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Abstract. Topologically structured data models often form the core of many users’ 
spatial databases. Topological structuring is primarily used to ensure data integrity; it 
describes how spatial objects share geometry. Supporting topology within the context 
of a relational database imposes additional requirements – the complex topological 
model must retain integrity across transactional boundaries. This can be a problematic 
requirement given the complexities associated with implementing safe referential 
integrity structures in relational databases (e.g., bulk data loading into a topologically 
structured model) [19, 5]. Common implementation techniques such as allowing 
dangling pointers (i.e., null foreign keys) complicates the issues for client 
applications that consume these models. In this paper, we revisit the problem of 
building a robust and scalable relational implementation of a topologically structured 
data model. We propose a different approach to representing such models that avoids 
many of the traditional relational database problems associated with maintaining 
complex semantic models.  

1 Introduction 

Topological data structures have been used to represent geographic information for over 
thirty years [7, 24]. The topological model has been the basis of a number of operational 
systems (see, for example TIGER/db [4], ARC/INFO [22], or TIGRIS [14]). These 
systems have been based on binary file and in-memory data structures and support a 
single-writer editing model on geographic libraries organized as a set of individual map 
sheets or tiles. 

Recent developments in geographic information systems have moved to database-
centered information models. One aspect of this work has been to replace the file system 
with a relational database engine as the persistence mechanism for geographic information. 
However, replacement of the physical I/O layer is only one aspect to consider when 
designing a "database GIS". Other aspects of the database concept must also be 
considered. 
• What is the generic spatial information model and what are the associated spatial 

operators? 
• How does the design support multiple, simultaneous writers? 
• How is the semantic integrity of the data model declared, maintained, and enforced? 
• How to design a system which performs well and can scale to support hundreds of 

simultaneous users? 
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• How to design a system which can support very large continuous spatial databases, 
containing millions of geographically interrelated objects (e.g., the road network of the 
United States or the land ownership fabric of Austria)? 

Database GIS involves more than simply exporting classic GIS data structures to a 
normalized relational schema. Database GIS must also address the functional aspects of 
being a database as well: the integrity model, the transaction model, and 
performance/scalability issues. Otherwise database GIS implementations run the risk of 
becoming "off-line data repositories" (at best) or "write-only databases" (at worst). 

The representation of topological data models using relational database concepts and 
engines should be of interest to the database research community as well as to geographic 
information scientists. The data model serves as an excellent case study for considering 
problems of information modeling and, especially, for evaluating architectures for the 
management of semantic integrity. 

In this paper, we describe a design for modeling GIS topology using relational concepts 
and database engines. This design is the basis for our implementation of topology in the 
ArcGIS geographic information system.   

In the first section, we introduce the logical model of GIS topology. We then consider a 
physical database implementation using the conventional notions for mapping entities and 
relationships to tables and the conventional primary key / foreign key referential integrity 
model. Problems in this approach are discussed. We then present an alternative 
implementation of the topology model which uses an unconventional approach to the 
problem of database integrity and transaction management. 

2 What is GIS Topology? 

Topological data structures for representing geographic information are a standard topic in 
geographic information science (see [Güti95], for example, for an excellent definition of 
the mathematical theory underlying this information model). In general, the topological 
data model represents spatial objects (point, line, and area features) using an underlying set 
of topological primitives. These primitives, together with their relationships to one another 
and to the features, are defined by embedding the feature geometries in a single planar 
graph. Such datasets are said to be "topologically integrated".  

The model associates one or more topological primitives (i.e., nodes, edges, and faces 
[16]; or 0-cells, 1-cells, and 2-cell in the TIGER parlance [3, 8]) with spatial objects of 
varying geometry type (i.e., points, lines, and polygons respectively). More specifically, a 
feature with point geometry is associated with a single node element, a feature with line 
geometry is associated with one or more edge elements, and a feature with polygon 
geometry is associated with one or more face elements. This is depicted in Fig. 1 as the 
generic topology model.  
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Fig. 1. Generic topology model 

There are additional relationships between the topological elements themselves as is also 
shown in Fig. 1. A node element may or may not be associated with a collection of edge 
elements. A face element may be associated with one or more edge elements. Finally, an 
edge element is associated with two node elements and two face elements. The 
relationships between nodes and faces may either be implicit or explicit. We have 
represented these relationships between nodes and faces as implicit within Fig. 1. 

