

Working with the Geodatabase Using SQL

An ESRI ® Technical Paper • February 2004

This technical paper is aimed primarily at GIS managers and data administrators who are responsible for the
installation, design, and day-to-day management of a geodatabase.

ESRI 380 New York St., Redlands, CA 92373-8100, USA • TEL 909-793-2853 • FAX 909-793-5953 • E-MAIL info@esri.com • WEB www.esri.com

Copyright © 2003 ESRI
Copyright © 2004 ESRI
All rights reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of ESRI. This
work is protected under United States copyright law and other international copyright
treaties and conventions. No part of this work may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying and recording,
or by any information storage or retrieval system, except as expressly permitted in
writing by ESRI. All requests should be sent to Attention: Contracts Manager, ESRI,
380 New York Street, Redlands, CA 92373-8100, USA.

The information contained in this document is subject to change without notice.

U.S. GOVERNMENT RESTRICTED/LIMITED RIGHTS
Any software, documentation, and/or data delivered hereunder is subject to the terms of
the License Agreement. In no event shall the U.S. Government acquire greater than
RESTRICTED/LIMITED RIGHTS. At a minimum, use, duplication, or disclosure by
the U.S. Government is subject to restrictions as set forth in FAR §52.227-14 Alternates
I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or FAR §12.211/12.212
(Commercial Technical Data/Computer Software); and DFARS §252.227-7015 (NOV
1995) (Technical Data) and/or DFARS §227.7202 (Computer Software), as applicable.
Contractor/Manufacturer is ESRI, 380 New York Street, Redlands, CA 92373-8100,
USA.

ESRI, the ESRI globe logo, ArcGIS, ArcObjects, ArcSDE, ArcView, MapObjects,
ArcMap, @esri.com, and www.esri.com are trademarks, registered trademarks, or
service marks of ESRI in the United States, the European Community, or certain other
jurisdictions. Other companies and products mentioned herein are trademarks or
registered trademarks of their respective trademark owners.

Working with the Geodatabase
Using SQL

An ESRI Technical Paper

Contents

SQL and the geodatabase 1
Querying and editing a geodatabase using SQL 3

Querying a geodatabase using SQL 3
Editing a geodatabase using SQL 6

Versioned tables and multiversion views 8
Querying a geodatabase using multiversioned views 8
Editing a geodatabase using multiversioned views 10

Multiversioned views and version reconcile 13
Scenario #1 13
Scenario #2 15
Scenario #3 16

ESRI Technical Paper i

Working with the Geodatabase Using SQL

February 2004 ii

Working with the Geodatabase
Using SQL

Feature classes and tables in a geodatabase can be queried and modified
using SQL. This technical paper discusses SQL and the geodatabase, how
to query and edit a geodatabase using SQL, multiversioned views, and
version reconcile.

SQL and the
geodatabase

Working with ArcGIS® client applications, end users and ArcObjects™ developers alike
can interact with the geodatabase to create and manage spatial data. The geodatabase
application programming interface (API) and ArcGIS application user interfaces shield
end users from the internal architecture of the geodatabase—often complex geometries
and their relationships with adjacent features are viewed and manipulated as intuitive
real-world objects rather than the underlying table rows and columns.

This technical paper will focus on an alternative approach to working with a geodatabase
that will support those who may have no specific knowledge of the geodatabase, its
internal structure, and API, but who are required to work with the information stored in
the underlying database management system (DBMS) and managed by the geodatabase
and ArcSDE . As geodatabases are implemented in a relational DBMS using DBMS data
types and table formats, the DBMS’s own Structured Query Language or SQL, a
database language that supports data definition and data manipulation commands, may be
used to work with the information stored in the database.

®

ESRI Technical Paper 1

Working with the Geodatabase Using SQL

Although ArcSDE does not specifically provide an additional SQL API, there are SQL
functions available to users of DBMS platforms that support spatial data types such as
Oracle® Spatial, IBM® DB2® Spatial Extender, and Informix® Spatial DataBlade®.

Accessing the information in a geodatabase via SQL extends support for:

 Customizations to the ArcGIS application framework, written in a non-ArcObjects
environment, such as Microsoft® ActiveX® Data Objects (ADO), that will work with
data managed by the underlying database.

