the database. Finally, there is a degree of client independence given that the topological
primitives and relationships can be edited using standard SQL updates.

However, there are a number of serious problems with this implementation, these relate
to:

• the performance of typical queries,
• the maintenance of semantic integrity in the model, and
• the performance and complexity of typical updates.

3.1 Query Performance

Although this implementation eliminates redundant storage of geometric information for
features, complex queries are required to instantiating the features’ geometry (the most
common query for most GIS software) [28]. For example, to fetch the geometry of the
parcel P1, a query must combine information in four tables (Parcels, Parcel x Face, Faces,
and Edges) and use external geometric/topological logic to correctly assemble the
geometry of the Parcel. When this query must be performed iteratively – to draw all
parcels, for example – we end up nesting complex queries or executing nested cursors in
the application code. In general, navigational access to relationships (dereferencing
pointers) is significantly slower with relational technology that with other technologies
(e.g., object databases [17]).

3.2 The Integrity Mechanism

A more fundamental problem relates to the integrity of the database. Despite the use of
(and paying the performance cost for) referential integrity constraints, the integrity and
consistency of the topology data model cannot actually be defined using the conventional
referential integrity model! Referential integrity constraints simply declare that "if a
foreign key is not null, then the referenced primary key exists". This is a very weak (one
might almost say meaningless) basis for managing the integrity of the topological data
model. For a consistent state of the data model, there must be no null references and the
geometry of the primitives must be consistent with the objects and references. The
conventional referential integrity model has no means for declaring such "semantic"
constraints, much less enforcing them.

The integrity of a topology is a global property of the set of entities comprising the
topology, rather than constraints or behavior attached to individual entities. Topology
integrity must be validated by considering a complete set of updates as a whole. This
validation logic must analyze the geometric configuration of features in the changed area
to ensure that the topology primitives and relationships are correct. This validation logic
executes externally to the core relational integrity model.

It is possible to execute arbitrary business logic in response to data updates using
triggers. Such a mechanism could be used to accumulate change information, and then
execute global validation logic. However, active relational databases (i.e., those supporting
constraint and trigger mechanisms) continue to have lingering implementation and
performance drawbacks [5, 26]. Database extensions that are implemented as trigger-based
services (that may or may not be automatically generated) where the complexity of the

In Advances in Spatial and Temporal Databases. Proceedings of the 8th International
Symposium on Spatial and Temporal Databases. SSTD 2003. Santorini Island, Greece,
July 2003, Springer-Verlag Lecture Notes in Computer Science 2750.

Building a Robust Relational Implementation of Topology 7

domain is non-trivial (e.g., business rules, supply chain management, rule-based inference
systems, and topology) suffer from several fundamental problems:

• difficulty of implementation (subtlety of behavior, primitive debugging tools),
• performance problems and scalability with complex trigger collections (lack of

sophistication of trigger processors), and
• lack of uniformity (portability between RDBMSs, though this will be helped by the

SQL-99 standard [11]).

For these reasons, complex semantic behavior (also known as the business objects) is more
commonly implemented in shared code running in an application server tier.

3.3 Complexity of Updates

Simple edits to a topological data model can result in a complex sequence of changes to
the associated topology primitives and relationships. Consider a simple edit to the sample
dataset of Fig. 4: let's move the building one unit to the right. The changes necessary in the
data model are shown in Fig. 5.

B1
F2 F1

P1

E1

E6

N1

N5

N4

E7

W1

ID

P1

Parcels
ID

W1

Walls
ID

B1

Buildings

ID

N1

Nodes

N2

N3

N4

ID

E1

Edges

N4

From

N1

To

F0

Left

F1

Right

E2 N4 N3 F1 F0

E3 N3 N2 F1 F2

E4 N2 N3 F1 F2

E5 N2 N1 F1 F0

ID

F0

Faces

F1

F2

Parcel

P1

Parcel x Face

F1

Face

P1 F2

Wall

W1

Wall x Edge

E2

Edge Order

1 +

Orientation

W1 E4 2 -

W1 E5 3 +

Parcel

B1

Building x Face

F2

Face

W1 E7 1 +

E6 N5 N5 F1 F2

E7 N4 N1 F1 F2

(0,10),(8,10),(8,0),(0,0)