A concrete example, showing a specific instance of this model is shown in Fig. 2. The 
database consists of three classes which represent real geographic entities: Parcels, Walls, 
and Buildings. In the example, there is one instance of each class. In practice, these classes 
could contain millions of instances. The wall and the building are coincident with the 
western boundary of the parcel as shown.   

B1
F2 F1

P1

E1

E3

N1

N2

N3

N4

E2

E4

E5

W1

ID

P1 (0,0),(0,3),(0,7),(0,8),(8,8),(8,0),(0,0)

Vertices

F1, F2

Faces

-E5,+E4,-E2,+E1

Edges

Parcels

ID

W1 (0,10),(0,7),(0,3),(0,0)

Vertices

+E2,-E4,+E5

Edges

Walls

ID

B1 (0,3),(0,7),(5,7),(5,3),(0,3)

Vertices

F2

Faces

+E3,+E4

Edges

Buildings

ID

N1 (0,0)

Vertex

-E1,-E5

Edges

Nodes

-

Features

N2 (0,3) +E4,-E3,+E5 -

N3 (0,7) -E2,-E3,-E4 -

N4 (0,10) +E1,+E2 -

ID

E1

Edges

-

Features

(0,10),(8,10),(8,0),(0,0)

Vertices

N4

From

N1

To

F0

Left

F1

Right

E2 W1(0,10),(0,7) N4 N3 F1 F0

E3 -(0,7),(5,7),(5,3),(0,3) N3 N2 F1 F2

E4 W1(0,3),(0,7) N2 N3 F1 F2

E5 W1(0,3),(0,0) N2 N1 F1 F0

ID

F0

Faces

-

Features

(0,0),(8,0),(8,10),(0,10),(0,0)

Vertices

+E2,-E4,+E5,-E1

Edges

F1 P1(0,10),(8,10),(8,0),(0,0),(0,3),(5,3),(0,7),(0,10) +E1,-E5,-E3,-E2

F2 P1,B1(0,7),(5,7),(5,3),(0,3),(0,7) +E3,+E4  
Fig. 2.  An instance of the generic topology model 

In Advances in Spatial and Temporal Databases. Proceedings of the 8th International 
Symposium on Spatial and Temporal Databases. SSTD 2003. Santorini Island, Greece, 
July 2003, Springer-Verlag Lecture Notes in Computer Science 2750. 



4      E. Hoel, S. Menon, and S. Morehouse 

It is interesting to note that the objects have both set and list-based properties. For 
example, the geometry of an edge is defined by a list of coordinates and the object 
references to the edges participating in a line feature (e.g., W1) are ordered and oriented to 
properly represent the orientation of the linear feature. Edges and vertices of polygons are 
oriented clockwise (with the interior of the polygon on the right). For clarity, we have 
showed attributes, such as object geometries, redundantly in multiple object classes. In 
some physical implementations of the model, these geometries would only be stored once, 
on edge primitives for example, and instantiated via queries for other features. 

After examining this example, it is clear that the logical topology model is a complex 
graph model, containing ordered object associations based on the geometric embedding of 
the objects in two-dimensional space.  It should also be clear that common queries, such as 
"draw a map of all buildings" or "find features contained within a given parcel" require 
ordered navigations of relationships, not simply set operations. 

Given the inherent complexity of this representation, it is important to reflect upon why 
people want topology in their spatial datasets in the first place – i.e., what are the 
fundamental requirements. At a high level, topology is employed in order to: 

• Manage shared geometry (i.e., constrain how features share geometry). 
• Define and enforce data integrity rules (e.g., no gaps between features, no overlapping 

features, and so on). 
• Support topological relationship queries and navigation (e.g., feature adjacency or 

connectivity). 
• Support sophisticated editing tools (tools that enforce the topological constraints of the 

data model). 
• Construct features from unstructured geometry (i.e., polygons from lines). 

The logical topology model provides a theoretical basis for this functionality. For example, 
the constraint "buildings must not overlap one another" can be expressed by the topology 
constraint "faces may only be associated with a single feature of type building".  Similarly, 
the problem of creating polygons from unstructured lines can be stated as:  "calculate 
edges, faces, and nodes from lines; create a feature on top of each resulting face". 

In GIS, topology has historically been viewed as a physical spatial data structure that 
directly implements the objects of the logical topology model. However, it is important to 
realize that this physical data structure is only useful because it is a tool for data integrity 
management, spatial queries / navigation and other operators. It is possible to consider 
alternate implementations of the logical topology model which also support this 
functionality. In effect, topology must be considered as a complete data model (objects, 
integrity rules, and operators), not simply as storage format or set of record types.  

