

ESRI 380 New York St., Redlands, CA 92373-8100, USA • TEL 909-793-2853 • FAX 909-793-5953 • E-MAIL info@esri.com • WEB www.esri.com

Understanding Threading in ArcInfo™ 8

An ESRI
® Technical Paper • September 2001

Copyright © 2001 ESRI
All rights reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of ESRI. This work is protected under United
States copyright law and other international copyright treaties and conventions. No part of this work may be
reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and
recording, or by any information storage or retrieval system, except as expressly permitted in writing by ESRI. All
requests should be sent to Attention: Contracts Manager, ESRI, 380 New York Street, Redlands, CA 92373-8100,
USA.

The information contained in this document is subject to change without notice.

U.S. GOVERNMENT RESTRICTED/LIMITED RIGHTS
Any software, documentation, and/or data delivered hereunder is subject to the terms of the License Agreement. In no
event shall the U.S. Government acquire greater than RESTRICTED/LIMITED RIGHTS. At a minimum, use,
duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in FAR §52.227-14 Alternates
I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or FAR §12.211/12.212 (Commercial Technical
Data/Computer Software); and DFARS §252.227-7015 (NOV 1995) (Technical Data) and/or DFARS §227.7202
(Computer Software), as applicable. Contractor/Manufacturer is ESRI, 380 New York Street, Redlands, CA 92373-
8100, USA.

ESRI, ARC/INFO, ArcCAD, ArcIMS, ArcView, BusinessMAP, MapObjects, PC ARC/INFO, SDE, and the ESRI
globe logo are trademarks of ESRI, registered in the United States and certain other countries; registration is pending
in the European Community. 3D Analyst, ADF, the ARC/INFO logo, AML, ArcNews, ArcTIN, the ArcTIN logo,
ArcCOGO, the ArcCOGO logo, ArcGrid, the ArcGrid logo, ArcInfo, the ArcInfo logo, ArcInfo Librarian, ArcInfo—
Professional GIS, ArcInfo—The World's GIS, ArcAtlas, the ArcAtlas logo, the ArcCAD logo, the ArcCAD
WorkBench logo, ArcCatalog, the ArcData logo, the ArcData Online logo, ArcDoc, ArcEdit, the ArcEdit logo,
ArcEditor, ArcEurope, the ArcEurope logo, ArcExplorer, the ArcExplorer logo, ArcExpress, the ArcExpress logo,
ArcFM, the ArcFM logo, the ArcFM Viewer logo, ArcGIS, the ArcGIS logo, the ArcIMS logo, ArcNetwork, the
ArcNetwork logo, ArcLogistics, the ArcLogistics Route logo, ArcMap, ArcObjects, ArcPad, the ArcPad logo,
ArcPlot, the ArcPlot logo, ArcPress, the ArcPress logo, the ArcPress for ArcView logo, ArcReader, ArcScan, the
ArcScan logo, ArcScene, the ArcScene logo, ArcSchool, ArcSDE, the ArcSDE logo, the ArcSDE CAD Client logo,
ArcSdl, ArcStorm, the ArcStorm logo, ArcSurvey, ArcToolbox, ArcTools, the ArcTools logo, ArcUSA, the ArcUSA
logo, ArcUser, the ArcView logo, the ArcView GIS logo, the ArcView 3D Analyst logo, the ArcView Business
Analyst logo, the ArcView Data Publisher logo, the ArcView Image Analysis logo, the ArcView Internet Map Server
logo, the ArcView Network Analyst logo, the ArcView Spatial Analyst logo, the ArcView StreetMap logo, the
ArcView StreetMap 2000 logo, the ArcView Tracking Analyst logo, ArcVoyager, ArcWorld, the ArcWorld logo,
Atlas GIS, the Atlas GIS logo, AtlasWare, Avenue, the Avenue logo, the BusinessMAP logo, the Data Automation Kit
logo, Database Integrator, DBI Kit, the Digital Chart of the World logo, the ESRI Data logo, the ESRI Press logo,
ESRI—Team GIS, ESRI—The GIS People, FormEdit, Geographic Design System, Geography Matters, GIS by ESRI,
GIS Day, GIS for Everyone, GISData Server, InsiteMAP, MapBeans, MapCafé, the MapCafé logo, the MapObjects
logo, the MapObjects Internet Map Server logo, ModelBuilder, MOLE, the MOLE logo, NetEngine, the NetEngine
logo, the PC ARC/INFO logo, PC ARCEDIT, PC ARCPLOT, PC ARCSHELL, PC DATA CONVERSION,
PC NETWORK, PC OVERLAY, PC STARTER KIT, PC TABLES, the Production Line Tool Set logo, RouteMAP,
the RouteMAP logo, the RouteMAP IMS logo, Spatial Database Engine, the SDE logo, SML, StreetEditor, StreetMap,
TABLES, The World's Leading Desktop GIS, Water Writes, and Your Personal Geographic Information System are
trademarks; and ArcData, ArcOpen, ArcQuest, ArcWatch, ArcWeb, Rent-a-Tech, Geography Network, the Geography
Network logo, www.geographynetwork.com, www.gisday.com, @esri.com, and www.esri.com are service marks of
ESRI.