Vertices

(0,10),(0,7)

(0,7),(5,7),(5,3),(0,3)

(0,3),(0,7)

(0,3),(0,0)

(1,7),(6,7),(6,3),(1,3),(1,7)

(0,10),(0,0)

N5

Fig. 5. An example instance of the conventional relational implementation. In this example,
deleted rows are indicated with the horizontal strike through; new rows are in italics

This edit to the geometry of a single feature requires that we validate the geometry and
topology of the effected area. The edit requires updates and inserts to multiple tables:
Edges, Nodes, and Edges x Walls. These updates must either be made correctly by the
application prior to executing the validation logic.

In Advances in Spatial and Temporal Databases. Proceedings of the 8th International
Symposium on Spatial and Temporal Databases. SSTD 2003. Santorini Island, Greece,
July 2003, Springer-Verlag Lecture Notes in Computer Science 2750.

8 E. Hoel, S. Menon, and S. Morehouse

The example also raises an interesting point related to the "lifecycle semantics" of
topological primitives. These spatial objects do not correspond to any feature in either the
real or legal-boundary worlds [25]. They exist solely as constructs of the topology for a
given configuration of features. How is "identity" defined for such objects? In the
example, did we replace edges E2, E4, and E5 with E7 or should we have updated one of
the existing edges? These lead to additional complexity when we deal with identifier
generation, historical data management, and other factors. By making topological
primitives explicit entities in the model, we have another set of business objects to
manage.

Update operations on the explicit topology implementation are complex (irrespective of
whether stored procedures/triggers or client-side code is employed). This complexity is
closely related to performance concerns when persisting topological primitives in
relational databases. The performance difference can be quite significant when compared
with existing file-based topology solutions (e.g., orders of magnitude). It is important to
note that the increased server side processing required with the complex trigger
mechanisms will impact server scalability [5].

These considerations, reinforced by practical experience implementing the normalized
model using prototype software led to the development of an alternative approach,
described in the following section.

4 Alternative Physical Implementation

In order to address some of the problems inherent in the conventional topology physical
implementation, we describe a new model that is currently hosted within the ArcGIS
Geodatabase [10, 32]. With this model, we make three fundamental departures. First, we
relax the conventional transactional model and allow the incremental validation of the
topology (i.e., validation is performed as a bulk process at certain user-defined intervals or
events). Thus, features with geometry that has not been topologically validated can be
maintained within the model. This has a significant impact upon the user’s editing
experience where each individual edit operation does not need to topologically restructure
the area being edited. Second, we cache geometry in the features rather than only in the
topological primitives in order to eliminate relationship navigation for common queries
(e.g., drawing the features). Third and finally, we use logic external to the relational
database for geometric and topological validation.

Topological Primitives

Point
geometry

Line
geometry

Polygon
geometry

Node
geometry

Edge
geometry

Face
geometry

* * *

2 * * 2

*1 *

Fig. 6. Geodatabase topology model

It is possible in the generic model (r.e., Fig. 1) to obtain topological primitives from
feature geometry; similarly, it is possible to obtain feature geometry from topological

In Advances in Spatial and Temporal Databases. Proceedings of the 8th International
Symposium on Spatial and Temporal Databases. SSTD 2003. Santorini Island, Greece,
July 2003, Springer-Verlag Lecture Notes in Computer Science 2750.

Building a Robust Relational Implementation of Topology 9

primitives [28]. Effectively, the geometry found in features is a dual representation of the
geometry that would be found on the topological primitives. We have chosen to simplify
and streamline the generic explicit topology model and to not persist both representations.

