ArcGIS° Desktop Developer Guide

ArcGIS° 9.0

PUBLISHED BY

ESRI

380 NewYork Street
Redlands, California 92373-8100

Copyright © 2004 ESRI
All rights reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of
ESRI. This work is protected under United States copyright law and
other international copyright treaties and conventions. No part of this
work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying and recording, or by any
information storage or retrieval system, except as expressly permitted in
writing by ESRI. All requests should be sent to Attention: Contracts
Manager, ESRI, 380 New York Street, Redlands, California 92373-8100,
USA.

The information contained in this document is subject to change without
notice.

ContributingWriters
Euan Cameron, Rob Elkins, Shelly Gill, Sean Jones, Allan Laframboise,
Glenn Meister; Steve Van Esch

U.S. GOVERNMENT RESTRICTED/LIMITED RIGHTS

Any software, documentation, and/or data delivered hereunder is
subject to the terms of the License Agreement. In no event shall the
U.S. Government acquire greater than RESTRICTED/LIMITED RIGHTS.
At a minimum, use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in FAR §52.227-14 Alternates |, Il,and
IIMJUN 1987); FAR §52.227-19 (JUN 1987) and/or FAR§12.211/12.212
(Commercial Technical Data/Computer Software); and DFARS
§252.227-7015 (NOV 1995) (Technical Data) and/or DFARS §227.7202
(Computer Software), as applicable. Contractor/Manufacturer is ESRI,
380 New York Street, Redlands, California 92373-8100, USA.

ESRI,ArcView, ArcIMS, SDE, the ESRI globe logo, ArcGlobe, StreetMap,
ArcReader, ArcPad, ArcScan, ArcObjects, ArcGIS, ArcMap, ArcCatalog,
ArcScene, Arcinfo, ArcEdit, ArcEditor, Arc Toolbox, 3D Analyst, ArcPress,
ArcSDE, GIS by ESRI, the ArcGIS logo, and www.esri.com are trademarks,
registered trademarks, or service marks of ESRI in the United States,
the European Community, or certain other jurisdictions.

Other companies and products mentioned herein are trademarks or
registered trademarks of their respective trademark owners.

Contents

CHAPTER 1: INTRODUCING ArcGIS DESKTOP DEVELOPMENT

ArcGIS 9 developer overview

ArcGIS Desktop developer overview
Using this guide

ArcGIS developer resources

CHAPTER 2: ArcGIS SOFTWARE ARCHITECTURE

ArcGIS software architecture

18

ArcGIS application programming interfaces

23

ArcGIS Engine libraries

25

ArcGIS Desktop application libraries

33

CHAPTER 3: DEVELOPING FOR ArcGIS DESKTOP APPLICATIONS

Customizing ArcGIS Desktop.

46

49

Storing customizations
Customizing ArcGIS Desktop applications with VBA

53

Component development

64

67

Choosing a component development environment
Building an ArcGIS Desktop component

68

CHAPTER 4: LICENSING AND DEPLOYMENT

73

ArcGlIS license checking

74

86

Packing and deploying customizations

CHAPTER 5: DEVELOPER SCENARIOS

93

Create a toolbar: Command, Tool, and Menu

94

Extensions
Dockable window

APPENDIX A: DEVELOPER ENVIRONMENTS

113
119

The Microsoft Component Object Model
Developing with ArcObjects
The Visual Basic 6 environment
Visual Basic for Applications
The Visual Basic 6 development environment
Visual C++

.NET Application Programming Interface

132
144
153
166
172
179
221

131

APPENDIX B: READING THE OBJECT MODEL DIAGRAMSccoceeeeee 259

Interpreting the object model diagrams 260
APPENDIX C: ILLUSTRATED CODE SAMPLES 263

Locate and execute command on toolbar 265

Draw digitized line on screen 266

Add feature class to ArcMap 268

Add layer to ArcMap using GxDialog 270

Style gallery auto symbol selection 272

Loop through selected area features 274

Spatial query 276

Add map surround to page layout 278

Add text callout to active view 280

Geometry projection 282

Display raster cell value in status bar 284

Export current view 286

Print current view 288

Display map extent in GxView as envelope 290

Edit feature class schema 292
APPENDIX D: ArcOBJECTS PROBLEM-SOLVING GUIDE.................... 295

ArcObjects problem-solving guide 296
APPENDIX E: UICONTROLS 313

UlControl classes 314

UlButtonControl class 315

UlComboBoxControl class 316

UlEditBoxControl class 317

UlToolControl class 318
APPENDIX F: BIBLIOGRAPHY 319
INDEX 323

iv ¢ ArcGIS Desktop Developer Guide

Introducing
ArcGIS Desktop
development

The ESRI® ArcGIS® Desktop Developer Guide is an introduction for
anyone who wants to customize or extend ArcGlIS Desktop applications, such

asArcMap™ or ArcCatalog™.

This chapter introduces the ArcGIS Desktop development environment in the

context of the ArcGIS product family.

Topics covered in this chapter include an ArcGIS 9 developer overview, an
ArcGIS Desktop developer overview, using this guide, and ArcGIS developer

resources.

ARCGIS 9 DEVELOPER OVERVIEW

ArcGIS
Clients

Components

ArcGIS 9 is an integrated family of geographic information system (GIS) soft-
wate products for building a complete GIS. It is based on a common library of
shared GIS software components called ArcObjects™. ArcGIS 9 consists of four
key parts:

® Desktop GIS, an integrated suite of advanced GIS applications.

¢ Embedded GIS, embeddable GIS component libraries for building custom
applications using C++, COM, .NET, and Java™.

® Server GIS, a shared library of GIS software objects used to build server-side
GIS applications in enterprise and Web computing frameworks. Used for
building both SOAP-based Web services and Web applications using NET/
ASP and Java/JSP.

® Mobile GIS, GIS Web services to publish maps, data, and metadata through
open Internet protocols.

Application
Servers

2 + ArcGIS Desktop Developer Guide

ArcSDE® Gateway is an interface for managing geodatabases in numerous rela-
tional database management systems (RDBMSs).

ARcCGIS 9 DEVELOPER OVERVIEW

ArcGIS provides a scalable framework for implementing GIS for a single user or
for many users on desktops and servers. This book will be of greatest use to
developers who want to use the ArcGIS Desktop Developer Kit to customize
and extend the ArcView®, ArcEditor™, or ArcInfo™ desktop products. This
book provides a general explanation of the options and opportunities available to
developers with ArcGIS Desktop. Several scenarios will illustrate with code
examples the different types of customization that can be developed with the
ArcGIS Desktop Developer Kit.

ArcGIS is a platform for building geographic information systems. ArcGIS 9 will
extend the system with major new capabilities in the areas of geoprocessing, 3D
visualization, and developer tools. Two new products, ArcGIS Engine and
ArcGIS Server, are introduced at this release, making ArcGIS a complete system
for application and server development.

There is a wide range of possibilities when developing with ArcGIS, including
the following:

® Configure/Customize ArcGIS applications, such as ArcMap and ArcCatalog.

® [Extend the ArcGIS architecture and data model.

® Embed maps and GIS functionality in other applications with ArcGIS Engine.
® Build and deploy custom desktop applications with ArcGIS Engine.

® Build Web services and applications with ArcGIS Server.

ArcGIS 9 has a common developer experience across all ArcGIS products
(Engine, Server, and Desktop). This book focuses on customizing and extending
the ArcGIS Desktop applications. Developers wanting to build custom
standalone applications or work with ArcGIS Server should refer to the ArnGIS
Engine Developer Guide and the ArGIS Server Administration and Development Guide,
respectively.

The ArcGIS system is built and extended using ArcObjects
software components. ArcObjects includes a wide variety of
programmable components, ranging from fine-grained objects
(for example, individual geometry objects) to coarse-grained
objects (for example, a map object to interact with existing
ArcMap documents), which aggregate comprehensive GIS
functionality for developers.

Developers work with ArcObjects using standard program-
ming frameworks to extend ArcGIS Desktop, build custom
applications with ArcGIS Engine, and implement server GIS
applications for various enterprise purposes using ArcGIS
Server.

Chapter | « Introducing ArcGIS Desktop development * 3

ARcCGIS 9 DEVELOPER OVERVIEW

4 » ArcGIS Desktop Developer Guide

Each of the ArcGIS product architectures built with ArcObjects represents
alternative application development containers for GIS software developers,
including desktops, embeddable engines, and servers.

ArcGIS SOFTWARE DEVELOPER KITS

The ArcGIS Engine, Server, and Desktop have software developer kits (SDK)
for working with ArcObjects. The developer kits provide everything needed to
be successful with ArcObjects, including developer documentation, samples, and
object model diagrams.

ArcGIS 9
Desktop GIS Embedded GIS Server GIS Mobile GIS
ArcGIS Desktop ArcGIS Engine ArcGIS Server ArcIMS ArcGIS Mobile

[ArcPad
o

% B oo
Z P) ‘

Custom ¢ k
Arcinfo et Applications - Web Templates

Custom Templates

7N ZEN

+ ArcGIS Extensions

Desktop Engine Server Mobile
D D

Kit P Kit Development Kit Development Kit
NET C++ VB NET C++ VB JAVA JAVAADF NET ADF C++ PEI Compact Framework
ArcObjects
ArcSDE
mﬁm
—
Geodatabase AN
File-based DBMS I A

The ArcGIS Desktop Developer Kit

ArcGIS Desktop includes a series of Windows® desktop application frame-
works—ArcMap, ArcCatalog, ArcToolbox™—and more, each with user inter-
face components. ArcGIS Desktop is available at three functional levels
(ArcView, ArcEditor, and ArcInfo) and can be customized and extended using
the ArcGIS Desktop Developer Kit.

The software developer kit for ArcGIS Desktop is included with ArcView,
ArcEditor, and ArcInfo and supports the COM and NET programming frame-
works. Many users apply the ArcGIS Desktop Developer Kit to add extended
functions, new GIS tools, custom user interfaces (Uls), and full extensions for
improving professional GIS productivity of ArcGIS Desktop.

The ArcGIS Engine Developer Kit

ArcGIS Engine is a simple, application-neutral programming environment for
ArcObjects. The ArcGIS Engine Developer Kit provides a series of embeddable
ArcGIS components that are used outside the ArcGIS Desktop application

ARcCGIS 9 DEVELOPER OVERVIEW

framework (for example, mapping objects are managed as part of ArcGIS
Engine, rather than in ArcMap). Using the ArcGIS Engine Developer Kit, devel-
opers build focused GIS solutions with simple interfaces to access any set of GIS
functions or can embed GIS logic in existing user applications to deploy GIS to
broad groups of users. ArcGIS Engine has a COM, .NET, Java, and C++ applica-
tion programming interface (API) for developers.

The ArcGIS Server Developer Kit

ArcGIS Server defines and implements a set of standard GIS Web services (for
example, mapping, data access, and geocoding), as well as supports enterprise-
level application development based on ArcObjects for the server.

The ArcGIS Server Developer Kit enables developers to build central GIS servers
to host GIS functions that are accessed by many users, perform back office pro-
cessing on large central GIS databases, build and deliver GIS Web applications,
and perform distributed GIS computing.

Chapter | « Introducing ArcGIS Desktop development * 5

ARCGIS DESKTOP DEVELOPER OVERVIEW

[RS = —1
Fre aTT duaw anzoeseEion
o — e U B St LOCC

Hom of Africa -+

s e
ArcMap is used for mapping and editing tasks as
well as map-based analysis.

6 * ArcGIS Desktop Developer Guide

ArcGIS Desktop includes a suite of integrated applications, including ArcMap,
ArcCatalog, and ArcToolbox. By using these applications and interfaces in unison,
you can perform any GIS task, simple to advanced, including mapping, geographic
analysis, data editing and compilation, data management, visualization, and
geoprocessing,

WHAT ARE ArcView, ARcEpiTor,AND ArcInFo?

ArcGIS Desktop is the information authoring and usage tool for GIS profession-
als. It is scalable as three separate software products to meet the needs of many
types of users.

ArcView provides comprehensive mapping and analysis tools along with simple
editing and geoprocessing.

ArcEditor includes advanced editing capabilities for shapefiles and geodatabases
in addition to the full functionality of ArcView.

Arclnfo is the flagship ArcGIS Desktop product. It builds on the functionality
of ArcEditor with advanced geoprocessing. It also includes the legacy applica-
tions for ArcInfo Workstation.

Because ArcView, ArcEditor, and Arclnfo all share a common architecture, users
working with any of these GIS desktops can share their work with other users.
Maps, data, symbology, map layers, custom tools and interfaces, reports,
metadata, and so on, can be accessed interchangeably in all three products. This
means that you benefit from using a single architecture, minimizing the need to
learn and deploy several different architectures.

New capabilities can be added to all seats through a series of ArcGIS Desktop
extensions from ESRI and other organizations. Users can also develop their own
custom extensions to ArcGIS Desktop by working with ArcObjects, the ArcGIS
software component library. Users develop extensions and custom tools using
standard Windows programming interfaces, such as COM and .NET.

ArcObjects is a framework that lets you create domain-specific components from
other components. The ArcObjects components collaborate to serve every data
management and map presentation function common to most GIS applications.
ArcObjects provides an infrastructure for application customization that lets you
concentrate on serving the specific needs of your clients.

ArcMap

ArcMap is the central application in ArcGIS Desktop. It is the GIS application
used for all map-based tasks, including cartography, map analysis, and editing. In
this application, you work with maps. Maps have a page layout containing a
geographic window, or a data frame, with a series of layers, legends, scalebars,
North arrows, and other elements. ArcMap offers different ways to view a map’s
geographic data and layout views in which you can perform a broad range of
advanced GIS tasks.

ARcCGIS DESKTOP DEVELOPER OVERVIEW

s ol

ArcCatalog is used for managing your spatial
data holdings, defining your geographic data
schemas, and recording and viewing metadata.

alngy mad - ArcMap - Arcintn

Eio Edt Mew Inseit Selection Tnok Window Help

ArcCatalog

The ArcCatalog application helps you organize and manage all of your GIS infor-
mation (maps, globes, datasets, models, metadata, services, and so on). It includes
tools to:

® Browse and find geographic information.
® Record, view, and manage metadata.

® Define geodatabase schemas and designs.
® Administer an ArcGIS Server.

® Search for and discover GIS data on local networks and the Web.

GIS users apply ArcCatalog to organize, find, and use GIS data as well as to
document their data holdings using standards-based metadata. A GIS database
administrator uses ArcCatalog to define and build geodatabases. A GIS server
administrator uses ArcCatalog to administer the GIS server framework.

Customizing ArcGIS Desktop applications

You may want the ArcMap and ArcCatalog interfaces to reflect your own prefer-
ences and the way you work.

You can customize ArcMap and ArcCatalog in many ways. Here are some ex-
amples:

® DPosition toolbars in a specific area of the application.
® Group commands in a way that works best for you.
® Add new macros or load custom commands from another source.

® Always work with the same geographic data (via templates).

If you work in a larger organization, others may
want you to develop a customized work environ-
| ment for them. You can handle many customization

EECENEY SR s

N e rr—
T L

+ B Fesues
@ B Mino Geoingic Fomatior

ﬂ|=é’&l

ale

-

tasks without writing a single line of code. In fact,

&
p you may be able to instruct others on how to use the
customization environment to create the look and
feel they want on their own. You can change or
create toolbars, menus, shortcut keys, and so on, to

[[35300.40 TI05T07 65 Mevers

help you do your work in the most efficient way.
You can provide additional functionality by linking
Peport Object .
Foue Eding Canands code you or others have written to menu commands
E”TMNM t 1
::::::;mm.l J P G T Bt i or tools.
ey b 15 Hap Scan . .
Cirvey e Several toolbars are provided with ArcMap and
Survey Feanre Took: =] | PamLen
ArcCatalog, but you may want to create new
M| R
) toolbars to organize commands that you often use
g S0t Peesinioy 3] | Koot | astiomt |] together or to contain buttons that run your custom

scripts.

The Customize dialog box is used to create new
toolbars and add or remove controls.

Chapter | ¢ Introducing ArcGIS Desktop development * 7

ARcCGIS DESKTOP DEVELOPER OVERVIEW

WritingVBA macros in ArcGIS applications

Both ArcMap and ArcCatalog come with Visual Basic® for Applications (VBA).
VBA is not a standalone program; it'’s embedded in the applications. It provides
an integrated programming environment, the Visual Basic Editor (VBE), which
lets you write a Visual Basic (VB) macro, then debug and test it right away in
ArcMap or ArcCatalog. A macro can integrate some or all of VB’s functionality,
such as using message boxes for input, with the extensive object library that
ArcMap and ArcCatalog expose. The ESRI object libraries are always available to
you in the VBA environment.

There is an easy way to create custom commands with VBA. You can create a
new button, tool, combo box, or edit box (collectively called UIControls), then
attach code to the control’s events, such as what happens when you click a but-
ton. After you have created it, you can drag this new control onto a toolbat.

As mentioned, you should start development by using the VBA environment in
one of the existing ArcGIS applications. VBA is a simple programming language
with many utilities, such as design time code completion and the Object Browser
that will help you assemble code quickly.

Here are more reasons to choose the VBA environment:

* It’s fast and easy to create, test, and debug macros
inside ArcMap and ArcCatalog;

+ | unisiaHuallhF acilims. mad - ArcMap - Arcinly
| Ein £t Wi et Soloction Fook Window Helo
]DSHQ|%FF‘.IS‘X|NI cu [12377.7% 7|2 & @O we

e The standard ESRI type libraries are already
referenced for you.

* Important global variables, such as the Applica-

- tion and Document, are available.
i Fie Edt View |ntet Fomst [Debuy Aun Took

Addine Window Help -8 %
Q@-B s @# o] oo whd M2

[reneran =] [wectarations) |

e It’s simple to assemble UI forms using VBA and
ActiveX" components.

"Buffer sach selected feature =
Set pEnunFfeature = m pMxDoc.FocusMap.Fe
pEnwsFencure Reset
Set pFeature = pEnunFeature.Next
Do Until pFeature Is Nothing

Jer pTopoOperator = pFeature,Shape

Ser pPolygon = pTopodperacor.Buffer |

phecmetrylag. AidGeometry pPolygon

"Ger next feacure

set pFeature = pEnumFeaturs . Hext _|ﬂ

»

e It’s straightforward to integrate VBA code with
new ArcObjects UIControls.

e It’s relatively easy to migrate VBA code to VB
ActiveX Dynamic Link Library (DLL) projects.

==l
LT K [Jen =wal

* Many code samples available in the help system
are macros that can be cut, pasted, and run within
A buffer command created in VBA the VBA environment.

Writing custom components to extend the ArcGIS Desktop
applications

You don’t have to use VBA to create custom commands and toolbars—in fact, in
some cases, your custom commands and toolbars may require you to use another
development environment. You can create custom objects in any programming
language that supports the Microsoft® Component Object Model. Custom com-
mands or toolbars created outside VBA are often distributed as ActiveX DILLs. If
you have created some custom commands and toolbars, or someone else has given
you an ActiveX DLL containing custom commands and toolbars, you can easily
add these objects to ArcMap or ArcCatalog. After adding a custom object to
ArcMap or ArcCatalog, you can use it as you would any built-in command or
toolbar.

8 * ArcGIS Desktop Developer Guide

ARcCGIS DESKTOP DEVELOPER OVERVIEW

If you want to use a programming language other than VBA, or if you want to
package ArcObjects functionality into a COM DLL, EXE, OCX, or NET assem-
bly, you will have to work outside the VBA development environment. This
approach generally requites creating a project, referencing the ArcObjects type
libraries required, implementing ArcObjects interfaces, adding code, then compil-
ing the source into a binary file.

Following are some advantages of building custom components:
® They can be easily delivered to end users via custom setup programs.
® You can hide your code and logic in a binary file.

® You can extend and customize virtually every aspect of the ArcGIS technol-
ogy-

Components can be broadly categorized into two areas of customization: those

that reside at the application level, such as custom buttons, toolbars, windows,

and extensions, and those that reside at the geodatabase level, such as custom

feature class extensions and features. Some of these mote advanced

customizations cannot be accomplished through the VBA environment.

The Production Line Tool Set (PLTS) is an
example of a complex application extension
created with ArcObjects.

CEFo = st@ Innissn

Chapter | ¢ Introducing ArcGIS Desktop development ¢ 9

USING THIS GUIDE

10 « ArcGIS Desktop Developer Guide

The AnGIS Desktop Developer Guide is an introduction for anyone who wants to
customize or extend the ArcGIS Desktop applications, such as ArcMap or
ArcCatalog,

This guide will help you become a desktop developer by walking you through
numerous VBA code samples and providing a problem-solving guide and devel-
oper scenarios. Although the samples documented in this guide may not solve
your immediate problem, they will serve as a framework or template on which
you can build a more specific or complex solution.

To serve the greatest base of developers, most of the code samples in this guide
are written in VBA. As necessary, some code samples are written in Microsoft
Visual Basic, VB .NET, or Visual C++®.

CHAPTER GUIDE

Chapter 1, ‘Introducing ArcGIS Desktop development’, gives you an overview of
the ArcGIS 9 product family, the desktop developer framework, the types of
customizations that can be made, and additional resources.

Chapter 2, ‘ArcGIS software architecture’, describes the underlying technology
used to create the ArcGIS Desktop products, ArcObjects, and the software
architecture common to the ArcGIS product family.

Chapter 3, ‘Developing for ArcGIS Desktop applications’, guides you through the
basics of ArcGIS Desktop development. The chapter begins with some desktop
application framework theory, then walks you through some small tutorials for
toolbar customization and VBA macro writing. The chapter concludes with the
theory and steps in creating custom components that extend the ArcGIS Desktop
framework.

Chapter 4, ‘Licensing and deployment’, discusses license considerations when
developing your customizations and how to package and deploy your
customizations, including VBA macros and components, to other users.

Chapter 5, ‘Developer scenarios’, guides you through the creation of several types
of components that can plug into the ArcGIS Desktop applications.

Appendix A, ‘Developer environments’, describes in more detail the Microsoft
Component Object Model, the foundation for ArcObjects, and continues with a
language reference guide for each API supported by ArcGIS. These guides discuss
issues and considerations while developing ArcGIS with a particular APL

Appendix B, ‘Reading the object model diagrams’, discusses how to read and
interpret the ArcGIS object model diagrams. Understanding the structure and
relationships of ArcObjects represented in these diagrams is essential in ArcGIS
development.

Appendix C, ‘Illustrated code samples’, shows numerous VBA code snippets for
some common desktop applications. These are illustrated with components from
the ArcGIS object model to help you understand the structure and relationships.

Appendix D, ‘ArcObjects problem-solving guide,” presents a methodology to help
you solve real-world ArcObjects programming tasks that customize or extend the
ArcGIS Desktop applications.

USING THIS GUIDE

Appendix E, ‘UlControls’, shows class and interface diagrams for UIControls,
which are VBA-based commands with interfaces available only in VBA.

Appendix F, ‘Bibliography’, is not intended as a complete resource, but it does
contain many of the everyday references that ESRI developers use when devel-
oping Visual Basic, Visual C++, Visual Studio .NET code, and ArcObjects.

Chapter | ¢ Introducing ArcGIS Desktop development | |

ARCGIS DEVELOPER RESOURCES

-3 C:\ProgramFiles)ArcGIS\Developertit
{:I Addins
-1 Diagrams
{:I Documentation
D Help
{:I samples
{:I tools

A typical SDK installation

12 « ArcGIS Desktop Developer Guide

The following topics describe some of the additional resources available to you as
a developer. These include books and guides and various help systems.

ArcGIS SOFTWARE DEVELOPER KIT

The ArcGIS SDK is a collection of diagrams, utilities, add-ins, samples, and
documentation geared to help developers implement custom ArcGIS functional-
ity.

ARrcGIS Developer Help system

The ArcGIS Developer Help system is the gateway to all SDK documentation,
including help for the add-ins, developer tools, and samples; in addition, it serves
as the complete syntactical reference for all object libraties.

Each supported API has a version of the help system that works in concert with
it. Regardless of the API you choose to use, you will see the appropriate library
reference syntax and have a help system that is integrated with your development
environment. For example, if you are a Visual Basic 6 developer, you will use
ArcGISDevHelp.chm, which has the VBG6 syntax and integrates with the VB6
integrated development environment (IDE), thereby providing F1 help support
in the Code window.

The help systems reside in the DeveloperKit\Help folder but are typically
launched from the Start menu or F1 Help in Visual Basic 6 and Visual Studio
NET 2003. The graphic below shows the Start menu options for opening the
help systems.

2 online Help
b % vBS Help
EQ C++ Help

Arcials Developer Help

Developer Tools

ArciZatalog
Arcizls Deskiop Help

Deskiop Adminiskrator
ArcGlobe

Arccens

Samples

The ArcGIS developer kit contains more than 600 samples, many of which are
written in several languages. The samples are described in the help system, and

source code and project files ate installed in the DeveloperKit\samples foldet.

The help system’s table of contents for the samples section mirrors the samples
directory structure.

The help system organizes samples by functionality. For example, all the
geodatabase samples are grouped under Samples\Geodatabase. Most first-tier
groupings are further subdivided. You can also find samples in the SDK using the
‘Query the Samples’ topic in the help system, which lists all the samples alpha-
betically; in addition, you can sort the list by language. For example, you can elect
to only list the available VBG6 samples.

ARCcGIS DEVELOPER RESOURCES

You can use the ‘Query the Samples’topic in the E? ArcGIS Developer Help [-[O]x]
help system to find specific samples that interest Fie Edt ‘View Go Help

you. Hoe = [& & B

Hidz Back Fozrd Refresh Home Font Frint Options

ArcGIS 50K =]

Contents | Indas | Searsh| Favaiies |
Query the

[5] Welcome -
@ Develaping with ArcGls
@ AchIS Deskiop

List samples by language:

) @ Development E
[@ Extending ArcDbjects
® @ Technical Documents Name Category Type Language
& @ Addins 1 Acosssing ArcINS servics Server TOOL VBLHET,C#ava
@ Developer Took Development
@ Libay Reference , Aecessing server objects using the Server TOOL VE6,CE VB NET Java
2 () Samples GIS server AP Development
[£] Samples Start Fage 3 Accessing WS service e et TOOL Java
2] Buery the Samples P
o o use the Samples 4 AddFesture Geodatabase TOOL Javs
@ 30 Analst 5 addreatureLayer Cantrals TOOL Java
@ bpplcaiions 6 Adding Rasters SpatialAnalyst TP BAJavs
Bpplisation Frameniork 7 application E18 Develoger Guide 00 Javs
ArcCaldlog
@ iecMap 8 application web service Es::;“rfui” Guide ool C#uBNETIava
@ arcPad Extension
@ bicsean 9 applicationAsToolbarBuddy Contrals TOOL vB6,Java
L =] 10 #pplying diffsrent classification types gzz"jgpmem TOOL Java
H Cart hy
g E:;Si::” 4 11 attributeQuery Contrals TOOL Javs
T (vt B Conine 12 AttributeQuery Sample Server TOOL VBNET,C#Java
1 » Development
13 Pivariate Randerars Cartanranh TNl VPR 1awa j

Installing the sample source code and project files is an option in the Desktop
Developer Kit install. The samples are installed under the
ArcGIS\DeveloperKit\samples folder. If you don’t have this folder on your
computer, you can rerun the install program and check Samples under Developer

Kit.
ESRI Libir ary Loz ator M B Developer tools
Entes te name of an miedace. coclass. % . .1:
e DO T LA The ArcGIS developer tools are executables that ESRI has provided to facilitate
e your ArcObjects development. For example, if you are a Visual Basic 6 desktop
Lictiveliew it in ESRLAKGES Cato :
Loy developer, you will likely use the Categories.exe tool to register components in

component categories.
[Riepunt Seasch ared Copy e hor i 0 NET

The list below features some of the more important developer tools available
with ArcGIS Desktop. Refer to the help system for more developer tool details
and instructions.

ESRI Library Locator

* Component Categories Manager—Registers components within a specific
component category

* Library Locator—Identifies an object library containing a specified interface,
coclass, enumeration, ot structure

= e ESRI Object Browser—ILets you explore the structure of ArcObjects, over-
= ; of

ESRI Object Browser

coming certain limitations of other standard object browsers

The developer tools ate installed in the DeveloperKit\tools folder. There is one
exception—the Component Category Manager is located in the ArcGIS\bin
folder.

Chapter | ¢ Introducing ArcGIS Desktop development * 13

ARcCGIS DEVELOPER RESOURCES

Sebeet Fratures
Flaate seiset hech Ieshaes you woukd e o sl

Festrn Deverption:

Tha VI ki batrg kol sk Vs Vsl
fhaexc £ The ackd must b marualy
egebaend for use m VI

This gt ol e nat e th ol Pl
o,

This e secpanes (K1) on yous hard ivem.

Cumerd s
B Wit

Mo | pekOst | Bew | cBeck [e | carcel |

Visual Basic 6 add-ins are only installed if you
select them on the install.

14 + ArcGIS Desktop Developer Guide

Add-ins

The ESRI add-ins automate some of the tasks performed by the software engi-
neer when developing with ArcObjects, as well as provide tools that make debug-
ging code easier. ESRI provides add-ins for the Visual Basic 6 IDE and the Visual
Studio NET IDE. Listed below are the add-ins available for these development
environments.

Visual Basic 6

* ESRI Align Controls With Tab Index—FEnsures control creation order
matches tab index

* ESRI Automatic References—Automatically adds ArcGIS library references

* ESRI Code Converter—Converts projects from ArcGIS 8.x to ArcGIS 9.x

¢ ESRI Command Creation Wizard—Facilitates the creation of commands and
tools

* ESRI Compile and Register—Aids in compiling components and registering
these in desired component categories

* ESRI ErrorHandler Generator—Automates the generation of error handling
code

¢ ESRI ErrorHandler Remover—Removes the error handlers from the source
files

* ESRI Interface Implementer—Automatically stubs out implemented inter-
faces

Visual Studio .NET

* ESRI Component Category Registrar—Stubs out registration functions to
enable self-component category registration

* ESRI .NET Code Converter—Converts projects from ArcGIS 8.x to ArcGIS
9.x

* ESRI GUID Generator—Inserts a Global Unique Identifier (GUID) attribute

The .NET add-ins are automatically installed during setup if a version of Visual

Studio .NET 2003 is detected; the Visual Basic 6 add-ins are only installed if you
select them on the install. Once installed the add-ins have to be registered manu-
ally using the .bat files in the Addins directory.

THE ArcGIS DEVELOPER DOCUMENTATION SERIES
This guide is part of the ArcGIS Developer documentation series.

The ArGIS Engine Developer Guide provides information for developers who
want to create applications based on ArcGIS Engine. ArcGIS Engine allows you
to embed GIS functionality within other applications and create desktop-like
applications using the supplied ArcGIS controls, such as MapControl, Toolbar,
and PagelLayout controls. ArcGIS Engine is also based on ArcObjects compo-
nents and may be programmed through a number of APIs.

ARCcGIS DEVELOPER RESOURCES

The ArcGIS Server Administrator and Developer Guide is for developers who will
create ArcGIS Server applications and customizations. At the core of ArcGIS
Server is a rich ArcObjects object library that can be consumed in Web applica-
tions and Web services to deliver advanced GIS functionality to a wide range of
users who interact with the server through Web browsers and other thin client
applications. ArcGIS Server may also be programmed through a number of APIs.

ArcGIS DEVELOPER ONLINE WEB SITE

ArcGIS Developer Online is the place to find the most up-to-date ArcGIS 9
developer information, including sample code, technical documents, object model
diagrams, and the complete object library reference.

The Web site is a reflection of the ArcGIS Developer Help system, except it is
online and, therefore, motre current. The Web site has some additional features
including an advanced search utility that enables you to control the scope of your
searches. For example, you can create a search that only scans the library refer-
ence portion of the help system.

Visit the site at A#tp:/ [arcgisdeveloperoniine.esti.com.

2 ArcGIS Developer Online - Microsoft Internet Explorer

Fle Edt View Favortes Tools Help e

Qi - © - ¥ @ &) search S Favories @ vedia) R ;‘: - 3
cidress €] http:farcgisdeveloperonine. srl.comjrcGIsDeveloperfdefault.asp &

~| Bpsearchweb - FB | FDesblocked

[| = options

n | ESRI Supp

ESRI ArcGlS Developer-Onling

Hide Locate Home Get Page URL auick search: ||| |

A
B welsoms to arcals Developer Online il
Developing with ArcGIS wel to ArcGIS D I onli
Firais Erding elcome to Arc eveloper Online
ArcGIS Desktop
ArcGIS Server 3
Developrient Enviranments This anling help system is the place to find the |atest information about 1
Extending ArcObjects ArcObjects including sample code, technical documents, and object model
Technical Documents diagrams,
Add-Tns <
Use the table of contents on the left to navigate the help system. |
Developer Tools s
Library Reference
Samples
= Add-Ins Wisual Basic 6 and Wisual Studio NET Addins
Bi EHE The ESRI add-ins automate some of the tasks perfarmed by
[5EH SO RoRm the software engineer when developing with ArcObjects, as
Feedback well as pravide tools that make debugging code easier,
Search ArcGIS Developer Online
Code Caonverter
This add-in converts VBG projects to work with ArcGIS 9. You
can convert either the active project, or use the batch option
to convert many projects at a time.
e ‘ N %
&) & Internet

Chapter | ¢ Introducing ArcGIS Desktop development ¢ 15

ARCcGIS DEVELOPER RESOURCES

ESRI SUPPORT CENTER

The ESRI Support Center at A#p:/ /support.esri.com contains software information,
technical documents, samples, forums, and a knowledge base for all ArcGIS

products.

ArcGIS developers can take advantage of the forums, knowledge base, and
samples sections in particular to aid in development of their ArcGIS applications.

TRAINING

ESRI offers a number of instructor-led and Web-based training courses for the

ArcGIS Desktop developer. These courses range from the introductory level for
VBA to more advanced courses in component development with specific APIs.

For more information visit A#p:/ /www.esri.com and click the Training and Events
tab.

The ESRI Virtual Campus can also be found directly at bs#p:/ [campus.esri.com/ .

16 * ArcGIS Desktop Developer Guide

ArcGIS software
architecture

The architecture of ArcGIS has evolved over several releases of the technology to
be a modular, scalable, cross-platform architecture implemented by a set of

software components called ArcObjects.