 Third party applications such as nongeographic database applications that also
require access to the tabular data managed by the geodatabase but have no
requirement to display the data or perform any spatial analysis.

 Applications developed with ESRI® products, such as ArcView® 3.x and earlier
releases of MapObjects®, which do not support the geodatabase API but require
access to the information in a geodatabase.

Understanding how geodatabase objects are stored in the DBMS and how the SQL works
with these objects as DBMS tables is an important prerequisite to working with the
geodatabase using SQL. The following section will briefly review the internal storage
structure of a versioned feature class in a geodatabase that supports the ArcSDE
Compressed Binary format implementation.

February 2004 2

Working with the Geodatabase Using SQL

The base table is an existing DBMS table with a shape column, added by ArcSDE, for
spatial data. The feature ID in this column provides the link between the base table with
the associated ArcSDE-managed feature and spatial index tables.

The feature table stores the geometries for each feature, and the spatial index table stores
references to shapes based on a simple, regular grid. The spatial index table contains an
entry for each shape and grid cell combination to support spatial queries. The Adds and
Deletes tables record the changes made to versioned tables in an enterprise geodatabase.

Querying and
editing a

geodatabase using
SQL

Querying a

geodatabase using
SQL

The SQL 92 standard is supported by both personal (Access) and enterprise (ArcSDE)
geodatabases, although each geodatabase implementation supports a different version of
SQL—ArcSDE geodatabases support ANSI SQL and personal geodatabases support JET
SQL. Although these two versions of SQL are very similar, there are slight differences as
to what each data source will support with respect to SQL syntax. Some of the
differences to be aware of are:

 In both personal and ArcSDE geodatabases, the where clause is not case sensitive
with regard to field names and keywords.

“STATE_NAME LIKE …” is the same as “state_name like …”.

However, although the Access database is not case sensitive with regard to the actual
field value that is being queried, DBMS platforms that support ArcSDE are case
sensitive.

For example, querying a feature class of U.S. states with the following SQL
statement:

"Select * from US_States where State_name = 'Florida' "

ESRI Technical Paper 3

Working with the Geodatabase Using SQL

will return one record in both ArcSDE and personal geodatabases (assuming the
US_states feature class contains a feature for Florida). However,

"Select * from US_States where State_name = 'florida' "

will return one record in a personal geodatabase but no records in an ArcSDE
geodatabase.

 The Like predicate is again slightly different for personal and ArcSDE geodatabases.

In a personal geodatabase, an asterisk symbol (*) is used to match any number of
characters, and a question mark (?) is used to match any single character. For
example,

"Select * from US_States where State_name like 'M*' "

"Select * from US_States where State_name like 'Ma?ne' "

will return all States that begin with ‘M’ in a personal geodatabase.
With ArcSDE, the percent (%) and (_) symbols are used. The equivalent ArcSDE
geodatabase syntax for a WhereClause would be:

"Select * from US_States where State_name like 'M%' "

"Select * from US_States where State_name like 'Ma_ne' "

The following two examples illustrate how to use SQL to query and modify information
maintained in a geodatabase.

Attribute queries The following Visual Basic code uses ADO and an Oracle OLE DB provider to connect
to an Oracle database. As the Oracle database also supports an enterprise geodatabase, it
hosts a mixture of spatial and nonspatial data. The Visual Basic code could be used by
non-ArcGIS clients who require access to some of the unversioned spatial information in
the geodatabase—to perform attribute-only queries, attribute updates, report generation,
and so on.

®

For further information on working with ADO and OLE DB providers, refer to
http://www.microsoft.com/data.

February 2004 4

http://www.microsoft.com/data

Working with the Geodatabase Using SQL

Spatial queries For DBMSs capable of storing and managing spatial data in spatial geometry data types
(Informix, IBM DB2, and Oracle), additional SQL functions are provided to access these
data types and work with the spatial data they contain. These DBMS platforms support
spatial queries and analysis via SQL, which extends the capabilities of non-ArcGIS
DBMS applications that have no specific requirement to display the results but still need
to work with the spatial data.