The topological primitives are not persisted as a special type of feature; instead, feature
geometry is persisted and topological primitives (along with their geometry) are inferred.
The process of topological integration (validation) results in vertex equality where features
share underlying topological primitives. Given vertex equality, reconstruction of
topological primitives is straight forward. Vertices on feature geometries in this scheme
play the same role as that assigned to embedded foreign keys in data structures that
explicitly model topological primitives.

Topological primitives and relationships are only instantiated during the process of
topological validation or when required by the client application (note that this aspect is
similar to MGE where topology is selectively built but the topological primitives are not
persisted in the RDBMS [15]). The primary reason for this alternative approach is that it is
easier (faster, more scalable) to recreate an index (e.g., the topological primitives) than to
do all the bookkeeping necessary to persist and retrieve it from the database while
preserving the database transaction model (note that we have also found the same to be
true when modeling networks as well as surfaces – i.e., TINs). Additionally, it is
frequently the case that the portion of the topological primitives necessary for an operation
is small relative to the entire topology (e.g., editing a few block groups in a localized area
within TIGER).

It is important to note that for this approach to be viable from a performance standpoint,
it is critical that there exist a high performance topology engine that validates the portion
of the topology in question (see the description below) as well as instantiate the
topological primitives for the given collection of features within the topology [29, 30].

B1
F2 F1

P1

E1

E3

N1

N2

N3

N4

E2

E4

E5

W1

ID

P1

Vertices

Parcels

ID

W1 (0,10),(0,7),(0,3),(0,0)

Vertices

Walls

ID

B1 (0,3),(0,7),(5,7),(5,3),(0,3)

Vertices

Buildings

ID

R1 Parcels no overlap

Rule type

Topology Rules Dirty Area

...

VerticesID

E1

Topology Errors

-

Feature

-

Rule type

-

IsException

R2 Buildings no overlap

...

Vertices

(0,0),(0,3),(0,7),(0,10),(8,10),(8,0),(0,0)

Fig. 7. An example instance of the Geodatabase topology implementation

At a high level, topology within the Geodatabase consists of a collection of feature classes
(homogeneous collections of features), topology rules, and other metadata used to support
the validation model. This metadata includes dirty areas, topology errors, and the cluster
tolerance. An example instance of the topology implementation is shown in Fig. 7.

In Advances in Spatial and Temporal Databases. Proceedings of the 8th International
Symposium on Spatial and Temporal Databases. SSTD 2003. Santorini Island, Greece,
July 2003, Springer-Verlag Lecture Notes in Computer Science 2750.

10 E. Hoel, S. Menon, and S. Morehouse

4.1 Topology Rules

Topological integrity is defined with respect to a collection of topology rules. Topology
rules are used to define constraints on the permissible topological relationships between
features in one or more feature classes that participate in the topology. Topology rules are
considered part of the topology metadata; they are not considered metadata associated with
the feature classes that participate in the topology. The collection of topology rules that are
associated with the topology are selected on the basis of which topological relationships
are important for the user’s model. There is no fixed set of topology rules that are
associated with all topologies; instead, topologies may be specified with zero or more rules
(note that one significant utility of a topology without any topology rules is that
Milenkovic’s third normalization rule – see Section 3.2 - are enforced on the features as a
byproduct of validation).

Topology rules are checked when the topology is validated. When a topology rule is
violated, a topology error object is generated. This topology error may be represented as a
special type of feature that may itself be persisted. At a later point following the validation,
the user may then review the topology error objects and the error conditions may be
corrected. Topology rule violations do not prevent the validation operation from
successfully completing.

Examples of topological rules that may be applied to polygon features include:

• The interiors of polygons in a feature class must not overlap (they may however
share edges or vertices).

• Polygons must not have voids within themselves or between adjacent polygons
(they may share edges, vertices, or interior areas).

• Polygons of one feature class must share all their area with polygons in another
feature class (i.e., they must cover each other).

• The boundaries of polygon features must be covered by lines in another feature
class.

There are of course numerous other topology rules that may be specified for each of the
different geometry types. Note that it would also be possible for a system to be designed
where all topology rules were specified using Clementini relationships [6] or the 9-
Intersection model [9].