This chapter focuses on the main themes of this evolution at ArcGIS 9 and

introduces the reader to the libraries that comprise the ArcGIS system.

ARCGIS SsOFTWARE ARCHITECTURE

For a detailed explanation of COM see the
COM section of Appendix A, ‘Developer
environments’.

|

Developer
Components

}

Map
Presentation

)

Map
Analysis

)

Data
Access

)

Base
Services

|

ArcGIS Engine

18 « ArcGIS Desktop Developer Guide

The ArcGIS software architecture supports a number of products, each with its
unique set of requirements. ArcObjects, the components that make up ArcGIS,
are designed and built to support this. This chapter introduces ArcObjects.

ArcObjects is a set of platform-independent software components, written in
C++, that provides services to support GIS applications on the desktop in the
form of thick and thin clients and on the server.

As stated, the language chosen to develop ArcObjects was C++; in addition to
this language, ArcObjects makes use of the Microsoft Component Object Model.
COM is often thought of as simply specifying how objects are implemented and
built in memory and how these objects communicate with one another. While
this is true, COM also provides a solid infrastructure at the operating system level
to support any system built using COM. On Microsoft Windows operating sys-
tems, the COM infrastructure is built directly into the operating system. For
operating systems other than Microsoft Windows, this infrastructure must be
provided for the ArcObjects system to function.

Not all ArcObjects components are created equally. The requirements of a pat-
ticular object, in addition to its basic functionality, vary depending on the final
end use of the object. This end use broadly falls into one of the three ArcGIS
product families:

* ArcGIS Engine—Use of the object is within a custom application. Objects
within the Engine must support a variety of uses; simple map dialog boxes,
multithreaded servers, and complex Windows desktop applications are all
possible uses of Engine objects. The dependencies of the objects within the
Engine must be well understood. The impact of adding dependencies external
to ArcObjects must be carefully reviewed, since new dependencies may intro-
duce undesirable complexity to the installation of the application built on the
Engine.

* ArcGIS Server—The object is used within the server framework, where
clients of the object are most often remote. The remoteness of the client can
vary from local, possibly on the same machine or network, to distant, where
clients can be on the Internet. Objects running within the server must be
scalable and thread safe to allow execution in a multithreaded environment.

* ArcGIS Desktop—Use of the object is within one of the ArcGIS Desktop
applications. ArcGIS Desktop applications have a rich user experience, with
applications containing many dialog boxes and property pages that allow end
users to work effectively with the functionality of the object. Objects that
contain properties that are to be modified by users of these applications
should have property pages created for these properties. Not all objects
require property pages.

Many of the ArcObjects components that make up ArcGIS are used within all
three of the ArcGIS products. The product diagrams on these pages show that
the objects within the broad categories of base services, data access, map analysis,
and map presentation are contained in all three products. These four categories
contain the majority of the GIS functionality exposed to developers and users in
ArcGIS.

ARcCGIS SsOFTWARE ARCHITECTURE

Web
Development
Framework

}

Map
Presentation

)

Map
Analysis

)

Data
Access

)

Base
Services
~__

ArcGlS Server
e
Extensions

M

Interface

D

Base Servic

s

)

Applications

|

ap

Presentation

}

User Map
Analysis

)

ata

Access

x
|

es

J/

J

ArcGlIS Desktop

This commonality of function among all the products is important for developers
to understand, since it means that when working in a particular category, much
of the development effort can be transferred between the ArcGIS products with
little change to the software. After all, this is exactly how the ArcGIS architec-
ture is developed. Code reuse is a major benefit of building a modular architec-
ture, but code reuse does not simply come from creating components in a modu-
lar fashion.

The ArcGIS architecture provides rich functionality to the developer, but it is not
a closed system. The ArcGIS architecture is extendable by developers external to
ESRI. Developers have been extending the architecture for a number of years,
and the ArcGIS 9 architecture is no different; it, too, can be extended. However,
ArcGIS 9 introduces many new possibilities for the use of objects created by
ESRI and you. To realize these possibilities, components must meet additional
requirements to ensure that they will operate successfully within this new and
significantly enhanced ArcGIS system. Some of the changes from ArcGIS 8 to
ArcGIS 9 appear superficial, an example being the breakup of the type libraries
into smaller libraries. That, along with the fact that the objects with their meth-
ods and properties that were present at 8.3 are still available at 9, masks the fact
that internally ArcObjects has undergone some significant work.

The main focus of the changes made to the ArcGIS architecture at 9 revolves
around four key concepts:

* Modularity—A modular system where the dependencies between components
are well-defined in a flexible system.

* Scalability—ArcObjects must perform well in all intended operating environ-
ments, from single user desktop applications to multiuser/multithreaded
server applications.

* Multiple Platform Support—ArcObjects for the Engine and Server should be
capable of running on multiple computing platforms.

* Compatibility—ArcObjects 9 should remain equivalent, both functionally and
programmatically, to ArcObjects 8.3.

MODULARITY

The esriCore object library, shipped as part of ArcGIS 8.3, effectively packaged
all of ArcObjects into one large block of GIS functionality; there was no distinc-
tion between components. The ArcObjects components were divided into smaller
groups of components, these groups being packaged in DLLs. The one large
library, while simplifying the task of development for external developers, pre-
vented the software from being modular. Adding the type information to all the
DILLs, while possible, would have greatly increased the burden on external devel-
opers and, hence, was not an option. In addition, the DLL structure did not
always reflect the best modular breakup of software components based on func-
tionality and dependency.

There is always a trade-off in performance and manageability when considering
architecture modularity. For each criteria, thought is given to the end use and the
modularity required for support. For example, the system could be divided into
many small DLLs with only a few objects in each. Although this provides a
flexible system for deployment options, at minimum memory requirements, it

Chapter 2 ¢ ArcGIS software architecture 19

ARcCGIS SsOFTWARE ARCHITECTURE

ESRI has developed a modular architecture for
ArcGIS 9 by a process of analyzing features and
functions and matching those with end user
requirements and deployment options based on
the three ArcGIS product families. Developers
who have extended the ArcGIS 8 architecture
with custom components are encouraged to go
through the same process to restructure their
source code into similar modular structures.

An obvious functionality split to make is user
interface and nonuser interface code. Ul libraries
tend to be included only with the ArcGIS
Desktop products.

Thread safety refers to concurrent object access
from multiple threads.

20 * ArcGIS Desktop Developer Guide

would affect performance due to the large number of DLLs being loaded and
unloaded. Conversely, one large DLL containing all objects is not a suitable
solution either. Knowing the requirements of the components allows them to be
effectively packaged into DLLs.

The ArcGIS 9 architecture is divided into a number of libraries. It is possible for
a library to have any number of DLLs and EXEs within it. The requirements that
components must meet to be within a library are well-defined. For instance, a
library, such as esriGeometry (from the base services set of modules), has the
requirements of being thread safe, scalable, without user interface components,
and deployable on a number of computing platforms. These requirements are
different from libraries, such as esriArcMap (from the applications category),
which does have user interface components and is a Windows-only library.

All the components in the library will share the same set of requirements placed
on the library. It is not possible to subdivide a library into smaller pieces for
distribution. The library defines the namespace for all components within it and is
seen in a form suitable for your chosen API.

* Type Library—COM
* .NET Interop Assembly-

NET
e Java Package—]Java

¢ Header File—C++

SCALABILITY

The ArcObjects components within ArcGIS Engine and ArcGIS Server must be
scalable. Engine objects are scalable because they can be used in many different
types of applications; some require scalability, while others do not. Server objects
are required to be scalable to ensure that the server can handle many users con-
necting to it, and as the configuration of the server grows, so does the perfor-
mance of the ArcObjects components running on the server.

The scalability of a system is achieved using a number of variables involving the
hardware and software of the system. In this regard, ArcObjects supports
scalability with the effective use of memory within the objects and the ability to
execute the objects within multithreaded processes.

There are two considerations when multithreaded applications are discussed:
thread safety and scalability. It is important for all objects to be thread safe, but
simply having thread-safe objects does not automatically mean that creating
multithreaded applications is straightforward or that the resulting application
will provide vastly improved performance.

The ArcObjects components contained in the base services, data access, map
analysis, and map presentation categories are all thread safe. This means that
application developers can use them in multithreaded applications; however,
programmers must still write multithreaded code in such a way as to avoid appli-
cation failures due to deadlock situations and so forth.

In addition to the ArcObjects components being thread safe for ArcGIS 9, the
apartment threading model used by ArcObjects was analyzed to ensure that

ARcCGIS SsOFTWARE ARCHITECTURE

ArcObjects could be run efficiently in a multithreaded process. A model referred
to as “Threads in Isolation” was used to ensure that the ArcObjects architecture is
used efficiently.

This model works by reducing cross-thread communication to an absolute mini-
mum or, better still, removing it entirely. For this to work, the singleton objects
at ArcGIS 9 were changed to be singletons per thread and not singletons per
process. The resource overhead of hosting multiple singletons in a process was
outweighed by the performance gain of stopping cross-thread communication
where the singleton object is created in one thread (normally the Main single-
threaded apartment [STA]) and the accessing object is in another thread.

The classic singleton per process model means ArcGIS is an extensible system, and for the Threads in Isolation model to work,
that all threads of an application will still access all singleton objects must adhere to this rule. If you are creating singleton objects
the main thread hosting the singleton objects. £ devel th h b dh h
This effectively reduces the application to a as part of your development, you must ensure that these objects adhere to the
single-threaded application. rule.

MULTIPLE PLATFORM SUPPORT

As stated earlier, ArcObjects components are C++ objects, meaning that any
computing platform with a C++ compiler can potentially be a platform for
ArcObjects. In addition to the C++ compiler, the platform must also support
some basic services required by ArcObjects.

Although many of the platform differences do not affect the way in which
ArcObjects components are developed, there are areas where differences do
affect the way code is developed. The byte order of different computing architec-
tures varies between little endian and big endian. This is most readily seen when
objects read and write data to disk. Data written using one computing platform
will not be compatible if read using another platform, unless some decoding
work is performed. All the ArcGIS Engine and ArcGIS Server objects support
this multiple platform persistence model. ArcObjects components always persist
themselves using the little endian model; when the objects read persisted data, it
is converted to the appropriate native byte order. In addition to the byte order
MicrosoftWindows is a ltle endian platform, differ.cnccs, there are other areas of functi(.)na]jty that differ bctwce‘n platforms;
while Sun™ Solaris™ is a big endian platform. the directory structure, for example, uses different separators for Windows and
UNIX®*—“\" and “/”, respectively. Another example is the platform-specific
areas of functionality, such as OLE DB.

COMPATIBILITY

Maintaining compatibility of the ArcGIS system between releases is important to
ensure that external developers are not burdened with changing their code to
work with the latest release of the technology. Maintaining compatibility at the
object level was a primary goal of the ArcGIS 9 development effort. Although
this object-level compatibility has been maintained, there are some changes
between the ArcGIS 8 and ArcGIS 9 architectures that will affect developers,
mainly related to the compilation of the software.

Although the changes required for software created for use with ArcGIS 8 to

While the aim of ArcGIS releases is to limit the work with ArcGIS 9 are minimal, it is important to understand that to realize any
change in the APls, developers should still test existing investment in the ArcObjects architecture at ArcGIS 9, you must review
their software thoroughly with later releases. your developments with respect to ArcGIS Engine, ArcGIS Server, and ArcGIS

Desktop.

Chapter 2 * ArcGIS software architecture * 2|

ARcCGIS SsOFTWARE ARCHITECTURE

22 * ArcGIS Desktop Developer Guide

ESRI understands the importance of a unified software architecture and has
made numerous changes for ArcGIS 9 so the investment in ArcObjects can be
realized on multiple products. If you have been involved in creating extensions to
the ArcGIS architecture for ArcGIS 8, you should think about how the new
ArcGIS 9 architecture affects the way your components are implemented.

ARCGIS APPLICATION PROGRAMMING INTERFACES

The functionality of ArcObjects can be accessed using four APIs: COM, NET,
Java, and C++. The choice of which API to use is not a simple one and will
depend on a number of factors, including the ArcGIS product that you are
developing with, the end user functionality that you are developing, and your
development experience with particular languages. ArcGIS Desktop supports the
following APIs:

* COM—Any COM-compliant language (for example, Visual Basic, Visual C++,
Delphi) can be used with this API.

* NET—Visual Basic NET and C# ate supported by this API.

When working with ArcObjects, developers can consume functionality exposed
by ArcObjects or extend the functionality of ArcObjects with their own compo-
nents. When referring to these APIs, there are differences with respect to con-
suming and extending the ArcObjects architecture.

CONSUMING THE API

The APIs support consuming the functionality of the ArcObjects components;
however, not all interfaces implemented by ArcObjects are supported on all

Since ArcObjects ;(ehdeveloped in C++, tf"flfe "": platforms. In some cases, intetfaces make use of data types that are not compat-
some cases in which data types compatible i ible with an API. In situations like this, an alternative implementation of the
C++ have been used for performance reasons.) | R i .
These performance considerations mostly affect interface is provided for developers to use. The naming convention of a “GEN”
the internals of ArcObjects; hence, using one of postfix on the interface name is used to signify this kind of interface; IFoo would

the generic interfaces should not adversely affect

f have an IFooGEN interface. This alternative interface is usable by all APIs;
performance or your ArcObjects developments.

however, if the nongeneric interface is supported by the API, it is possible to
continue to use the API-specific interface.

EXTENDING THE API

Extending ArcObjects entails creating your own objects and adding them to the
ArcObjects architecture. ArcObjects is written to be extensible in almost all
areas. Support for extending the architecture varies among the APIs and, in some
cases, varies among languages of an API.

The COM API provides the most possibilities for extending the system. The
limitation within this API is with the Visual Basic language. Visual Basic does not
support the implementation of interfaces that have one or more of the following
characteristics:

* The interface inherits from an interface other than IUnknonn or 1Dispatch. For
example, ICurve, which inherits from IGeometry, cannot be implemented in VB
for this reason.

<« 9>

* Method names on an interface start with an underscore (
find functions beginning with “_” in ArcObjects.

). You will not

* A parameter of a method uses a data type not supported by Visual Basic.
LActiveliew cannot be implemented in Visual Basic for this reason.

In addition to the limitations on the interfaces supported by VB, the binary reuse
technique of COM aggregation is not supported by VB. This means that certain
parts of the architecture cannot be extended; Custom Features is one such ex-
ample. In reality, the above limitations of Visual Basic have little effect on the

Chapter 2 « ArcGIS software architecture * 23

ARCGIS APPLICATION PROGRAMMING INTERFACES

The majority of differences between the API’s
support for ArcObjects revolves around data
types.All APIs fully support the automation-

compliant data types shown on the right.
Differences occur with data types that are not
OLE automation compliant.

24 » ArcGIS Desktop Developer Guide

vast majority of developers, since the percentage of ArcObjects affected is small,
and for this small percentage, it is unlikely that developers will have a need to
extend the architecture. Other COM languages, such as Visual C++, do not
have any of these limitations.

The NET API supports extending ArcObjects fully, with the one exception being
interfaces that make use of non-OLE automation-compliant data types (see the
table below for a complete list of all OLE automation-compliant data types).

Type Description

Boolean Data item that can have the value True or False.
unsigned char 8-bit unsigned data item.
double 64-bit IEEE floating-point number.
float 32-bit IEEE floating-point number.
int Signed integer, whose size is system dependent.
long 32-bit signed integer.
short 16-bit signed integer.
BSTR Length-prefixed string.
CURRENCY 8-byte, fixed-point number.
DATE 64-bit, floating-point fractional number of days since Dec 30, 1899.
SCODE For 16-bit systems - Built-in error that corresponds to VT_ERROR.
Typedef enum myenum | Signed integer, whose size is system dependent.
Interface IDispatch * Pointer to the IDispatch interface.
Interface IlUnknown * Pointer to an interface that does not derive from IDispatch.
dispinterface Pointer to an interface derived from IDispatch.
Typename *
Coclass Typename * Pointer to a coclass name (VT_UNKNOWN).
[oleautomation] Pointer to an interface that derives from IDispatch.
interface Typename *
SAFEARRAY TypeName is any of the above types. Array of these types.
(TypeName)
TypeName* TypeName is any of the above types. Pointer to a type.
Decimal 96-bit unsigned binary integer scaled by a variable power of 10. A decimal
data type that provides a size and scale for a number (as in coordinates).

OLE automation data types

The ArcGIS Desktop applications are rich, professional GIS applications with a
lot of functionality, but if viewed simply, the applications can be broken down
into a series of toolbars, along with a table of contents (TOC) and map viewing
area. The desktop applications are all extended by adding new commands and
tools. In a similar way, developers can build applications with rich functionality
using any of the four ArcGIS Engine APIs.

The COM and .NET APIs are only supported on the Microsoft Windows plat-
form.

ARcGIS ENGINE LIBRARIES

Carto

GISClient

8

Contains the workspace factories and
workspaces for vector data formats
supported by the geodatabase API.

Contains the objects required to
support a distributed geodatabase.

Contains the workspace
factories and workspaces
for file-based raster

data formats.

Provides workspaces for
working with OleDB-based
data sources.

/|

or the ArcGIS Server.

Contains objects for working
with remote GIS services
provided by either ArcIMS

ArcGiIS Server.

Contains the objects used to|
obtain a connection to the

Contains the workspace factories and
workspaces for vector and raster data
formats supported by the geodatabase
that are stored within an RDBMS.

Contains the objects required
to generate output to both
printers and plotters or
exporting to files.

Contains types for all the definitions relating
to data access. Features, tables, networks,
and TINs are all defined in this library.

5
Server

Contains components that support
drawing symbology to an output
device.

Display

Defined types used by user

interface components in the
ArcGlIS system such as
ICommand and ITool.

Contains the core geometry

Contains components that expose
services used by the other libraries
composing ArcGlIS.

objects and defines and
implements the spatial reference
objects for coordinate systems.

Chapter 2 * ArcGIS software architecture * 25

ARcGIS ENGINE LIBRARIES

For a comprehensive discussion on each library
the library overviews, refer to the ArcGIS
Developer Help system.

Knowing the library dependency order is
important, since it affects the way in which
developers interact with the libraries as they
develop software. For example, C++ developers
must include the type libraries in the library
dependency order to ensure correct compilation.
Understanding the dependencies also helps when
deploying your developments.

26 * ArcGIS Desktop Developer Guide

The libraries contained within the ArcGIS Engine are also available in ArcGIS
Desktop and are summarized below. The diagrams that accompany this section
indicate the library architecture of the ArcGIS Engine. Understanding the library
structure, dependencies, and basic functionality will help you as a developer
navigate through the components of ArcGIS Engine.

The libraries are discussed in dependency order. The diagrams show this with
sequential numbers in the upper right corner of the library block. For example,
System, as the library at the base of the ArcGIS architecture, is numbered one,
while GeoDatabase, numbered seven, depends on the six libraries that precede it
in the diagram—_System, SystemUI, Geometry, Display, Server, and Output.

SYSTEM

The System library is the lowest level library in the ArcGIS architecture. The
library contains components that expose services used by the other libraries
comprising ArcGIS. There are a number of interfaces defined within the System
library that can be implemented by the developer. The Aolnitializer object is
defined in System; all developers must use this object to initialize and uninitialize
the ArcGIS Engine in applications that make use of Engine functionality. The
developer does not extend this library but can extend the ArcGIS system by
implementing interfaces contained within this library.

SysTEMUI

The SystemUI library contains the interface definitions for user interface compo-
nents that can be extended within the ArcGIS Engine. These include the
ICommand, I'Tool, and IToolControl interfaces. The developer uses these interfaces
to extend the UI components that the ArcGIS Engine developer components use.
The objects contained within this library are utility objects available to the devel-
oper to simplify some user interface developments. The developer does not
extend this library but can extend the ArcGIS system by implementing interfaces
contained within this library.

GEOMETRY

The Geometry library handles the geometry, or shape, of features stored in fea-
ture classes or other graphical elements. The fundamental geometry objects with
which most users will interact are Point, MultiPoint, Polyline, and Polygon. Beside
those top-level entities are geometries that serve as building blocks for Polylines
and Polygons. Those are the primitives that compose the geometries. They are
Segments, Paths, and Rings. Polylines and Polygons are composed of a sequence of
connected Segments that form a Path. A Segment consists of two distinguished
points, the start and the endpoint, and an element type that defines the curve
from beginning to end. The kinds of segments are CircularAre, Line, EllipticAre,
and BezderCurve. All geometry objects can have Z, M, and IDs associated with
their vertices. The fundamental geometry objects all support geometric opera-
tions, such as Buffer and Clip. The geometry primitives are not meant to be ex-
tended by developers.

Entities within a GIS refer to real-world features; the location of these real-
world features is defined by a geometry along with a spatial reference. Spatial

ARcGIS ENGINE LIBRARIES

reference objects for both projected and geographic coordinate systems are in-
cluded in the Geometry library. Developers can extend the spatial reference
system by adding new spatial references and projections between spatial
references.

DisPLAY

The Display library contains objects used for the display of GIS data. In addition
to the main display objects responsible for the actual output of the image, the
library contains objects that represent symbols and colors used to control the
properties of entities drawn on the display. The library also contains objects that
provide the user with visual feedback when interacting with the display. Devel-
opers most often interact with the display through a view like the ones provided
by the Map or Pagel_ayont objects. All parts of the library can be extended, with
the commonly extended areas being symbols, colors, and display feedbacks.

SERVER

The Server library contains objects that allow you to connect and work with
ArcGIS Servers. Developers gain access to an ArcGIS Server using the
GISServerConnection object. The GISServerConnection object gives access to the
ServerObjectManager. Using this object a developer works with ServerContext
objects to manipulate ArcObjects running on the server. The Server library is not
extended by developers. Developers can also use the GISClient library when
interacting with the ArcGIS Server.

OuTPUT

The Output library is used to create graphical output to devices, such as printers
and plotters, and hardcopy formats, such as enhanced metafiles and raster image
formats (JPG, BMP, and so forth). The developer uses the objects in the library
with other parts of the ArcGIS system to create graphical output. Commonly,
these would be objects in the Display and Carto libraries. Developers can extend
the output library for custom devices and export formats.

GEeEoDATABASE

The GeoDatabase library provides the programming API for the geodatabase. The
geodatabase is a repository of geographic data built on standard industry rela-
tional and object relational database technology. The objects within the library
provide a unified programming model for all supported data sources within
ArcGIS. The GeoDatabase library defines many of the interfaces that are imple-
mented by data source providers higher in the architecture. The geodatabase can
be extended by developers to support specialized types of data objects (Features,
Classes, and so forth); in addition, it can have custom vector data soutrces added
using the PluglnDataSonrce objects. The native data types supported by the
geodatabase cannot be extended.

GISCLIENT

The GISClient library allows developers to consume Web services; these Web
services can be provided by ArcIMS and ArcGIS Server. The library includes
objects for connecting to GIS servers to make use of Web services. There is

Chapter 2 * ArcGIS software architecture * 27

ARcGIS ENGINE LIBRARIES

Raster Data Objects (RDO) is a COM API that
provides display and analysis support for file-
based raster data.

28 * ArcGIS Desktop Developer Guide

support for ArcIMS Image Services and Feature Services. The library provides a
common programming model for working with ArcGIS Server objects in a state-
less manner, either directly or through a Web service catalog. ArcObjects running
on the ArcGIS Server is not accessible through the GISClient interface. To gain
direct access to ArcObjects running on the server, you should use functionality in
the Server library.

DATASOURCESFILE

The DataSourcesFile library contains the implementation of the GeoDatabase
API for file-based data sources. These file-based data sources include shapefile,
coverage, TIN, CAD, SDC, ArcGIS StreetMap™, and VPE. The DataSourcesFile
library is not extended by developers.

DATASOURcCEsGDB

The DataSourcesGDB library contains the implementation of the GeoDatabase
API for the database data sources. These data sources include Microsoft Access
and SDE®software-supported RDBMSs. The DataSourcesGDB library is not
extended by developers.

DATASOURCESOLEDB

The DataSourcesOleDB library contains the implementation of the GeoDatabase
API for the Microsoft OLE DB data sources. This library is only available on the
Microsoft Windows operating system. These data sources include any OLE DB-
supported data provider and text file workspaces. The DataSourcesOleDB library
is not extended by developers.

DATASOURCESRASTER

The DataSourcesRaster library contains the implementation of the GeoDatabase
API for the Raster data sources. These data sources include SDE software-
supported RDBMSs, along with all the supported RDO raster file formats. De-
velopers do not extend this library when support for new raster formats is re-
quired; rather, they extend RDO. The DataSourcesRaster library is not extended
by developerts.

GEeEoDATABASEDISTRIBUTED

The GeoDatabaseDistributed library supports distributed access to an enterprise
geodatabase by providing tools for importing data into and exporting data out of
a geodatabase. The GeoDatabaseDistributed library is not extended by develop-
ers.

CARTO

The Carto library supports the creation and display of maps; these maps can
consist of data in one map or a page with many maps and associated marginalia.
The Pagel_ayout object is a container for hosting one or more maps and their
associated marginalia: North arrows, legends, scalebars, and so forth. The Map
object is a container of layers. The Map object has properties that operate on all
layers within the map: spatial reference, map scale, and so forth, along with
methods that manipulate the map’s layers. There are many different types of

ARcGIS ENGINE LIBRARIES

Contains objects for performing
analysis and supports the display
of globe data.

<

Performs 3D analysis of
data and supports 3D
data display.

Contains controls for application

% development including commands and
tools for use with the controls.

Contains core spatial analysis operations

that are used by the ArcGlIS Spatial

Analyst and ArcGIS 3D Analyst extensions.

Contains objects related to working with
location data, either route events or
geocoding locations.

Contains the objects for displaying
data. The Pagelayout and Map
objects are in this library along
with map layers and renderers for
all the supported data types.

Chapter 2 * ArcGIS software architecture 29

ARcGIS ENGINE LIBRARIES

TheArcGIS Server uses the MapServer object for
its MapService.

30 * ArcGIS Desktop Developer Guide

layers that can be added to a map. Different data sources often have an associated
layer responsible for displaying the data on the map; vector features are handled
by the FeaturelLayer object, raster data by the RasterLayer, TIN data by the
TinLayer, and so forth. Layers can, if required, handle all the drawing operations
for their associated data, but it is more common for layers to have an associated
Renderer object. The properties of the Renderer object control how the data is
displayed in the map. Renderers commonly use symbols from the Display library
for the actual drawing; the renderer simply matches a particular symbol with the
properties of the entity that is to be drawn. A Map, along with a Pagel_ayout, can
contain elements. An element has geometry to define its location on the map or
page, along with behavior that controls the display of the element. There are
clements for basic shapes, text labels, complex marginalia, and so forth. The Carto
library also contains support for map annotation and dynamic labeling,

Although developers can directly make use of the Map or PagelLayout objects in
their applications, it is more common for developers to use a higher-level object,
such as the MapControl, Pagel_ayontControl, or ArcGIS Application. These higher-
level objects simplify some tasks, although they always provide access to the
lower-level Map and Pagel_ayont objects, allowing the developer fine control of
the objects.

The Map and Pagel_ayout objects are not the only objects in Carto that expose the
behavior of Map and Page drawing, The MxdServer and MapServer objects both
support the rendering of Maps and Pages, but instead of rendering to a window,
these objects render directly to a file.

Using the MapDocument object, developers can persist the state of the Map and
Pagel _ayout within a Map Document (MXD), which can be used in ArcMap, or one
of the ArcGIS controls.

The Carto library is commonly extended in a number of areas. Custom renderers,
layers, and so forth, ate common. A custom layer is often the easiest method of
adding custom data support to a mapping application.

LocATIiON

The Location library contains objects that support geocoding and working with
route events. The geocoding functionality can be accessed through fine-grained
objects for full control, or the GeocodeServer objects offer a simplified API
Developers can create their own geocoding objects. The linear referencing func-
tionality provides objects for adding events to linear features and rendering these
events using a vatiety of drawing options. The developer can extend the linear
reference functionality.

NETWORKANALYSIS

The NetworkAnalysis library provides objects for populating a geodatabase with
network data and objects to analyze the network when it is loaded in the geoda-
tabase. Developers can extend this library to support custom network tracing,
The library is meant to work with utility networks—gas lines, electricity supply
lines, and so forth.

ARcGIS ENGINE LIBRARIES

CONTROLS

The contents of the Map and PageLayout The Controls library is used by developers to build or extend applications with
controls can be specified programmatically, or ArcGIS functionality. The ArcGIS Controls simplify the development process by
they can load Map Documents. . . T :
encapsulating ArcObjects and providing a coarser-grained API. Although the
controls encapsulate the fine-grained ArcObjects, they do not restrict access to
The ReaderControl onl s Published M them. The MapControl and PagelLayoutControl encapsulate the Carto library’s
¢ Readercontrolonl suppo UF;,::(PM(;E Map and Pagel.ayout objects, respectively. The ReaderControl encapsulates both
the Map and Pagelayout objects and provides a simplified API when working
with the control. If the map publisher has granted permission, the developer can
access the internal objects in a similar way to the Map and Pagel.ayout controls.
The library also contains the TOCControl that implements a table of contents
and a ToolbarControl for hosting commands and tools that work with a suitable
control.

. . Developers extend the Controls library by creating their own commands and tools
ArcGlIS Engine comes with more than K . . .
150 commands. for use with the controls. To support this the library has the HookHelper object.
This object makes it straightforward to create a command that works with any of
the controls, in addition to ArcGIS applications, such as ArcMap.

GEOANALYST

The GeoAnalyst library contains objects that support core spatial analysis func-
tions. These functions are used within both the ArcGIS Spatial Analyst and
ArcGIS 3D Analyst™ libraries. Developers can extend the library by creating a
new type of raster operation. An ArcGIS Spatial Analyst or 3D Analyst license is
required to make use of the objects in this library.

3DANALYST

The 3DAnalyst library contains objects for working with three-dimensional scenes
in a similar way that the Carto library contains objects for working with two-
dimensional maps. The Scene object is one of the main objects of the library,
since it is the container for data similar to the Map object. The Camera and Target
objects specify how the scene is viewed regarding the positioning of the features
relative to the observer. A scene consists of one or more layers; these layers
specify the data in the scene and how the data is drawn.

The 3DAnalyst library has a developer control along with a set of commands and
tools to use with this control. This control can be used in conjunction with the
objects in the Controls library. It is not common for developers to extend this
library beyond the cteation of commands and tools. A 3D Analyst license is
required to work with objects in this library.

GLOBECORE

The GlobeCore library contains objects for working with globe data similar to the
way that the Carto library contains objects for working with two-dimensional
maps. The Globe object is one of the main objects of the library, since it is the
container for data similar to the Map object. The GlobeCamera object specifies
how the Globe is viewed regarding the positioning of the globe relative to the
observer. The Globe can have one or more layers; these layers specify the data on
the Globe and how the data is drawn.

Chapter 2 * ArcGIS software architecture * 31|

ARcGIS ENGINE LIBRARIES

32 * ArcGIS Desktop Developer Guide

The GlobeCore library has a developer control along with a set of commands and
tools to use with this control. This control can be used in conjunction with the
objects in the Controls library. It is not common for developers to extend this
library beyond the creation of commands and tools. A 3D Analyst license is
required to work with objects in this library.

SPATIALANALYST

The Spatial Analyst library contains objects for performing spatial analysis on
raster and vector data. Developers most commonly consume the objects within
this library and do not extend it. An ArcGIS Spatial Analyst license is required to
work with objects in this library.

ARcGIS

SKTOP APPLICATION LIBRARIES

ArcMapUl

Provides user interfaces to
support objects contained in ArcCatangUI
the DataSourcesRaster library.

Provides user interfaces to
support objects contained
in the Carto library.

Output-

ExtentionsUI

Provides user interfaces to
support objects contained
in the Catalog library.

Provides user interfaces to
support objects contained
in the Output library.

Provides the implementation
of a data catalog and
its contents.

Provides user interfaces to
support objects in the
Display library.

Provides user interfaces to
support objects contained in
the GeoDatabase library.
Provides core components to support
user interface components and applications.

Chapter 2 « ArcGIS software architecture * 33

ARcGIS DESKTOP APPLICATION LIBRARIES

The modular architecture of ArcObjects makes a
split between Ul and non-Ul code.The objects
that have the GIS functionality do not have Ul in
the same DLL.The Ul is provided by a comple-
mentary Ul library.This Ul library uses frame-
work components, as well as components from
its corresponding non-Ul library.

34 * ArcGIS Desktop Developer Guide

The libraries contained within ArcGIS Desktop are summarized below. The
diagrams that accompany this section indicate the library architecture of the
ArcGIS Desktop applications. Understanding the library structure, their depen-
dencies, and basic functionality will help you as a developer navigate through the
components of the ArcGIS Desktop applications. The libraries are discussed in
dependency order. The diagrams show this with a number in the upper right
corner of the library block.

FRAMEWORK

The Framework library provides core components and software interfaces to
support user interface components and the ArcGIS applications. A number of the
objects in the Framework library are used internally by the ArcGIS applications
to support their customization environment. There are a number of helper ob-
jects in Framework that developers can use when creating user interfaces for
inclusion in one of the ArcGIS applications—ComPropertySheet,
ModelessFrame, and MouseCursor are three examples—along with a set of dialog
boxes that support common Ul operations within an ArcGIS application—
ColorSelector and NumberDialog are two commonly used dialog boxes. The
Framework library defines the software interfaces that developers use when
creating user interfaces for extending the ArcGIS system using property pages and
dockable windows. The Framework library is not extended by the developer, but
by implementing interfaces defined in the library, developers can extend the
ArcGIS architecture with UI components.

GeoDATABASEUI

The GeoDatabaseUI library provides user interfaces, including property pages, to
support objects contained in the GeoDatabase library. The library supports a
number of dialog boxes that developers can use; TableView, Calculator, and the
version dialog boxes are all defined in the library. It is not common for developers
to extend this library.

DispLaYUI

The DisplayUI library provides user interfaces, including property pages, to
support objects contained in the Display library. All the symbols defined in the
Display library have their property pages defined in this library. There are dialog
boxes to manage styles and symbols in this library. Developers extend this library
when they create Uls for corresponding components they have created in the
Display library.

OuTtpuTUI

The OutputUI library provides user interfaces, including property pages, to
support objects contained in the Output library. In addition to the property pages,
there are a number of dialog boxes, including the PrintDialog and ExportDialog,
available for developers to use. Developers extend this library when they create
Uls for corresponding components they have created in the Output library.