3 Conventional Physical Implementation 

The logical topology model can be implemented for relational database engines in a 
straight forward fashion as a normalized relational model with explicit representation of 
topological primitives using keys (primary and foreign) to model the topological 
relationships (see Fig. 3). We can call this the conventional relational topology model. 
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Fig. 3. Conventional relational topology model with join tables (e.g., Line x Edge) 

This implementation uses referential integrity constraints [13, 20] to declare integrity rules 
for the topology. Join tables are employed to support many-to-many relationships between 
the features and their associated topological primitives (in databases which support array 
types, the join tables may be replaced by lists of foreign keys embedded in the feature and 
primitive tables). In addition, the geometry of the features is normalized - that is, it is 
assembled from their associated topological primitives. Fig. 4 illustrates our sample 
dataset example in this model. 
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Fig. 4.  An example instance of the conventional relational implementation 

There are a number of advantages to this physical implementation. First, there is a direct 
and rather trivial mapping to the logical topology model. There is conceptual comfort for 
many users because all of the topological primitives are explicitly persisted, as are many of 
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the primitive topological relationships. The geometry itself is only represented once within 
the database. Finally, there is a degree of client independence given that the topological 
primitives and relationships can be edited using standard SQL updates. 

However, there are a number of serious problems with this implementation, these relate 
to: 

• the performance of typical queries, 
• the maintenance of semantic integrity in the model, and 
• the performance and complexity of typical updates. 

3.1 Query Performance 

Although this implementation eliminates redundant storage of geometric information for 
features, complex queries are required to instantiating the features’ geometry (the most 
common query for most GIS software) [28].  For example, to fetch the geometry of the 
parcel P1, a query must combine information in four tables (Parcels, Parcel x Face, Faces, 
and Edges) and use external geometric/topological logic to correctly assemble the 
geometry of the Parcel. When this query must be performed iteratively – to draw all 
parcels, for example – we end up nesting complex queries or executing nested cursors in 
the application code. In general, navigational access to relationships (dereferencing 
pointers) is significantly slower with relational technology that with other technologies 
(e.g., object databases [17]). 

3.2 The Integrity Mechanism 

A more fundamental problem relates to the integrity of the database. Despite the use of 
(and paying the performance cost for) referential integrity constraints, the integrity and 
consistency of the topology data model cannot actually be defined using the conventional 
referential integrity model!  Referential integrity constraints simply declare that "if a 
foreign key is not null, then the referenced primary key exists". This is a very weak (one 
might almost say meaningless) basis for managing the integrity of the topological data 
model. For a consistent state of the data model, there must be no null references and the 
geometry of the primitives must be consistent with the objects and references. The 
conventional referential integrity model has no means for declaring such "semantic" 
constraints, much less enforcing them. 

The integrity of a topology is a global property of the set of entities comprising the 
topology, rather than constraints or behavior attached to individual entities. Topology 
integrity must be validated by considering a complete set of updates as a whole. This 
validation logic must analyze the geometric configuration of features in the changed area 
to ensure that the topology primitives and relationships are correct. This validation logic 
executes externally to the core relational integrity model.   

It is possible to execute arbitrary business logic in response to data updates using 
triggers.  Such a mechanism could be used to accumulate change information, and then 
execute global validation logic. However, active relational databases (i.e., those supporting 
constraint and trigger mechanisms) continue to have lingering implementation and 
performance drawbacks [5, 26]. Database extensions that are implemented as trigger-based 
services (that may or may not be automatically generated) where the complexity of the 
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domain is non-trivial (e.g., business rules, supply chain management, rule-based inference 
systems, and topology) suffer from several fundamental problems: 

• difficulty of implementation (subtlety of behavior, primitive debugging tools), 
• performance problems and scalability with complex trigger collections (lack of 

sophistication of trigger processors), and 
• lack of uniformity (portability between RDBMSs, though this will be helped by the 

SQL-99 standard [11]). 

For these reasons, complex semantic behavior (also known as the business objects) is more 
commonly implemented in shared code running in an application server tier. 