In the following example, based on the DB2 Spatial Extender SQL implementation, a
SQL select statement is used to perform a spatial join between two feature classes
(tables).

The city engineer needs a list of all buildings that are within one foot of any lot line. The
building_id column of the BUILDINGFOOTPRINTS table uniquely identifies each
building. The lot_id column in turn identifies the lot to which each building belongs. The
column MULTIPOLYGON stores the geometry of each building’s footprint.

create table BUILDINGFOOTPRINTS
 (building_id integer,
 lot_id integer,
 footprint multipolygon);

The LOTS table contains a lot_id column that uniquely identifies each lot and a lot
multipolygon column that contains the lot line geometry.

create table LOTS
 (lot_id integer,
 lot multipolygon);

ESRI Technical Paper 5

Working with the Geodatabase Using SQL

The query below identifies the buildings that are within one foot of their lot lines—the
distance function performs a spatial join between the building footprints and the
boundary of the lot multipolygons and the equijoin between the BF.lot_id and
LOTS.lot_id columns ensures that only the multipolygons belonging to the same lot are
compared by the distance function.

select BF.building_id from
 BUILDINGFOOTPRINTS BF, LOTS
 where BF.lot_id = LOTS.lot_id AND
 distance(BF.footprint,boundary(LOTS.lot)) <= 1.0;

Editing a geodatabase

using SQL
As well as querying the geodatabase, it is also possible to edit the data in a geodatabase
using SQL. However, before doing so it is important to understand the geodatabase data
model that has been implemented—are there any advanced geodatabase objects present,
such as geometric networks or topologies, and if yes which feature classes are involved?
When working with a geodatabase using ArcGIS applications, the behavior and
validation rules that the geodatabase enforces will automatically manage the relationships
between those feature classes. This implicit geodatabase behavior does not occur if SQL
is used to directly modify the data.

For example, when a composite relationship is established between two objects, as in the
case of feature-linked annotation, any modifications made to those objects using ArcGIS
applications and the geodatabase API will ensure the relationship between the features
and the annotation is always maintained. This relationship, and the integrity of the data, is
guaranteed by the following behavior:

When a new feature is created, a new annotation element is automatically created.

 If a feature is moved, the annotation for that feature automatically moves with it.
 If a feature attribute on which the annotation text is based is changed, the annotation

text changes automatically.
 If a feature is deleted, the annotation is also deleted, again automatically.

However, for performance reasons there may be occasions when modifying the data in a
geodatabase is best done using SQL, instead of the geodatabase API, as in the case of
bulk attribute updates or data loading operations. If the target geodatabase table attributes
play no part in geodatabase behavioral constraints or data validation rules, then updating
geodatabase tables using SQL can be an efficient approach to modifying the data.
However, as any edit operation undertaken using SQL will bypass these geodatabase
constraints and data integrity rules and will not respect the relationships between feature
classes, the potential impact of such an operation should be considered carefully prior to
making any changes. It is important to ensure that modifying certain table attributes will
not affect other objects in the geodatabase.

As an example, if SQL was used to modify a feature or row attribute from which text was
derived for feature-linked annotation, the related annotation would not be alerted by
internal object messaging to update automatically—the annotation would continue to
reflect the pre-update text value resulting in the annotation and feature becoming out of
sync. Similar behavior would result if the geometry of a feature was modified via SQL—

February 2004 6

Working with the Geodatabase Using SQL

this would bypass internal geodatabase triggers to automatically update related annotation
or topologically related features, leaving objects such as networks and topologies in an
inconsistent and possibly corrupt state.

For these reasons, it is recommended that the use of SQL to modify geometries be
confined to modifying simple geodatabase objects, such as standalone feature classes.
This type of operation is only supported for Oracle Spatial and the SQL implementations
supported on the DB2 and Informix DBMS platforms. It is not supported against the
ArcSDE binary schema implementation.

The following guidelines apply to the use of SQL for modifying information in a
geodatabase:

 Avoid updating records using SQL after the data has been versioned, unless SQL is
used in conjunction with an ArcSDE multiversioned view. Multiversioned views will
be discussed in greater detail later in this paper. This applies to ArcSDE
geodatabases only—personal geodatabases do not support versioning.