CATALOG

The Catalog library contains objects and defines interfaces to support data cata-

ARcGIS DESKTOP APPLICATION LIBRARIES

logs. The catalog is a representation of persistent data. The data can be both local
and remote. By using the objects within the catalog, developers can browse data
holdings and, if required, obtain connections to the data. Many of the objects
defined in Catalog are referred to as “GX” objects. These GX objects all imple-
ment the interface IGxObject. Objects that implement this interface can be
manipulated within a catalog. GxFilters, which allow developers to browse for
certain types of data, are also defined in this library. Developers commonly
extend this library when they want to add catalog support for a data type not
already supported by the ArcGIS system.

CataLocUI

The CatalogUI library provides user interfaces, including property pages, to
support objects contained in the Catalog library. In addition to the property pages,
there are a number of dialog boxes, including the GxDialog, that can be used
when interacting with catalogs and their contents. The GxDialog object supports
Although implemented in libraries, commands the “Add Data” functionality of the ArcGIS applications. The FindDialog is also
are not exposed directly to developers. Develop- implemented by this library. Many of the commands and context menus seen in
ers obtain references to Comrhnoasrt’i:s Tm;cg:;:: the ArcCatalog application are defined in this library. Developers extend this
8 PP ‘ library when they create Uls for corresponding components they have created in
the Catalog library.

CarTOUI

The CartoUI library provides user interfaces, including property pages, to support
objects contained in the Carto library. In addition to the property pages, there are
a number of dialog boxes, including the IdentifyDialog, available for developers
to use, although many of the dialog boxes contained in this library are commonly
accessed through a property page. Developers extend this library when they create
Uls for corresponding components they have created in the Carto library.

DATASOURCESRASTERUI

The DataSourcesRasterUI library provides user interfaces, including property
pages, to support objects contained in the DataSourcesRaster library. In addition
to the property pages, there are dialog boxes, including RasterSdeLoader and
SidEncoder, available for developers to use. Developers extend this library when
they create Uls for corresponding components they have created in the
DataSourcesRaster library.

ArcCaraLocUI

The ArcCatalogUIT library provides user interface components specific to the
ArcCatalog application. The dialog box IDs for specific ArcCatalog dialog boxes
are found in this library. Developers do not extend this library.

ARrcCATALOG

The ArcCatalog library contains the ArcCatalog application, including the Appli-
cation and Document objects. Some of the interfaces, such as IGxApplication,
are defined in the ArcCatalogUI library. This is because the objects in the
ArcCatalogUI library use the IGxApplication interface to interact with the
ArcCatalog application. The GxDocument object fires various events during the

Chapter 2 * ArcGIS software architecture * 35

ARcGIS DESKTOP APPLICATION LIBRARIES

As earlier noted, it is advantageous for develop-
ers to develop their commands and tools for use
within the various ArcGIS controls, as well as the

ArcMap application.

36 * ArcGIS Desktop Developer Guide

lifetime of the ArcCatalog application that can be used by developers to synchro-
nize with ArcCatalog events. Developers do not extend this library; instead, they
create commands and tools for use within the ArcCatalog application.

ArRcMarUI

The ArcMapUI library provides user interface components specific to the ArcMap
application. The components contained in this library cannot be used outside the
context of ArcMap. The IMxApplication and IMxDocument interfaces are
defined in this library, although they are implemented in the ArcMap library. The
ArcMap table of contents is implemented in this library, along with many of the
commands present in ArcMap. Developers extend this library by creating custom
commands and tools for use within the ArcMap application.

EDITOR

The Editor library implements the ArcMap object editor. The editor supports the
editing of simple features, network features, annotations, and topological fea-
tures, along with attributes for all these features. The library supports both a user
interface and a programming API. The API provided by the Editor is a higher-
level API than that of the GeoDatabase library. Developers are encouraged to use
the Editor API when editing and manipulating features in the geodatabase.
Developers can extend the library with their own editing commands, edit tasks,
and snap agents; and for more advanced customization, developers can create
extensions to the editor. The object inspector interface is implemented by the
Editor library; however, to extend this user interface, a Class extension is imple-
mented by extending the GeoDatabase library for the appropriate data source.

LocatioNUI

The LocationUI library provides user interfaces, including property pages, to
support objects contained in the Location library. In addition to the property
pages, there are a number of dialog boxes, including the EventFinder and
AddressLocatorUI, available for developers to use. This library also contains
objects that extend other core libraries of the ArcGIS system, such as Catalog,
CatalogUI, and CartoUI Developers extend this library when they create Uls for
corresponding components they have created in the Location library.

ArRcMaP

The ArcMap library contains the ArcMap application, which is implemented by
the Application object. Similar to the ArcCatalog library, the Application object
implements interfaces from other libraries; namely, ArcMapUI The ArcMap
application can be programmatically controlled either by developers who write
new commands and tools that are included in the application or through OLE
automation. When interacting with ArcMap and OLE automation, it is impor-
tant that all objects used by ArcMap are created within the context of ArcMap.
To support this programming model, the application implements the
IObjectFactory interface. Developers also use the Application object to work
with ArcMap documents, dockable windows, extensions, and the various data
windows supported by ArcMap. Developers do not extend this library; instead,
they create commands and tools for use within the ArcMap application.

ARcGIS DESKTOP APPLICATION LIBRARIES

GeoStatistical-
Analyst

Provides the user interface
to support objects in the
Geoprocessing library.

Spatial Geo- 39
. rocessingUl
AnalystUl P 9
ArcScan
Tracking-
Analyst
Geo- 38
3DAnalystUI processing
Maplex
Survey-
Ext
Provides user interfaces
to support objects
contained in the
GeoD -
Distributed library.
] 36
EditorExt
- 35
Contains the ArcMap - -
application. ArcMap Contains extensions

Provides user interface
components for ArcMap.

to the ArcMap

Implements the
geoprocessing framework
in addition to the base set
of geoprocessing tools.

Editor.

88
Editor

to support objects
contained in the
Location library.

ArcMapUl

32

Implements the ArcMap object
editor, supporting both a user
interface and a programming AP

Contains the ArcCatalog
application.

Provides user interfaces

Chapter 2 * ArcGIS software architecture * 37

31
ArcCatalog

Provides user interface 30
components for ArcCatalog. ArcCatalogUlI

ARcGIS DESKTOP APPLICATION LIBRARIES

As earlier noted, it is advantageous for develop-
ers to develop their commands and tools for use
within the various ArcGIS controls, as well as the

ArcMap application.

38 * ArcGIS Desktop Developer Guide

EbpiTorREXT

The EditorExt library contains extensions to the ArcMap Editor and components
dependent on the Editor. The functionality supported by this library is diverse,
with the commonality being its reliance on the Object Editor. The library has
functionality and associated Ul to support network tracing, database loading,
ArcPad® integration, edge matching, and managing map topology within ArcMap.
Developers do not commonly extend this library; rather, they create their own
editor extensions in their own library.

GeoDATaBASEDISTRIBUTEDUI

The GeoDatabaseDistributedUI library provides user interfaces, including prop-
erty pages and dialog boxes, to support objects contained in the
GeoDatabaseDistributed library. Developers do not extend this library.

GEOPROCESSING

The Geoprocessing library contains the objects that implement the unified
geoprocessing framework. This framework supports the execution of geoprocess-
ing tools using Dialogs, Models, Scripts, Command Line, and the ArcObjects
COM or .NET APIs. In addition to the core framework, the library contains
more than 200 geoprocessing tools. Developers can programmatically interact
with the framework using the objects in this library. More commonly, developers
will extend this library with new geoprocessing tools for subsequent use within
the geoprocessing framework. Other libraries within the ArcGIS system imple-
ment geoprocessing tools so their functionality is exposed to users through the
unified framework.

GEOPROCESSINGUI

The GeoprocessingUI library provides user interfaces, including property pages, to
support objects contained in the Geoprocessing library. In addition to the prop-
erty pages, there are a number of dialog boxes available for developers to use.
Developers extend this library when they create Uls for corresponding compo-
nents they have created in the Geoprocessing library. In addition to the normal
property pages created to support objects in a non-UT library, it is possible that
new ActiveX controls will be required to support data types used by
geoprocessing tools. The ActiveX controls are used by the geoprocessing dialog
boxes when requesting the parameters for a geoprocessing tool from users. This
library contains all the parameter controls required by the geoprocessing tools
defined in the Geoprocessing library.

OuUTPUTEXTENSIONS

The OutputExtensions library extends the core output functionality with more
advanced output capabilities. The ArcPress™ printing engine is implemented by
this library. This library is not extended by developers. Depending on the compo-
nents used from the library, an extension license may be required.

ARcGIS DESKTOP APPLICATION LIBRARIES

Provides objects used for 59
importing and exporting survey Survey-

data to and from data collector| DataEx
observation files, ASCII file,

and other sources. *'7
Provides worker objects and Survey- 58

object classes built from the
base classes of the PkgS

SurveyExt library.
57

Survey-
Ext

Contains objects used for
managing survey data and
survey processes.

Provides user interfaces including
property pages and extensions to
ArcMap and ArcCatalog to support
objects contained in the

Publisher library.

Provides objects that support the
creation of Published Map Files, and
the creation of Data Packages.

Supports the ArcReader object
model providing the ability to
create custom ArcReader-based
applications.

Supports the ArcScan raster to
vector conversion extension
to ArcMap.

appllcatlon

54
DataSources-
SMUUI

.. 49
GeoStatistical-
AnalystUI

—

48
GeoStatistical-
Analyst

Provides user interfaces to
support objects contained in
the TrackingAnalyst library.

Provides objects to display,
analyze, and manipulate
time series data.

Contains the StreetMap
USA extension.

<Supports the Maplex labeling

extension to ArcMap.

Provides user interfaces to
support objects contained in
the GeoStatistical Analyst library.

Implements the nonuser interface
functionality of the ArcGIS
Geostatistical Analyst extension.

che ArcGlobe
tlon

Provides user interfaces to
support objects in the
3DAnalyst library.

Provides user interfaces to

support objects contained in the
ArcGIS SpatialAnalyst library.

Provides user interface
components specific to
the ArcGlobe application.

Provides user interfaces to
support objects contained in
the OutputExtensions library.

Extends the core output
functionality with more
advanced output capabilities.

Chapter 2 * ArcGIS software architecture * 39

ARcGIS DESKTOP APPLICATION LIBRARIES

Within ArcGIS Desktop it is not uncommon to
see extensions broken up into non-Ul and Ul
libraries; OutputExtensions and Publisher are

two such examples.

Similar to developing tools for ArcMap, develop-
ers should develop commands and tools that
work in both the ArcScene application and the
SceneControl developer component.

40 ¢ ArcGIS Desktop Developer Guide

OuTtpPUTEXTENSIONSUI

The OutputExtensionsUI library provides user interfaces, including property
pages, to support objects contained in the OutputExtensions library. Developers
do not extend this library. Depending on the components used from the library,
an extension license may be required.

SPATIALANALYSTUI

The Spatial AnalystUI library provides user interfaces, including property pages, to
support objects contained in the Spatial Analyst library. The library also contains a
comprehensive set of geoprocessing tools that expose the Spatial Analyst library
functionality for use within the geoprocessing framework. The Spatial Analyst
Extension object is implemented by this library. Developers extend this library
when they create Uls or geoprocessing functions for corresponding components
they have created in the Spatial Analyst library. An ArcGIS Spatial Analyst license
is required to work with objects in this library.

3DANALYsTUI

The 3DAnalystUI library provides user interfaces, including property pages, to
support objects contained in the 3DAnalyst library. The library also contains a
comprehensive set of geoprocessing tools that expose the 3DAnalyst library
functionality for use within the geoprocessing framework. The 3DAnalyst Exten-
sion object is implemented by this library. Developers extend this library when
they create Uls or geoprocessing functions for corresponding components they
have created in the 3DAnalyst library. A 3D Analyst license is required to work
with objects in this library.

ARCSCENE

The ArcScene library contains the ArcScene™ application, along with its associ-
ated user interface components, commands, and tools. The ArcScene Application
and SxDocument objects are both defined and implemented by this library.
Developers can use the Application object when customizing the ArcScene
application or working with one of the ArcScene extensions. Developers extend
this library by creating commands, tools, and extensions for use within the
ArcScene application. A 3D Analyst license is required to work with objects in
this library.

GLoBECOREUI

The GlobeCoreUI library provides user interface components specific to the
ArcGlobe™ application. The library also provides property pages for objects
contained in the GlobeCore library. It is not common for developers to extend
this library. A 3D Analyst extension license is required to work with objects in
this library.

ARCcGLOBE

The ArcGlobe library contains the ArcGlobe application, along with its associated
user interface components, commands, and tools. The ArcGlobe Application and
GMxDocument objects are both defined and implemented by this library. Devel-
opers can use the Application object when customizing the ArcGlobe application

ARcGIS DESKTOP APPLICATION LIBRARIES

or working with one of the ArcGlobe extensions. Developers extend this library
Similar to developing tools for ArcScene, develop- by creating commands, tools, and extensions for use within the ArcGlobe applica-

ers should develop commands and tools that tion. A 3D Analyst license is required to work with objects in this library.
work in both the ArcGlobe application and the
GlobeControl developer component. ARCScAN

The ArcScan library supports the ArcScan™ raster-to-vector conversion exten-
sion to ArcMap, along with its associated user interface components, commands,
and tools. The ArcScan extension object, Vectorization, is implemented by this
library. Developers do not extend this library. An ArcScan extension license is
required to work with objects in this library.

GEOSTATISTICALANALYST

The GeoStatisticalAnalyst library implements the non-UI functionality of the
Geostatistical Analyst extension to ArcMap. The geostatistics engine, along with
the GeoStatistical Layer and its associated renderers, are implemented by this
library. Developers do not extend this library. A Geostatistical Analyst extension
license is required to work with objects in this library.

GEOSTATISTICALANALYSTUI

The GeoStatistical Analyst Ul library provides user interfaces, including property
pages, to support objects contained in the GeoStatisticalAnalyst library. In addi-
tion to the property pages, there are a number of dialog boxes available for
developers to use. The library also contains a set of geoprocessing tools that
expose the GeoStatistical Analyst library functionality for use within the
geoprocessing framework. A Geostatistical Analyst extension license is required
to work with objects in this library.

ARCREADERCONTROL

The ArcReaderControl library contains the ArcReaderControl along with the
objects that make up the ArcReaderControl APIL This API supports the creation
of custom ArcReader™ applications through a simplified APIL. The encapsulated
ArcObjects are not accessible using this control. The functionality supported by
the control is similar to that of ArcReader with the addition of query features.
There is no cost to deploy applications built using the ArcReaderControl because
it uses the free ArcReader application to provide the run-time environment. The
ArcReaderControl is not extended by developers.

PUBLISHER

The Publisher library implements the non-UI functionality of the Publisher
extension to ArcGIS. The PublisherEngine and PackagerEngine objects support
the publishing of PMF files and the subsequent packaging of the published map
files. Developers do not extend this library. An ArcGIS Publisher extension
license is required to work with objects in this library.

Chapter 2 * ArcGIS software architecture * 4|

ARcGIS DESKTOP APPLICATION LIBRARIES

42 + ArcGIS Desktop Developer Guide

PuBLIsHERUI

The PublisherUI library provides user interfaces, including property pages along
with ArcCatalog and ArcMap commands, to support objects contained in the
Publisher library. Developers do not extend this library. An ArcGIS Publisher
extension license is required to work with objects in this library.

MAPLEX

The Maplex library implements the non-UlI functionality of the Maplex extension
to ArcMap. Developers do not extend this library. A Maplex extension license is
required to work with objects in this library.

TRACKINGANALYST

The TrackingAnalyst library implements the non-UlI functionality of the Tracking
Analyst extension to ArcGIS. The Tracking Analyst extension supports the dis-
play, analyses, and manipulation of time series data within ArcGIS. Developers
do not extend this library. A Tracking Analyst extension license is required to
work with objects in this library.

TRrRACKINGANALYSTUI

The TrackingAnalystUI library provides user interfaces, including property pages,
along with commands and tools, to support objects contained in the
TrackingAnalyst library. Developers do not extend this library. A Tracking
Analyst extension license is required to work with objects in this library.

SURVEYEXT

The SurveyExt (Survey Extension) library handles the core objects used to man-
age survey data and survey processes. The system allows angle and distance mea-
surements observed using field survey equipment to be processed in order to
generate computed coordinates. The objects in this library are data objects and
data management objects. Data management objects are manifested through
ArcCatalog as survey-specific datasets, projects, and folders and through ArcMap
as survey layers and a Survey Explorer UL The fundamental survey data objects
with which users interact are survey points, coordinates, simple measurements,
composite measurements, and computations. These objects are persisted as rows
in a set of tables that represent the survey dataset. These tables are called survey
classes. Each row in the table is called a survey object. A computation is a survey
process that is persisted in a computation survey class. Each has a signature
behavior, makes reference to survey points and measurements, and generates
cootdinates based on the observation values held by the reference objects. Two
examples of a computation are a traverse and a least-squares adjustment.

The SurveyExt library is the set of primitive objects that forms the foundation
for the objects in the SurveyPkgs and SurveyDataEx libraries.

SURVEYPKGs

The SurveyPkgs (Survey Packages) library provides a set of concrete worker
objects and object classes that are built from the base classes of the SurveyExt

ARcCGIS DESKTOP APPLICATION LIBRARIES

library. There are three survey packages provided with Survey Analyst in

ArcGIS 9. They are the Point, TPS (total station), and COGO packages. The
existing sutvey packages can be extended and customized, and new survey pack-
ages can be created. To create your own survey package, you need to aggregate the
core Survey Analyst objects from the SurveyExt library. To do this, a program-
ming language that supports aggregation is required. VB does not support aggrega-
tion, but C++ does. Survey packages may depend on each other in a hierarchical
manner. For instance, instead of defining their own point and coordinate data
types, the COGO and TPS packages use the point and coordinate data types of
the point package.

SURVEYDATAEX

The SurveyDataEx (Survey Data Exchange) library handles the core objects used
to import and export survey data to and from data collector observation files,
ASCII files, and other sources. The objects in this library are used to ensure data
integrity when merging imported data with preexisting data in a survey dataset.
Data exchange objects may be used through ArcCatalog and ArcMap or instanti-
ated and executed through standalone applications.

The fundamental survey data exchange objects with which users interact are
survey converters. These objects are registered in two component categories:
ESRI Survey Analyst Survey Import Converters and ESRI Survey Analyst Survey
Export Converters. Custom survey converters must also be registered in these
component categories.

The core ArcGIS Survey Analyst extension supports the following import con-
verters: Configurable ASCII coordinate importer, Geodimeter, Geo Serial Inter-
face, Tripod Data Systems, and Sokkia SDR. In addition, its export converters
allow the transfer of coordinates into these same formats.

Chapter 2 * ArcGIS software architecture * 43

Developing for
ArcGIS Desktop
applications

The most common way developers customize ArcGIS Desktop applications is
through Visual Basic for Applications, which is embedded within each
application.The application framework also provides for the creation of

plug-in components to extend the applications.

This chapter discusses the application framework, customization options,
customization of the applications with VBA, and the creation of plug-in

components.

CusTtoMiZING ARcGIS DEskTOP

46 * ArcGIS Desktop Developer Guide

In the beginning of this book, you were introduced to the development possibili-
ties provided by the ArcGIS Desktop applications. This chapter will outline in
greater detail those customization options and introduce you to their develop-
ment.

COMMON APPLICATION FRAMEWORK

In Chapter 2, ‘ArcGIS software architecture’, you learned that the ArcGIS prod-
uct family shared a similar architecture based on ArcObjects. The desktop appli-
cations also share a common application framework, which you should under-
stand before undertaking any desktop development.

The ArcGIS Desktop applications are developed using ArcObjects. When you use
an application, such as ArcMap, most of the time you are simply looking at or
working with ArcObjects.

The graphical user interface in each application is also developed using the same
objects, such that in each application you will find the interface contains toolbars,
menus, commands, and tools that have the same look and feel. The interfaces can
also be easily manipulated in terms of adding and removing toolbars, docking
toolbars, adding and removing commands, and so on. This nonprogrammatic
manipulation of the interface is actually the first of the customization options
that will be described later.

It’s important to remember that every command or tool you use, for adding data,
editing, or performing some GIS analysis, is simply running some code that in-
cludes ArcObjects behind the scenes. The application framework of the desktop
applications allows you, as a developer, to write your own code using ArcObjects
to perform some customization.

Each desktop application includes VBA. The VBA development environment is
integrated within the application and provides the Customize dialog box for user
interface manipulation, as described above, and the Visual Basic Editor, which
provides an interface for creating forms and writing ArcObjects code. The inte-
gration between the application and VBA allows you to create your own controls
and work with the application and current document.

The application framework also provides for the creation of components, such as
new commands, tools, or extensions, that plug in to one or more of the desktop
applications. These components are typically created with development environ-
ments, such as Visual Basic 6 or NET.

Recall that all the desktop applications are built using the same objects, share a
common interface, and allow for the creation and integration of your own
ArcObjects code. The way you develop a customization for applications, such as
ArcMap, is no different from creating a customization for another desktop appli-
cation, such as ArcGlobe or ArcCatalog. The ArcObjects that you consume will
be different, but the implementation is essentially the same due to the common
application framework that these applications share.

Exactly how you perform these customizations is the focus of this chapter and
will be described later.

CustoMiZzING ARcGIS DEskTOP

Customization options

The types of customization possible within ArcGIS Desktop are summarized in
the following list and described below:

e User interface customization
* VBA macros

e VBA Ul controls

* Framework components

¢ Extensions

* Custom layers, features, and symbology

User interface customizations

User interface customizations involve a developer or user altering the application
graphical user interface. As mentioned previously, this may be as simple as adding
or removing toolbars, but more commonly involves adding, removing, or rear-
ranging controls on existing toolbars. This is typically done to de-clutter or sim-
plify the user interface in certain work flow situations. For example, an edit work
flow task may make use of several controls on two or more existing toolbars. A
customization here may involve the creation of a new toolbar and the moving of
existing controls or controls not usually displayed with the new toolbar. This
enables operators to perform the work flow task with all the required tools on
one toolbar so they can focus on the task at hand and not spend time searching
for the next control, thus increasing productivity.

User interface customization is perhaps the easiest customization because they do
not involve programming. All the modifications are performed via the Customize
dialog box, part of the VBA development environment, or click-and-drag opera-
tions. The user interface can, of course, be altered programmatically, but this is
usually done in conjunction with delivering other controls (commands, tools, and
so forth), which will be desctibed later.

VBA macros

VBA offers a quick and easy entry point for ArcGIS Desktop development. The
simplest customization through code is the creation of VBA macros, also called
procedures, that can be run from within the VBA development environment or
by calling the macro from the desktop application. The macro contains VBA
code, which uses ArcObjects to perform operations and can also include calls to
existing ArcGIS Desktop commands. Macros often become the foundation for
the more advanced customizations as they provide a good prototyping environ-
ment.

VBA Ul controls

Through VBA you can also create your own commands, tools, and menus and
place them on the interface via the Customize dialog box. These controls contain
code that runs when you, for example, click a button or apply a tool. The code
contained within macros is often converted to controls, or alternatively, controls
may call existing macros.

Chapter 3 * Developing for ArcGIS Desktop applications * 47

CustoMiZzING ARcGIS DEskTOP

48 + ArcGIS Desktop Developer Guide

Framework components

Although VBA may meet most of your development needs, there are some situa-
tions in which you may want to write ArcObjects code using a separate develop-
ment environment, such as Visual Basic 6, Visual C++, Visual Studio .NET, and
so forth. These offer richer development environments and the ability to create
more advanced customizations that are not possible in VBA. Through these
environments you can create components that plug in to the desktop framework
as controls, such as commands, tools, menus, and toolbars. These types of com-
ponents offer more advantages for the developer but often take longer and are
more complicated to develop.

Extensions

Extensions provide users with additional GIS functionality. Typically, GIS func-
tions that perform a specific task are grouped into an extension. 3D Analyst and
Tracking Analyst are examples of extensions provided by ESRI. Extensions are
often used by developers who require the license and management functions
provided by the extension framework. Extensions cannot be created in VBA.

Custom objects

Advanced developers create custom objects for specific applications. Custom
layers, features, and symbology are examples of such objects and can only be
created in development environments, such as Visual C++ or NET. Developing
custom objects is beyond the scope of this book.

STORING cusTOMI IONS

B

Sub AddEhapersl]

Dism we ks TUe

ser wt = few |5

data references

map layout

user interface

VBA project

map document

The ArcMap table of
contents manages the
geographic data
referenced in the map.

A map can be composed
with data frames and
cartographic elements
and saved.

ArcMap has a standard
user interface which can
be customized and saved
in a document.

A Visual Basic for
Applications project
contains forms, modules,
and classes.

DOCUMENTS AND TEMPLATES

Understanding documents and templates is an essential part in understanding
customization with ArcObjects in ArcGIS Desktop applications.

Whenever you are using ArcMap, ArcGlobe, or ArcScene, you are working with a
document, usually referred to as a map, globe, or scene document. This document
stores the map state, the state of the user interface, custom user interface set-
tings, a Visual Basic for Applications project, and other application-specific
information, such as cartographic layouts for ArcMap documents.

Templates are kinds of documents that serve as starting points for new docu-
ments. All the desktop applications have a template known as the Normal tem-
plate, which stores the default or original state of the application. ArcCatalog is a
special case because it only uses the Normal template and has no documents.

As a desktop developer you can store your customizations in either the current
document or the Normal template. ArcMap developers can also store the
customizations in another map template usually established for different carto-
graphic layouts.

When you open a desktop document, the corresponding desktop application first
reads the customizations from the Normal template, then the map template, if
applicable, then finally the document itself. The graphic below illustrates how
customizations are read from top to bottom to incorporate customizations from
all levels.

)

Normal
Template

—~_ <

Affects all ArcMap documents Mar
using this template. Template

—~_ =

This
Document

Affects all documents.

Affects this document.

~—

The order in which these are read is important because changes in one template
can affect other templates and the desktop document. For example, an ArcMap
Normal template may have the AddData command turned off, but a map tem-
plate or document may turn the command back on.

The structure and function of documents and templates are further explained
below in the context of each respective application.

Chapter 3 * Developing for ArcGIS Desktop applications * 49

STORING CUSTOMIZATIONS

Map documents are
based on templates.

They can be based on a
Q : A project template or
directly on the normal

template.

Tierra.mxd TanoRoad.mxd

]

Project templates can be
created anywhere on your
file system. Changes made

to project templates
propagate to all documents
based on that template.

L'g/\

Plat.mxt

~

There is always a normal
. template in the
¢ \arcexe\bin\Templates folder. Any
changes to the normal template
propagate to all templates and
documents.

Normal.mxt

ArcMap automatically creates a Normal
template if one does not exist. If you have
applied unintended customizations, such as

removing toolbars and command items, you can
simply remove the Normal.mxt file, and a new
one with the standard user interface will be
generated.This is easier than undoing a set of
unintended customizations.

Bl |

= @ Normal {(Normal.m=t)
([ArcMap Objects
7 Modules
Project:
(7 ArcMap Ohjects
([0 References
= @ TemplateProject {Plat.mxt)
([ArcMap Objects
[#-[] References

This is how the three loaded templates in
ArcMap—normal, project (current document),
and project template—appear in the VBA
project explorer.

50 * ArcGIS Desktop Developer Guide

CUSTOMIZING ArcMar

You can customize ArcMap in several ways:

* You can add references to geographic data and define how the data is dis-
played.

* You can create a map layout with a spatial reference and ancillary cartographic
elements.

* You can add, remove, or rearrange elements of the standard user interface.
* You can write code in a Visual Basic for Applications project.
All customization in ArcMap is stored in a map document or a map template.

The changes you make to the ArcMap table of contents, the layout of a map, the
toolbars and their command items, and the VBA code you write all get saved to
the map document.

A map document can reside anywhere on your file system; it has a file extension
of .mxd.

Map templates

You can use map templates to disseminate customization throughout an organiza-
tion—globally, by project, or by document.

A map template is a kind of map document. In nearly every respect, map tem-
plates are structurally identical to map documents. The functional difference is
that ArcMap recognizes and uses templates as a starting point to create new map
documents. This is similar to how you work with templates in Microsoft Office
applications.

Any customization of the user interface or the VBA project becomes part of the
newly created map document. Furthermore, any changes to a template will
propagate to template-based documents when they are next loaded.

There are three levels of templates and documents in ArcMap. You can save
changes to any level to control how widely your customizations are used.

Custom map documents

When you are working with a map, you are setting references to data, designing a
map layout, customizing the user interface, and writing VBA code, all for the
lifetime of the document.

Selective customization with project templates

Other projects and other users can share the customizations that you make
through templates. A template is a kind of map document that is specified to be a
starting point for a new map document. The new map document will inherit all
the customizations from the template (data references, map layout, user interface
state, and VBA project).

STORING CUSTOMIZATIONS

Global customizations with the Normal template

The Normal template in ArcMap stores any personal settings you have made to
the user interface that you want loaded every time you start ArcMap. Any
In ArcMap the Normal template s also referred customizations thét you save to the Normal template, including code and control
to as the Normal.mxt file. customizations, will get propagated to all the other map documents when they
are next opened.

When you first start ArcMap after installing the software, a Normal template is
automatically created and put in your profiles location, which is one of the
following folders, depending on your operating system.

For Windows NT®:
C:\WINNT\Profiles\<your username>\Application Data\ESRI\ArcMap\Templates\
For Windows 2000 and XP:

C:\Documents and Settings\<your username>\Application
Data\ESRI\ArcMap\Templates\
This is the default Normal template that contains all the standard toolbars and
commands and places the toolbars and the table of contents in their default
positions. Any customizations that you save in your Normal template get saved to
this file.

If you want to make changes that appear every time you open ArcMap, save them
in the Normal template.

Suppose your administrator has custom toolbars or tools to which he or she
would like everyone in your organization to have access. Your administrator
could create a customized Normal template and allow everyone in your organiza-
tion to use that Normal template instead of the default Normal template. To
accomplish this, your administrator would customize the Normal template and
copy that Normal.mxt file to the \ArcGIS\bin\Templates folder. Everyone
would then start with this Normal template instead of the default Normal tem-
plate. The following is an explanation of how this works.

If there is no Normal.mxt file in your profiles location when you start ArcMap,
the application will look in the \ArcGIS\bin\Templates folder. If a Normal.mxt
file exists in the \ArcGIS\bin\'Templates folder, that file will be copied to your
profiles location and will be treated as your personal Normal template. Therefore,
you start off with a copy of your organization’s customized Normal template,
but from that point on you can save your own customizations to it.

If a Normal.mxt file is not found in your Profiles location or in the
\ArcGIS\bin\Templates folder, then a new default Normal.mxt file will be
created and placed in your Profiles location.

CUSTOMIZING ArcSceNe AND ArRcGLOBE
ArcScene and ArcGlobe can be customized in the following ways:

* You can add references to geographic data and define how the data is dis-
played.

* You can add, remove, or rearrange elements of the standard user interface.

* You can write code in a Visual Basic for Applications project.

Chapter 3 Developing for ArcGIS Desktop applications * 51

STORING CUSTOMIZATIONS

-5 arccatalng Ohbjects
¢ gl ThisDocument
=25 Madules
w2 ArcID

This is how the ArcCatalog Normal template
appears in the VBA project explorer.

52 * ArcGIS Desktop Developer Guide

All customizations are stored as documents. For ArcScene the document exten-
sion is .sxd; for ArcGlobe it is .3dd.

The changes you make to the table of contents, the toolbars and their command
items, and the VBA code you write all get saved to these documents.

Like ArcMap, these applications also have a Normal template that behaves the
same way. For ArcScene the file is called Normal.sxt; for ArcGlobe it is
Normal.3dt. You can find these files at the following locations, depending on
your operating system:

For Windows NT:

C:\WINNT\Profiles\<your username>\Application Data\ESRI\ArcScene (or
ArcGlobe)

For Windows 2000 and XP:
C:\Documents and Settings\<your username>\Application Data\ESRI\ArcScene
(or ArcGlobe)

CUSTOMIZING ArcCaTALOG

You can customize ArcCatalog in several ways:
* Add, remove, or rearrange elements of the standard user interface.
* Write code in a Visual Basic for Applications project.

ArcCatalog does not employ the full structure of documents and templates like
ArcMap does. The ArcCatalog application does not use documents or base tem-
plates; it only uses a Normal template. Therefore, all customizations to the
ArcCatalog user interface are stored in the Normal template.

When you first start ArcCatalog after installing the software, a Normal template
called Normal.gxt is automatically created and put in your Profiles location,
which is one of the following folders, depending on your operating system.
For Windows NT:

C:\WINNT\Profiles\<your username>\Application Data\ESRI\ArcCatalog\
For Windows 2000:

C:\Documents and Settings\<your username>\Application
Data\ESRI\ArcCatalog\

VBA is available in all the ArcGIS Desktop
applications such as ArcMap,ArcCatalog, and
ArcGlobe.The examples in this quick-start
tutorial work within ArcMap, but the process of
creating macros and commands for the other
applications is the same.

Guery Feshues

Savr [oman =] | Kmbowd. | didbomie. | O |

The Customize dialog box

Hew Toolbar
Toolbar Hame,
IMyTooIhalI
Save in:
[urtited =l
The New Toolbar dialog box

CusToMIZING ARCGIS DESKTOP APPLICATIONS WITHVBA

This section details the various VBA customizations available to desktop develop-
ers. Specifically, it will cover user interface customizations, VBA macros, and
VBA UI controls in the form of quick-start tutorials.

Before attempting these tutorials, however, you should have at least a basic
understanding of ArcObjects, Microsoft COM, and the Visual Basic 6/VBA
syntax. This information can be found in Chapter 2, ‘ArcGIS software architec-
ture’, and Appendix A, ‘Developer environments’, the language reference appen-
dix found in this guide.

After completing this section you should also review Appendix C, ‘Hlustrated
code samples’, and Appendix D, ‘Problem-solving guide’. The illustrated code
samples show numerous ArcObjects code examples that can be used in VBA
utilizing the techniques shown in this section. The problem-solving guide walks
you through a typical customization problem in ArcGIS Desktop using
ArcObjects and VBA.