4.2 Validation

The validation process is a fundamental operation on a topology performed by a topology
engine [29, 30]. The validation process on a topology is responsible for ensuring
Milenkovic’s third normalization rule [21] on all spatial objects participating in the
topology are respected (i.e., no intersecting edges, no edge endpoints within the tolerance,
no edge endpoints within the tolerance of another edge). In addition, the validation process
is responsible for checking all specified topology rules and generating topology errors at
locations where rules are violated.

The basic processing flow for the validation process within the topology engine is as
follows:

• Load all the feature geometries and associated topology metadata (topology rules,
feature class weights, and cluster tolerance).

In Advances in Spatial and Temporal Databases. Proceedings of the 8th International
Symposium on Spatial and Temporal Databases. SSTD 2003. Santorini Island, Greece,
July 2003, Springer-Verlag Lecture Notes in Computer Science 2750.

Building a Robust Relational Implementation of Topology 11

• Crack, cluster, classify, and topologically structure the nodes and edges.
• Create new topology error instances when topology rules are found to be in violation.

Delete pre-existing error instances if the rules are no longer in violation.
• Update the feature geometries as necessary (i.e., if their geometries were modified

during the establishment of the Milenkovic conditions).
• Update the dirty areas associated with the topology.

It is important to note that the validation process does not need to span all features within
the topology dataset. A validation can be performed on a subset of the space spanned by
the dataset. This is a complex task given that it will require the validation of topology rules
using partial information (e.g., certain error instances may only be partially contained
within the region being validated).

4.3 Dirty Areas

A topology can have an associated dirty area – a dirty area corresponds to the regions
within the topology extent where features participating in the topology have been modified
(added, deleted, or updated) but have yet to be validated. When the geometry of a feature
that participates in a topology is modified, the extent of the dirty area is enlarged to
encompass the extent of the bounding rectangle of the modified geometry (note that other
simplified geometry representations may also be employed - e.g., convex hulls). This is
depicted in Fig. 8. The dirty area is persisted with the topology. In order to ensure that the
topology is correct, the topology in the dirty areas will need to be validated.

initial state edit covering dirty area
Fig. 8. Example of dirty area creation following a feature edit. The dirty area is depicted by the
hatched square

It is not necessary to validate the entire space spanned by the dirty area at one time;
instead, a subset of the dirty area can be validated. If the dirty area is partially validated,
the original dirty area will be clipped by the extent of the region that is validated.

Allowing users the ability to validate a portion of the dirty area is a pragmatic
requirement of supporting extremely large seamless topologies – for example, when a
topology is first created, or when the topology metadata (e.g., topology rules, etc.) is
modified, the entire extent of the topology is dirty. If users were not provided with the
capability to validate a portion of the dirty area, the user would be required to validate the
entire topology which could prove to be a very lengthy process (e.g., up to a week of
processing time for large topological datasets derived from TIGER/Line Files [27]). This
would be impractical for large enterprise datasets.

In Advances in Spatial and Temporal Databases. Proceedings of the 8th International
Symposium on Spatial and Temporal Databases. SSTD 2003. Santorini Island, Greece,
July 2003, Springer-Verlag Lecture Notes in Computer Science 2750.

12 E. Hoel, S. Menon, and S. Morehouse

4.4 Topology Errors and Exceptions

A topology error is generated for each instance of a topology rule that is determined to be
invalid during the validation process (an example is shown in Fig. 9). Topology rules are
commonly specified as a required topological relationship that must hold between
collections of features in one or more feature classes. Topology errors are associated with
the topology; inspection of the error will enable a user to determine why the error was
generated. Topology errors have an associated geometry that is used to position the error
in the topology dataset. Topology errors are persisted with the topology.

initial state edit and dirty area topology error

validate

Fig. 9. Example of an edit (polygon creation) followed by a validation where the topology rule is
“polygons must not overlap”. The generated topology error is depicted by the black diamond