Other companies and products mentioned herein are trademarks or registered trademarks of their respective trademark
owners.

http://www.esri.com/

J-8763

ESRI Technical Paper i

Understanding Threading in
ArcInfo 8

An ESRI Technical Paper

Contents Page

Introduction .. 1
What Is Multithreading?... 1
Concurrency ... 2
Working and Playing Well with Others ... 2
Apartments ... 2
Marshaling.. 5
Thread Affinity... 6
Passing Interfaces Between Threads .. 6
Marshaling's Influence on Performance... 8
Threads and DLLs.. 8
Threading Limitations Within ArcInfo 8 ... 8
Example—The Selection Area Command ... 9

Appendix

Basic COM Apartment Rules... 10
Recommended Resources on COM, Windows, and Threading........... 10

J-8763

ESRI Technical Paper

Understanding Threading in
ArcInfo 8

Introduction This document is primarily intended for C++ programmers; threading, as

it specifically applies to Visual Basic, will not be discussed. The reader
is assumed to have some experience in Windows and Component Object
Model (COM)programming and at least a basic understanding of
threading concepts.

Writing robust multithreaded applications is much more difficult than writing single
threaded applications and requires a thorough understanding of threading under COM
and Windows. Given this, it should be obvious that a small technical paper by itself is
inadequate preparation for writing reliable multithreaded applications or extensions to
ArcInfo™ 8 software. This document contains useful information on what
multithreading means in the context of COM, some guidelines on how to correctly use
threading and COM together, and a few specific rules that must be followed to properly
integrate threading into ArcInfo 8 applications. In addition, an accompanying code
example has been provided, written in C++ using Microsoft's ActiveX Template
Library (ATL). Finally, a few of the more notable texts on threading, Windows, and
COM have been listed in the appendix for your convenience. Each of these resources
should prove invaluable to developers interested in multithreading.

It is important to understand that multithreading is not a magic bullet for making faster
or more responsive applications. In many cases it is ill suited for the problem at hand or
may introduce complexities or overhead that actually reduces the speed at which a task
can be done. Obviously, multithreading should be used only when it is clearly
advantageous to do so and only with a good understanding of the objects that will be
involved in its application.