1. To start this tutorial, click the Windows Start button, point to Programs,
point to ArcGIS, and click ArcMap.

2. On the startup dialog box, in the ‘Start ArcMap using” options, click A new
empty map. Click OK.

3. Add some sample data or your own data to the map.

4. Save the map document.

USER INTERFACE CUSTOMIZATIONS

The following tutorials describe nonprogrammatic user interface customizations
through the use of the Customize dialog box.

Showing and hiding toolbars using the Customize dialog box

1. Click the Tools menu and click Customize.
The Customize dialog box appears.

You can also double-click any unoccupied area of any toolbar to display the
Customize dialog box.

2. If it is not visible, click the Toolbars tab.

The presence or absence of a check mark next to the toolbar name indicates
its visible state.

3. Check and uncheck the check boxes.

Creating a new toolbar
1. On the Toolbars tab of the Customize dialog box, click New.

2. On the dialog box that appears, type “MyToolbar” as the name of the new
toolbar or use the default setting.

3. Store the toolbar in the document by changing its name on the Save in
dropdown list from Normal.mxt to the name of the current project you
saved.

Chapter 3 * Developing for ArcGIS Desktop applications « 53

CusToMIZING ARcGIS DESKTOP APPLICATIONS WITHVBA

Dragging a toolbar

CRORCEGE 1L

Your toolbar might look like this.

My Own Tools

A PES

My Own Tools toolbar

54 * ArcGIS Desktop Developer Guide

4.

Click OK.

The newly created toolbar appears near the top of the application window.

Adding buttons to a toolbar

. Make sure the toolbar you just created, MyToolbar, is visible.
. Open the Customize dialog box.

. Click the Commands tab on the Customize dialog box.

Click Pan/Zoom from the Categories list on the left of the dialog box.

. Scroll to the bottom of the Commands list on the right of the dialog box.

Click the Zoom in command and drag it to the MyToolbar toolbar. Release the
command when the arrow cursor with a small box below it appears.

Continue adding commands from the Pan/Zoom category until you have your
own version of the built-in Tools toolbar.

NOTE: You may switch to other categories to select commands.

You can dock the toolbar or drag it to any of the toolbar drop sites on the appli-
cation window.

Renaming a toolbar

1.

>»

On the Toolbars tab, click the name of the toolbar whose name you want to
change. In this case, click MyToolbar.

Click the Rename button.

In the dialog box that appears, type “My Own Tools” for the new name.
NOTE: You can only rename toolbars you’ve created.

Click OK.

If you decide not to rename the toolbar, click Cancel.

Removing buttons from a toolbar

1.
2.

Make sure the toolbar you just renamed, My Own Tools, is visible.

Open the Customize dialog box.

CusToMIZING ARcGIS DESKTOP APPLICATIONS WITHVBA

3. Drag some of the commands off the toolbar.

Even though you’ve removed the buttons from the toolbar, they are still
available in the Customize dialog box.

Adding a menu to a toolbar

My Own Tools

Selection » (3} & @ & B 4= =

—_

. Make sure the My Own Tools toolbar is visible.

2. Open the Customize dialog box.
Selection menu on the My Own Tools toolbar

3. Click the Commands tab and choose the Menus category from the Categories
list on the left side of the dialog box.

4. In the Commands list on the right side of the dialog box, click Selection.

5. Drag and drop it to the left of the Zoom In button on the My Own Tools
toolbat.

6. Click Close in the Customize dialog box.

Documents and templates are explained in 7. Click Selection on the My Own Tools toolbar and note the menu that appeats.
more detail in the previous section.

Saving changes to a template
You can save your work to a document or template. Changes saved to a docu-

ment are specific to the document, whereas changes saved to a template will be
reflected in all documents based on the template.

1. Click the File menu and click Save. This saves the current document.

2. Click the File menu and click Save As.

3. Navigate to the Templates folder of the <installation directory>\bin foldet.
4. Click the Create New Folder button.

Type a new name for the folder and double-click it. You’ll see the folder name
as a tab the next time you create a document from a template.

5. Type the template name in the filename text box, click ArcMap Templates
(*.mxt) from the Save as type dropdown menu, then click Save.

6. Reopen the original document you saved in Step 1.

VBA MACROS

You can use the VBA IDE to create macros to help you automate tasks you
perform repeatedly or to extend the application’s built-in functionality.

Before starting the tutorial you need to be aware of the following framework
properties.

Preset ArcObjects Variables

In the ArcGIS Desktop applications you have two preset variables that will serve
as the starting point for much of your code: Application and ThisDocument.
These object variables are always available as soon as you launch the desktop
application. While the number of methods and properties that are available on
these variables is fairly limited, they serve as a stepping stone to other objects you
might want to program with, such as maps, layers, and files.

Chapter 3 » Developing for ArcGIS Desktop applications * 55

CusToMIZING ARcGIS DESKTOP APPLICATIONS WITHVBA

To see all the methods and properties available
with the Application variable, see the
|Application entry in the ArcGIS Developer help.

Project - Normal [%]

: E| E5 ArcMap Objects

¢ [E] ThisDocument
-5 Modules

Loyl ArcID

E@ Project {Untitled.mxd)

B3 ArcMap Objects

=] ThisDocumert

[£3 References

The VBA project explorer displays the available
VBA projects.

56 * ArcGIS Desktop Developer Guide

Application Variable

Application is a preset variable that points you to the current application. In
ArcMap, Application refers to the ArcMap application, while in ArcCatalog, it
refers to ArcCatalog, and so forth. In either environment, the Application vari-
able will always have the same methods and properties.

Below is a sample of some methods and properties available on Application.

® Caption: A read/write property to get ot set the text that appears on the
applications title bar

Name: A read-only property that will always return the name of the applica-
tion as a string (ArcMap, ArcCatalog, and so forth)

® RefreshWindow: A method to redraw the application window

ThisDocument

The ThisDocument preset variable points to the document that is currently open
in the application. In ArcCatalog this always refers to the Normal template, while
in the other desktop applications it refers to the current, map, scene, or globe
document. Unlike the Application preset variable, there are some differences in
the methods and properties available on ThisDocument in ArcCatalog versus the
other desktop applications.

Here are some methods and properties you will find on ThisDocument:

® AddLayer: ArcMap only. A method to add a new layer to a document. A layer

is required as an argument.

Title: A read-only property to get the name of the document (for example,
normal.mxt, WestAust.mxd).

® Type: A read-only property that describes the type of current document (for
example, Normal template, map template, or document).

VBA project organization

When working within the VBA editor, the project explorer window displays two
or more projects. The Normal project refers to the Normal template associated
with the application. If you write macros within this project, they will be saved
to the Normal template and, thus, will be available to all documents for this
application. If you write macros in the document project, however, the code will
only be available in that current document. A third project may be displayed if
you are working with a map template. Any code saved to a template project will
be available to documents based on that template.

ArcIlD module

Each VBA project contains a module that is automatically added called ArcID.
This module, stored in the Normal template, contains a reference to all existing

CusToMIZING ARcGIS DESKTOP APPLICATIONS WITHVBA

Macros [=]
thonrame (e]
lﬂlﬂ_]

e ok
13
| Lo]

Mgoo i [Pt -
Deserigtion

|
| E

The Macros dialog box

Some macros will not run correctly if the VBA
editor window is still open.

controls (commands, tools, and so forth) within the current application. Using
this information you can call or run an existing control from within your code.
This procedure is described in the tutorials.

Creating a macro

With the Visual Basic Editor, you can create and edit macros, copy macros from
one module to another, rename the modules that store the macros, or rename the
macros.

1. Click the Tools menu, point to Macros, then click Macros.

2. In the Macros dialog box, type “MyZoomln” in the Macro name text box and
click Create.

The application creates a new module named Modulel and stubs out the Sub
procedure.

3. Enter the following code for MyZoomIn:

Sub MyZoomIn()

' macro: MyZoomIn
Dim pDoc As IMxDocument
Dim pEnv As IEnvelope
Set pDoc = ThisDocument
Set pEnv = pDoc.ActiveView.Extent
pEnv.Expand 0.5, 0.5, True
pDoc.ActiveView.Extent = pEnv
pDoc.ActiveView.Refresh

End Sub

The first line of the macro declares a variable that represents the ArcMap
document. At this point, the coding techniques that are used with the Arclnfo
COM-based object model will not be addressed. These techniques are dis-
cussed in greater detail later in this guide.

The second line declares a variable that represents a rectangle with sides
parallel to a coordinate system defining the extent of the data. You’ll use pEnv
to define the visible bounds of the map.

The predefined variable, ThisDocument, is the 1Document interface to the Mx-
Document object that represents the ArcMap document.

The Activel iew property provides an LActivel Zew interface that links the
document data to the current screen display of that data.

By reducing the size of the envelope that represents the extent of the map,
the macro zooms in on the map’s features once the screen display is refreshed.

4. Switch back to ArcMap by clicking the File menu, then clicking Close and
Return to ArcMap.

5. Click the Tools menu, point to Macros, then click Macros.

Chapter 3 * Developing for ArcGIS Desktop applications ¢ 57

CusToMIZING ARcGIS DESKTOP APPLICATIONS WITHVBA

e 6. Select the Module1.MyZoomln macro and click Run.

{
|

The display zooms in.

'3« -l Pangset Mostube] MyZnomin
Adding a macro to a toolbar

You’ll want convenient access to the macros you write. You can add a macro to
built-in toolbars or toolbars you've created.

B . Click the Tools menu and click Customize.
Soveie TP »| | | bord.. || i

1

2. In the Toolbars tab, ensute that the toolbar you created is visible.

The Customize dialog box
3. Click the Commands tab and click the Macros category.

4. Click the name of your project in the Save in dropdown menu.

The Commands pane to the right of the dialog box lists
Project.Modulel.MyZoomIn.
)) 5. Drag the macro name to the My Own Tools toolbar you created.
You can only change the properties of an object, ‘

such as a macro, command, or tool, while the The macro appears as a button on the toolbar with a default icon.
Customize dialog box is visible.
6. To change its properties, right-click the icon.

7. In the context menu that appears, click Change Button Image and choose a
button from the palette of icons.

8. Close the Customize dialog box.

9. Click the button on the toolbar to run the macro.

Invoking the Visual Basic Editor directly

As an alternative to the Create button in the Macros dialog box, you can navigate
directly to the Visual Basic Editor and create procedures on your own. In this
section, you’ll create a macro named MyZoomQut in the Modulel module that will
zoom out from the display. You can use the same code that you used for
MyZoomlIn, with only a minor modification to one line.

1. Press Alt+F11, which is the Visual Basic Editor keyboatd accelerator.
2. Click Project Explorer in the Visual Basic Editor View menu.
3. In the Project Explorer, click the Project entry, then Modules, then Modulel.

4. In the Code window, copy the MyZoomIn code from the beginning of the Sub
to the End Sub.

5. Paste the MyZoomIn Sub code below the existing code.
6. Change the name of the copied Sub to MyZoomQut.

7. Change the line:
pEnv.Expand 0.5, 0.5, True
to:

pEnv.Expand 2.0, 2.0, True

58 * ArcGIS Desktop Developer Guide

CusToMIZING ARcGIS DESKTOP APPLICATIONS WITHVBA

8. Follow Steps 1-9 of the ‘Adding a macro to a toolbar’ section above to add
and run your second macro.

Getting help in the Code window

The two macros you’ve just completed perform operations similar to the Fixed
Zoom In and Fixed Zoom Out commands on the Tools toolbar. You didn’t really
add any new functionality, but you’ve perhaps learned something about the object
model and how to start to write some useful code. You can learn more about
these methods you've worked with by making use of the help that’s available in
the Object Browser or in the Code window.

1. Click the Tools menu, point to Macros, then click Visual Basic Editor.

2. Locate the Module1 module. In the MyZoomIn Sub, click the method name
Expand in the line:

pEnv.Expand 0.5, 0.5, True
3. Press F1.

The ArcGIS Developer Help window displays the help topic for Expand. In
addition, consult the ArcGIS Developer Help, which you can also start from the
ArcGIS program group, for object model diagrams, samples, tips, and tricks.

Calling built-in commands

If you’ve read any of the ArcGIS user guides, you know that the code you’ll be
writing will add functionality to an already rich environment. There may be

The Name of @ command in the ArcID module instances in which you want to make use of several built-in commands executed
can be derived using the following formula:
Category In Customize Categories List +“_" +

Command Caption in Customize Commands Calling existing commands involves working with the 47ID module. Using the

List Any spaces are removed from the name. AreID module you can get the unique ID (UID) of a particular command. By
using its UID you can Find a command in ArcMap and run it. If you want to look
at the AzID module in greater detail, it’s in the Normal template of your appli-
cation.

in sequence or combine built-in commands with your own code.

The following steps outline how to write a macro that calls existing commands:

1. If you are not in the Visual Basic Editor, click the Tools menu, point to
Macros, then click Visual Basic Editor.

2. In the Module1 module, create a Sub procedure with the following code:

Sub FullExtentPlus(Q

' macro: FullExtentPlus

Dim intAns As Integer

Dim pItem As ICommandItem

With ThisDocument.CommandBars
Set pItem = .Find(ArcID.PanZoom_FullExtent)
pItem.Execute
intAns = MsgBox(""Zoom to previous extent?", vbYesNo)
If intAns = vbYes Then

Chapter 3 » Developing for ArcGIS Desktop applications ¢ 59

CusToMIZING ARcGIS DESKTOP APPLICATIONS WITHVBA

New UIControl

UIContial Typ
o UiuiionCanirt € UIEiBosControl

" UlToolContol

LCreate I

" UIComboBoxControl

Create and Edit | Cancel |

The New UlControl dialog box

The following code assumes the
UlButtonControl was named
UlButtonControll. If another name was used
because this name was already in use, make the
necessary changes to the code snippets.

The code in the Click event procedure will run
when you click the button.

» Proect - ThisDocument [Code)

Option Explicit
Private Sub UlDuteenCo
Dim phoc As IMxDoc
Sat phoc = ThisDoc!

phoc.ActiveViev.Extent = phoc.ActiveView.Fu
phoc.ActiveViev.Refresh
End Sub
FPrivate Function UlButtonControll _Message() A
End Function
VBA Editor showing the Code window, Object
and Procedure combo box.

60 * ArcGIS Desktop Developer Guide

Set pItem = .Find(ArcID.PanZoom_ZoomTolLastExtentBack)
pItem.Execute
End If
End With
End Sub

3. Add the FullExtentPlus macro to a toolbar or menu.

4. Run the MyZoomIn macro, then run FullExctentPlus.

Creating a command inVBA

Up to this point in the tutorial, you’ve only created macros. A command is similar
to a macro but allows more customization in the way it interacts with the user
and provides ToolTips, descriptions, and so on. Once invoked, a command usually
performs some direct action without user intervention. A command is a type of
UlControl. You can read more about all the UIControls in Appendix E, ‘UI
Controls’.

1. Click the Tools menu and click Customize.

2. In the Customize dialog box, click the Commands tab and click the Save in
dropdown menu to navigate to your project.

3. In the Categories list, click UIControls.
4. Click New UlControl.

5. On the dialog box that appears, choose UIButtonControl as the UIControl
Type, then click Create and Edit.

Adding code for the UlButtonControl

The application adds an entry in the Object box for the UIButtonControl and stubs
in an event procedure for the UlButtonControl's Click event. You’ll add code to
this event to zoom the display to the extents of the dataset.

1. Add the following code to the Click event:

Private Sub UIButtonControll_Click()
Dim pDoc As IMxDocument
Set pDoc = ThisDocument

pDoc.ActiveView.Extent = pDoc.ActiveView.FullExtent
pDoc.ActiveView.Refresh
End Sub

So far there is no difference from the macros you developed earlier. You will
now add a ToolTip and message for the command.

2. Click Message in the Procedure combo box. This creates a stub function, to
which you should add the following code:

Private Function UIButtonControll_Message() As String
UIButtonControll_Message = _
"Zooms the display to the full dataset extents"
End Function

CusToMIZING ARcGIS DESKTOP APPLICATIONS WITHVBA

3. Click ToolTip in the Procedure combo box. This creates a stub function, to
which you should add the following code:

Private Function UIButtonControll_ToolTip() As String
UIButtonControll_ToolTip= "Full Extent"
End Function
4. Click the Visual Basic Editot’s File menu, click Close and click Return to
ArcMap.

5. Click the Tools menu, click Customize, then click the Commands tab.

6. In the Customize dialog box, click the Commands tab and click the Save in
dropdown menu to navigate to the name of your saved project or to Untitled.

7. In the Categories list, choose UIControls and drag the UIButtonControl you
created to a toolbar. Close the Customize dialog box.

Try the new command by zooming in on the map and clicking the button. Also,
test the ToolTip and description properties. The ToolTip will display if you pause
the cursor over the button, while the description, the code in the message proce-
dure, will display in the status bar as the cursor moves over the button.

Creating a tool inVBA

As you’ve seen in the built-in toolbars and menus, users interact with other
controls in addition to commands. As part of the customization environment,
you can add sophisticated controls to toolbars and menus. A tool is a type of
control that allows you to interact with the display. The Identify tool, in ArcMap,
is an example of a tool control that shows the attributes of geographic features
that you click on in the ArcMap display. In this section of the tutorial, you’ll
create a UI'ToolControl to interact with the ArcMap display.

1. Click the Tools menu and click Customize.

2. Click the Commands tab and click in the Save in combo box to locate your
project.

3. Choose UlControls from the Categories list.
4. Click New UlControl.

5. In the dialog box that appears, choose UIToolControl as the UlControl Type,
then click Create and Edit.

Adding code for the UlToolControl

The application adds an entry in the Object box for the UIToo/Control and stubs in
an event procedure for the UlToo/Controls Select event. You won’t add any code
to the Select event procedure at this time; instead, select the MouseDown event in
the Procedures combo box on the right side of the Code window. You’ll add
code to this event to enable you to drag a rectangle on the screen display; the
application will zoom to the rectangle’s extent.

1. Add the following code to the MouseDown event procedure:

Chapter 3 * Developing for ArcGIS Desktop applications « 61

CusToMIZING ARcGIS DESKTOP APPLICATIONS WITHVBA

The code on the right assumes the
UlToolControl was named UlToolControl |. If
another name was used because this name was

already in use, make the necessary changes to
the code snippets.

The code in the Mouse Down event will run
when you click the mouse down in the display
when the tool is active.

62 * ArcGIS Desktop Developer Guide

Private Sub UIToolControll _MouseDown(ByVal button As Long, ByVal shift As
Long, ByVal x As Long, Byval y As Long)

Dim pDoc As IMxDocument
Dim pScreenDisp As IScreenDisplay
Dim pRubber As IRubberBand
Dim pEnv As IEnvelope
Set pDoc = ThisDocument
Set pScreenDisp = pDoc.ActiveView.ScreenDisplay
Set pRubber = New RubberEnvelope
Set pEnv = pRubber.TrackNew(pScreenDisp, Nothing)
pDoc.ActiveView.Extent = pEnv
pDoc.ActiveView.Refresh
End Sub

The key line of this procedure is the one that contains the TrackNew method,
which rubberbands a new shape on the specified screen. The code uses the
Envelgpe object that the method returns to set the new extent for the map.

When you selected the MouseDown event to add code to, you may have noticed
that UI'ToolControl supports several other events. The customization frame-
work handles many of the details of coding for you, so you only have to code
the event procedures you need. Later in this chapter, you’ll find that this is in
contrast to what is required when implementing a tool as part of an ActiveX
DLL. A tool is not appropriate for all occasions. You can control when a tool
or command is available by adding code to its Enabled event.

. Add the following code to the Enabled event procedure of UIToo/Control1:

Private Function UIToolControll_Enabled() As Boolean

Dim pDoc As IMxDocument

Set pDoc = ThisDocument

UIToolControll_Enabled = (pDoc.FocusMap.LayerCount <> 0)
End Function

. Add the following code to the CursorlD event procedure to control the cursor

that appears when you use the tool:

Private Function UIToolControll_CursorID() As Variant
UIToolControll_CursorID = 3 ' Crosshair
End Function

. Add a ToolTip and message for the tool control as you did for UIButtonControl

in the steps above.

. Click the Visual Basic Editor File menu, click Close, then click Return to

ArcMap.

. Click the Tools menu, click Customize, then click the Commands tab.

. In the Customize dialog box, click the Commands tab and click the Save in

dropdown menu to navigate to the name of your project or to Untitled.

. In the Categories list, choose UlControls and drag the UIToolControl that you

created to a toolbar. Close the Customize dialog box.

CusToMIZING ARcGIS DESKTOP APPLICATIONS WITHVBA

Try out the tool by selecting it and dragging a rectangle on the display. You can
also see the Enabled event procedure code in action if you remove all layers from
the map. Once you add data back to the map, the tool will be enabled again.

Changing button properties

You can change the image on any toolbar button or menu command, except for a
button that displays a list or a menu when you click it. You can display text, an
icon, or both on a toolbar button. You can also display either an icon and text or
text only on a menu command. You can change the image that represents the tool
and other properties by right-clicking the button.

1. Right-click any toolbar to determine whether a context menu is available and
click Customize in the context menu that appears.

2. Right-click the button whose properties you want to change.

3. In the context menu that appears, click Image and Text. The button now
displays the image and the name of the button.

4. Close the Customize dialog box.

Congratulations! You now have the basic knowledge to tackle the example code
samples located in the appendixes. Along with each of these code samples is a
hint about where best to develop the code—in a macro, command, or tool.

Additional information on the VBA environment and developing with VBA and
ArcObjects can be found in the appendixes.

Chapter 3 » Developing for ArcGIS Desktop applications * 63

COMPONENT DEVELOPMENT

VBA is an ideal prototyping environment that provides the means for deploying
customizations. In previous sections, you have seen that you can make toolbar
customizations and quickly develop modest applications. Many of the developer
samples available with ArcGIS are simply VBA code snippets and procedures that
you can copy, paste, and run in the VBA development environment.

Developing with VBA does have some disadvantages, however:

* To deploy your customization or code, you need to ship the .mxd file or
export the code to text files. This is not very flexible for the end user.

* Your VBA code is also exposed by default. Although you can lock the VBA
environment to prevent other users from seeing your code, this also means
that they cannot extend your customizations or make any other changes in
VBA.

You can overcome these disadvantages and get access to a richer development
ArcGIS applications are COM-based.This means experience by using a COM-compliant environment, such as Visual Basic 6, Visual
Ia:’g::gt:Zi;’;z;:»oyrt"r;;:;lggaiz:ffn";:;t C++ with Active Template Library (ATL), or Visual Studio .NET. These envi-
' ronments can all create COM-compliant components, typically as DLLs or OCXs
that contain your customizations. These components simply plug into the ArcGIS
Desktop framework, revealing your customizations and making them available
for use.

Following are some advantages of building custom components:

® You can integrate a wider range of third party controls and code into your

customizations.

® Your code is hidden within the binary-compiled component.

® You can extend and customize virtually every aspect of the ArcGIS Desktop
applications.

® They can be easily delivered to end users via custom setup programs.

The disadvantage, of course, is that you must obtain one of these development
environments, which are not included with ArcGIS, and learn the particular
language syntax, increasing development time.

Before looking at how these components are developed, see the explanation
below on what COM is and how these customizations are possible.

COM REVIEW
Of the set of components that make up the ArcGIS Desktop applications,
See AppendixA, Developer environments’, for ArcObjects is platform independent and written in C++, which makes use of
more information on COM. Microsoft’s COM. COM is a standard or protocol that connects one softwatre com-

ponent, or module, with another. With this protocol it is possible to build reusable
software components that can be dynamically interchanged in a distributed system.

ArcObjects classes based on this model have interfaces that organize the various
properties and methods for an object or component. Developing with ArcObjects
means developing with interfaces, since all communication between components
happens via their interfaces. Interfaces are standardized by COM rules, so it does not
matter what language is used to create the component, as long as that language is
COM compliant.

64 + ArcGIS Desktop Developer Guide

COMPONENT DEVELOPMENT

If you are an existing ArcGIS VBA developer or have worked through the quick-
start tutorials in the previous section, you have already been programming with
ArcObjects components based on this model and can see how these components
work together.

Plugging into ArcGIS Desktop

Using a component in ArcGIS is similar to adding a new CD player to your stereo
system. If the plug on your CD player fits the plug on your stereo receiver, the
components will be able to work together. Both the stereo and the CD player can
be ignorant of how the other works, as long as the communication between them
occurs as expected.

When designing a new ArcGIS component, such as a command or tool, the
interface you choose to implement is the equivalent of the type of plug used by a
stereo component. If you want your component to plug in as a new command in
ArcMap, for example, you must implement the interface that ArcMap expects for
commands, [Command.

Implement

Implement ICommand to create your own
command.

How does ArcMap know the new command exists?

ArcMap knows what commands are available via component categories. A com-
ponent category is an operating system registry key that contains component class
IDs. Every component within ArcGIS, including components you create, has a
globally unique identifier, also called a GUID. Once a component is registered
with the operating system, it can be registered to a particular component category.
ArcMap and the other desktop applications look for these component categories
to work out which commands, tools, edit tasks, and so forth, are available.
ArcGIS Desktop applications include the component category manager to help
you manage this task. This step can also be automated with setup programs and
developer add-ins for the various development environments.

Where can components plug in?
Here are some examples of components that can be added to ArcMap:
® Command—A button, tool, or menu choice. To create this

component you must implement [Command, and you may also
need to implement ITool, IToolCommand, ot both.

et ® Edit Task—A task that works with the ArcMap Editor in

; i conjunction with the Sketch tool. It must implement
. 1EditTask.

® Table of Contents tab—An additional tab on the ArcMap
table of contents that implements the [Contents\ iew inter-
face.

® C(lass extension—A component that works with a dataset

(feature class or table) to provide limited custom behavior

(attribute calculation or validation, for example). A class

ArcMap interface showing where C"'"P";‘e’{B extension must implement IClassExtension, and it may also
canplugin implement IPropertylnspector, 10bjectClass) alidation, or several
others.

Chapter 3 » Developing for ArcGIS Desktop applications * 65

COMPONENT DEVELOPMENT

66 * ArcGIS Desktop Developer Guide

What can components do?

Anything you can do in VBA, you can do with a component. However, the
reverse is not true, which is one advantage of using a custom component. You
can take any of the tutorial samples you have seen so far or any of the illustrated
code samples in the appendixes and easily create a component, such as a com-
mand or tool, using one of the development languages. In some cases you may
only have to make small changes to the VBA code to make it into a component.
For example, if you’re developing in Visual Basic 6, the syntax is almost identical
to VBA, requiring you only to make minor changes and implement the required
interfaces.

It’s important to reiterate that if you don’t intend to take advantage of the
benefits that components offer, such as using the code in other documents or
deploying to other users, you should continue to make your customizations
within VBA. In most cases it will be less complicated and quicker to develop.

CHOOSING A COMPONENT DEVELOPMENT ENVIRONMENT

WHICH COMPONENT DEVELOPMENT ENVIRONMENT?

The choice of development environment is not a simple task, and it is influenced
by many factors. Many developers will select either Visual Basic 6 or Visual C++,
while others will use Visual Studio NET, Delphi™, C++ Builder, and so on. The
primary driving force behind the decision is the experience and skill level of the
developers who will write the code. Other issues worth considering are the
application requirements, performance, development process, and security of
code.

Performance differences between development languages are not as significant as
you might think. Since the majority of the work will be performed within the
ArcObjects components, which are all written in C++, the developet’s
For more information on development environ- customization language is, for the most part, used to control the program flow

ments, see Appendix A, Developer environments’. and user interface interaction. Since Visual Basic 6 uses the same optimized back-
end compiler technology that Visual C++ uses, the generated machine code
performs at a comparable level. Tests have shown that when performing typical
actions on features contained within a database (drawing, querying, editing, and
so on), Visual Basic 6 is approximately two percent slower than optimized Visual
C++ code, and Visual Basic for Applications is two percent slower than Visual
Basic 6.

Performance in Visual Studio NET can be slightly slower than the other lan-
guages due to the intermediate layer, run-time call wrapper (RCW), that NET
code goes through to communicate with ArcGIS COM objects. If you suspect
that performance is being hindered by this process, you may be able to restructure
your code to make it more efficient. For more information see the ‘Performance
of ArcObjects in NET” section in the ArcGIS Developer Help under the NET
development environment.

Visual Basic 6 is a productive tool, especially for user interface development, but
there are limitations to what can be done in Visual Basic. In the majority of cases,
these limitations will not affect a developer’s ability to customize and extend
ArcObjects. Many of the limitations that do exist are directly associated with the
development environment itself. Visual Basic does not support COM aggregation,
for example, so it cannot be used to create custom features. In addition, debug-
ging Visual Basic code is not as flexible as Visual C++. Using Visual Basic 6 in a
large development environment with many developers is not as productive as
Visual C++ since partial compilations of projects are not supported. If one file is
changed in a Visual Basic project, all the files must be recompiled. Since Visual
Basic 6 hides much of the interaction with COM inside the Visual Basic Virtual
Machine, low-level COM plumbing code cannot be written in Visual Basic.

Visual Studio .NET overcomes many of the limitations of its predecessor, Visual
Studio 6, providing a productive IDE, a large supporting class library, more
object-oriented functionality, better support for data types, and so forth.

Chapter 3 ¢ Developing for ArcGIS Desktop applications * 67

BuIiLDING ANARCGIS DESKTOP COMPONENT

68 * ArcGIS Desktop Developer Guide

In this section you will learn how to create a component that you can plug into
the ArcGIS Desktop applications.

The emphasis here is not how to program in a particular language or how to solve
a particular ArcObjects problem; there are many code samples as well as the
problem-solving guide in the appendixes that illustrate these. This section pro-
vides an overview on how to wrap the solution in a component and make it
available in ArcGIS. Chapter 5, ‘Developer scenarios’, shows you how to create
specific components using a development environment.

BASIC STEPS IN BUILDING A COMPONENT

The following basic steps are used in building a component. These are explained
in more detail in the subsequent paragraphs.

1. Create a new project.
To create a custom component you must use a standalone programming
environment. This section will illustrate Visual Basic 6, but you could also use
any language that supports COM components.

2. Reference the ArcObject libraries.
Unlike VBA within the desktop applications, Visual Basic will not know
about the ArcObject libraries.

3. Implement the required interfaces.
To ensure that your component works with the existing architecture, you
must implement the proper interfaces that ArcGIS will expect.

4. Write the implementation code.
Write the code to accomplish the component’s purpose.

5. Compile the component as a DLL.
Write your component out as a Dynamic Link Library. You may need to
perform some debugging before your component compiles without error.

6. Plug the component into ArcGIS Desktop.
Register the component with the operating system and make it available to
ArcGIS through the component categories.

7. Test/Debug/Recompile.
Test the component in the intended ArcGIS Desktop application. If it does
not work as expected, you may need to return to your project to fix bugs and
recompile your DLL.

BuiLDING AN ARCGIS DESKTOP COMPONENT

is. Project - BoundaryAnnotation = [=] 3
=s |
-5 BoundaryAnnotation (BoundaryAnnotation.vbp)
(23 Farms
- (01 Modules

boveBelaw (clsAB.cls)

-8 adjustLength {clsadjlength.cls)
B aAnnotate (clsannoBdy.ds)

-§# BAToolbar (clsBAToolBar.cls)

B RegistryObject (RegistryObject. cls)
i) SelectBoundary (clsSelBdy . cls)

Each class module will become a component or
control.

Nofesoncas - Doundaphnnol stion vbp

4 51 hicagll Obpsct Libeaty
bt Ot Libwiny _ol
v eomenry Dbject Ly
7 E5RI Spunmen Olbaeect Liway
7| ESHI Framewos, Dbsct Livary

50 o Ot _l:I

L) »
Locaton: D-KEISICom et rstasll o)
Language: Standed

The Visual Basic References dialog box.
Standard and ESRI object libraries have been
checked.

ICommand : IUnknown

Bitmap: OLE_HANDLE
Caption: Siring

Catey : String
Checked: Boolean
Enabled: Boolean
HelpContext|D: Long
HelpFile: String
Message: String
MName: String

Toaltip: String

A TTTTTTTIN

OnClick
OnCreate (in hook: IDispatch)

The ICommand interface in esriSystemU|

I. Create a new project.

To design new ArcGIS Desktop components, you need to make sure you create a
new ActiveX DLL Visual Basic project as opposed to a standard executable.

When creating your new VB project, be sure to provide meaningful names for the
project and for each class that you create. The name of the project will also be
the default name of the DLL when it is compiled. Each class in your project will
be an individual component in your DLL. If you create a class called Class1 that
is going to be a custom control, for example, ‘my new control’, it would also be
called Class1 inside the DLL.

Components that you want your user to create, such as commands on the user
interface, should have their instancing property set to MultiUse.

A single DLL can contain several classes, or components. It is not necessary,
therefore, to create a new ActiveX DLL project for each component you want to
create. If needed, you could deliver dozens of commands, toolbars, and other
components in a single DLL.

2. Reference the ArcObjects libraries.

When you are programming within the ArcGIS Desktop applications with VBA,
you do not normally need to explicitly reference the ArcObjects libraries, since
most of the ones you will use are already referenced for you. This is not the case
when programming in a standalone development environment, such as Visual
Basic. Any libraries that are referenced by your code, beyond the standard Visual
Basic libraries, need to be explicitly brought into your project.

To reference additional class libraries, choose References from the Project menu.
Almost all projects need a reference to esriSystemUI since this library contains the
plug-in interfaces for commands and tools (for example, ICommand, I'Tool).

You will also need to add ArcObjects libraries throughout your development,
depending on which parts of the ArcGIS object model you are using.

Visual Basic users may also use the ESRI Automatic References add-in, which
provides an easier way to reference the ArcObject libraries. For more information
see the section on add-ins within the ArcGIS Developer Help.

3. Determine the required interfaces.

To make sure your component will be understood by the ArcGIS Desktop appli-
cations, you need to implement an interface, or interfaces, appropriate for your
component.

If ArcMap is to place a new control on its user interface, it needs to be able to
apply to the control some basic properties, such as what image should be dis-
played on the control (Bitmap property), what text should be displayed when the
user hovers over the control with the mouse (ToolTip), and most important,
what it should do when the control is clicked (OnClick event procedure). As a
programmer, you address these by writing code for the proper methods and
properties. This is performed in the next step.

Chapter 3 » Developing for ArcGIS Desktop applications ¢ 69

BuiLDING AN ARCGIS DESKTOP COMPONENT

4. Write component code.

After deciding which interface your component needs to implement, the next
step is to write code for every method and property on each interface. To satisfy
the rules of COM, this simply means having all the method and property proce-
dure stubs in your class module.