We have observed with large enterprise topologies that it is sometimes the case that certain
topology error instances are acceptable. For example, within the Census Bureau’s
TIGER/db [4] DB system, there is a general rule that American Indian Reservations may
not overlap. There are however two instances where this general rule is purposefully
violated (e.g., the Lualualei and Mashantucket Pequot reservations in Hawaii, and the
Spokane and Schaghticoke reservations in Washington). In order to support such topology
error instances where the topology rules are purposefully violated, we add an attribute to a
topology error that indicates whether or not the topology error is actually an exception (to
the rule). Marking purposeful topology errors as exceptions allows other clients of the
topology to handle them in appropriate manners (e.g., report generators that indicate the
number of errors in the topology – this is often used as a quantitative measure of quality
within the topological dataset). Note that it should also be possible to demote an exception
to error status.

4.5 Complexity of Updates

Simple edits to the Geodatabase topological data model can result in rather simple changes
to the associated topology metadata (e.g., dirty areas). Consider a simple edit to the sample
dataset of Fig. 7 where the building is moved one unit to the right. The changes necessary
in the data model are shown in Fig. 10. More specifically, the geometry of the building
feature is updates and the dirty area extent of the topology is unioned with the initial and
final geometry of the building that was updated (i.e., the polygon (0,3),
(0,7),(6,7),(6,3),(0,3)). No other modifications to the persisted representation are
necessary.

In Advances in Spatial and Temporal Databases. Proceedings of the 8th International
Symposium on Spatial and Temporal Databases. SSTD 2003. Santorini Island, Greece,
July 2003, Springer-Verlag Lecture Notes in Computer Science 2750.

Building a Robust Relational Implementation of Topology 13

B1
F2 F1

P1

E1

E6

N1

N5

N4

E7

W1

ID

P1 (0,0),(0,3),(0,7),(0,10),(8,10),(8,0),(0,0)

Vertices

Parcels

ID

W1 (0,10),(0,7),(0,3),(0,0)

Vertices

Walls

ID

B1 (1,3),(1,7),(6,7),(6,3),(1,3)

Vertices

Buildings

ID

R1 Parcels no overlap

Rule type

Topology Rules Dirty Area

…, (0,3),(0,7),(6,7),(6,3),(0,3)

VerticesID

E1

Topology Errors

-

Feature

-

Rule type

-

IsException

R2 Buildings no overlap

...

Vertices

Fig. 10. An example instance of the Geodatabase topology implementation following an update to
the building geometry (r.e., Fig. 7). In this example, updated rows are in italics (i.e., the geometry of
the building and the vertices of the dirty area)

5 Implementation Experience

This new topology model has been implemented and is currently shipping with ESRI’s
ArcGIS 8.3 product. It is fully supported within a multi-user versioned database
environment. It has been used to validate very large topologies, including a dataset derived
from the features contained within the entire collection of the Census Bureau’s
TIGER/Line files (53.5 million features; 30 million lines, 23.5 million polygons [18]). A
small portion of this dataset in the vicinity of the U.S. Capitol in Washington, DC is shown
in Fig. 11. Other large datasets that have been validated are summarized in Table 1.

Table 1. Summary statistics of large topologies validated

Dataset feature count topology rule count

TIGER (U.S. National) 53.5 million 83

LPI, New South Wales, Australia 22.6 million 41

Cook County Assessor (Illinois) 4.3 million 16

Calgary Legal Cadastre (Canada) 2.1 million 5

In Advances in Spatial and Temporal Databases. Proceedings of the 8th International
Symposium on Spatial and Temporal Databases. SSTD 2003. Santorini Island, Greece,
July 2003, Springer-Verlag Lecture Notes in Computer Science 2750.

14 E. Hoel, S. Menon, and S. Morehouse

Fig. 11. Example of the TIGER dataset taken from the vicinity of the U. S. Capitol in Washington,
DC

6 Conclusion

In this paper we described the logical model of GIS topology. We considered a common
physical database implementation using the conventional notions for mapping entities and
relationships to tables and the conventional primary key / foreign key referential integrity
model. Problems in this approach were discussed. We then presented an alternative
implementation of the topology model which used an unconventional approach to the
problem of database integrity and transaction management.