 Always remember to issue a commit or rollback statement after the SQL statement
has been executed in the database to ensure the changes are either made permanent
or undone as required. Failing to do so can cause problems for the DBMS. For
example, a database compress operation would wait for uncommitted DBMS DML
statements to be committed before executing successfully.

 When updating unversioned data using SQL, avoid modifying any attributes that,
through geodatabase behavior, affect other objects in the database—as in the case of
feature-linked annotation and relationship classes.

ESRI Technical Paper 7

Working with the Geodatabase Using SQL

 Avoid using SQL to modify the geometries of feature class that participate in any
advanced geodatabase objects or functionality such as geometric networks,
topologies, and relationships. Modifications to feature classes participating in
networks, topologies, or relationship classes should be restricted to ArcGIS desktop
applications and the geodatabase API. Third party SQL-based applications can read
the data, but any modifications they make to the data will not be reflected in the
network, topology, or relationship.
In particular, never update the geodatabase specific Enabled or AncillaryRole field
for a network feature class using SQL. When this field is updated through ArcGIS
desktop applications and the geodatabase API, any updates automatically trigger
changes to the internal geometric network topology tables. Editing these fields via
SQL will bypass this behavior and leave the network in an inconsistent state.

 Never update the Row_ID (ObjectID) field with SQL—this field is allocated and
managed by the geodatabase and should not be altered.

Versioned tables and

multiversion views

Querying a

geodatabase using
multiversioned views

Simultaneous multiuser read–write access to the geodatabase is supported through
versioning, with the changes made to versioned datasets being recorded in delta tables.
Client applications that do not support versioning and the geodatabase have no specific
knowledge of these delta tables. Without an appreciation of the internal architecture of a
versioned geodatabase or a mechanism to interrogate these delta tables, only the
information in the base table can be queried.

To support client applications that must use SQL, access to spatial and nonspatial
versioned tables in a geodatabase is provided with ArcSDE through multiversioned
views—a combination of DBMS views, stored procedures, and triggers on the underlying
versioned table schema (the business, feature, spatial index, and delta tables). A
multiversioned view presents a view of a versioned table for a particular version in the
geodatabase—all the records from the base table are selected and unioned with records
from the delta tables that have been modified in the current version state lineage.
Although the internal implementations of these multiversioned views vary across
database platforms, the same general data access model is provided for Oracle,
Microsoft’s SQL Server™, IBM DB2, and Informix databases.

Multiversioned views provide a solution to some of the interoperability issues that arise
when supporting multivendor or legacy systems. In land use management, for example, it
is not untypical for one department to manage and maintain the attribute data in a central
DBMS, while another department, tasked with the collection and maintenance of the
associated spatial data, implements a versioned geodatabase in the same DBMS. The two
departments rely on the native APIs provided by the DBMS and ArcGIS to manage their
respective data holdings, with DBMS forms-based applications developed to query and
update the attribute data and ArcGIS display/edit/print applications to work with the
spatial data.

To preserve the consistency and currency of the data, there will inevitably be times when
changes made to one data source must be reflected in the other—for example, if a row is

February 2004 8

Working with the Geodatabase Using SQL

deleted in the attribute table, the corresponding spatial record must also be deleted. This
can be achieved using a multiversioned view—a SQL editor can make the necessary
change to the versioned feature class via a multiversioned view. When the ArcGIS
application refreshes their view of the version, the feature class will reflect the recent
change made by the non-ArcGIS application using the multiversioned view.

These multiversioned views are created in one of two ways:

1. Using the ArcSDE SDETABLE administration command:

 sdetable -o create_mv_view -T
 world_mv_view -t world -u av -p mo

This creates a multiversioned view ‘world_mv_view’ from the feature class ‘world’.

2. Through the SDE C or Java API.

For further information on using the SDETABLE command and the C and Java APIs
and sample code for working with multiversioned views, refer to the ArcSDE
Developer Help, http://arcsdeonline.esri.com/.