Upon entering the zmplements statement in the general declarations

¥, BoundarpAnnotation - RotateT ask (Code) |_ (O] x| . .
[eatrasc 5] [emetproperyen <] (top) portion of the class module, you will be able to choose the

| ctivate:
[Deactivate

Option Explicit
Implements IEditTask

lOrDeleteSketch
[OnFinishShetch

interface from the object list (upper left) and see all its associated
methods and properties in the procedure list (upper right). You may

IEditTask Neme = "Rotate South”
End Property

Private Property Get IEditTask Name () A3 String

only need to provide code for a handful of these procedures to make
your component work as desired. You must, however, have stub code
for at least each member of your implemented interfaces before your
DLL will compile.

Visual Basic code module showing the imple-
mentation of |IEditTask and its members

Visual Basic users may also use the Interface
Implementer add-in, which automatically adds
an interface and stubs out all the required
methods and properties.

You can now write the code to perform some action, the purpose of
the command or tool. For commands, your start point will typically be in the
OnClick event property; for tools, it may be one of the OzMouse event properties.
Your code may consist of only a few lines, or it may call other procedures or VB
forms as part of a larger application. During this step you will probably need to
reference additional ArcObject libraries, as described in Step 2, to support your
code.

Referencing the application

A major difference you will find when programming in a standalone environment,
such as Visual Basic as opposed to VBA, is the lack of the available preset vari-
ables. When programming in ArcMap or ArcCatalog using VBA, you can jump
into your code using the preset Application or ThisDocument variables. To get
access to the current application or document in VB, you must use another tech-
nique.

The ArcObjects interfaces you will most commonly implement on

7, B oundaryAnnotation - Annotate [Cod .
% BoundaryAnnotation - Annotate [Code) =lo)x your components, for example, [Command and IExtension, pass a
[icommand =]/ JonCreate =l

Implements ICoranand
Dim m pMxdpp As IMxdpplication

reference to the current Application object into one of their inter-

Set m_pMxlipp = hoo
End Jub

[mim

Private Sub ICommand OnCreate (ByVal hook As Ohject)

face members. On the [Command interface, the OnCreate event

passes in a parameter called hook that is referred to as Object. This
object is the equivalent of the Application preset variable. To use

sf;| this object throughout your component, you will need to store it as

The Application object is passed to your compo-
nent as hook.

70 * ArcGIS Desktop Developer Guide

a module-level variable.

The OnCreate event fires when a user drags the Custom command from the Cus-
tomize dialog box to a toolbar or menu or when a map containing the control is
opened.

BuiLDING AN ARCGIS DESKTOP COMPONENT

&, MyProject - MyControl [Code]) H[=] E3

I(General) ﬂ I(Declaraﬁnns]

Implewents IComnand
Dim m phpp ks Iipplicatiorn
Dim m_pGxdpp As IGxhpplication
Dim m strdpp As String

|

Private Sub ICommand OnClick()
If m_stripp = "Hap” Then
Dim pMxDoc As IMxDocument
Set pMxDoc = m pipp.Document
IsgBox pMxDoc.SelectedLayer .Name
Else
IsgBox m pGxipp.Catalog.Selectedobject.Name
End If
End Sub

Private Sub ICommand OnCreate (ByWal hook ks Object)
If Typetf hook Is IGxipplication Then
Set m_poxdpp - hook
m_stripp = "Catalog”
Else
Set m_phpp — hook
m_stripp = "Hap"
End Sub

Different tasks are performed in ArcMap and
ArcCatalog. TypeOf is used to see where the
control was added.

Creating an all-purpose command

It is possible to create a command that works in all the desktop
applications. The class shown on the left implements the [Command
interface, which is required for all desktop commands.

When the OnCreate event fires, the TypeOf statement is used to see
if the hook is the ArcMap or ArcCatalog application in this ex-
ample. A string variable is set to record which application the
control is being used in.

The OnClick event uses the string variable (m_StrApp) to see if the
control is being used in ArcMap or ArcCatalog. Depending on the
application, the control will serve a different purpose: reporting the
selected layer in ArcMap or reporting the selected layer in
ArcCatalog.

5. Compile your component DLL.

Once you have written all the required code to make your control work inside

the desktop applications, you need to compile the project to a DLL on disk.

Choose ‘Make <project name>’ to compile your DLL, specifying an output file

location. If there are no syntax errors in your code, the DLL will compile; other-

wise, VB will report an error.

Common errors encountered when compiling

® ‘Object module needs to implement <member name> for interface <interface

name>"—You did not s#b all the methods and properties on the interface that

you implemented.

® ‘User-defined type not defined—You probably forgot to reference a required

library.

® ‘“Permission denied: <DLL filename>’—The DLL is likely being used, by
ArcMap or ArcCatalog, for example. This error might be encountered when
you are in the testing/debugging phase of developing your component.

Chapter 3 * Developing for ArcGIS Desktop applications ¢ 7|

BuIiLDING AN ARCGIS DESKTOP COMPONENT

6. Plug the component into ArcGIS Desktop.

Before you can use your custom component in one of the ArcGIS Desktop
applications, you need to make sure it is registered with your operating

;% Component Category Manager M= B3 .
system and registered to the correct component category.
=+-(3 ESRI Edit Tasks =] Exit
o4 Lackontou ColoCriTack There are several ways in which you can do this:
-] esrif ditor ArsabelactT ssk Add Objsct Vi way which you ¢ '
g esrE ditar CreatsFeatureTask =
::g e B o esT Rermove Obicst ® Customize dialog box—When you use the Add from file button to
g esrE ditar LineS electT ask H H H H . H
iy v e bring in a component, your component DLL is a'utom.atlcally reglstered.
g b odTk \ You cannot use this method for DLLs created with Visual Studio .NET.
g estiE ditor. Transmogrify T sl
3 esrEditor. TrimT ask
g esrEdtarE st AutcCompleteTask T ¢ Component Category Manager—The Component Category Manager
3 eeriEditorEst ModifyE dgeT ask
g sstE diorEst ReshapsEdgsTask allows you to add and remove ArcGIS components. Components are orga-
-+f3 esilocationl] CalibrateRouteT ask. |
O _,,-I nized into various categories. By adding your DLL to the proper category,
[Selsct s et pos wark 1 changs. your components will be incorporated into ArcGIS. To add a new edit task
4 that you have created, for example, add your component to the ESRI Edit

The Component Category Manager Tasks category.

This task may be automated to some extent, depending on which development
environment you use. In VBG, for example, ESRI provides a Compile and Regis-
try add-in that compiles your project and creates a Windows registry merge file
that will place the component in the appropriate component category. For more
information about this add-in and others, see the add-ins help in the ArcGIS
Developer Help.

Visual Dala Manage.. 7. Test/Debug/Recompile.

Addn Manager.
ESRI Interface Implementer

ESRI Compil and Regiser expected or produces an error, debug and recompile the code and test again. The
ESRI Command “Wizard

ESRI Automatic References

Test your component inside the desktop application. If it does not work as

ease with which you can debug your code depends on the development environ-

ESRI Al Cortrols with Tab e ment and the complexity of your code. Debugging techniques for each develop-
ESRI Line Number Generatar . . PO . ¢

e ment language supported by ArcGIS are discussed in detail in Appendix A, ‘De-
ESFI Line Mumber Remover Velopcr environments’.

ESRI EnorHandler Remover
ESRIYEE Code Converter

SUMMARY

Visual Basic developers can make use of several The ArcGIS Desktop applications are built using component object technology.

add-ins to aid debugging. X ¢
This allows you, as a developer, to create your own components that can easily

plug into the existing architecture as new controls, tools, menus, and applications,
for example.

This section provided an overview of component development options and
outlined the basic steps in creating a component to plug into ArcGIS. The devel-
oper scenarios in Chapter 5 will show in more detail the steps to create specific
components using a development environment.

72 * ArcGIS Desktop Developer Guide

Licensing and
deployment

Some of your customizations may be for personal use on your PC, while others
may have been developed for a wider audience.This chapter describes ArcGIS
license considerations when developing your applications and illustrates some
simple ways to package and deploy your customizations, ranging from VBA

macros to more complex applications.

ARCGIS DESKTOP LICENSE CHECKING

For more information on the ArcGlIS license
manager, view the license manager reference
guide under the ArcGlIS > license manager
Programs menu.

When executing code, no query interface call will
fail because of a license issue, for this would
break the rules of COM. If license checking were
implemented at the query interface level,
depending on licenses being checked in and out,
the query interface call may succeed the first
time but fail the next or vice versa.

74 + ArcGIS Desktop Developer Guide

Developing ArcGIS Desktop applications should not be undertaken in isolation
from the deployment of the final application. Currently, there are three possible
deployments or software products with ArcGIS Desktop: ArcView, ArcEditor,
and Arclnfo. There may be more deployment options in the future. As a devel-
oper you may need to know what product a user has installed so your code can be
robust enough to work on all deployments or at least have the appropriate error
checking. This maxmizes the potential number of users for your components.

This section outlines how to write code in a way that requires only one code base
to support all possible deployment options, both at present and in the future.

DEPLOYMENT OBJECT MODELS

The object models for ArcView, ArcEditor, and Arclnfo are identical. All classes,
interfaces, methods, and properties are present in all products. This means that
the same DLLs containing the same components with the same GUIDs are
installed for all deployments; in other words, code written on one deployment
will successfully compile on another. What will differ for the various deploy-
ments is the behavior of certain method calls.

All the ESRI-developed components handle the possible deployment options in a
unified manner. The functionality available with these different deployments is
controlled via a license. This means that if a user installs a2 new license, the soft-
wate does not require a reinstallation to access the functionality permitted under
the new license.

ArcObjects performs several types of license checking:

* Application: Each ArcGIS Desktop application requires a valid application
license to run.

* [Extension: Extension products also have licenses associated with them.
* Component: The components within ArcObjects perform license checking,

e Functional: When methods are executed, the behavior of the method varies
depending on the available licenses.

It is likely that you will be interacting with more than one of these
license-checking mechanisms. For instance, you may check for the appropriate
component-level license; then, when working with individual methods, you will
have to be aware of the license restrictions associated with these methods.

ESRI engineers use the same coding techniques outlined in this chapter to write
code that works with the various deployment options of ArcGIS. Using these
techniques, you will be able to write your code to handle the various deployment
models.

ARCGIS DESKTOP LICENSE CHECKING

IAolnitialize

Application license checking

The simplest form of license checking for you to deal with is when your compo-
nents are running within an ArcGIS Desktop application, since there is little for
you to do. The license-checking procedures are contained within the ArcGIS
applications, and the fact that your components are initialized means that the user
has a valid ArcGIS license. However, determining what license is currently
checked out by the user can be useful for working with licensing at the functional
level.

|Aolnitialize : IUnknown

-

-

*

CheckInExtension (in extensionCode:
ersiLicenceExtensionCode):
esriLicenceStatus

CheckOutExtension (in extensionCode:
ersiLicenceExtensionCode):
esriLicenceStatus

Initialize (in ProductCode:
esriLicenceProductCode):
esriLicenceStatus

InitializeProduct: esriLicenceProductCode

IsExtensionCheckedOut (in extensionCode:
esriLicenceExtensionCode): Boolean

IsExtensionCodeAvailable (in ProductCode:

esriLicenceProductCode, in extensionCode:

Check in an extension.

Check out an extension.

This must be called before any other ArcObjects components
are created to initialize product Code. If called a second time
during the lifetime of an executable with a new product code,
it will return esriLicenceAlreadylnitialized.

Retrieves the product code where the application has
been initialized.

Specifies if the extension is checked out.

Deterimines if the product code is available. If it is, it then
determines if the extension code is available.

esriLicenceExtensionCode):
esriLicenceStatus
-@— |sProductCodeAvailable (in ProductCode:
esriLicenceProductCode): esriLicenceStatus
-— Shutdown The Shutdown method. This should be the last call to
ArcObjects in an application.

Determines if the product code is available.

To determine the level of license currently in use, use the AOInitialize coclass and
the Initialized method on its LAOInitialize interface.

Private Function GetLicenseLevel() As String
Dim pLicense As IAoInitialize
Set pLicense = New AoInitialize

Select Case pLicense.InitializedProduct
Case esrilicenseProductCodeArcView
GetLicenseLevel = "ArcView"
Case esrilicenseProductCodeArcEditor
GetLicenselLevel = "ArcEditor"
Case esrilicenseProductCodeArcInfo
GetLicenseLevel = "ArcInfo"
End Select
End Function

Extension license checking

ESRI desktop extension products, such as 3D Analyst or Spatial Analyst, provide
additional functionality and components for ArcGIS Desktop users and develop-
ers. To use an extension, a valid extension license must be available. If you are
using the desktop interface, a license is checked out when you select an extension
in the Extension Manager dialog box. When you are developing, however, you
must ensure the appropriate extension is checked out before making calls to

Chapter 4 ¢ Licensing and deployment ¢ 75

ARCGIS DESKTOP LICENSE CHECKING

objects within that extension, since you cannot guarantee the user has checked
out an extension before running your code. For example, if the following lines of
If you are developing an ArcGIS Engine compo- code are executed in a VBA macro, an error will be raised when the SzartFxporting
nent, you may use Aolnitialize to Ch,eCk, out a; method is executed, since an ArcPress license has not been checked out. The
extension nstea method calls do not attempt to check one out; they only ensure that one already
has been checked out. This gives you license usage control.
Dim pExporter As IExporter
Set pExporter = New ArcPressExporter]PEG

Dim hDc As OLE_HANDLE

hDc = pExporter.StartExporting
For the above code to execute without the license error, the ArcPress extension
must be initialized before the call to the StartExporting method. The function
below shows how to check out an ArcPress license:

PubTic Function GetArcPressLicense() As Boolean
Dim pUid As UID
Set pUid = New UID
pUid.Value = "esriOutputExtensions.ArcPressExtension"

Dim pExtAdmin As IExtensionManagerAdmin
Set pExtAdmin = New ExtensionManager
"Necessary in standalone application
pExtAdmin.AddExtension pUid, 0

Dim pExtManager As IExtensionManager

Set pExtManager = pExtAdmin

Dim pExtConfig As IExtensionConfig

Set pExtConfig = pExtManager.FindExtension(pUID)

If (Not pExtConfig.State = esriESUnavailable) Then
On Error Resume Next

A license will fail to check out if you have 'Check the Ticense out. Enabling the extension checks out a Ticense.
exceeded the number of licenses available Lbr a pExtConfig.State = esriESEnabled
product.

'Return TRUE if the Ticense was checked out successfully
GetArcPressLicense = (pExtConfig.State = esriESEnabled)
End If

If (Not GetArcPressLicense) Then _
MsgBox "No ArcPress Ticenses available"

End Function
Assuming that the process of exporting only requires access to the license for a
Note that license checking is per machine rather
than per process. Checking out the same license
in different processes on the same machine will
only check out one license. restriction is that the other user cannot export at the same time, assuming you

short time, the license should be released upon completion of the export. Releas-
ing the license means that another user can export using the same license; the only

only have one ArcPress license.

Pub1ic Sub ReleaseArcPressLicense()
Dim pUid As UID
Set pUid = New UID
pUid.Value = "esriOutputExtensions.ArcPressExtension"

76 * ArcGIS Desktop Developer Guide

ARCGIS DESKTOP LICENSE CHECKING

Dim pExtManager As IExtensionManager
Set pExtManager = New ExtensionManager

Dim pExtConfig As IExtensionConfig
Set pExtConfig = pExtManager.FindExtension(pUID)

If (Not pExtConfig.State = esriESUnavailable) Then
pExtConfig.State = esriESDisabled
End If
End Sub

If you are developing an extension to which you want to add license checking in
a way similar to ESRI, you must follow certain rules when dealing with the
configuration state of your extension. These rules are outlined in the ‘Framework
Library’ reference within the ArcGIS Developer Help.

Component license checking

When embedding ArcObjects components within another application, careful
thought must be given to license issues.

Before calling any other ArcObjects code, you must first initialize the application

For more information on embedding ArcObjects with a suitable license in order for it to run successfully. Failure to do so will

components Wlthll’f otl?er applications or to result in application etrofs.
create standalone applications, see the ‘ArcGIS

Engine Developer Guide'. Initialization is performed with the Initialize method on the LAolnitialize interface
and establishes the product level—for example, ArcView, ArcEditor, or
ArcInfo—for the duration of the application. The product license determines the
functionality the application will be able to access. Once the product license has
been initialized, it cannot be changed for the duration of the application’s life, as
it is not possible to reinitialize the application.

The following Visual Basic 6 code shows an example of intializing an application

The Aolnitialize help topic in the ArcGIS Devel- during the form load procedure.
oper help contains more information and

examples. Option Explicit

Private m_pAoInitialize As TAoInitialize

Private Sub Form_Load()
'This sample is designed to perform Ticense initialization on a system

'that may have access to a floating license. An ArcEditor Tlicense will be
used.

Dim TicenseStatus As esrilicenseStatus
TicenseStatus = CheckOutLicenses(esrilLicenseProductCodeArcEditor)

'Take a Took at the TicenseStatus to see if it failed

'Not Ticensed

If (TicenseStatus = esrilLicenseNotLicensed) Then
MsgBox "You are not Tlicensed to run this product"”
Unload Forml

'The Ticenses needed are currently in use

ElseIf (TicenseStatus = esrilLicenseUnavailable) Then
MsgBox "There are insufficient 1licenses to run"
Unload Forml

Chapter 4 ¢ Licensing and deployment « 77

ARCGIS DESKTOP LICENSE CHECKING

78 * ArcGIS Desktop Developer Guide

'The Ticenses unexpectedly failed.

ElseIf (licenseStatus = esrilLicenseFailure) Then
MsgBox "Unexpected 1icense failure please contact your administrator"
Unload Forml

'Already initialized (Initialization can only occur once)

ElseIf (licenseStatus = esrilLicenseAlreadyInitialized) Then

MsgBox "Your Ticense has already been initialized please check your
implementation

Unload Forml
'Everything was checked out successfully.
ElseIf (TicenseStatus = esrilLicenseCheckedOut) Then
MsgBox "Licenses checked out successfully"
End If
End Sub

Private Function CheckOutL1icenses(productCode As esrilicenseProductCode) As
esrilLicenseStatus

Dim TicenseStatus As esrilicenseStatus
Set m_pAoInitialize = New AoInitialize
CheckOutLicenses = esrilLicenseUnavailable

'Check the productCode
TicenseStatus = m_pAoInitialize.IsProductCodeAvailable(productCode)
If (licenseStatus = esrilicenseAvailable) Then
'Initialize the Ticense
TicenseStatus = m_pAoInitialize.Initialize(productCode)
End If

CheckOutLicenses = TicenseStatus
End Function

Before an application is shut down, the AOlnitialize object must be shut down
via the Shutdown method. This ensutes that any ESRI libraries that have been used
are unloaded in the correct ordet. Failure to do this may result in random crashes
on exit due to the operating system unloading the libraries in the incorrect order.

The following Visual Basic 6 code shows an example of the Shutdown method
being called in the form unload procedure associated with the example above.
Private Sub Form_UnTload(Cancel As Integer)

'Shutdown

m_pAoInitialize.Shutdown
End Sub

Functional license checking

Interaction with the three previous forms of license checking in ArcObjects is
relatively straightforward. Depending on the functionality accessed, the func-
tional license checking is more involved.

ARCGIS DESKTOP LICENSE CHECKING

Apersonal geodatabase is stored in the The differences between ArcObjects software-based functionality available
Microsoft Access .mdb format.An enterprise through ArcGIS deployments are centered on the geodatabase. ArcEditor and
geodatabase is stored within an RDBMS. . X X
Arclnfo products have the same capabilities, and ArcView has reduced function-

ality.

ArcView can view all supported ArcGIS data sources, but only shapefiles and
personal geodatabases can be edited. Geodatabase functionality is further refined
to provide a user read access to all geodatabases. What can be created and edited
within a personal geodatabase is further refined to prohibit the following:

¢ Geometric networks

* Feature classes using nonsimple classes (for example, network feature classes
and dimension classes), except annotation

* Feature classes with subtypes

* Feature classes participating in a relationship class (for example, feature-linked
annotation)

* Tables with subtypes
* Tables participating in a relationship class

Knowing this list of supported functionality will help you make decisions on
whether licensing issues ate of concern for the components you are developing.

As a developet, you have the choice to write proactive or reactive code when
dealing with these functional license checks. Proactive code determines the
license that is currently in use, which dictates the flow through the program.
Reactive code does not perform up-front checking, but it does perform checks
after the methods with license behavior are called. In reality, you will most often
employ a mixture of both techniques.

An example of proactive code might involve an application that will display and
edit data from a variety of data sources. You might choose to limit the data that a
user can add to the application based on the license in use. This can be achieved
in conjunction with the GxDialpg coclass and a selection of GxObject filters, as
illustrated below:

Private Function SelectLicensedEditClasses() As IEnumGxObject
Dim pGxDialog As IGxDialog
Set pGxDialog = New GxDialog

Dim pFilters As IGxObjectFilterCollection

Set pFilters = pGxDialog

pFilters.RemoveAl1FiTlters

'Add filters common to all products

pFilters.AddFiTter New GxFilterShapefiles, False
pFilters.AddFilter New GxFilterPGDBFeatureClasses, False
pFilters.AddFilter New GxFilterPGDBFeatureDatasets, False
pFilters.AddFiTter New GxFilterPGDBTables, False

Dim pLicInfo As TAoInitialize
Set pLicInfo = New AoInitialize

Chapter 4 ¢ Licensing and deployment ¢ 79

ARCGIS DESKTOP LICENSE CHECKING

80 * ArcGIS Desktop Developer Guide

'Add filters based on product level - ArcEditor, ArcInfo
If ((pLicInfo.InitializedProduct = esrilicenseProductCodeArcEditor) Or _
(pLicInfo.InitializedProduct = esrilLicenseProductCodeArcInfo)) Then
pFiTters.AddFiTter New GxFilterCoverageAnnotationClasses, False
pFiTters.AddFilter New GxFilterCoverageFeatureClasses, False
pFiTters.AddFiTlter New GxFilterCoverages, False
pFilters.AddFilter New GxFilterDimensionFeatureClasses, False
pFilters.AddFilter New GxFilterGeometricNetworks, False
pFilters.AddFilter New GxFiTterInfoTables, False
pFilters.AddFilter New GxFilterRelationshipClasses, False
pFilters.AddFilter New GxFilterSDEFeatureClasses, False
pFilters.AddFilter New GxFilterSDEFeatureDatasets, False
pFilters.AddFiTlter New GxFilterSDETables, False
End If

With pGxDialog
.AllowMultiSelect = True
.Title = "Select Editable data"
.DoModal0pen 0, SelectLicensedEditClasses
End With
End Function
Functional changes take two forms. A method either returns an appropriate error
HRESULT to signal that there is not an appropriate license available to success-
fully execute the method, or it returns a successful HRESULT, but the behavior
of the method changes to reflect the available licenses.

As an example of the first kind of functional license check, the Delete method on
the [Dataset interface may return the HRESULT
FDO_E_NO_OPERATION_LICENSE to say that you did not have the correct
license to complete the operation. This type of error can be easily found reac-
tively, then reported to the user using an informative message box.

Private Function DeleteDataset(pDataset As IDataset) As Boolean
On Error GoTo ErrorHandler

pDataset.Delete
DeleteDataset = True

Exit Function
ErrorHandler:
If (Err.Number = FDO_E_NO_OPERATION_LICENSE) Then
MsgBox "You do not have a Ticense that enables you to delete _
dataset " & pDataset.Name, vbCritical

Else
MsgBox "Error Deleting Dataset " & pDataset.Name & vbCrLf & _
"Error Description : " & Err.Description, vbCritical
End If

End Function

ARCGIS DESKTOP LICENSE CHECKING

The alternative is to determine the license in use and the type of dataset that the
user wants to delete, then decide whether or not to allow the DeleteDataset
function to be called.

The more difficult scenario is when the behavior of a method changes depending
on the available licenses. For instance, assume that the user has defined a personal
geodatabase using ArcEditor and has a number of classes defined. Two of these
feature classes have a relationship class. This means that as long as an ArcEditor
or Arclnfo license is used to edit the database, all classes are editable. If an
ArcView user starts editing on the database, the start edit operation will succeed
for all the classes except the two with the relationship. The method’s behavior has
changed, but there was no failure HRESULT returned from the method call since
it successfully started editing all the other classes. In this case, you must perform
another step after calling S7ar/Edit to determine whether or not the start edit
operation was successful on all classes. If you find that it was not successful, you
can retrieve the reason from the database and present that information to the user
or perhaps configure your tools accordingly.

Private Sub StartEditWithCheck(pWorkspace As IWorkspace)
Dim pWorkspaceEdit As IWorkspaceEdit
Set pWorkspaceEdit = pWorkspace
pWorkspaceEdit.StartEditing True
Dim pDatasets As IEnumDataset

Set pDatasets = pWorkspace.Datasets(esriDTFeatureClass)
pDatasets.Reset

Dim pDataset As IDataset
Dim pDatasetEdit As IDatasetEdit
Set pDatasetEdit = pDatasets.Next

Dim failedClasses As String
Do Until (pDatasetEdit Is Nothing)
If (Not pDatasetEdit.isBeingEdited) Then
Set pDataset = pDatasetEdit
failedClasses = failedClasses & pDataset.Name & vbCrLf
End If

Set pDatasetEdit = pDatasets.Next
Loop
If (failedClasses <> "") Then _
MsgBox "Start edit failed for the following classes : " & _
failedClasses, vbCritical
End Sub

The above function can be changed slightly to perform the checking proactively.
In the following function, the class is checked to see if it can be edited using its
IDatasetEditlnfo interface. This is the preferred method of checking since there are
a number of reasons, in addition to the license issues discussed here, that a user
may not be able to start editing a feature class. For more information, see the
Geodatabase library overview in the ArcGIS Developer Help.

Chapter 4 ¢ Licensing and deployment « 81

ARCGIS DESKTOP LICENSE CHECKING

82 * ArcGIS Desktop Developer Guide

Private Function AT10rNothingStartEdit(pWorkspace As IWorkspace) As Boolean
Dim pDatasets As IEnumDataset
Set pDatasets = pWorkspace.Datasets(esriDTFeatureClass)
pDatasets.Reset
Dim pDatasetEditInfo As IDatasetEditInfo
Set pDatasetEditInfo = pDatasets.Next

Do UntiT (pDatasetEditInfo Is Nothing)
If (Not pDatasetEditInfo.CanEdit) Then Exit Function
Set pDatasetEditInfo = pDatasets.Next

Loop

Dim pWorkspaceEdit As IWorkspaceEdit
Set pWorkspaceEdit = pWorkspace

pWorkspaceEdit.StartEditing True
A110rNothingStartEdit = True
End Function

When designing your functionality, being aware of these license issues will help
you create a solid application that will work on any deployment of the ArcGIS
functionality.

In general, in any application you should always:

® Check for product licensing in custom extensions that depend on other exten-

sions.

® Decide if you want to check out a license for the duration of the application

or just for the function use.

Using the following tables will help you decide when it is appropriate to check
for license-related HRESULTSs. You should not treat this as a fixed list of method
calls since changes in ArcGIS deployments may result in changes to the functional
license-checking routines.

ARCGIS DESKTOP LICENSE CHECKING

The following table lists the license-related HRESULTS:

Name Hexidecimal value Decimal value
E_GEOSTAT_LICENSENOTAVAILABLE 0x80040301 -2147220735
E_LICENSENOTAVAILABLE 0x80040302 -2147220734
E_RASTER_FILE_LZW_FAILED 0x80041006 -2147217402
E_RASTERENCODER_NO_LICENSE 0x80041001 -2147217407
E_SPATIAL_ANALYST_LICENSENOTAVAILABLE 0x80041068 -2147217304
E_SPATIAL_ANALYST_SHAREDLICENSENOTAVAILABLE 0x8004106A -2147217302
E_TIN_LICENSE_NOT_AVAILABLE 0x80042B65 -2147210395
FDO_E_LICENSE_FAILURE 0x80040212 -2147220974
FDO_E_NO_EDIT_LICENSE 0x8004021E -2147220962
FDO_E_NO_OPERATION_LICENSE 0x80040220 -2147220960
FDO_E_NO_SCHEMA_LICENSE 0x8004021F -2147220961

FDO_E_SE_LICENSE_EXPIRED 0x80041542 -2147216062
FDO_E_SE_LICENSE_FAILURE 0x8004152B -2147216085
FDO_E_SE_OUT_OF_LICENSES 0x8004152C -2147216084
GEOCODING_E_NO_LICENSE 0x80040101 -2147221247
LOCATION_E_NO_LICENSE 0x80040210 -2147220976
ROUTEEVENT_E_NOT_LICENSED 0x80040224 -2147220956

Chapter 4 ¢ Licensing and deployment * 83

ARCGIS DESKTOP LICENSE CHECKING

84 « ArcGIS Desktop Developer Guide

The following tables list the method calls that can return license-related

HRESULTs:

Interface
|ArcinfoWorkspace

Method
CreateCoverage

HRESULT
FDO_E_NO_SCHEMA_LICENSE

CreatelnfoTable

FDO_E_NO_SCHEMA_LICENSE

ICheckin

CheckInFromDeltaFile

FDO_E_NO_OPERATION_LICENSE

CheckinFromGDB

FDO_E_NO_OPERATION_LICENSE

ICheckinDataSyncronizer

Synchronize

FDO_E_NO_OPERATION_LICENSE

ICheckOut CheckOutData FDO_E_NO_OPERATION_LICENSE
CheckOutSchema FDO_E_NO_OPERATION_LICENSE
Iclass AddField FDO_E_NO_SCHEMA_LICENSE
IDatasetContainer AddDataset FDO_E_NO_OPERATION_LICENSE
IDeltaDataChangeslnit Init FDO_E_NO_OPERATION_LICENSE
IDeltaDataChangesinit2 Init2 FDO_E_NO_OPERATION_LICENSE
leditor StartEditing FDO_E_NO_EDIT_LICENSE
lexport StartExporting E_LICENSENOTAVAILABLE
|ExportDataChanges ExportDataChanges FDO_E_NO_OPERATION_LICENSE
IFeatureDataset CreateFeatureClass FDO_E_NO_SCHEMA_LICENSE
CreateGeometricNetwork FDO_E_NO_SCHEMA_LICENSE
CreateRelationshipClass FDO_E_NO_SCHEMA_LICENSE
Delete FDO_E_NO_OPERATION_LICENSE
|IFeatureWorkspace CreateAnnotationClass FDO_E_NO_SCHEMA_LICENSE
CreateFeatureClass FDO_E_NO_SCHEMA_LICENSE
CreateFeatureDataset FDO_E_NO_SCHEMA_LICENSE
CreateRelationshipClass FDO_E_NO_SCHEMA_LICENSE
CreateTable FDO_E_NO_SCHEMA_LICENSE
|GeoDBDataTransfer GenerateNameMapping FDO_E_NO_SCHEMA_LICENSE
IGPFunction Execute FDO_E_NO_OPERATION_LICENSE
Validate FDO_E_NO_OPERATION_LICENSE
limportDataChanges ImportDataChanges FDO_E_NO_OPERATION_LICENSE
ILocatorAttach2 AttachLocator GEOCODING_E_NO_LICENSE
ILocatorExtension AddLocator GEOCODING_E_NO_LICENSE
ILocatorLibrary ReBuildindexes GEOCODING_E_NO_LICENSE
ILocatorWorkspace AddLocatorStyle GEOCODING_E_NO_LICENSE
DeleteWorkspace GEOCODING_E_NO_LICENSE
UpdatelLocator GEOCODING_E_NO_LICENSE
INetworkCollection2 CreateGeometricNetworkEx FDO_E_NO_SCHEMA_LICENSE
I0bjectClass DeleteField FDO_E_NO_SCHEMA_LICENSE
IPluginLicense CheckExtensionLicense FDO_E_NO_OPERATION_LICENSE
Iprinter StartPrinting E_LICENSENOTAVAILABLE
IRasterBandCollection SaveAs E_RASTER_FILE_LZW_FAILED
IRasterWorkspaceEx CreateRasterCatalog FDO_E_NO_SCHEMA_LICENSE
IReplicaDataChangeslnit Init FDO_E_NO_OPERATION_LICENSE
IReplicaValidation ValidateReplicaPair FDO_E_NO_OPERATION_LICENSE
IRouteLocatorOperations LocateLineFeatures ROUTEEVENT_E_NOT_LICENSED

LocatePointEvents

ROUTEEVENT_E_NOT_LICENSED

LocatePointFeatures

ROUTEEVENT_E_NOT_LICENSED

LocatePolygonFeatures

ROUTEEVENT_E_NOT_LICENSED

IRouteMeasureCalibrator

CalibrateRoutesByDistance

ROUTEEVENT_E_NOT_LICENSED

CalibrateRoutesByMs

ROUTEEVENT_E_NOT_LICENSED

IRouteMeasureCreator CreateUsingPointS ROUTEEVENT_E_NOT_LICENSED
IRouteMeasureCreator2 CreateUsing2Fields2 ROUTEEVENT_E_NOT_LICENSED
CreateUsingCoordinatePriority2 ROUTEEVENT_E_NOT_LICENSED
IRouteMeasureEvent- Concatenate2 ROUTEEVENT_E_NOT_LICENSED
Geoprocessor2 Dissolve2 ROUTEEVENT_E_NOT_LICENSED
Intersect2 ROUTEEVENT_E_NOT_LICENSED
Union2 ROUTEEVENT_E_NOT_LICENSED
ISceneGraph AddSimpleActor E_TIN_LICENSE_NOT_AVAILABLE

ARCGIS DESKTOP LICENSE CHECKING

Interface Method HRESULT

Isubtypes AddSubtype FDO_E_NO_SCHEMA_LICENSE
DeleteSubtype FDO_E_NO_SCHEMA_LICENSE
put_DefaultSubtypeCode FDO_E_NO_SCHEMA_LICENSE
put_DefaultValue FDO_E_NO_SCHEMA_LICENSE
putref_Domain FDO_E_NO_SCHEMA_LICENSE

ISurface AsPolygons E_TIN_LICENSE_NOT_AVAILABLE
Contour E_TIN_LICENSE_NOT_AVAILABLE
ContourList E_TIN_LICENSE_NOT_AVAILABLE
ConvertToPolygons E_TIN_LICENSE_NOT_AVAILABLE
GetContour E_TIN_LICENSE_NOT_AVAILABLE
GetLineOfSight E_TIN_LICENSE_NOT_AVAILABLE
GetPartialVolumeAndArea E_TIN_LICENSE_NOT_AVAILABLE
GetProjectedArea E_TIN_LICENSE_NOT_AVAILABLE
GetSteepestPath E_TIN_LICENSE_NOT_AVAILABLE
GetSurfaceArea E_TIN_LICENSE_NOT_AVAILABLE
GetVolume E_TIN_LICENSE_NOT_AVAILABLE
GetVolumeAndArea E_TIN_LICENSE_NOT_AVAILABLE
QueryPixelBlock E_TIN_LICENSE_NOT_AVAILABLE

ITinAdvanced ConvertToVoronoiRegions E_TIN_LICENSE_NOT_AVAILABLE
MakeEdgeEnumerator E_TIN_LICENSE_NOT_AVAILABLE
MakeNodeEnumerator E_TIN_LICENSE_NOT_AVAILABLE
MakeTriangleEnumerator E_TIN_LICENSE_NOT_AVAILABLE

ITinEdit InitNew E_TIN_LICENSE_NOT_AVAILABLE
StartEditing E_TIN_LICENSE_NOT_AVAILABLE

ITopologyContainer2 CreateTopologyEx FDO_E_NO_SCHEMA_LICENSE

IVersion CreateVersion FDO_E_NO_OPERATION_LICENSE
Delete FDO_E_NO_OPERATION_LICENSE
put_Access FDO_E_NO_OPERATION_LICENSE

put_Description

FDO_E_NO_OPERATION_LICENSE

put_VersionName

FDO_E_NO_OPERATION_LICENSE

IVersionDataChangeslnit Init FDO_E_NO_OPERATION_LICENSE

IWorkspaceEdit StartEditing FDO_E_NO_SCHEMA_LICENSE
StartEditing FDO_E_NO_EDIT_LICENSE

IWorkspaceLicense putref_Domain FDO_E_NO_SCHEMA_LICENSE

Chapter 4 ¢ Licensing and deployment * 85

PACKING AND DEPLOYING CUSTOMIZATIONS

You can change the data storage options under
the File > Document Properties menu in
ArcMap, ArcGlobe, and ArcScene.