What Is

Multithreading?
Since the word multithreading has become an increasingly ambiguous term, even
among programmers, a brief review is presented here. In general, multithreading refers
to a software configuration where independent paths of execution are in use
simultaneously in an application. Each thread has its own stack and its own CPU state.
In interactive graphic user interface (GUI)-based applications, the CPU is inactive most
of the time because interactivity is mostly concentrated in short bursts separated by long
delays while the user digests the resultant information at "human" speed. Common
applications of multithreading involve low-priority threads that perform calculations
during these idle periods, providing a result that is helpful to the user but not necessarily
needed before the user can continue. The sample provided with this document is an
example of this technique, as are the many examples present in Windows itself such as
print spooling, image file previews in Explorer, and directory file counts on directory
property pages. A related approach takes advantage of the large periods of CPU
inactivity that can occur when a thread sleeps while waiting for a comparatively slow
hardware device. If several devices are connected and several requests are coming in to

Understanding Threading in ArcInfo 8

 J-8763

September 2001 2

use these devices, threads can be spawned to maximize CPU usage by applying other
threads to available devices while others are waiting. Finally, if multiple CPUs are
available on the same machine, several threads can be scheduled simultaneously—
called multiprocessing—to divide and conquer a large problem. For this technique to
be beneficial, you must be able to break the problem into independent pieces, a task that
can be very difficult or impossible. In the best-case scenario, this technique can
approach the total time normally required divided by the number of available
processors.

Concurrency When several threads act within an application, it is usually necessary to control how

global data and other sorts of global resources are shared between these threads. This
control, called concurrency control, is used to serialize method calls made from
different threads, which might otherwise result in data corruption if both tried to access
the same data simultaneously. When such concurrency control is in place, the code is
said to be thread safe.

Classic thread concurrency control is normally accomplished with system objects such
as mutexs, critical sections, semaphores, and events that act to suspend all but one of
several threads vying for a particular function. However, making function bodies
thread safe is not always sufficient because the persistent state of an object instance
must also be considered when that instance is shared with more than one thread.
Consider, for example, an object shared between two threads (we will call them
thread A and thread B). This shared object represents a database cursor with reset/next
semantics and, as such, must internally maintain state that keeps track of the current
record position between calls to next(). If thread B were to call reset() after thread A
had already enumerated through several records, thread A would then unexpectedly be
back at the beginning on its own subsequent call to next(). This is known as a race
condition.

In ArcInfo 8, single instances of stateful objects should not be shared between multiple
threads if the possibility exists that more than one of these threads will be modifying the
state of the instance. In other words, you as the developer must intervene and
orchestrate multithread access to such shared instances to ensure a coherent state for the
lifetime of the instance.

Working and
Playing Well with

Others

One problem with threading in the context of COM stems from the fact that component-
based systems are often complex aggregations of many smaller components, each
possibly supplied by independent software vendors and each with varying degrees of
support for multithreading. To reduce the ambiguity associated with this issue, the
COM specification requires that all clients and servers explicitly state whether or not
they are prepared to handle concurrent access. In addition, basic thread concurrency
control (function concurrency) is integrated into the COM run time via marshaling and
the apartment concept described in the next section.

Apartments The COM threading model is based on a conceptual entity known as an apartment. As

of this writing, three distinct apartment types have been defined: the single threaded
apartment (STA), the multithreaded apartment (MTA), and the thread neutral apartment
(TNA). STAs can contain one thread only, though there can be many independent

Understanding Threading in ArcInfo 8

J-8763

ESRI Technical Paper 3

STAs, each containing a single thread. Every thread that plans to run under an STA
must, as its first action, register itself with COM using CoInitialize. A new single
threaded apartment will be created by the COM run time for each thread that registers
itself in this way.

STA components are normally written without concern for concurrency issues, that is,
without using critical sections in their functions to protect their class state against
concurrent access. Simply associating your component with the STA will allow the
COM run time to automatically serialize method invocations from other threads via a
COM supplied proxyi. This alone, however, may still leave a component unprotected if
instances of this component share some global resource. To illustrate, imagine a
component implemented by class A; code within methods on class A commonly access
a global pointer to a chunk of memory that all instances of class A use as a scratch area
during calculations. Now imagine that one instance of the object implemented by
class A is created on STA thread T1, and that a separate instance is created in a separate
STA (on a separate thread) T2. If a method is called by T1 on its instance of A, it may
at any time suddenly be preempted by T2. T2 might call the same method on its own
instance of A and so the contents of the global chunk will be altered; when control is
returned to T1, it will likely crash since its chunk has been altered from underneath it.
The concurrency provided by STAs does not and was not meant to cover such cases.
The protection provided by the STA was intended to protect single instances of objects
shared between different threads.