The presented design serves as the basis for our implementation of topology in the
ArcGIS geographic information system. This new models offers increased flexibility in
terms of defining which rules constitute a valid topology. This topology model is
supported in a multi-user long transaction (i.e., versioned) environment where multiple
users may simultaneously edit the same geographic area within the topology extent. This
new model has been implemented and is currently shipping with the ArcGIS 8.3 product.

Our future work will focus on experimentation with dirty area management policies that
are more useful for the client (i.e., require less revalidation) without incurring considerable

In Advances in Spatial and Temporal Databases. Proceedings of the 8th International
Symposium on Spatial and Temporal Databases. SSTD 2003. Santorini Island, Greece,
July 2003, Springer-Verlag Lecture Notes in Computer Science 2750.

Building a Robust Relational Implementation of Topology 15

computational expense during version reconcile, applying the dirty area model to
effectively support partial processing in other computationally intensive areas of GIS,
supporting this topology model in the distributed database environment, as well as other
performance enhancements.

Acknowledgements. Numerous other individuals within ESRI Development were
involved in the design and implementation of this topology model in the ArcGIS 8.3
product. Key developers included Jeff Jackson, Jim Tenbrink, and Jan van Roessel. Other
large contributors to this work included Tom Brown, Craig Gillgrass, Wayne Hewitt,
Andy MacDonald, Doug Morganthaler, Jeff Shaner, and François Valois.

References

1. P. Alexandroff. Elementary Concepts of Topology. Dover Publications, New York, 1961.
2. B. Baumgart. Winged-edge Polyhedron Representation. Technical Report STAN-CS-320,

Computer Science Department, Stanford University, Stanford, CA, 1972.
3. G. Boudriault. Topology in the TIGER File. In Proceedings of the 8th International Symposium

on Computer Assisted Cartography (Auto-Carto 8), Baltimore, MD, 1987.
4. F. Broome and D. Meixler. The TIGER Data Base Structure. Cartography and Geographic

Information Systems, 17 (1), January 1990.
5. S. Ceri, R. Cochrane, and J. Widom. Practical Applications of Triggers and Constraints:

Successes and Lingering Issues. In Proceedings of the 26th International Conference on Very
Large Data Bases (VLDB’00), Cairo, Egypt, 2000.

6. E. Clementini, P. Di Felice, and P. van Oosterom. A Small Set of Formal Topological
Relationships Suitable for End-User Interaction. In Proceedings of the Third International
Symposium on Large Spatial Databases (SSD’93), Singapore, June, 1993.

7. D. Cooke, and W. Maxfield. The Development of a Geographic Base File and its Uses for
Mapping. In Urban and Regional Information Systems for Social Programs: Papers from the
Fifth Annual Conference of the Urban and Regional Information Systems Association. Kent,
OH: Center for Urban Regionalism, Kent State University, 1967.

8. J. Corbett. Topological Principles in Cartography. Technical Paper 48. Bureau of the Census,
Washington, DC, 1979.

9. M. Egenhofer and J. Herring. Categorizing Binary Topological Relations Between Regions,
Lines, and Points in Geographic Databases. Technical Report, Department of Surveying
Engineering, University of Maine, 1990.

10. ESRI. Building a Geodatabase. Prepared by Environmental Systems Research Institute, ESRI
Press, Redlands, CA, 2002.

11. P. Gulutzan and T. Pelzer. SQL-99 Complete, Really. Miller Freeman, Lawrence, Kansas, 1999.
12. R. Güting. Realm-Based Spatial Data Types: The ROSE Algebra. VLDB Journal, 4 (2), 1995.
13. M. Hammer and D. McLeod. Semantic Integrity in a Relational Database System. In

Proceedings of the 1st International Conference on Very Large Data Bases (VLDB’75),
Framingham, Massachusetts, September 1975.