86 * ArcGIS Desktop Developer Guide

This section describes how you can package your developments and deploy them
to other users.

Exactly what must be packaged depends on the type of development—VBA or
DLLs; but you should also consider including the following:

* Object Diagrams—Since you have developed your code using the same open
and extensible architecture that ESRI uses, other developers are free to work
with your components in the same way you work with ArcObjects. Object
diagrams and help within the DILs are good ways of supplying developers
with information.

* Other files to package can include data files, help files, documentation, and so
on.

It is important not to package any of the files within the ArcGIS installation. If
you did this and the user uninstalled your software, there would be a danger that
some of the files ArcGIS requires to function correctly might be removed.

VBA DEVELOPMENTS

For VBA developments, there are several ways to distribute the code and Ul
customizations. Recall from Chapter 3, the ‘Storing customizations’ section, that
all the code and UI customizations may be packaged in either the document
file—for example, a .mxd file for ArcMap—or a template file.

The first method to deploy this information is to simply copy the document
and/ot template to the approptiate directory on the target machine, as described
in Chapter 3.

This method has some disadvantages, however. If your document contains an
enabled extension and the target machine does not have that extension installed,
the document will not open on the target machine, and the user cannot extract
any code from that document. Another disadvantage is that if you are distribut-
ing a Normal template, it will overwrite any customizations that already exist on
the target machine.

Also, keep in mind that when you save a document, you have a choice of storing
absolute or relative pathnames. If you intend to distribute a .mxd file and data to
other users, try to use relative pathnames such that when they open the document
it will look for the data in a pathname relative to the .mxd file rather than a hard-
coded path that may not exist on the target machine.

The second method is to export the VBA code modules to text files, copy those
files to the target machine, then import the files into an application’s VBA ses-
sion.

The disadvantages with this second method include the manual process of ex-
porting and importing potentially large numbers of files and the fact that Ul
customizations cannot be transferred this way.

PACKING AND DEPLOYING CUSTOMIZATIONS

The .NET framework must be installed for the
ESRI interop assemblies to be installed.

You do not have to register a .NET DLL with
the operating system on the machine on which
you build it since that occurs during the build
process.

DLL DEVELOPMENTS

How you package and deploy your DLL development depends on the API used
to create the DLL. For this section NET DLLs created with the NET frame-
work and COM DLLs created by languages such as Visual Basic 6 and Visual C++
will be considered.

.NET Framework DLLs

This includes DLLs created with either VB .NET or C# .NET. To utilize these
DLLs on a target machine, the NET framework must be installed. This is avail-
able as a free download from Microsoft. In addition, the ESRI interop assemblies
must be present, but these are installed with ArcGIS.

The two popular methods to package and deploy .NET customizations are de-
scribed below.

Just the binaries

When you compile a NET project, the resulting DLL will be contained within a
folder called bin in the project directory. This directory will also contain the Type
library file for the project with the extension .tlb.

It is possible to simply give the user a copy of these compiled binaries with

instructions on how to register them on the system. This is often the easiest

method if you’re sharing customizations with colleagues. Many of the developer

samples within ArcGIS Developer Help are provided this way.

Before you can use the DLL in a desktop application, you must register the DLL

with the operating system, then register the classes it contains with the appropri-

ate component category.

To register the DLL with the operating system, use the following command line

syntax:

regasm.exe MyCustom.DLL

To unregister the DLL, the command is run with the /u option:

regasm.exe MyCustom.DLL /u

If you have used the ESRI Component Category Registrar add-in for Visual
Studio .NET, the component category information is embedded within the DLL,
and the classes will be automatically registered with the component category
when you register the DLL.

If you did not use the add-in during development, the user will have to manually
register the classes using the Component Category Manager located at <ArcGIS
Install>\bin\categories.exe.

To use the Component Category Manager with NET DLLs, follow these steps:

1

2.
3.

Open the Component Category Manager.
Select the component category to which you want to add the class.

Click Add Object, then browse to and select the compiled .tlb file, not the
DLL.

. Select the classes to be registered in the selected component category and click

OK.

Chapter 4 ¢ Licensing and deployment « 87

PACKING AND DEPLOYING CUSTOMIZATIONS

Ll | LI
Confgpapson [uacte) -]
Desergton
[Contan B DL o L0, Bk by o pacpact. |
1|
[0] _cmes | v |
Step 3

E Salution MpCustom' [2 projects)
E| MyCustom
(i3] References
: @ Assemblylnfo.wb
§ e [¥] MyCommand.vb
B .@ Setupl
= 43 Detected Dependencies
@% dotnetfxredist_x8E.msm
i - ESRLAGIS System ol
i @ ESRLAGIS. Systeml) d

Find i Editor

Dependencies

= [Properties
Solutio... —

Step 4

88 ¢ ArcGIS Desktop Developer Guide

Repeat these steps for additional classes within the DLL that need to be regis-
tered in other component categories.

Using an installation program

A setup package is useful when you want to deploy a large application consisting
of several DLLs, associated documents, and data. These packages usually create
simple executable files that can be easily deployed and installed by users. These
packages also make the uninstallation of your customization much easier.

There are many commercial installation packages available that vary in functional-
ity. Visual Studio .NET also includes a straightforward Setup and deployment
option that will be shown in the following example.

To create a setup program for your NET customization use the following steps:
1. Open your customization solution in Visual Studio NET.

2. From the File menu, select New Project and click the Setup and Deployment
projects folder in the New Project dialog box. Click the Setup Project tem-
plate, accept the default name and location, and click the Add to Solution
button.

This creates a new project in your solution that builds your setup files.

3. Right-click the application folder, point to Add, then click Project Output. In
the Add Project Output Group dialog box, click your customization project in
the Project dropdown list. Click Primary output in the pane below. Leave the
configuration as Active and click OK.

This will add the primary output, the DLL, to the setup project and any
dependents, in this case the referenced libraries.

4. Exclude the ESRI-referenced libraries from the Detected Dependencies folder
in the Solution Explorer by right-clicking each library name and clicking
Exclude.

This ensures that the ESRI libraries do not get deployed with the setup. You
may also like to add any files, such as release notes, at this stage by right-
clicking the setup project and clicking Add.

5. Finally, create the setup files by right-clicking the setup project in the Solution
Explorer and clicking Build. This creates the setup files in the setup directory
created in Step 2 under the active configuration name, debug or release.

The three files in the Setup directory—setup.exe and the .msi and .ini files—
can then be given to users for a seamless install.

For more information on this process and additional options, search for and
review ‘Setup, deployment methods’ within Microsoft Developer Network
(MSDN) Help, provided with Visual Studio .NET.

PACKING AND DEPLOYING CUSTOMIZATIONS

ComDLLs

These include DLLs created with Visual Basic 6, Visual C++, Delphi, and so
forth. The only requirement for installation on the target machine is that it must
have ArcGIS Desktop installed.

There are two popular methods for packaging and deploying COM DILLs.

Just the DLL

It is possible to simply give the user a copy of the DLL with instructions on how
to register the DLL on the system. Normally, this involves the use of the Win-
dows Utility RegSvr32.EXE. To register a DLL, the user must type a command
line similar to that below.

RegSvr32 MyServer.DLL
To unregister a server, the command is run with the /U switch.
RegSvr32 /U MyServer.DLL

A dialog box appears when the operation completes. When running regsvr32 on
several files, it is advisable to run it in silent mode with the /S switch—this
disables the dialog box.

Depending on how the DLL was developed, registering the DLL may not be the
only task. The coclasses contained with the DLL may have to be added to the
appropriate component categories. If ATL was used, as shown in the ATL sec-
tion, this can be made automatic on server registration. Other alternatives include
the facility in the applications for commands; the Category Manager utility appli-
cation; and the ComponentCategoryManager coclass, which is part of the framework
subsystem or the creation of a registry script.

Included in the Tools directory of the ArcGIS Developer Kit folder is a small
e T registry sctipt called reg_in_menu.reg. The registry script adds options to the
A Windows Explorer context menu when DLL, EXE, OLB, and OCX files are

UrRegister (Silent)
View Dependenties

B AN7KB Application Extension

selected. The five options provide support for registering and unregistering the
Register server

— files. The context menu is shown in the figure to the left.

Using registry scripts

After the server is registered on the system, registry scripts provide a good mecha-
nism for adding supplemental information about the server to the registry, includ-
ing the component category information. These registry scripts can either be
written by hand or generated from the Compile and Register Visual Basic add-in.
A sample script is shown below. The lines beginning “[HKEY”” must all be on one
line in the file.

REGEDIT4

; This Registry Script enters CoClasses Into their appropriate Component
Category ; Use this script during installation of the components

; Coclass: prjDisplay.ZoomIn ; CLSID: {FC7ECO5F-6B1B-4A59-B8A2-37CE33738728}
; Component Category: ESRI Mx Commands
[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{FC7ECO5F-6B1B-4A59-B8A2-
37CE33738728}\Implemented Categories\{B56A7C42-83D4-11D2-A2E9-080009B6F22B}]

Chapter 4 ¢ Licensing and deployment * 89

PACKING AND DEPLOYING CUSTOMIZATIONS

& - -
lj —r - —tetate
A e s R

q e

it - e e b s i TR
AT e e T e e e P
S e e 1 P

Step 4

e 10t 2 e e e £ pobm
Pt e
R e
SIS

u?--.:-v-nn“nwlu—o

e i e e
e e LS
ERE

E-

90 * ArcGIS Desktop Developer Guide

; Coclass: prjDisplay.ZoomOut ; CLSID: {2C120434-0248-43DB-ADSE-
BD4523A93DF8} ; Component Category: ESRI Mx Commands
[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{2C120434-0248-43DB-AD8E-
BD4523A93DF8}\Implemented Categories\{B56A7C42-83D4-11D2-A2E9-080009B6F22B}]

Using an installation program

Most setup packages work well with registry scripts. For example, the Visual
Basic Package and Deployment wizard provides a straightforward way of creat-
ing setup programs. To create a setup program for your server, follow these steps:

1. Click the Start menu and click the Package and Deployment Wizard. The
dialog box to the left is displayed. Click the Visual Basic project to be pack-
aged and choose the package option. This will build the setup program and
gather all files required by the setup program into a support directory for easy
regeneration of the package. The wizard then performs some checks to ensure
that the server created by the Visual Basic project is up-to-date with its source
files. If not, you are given the option to recompile the project.

2. Next, choose the package type; this will normally be a Standard Setup Pack-
age.

3. The next step allows you to specify the folder where the package is created.
This folder will contain the Setup executable and cabinet files and a support-
ing folder with all the files used to build the package.

4. Ensure that the files list shown doesn’t include any ArcGIS installed files and
that any other files required by the installation are added. The additional files
normally include a registry script to perform advanced registration, along with
help files, and so on.

5. The next panel depends on whether a registry file was added in the previous
step. If the file was added, the dialog box to the left is shown. If no file was
added, go to Step 6. The simplest option is to accept the default. This will
cause the registry script to be executed when the setup program has registered
the servers on the target machine but will not copy the registry script to the
machine.

6. The wizard then asks if one or multiple cabinet files will be created. This
depends on whether or not the setup program will span multiple floppy disks.

PACKING AND DEPLOYING CUSTOMIZATIONS

e —
i gl -l T
SIS

T

7. Next, follow a couple of panels asking for the Installation Screen title and
where on the Windows Start menu the setup program should group files.
Often when installing DILLs it is not appropriate to define an entry on the
Start menu. Sometimes, even with DLLs, it may be desirable to add access to
documents containing help information.

8. The next panel allows the user to define the location of the various files after
they have been installed. Various macros are defined that will point to differ-
ent locations, depending on the configuration of the target machine.

9. The next panel allows files to be marked as shared. Any files of the installa-
tion that will be used by other programs or installations must be marked as
shared. This ensures that the uninstall program does not remove them auto-
matically, which would break the other programs.

10. Finally, the Finish panel is displayed. Click Finish to assemble the package.
The three files in the package directory—setup, cabinet, and list files—can
then be given to third parties for a seamless install.

This is just one method of packaging COM developments. Whatever method you
use, the setup procedure must be as simple as possible and involve as few deci-
sions as possible to avoid user frustration.

Chapter 4 ¢ Licensing and deployment « 91

Developer
scenarios

Throughout this book, you have been introduced to several programming concepts
and patterns, as well as some APIs.This chapter contains examples of developer
scenarios that build applications using ArcGIS Desktop that apply these concepts

and use these APIs. Each scenario is available, in a completed state, with the

ArcGIS developer samples installed as part of the ArcGIS Desktop Developer Kits.

CREATE A TOOLBAR: CoMMAND, TooL, AND MENU

94 « ArcGIS Desktop Developer Guide

PROJECT DESCRIPTION

This scenario is for ArcGIS Desktop developers who need to create and deploy a
simple toolbar containing a command, tool, and menu that can plug into the
ArcGIS Desktop application framework.

The scenario develops these controls and adds them in stages to a toolbar. If your
customization only requires one of these controls, for example—a command, you
can look for it under the appropriate heading.

The emphasis in this scenatio is how you create the components that plug into the
framework rather than any particular ArcObjects solution.

CONCEPTS

There are some important concepts you should understand before following this
scenario. These are desctibed below.

Commands

All the user interface controls in the ArcGIS Desktop applications are commands.
The simplest type of command is a button that generally appears as an icon on a
toolbar, but it may also be placed on menus by the user. In both cases an action
occurs when the button is clicked, running the code within the OnClick proce-
dure.

Commands are simply components within a Dynamic Link Library that imple-
ment the ICommand interface referenced from the esriSystemUI library. Com-
mands ate registered in the component category for the application in which they
are designed to run. In ArcMap they run as ESRI Mx Commands, in ArcCatalog is
ESRI Gx Commands, in ArcScene is ESRI Sx Commands, and in ArcGlobe is
ESRI GMx Commands.

Tools

Tools are similar to button commands, but they are designed to interact with the
application’s display. The Zoom In command is a good example of a tool—you
click or drag a rectangle over a map before the display is redrawn to show the
map contents in more detail. Tools can react to a number of events, including
mouse up/down, key up/down, and a double click.

Tools are simply components within a Dynamic Link Library that implement the
ITool and 1Command interfaces referenced from the esriSystemUTI library. Tools,
like commands, are registered in the component category for the application in
which they are designed to run. In ArcMap they run as ESRI Mx Commands, in
ArcCatalog as ESRI Gx Commands, in ArcScene as ESRI Sx Commands, and in
ArcGlobe as ESRT GMx Commands.

Menus

Menus are an alternative to commands for performing an action. As an interface,
they contain calls to existing commands that may be defined in the same or other
DILLs. Menus can be stacked, employing a pull-right feature, by calling a com-
mand item that is on another menu. The File, Edit, and View menus on the
ArcMap Standard toolbar are examples of menus.

CREATE A TOOLBAR: CoMMAND, TooL, AND MENU

Menus are simply components within a Dynamic Link Library that implement the
IMenuDef interface referenced from the estiSystemUI library. Menus may also
implement the IRoofL_evelMenu interface to appear under the menu’s category in
the Customize dialog box. Menus are registered in the component category for the
application in which they are designed to run. In ArcMap this is ESRI Mx
CommandBars, ArcCatalog as ESRI Gx CommandBars, ArcScene as ESRI Sx
CommandBars, and ArcGlobe as ESRI GMx CommandBars.

Context menus are slightly different in that they implement the IShortCutMenu
interface to distinguish them from other menus. They are not discussed in this
scenario, however.

Toolbars

Toolbars are simply components within a Dynamic Link Library that implement
the IToo/BarDef interface referenced from the estiSystemUI library. They simply
act as containers for other controls. You can programmatically or manually add
commands, tools, and menus to toolbars. Toolbars are registered in the compo-
nent category for the application in which they are designed to run. In ArcMap
they run as ESRI Mx CommandBars, in ArcCatalog as ESRI Gx CommandBars,
in ArcScene as ESRI Sx CommandBars, and in ArcGlobe as ESRT GMx
CommandBars.

You can also enable toolbars to display when the desktop application is first run,
so the user does not have to manually display it. For more information, see the
COM category registration functions step in this section and the ArcGIS Devel-
oper Help IToo/BarDef interface.

REQUIREMENTS
The requirements for working through this scenario are that you have ArcGIS

Desktop installed and running,

The IDE used for this example is Visual Basic Studio .NET 2003, and all IDE-
specific steps will assume this is the IDE you are using.

It is also recommended that you read the NET language section in Appendix A,
‘Developer environments’.

ADDITIONAL RESOURCES

The completed code for this scenario can be found in ArcGIS Developer Help
under ArcGIS Desktop > Developer Guide > Developer Scenarios and on disk in
the \DeveloperKit\samples\Developer_Guide_Scenatios\ArcGIS Desktop
directory.

Chapter 5 * Developer scenarios * 95

CREATE A TOOLBAR: COMMAND

New Project | x|

IMPLEMENTATION

In this example you will create a command for ArcMap that toggles the visibility
of the selected layer. Later, this command will be added to a toolbat. The code
for this example is written in Visual Basic .NET.

Creating a new project

o 2a

Standard EXE ActiveX EXE

o~ ;;.\

P
VB Application VB Wizard
Wizard Manager

B o

Addin Data Project

>

Activel
Contral

B o

Activel Activex

Document DIl Document Exs

B o

o 0K
Cancel

Help

DHTML 115 Application

dil

1. Start Visual Studio NET.
2. Click File, then New, and click Project.

3. In the New Project dialog box, click Visual Basic Projects in the
left pane.

4. Click Class Library in the right pane.

5. Type “MyToolbarVBNET” for the Name and browse to the
location to which you want to save the project.

6. Click OK, and the new project will be created for you.

The DLL you compile will have the same name as the project, so
choose a name representative of the application you are creating;
Remember, though, that you can have many commands as classes
within the project.

Creating a new COM class for the command

The new project will contain a default Visual Basic class, Class1.vb. You must,

however, create and work with a COM class to communicate with the
ArcObjects COM framework within ArcGIS Desktop.

Application
r= & =
Add New Item - MyToolbar¥BNET [x]
Categories: Templates: HE
3 Local Project Tems |
Inherited Form Web Custom Inherited User
ontral Control
g B
windows COMClass Transactional
Service Companent
g
Text File Framosst WSTRE o)
A class that can be exposed to COM
Name: [ToggeButzon|
open | Cancel Help: |

96 ArcGIS Desktop Developer Guide

1. In the Solution Explorer, right-click MyToolbarVBNET project,
click Add, then click Add New Item.

2. In the Add New Item dialog box, scroll down the right pane and
click COM Class. In the Name text box, type “ToggleButton”. Click
Open to add the new class to the project.

3. In the Solution Explorer, right-click the existing class
(Class1.vb), and click Delete.

The new COM class will have a new GUID and an empty subrou-
tine called New. The project will also be registered for COM
interop.

CREATE A TOOLBAR: COMMAND

Referencing ESRI libraries in your project

To program using ArcObjects, you will need to add references to the ESRI librat-
ies.

1. In the Solution Explorer, right-click References and click Add

References.

T ot | prowars |

2. In the Add Reference dialog box, click the .NET tab, then

i Nawe
LERE Arclls Arorstalog
LoRE Al Arc_ataiogUl
ESREArchlS frrikohe
ESRLAucGlSArcMap
LEREArcGls Archacdl]
FERLAICGIS. derRraderConkrl
ESRLAGIS. ArcScan
LERL ArCls Arcocens
FEREArCGIS Avdrefinadesn. ..
ESRLAucGlS. AnGlobelontrd L
LKL Anclal S aotaplorkrol S.0.0.450 CiiProgram Fiks\AnGlS

double-click the following assemblies:
* ESRIL.ArcGIS.ArcMapUI
* ESRLArcGIS.Carto

FERE &GS AaPaoed svnerC . GU00 451 C1hProweam Files) A1 SW 00k ;I ° ESRl.AI‘CGIS.FmeCWOIk
el Cenprrerts: * ESRI.ArcGIS.SystemUIL
tame [iipe [source J<] samove |
i i iy A * ESRI.ArcGIS.Utility
ESRI ArcGIS. Framerork. MET Ci\Program Files|AucGlS o
SHL 5.5 2 4 :u ram oI I
Pt = Pl areene 21 * System.Drawing.dll
I T |
3. Click OK to close the dialog box and add the libraries to your
solution.
Adding Imports statements
1. In the Solution Explorer, double-click ToggleButton.vb to open its Code
window.
Option Strict On
Imporcs System.Runtime. InceropServices 2. At the top of the Code window, before the beginning of the class declaration,
Imports ESRI.ArcGIS. ArcMapUl . .
Importe ESRI.ArcSlS.Framevork add the following lines of code:
Imports ESRILArcGIS.Ucility.BaseClasses

Imports

o <ComC L&
[

ESRI.ArcGIS.Utility.|

{} Basellasses
=5 (ToggleButton. Cl {H{eSihi

BN =]

Q Solution My ToolbarVBMNET' {1 project)

- [ZE MyToolbar¥BNET

(5] references

[®] AssemblyInfo.vb

TogaleButkon. brp
S E ToggleButton, b

i (A Solution Ttems

Option Strict On
Imports System.Runtime.InteropServices
Imports ESRI.ArcGIS.ArcMapUI
Imports ESRI.ArcGIS.Framework
Imports ESRI.ArcGIS.Utility.BaseClasses
Imports ESRI.ArcGIS.Utility.CATIDs

You will notice that the Imports statements work with IntelliSense.

Adding a bitmap
Add a bitmap file to your project to be used as the icon for the toggle button
command, which will be set in the next step.

1. In the Solution Explorer window, right-click the MyToolbarVBNET project,
click Add, then click Add Existing Item.

2. In the Add Existing Item dialog box, click the Files of Type pulldown menu
and click Image Files.

3. Browse to the \DeveloperKit\Samples\Developer Guide Scenatios\ArcGIS
Desktop\Toolbat under your ArcGIS install, click ToggleButton.bmp, then
click OK to copy it to your project directory.

4. In the Solution Explorer window, make sure you’ve selected the new bitmap,
and in the Properties window below the Solution Explorer, change the Build
Action property to Embedded Resource.

Chapter 5 * Developer scenarios * 97

CREATE A TOOLBAR: COMMAND

Inheriting the BaseCommand abstract class

The BaseCommand class provided by ESRI in the Utility library allows you to

create commands quicker and simpler than by directly implementing the

esriSystemUL 1Command interface.

1. In the ToggleButton.vb Code window, specify that the ToggleButton class
inherits from the BaseCommand abstract class as shown below, then add the
Notlnheritable class modifier.

This code replaces the existing public class definition.
Public NotInheritable Class ToggleButton
Inherits BaseCommand
The Notlnheritable class modifier states that a class cannot be inherited from. As
you are not designing a class for this purpose, it is prudent to add this modifier to
prevent other classes from inheriting this class.

Overriding members of the BaseCommand ICommand
interface

@2 MyToolbar¥BNET - Microsoft Visual Basic .NET [design] - ToggleButton.vb™

o EF D Qe DGR IS G R 1. In the Wizard bar at the top of the ToggleButton class Code
S @ BRR| oo E-B) oshy -
B | E 2] 6% R window, click the left pulldown menu, and click Overrides.
ter:roge N 2. In the right pulldown menu, click OnCreate. A code stub for the
22?2 (overrides) ~| |=%onClick . . .
= I =l | oo overridden OnCreate method is added to the Code window.
g Option Strict On & Caption
= Tmports Syatem. Runtime. InteraopServices [ES! Categary
- Tuports ESRI.ArcGIS.Arclapl [Checked 3. Repeat Steps 1 and 2, but this time click OnClick and Enabled.
Twports ESRI.ArcGIS.Framework gi”a'l"e”
Twports ESRI.ArcGIS.Utility.BaseClasses [Fnalize . [. .
Tporie BARI MeaGls Uiilire.carine ot 4. Press Ctrl + Shift + S to save all the files in your project, or click
E <ComClass (ToggleButton.Classld, ToggleButton. QME':;;QE File > Save All
Public NotInheritable Class TogoleButton IS Hame
Inherits BaseConmand
S ook

Adding code to the overridden members of BaseCommand

You will now start adding VB .NET code to the methods you have overridden.

1. Add the following member variables to the class as shown.

PubTic NotInheritable Class ToggleButton
Inherits BaseCommand
Private m_pApp As IApplication
Private m_pMxDoc As IMxDocument
2. In the ToggleButton class Code window; scroll down to find the overridden
OnCreate method, and add the code shown below.

PubTlic Overrides Sub OnCreate(ByVal hook As Object)
If Not (hook Is Nothing) Then
If TypeOf (hook) Is IApplication Then
m_pApp = CType(hook, IApplication)
m_pMxDoc = CType (m_pApp.Document, IMxDocument)
End If
End If
End Sub

98 « ArcGIS Desktop Developer Guide

CREATE A TOOLBAR: COMMAND

3. Scroll down again to find the OnClick method, and add the following code:
Pub1ic Overrides Sub OnClick()
m_pMxDoc.SelectedLayer.Visible = Not (m_pMxDoc.SelectedLayer.Visible)
m_pMxDoc .ActiveView.Refresh()
m_pMxDoc . UpdateContents ()
End Sub
4. Scroll down to find the Enabled property, and add the following code.

Publ1ic Overrides ReadOnly Property Enabled() As Boolean
Get
Return (Not (m_pMxDoc.SelectedLayer Is Nothing))
End Get
End Property
5. Scroll the Code window upward to find the constructor, sub New, for the
ToggleButton class as shown, and add the following code to the constructor:

Pub1ic Sub New(Q)

MyBase.New()

MyBase.m_caption = "Toggle Layer On/Off"

MyBase.m_category = "Custom Controls"

MyBase.m_message = "Toggles the visibility of the selected layer"

MyBase.m_toolTip = "Layer On/Off"

MyBase.m_name = "ToggleButton"

MyBase.m_bitmap = New _
System.Drawing.Bitmap(GetType(ToggleButton) _
.Assembly.GetManifestResourceStream("MyCommandVBNET.globe_1.bmp™))

End Sub

Adding COM category registration functions

The NET framework allows you to place COM registry functions within the
class code. When the DLL is registered the class will be placed within the speci-
fied COM component category. ESRI provides an add-in to add this code.

1. Enable the add-in.
Click the Tools menu and click Add-in Manager.
Check ESRI ComponentCategoryRegistrar if it is not checked.
Click OK to close the dialog box.

2. Scroll the Code window to near the top of the class declaration, and put the
cursor just below the COM GUIDs region.

3. Click the Tools menu and click ESRI ComponentCategoryRegistrar.

4. Check the MxCommand box and click OK to add the code. If you have not
added a reference to the ESRI.ArcGIS. Utility assembly, the add-in will add
the reference. If you have not declared using the namespace of
System.Runtime.InteropServices or ESRL ArcGIS. Utility. CATIDs, the add-in
will add the declaration.

Chapter 5 * Developer scenarios * 99

CREATE A TOOLBAR:ToOOL

IMPLEMENTATION

In this example you will create a tool for ArcMap that displays the coordinates
where the mouse is clicked. The tool also responds to other events, such as right-
click and mouse click. Later, this tool will be added to a toolbar. The code for
this example is written in Visual Basic NET.

Opening the toolbar project
If you previously created the MyToolbarVBNET project, open it now.

1. Start Visual Studio .NET.
2. Click File, click Open, and click Project.

3. In the Open Project dialog box, click MyToolbarVBNET.sln from the location
to which you saved it.

Creating a new COM class for the tool
- e B 1. In the Solution Explorer, right-click MyToolbarVBNET project,
(=4 LosalProfec s conrl = click Add, then click Add New Item.

q
&
e

bertod o ien cotan et L 2. In the Add New Item dialog box, scroll down the right pane and
et et click COM Class. In the Name text box below, type “CoordTool”.
J Click Open to add the new class to the project.

By
N
@)

n
o
=
o

Windows l@ss Transactional

e cmm The new COM class will have a new GUID and an empty subrou-
i 8 tine called New. The project will also be registered for COM
Text File Frameset HELT File » .
& class that can be exposed £ COM interop.

Name: CoordTal

opern | Cancel Help

Referencing ESRI libraries in your project

To program using ArcObjects, you will need to add references to the ESRI librat-
ies.

1. In the Solution Explorer, right-click References and click Add References.

2. In the Add Reference dialog box, click the NET tab, and
double-click the following assemblies:

AL « ESRLArcGIS.ArcMapUI

v Nase Wersion

erinct 10.330.0 .

EoRL Arcts 0inalyst A0.0.451 M ESRIArcGISDlSplay

FEREArGIS. A0anakyatt 500,45

ESRLAucGlS.AruC sl sy 9.0.0.491 A GIS F k

LERE ArClS. Arc stalogll A0.0.491 .

Fm[.mrﬁl‘-.»\rro\'l'\l‘r a.0.0,4%1 Cr{Pragram Flss|ArcGl et ESRl 1c Framewor

ESRLARGIS.ArcMap 2.0.0.491 C:WlwallﬁbWLGlS]D‘i .

ot s echradecerd 500 \mogam Fledfoeclofer * ESRI.AtcGIS.Geometry

ESRLAucGlS.ArcScan 9.0.0.491 Ci\Progeam FilesiAuc

SR ARG P e

iR o Iy bl il * ESRI.ArcGIS.System
Selected Conponrts: . .

e e e = | ESRI.ArcGIS.SystemUI
LS Arcals. AreMapll R Ci\Program File#UArcGIi DG .
ESREAreGIES Disply MET CriProgram Fles|ArciS) 1
ESRI ArcGIS. Framerork. MET CiiProgram Fies) AucGIS{Dothe, . ° ESRI'ArCGIS'UUht.V
LR ARGl tametry - L:\Program Fiks|AroGlSDot e, .
FERLArGIS Sustem HET Pyl puibarteastiooggl. | | .
* System.Drawing.dll
[ot | e | e |

e System.Windows.Forms.dll

100 * ArcGIS Desktop Developer Guide

CREATE A TOOLBAR:ToOOL

3. Click OK to close the dialog box and add the libraries to your solution.

Adding Imports statement

1. In the Solution Explorer, double-click CoordTool.vb to open its Code win-
dow.

2. At the top of the Code window, before the beginning of the class declaration,
add the following lines of code:
Option Explicit On
Imports System.Runtime.InteropServices
Imports ESRI.ArcGIS.ArcMapUI
Imports ESRI.ArcGIS.Framework
Imports ESRI.ArcGIS.Geometry
Imports ESRI.ArcGIS.esriSystem
Imports ESRI.ArcGIS.SystemUI
Imports ESRI.ArcGIS.Utility.BaseClasses
Imports ESRI.ArcGIS.Utility.CATIDs

You will notice that the Imports statements work with IntelliSense.

Adding a bitmap and cursor

Add a bitmap file and a cursor to your project to be used as the icon and cursor
for the tool, which will be set in the next step.

1. In the Solution Explorer window, right-click the MyToolbarVBNET project,
click Add, then click Add Existing Item.

2. In the Add Existing Item dialog box, click the Files of Type pulldown menu
and choose Image Files.

3. Browse to the \DeveloperKit\Samples\Developer Guide Scenarios\ArcGIS
Desktop\Toolbar under your ArcGIS install, and click CoordTool.bmp, then
click OK to copy it to your project directory.

4. In the Solution Explorer window, make sure you’ve selected the new bitmap,
and in the Properties window below the Solution Explorer, change the Build
Action property to Embedded Resource.

5. Repeat Steps 3 and 4 for the 3dsmove.cur file.

Inheriting the BaseTool abstract class

The BaseTool class provided by ESRI in the Utilities library allows you to create
commands more quickly and simply than directly implementing the
esriSystemULITool interface.

1. In the CoordTool.vb Code window, specify that the CoordTool class inherits
from the BaseCommand abstract class as shown below and add the
Notlnberitable class modifier.

This code replaces the existing public class definition.
Public NotInheritable Class CoordTool
Inherits BaseTool

'The Notlnheritable class modifier states that a class cannot be inherited from. As

you are not designing a class for this purpose, it is prudent to add this modifier to

prevent other classes from inheriting this class.