Once the multiversioned view has been created, the client application will work with the
view as it would work with any other DBMS view. When an application connects to the
DBMS, access to specific versions is supported by stored procedures created when
ArcSDE is installed in the DBMS. The required version is set by the calling application
using the ArcSDE stored procedure, set_current_version (‘<required version>’). For the

ESRI Technical Paper 9

http://arcsdeonline.esri.com/

Working with the Geodatabase Using SQL

complete command syntax for each supported DBMS platform database, refer to current
ArcSDE documentation at http://arcsdeonline.esri.com.

This procedure validates the supplied version name and sets the corresponding database
state internally; if no version name is supplied, the DEFAULT version is used. This
procedure may also be called again to change to other versions as required, and it is
called each time the workspace is refreshed to return the current state of the versioned
table to the calling application.

With the connection to the required version established via the multiversioned view, SQL
queries can be executed against the database. The view guarantees that all the rows, from
the base and delta tables, that represent a feature or features in a particular version of the
geodatabase will be returned transparently to the end user.

Editing a geodatabase
using multiversioned

views

Editing versioned feature classes or tables is also supported using multiversioned
views—the multiversioned view ensures that all the changes are logged in the appropriate
delta tables, Row_Ids for any new records are assigned automatically, and associated
indexes are updated.

Note: Read–Write multiversioned views are supported on ArcSDE for Oracle, SQL
Server, and DB2 platforms. ArcSDE for Informix supports read-only multiversioned
views.

February 2004 10

http://arcsdeonline.esri.com/

Working with the Geodatabase Using SQL

Before editing can occur, the target version is again identified with the
set_current_version procedure and opened for editing with another SQL stored
procedure, edit_version(‘<required version>’,<edit action>). The state currently
referenced by the version is opened and closed for editing by setting the appropriate edit
action parameter—1 = open, 2 = closed.

In the illustration below, a multiversioned view is used by a non-ArcGIS application to
add a new record and update an existing record in a versioned feature class. The
ArcSDE/DBMS platform in this case is Microsoft SQL Server. An equivalent operation
in ArcMap is included for comparison.

As with editing unversioned geodatabase tables using SQL, editing versioned tables using
multiversioned views does not trigger internal geodatabase behavior for related tables.
Care should be taken when updating any attribute fields that participate in a relationship
with other geodatabase objects. Multiversioned views should not be used for modifying
the geometries of feature classes that participate in networks, topologies, and other
objects with specific geodatabase behavior.

The following example illustrates this behavior with respect to a feature class, an attribute
table, and a relationship class that defines the composite relationship between the two. A
multiversioned view is created on the feature class, and this view is subsequently edited

ESRI Technical Paper 11

Working with the Geodatabase Using SQL

using SQL. If a feature were deleted via the view, the corresponding row in a relationship
table and the related attribute table would not be deleted.

Multiversioned views and SQL could also be used to modify some spatial data. In the
next example, one of the geometries of a versioned feature class is modified—in this
case, the ArcSDE/DBMS platform is Oracle and the geometry is stored in Oracle Spatial
format. Again, an equivalent operation in ArcMap is included for comparison.

February 2004 12

Working with the Geodatabase Using SQL

Multiversioned
views and version

reconcile

Unlike editing versioned data in an ArcMap edit session, although each multiversioned
view edit will create a new database state, no internal version reconcile is undertaken.
Consequently, it is important to be aware of the possibility of other editors working in
ArcMap™, editing the same version at the same time. For this reason, it is strongly
recommended that multiversioned views and the ArcSDE stored procedures are not used
to edit the DEFAULT version, or any other version, that will be subject to other edit and
reconcile operations at the same time.

The following examples illustrate some of the problems that could be encountered. In all
cases, the target geodatabase is an ArcSDE/SQL Server geodatabase.

Scenario #1 1. An editor working with a multiversioned view and SQL starts editing the DEFAULT

version (owned by the SDE user):

execute sde.sde.edit_version
(‘SDE.DEFAULT’,1);

This action creates a new child state based on the state currently referenced by the
DEFAULT version (state 0). The DEFAULT version is then relabeled to reference
the new state.

ESRI Technical Paper 13

Working with the Geodatabase Using SQL

Any ArcGIS client application currently connected to DEFAULT will now reference
state one when they refresh their workspace connection. Any ArcGIS client application
that tries to connect to the DEFAULT version now will receive the following message:

The multiversioned view edit has acquired an exclusive lock on the state currently
referenced by DEFAULT—this prevents other users from connecting to DEFAULT.