STAs rely on windows messages to handle concurrency behind the scenes and so must
periodically pump windows messages. If a thread in an STA must wait for another
thread to become signaled, a special wait function must be utilized called
::MsgWaitForMultipleObjects (see Figure 1 below). This function allows messages to
be pumped while waiting on any kernel object. Note that the use of local message
pumps could cause the waiting thread to be reentered (on the same thread) if the user
starts interacting with the user interface. One way of avoiding this problem is to simply
disable the user interface while waiting if such reentry is undesirable, and reenable it
afterward.

i See the marshaling section for more information on proxies.

Understanding Threading in ArcInfo 8

 J-8763

September 2001 4

Figure 1
Pseudo Blocking in STAs

void ThreadManager::WaitForObject(HANDLE hThread)
{

// Wait until worker thread terminates.
// Pump incoming messages while waiting if necessary.
//
while (true)
{

// This function will suspend this thread until hThread is signaled
// (terminates), or until a message is received on this thread.
// STA/UI threads are not permitted to block; they must pump messages while
// waiting, or a deadlock will occur.
DWORD dwCode = ::MsgWaitForMultipleObjects(1, &hThread, FALSE, INFINITE,

QS_ALLINPUT);

// This condition is true if the thread is signaled (has terminated).
if ((dwCode - WAIT_OBJECT_0) == 0) break; // Exit while.

// Otherwise, service the message queue.
MSG msg;
while(::PeekMessage(&msg, NULL, 0, 0, PM_REMOVE|PM_NOYIELD))
{

::DispatchMessage(&msg);
}

}
}

STAs can also be entered when calling out of their own apartment. Whenever code in
an STA makes an out-of-apartment call, COM will pump messages for the thread while
waiting for the call to return; this feature enables the STA to receive callbacks. It also
allows other apartments to call in during this time. To control this sort of reentry,
Microsoft allows each STA to register a MessageFilter—an object that implements
IMessageFilter—using the COM application programming interface
CoRegisterMessageFilter. For more information, see the Microsoft Developer Network
(MSDN) documentation on the IMessageFilter interface. In contrast, MTA components
must handle all function concurrency within their implementation. There is only one
MTA per process space, but any number of threads can join the MTA by calling
CoInitializeEx, passing COINIT_MULTITHREADED.

Ideally, the performance of code executing in the MTA can be more efficient since any
thread in the MTA can directly access any other thread in the MTA without using a
proxy. Since all cross-apartment communication using COM interfaces must be
performed through a proxy, the MTA may be a good apartment choice if objects will be
shared between several collaborating concurrent worker threads.ii Since the MTA has

ii Such objects will still require cross apartment/proxy access when accessed by UI components in the main

STA or other apartments.

Understanding Threading in ArcInfo 8

J-8763

ESRI Technical Paper 5

weak thread affinity, it is not an appropriate apartment type for use with user interface
components.

The TNA is a relatively new apartment type introduced with Windows 2000. Its
purpose is to mitigate the expensive cost of interapartment communication by
eliminating costly thread context switches. Components marked Neutral have no thread
affinity whatsoever and always execute on the thread of the caller. Like the MTA, this
makes them off limits for use in components associated with the user interface or any
other resource that is tied to a particular thread. Unlike the other two apartment types,
threads cannot CoInitialize into the TNA.

COM components exposed from dynamic link libraries (DLLs) must specify the
apartment type under which they have been designed to run. COM servers in DLLs
could potentially be used by any arbitrary client apartment and so must be explicit about
their concurrency requirements. During component registration, each CoClass in the
DLL must set its threading model key to the appropriate apartment type as shown in
Figure 2.