Chapter 5 ¢ Developer scenarios * 101

CREATE A TOOLBAR:ToOOL

Overriding members of the BaseTool ITool interface

1. In the Wizard bar at the top of the MyTool class Code window, click the left
pulldown menu, and click Overrides.

2. In the right pulldown menu, click Deactivate. A code stub for

99 MyToolbarVBNET - ictosotVisual asic AET[design] - ustToubaryt? the overridden Deactivate method is added to the Code window.
Fle Edt Vew Popct Buld Debug Took Window Hep . . .
! . 3. Repeat Steps 1 and 2, but this time for each of the following:
ORI IR Y nvm.vﬂ Detug v () dassesinpe @ Enabled
° naple
Bhee| 2T AN, .
3 * OnClick
Start Page | CoordToolb | ToggleButtonsh | Custienu.vb CustToolbar.vb*
8| St page | ContToo | Toggedution st | Cstenush CustToalbarl ‘ « OnContextMenu
P |°-0 TToolBarDef j I\ (Declarations)
. ¢ OnCreate
g Option Strict On {Declarations) |
7 Tmports dyatem, Runtine, Interopdervices * OnDbIClick
B [0 Getiteminfo - ESRIARCGIS. ystemil IToolBarDef
Inports E3RT. ArcG13. Systenl] L8 rontont. 581 57[et ¢ OnMouseDown
Tuports ESRI.AreGI5.Utility,CATIDS "NM ”“"MI "‘5""“[’;I’J”I‘ Hﬂlll'gf[
&' Name - ESRLArcGIS SystemiUL oo
o <ConClass | CustToalbar Classld, CustToolsar. L - 4. Press Ctrl + Shift + S to save all the files in your project, or click
— Public Clags CustToolbar .
Tmplements IToolBarDef FIIC > SS.VC AH

Adding code to the overridden members of BaseCommand
You will now start adding VB .NET code to the methods you have overridden.

1. Add the following member variables to the class as shown:

Public NotInheritable Class CoordTool
Inherits BaseCommand
Private m_pApp As IApplication

2. In the CoordTool class Code window, use the pulldown menus to find the
overridden Deactivate method, and add the code shown below.

Public Overrides Function Deactivate() As Boolean
' Deactivate the tool. If set to False (the default),
' you cannot interact with any other tools because this tool
' cannot be interrupted by another tool
Return True
End Function
3. Find the overridden Enabled property, and add the code shown below.
Publ1ic Overrides ReadOnly Property Enabled() As Boolean
' Add some logic here to specify when the command should
' be enabled. In this example, the command is always enabled.
Get
Return True
End Get
End Property
4. Find the overridden OnClick method, and add the code shown below.
PubTic Overrides Sub OnClick()
' Add some code to do some action when the command is clicked. In this
' example, a message box is displayed.
MsgBox("Clicked on the Coordinate display tool.™)
End Sub

102 * ArcGIS Desktop Developer Guide

CREATE A TOOLBAR:ToOOL

5. Find the overridden OnContextMenu method, and add the code shown below.

Pub1ic Overrides Function OnContextMenu(ByVal X As Integer, ByVal Y As
Integer) As Boolean

' Add some code to show a custom context menu when there is a right

' click. This example creates a new context menu with one macro item.
Dim pShortCut As ICommandBar

Dim pItem As ICommandItem

' Create a new context menu.

The OnC M hod pShortCut = m_pApp.Document.CommandBars.Create("MyShortCut",
e OnContextMenu method allows you to esriCmdBarType. esriCmdBarTypeShortcutMenu)

' Add an item to it.
pItem = pShortCut.CreateMacroltem("MyMacro", 4)
' Display the menu.
pShortCut. Popup()
' Let the application know that you handled the OnContextMenu event.
' If you don’t do this, the standard context menu will be displayed
' after this custom context menu.
Return True
End Function

create context menus for your tools.

6. Find the overridden OnCreate method, and add the code shown below.
Public Overrides Sub OnCreate(ByVal hook As Object)
' The hook argument is a pointer to Application object.
' Establish a hook to the application.
m_pApp = hook
End Sub

7. Find the overridden OnDbIClick method, and add the code shown below.
Public Overrides Sub OnDb1Click()
' Add some code to do some action on double-click.
' This example makes the built-in Select Graphics Tool the active tool.
Dim pSelectTool As ICommandItem
Dim pCommandBars As ICommandBars
' The identifier for the Select Graphics Tool
Dim u As New UID
u.Value = "{C22579D1-BC17-11D0-8667-0000F8751720}"
'Find the Select Graphics tool.
pCommandBars = m_pApp.Document.CommandBars
pSelectTool = pCommandBars.Find(u)
'Set the current tool of the application to be the Select Graphics tool.
m_pApp.CurrentTool = pSelectToo]l
End Sub

Chapter 5 ¢ Developer scenarios * 103

CREATE A TOOLBAR:ToOOL

8. Find the overridden OnMouseDown method, and add the code shown below.
Pub1ic Overrides Sub OnMouseDown(ByVal Button As Integer, ByVal Shift As
Integer, ByVal X As Integer, ByVal Y As Integer)
' Add some code to do some action when the mouse button is pressed.
' This example displays the X and Y coordinates of the
' Teft mouse button click in the statusbar message in ArcMap.
' Button, X, and Y are passed in as arguments to this subprocedure.

' Check to see if left button 1is pressed
If Button = 1 Then
' Convert x and y to map units. m_pApp is set in ICommand_OnCreate.
Dim pPoint As IPoint
Dim pMxApp As IMxApplication
pPMxApp = m_pApp
pPoint = pMxApp.Display.DisplayTransformation.ToMapPoint(X, Y)
' Set the statusbar message.
m_pApp.StatusBar.Message(0) = Str(pPoint.X) & "," & Str(pPoint.Y)
End If
End Sub

9. Find the Sub New constructor and add the code shown below.

Pub1ic Sub New()
MyBase.New()
MyBase.m_caption = "Display Coordinates"
MyBase.m_message = "Returns coordinates"
MyBase.m_toolTip = "Display Coordinates"
MyBase.m_name = "CoordTool"
MyBase.m_category = "Custom Controls"
MyBase.m_bitmap = New
System.Drawing. Bitmep((CetType(CoordTool) .Asserbly . GetMari festResourceStream(MyToo lbarVBNETID)
MyBase.m_cursor = New
Systamincns. Foms. Wrsor(CetType(@ordiool) Assarbly. (et festResourceStrean(MyToole\B\ET. 3dsove.ar')

End Sub

Adding COM category registration functions
EElcomponent Category Registering IS EX The NET framework allows you to place COM registry functions within the

[GeolbjectClassE stensions B class code. When the DLL is registered the class will be placed within the speci-
S Ej@fﬂnﬁ;‘:dgm fied COM component category. ESRI provides an add-in to add this code.
[] GxCommands .
[] GyExtensions 1. Enable the add-in.
E E“P'EV'EW.S Click the Tools menu and click Add-in Manager.

#Root0bjects
O LayerPiopertyPages Check the ESRI ComponentCategoryRegistrar box if it is not checked.
o ermancBas Click OK to close the dialog box.
[] MuDockableiw/indows . .
[] MsEstension ~ 2. Scroll the Code window to near the top of the class declaration, and put the
I Regstered as Premier Toolbar cursor jU.St below the COM GUIDs region.

Change Lt | Resetlint | 3. Click the Tools menu and click ESRI ComponentCategoryRegistrar.

ok | Carcel__| y 4. Check the MxCommand box and click OK to add the code. If you have not

added a reference to the ESRI.ArcGIS. Utility assembly, the add-in will add
the reference.

104 * ArcGIS Desktop Developer Guide

CREATE A TOOLBAR: MENU

IMPLEMENTATION

In this example you will create a menu for ArcMap that contains several existing
ArcMap commands. This menu will be later added to a toolbar. The code for this
example is written in Visual Basic NET.

Opening the toolbar project

Open the previously created MyToolbarVBNET project.

1.
2.
3.

Start Visual Studio .NET.
Click File, click Open, then click Project.
In the Open Project dialog box, click MyToolbarVBNET.sln from the location

in which you saved it.

Creating a new COM class for the menu

Add New Ttem - MyToolbar¥BNET [x]
Categories: Templates:
2 Local Project Items Cods Flle Custarm HTIL Page =l

Cantral

Inherited Farm Wweb

Za

Ve

COM Class

wE
my £3 8y
CH

Custom Inherited Ussr
Contral Control

Transactional

Companent

1. In the Solution Explorer, right-click the MyToolbarVBNET
project, click Add, then click Add New Item.

2. In the Add New Item dialog box, scroll down the right pane and
click COM Class. In the Name text box, type “CustMenu”. Click
Open to add the new class to the project.

The new COM class will have a new GUID and an empty subrou-
tine called New.

Referencing ESRI libraries in your project

To program using ArcObjects, you will need to add references to the ESRI librar-

=
A class that can be exposed ko COM
Name: CustMenu
Open I Cancel Help
1es.
i Nase Wersion Falt A
LEREARGIS Spstsldnghestll 2.0.0.451 L {Program Files\rcl Select I
LSRE RIS Survgylatats 00,451 C:\Progesm Fiks|Ancials
FEREArGIS SurveyE st 5.0.0,4%] Cr\Program Fles)Areil
ESRIAucGlS. SurveryPhye 9.0.0.491 Ci\Progeam FiesiAncGL:
LSRE ANl System 900,451 C:\Pragram FlsA\Ancials
ESRLAGIS Sysbemlil 400,451 Cr{Program Fles\ArcGISiE Pl
ESRI ArcGIS. TOCCorkral 2.0.0.491 CiProgeam Files) Auc IS
LSRE ARl ToobarControl S.0.0.451 C:\Progesm Files|AncGl Dot
FEREArGIS Trackinglnalyst 5.0.0,4%) Cr\Pragram Fles)Areil
ESRL AucGlS. TrackingfinabstUl - 9.0.0,481 Ci\Progeam FiesiAncGL:
LERLArCGIS LRty 00410 CilPragram Fikes!a
reetanshiliry 703300 1\Proneam FllesiMicrnsnfr ¥, ;‘
Sehedted Congonents:
[iype [souce I el
SR Arcials. Framewr: MET Ci\Program File#UArcGIi DG .
ESRE ARG Systeml il HET C{Progeam Fles|ArcGIS|Tothe, ..
ESRLAmGIS. ity MET Ci\Program Files)AucGISIDcte.
[| ceme | new |

1. In the Solution Explorer, right-click References and click Add
References.

2. In the Add Reference dialog box, click the NET tab and
double-click the following assemblies:

¢ ESRI.ArcGIS.Framework
ESRI.ArcGIS.SystemUI
* ESRILArcGIS. Utlity

3. Click OK to close the dialog box and add the libraties to your
solution.

Chapter 5 ¢ Developer scenarios * 105

CREATE A TOOLBAR: MENU

Option Strictc On

Imports System.Runtime.InteropServices
Inportcs ESRILArcGIS.SystemUI

Imports E3RI. ArcGIS. Framework

Inports ESRILArcGIS.Utility.CATIDS

Adding Imports statements

1. In the Solution Explorer, double-click CustMenu.vb to open its Code win-
dow.

2. At the top of the Code window, before the beginning of the class declaration,
add the following lines of code:
Option Strict On
Imports System.Runtime.InteropServices
Imports ESRI.ArcGIS.SystemUI
Imports ESRI.ArcGIS.Framework
Imports ESRI.ArcGIS.Utility.CATIDs

You will notice that the Imports statements work with IntelliSense.

Implementing the IMenuDef interface

1. In the CustMenu.vb Code window, specify that the CustMenu class implements
the IMenuDef and IRootl evelMenn interfaces as shown below. Implementing
IRoot]_evelMenu allows this menu to be added to the Menus category in the
Customize dialog box.

PubTic Class CustMenu
Implements IMenuDef
Implements IRootLevelMenu

2. In the Wizard bar at the top of the CustMenu class Code window, click the
left pulldown menu and click IMenuDef.

3. In the right pulldown menu, click the first member of
IMenuDef, Caption. A code stub for the Caption property is added
to the Code window.

106 * ArcGIS Desktop Developer Guide

The interface implementer will fully reference the implemented
method types by default, as shown below, even though you have
added Imports statements.
Pub1ic ReadOnly Property Caption() As String

Implements ESRI.ArcGIS.SystemUI.IMenuDef.Caption
If you want, you can remove the unnecessary namespace details to make your
code more readable, as shown below, although you do not have to.
Pub1ic ReadOnly Property Caption() As String

Implements IMenuDef.Caption

4. Repeat Steps 2 and 3 until you have added code stubs for all the members of
the IMenuDef interface—Caption, GetltemInfo, 1temCount, and Nawe.

5. Press Ctrl + Shift + S to save all the files in your project.

Adding code to the members of IMenuDef

The menu items are defined within the Gedtemlnfo subroutine. Each item is a call
to an existing command that is referenced by program ID and the class name. For
example, to reference a command in this project, you would use

MyToolbarVBNET.MyCommand.

CREATE A TOOLBAR: MENU

1. In the CustMenu class Code window, scroll down to find the Getlzenlnfo
method, and add the code shown below.
Pub1ic Sub GetItemInfo(ByVal pos As Integer, ByVal itemDef As
ESRI.ArcGIS.SystemUI.ITtemDef)
Implements ESRI.ArcGIS.SystemUI.IMenuDef.GetItemInfo
Select Case pos
Case 0
itemDef.ID = "esriArcMapUI.AddDataCommand"
itemDef.Group = False
Case 1
itemDef.ID = "esriArcMapUI.FullExtentCommand"
itemDef.Group = True
Case 2
itemDef.ID = "esriArcMapUI.ZoomInFixedCommand"
itemDef.Group = False
End Select
End Sub

2. Edit the code stubs as shown to complete the Caption, ItemCount, and Name
methods as shown to return information about the menu.
PubT1ic ReadOnly Property Caption() As String Implements IMenuDef.Caption
Get
Return "CustMenu-VBNET"
End Get
End Property

Public ReadOnly Property ItemCount() As IntegerImplements

ESRI.ArcGIS. SystemUI. IMenuDef.ItemCount
Get

Return 3
End Get
End Property

Public ReadOnly Property Name() As String Implements
ESRI.ArcGIS. SystemUI.IMenuDef .Name

Get

Return "CustMenu-VBNET"
End Get
End Property

Chapter 5 * Developer scenarios * 107

CREATE A TOOLBAR: MENU

ﬂgtomponent Category Registering !Ii[E

Adding COM category registration functions

The NET Framework allows you to place COM registry functions within the
class code. When the DLL is registered the class will be placed within the speci-

[GeoObjectClassE stensions B fied COM component category. ESRI provides an add-in to add this code.
[GeoObjects
nggomman:l%ars 1. Enable the add-in.
0 G:E:,::jgn: Click the Tools menu and click Add-In Manager.
E g::t;‘;‘g‘;cts Check the ESRI ComponentCategoryRegistrar box if it is not checked.
[LayerPiopertyFages Click OK to close the dialog box.
] MxCommandBars
S :xgom?agdsv_ . 2. Scroll the Code window to near the top of the class declaration, and put the
O thsersion - cursor just below the COM GUIDs region.
O =g s Fremr Todles 3. Click the Tools menu and click ESRI ComponentCategoryRegistrar.
Gasplin. | B | 4. Check MxCommandBar and click OK to add the code. If you have not added
0K | LCancel | y a reference to the ESRL.ArcGIS. Utility assembly, the add-in will add the
~ reference. If you have not declared using the namespace of
System.Runtime.InteropServices or ESRL. ArcGIS. Utility. CATIDs, the add-in
will add the declaration.
IMPLEMENTATION
In this example you will create a toolbar for ArcMap that contains some existing
ArcMap commands, in this case the previous three controls in the project. The
code for this example is written in Visual Basic .NET.
Opening the toolbar project
Open the previously created MyToolbarVBNET project.
1. Start Visual Studio NET.
2. Click File, click Open, then click Project.
3. In the Open Project dialog box, click MyToolbarVBNET.sln from the location
to which you saved it.
Creating a new COM class for the toolbar
1. In the Solution Explorer, right-click MyToolBarVBNET project,
click Add, then click Add New Item.
caemres e 2. In the Add New Item dialog box, scroll down the right pane and
bR ComaFle Cutom HIHLPoco click COM Class. In the Name text box, type “CustToolBat”. Click

B

Windows
Service

Cantrol

7

Contral

29

COMCass Transactional
Camponent

ket

Control

(&)

Open to add the new class to the project.

Inheritert Form teb Custam Inferited userJ The new COM class will have a new GUID and an empty subrou-

tine called New.

A class that can be exposed ko COM

Name: CustTookbar

open |

Cancel

Help

108 * ArcGIS Desktop Developer Guide

CREATE A TOOLBAR: T OOLBAR

ndd Reference x|

T ot | prowars |

Referencing ESRI libraries in your project

To program using ArcObjects, you will need to add references to the ESRI librat-

1es.

e Nases Werskrn
SR Arglalts Spatisiinsyst 900,451
LSRLAGIS Spstsdnshstlll 9.0.0.451

ESRLAucGlS. Trachimfinatst 9.0.0,481
ESRIArcls. Trschngnatystl 9.0.0.491

Ci\Progeam FiesiAncGL:
C:\Pragram FlsA\Ancials

1. In the Solution Explorer, right-click References and click Add
References.

2. In the Add Reference dialog box, click the .NET tab and
double-click the following assemblies:

EEREAICGIS Survental 5.0.0,4%1 ¢
ESRLAucGlS. SurveyEat 9.0.0.491 Ci\Progeam FiesiAncGL: °

LERLARCGIS Surveybhas 00,491 CUProgram FiksiArctl ESRI'AI-CGIS'S‘VStchI
ESRLARGIS System 400,451 Cr{Program Flesiarcil!

ESRLAGIS. Systesalll 2.0.0.481 Ci\Progeam Fibes\ArcGL .-

LERE A, TOCControl H0.0.491 C{Progeam Fles\ArcGL: ° ESRI.AKCGIS.UUhty
ESREArcGIS. TookarContral 4.0.0,4%) Cr\Pragram Fles)Areil

3. Click OK to close the dialog box and add the libraties to your

FERT Arrii15d iy annAln 11 m P 1
solution.
Sehedted Congonents:
[rrpe [souce | semabe
SR Al Systemll MET Ci\Program File#UArcGIi DG .
FEREArciIS. Ly HET C1iPrageam Files\ArcGIS Do e, .

I |

Adding Imports statements

1. In the Solution Explorer, double-click CustToolBar.vb to open its Code
window.

2. At the top of the Code window, before the beginning of the class declaration,

add the following lines of code:
Option Strict Om

Inports 3vstewmw.Runtime. Interoplervices
Imports ESRI.ArcGIS.SystcemUI
Imports ESRI.ArcGI3.Utility.CATIDs

Option Strict On
Imports System.Runtime.InteropServices
Imports ESRI.ArcGIS.SystemUI
Imports ESRI.ArcGIS.Utility.CATIDs

You will notice that the Imports statements work with IntelliSense.

Implementing the IToolBardef interface
1. In the CustToolbar.vb Code window, specify that the CustToolbar class imple-
ments the IToo/BarDef as shown below.
Public Class CustToolbar
Implements IToolBarDef

2. In the Wizard bar at the top of the CustToolbar class Code
window, click the left pulldown menu and click IToolBarDef.

Flo Edt View frojot Bula Dobu Tools Window Hoib
C AR <R
| o e to %

b Lsbug

3. In the right pulldown menu, click the first member of
IToolBarDef, Caption. A code stub for the Caption property is
added to the Code window.

The interface implementer will fully reference the implemented
method types by default, as shown below, even though you have
added Imports statements.

Pub1ic ReadOnly Property Caption() As String
Implements ESRI.ArcGIS.SystemUI.IToolBarDef.Caption

Chapter 5 * Developer scenarios * 109

CREATE A TOOLBAR: TOOLBAR

If you want, you can remove the unnecessary namespace details to make your
code more readable, as shown below, although you do not have to.

Pub1ic ReadOnly Property Caption() As String
Implements IToolBarDef.Caption

4. Repeat Steps 2 and 3 until you have added code stubs for all the members of
the IToo/BarDef interface: Caption, GetltemlInfo, ItemCount, and Name.

5. Press Ctrl + Shift + S to save all the files in your project.

Adding code to the members of IToolBarDef

The Toolbar items are defined within the Gedtemlnfo subroutine. Each item is a
call to an existing command that is referenced by program ID and class name. For
example, to reference a command in this project, you would use
MyToolBarVBNET.MyCommand. In this example, you will add the three previ-
ous examples—a command, tool, and menu—as well as two existing ArcMap
commands.

1. In the CustToolbar class Code window, scroll down to find the GetltemInfo
method, and add the code shown below.
Public Sub GetItemInfo(ByVal pos As Integer, ByVal itemDef As

ESRI.ArcGIS.SystemUI.IItemDef) Implements
ESRI.ArcGIS.SystemUI.IToolBarDef.GetItemInfo

Select Case pos
Case 0
itemDef.ID = "MyToolbarVBNET.CustMenu"
itemDef.Group = False
Case 1
itemDef.ID = "MyToolbarVBNET.ToggleButton"
itemDef.Group = False
Case 2
itemDef.ID = "MyToolbarVBNET.CoordTool"
itemDef.Group = False
Case 3
itemDef.ID = "esriArcMapUI.ZoomInTool"
itemDef.Group = True
Case 4
itemDef.ID = "esriArcMapUI.ZoomOutTool"
itemDef.Group = False
End Select
End Sub

2. Edit the code stubs as shown to complete the Caption, ItemCount, and Name

methods as shown to return information about the toolbar.

Public ReadOnly Property Caption() As String Implements
IToo1BarDef.Caption

Get

Return "CustToolbar-VBNET"
End Get
End Property

PubT1ic ReadOnly Property ItemCount() As Integer Implements
ESRI.ArcCIS.SystemUI.IToolBarDef.ItemCount

110 * ArcGIS Desktop Developer Guide

CREATE A TOOLBAR: TOOLBAR

[#% component Category Registering [l

[] GeoObjectClassE stensions
[GeaDbjects

[] GxCommandBars

[GxCommands

[GExtensions

[GuPreviews

[GxRootObjects

[LayerPiopertyPages
sl MxCommandBars

1 MxCommands

[7] MxDockablewindows
[] M=E stension

r Fiegistered as Premier T oolbar

Change List... |

Reset List

2]

ok | Cancel

5" Reqistry E ditor
File Edit ‘“iew Favortes Help

=3 Archap
23 Adjustment
{23 Estensions
HI0 Garcia
-3 PropertySheets
{23 RasterToolbar
{23 Recent File List
=23 Settings
D Annotation
{23 CommandBarMameCache
{23 Maritar
D O-verflowListChil
E1Z3 Premier Toolbars
e} (119591 DE-0255-11D2-

Get

Return 5
End Get
End Property

Public ReadOnly Property Name() As String Implements
ESRI.ArcGIS.SystemUI.IToolBarDef.Name

Get

Return "CustToolbar-VBNET"
End Get
End Property

Adding COM category registration functions

The NET Framework allows you to place COM registry functions within the
class code. When the DLL is registered the class will be placed within the speci-
fied COM component category. ESRI provides an add-in to add this code.

1. Enable the add-in.
Click the Tools menu and click Add-in Manager.
Check the ESRI ComponentCategoryRegistrar box if it is not checked.
Click OK to close the dialog box.

2. Scroll the Code window to near the top of the class declaration, and put the
cursor just below the COM GUIDs region.

3. Click the Tools menu and click ESRI ComponentCategoryRegistrar.

4. Check the MxCommandBar box and click OK to add the code. If you have
not added a reference to the ESRI.ArcGIS.Utility assembly, the add-in will
add the reference. If you have not declared using the namespace of
System.Runtime.InteropServices or ESRI.ArcGIS. Utility. CATIDs, the add-in
will add the declaration.

If you want the toolbar to be displayed the first time the desktop application is
run after you have installed the toolbar, check the Registered as Premier Toolbar
check box. This creates a new registry key name under
HKEY_CURRENT_USER\Software \ESRI\ ArcMap\Settings\ PremietrToolbars.
The key name is the ClassID of the toolbar class and there is no value.

Compiling the project
Now you are ready to build your project.
1. Click Build and click Build Solution.

2. Look at the Output window at the bottom of the Visual Studio NET IDE.
If your project is compiled correctly, you should find a report stating Build
succeeded.

3. If your build operation did not succeed, click the Task List window to see
what errors are present, and correct the errors as indicated.

4. You can check the results of the Build operation by looking in the subdirecto-
ries of your project. By default, you will build a Debug version of your
project, and the DLL that results from the Build operation will be stored in
the \Bin directory. This directory should also contain debug information

Chapter 5 ¢ Developer scenarios * | | |

CREATE A TOOLBAR: TOOLBAR

(.pdb) and a type library (.tlb) file, produced by the Assembly Registration
tool.

Examining the toolbar components in ArcMap

Before testing and using the toolbar and the controls it contains, it is worthwhile
examining where the controls can be found in ArcMap.

1. Start ArcMap.

2. Open the Customize dialog box by clicking Tools > Customize.

. .
3. The Toolbars tab displays the toolbars in ArcMap. You should see CustToolbar-
CustMenu-VENET + @ (L) | ONO! . K i
VBNET, which you can turn on and off via the check box.

(S8

T addpata...

@ tullExtont 4. Click the Commands tab and open the Custom Controls category. You should

see the command and tool you created. These can be dragged onto other

% Fixed Zoom In
ot z toolbats as required.

5. Open the Menus category. You should see the CustMenu-VBNET menu in the
list of available menus. Like the controls above, the menu can be dragged
onto an existing toolbar as required.

Using the toolbar components in ArcMap

You can now test the toolbar and the controls it contains.
1. Start ArcMap.
2. Add some vector data.

3. Add the Custom toolbar by cither going through the Customize dialog box as
described above or by right-clicking an empty area of the ArcMap frame and
clicking the CustToolbar-VBNET item.

4. Test the menu by clicking some items. These are standard ArcMap commands
called via the menu.

5. Click a layer in the Table of Contents. The toggle layer visibility command
(ToggleButton) should become enabled. Click the button to toggle the selected
layer’s visibility.

6. Click the Coord tool. A message box should be displayed, then be replaced by
a cursor when you click OK on the dialog box. If you click a location on the
map with the tool active, it should display the coordinates in the ArcMap
status bar. Right-click to display a context menu for the tool. Double-click to
enable the Select Graphics tool.

7. Test the other standard ArcMap tools on the toolbar.

You can remove all the components the DLL provides by simply unregistering it.

Deployment

The resulting DLL can easily be deployed to other machines using the methods
described in Chapter 4, ‘Licensing and deployment’.

112 * ArcGIS Desktop Developer Guide

EXTENSIONS

PROJECT DESCRIPTION

This scenario is for ArcGIS Desktop developers who want to create an extension.
The example used in this scenario is a simple extension that enables some tools on
an existing toolbar.

The emphasis in this scenatio is how you create the components that plug into the
framework rather than any particular ArcObjects solution.

CONCEPTS

Extensions provide the developer with a powerful mechanism for extending the
core functionality of the ArcGIS applications. An extension can provide a
toolbar with new tools, listen for and respond to events, perform feature valida-
tion, and so on.

Extensions act as a central point of reference for developers when they are
creating commands and tools for use within the applications. Often these com-
mands and tools must share data or access common UI components. An extension
is the logical place to store this data and develop the UI components. The main
reason for this is that there is only ever one instance of an extension per running
application and, given an LApplication interface, it is always possible to locate the
extension and work with it.

Any extension that is registered with an application is automatically loaded and
unloaded by the application; the end user does nothing to load or unload. For
example, an extension that has been added to the ESRI Mx Extensions compo-
nent category will be started when ArcMap is started and will be shut down
when ArcMap is shut down.

To create your own extension, implement the IExzension interface. This interface
allows you to set the name of the extension and specify what action takes place
when the extension is started or shut down.

If you want your extension to be exposed in the Extensions dialog box, you
should implement the IExtensionConfig interface. The Extensions dialog box
allows users to turn extensions on and off. The IExtensionConfig interface provides
the Extension dialog box with the name of the extension and a description of
the extension; it also specifies the state of the extension.

The IExtensionConfig interface is independent of ESRI’s licensing approach, so as
a developer, you can incorporate a custom licensing solution. Alternatively, if
your extension doesn’t work with a license manager, you don’t have to worry
about requesting and releasing a license. You can implement IExtensionConfig to
enable and disable the tools on your extension’s toolbar accordingly.

For additional information on extensions and their use in extending the desktop
applications, see ‘Extending ArcObjects, Extending the User Interface’, in the
ArcGIS Developer Help system.

Chapter 5 « Developer scenarios ¢ |13

EXTENSIONS

% Project - Command... =] E3

2=l

E% CommandExtension {(Comn
B3 Class Modules

Extension { sior.c
B ToolBar iToolBar.clsh
B zoomIn {ZoomIn.clk)
B Zoomout {Zoomout, ls)
Related Documents

L (CommandExtension.R

I 14 + ArcGIS Desktop Developer Guide

REQUIREMENTS
The requirements for working through this scenario are that you have ArcGIS

Desktop installed and running.

The IDE used for this example is Visual Basic 6, and all IDE-specific steps will
assume this is the IDE you are using,

It is also recommended that you read the Visual Basic language section within
Appendix A, ‘Developer environments’.

ADDITIONAL RESOURCES

The completed code for this scenario can be found in ArcGIS Developer Help
under ArcGIS Desktop > Developer Guide > Developer Scenarios and on disk in
the \DeveloperKit\samples\Developer_Guide_Scenatios\ArcGIS Desktop
directory.

IMPLEMENTATION

In this example you will create an extension for ArcMap that enables controls on
a toolbar. The code for the toolbar, controls, and extension all reside in a single
project. The project for containing the toolbar has already been provided; this
scenario will add the extension code.

The code for this example is written in Visual Basic 6.

Opening the existing project
1. Start Visual Basic 6.
2. Open the CommandsExtension project in the

\DeveloperKit\samples\Developer_Guide_Scenarios\ArcGIS_Desktop
directory.

3. Take some time to examine the project and the classes that create the toolbar,
zoom in, and zoom out tools. Compare this with the VB NET code from the
previous scenatio.

Creating a new class for the extension

You need to create a new class for the extension code. All components that plug
into the desktop framework are required to be classes. The UI controls that you
see in ArcGIS Desktop are instances of these classes.

1. In the project window, right-click and click Add > Class Module. The Add
Class Module dialog box appears.

2. On the New tab in the Add Class Module dialog box, click Class Module and
click OK. A new empty class called class1 is created.

3. Display the project properties for this class by clicking it in the Project win-
dow and pressing F4.

4. Change the name of the class to Extension and make sure the instancing
property is set to 5—Multiuse.

5. Save the extension class by right-clicking the class in the Project window and
clicking Save.

EXTENSIONS

. ESRI Interface Implementer [_ [}
Options
~ESR Interface
[IEstension (=l Piesen
[- Select Iniitace 7| GeoDatabase
~ Interfaces from currently referenced ArclS type libraries————————
Refresh
[IEsportvectarDptions |
] IExpression
] |Extension

—

] IE stersiontanagesémin

] IEsteniStack.

] |E stractionOp

[IE straction0p2 Jhd}

oK | opy |

b |

Implementing extension interfaces

You now need to implement the IExtension and 1ExtensionConfig interfaces in the
Extension class. The easiest way to do this is to use the ESRI Interface
Implementer add-in. For help with add-ins, see the Add-Ins folder under the
Contents tab within the ArcGIS Developer Help.

1. In VBG, click to display the empty Extension class Code window.

2. Click Add-Ins > ESRI Interface Implementer. The ESRI Interface
Implementer dialog box is displayed.

3. In the dialog box, click Options and uncheck the Generate Error Handlers
item.

4. Click IExtension from the Application pulldown menu.

5. Click IExtensionConfig from the lower window and click OK to close the
dialog box.

The ESRI Interface Implmenter adds the Implements statement and stubs out all
the members of those interfaces in the Code window. It will also add the appro-
priate library references to the project if they don’t exist.

If you don’t use the add-in, you will have to manually add the project references,
type in the Implements statement, and manually stub out each interface member
in the Code window.

Adding to the Extension class
Add the following code to the procedures in the Extension class.

Option Explicit

Implements IExtension
Implements IExtensionConfig

Private m_pApp As TApplication
Private m_ExtensionState As esriExtensionState

Private Property Get IExtension_Name() As String
' Internal name of the extension
IExtension_Name = "CommandExtension"

End Property

Private Sub IExtension_Startup(ByRef initializationData As Variant)
' Set the ArcMap application interface
If (TypeOf initializationData Is IMxApplication) Then
Set m_pApp = initializationData ' Is ArcMap
End If
End Sub

Private Sub IExtension_Shutdown()
' Release interface pointers
Set m_pApp = Nothing

End Sub

Chapter 5 ¢ Developer scenarios * | |5

EXTENSIONS

116 » ArcGIS Desktop Developer Guide

Private Property Get IExtensionConfig_ProductName() As String
' Name in Extension Manager Dialog
If (m_pApp Is Nothing) Then Exit Property
IExtensionConfig_ProductName = "ArcMap Command Extension™
End Property

Private Property Get IExtensionConfig_Description() As String
' Description in Extension Manager Dialog
If (m_pApp Is Nothing) Then Exit Property

IExtensionConfig_Description = "ArcMap Command Extension Version 1.0 " &
vbCrLf & _

"Copywrite/Company/Date" & vbCrLf & vbCrLf & "Controls the enabled property
of zoom in and out commands."

End Property

Private Property Get IExtensionConfig_State() As esriExtensionState
' Get the extension state
If (m_pApp Is Nothing) Then Exit Property
IExtensionConfig_State = m_ExtensionState

End Property

Private Property Let IExtensionConfig_State(ByVal ExtensionState As
esriExtensionState)

' Set the extension state according to the check box in the
ExtensionManager Dialog

If (m_pApp Is Nothing) Then Exit Property
m_ExtensionState = ExtensionState
End Property

Enabling the Zoomln tool with the extension

The Zoomln class needs to be modified to listen to the extension configuration
state. When the extension is turned on, the tool will be enabled.

1. In the Zoomln class, declare 2 module-based variable to reference the exten-
sion state.

Private m_pCommandExtension As IExtensionConfig
2. Set the variable to Extension in the command’s OnCreafe method.