14. J. Herring. TIGRIS: Topologically Integrated Geographic Information System. In Proceedings
of the 8th International Symposium on Computer Assisted Cartography (Auto-Carto 8),
Baltimore, MD, 1987.

15. Intergraph Corp. GIS: The MGE Way. Intergraph Technical Paper, October 1995.
16. ISO TC 211/WG 2. Geographic Information – Spatial Schema. Technical Report, Second Draft

of ISO 19107, International Organization for Standardization, 1999.
17. W. Kim, editor. Modern Database Systems: The Object Model, Interoperability, and Beyond.

ACM Press, New York, 1995.
18. C. Kinnear. The TIGER Structure. In Proceedings of the 8th International Symposium on

Computer Assisted Cartography (Auto-Carto 8), Baltimore, MD, 1987.

In Advances in Spatial and Temporal Databases. Proceedings of the 8th International
Symposium on Spatial and Temporal Databases. SSTD 2003. Santorini Island, Greece,
July 2003, Springer-Verlag Lecture Notes in Computer Science 2750.

16 E. Hoel, S. Menon, and S. Morehouse

19. V. Markowitz. Safe Referential Integrity Structures in Relational Databases. In Proceedings of
the 17th International Conference on Very Large Data Bases (VLDB’91), Barcelona, September
1991.

20. W. May and B. Ludäscher. Understanding the Global Semantics of Referential Actions using
Logic Rules. ACM Transactions on Database Systems, 27 (4), December 2002.

21. V. Milenkovic. Verifiable Implementations of Geometric Algorithms Using Finite Precision
Arithmetic. In Geometric Reasoning, The MIT Press, Cambridge, Massachusetts, 1989.

22. S. Morehouse. ARC/INFO: A Geo-Relational Model for Spatial Information. In Proceedings of
the 7th International Symposium on Computer Assisted Cartography (Auto-Carto 7),
Washington, DC, March 1985.

23. J. Munkres. Topology. Second Edition, Prentice-Hall, Englewood Cliffs, New Jersey, 2000.
24. T. Peucker and N. Chrisman. Cartographic Data Structures. In The American Cartographer, 2

(2), April 1975.
25. P. Rigaux, M. Scholl, and A. Voisard. Spatial Databases with Application to GIS. Morgan

Kaufmann, San Francisco, 2002.
26. E. Simon and A. Kotz-Dittrich. Promises and Realities of Active Database Systems. In

Proceedings of the 21st International Conference on Very Large Data Bases (VLDB’95),
Zürich, Switzerland, 1995.

27. U. S. Census Bureau. 2002 TIGER/Line Technical Documentation. Prepared by the U. S.
Census Bureau, Washington, DC, 2002.

28. P. van Oosterom, J. Stoter, W. Quak, and S. Zlantanova. The Balance Between Geometry and
Topology. In Proceedings of the 2002 Symposium on Spatial Data Handling (SDH’02), Ottawa,
Canada, July 2002.

29. J. van Roessel. A New Approach to Plane-Sweep Overlay: Topological Structuring and Line-
Segment Classification. Cartography and Geographic Information Systems, 18 (1), 1991.

30. J. van Roessel. Supporting Multi-Layer Map Overlay and Shared Geometry Management in a
GIS. In Computational Cartography – Cartography Meets Computational Geometry, Dagstuhl
Seminar Report 252, M. Molenaar, M. van Krefeld, and R. Weibel, editors, September 1999.

31. P. Watson. Topology and ORDBMS Technology. Laser-Scan White Paper, Laser-Scan Ltd.,
January 2002.

32. M. Zeiler. Modeling Our World: The ESRI Guide to Geodatabase Design. ESRI Press,
Redlands, CA, 1999.

In Advances in Spatial and Temporal Databases. Proceedings of the 8th International
Symposium on Spatial and Temporal Databases. SSTD 2003. Santorini Island, Greece,
July 2003, Springer-Verlag Lecture Notes in Computer Science 2750.