Figure 2
Threading Model Keys

Value of Threading Model Key Apartment Type
No Threading Model Designation Single Threaded (ST)—All components activate in the main STA

Apartment Single Threaded Apartment (STA)
Free Multithreaded Apartment (MTA)
Both Compatible with either (i.e., will always be created in the client's

apartment)
Neutral Thread Neutral Apartment (TNA)

Marshaling To enforce the concurrency semantics set by each involved apartment, calls made
between two apartments (even if in the same process) must be marshaled. Marshaling is
the process of carrying a method invocation made from one apartment to another
apartment. Standard marshaling can involve a fair amount of overhead due to packing,
transmitting, and unpacking the method parameters into the target apartment.

Since objects specify their own apartment type, calls to instantiate an object from one
apartment may not always result in a direct pointer to the object in the creator's
apartment. ArcInfo 8 applications call CoInitialize on start-up and so establish the main
thread of the process as the main STA thread. Components that have registered
themselves as Apartment or Both will exist in this main STA thread if CoCreated from
code within ArcInfo 8. Components registered as Free are not compatible with the
main STA apartment and so will exist on a separate thread residing in the MTA. In this
case, COM will return a proxy to the ArcInfo code running in the main STA that
CoCreated the object. Obviously, this proxy must be connected to a thread in the MTA,
but where did this thread come from? In fact, a thread pool is maintained by the COM
run time for cases where an STA holds a proxy—obtained through CoCreateInstance—
to an object in the MTA. When a method on such a proxy is invoked, the COM run
time will use an available thread from this pool to execute the server code. Calls
between an STA and a component marked Neutral (TNA) will execute through a proxy

Understanding Threading in ArcInfo 8

 J-8763

September 2001 6

but with a lighter weight variety that will not require a thread context switch. For a
more complete discussion of threading in COM, consult Essential COM by Don Box,
listed in the appendix, which provides a very detailed description of this topic.

Thread Affinity Objects in an STA have thread affinity; that is, they can only be called in the same

thread context as that in which they were created. In contrast, objects within the MTA
have a lesser degree of thread affinity in that an object in one thread can be called
directly by any other thread as long as both of these threads exist within the MTA.
Objects within the TNA have no thread affinity.

Like COM objects in an STA, handles to certain Windows objects, such as HWNDs
and HHOOKs, have thread affinity and normally should be used only from the thread
that originally created them. For this reason, threads that directly make calls to or, in
general, manipulate the user interface should always reside in an STA.iii

Passing Interfaces
Between Threads

Given the previously stated constraints, a typical scenario might involve a separate
worker thread residing in the MTA or a separate STA. This thread does some number
crunching and reports the results back to the main STA so that it may update the UI and
display the results to the end user. Worker threads typically need some hook from the
main thread such as IApplication. You may be tempted to simply pass such a reference
to your thread as the initialization parameter, but do not! As already established, raw
interface pointers can never be passed across apartment boundaries because the target
thread would then be able to call into the original apartment without restriction,
violating the concurrency of the apartment. Instead, interface pointers must be
packaged up into an IStream pointer that is treated specially by the COM run time.
This IStream pointer should be passed as the thread procedure's initialization parameter
instead of the raw interface. Within the thread procedure itself, the incoming IStream
parameter can then be used to obtain a marshaled proxy to the packaged interface.
Figure 3 demonstrates how the interface is packaged and passed to the worker thread;
Figure 4 demonstrates how to unpackage this interface from within the worker thread.

iii Normally the main STA of the process.

Understanding Threading in ArcInfo 8

J-8763

ESRI Technical Paper 7

Figure 3
Passing a COM Interface to a Thread as an Initialization Parameter

void ThreadManager::StartWorkerThread()
{

// "Package up" our reference to the application within a stream so that we
// can pass it (indirectly) to the worker thread function.
//
IStream* pStrm;
::CoMarshalInterThreadInterfaceInStream(__uuidof(IApplication), m_ipApp,

&pStrm);

// Create thread, pass the IStream*.
unsigned int threadID;
m_hThread = (HANDLE)_beginthreadex(NULL, 0, CalcArea, pStrm, 0,&threadID);

}

Figure 4
The Thread Procedure: Obtaining the COM Interface from the Stream Parameter

unsigned int WINAPI CalcArea(void* pStrm)
{

::CoInitialize(0)

IApplication* pApp;

// Unmarshal the application interface from the provided stream.