3.3 Complexity of Updates 

Simple edits to a topological data model can result in a complex sequence of changes to 
the associated topology primitives and relationships. Consider a simple edit to the sample 
dataset of Fig. 4: let's move the building one unit to the right. The changes necessary in the 
data model are shown in Fig. 5. 
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Fig. 5.  An example instance of the conventional relational implementation. In this example, 
deleted rows are indicated with the horizontal strike through; new rows are in italics 

This edit to the geometry of a single feature requires that we validate the geometry and 
topology of the effected area. The edit requires updates and inserts to multiple tables: 
Edges, Nodes, and Edges x Walls. These updates must either be made correctly by the 
application prior to executing the validation logic.   
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The example also raises an interesting point related to the "lifecycle semantics" of 
topological primitives. These spatial objects do not correspond to any feature in either the 
real or legal-boundary worlds [25]. They exist solely as constructs of the topology for a 
given configuration of features. How is "identity" defined for such objects? In the 
example, did we replace edges E2, E4, and E5 with E7 or should we have updated one of 
the existing edges? These lead to additional complexity when we deal with identifier 
generation, historical data management, and other factors. By making topological 
primitives explicit entities in the model, we have another set of business objects to 
manage. 

Update operations on the explicit topology implementation are complex (irrespective of 
whether stored procedures/triggers or client-side code is employed). This complexity is 
closely related to performance concerns when persisting topological primitives in 
relational databases. The performance difference can be quite significant when compared 
with existing file-based topology solutions (e.g., orders of magnitude). It is important to 
note that the increased server side processing required with the complex trigger 
mechanisms will impact server scalability [5].  

These considerations, reinforced by practical experience implementing the normalized 
model using prototype software led to the development of an alternative approach, 
described in the following section.  

4 Alternative Physical Implementation 

In order to address some of the problems inherent in the conventional topology physical 
implementation, we describe a new model that is currently hosted within the ArcGIS 
Geodatabase [10, 32]. With this model, we make three fundamental departures. First, we 
relax the conventional transactional model and allow the incremental validation of the 
topology (i.e., validation is performed as a bulk process at certain user-defined intervals or 
events). Thus, features with geometry that has not been topologically validated can be 
maintained within the model. This has a significant impact upon the user’s editing 
experience where each individual edit operation does not need to topologically restructure 
the area being edited. Second, we cache geometry in the features rather than only in the 
topological primitives in order to eliminate relationship navigation for common queries 
(e.g., drawing the features). Third and finally, we use logic external to the relational 
database for geometric and topological validation. 
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Fig. 6. Geodatabase topology model 

It is possible in the generic model (r.e., Fig. 1) to obtain topological primitives from 
feature geometry; similarly, it is possible to obtain feature geometry from topological 
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primitives [28]. Effectively, the geometry found in features is a dual representation of the 
geometry that would be found on the topological primitives. We have chosen to simplify 
and streamline the generic explicit topology model and to not persist both representations.  

The topological primitives are not persisted as a special type of feature; instead, feature 
geometry is persisted and topological primitives (along with their geometry) are inferred.  
The process of topological integration (validation) results in vertex equality where features 
share underlying topological primitives. Given vertex equality, reconstruction of 
topological primitives is straight forward. Vertices on feature geometries in this scheme 
play the same role as that assigned to embedded foreign keys in data structures that 
explicitly model topological primitives. 

Topological primitives and relationships are only instantiated during the process of 
topological validation or when required by the client application (note that this aspect is 
similar to MGE where topology is selectively built but the topological primitives are not 
persisted in the RDBMS [15]). The primary reason for this alternative approach is that it is 
easier (faster, more scalable) to recreate an index (e.g., the topological primitives) than to 
do all the bookkeeping necessary to persist and retrieve it from the database while 
preserving the database transaction model (note that we have also found the same to be 
true when modeling networks as well as surfaces – i.e., TINs). Additionally, it is 
frequently the case that the portion of the topological primitives necessary for an operation 
is small relative to the entire topology (e.g., editing a few block groups in a localized area 
within TIGER). 