2. At this point, an ArcMap editor starts another edit session on the DEFAULT version,

which is currently referencing state one. Starting a new edit session does not create a
new database state—it is any subsequent edit operations that create the new states. In
this respect the data access model supported by multiversioned views differs from
the ArcGIS application data access model.

The ArcMap editor attempts to add a new feature but when completing the edit
operation, the following message is displayed:

To create a new edit state from state one, the application has attempted to acquire a
shared state lock on state one—this operation fails because of the existing exclusive state
lock. Only when this exclusive state lock has been released, by issuing the following
command:

February 2004 14

Working with the Geodatabase Using SQL

execute sde.sde.edit_version

(‘SDE.DEFAULT’,2);

will the ArcMap editor be able to continue.

Scenario #2 1. An ArcMap editor starts an edit session on the DEFAULT version and adds a new
feature. This edit operation successfully creates a new child state from the state
currently referenced by the DEFAULT version.

2. The SQL editor opens the same version for editing and adds a new feature but does

not close the version after making the change.

 Execute sde.sde.set_current_version

 ‘SDE.DEFAULT’;

 Execute sde.sde.edit_version

 ‘SDE.DEFAULT’, 1;

 INSERT into sde.gdb.myfeatclass_mvv

 (MyField) values (‘Some text’);

Commit;

ESRI Technical Paper 15

Working with the Geodatabase Using SQL

3. When the ArcMap editor then tries to save their changes and reconcile their
temporary internal version with the DEFAULT version, the following message is
displayed:

The edit session started by the SQL edit has moved the DEFAULT version to a new, and
currently open, state—state two.

The ArcMap editor is unable to save their changes and complete the automatic reconcile
with the DEFAULT version. Any changes made during the course of their edit session
are now lost and must be repeated.

Scenario #3 1. An ArcMap editor starts an edit session on the DEFAULT version and adds a new
feature.

2. The SQL editor opens the same version for editing, adds a new feature, and this time

closes the state once all the changes have been made.

 Execute sde.sde.set_current_version

 (‘SDE.DEFAULT’);

 Execute sde.sde.edit_version

 (‘SDE.DEFAULT’, 1);

 INSERT into sde.gdb.MyFeatClass_MVV

 (MyField) values (‘Some text’);

February 2004 16

Working with the Geodatabase Using SQL

 Commit;

Execute sde.sde.edit_version

(‘SDE.DEFAULT’, 2);

3. The ArcMap editor then tries to save their changes and reconcile their temporary

version with the DEFAULT version. The following message is displayed:

The SQL edit has moved the DEFAULT version to a new, and now closed, state. The
ArcMap editor is advised that the target of the internal reconcile has changed since they
began their edit session, and they must save again to acknowledge the changes. When the
editor saves a second time, the changes are successfully applied.

The easiest way to avoid any contention between the different data access models is to
create a new version for those editors working with multiversioned views and SQL. If
this is not possible and the DEFAULT version has to be modified, other editors also
working with the DEFAULT version need to be aware that they will be unable to modify
that version until the SQL session has executed the following procedure:

execute sde.sde.edit_version ‘SDE.DEFAULT’, 2;

This procedure closes the current state referenced by DEFAULT and makes it available
again to other editors.

SQL and multiversioned views provide an alternative development option for those
wishing to work with the information managed in a geodatabase but have no requirement

ESRI Technical Paper 17

Working with the Geodatabase Using SQL

February 2004 18

to work with advanced geodatabase objects, such as networks and topologies, or display
the data. Through multiversioned views, non-ArcGIS client applications have access to
the same versioned data management framework as ArcGIS applications and can both
query and update individual named versions in the geodatabase.

	Working with the Geodatabase Using SQL
	Table of contents
	SQL and the geodatabase
	Querying and editing a geodatabase using SQL
	Querying a geodatabase using SQL
	Editing a geodatabase using SQL

	Versioned tables and multiversion views
	Querying a geodatabase using multiversioned views
	Editing a geodatabase using multiversioned views

	Multiversioned views and version reconcile
	Scenario #1
	Scenario #2
	Scenario #3