::CoGetInterfaceAndReleaseStream(reinterpret_cast<IStream*>(pStrm),
__uuidof(IApplication), (void**)&pApp);

<rest of thread procedure (use interface here)>

pApp->Release();

::CoUninitialize();

return 0;
}

Normally, this thread initialization issue is the only place where you will need to
become directly involved with marshaling an object reference.

Remember, you must release all local references to objects obtained within a worker
thread before calling CoUninitialize, as calling methods on COM objects after calling
CoUninitialize will result in the dreaded "undefined behavior." Also beware the use of
smart pointers in such threads and take care to set them to NULL (which calls release)
before calling CoUninitialize.

Understanding Threading in ArcInfo 8

 J-8763

September 2001 8

Marshaling's
Influence on
Performance

Interapartment calls (and thus marshaling) should be kept to a minimum for
performance reasons. If an interface to an object from the main STA is handed to one
of the threads in the MTA or a separate STA, all calls made on that interface will
require marshaling. If possible, it is often more efficient to pass a thread neutral
identifier, such as a file name or record ID, to worker threads instead of making many
cross apartment calls. In this way, objects can be created from these identifiers in the
worker's thread and apartment, and as a result, calls on these objects will be made
directly.iv Even the TNA's lightweight proxy is much heavier than a direct call.

Your threaded code may not necessarily rely on external interfaces in separate
apartments or may run in a low-priority thread where the overhead of marshaling may
not be an issue. In the end, if your code exists in a separate thread from the main STA,
it will have to manipulate ArcInfo objects that currently reside in the main STA through
a proxy.

Threads and DLLs Most opportunities for extending ArcInfo applications involve the usage of COM

objects residing in external DLL modules; thus, multithreaded components will need to
spawn threads. This situation turns out to be somewhat problematic due to the way that
COM and Windows are designed. When executables shut down and CoUninitialize is
called by the main thread, the operating system automatically unloads all DLLs
attached to the main process. If some of these DLLs have spawned threads that are
running at the time of shutdown, these threads will be unceremoniously terminated.
They are not given the opportunity to shut down gracefully through CoUninitialize, and
resources may not be freed as a result.

To address this issue and support users who wish to leverage multithreading, ArcInfo
provides the IMultithreadedApplication interface obtainable from the application object
in ArcMap™ and ArcCatalog™. This interface provides a simple callback mechanism
for registering user-created thread manager objects, which will be notified prior to
application shutdown so that all currently running threads can be exited cleanly before
the process actually shuts down.

Threading

Limitations Within
ArcInfo 8

As of the current release, several conditions exist that complicate and/or limit the use of
ArcGIS™ components on multiple threads. Most central is the presence of COM
singletons such as any WorkspaceFactory, the StyleGallery, environment objects such
as the SymbologyEnvironment, and others. These singletons are presently marked as
Apartment and so reside permanently on the first STA that creates them. As a result,
calls to such objects from other apartments/threads must be marshaled and this, as
pointed out earlier, can be costly. In addition, a small number of components have been
identified as thread unsafe under certain conditions.

As an alternative to threads, separate worker processes can be spawned, usually via
custom local (exe) COM servers. Like threads, these separate processes will take
advantage of multiple CPUs but will not share the same address space. Though this
isolation can improve reliability, resource consumption will increase. In addition,
information/results calculated by these processes will normally have to be marshaled

iv If their apartment types are compatible.

Understanding Threading in ArcInfo 8

J-8763

ESRI Technical Paper 9

back to the main process or alternatively transformed into raw data and shared via
Win32 Named Shared Memory.