It is important to note that for this approach to be viable from a performance standpoint, 
it is critical that there exist a high performance topology engine that validates the portion 
of the topology in question (see the description below) as well as instantiate the 
topological primitives for the given collection of features within the topology [29, 30].  
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Fig. 7. An example instance of the Geodatabase topology implementation 

At a high level, topology within the Geodatabase consists of a collection of feature classes 
(homogeneous collections of features), topology rules, and other metadata used to support 
the validation model. This metadata includes dirty areas, topology errors, and the cluster 
tolerance. An example instance of the topology implementation is shown in Fig. 7. 
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4.1 Topology Rules 

Topological integrity is defined with respect to a collection of topology rules. Topology 
rules are used to define constraints on the permissible topological relationships between 
features in one or more feature classes that participate in the topology. Topology rules are 
considered part of the topology metadata; they are not considered metadata associated with 
the feature classes that participate in the topology. The collection of topology rules that are 
associated with the topology are selected on the basis of which topological relationships 
are important for the user’s model. There is no fixed set of topology rules that are 
associated with all topologies; instead, topologies may be specified with zero or more rules 
(note that one significant utility of a topology without any topology rules is that 
Milenkovic’s third normalization rule – see Section 3.2 - are enforced on the features as a 
byproduct of validation). 

Topology rules are checked when the topology is validated. When a topology rule is 
violated, a topology error object is generated. This topology error may be represented as a 
special type of feature that may itself be persisted. At a later point following the validation, 
the user may then review the topology error objects and the error conditions may be 
corrected. Topology rule violations do not prevent the validation operation from 
successfully completing.  

Examples of topological rules that may be applied to polygon features include: 

• The interiors of polygons in a feature class must not overlap (they may however 
share edges or vertices). 

• Polygons must not have voids within themselves or between adjacent polygons 
(they may share edges, vertices, or interior areas). 

• Polygons of one feature class must share all their area with polygons in another 
feature class (i.e., they must cover each other). 

• The boundaries of polygon features must be covered by lines in another feature 
class. 

There are of course numerous other topology rules that may be specified for each of the 
different geometry types. Note that it would also be possible for a system to be designed 
where all topology rules were specified using Clementini relationships [6] or the 9-
Intersection model [9]. 

4.2 Validation 

The validation process is a fundamental operation on a topology performed by a topology 
engine [29, 30]. The validation process on a topology is responsible for ensuring 
Milenkovic’s third normalization rule [21] on all spatial objects participating in the 
topology are respected (i.e., no intersecting edges, no edge endpoints within the tolerance, 
no edge endpoints within the tolerance of another edge). In addition, the validation process 
is responsible for checking all specified topology rules and generating topology errors at 
locations where rules are violated.  

The basic processing flow for the validation process within the topology engine is as 
follows: 

• Load all the feature geometries and associated topology metadata (topology rules, 
feature class weights, and cluster tolerance). 
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• Crack, cluster, classify, and topologically structure the nodes and edges. 
• Create new topology error instances when topology rules are found to be in violation. 

Delete pre-existing error instances if the rules are no longer in violation. 
• Update the feature geometries as necessary (i.e., if their geometries were modified 

during the establishment of the Milenkovic conditions). 
• Update the dirty areas associated with the topology. 

It is important to note that the validation process does not need to span all features within 
the topology dataset. A validation can be performed on a subset of the space spanned by 
the dataset. This is a complex task given that it will require the validation of topology rules 
using partial information (e.g., certain error instances may only be partially contained 
within the region being validated). 

4.3 Dirty Areas 

A topology can have an associated dirty area – a dirty area corresponds to the regions 
within the topology extent where features participating in the topology have been modified 
(added, deleted, or updated) but have yet to be validated. When the geometry of a feature 
that participates in a topology is modified, the extent of the dirty area is enlarged to 
encompass the extent of the bounding rectangle of the modified geometry (note that other 
simplified geometry representations may also be employed - e.g., convex hulls). This is 
depicted in Fig. 8. The dirty area is persisted with the topology. In order to ensure that the 
topology is correct, the topology in the dirty areas will need to be validated.  

initial state edit covering dirty area  
Fig. 8. Example of dirty area creation following a feature edit. The dirty area is depicted by the 
hatched square 

It is not necessary to validate the entire space spanned by the dirty area at one time; 
instead, a subset of the dirty area can be validated. If the dirty area is partially validated, 
the original dirty area will be clipped by the extent of the region that is validated.  

Allowing users the ability to validate a portion of the dirty area is a pragmatic 
requirement of supporting extremely large seamless topologies – for example, when a 
topology is first created, or when the topology metadata (e.g., topology rules, etc.) is 
modified, the entire extent of the topology is dirty. If users were not provided with the 
capability to validate a portion of the dirty area, the user would be required to validate the 
entire topology which could prove to be a very lengthy process (e.g., up to a week of 
processing time for large topological datasets derived from TIGER/Line Files [27]). This 
would be impractical for large enterprise datasets.  
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4.4 Topology Errors and Exceptions 

A topology error is generated for each instance of a topology rule that is determined to be 
invalid during the validation process (an example is shown in Fig. 9). Topology rules are 
commonly specified as a required topological relationship that must hold between 
collections of features in one or more feature classes. Topology errors are associated with 
the topology; inspection of the error will enable a user to determine why the error was 
generated. Topology errors have an associated geometry that is used to position the error 
in the topology dataset. Topology errors are persisted with the topology.  

initial state edit and dirty area topology error

validate

 
Fig. 9. Example of an edit (polygon creation) followed by a validation where the topology rule is 
“polygons must not overlap”. The generated topology error is depicted by the black diamond 

We have observed with large enterprise topologies that it is sometimes the case that certain 
topology error instances are acceptable. For example, within the Census Bureau’s 
TIGER/db [4] DB system, there is a general rule that American Indian Reservations may 
not overlap. There are however two instances where this general rule is purposefully 
violated (e.g., the Lualualei and Mashantucket Pequot reservations in Hawaii, and the 
Spokane and Schaghticoke reservations in Washington). In order to support such topology 
error instances where the topology rules are purposefully violated, we add an attribute to a 
topology error that indicates whether or not the topology error is actually an exception (to 
the rule). Marking purposeful topology errors as exceptions allows other clients of the 
topology to handle them in appropriate manners (e.g., report generators that indicate the 
number of errors in the topology – this is often used as a quantitative measure of quality 
within the topological dataset). Note that it should also be possible to demote an exception 
to error status. 

4.5 Complexity of Updates 

Simple edits to the Geodatabase topological data model can result in rather simple changes 
to the associated topology metadata (e.g., dirty areas). Consider a simple edit to the sample 
dataset of Fig. 7 where the building is moved one unit to the right. The changes necessary 
in the data model are shown in Fig. 10. More specifically, the geometry of the building 
feature is updates and the dirty area extent of the topology is unioned with the initial and 
final geometry of the building that was updated (i.e., the polygon (0,3), 
(0,7),(6,7),(6,3),(0,3)). No other modifications to the persisted representation are 
necessary. 
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Fig. 10.  An example instance of the Geodatabase topology implementation following an update to 
the building geometry (r.e., Fig. 7). In this example, updated rows are in italics (i.e., the geometry of 
the building and the vertices of the dirty area) 

5 Implementation Experience 

This new topology model has been implemented and is currently shipping with ESRI’s 
ArcGIS 8.3 product. It is fully supported within a multi-user versioned database 
environment. It has been used to validate very large topologies, including a dataset derived 
from the features contained within the entire collection of the Census Bureau’s 
TIGER/Line files (53.5 million features; 30 million lines, 23.5 million polygons [18]). A 
small portion of this dataset in the vicinity of the U.S. Capitol in Washington, DC is shown 
in Fig. 11. Other large datasets that have been validated are summarized in Table 1. 

Table 1. Summary statistics of large topologies validated 

Dataset feature count topology rule count 

TIGER (U.S. National) 53.5 million 83 

LPI, New South Wales, Australia 22.6 million 41 

Cook County Assessor (Illinois) 4.3 million 16 

Calgary Legal Cadastre (Canada) 2.1 million 5 
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Fig. 11.  Example of the TIGER dataset taken from the vicinity of the U. S. Capitol in Washington, 
DC 

6 Conclusion 

In this paper we described the logical model of GIS topology. We considered a common 
physical database implementation using the conventional notions for mapping entities and 
relationships to tables and the conventional primary key / foreign key referential integrity 
model. Problems in this approach were discussed. We then presented an alternative 
implementation of the topology model which used an unconventional approach to the 
problem of database integrity and transaction management.  

The presented design serves as the basis for our implementation of topology in the 
ArcGIS geographic information system. This new models offers increased flexibility in 
terms of defining which rules constitute a valid topology. This topology model is 
supported in a multi-user long transaction (i.e., versioned) environment where multiple 
users may simultaneously edit the same geographic area within the topology extent. This 
new model has been implemented and is currently shipping with the ArcGIS 8.3 product. 

Our future work will focus on experimentation with dirty area management policies that 
are more useful for the client (i.e., require less revalidation) without incurring considerable 
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computational expense during version reconcile, applying the dirty area model to 
effectively support partial processing in other computationally intensive areas of GIS, 
supporting this topology model in the distributed database environment, as well as other 
performance enhancements. 
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