ESRI is currently working on a number of improvements in this area aimed at better
facilitating the use of threads. In the interim, programmers interested in using threads
are encouraged to post specific queries via their support channel or through the user
forum at ArcObjects™ Online.

Example—The
Selection Area

Command

In conclusion, a simple example has been provided to illustrate the points presented in
this document. This example works in conjunction with the select features tool
provided with ArcMap and simply calculates the area of the currently selected features
in a background thread whenever the selection changes. The result is displayed on the
left edge of the status bar.

Click here to download the Selection Area Command files (ZIP format, 625 KB).

To try it out, you will need to be running version 8.0.2 or greater of ArcInfo. Once the
SelectionArea.dll is registered, start ArcMap, open the customize dialog, select the
Multithreading Examples category, and drag and drop the SelectionAreaCmd to any
convenient spot on any toolbar.

To enable selection area calculations, simply click on the SelectionAreaCmd button,
and then click on the select features tool to make a selection. When a selection is made
with the select features tool, the selection is highlighted on the map. Once the
highlighted features appear, the worker thread will begin calculating the total area of the
selection. While this thread is running, you should find the application responsive.

If another selection is made before the current area calculation is complete, the thread
will automatically be canceled and another will begin calculating the new sum. If you
decide to quit ArcMap while the thread is still running, the thread manager will
terminate the thread cleanly, freeing all associated resources before ArcMap actually
shuts down.

Understanding Threading in ArcInfo 8

 J-8763

September 2001 10

Appendix

Basic COM
Apartment Rules

Adherence to the rules listed below will be crucial to any successful application of
threading in ArcInfo.

� All threads must call CoInitialize/Ex on start-up and CoUninitialize on exit.

Release all local pointers before calling CoUninitialize.

� Do not access raw interface pointers across apartment boundaries.

� User interface threads and objects must run in STAs.

� Access to shared instances of objects must be externally managed if threads

participating in the share will alter the object state.

� Class shared resources, such as global variables or static class members, must be

manually protected against concurrent access even if the STA is used.

� STA threads containing servers should pump messages and should not block.

� COM DLLs that spawn threads must contain a thread manager object that

implements IDllThreadManager.

� Be aware of the possibility of reentry in STAs; the COM-provided concurrency

control only protects functions from concurrent access by other threads.

� Use MessageFilters to control reentry when making outbound calls from STAs.

 Recommended

Resources on COM,
Windows, and

Threading

� The COM specification available from MSDN On-line at
http://msdn.microsoft.com/.

� Essential COM, Don Box, 1998 Addison Wesley Longman, Inc.

� Effective COM, Don Box [et al.], 1999 Addison Wesley Longman, Inc.

� Win32 Multithreaded Programming, Cohen & Woodring, 1998, O'Reilly &

Associates Inc.

� Programming Applications for Microsoft Windows, Jeffrey Richter, 1999,

Microsoft Press.

� Several very helpful articles are available in back issues of MSJ (now called MSDN

magazine). These issues are now available online at http://www.msj.com/.

http://msdn.microsoft.com/
http://www.msj.com/

Understanding Threading in ArcInfo 8

J-8763

ESRI Technical Paper 11

� The DCOM list server at http://discuss.microsoft.com/archives/dcom.html allows
you to perform searches on the many thousands of postings stored in their database.

	Understanding Threading in ArcInfo 8
	U.S. GOVERNMENT RESTRICTED/LIMITED RIGHTS

	Table of Contents Contents
	Introduction
	What Is Multithreading?
	Concurrency
	Working and Playing Well with Others
	Apartments
	Marshaling
	Thread Affinity
	Passing Interfaces Between Threads
	Marshaling's Influence on Performance
	Threads and DLLs
	Threading Limitations Within ArcInfo 8
	Example—The Selection Area Command
	Appendix
	Basic COM Apartment Rules
	Recommended Resources on COM, Windows, and Threading