Private Sub ICommand_OnCreate(ByVal hook As Object)
If (TypeOf hook Is IMxApplication) Then ' ArcMap
Set m_pApp = hook

Set m_pCommandExtension =
m_pApp . FindExtensionByName ("'CommandExtension™)

End If
End Sub

3. Set the Enabled property based on the extension state.

Private Property Get ICommand_Enabled() As Boolean
' Check box in Extension Manager dialog box controls command enabled
property
If (Not m_pCommandExtension Is Nothing) Then
If (m_pCommandExtension.State = esriESEnabled) Then
ICommand_Enabled = True

EXTENSIONS

Else
ICommand_Enabled = False
End If
Else
ICommand_Enabled = False
End If

End Property

The same steps should be applied to the ZoomOut class to enable the ZoomOut
tool based on the extension state.

Compiling the project
You are now ready to compile your project.

For help using the Component Category 1. In VBG, click File, then click Make CommandsExtensions.dll.

Manager, see Appendix A, ‘Developer environ-

ments’. This creates a single DLL that you can deploy. The next step is to register the

DLL with the operating system, then use the Component Category Manager to
place the individual components within the DLL into the correct component
categories, for example, the ZoomIn and ZoomOut classes are registered with the
MxCommands component category, and so forth.

You can make this step semiautomatic, making deployment much easier for you
and users, by utilizing the ESRI Compile and Register add-in.

pea 1. In VB, click Add-Ins > ESRI Compile and Register. The ESRI Compile and
ESI (X Exteraions

ESR G P Register dialog box appears.
ESRI G Rroot Objeces
581 Loy P

ES8 o CnvlCanna 2. In the Classes pane, click Extension; in the Component Categories pane, click
ESRI Mx Extensions.

= USRI Compale and Register

| 3. In the Classes pane, click Toolbar; in the Component Categories pane, click

ESRI Mx CommandBars.

4. In the Classes pane, click ZoomlIn; in the Component Categories pane, click
ESRI Mx Commands.

5. In the Classes pane, click ZoomOut; in the Component Categories pane, click
ESRI Mx Commands.

6. Click Compile, click Read, and click OK on the dialog boxes that follow.

This add-in creates a Windows registry merge file, CommandsExtensions.reg, that
can register the components in the correct component categories.

To register the components using the merge file, first register the DLL with the
operating system if you have not done so already, then right-click the .reg file and
click Merge.

Chapter 5 * Developer scenarios * |17

EXTENSIONS

Using the extension in ArcMap

Extensions 2] =]
N You are now ready to use the extension in ArcMap.
m] alyst
! 1. Start ArcMap.
O ArcPress
H ArcScan . . .
"0 Geostatitial Aralyst 2. Add the ArcMap Command Extension toolbar either through the Customize
[0 Maplex
L0 naihe dialog box or by right-clicking an empty area of the ArcMap frame and click-
[Spatial Analyst . 3 . :
L seeavaptin ing the ArcMap Command Extension toolbar item. The toolbar will appear
[0 Survey Analyst . . .
U0 Tacking Art with the two tools. These will be disabled.
3. Open the Extensions dialog box via Tools > Extensions. The Extensions
dialog box will be displayed.
Desiiplion . A . L .
e P 4. Click the ArcMap Command Extension item and read the description in the
Copwerite/Compary/Date
Controls the enabled property of zoom in and out commands. IOWCI panc'
5. Check the item and close the dialog box.
o Eveie | You should now see the two tools enabled.
Deployment

The resulting DLL can easily be deployed to other machines using the methods
described in Chapter 4, ‘Licensing and deployment’.

118 ¢ ArcGIS Desktop Developer Guide

DoOCKABLE WINDOW

PROJECT DESCRIPTION

This scenario is for ArcGIS Desktop developers who want to create a dockable
window as a component that can plug into the ArcGIS Desktop application
framework.

For this scenario the dockable window will contain a MapContro/ to display an
overview of the layers in the current document. This functionality is similar to
the standard ArcMap Overview window, except the Overview window created
in this scenario will be dockable.

CONCEPTS

Dockable windows

A dockable window is a window that can exist in a floating state or be attached
to the main application window. The Table of Contents in ArcMap and the Tree
View in ArcCatalog are examples of dockable windows.

Dockable windows ate created by implementing the IDockableW indowDef inter-
face within a class. You use the ChildHWIND property on this interface to define
what the window will consist of by passing in an hWnd of a control, such as a
form or listbox.

The class you create is a definition for a dockable windows; it is not actually a

The dockable window component C"t_‘?g;"‘ij‘?s dockable window object. Once your class is registered in one of the dockable
include: . . S .
ArcMap—ESRI Mx Dockable Windows window component categories, the application uses the deﬁmgon of the. .
ArcCatalog—ESRI Gx Dockable Windows dockable window in your class to create the actual dockable window. This win-

dow is then treated as a modeless child window of the application.

You can access a particular dockable window through IDockableW indowManager,
an interface implemented by the application. The GetDockableW indow method
finds a dockable window using the UID of the dockable window. The following
code illustrates this:

Dim pDocWinMgr As IDockableWindowManager

Set pDocWinMgr = Application 'QI

Dim u As New UID

u.Value = "OverviewDockWin.DockiWin"

Dim pDockWin as IDockableWindow

Set pDockWin = pDockWinMgr .GetDockableWindow(u)

MapControl

The ESRI map control is a component that provides for the display of data
similar to the data view in ArcMap. The MapControl encapsulates the Map
CoClass and provides additional properties, methods, and events for managing the
general appearance, display properties, and map properties of the control; adding
and managing data layers within the control; loading map documents into the
control; dropping data onto the control from other applications; and tracking
shapes and drawing to the display.

Chapter 5 ¢ Developer scenarios * | 19

DoCKABLE WINDOW

hew Praject (=]

% - o I
S %?,e ma’m e
Help

Conkrol
NN B
Actree

VU Agchostion YU Wizerd v Frren
Witard Maruager Dot O Docurmnd Exe
B BN OH B
Addn DotoProject DHT 135 Aggcalion
ation
~ % =l

120 * ArcGIS Desktop Developer Guide

REQUIREMENTS
The requirements for working through this scenario are that you have ArcGIS

Desktop installed and running.

The IDE used for this example is Visual Basic 6, and all IDE-specific steps will
assume this is the IDE you are using,

It is also recommended that you read the Visual Basic language section within
Appendix A, ‘Developer environments’.

ADDITIONAL RESOURCES

The completed code for this scenario can be found in ArcGIS Developer Help
under ArcGIS Desktop > Developer Guide > Developer Scenarios and on disk in
the \DeveloperKit\samples\Developer_Guide_Scenatios\ArcGIS Desktop
directory.

IMPLEMENTATION

In this example you will create a dockable window for ArcMap. A dockable
window can contain a variety of data, such as a form or listbox. In this example
the window will contain a form with MapControl that behaves similar to the
ArcMap Overview window.

The project with which you will work will contain a form with MapControl to
display the overview data, a class for the dockable window, and a class for the
command to display the dockable window.

The code for this example is written in Visual Basic 6.

Creating aVisual Basic 6 project

You will create and work with a Visual Basic 6 project to create an ActiveX DLL
that will contain the components for the dockable window.

1. Start Visual Basic 6.
2. Click File > New Project. The New Project dialog box opens.
3. Click ActiveX DLL from the New Project dialog box and click OK.

This creates a project, Projectl, with an empty class, Class1. For the moment
delete Class1 by right-clicking the class in the project window and clicking De-
lete. Do not save Class1 when prompted.

Change the name of the default project to OverviewDockWin.

1. Right-click the project name in the Project window and click Project] Prop-
erties. The project properties dialog box is displayed.

2. In the Name text box, type “OverviewDockWin”. Click OK.

DoCKABLE WINDOW

Referencing ESRI libraries in your project
To program using ArcObjects, you will need to add references to the ESRI librat-

ies.

T 1. Click Project > References. The References dialog box appears.
2;;;;:;*‘??“ —3 l%' 2. In the References dialog box, click the following libraties:
RS = « ESRI ArcMapUI Object Library
¥ L5R1 Carto Chject Lbrary +
ettt e * ESRI Carto Object Library

+
* ESRI Display Object Library

e : * ESRI Framework Object Library
Nexatior: CE{Proge e eS| con Syt o
(G SX | * ESRI Geometry Object Library

* ESRI System Object Library
* ESRI SystemUI Object Library
3. Click OK.

Adding the MapControl component to the project

The ESRI MapControl provides a window similar to the data view in ArcMap.
ol | O | st 5 | Although provided as a component with ArcGIS Desktop, it is mostly used in
B sy 4 ArcGIS Engine applications as the primary display.

Cecsir 1.0 Type Liwary
ETheetClel Aethertt Conteul ke
3] fecmades Cocdrel
1571 o Tookon Bakch Hode Cankral
£ GebeConirel

£ 150 Metadata Wi Pages Conteol
o Magartrel

£551 Fagel ayourControl

1E55] PeaderControl

T6t) Servecintol

L5 Seertvavver Coner 1.0,

The ESRI MapControl component will be used to display the overview informa-
tion on the form.

1. Click Project > Components. The Components dialog box is displayed.

3R] Spatisianstysiit Coect Lbrary -‘_v_|
| +

o 2. In the Components dialog box, check the ESRI MapControl box and click
| sl Taokwtontrol OI{.

Location; Sl L Al S TeokarContral ocs

S| m. ESRI MapControl should be added to the VB toolbox (View > Toolbox).

Save the current project. In the Save dialog box, create a directory for the project
and save the project vbp file, for example,
c:\overviewdockwin\overviewdockwin.vbp.

Creating the dockable window form

. DverviewDockWin - frmDockwin ... =] B3 Create a form to contain the MapControl display.

1. In the project window, right-click and add a new form.

2. Open the properties for the form, press F4, and change the name to
frmDockWin.

5_ ESRI MapControl L 3. Change the border style to 0—None.
4. Change the height to 3270 and width to 3570.

5. Click ESRI MapControl from the VB toolbox and drag the control just inside
the form. A white box labeled ESRI MapControl should appear in the form.

Adding code to the dockable window form

Open the code view for the form by right-clicking the form in the project win-

Chapter 5 ¢ Developer scenarios * 121

DoCKABLE WINDOW

dow and click View Code. Enter the following code into the form:

Option Explicit

Private m_pArcMapAV As TActiveView 'Use this ActiveView to draw on
Dim m_pExtent As IEnvelope 'Extent rectangle
Dim m_pFi11Sym As IFi11Symbol 'Rectangle draw symbol

PubTic Property Set ArcMapActiveView(ByVal pAV As IActiveView)
'"Property for handling the ActiveView of ArcMap locally
If (Not pAV Is Nothing) Then
Set m_pArcMapAV = pAV
Else
Set m_pArcMapAV = Nothing
End If
End Property

Private Sub Form_Load()
'"Turn off scrollbars.
MapControll.ShowScrollbars = False

'Set up the symbol for the envelope.
Set m_pFi11Sym = New SimpTeFi11Symbol
'Transparent color for fill

Dim pColor As IColor

Set pColor = New RgbColor
pColor.Transparency = 0
m_pFi11Sym.Color = pColor

'Set up symbol for the outline.
Dim pLineSym As ILineSymbol

Set pLineSym = New SimpleLineSymbol
'Color for outline

Set pColor = New RghColor
pColor.RGB = vbRed

pLineSym.Color = pColor
pLineSym.Width = 1.5

'Assign outline to fill symbol.
m_pFiT1Sym.OutTline = pLineSym

End Sub
Itis a good practice to remove your module Private Sub Form_Unload(Cancel As Integer)
variables when terminating a class or unloading "Eree memor
a form. Y-

Set m_pExtent = Nothing

Set m_pFi11Sym = Nothing

Set m_pArcMapAV = Nothing
End Sub

Private Sub MapControll_OnAfterDraw(ByVal display As Variant, Byval
viewDrawPhase As Long)

122 * ArcGIS Desktop Developer Guide

DoCKABLE WINDOW

Dim phase As esriViewDrawPhase
phase = viewDrawPhase

'Draw a red rectangle indicating the current extent of the overview.
If phase = esriViewForeground Then

If (Not m_pExtent Is Nothing And Not m_pFil1Sym Is Nothing And
m_pArcMapAV. FocusMap. LayerCount > 0) Then

MapControll.DrawShape m_pExtent, m_pFil1Sym
End If
End If
End Sub

Private Sub MapControll_OnMouseDown(ByVal button As Long, ByVal shift As
Long, ByVal X As Long, ByVal Y As Long, ByVal mapX As Double, ByVal mapY As
Double)

If (m_pArcMapAV.FocusMap.LayerCount = 0) Then Exit Sub
If (m_pExtent Is Nothing) Then Set m_pExtent = m_pArcMapAV.Extent

'Track a rectangle representing the new extent of the ActiveView in
ArcMap.

If (button = vbLeftButton) Then
Set m_pExtent = MapControll.TrackRectangle
m_pArcMapAV.Extent = m_pExtent

ElseIf (button = vbRightButton) Then
'Zoom out to full extent.
m_pArcMapAV.Extent = m_pArcMapAV. FullExtent
Set m_pExtent = m_pArcMapAV. FullExtent

End If

'Redraw the new extent of the map in ArcMap and draw the red rectangle.
m_pArcMapAV.Refresh
MapControll.Refresh esriViewForeground

End Sub

Save your project. Save the form inside the previous Save directory.

Add the dockable window class

A dockable window class defines the dockable window. This class implements
IDockableWindowDef.

Add a new class to the project.

1. Right-click in the project window and click Add > Class Module. A new
empty class is added to the project.

2. Open the properties for the new class, press F4, and rename the class as
DockWin.

Add the following code to the DockWin class:
Option Explicit

'Implementation of dockable window
Implements IDockableWindowDef

Chapter 5 ¢ Developer scenarios * 123

DoCKABLE WINDOW

The ChildHWND property defines the contents
of the dockable window by passing in the h\Wnd
of a control, such as a form or listbox.

124 * ArcGIS Desktop Developer Guide

Private Const EXPAND_FACTOR As Double = 1.2 ' Make the display a Tittle
bigger to see the full extent.

Dim m_pApp As TApplication

Dim m_pMXDoc As IMxDocument

Dim WithEvents m_pDocEvent As MxDocument 'Listen for the MxDocument events.
Dim WithEvents m_pMapEvent As Map 'Listen for the Map events.

Dim WithEvents m_pLayoutEvent As PagelLayout 'Listen for the PagelLayout events.
Private m_pfrmDockWin As frmDockWin

Private Sub Class_Initialize()
Set m_pfrmDockWin = New frmDockWin
End Sub

Private Sub Class_Terminate()
Set m_pfrmDockWin = Nothing
End Sub

Private Property Get IDockableWindowDef_Caption() As String
IDockableWindowDef_Caption = "Dockable Overview Window"
End Property

Private Property Get IDockableWindowDef_ChiTdHWND() As esriSystem.OLE_HANDLE
'Pass back the hWnd of the picturebox that contains the MapControl.
Load m_pfrmDockWin
IDockableWindowDef_ChiTdHWND = m_pfrmDockWin.MapControll.hWnd

End Property

Private Property Get IDockableWindowDef_Name() As String
IDockableWindowDef_Name = "Overview Window"
End Property

Private Sub IDockableWindowDef_OnCreate(ByVal hook As Object)
'The hook argument is a pointer to Application object.
Set m_pApp = hook
Set m_pMXDoc = m_pApp.Document

'Set event handlers.
Set m_pDocEvent = m_pApp.Document
Set m_pMapEvent = m_pMXDoc.FocusMap

'Let the mapcontrol know about the current ActiveView.
Set m_pfrmDockWin.ArcMapActiveView = m_pMXDoc. FocusMap

'Add overview layer to map control.
AddOverviewLayer

End Sub

Private Sub IDockableWindowDef_OnDestroy()

DoCKABLE WINDOW

'Free memory
Set m_pMapEvent = Nothing
Set m_pDocEvent = Nothing
Set m_plLayoutEvent = Nothing
Set m_pMXDoc = Nothing
Set m_pApp = Nothing

End Sub

Private Property Get IDockableWindowDef_UserData() As Variant
"Not impTemented
End Property

Private Function m_pDocEvent_BeforeCloseDocument() As Boolean
Set m_pfrmDockWin.ArcMapActiveView = Nothing
End Function

Private Function m_pDocEvent_MapsChanged() As Boolean

'Clear the mapcontrol and reset the reference to the map when a new
dataframe is added.

Set m_pMapEvent = m_pMXDoc.FocusMap

'Let the mapcontrol know about the current ActiveView.
Set m_pfrmDockWin.ArcMapActiveView = m_pMXDoc. FocusMap

'Add overview layer to map control.
AddOverviewLayer
End Function

Private Function m_pDocEvent_NewDocument() As Boolean
'Clear the mapcontrol and reset the reference to the Map and PagelLayout.
Set m_pMapEvent = m_pMXDoc. FocusMap
Set m_pLayoutEvent = m_pMXDoc.Pagelayout

m_pfrmDockWin.MapControll.ClearLayers
m_pfrmDockWin.MapControll.Refresh

'Let the mapcontrol know about the current ActiveView.
Set m_pfrmDockWin.ArcMapActiveView = m_pMXDoc. FocusMap
End Function

Private Function m_pDocEvent_OpenDocument() As Boolean
'Set the event handlers for map and pagelayout
Set m_pMapEvent = m_pMXDoc.FocusMap
Set m_pLayoutEvent = m_pMXDoc.PagelLayout

'Let the mapcontrol know about the current ActiveView.
Set m_pfrmDockWin.ArcMapActiveView = m_pMXDoc. FocusMap

Chapter 5 ¢ Developer scenarios * 125

DoCKABLE WINDOW

'Add overview layer to map control.
AddOverviewLayer
End Function

Private Sub m_pLayoutEvent_FocusMapChanged ()

'Handle a different map.

Set m_pMapEvent = m_pMXDoc. FocusMap

Set m_pfrmDockWin.ArcMapActiveView = m_pMXDoc.FocusMap
End Sub

Private Sub m_pMapEvent_ItemAdded(ByVal Item As Variant)
'Add new overview layer to map control.
AddOverviewLayer

End Sub

Private Sub m_pMapEvent_ItemDeleted(ByVal Item As Variant)
'Add new overview layer to map control.
AddOverviewLayer

End Sub

Private Sub m_pMapEvent_ItemReordered(ByVal Item As Variant, ByVal toIndex
As Long)

'Add new overview layer to map control.
AddOverviewLayer
End Sub

Private Function AddOverviewLayer()
The AddOverviewlayer function finds the layer 'Remove existing layer from map control.
with the largest extent in the map document m_pfrmDockWin.MapControll.Map.ClearlLayers

and uses that in the Overview window. Set m_pfrmDockWin.MapControll.SpatialReference =
m_pMXDoc. FocusMap . SpatialReference

m_pfrmDockWin.MapControll.Refresh

'Get the best overview layer from the Tayers present in the focus map.
If (m_pMXDoc.FocusMap.LayerCount > 0) Then

Dim pLayer As IlLayer

Set pLayer = GetBestOverviewlLayer(m_pMXDoc.FocusMap)

'Add the layer to the map control and set the extent to see rectangle.

If (Not pLayer Is Nothing) Then
m_pfrmDockWin.MapControll.AddLayer pLayer
Dim pEnv As IEnvelope
Set pEnv = pLayer.AreaOfInterest
pEnv.Expand EXPAND_FACTOR, EXPAND_FACTOR, True
m_pfrmDockWin.MapControll.FullExtent = pEnv
m_pfrmDockWin.MapControll.Refresh

End If

End If
End Function

126 * ArcGIS Desktop Developer Guide

DoCKABLE WINDOW

Private Function GetBestOverviewLayer(pMap As IMap) As ILayer
'Get polygon layer with largest extent.
Dim pLayer As ILayer
Dim pFeaturelLayer As IFeaturelLayer
Dim pBestLayer As IlLayer
Dim pEnumLayer As IEnumLayer
Dim pMaxEnv As IEnvelope
Dim pArea As IArea
Dim pBigArea As TArea

Set pMaxEnv = New Envelope

Set pEnumLayer = pMap.Layers

Set pLayer = pEnumLayer.Next

Set pBestlLayer = plLayer

Set pBigArea = pLayer.AreaOfInterest
Set pArea = pLayer.AreaOfInterest

'Find the layer that is the greatest area.
While (Not pLayer Is Nothing)
If (pArea.Area > pBigArea.Area) Then
Set pBestlLayer = pLayer
Set pBigArea = pArea
End If

Set pLayer = pEnumLayer.Next
If (Not pLayer Is Nothing) Then Set pArea = pLayer.AreaOfInterest
Wend

pBestLayer.Visible = True
Set GetBestOverviewLayer = pBestlLayer
End Function

Save your project. Save the class inside the previous Save directory.

Adding the resource file

The resource file for the project contains a bitmap that will be used as the button
icon for the dockable Ovetview Window command.

1. Right-click in the project window and click Add > Resource File.

2. In the Open a Resource File dialog box, browse to the
\DevelopetKit\samples\Developet_Guide_Scenatios\ArcGIS_Desktop\OvetrviewDocWin
directory and click OverViewDockWin.res.

You may browse the resource file and examine the bitmap.

Adding the overview dockable window command class

The final module to be added is the class that creates the command button to
display the dockable window. This class implements [Command.

Add a new class to the project.

Chapter 5 * Developer scenarios * 127

DoCKABLE WINDOW

1. Right-click in the project window and click Add > Class Module. A new
empty class is added to the project.

2. Open the properties for the new class, press F4, and rename the class as
CmdDockWin.

Add the following code to the CmdDockWin class:
Option Explicit

'Implementation of ICommand
Implements ICommand

Dim m_pApp As TApplication

Dim m_pDockWinMgr As IDockableWindowManager
Dim m_pDockWin As IDockableWindow

Dim m_pBitmap As IPictureDisp

Private Sub Class_Initialize()
Set m_pBitmap = LoadResPicture(101, 0)
End Sub

Private Sub Class_Terminate()
Set m_pBitmap = Nothing
End Sub

Private Property Get ICommand_Bitmap() As esriSystem.OLE_HANDLE
ICommand_Bitmap = m_pBitmap
End Property

Private Property Get ICommand_Caption() As String
ICommand_Caption = "Overview Dockable Window"
End Property

Private Property Get ICommand_Category() As String
ICommand_Category = "Developer Samples"
End Property

Private Property Get ICommand_Checked() As Boolean
'If the dockable window is visible, check the command
ICommand_Checked = m_pDockWin.IsVisible

End Property

Private Property Get ICommand_Enabled() As Boolean
ICommand_Enabled = True

End Property

Private Property Get ICommand_HelpContextID() As Long
'"Not implemented

End Property

Private Property Get ICommand_HelpFile() As String

128 * ArcGIS Desktop Developer Guide

DoCKABLE WINDOW

'"Not implemented
End Property

Private Property Get ICommand_Message() As String
ICommand_Message = "Display the dockable overview window"
End Property

Private Property Get ICommand_Name() As String
ICommand_Name = "DeveloperSamples_OverviewDockableWindow"
End Property

Private Sub ICommand_OnClick(
'Toggle the visibility of the dockable window.
Dim pMxdoc As IMxDocument
Set pMxdoc = m_pApp.Document
Set frmDockWin.ArcMapActiveView = pMxdoc.FocusMap
m_pDockWin.Show Not m_pDockWin.IsVisible

End Sub

Private Sub ICommand_OnCreate(ByVal hook As Object)
Set m_pApp = hook
The GetDockableWindow method finds the Set m_pDockWinMgr = m_pApp 'QI for IDockableWindowManager
dockable window in the application.

'Get a reference to the dockable window with map control.
Dim u As New UID
u.Value = "OverviewDockWin.Dockwin"
Set m_pDockWin = m_pDockWinMgr .GetDockableWindow(u)
End Sub

Private Property Get ICommand_Tooltip() As String
ICommand_Tooltip = "Overview Window"
End Property

Save your project. Save the class inside the previous Save directory.

Compiling the project
You are now ready to compile your project.

1. In VBG, click File, then click Make OverviewDockWin.dll.

This creates a single DLL that you can deploy. The next step is to register the
e <L DLL with the operating system, then use the Component Category Manager to
place the individual components within the DLL into the correct component
categories; for example, the DockWin class is registered with the Mx Dockable
Windows component category and the CmdDockWin Class with Mx Commands.

You can make this step semiautomatic, making deployment much easier for you
and users by using the ESRI Compile and Register add-in.

P Tesbur | o 1. In VBG, click Add-Ins > ESRI Compile and Register. The ESRI Compile and
Register dialog box appears.

Chapter 5 * Developer scenarios * 129

DoCKABLE WINDOW

2. In the Classes pane click CmdDockWin; in the Component Categories pane,
click ESRI Mx Commands.

3. In the Classes pane click DockWin; in the Component Categories pane, click
ESRI Mx Dockable Windows.

Click Compile, click Read, and click OK in the dialog boxes that follow:

This add-in creates a Windows registry merge file, OverviewDockWin.reg, that
can register the components in the correct component category.

To register the components using the merge file, first register the DLL with the
operating system if you have not done so already, then right-click the .reg file and
click Merge.

Using the dockable window in ArcMap

You are now ready to use the dockable window in
File | Edit View Insert Selection Tools Window Help . .
DEEE L BB | o | & [Tms =2 o0/ v @) ArcMap. YOL} will first need to drag the Overview

————— 2o [% Qf:rj‘s %, o - =l| Dockable Window command to a toolbat.

B B Major Rivers & |- e - 1 LT 1 S A M
— Major River Jul] . ol - Start ArcMap.
=] lakes =
[™ 2. Add two or more vector layers in the map docu-
= & ment.
he
;; 3. Open the Customize dialog box (Tools > Cus-
3 tomize).
1] . .
& 4. In the ‘Save in” dropdown menu, click the cur-
| T— _>I;I rent project, unless you want to have a global
[[129°5047.65°E 43°54'37.44"5 | 4 customization.

To move any dockable window without docking
it, hold down the Ctrl key while dragging the
window frame.

130 * ArcGIS Desktop Developer Guide

5. Click the Commands tab and click the Developer
Samples category. You should see the Overview Dockable Window command
in the Commands pane.

. Drag the Overview Dockable Window command to an existing toolbar.
. Close the Customize dialog box.

Zoom into the display window.

Nole R BN

. Click the Overview Dockable Window button. The Overview dockable
window should display.

The dockable window displays the layer with the largest extent. Spend some time
experimenting with the window by docking it to the ArcMap frame. You can also

drag a rectangle within the Overview window to change the extent in the
ArcMap display.

Deployment

The resulting DLL can easily be deployed to other machines using the methods
described in Chapter 4, ‘Licensing and deployment’.

Developer
environments

ArcObjects is based on Microsoft’s Component Object Model. End users of ArcGIS
applications don’t necessarily have to understand COM, but if you're a developer
intent on developing applications based on ArcObjects or extending the existing
ArcMap and ArcCatalog applications using ArcObjects, an understanding of COM
is a requirement.The level of understanding required depends on the depth of

customization or development you wish to undertake.

Although this appendix does not cover the entire COM environment, it provides
Visual Basic, Visual C++, and .NET developers with sufficient knowledge to be
effective in using ArcObjects.There are many coding tips and guidelines that

should make your work with ArcObjects more effective.

ESRI chose COM as the component technology
for ArcGIS because it is a mature technology that
offers good performance, many of today’s
development tools support it, and there are a
multitude of third-party components that can be
used to extend the functionality of ArcObjects.

The key to the success of components is that
they implement, in a very practical way, many of
the object-oriented principles now commonly
accepted in software engineering. Components
facilitate software reuse because they are self-
contained building blocks that can easily be
assembled into larger systems.

132 + ArcGIS Desktop Developer Guide

THE MicrosoFT CoMPONENT OBJEcT MODEL

Before discussing COM specifically, it is worth considering the wider use of soft-
ware components in general. There are a number of factors driving the motivation
behind software components, but the principal one is the fact that software devel-
opment is a costly and time-consuming venture.

In an ideal world, it should be possible to write a piece of code once and reuse it
again and again using a variety of development tools, even in circumstances that
the original developer did not foresee. Ideally, changes to the code’s functionality
made by the original developer could be deployed without requiring existing users
to change or recompile their code.

Early attempts at producing reusable chunks of code revolved around the creation
of class libraries, usually developed in C++. These eatly attempts suffered from
several limitations, notably difficulty of sharing parts of the system (it is difficult to
share binary C++ components—most attempts have only shared source code),
problems of persistence and updating C++ components without recompiling, lack
of good modeling languages and tools, and proprietary interfaces and customization
tools.

To counteract these and other problems, many software engineers have adopted
component-based approaches to system development. A software component is a
binaty unit of reusable code.

Several different but overlapping standards have emerged for developing and
sharing components. For building interactive desktop applications, Microsoft’s
COM is the de facto standard. On the Internet, JavaBeans™ is viable technology.
At a coarser grain appropriate for application-level interoperability, the Object
Management Group (OMG) has specified the common object request broker
architecture (CORBA).

To understand COM—and therefore all COM-based technologies—it’s important
to realize that it isn’t an object-oriented language but a protocol or standard.
COM is more than just a technology; it is a methodology of software develop-
ment. COM defines a protocol that connects one software component, or mod-
ule, with another. By making use of this protocol, it’s possible to build reusable
software components that can be dynamically interchanged in a distributed
system.

COM also defines a programming model, known as interface-based programming,
Objects encapsulate the manipulation methods and the data that characterize each
instantiated object behind a well-defined interface. This promotes structured and
safe system development since the client of an object is protected from knowing any
of the details of how a particular method is implemented. COM doesn’t specify
how an application should be structured. As an application programmer working
with COM, language, structure, and implementation details are left up to you.

COM does specify an object model and programming requirements that enable
COM objects to interact with other COM objects. These objects can be within a
single process, in other processes, or even on remote machines. They can be
written in other languages and may have been developed in very different ways.
That is why COM is referred to as a binary specification or standard—it is a
standard that applies after a program has been translated to binary machine code.

THE MicrosoFT CoMPONENT OBJEcT MODEL

COM allows these objects to be reused at a binary level, meaning that third-party
developers do not requite access to source code, header files, or object libraries to
extend the system even at the lowest level.

COMPONENTS, OBJECTS, CLIENTS, AND SERVERS

Different texts use the terms components, objects, clients, and servers to mean
different things (to add to the confusion, various texts refer to the same thing
using all of these terms). Therefore, it is worthwhile to define the terminology
that this book will use.

COM is a client/server architecture. The server (or object) provides some func-
tionality, and the client uses that functionality. COM facilitates the communica-
tion between the client and the object. An object can at the same time be a server
to a client and be a client of some other object’s services.

Objects are instances of COM classes that

make services available for use by a client. Hence] .
it is normal to talk of clients and objects instead Client > Server / Client > Server
of clients and servers.These objects are often VBApp.exe ArcMap.exe Map.dil

referred to as COM objects and component
objects. This book will refer to them simply as . . L . .
objects. The client and its servers can exist in the same process or in a different process

space. In-process servers are packaged in DLL form, and these DLLs are loaded
into the client’s address space when the client first accesses the server. Out-of-
process servers are packaged in executables (EXE) and run in their own address
space. COM makes the differences transparent to the client.

When creating COM objects, the developer must be aware of the type of server
that the objects will sit inside, but if the creator of the object has implemented
them correctly the packaging does not affect the use of the objects by the client.

There are pros and cons to each method of packaging that are symmetrically
opposite. DLLs are faster to load into memory, and calling a DLL function is
faster. EXEs, on the other hand, provide a more robust solution (if the server

Client and server

process space
myDLL yourDLL fails, the client will not crash), and security is better handled since the server has
b . .
For] & its own security context.
client server

MyC In a distributed system, EXEs are more flexible, and it does not matter if the
Objects inside an in-process server are accessed server has a different byte ordering than the client. The majority of ArcObjects
directly by their clients. . .
servers are packaged as in-process servers (DLLs). Later, you will see the perfor-
mance benefits associated with in-process servers.

process space process space
myEXE {:’“"E{‘é In a COM system, the client, or user of functionality, is completely isolated from

= the provider of that functionality, the object. All the client needs to know is that
vyCompuer the functionality is available; with this knowledge, the client can make method

Qs T A e e AT S S e £ calls to the object and expect the object to honor them. In this way, COM is said

accessed by COM-supplied proxy objects which
make access transparent to the client

b

client server

to act as a contract between client and object. If the object breaks that contract,
the behavior of the system will be unspecified. In this way, COM development is

process space process space based on trust between the implementer and the user of functionality.
myEXE YOurEXE
\MCE% In the ArcGIS applications there are many objects that provide, via their inter-
it cerver faces, thousands of properties and methods. When you use the ESRI object
MyComp YourC libraries you can assume that all these properties and interfaces have been fully

Objects inside an out-of-process server are
accessed by COM-supplied proxy objects which
make access transparent to the client. The COM

run-time handles the remoting layer

implemented, and if they are present on the object diagrams, they are there to
use.

Appendix A ¢ Developer environments ¢ |33

THE MicrosoFT CoMPONENT OBJEcT MODEL

IUnknown

InterfaceA

IUnknown

IUnknown
InterfaceB
IUnknown

InterfaceB
'

IClassFactory

1Unknown +

IClassFactory "
'

A server is a binary file that contains all the
code required by one or more COM classes.This
includes both the code that works with COM to
instantiate objects into memory and the code to

perform the methods supported by the objects
contained within the server.

Create GUID -]
Choose the desired format below. then select "Copy'” to B
copy the resuls to the dipboard [ihe results can then be
pasted irto your source code). Choose 'Exit” when Mew GUID
done,

~ GUID Fomat Ext

1. IMPLEMENT_OLECREATEL.)
" 2. DEFINE_GUIDL.]

3. static const struct GUID ={... }

[x]

(v 4, Fiegisty Format (ie, Do .. w1

- Result
{DFEZEBCT-033E -4atc-SE51-FE4ZEECESD 14}

GUIDGEN.EXE is a utility that ships with
Microsoft’s Visual Studio and provides an easy-to-
use user interface for generating GUIDs. It can
be found in the directory <VS Install
Dir>\Common\Tools.

The acronym GUID is commonly pronounced
“gwid”,

134 * ArcGIS Desktop Developer Guide

CLASS FACTORY

Within each server there is an object called a class factory that the COM run time
interacts with to instantiate objects of a particular class. For every corresponding
COM class there is a class factory. Normally, when a client requests an object
from a server, the appropriate class factory creates a new object and passes out
that object to the client.

SINGLETON OBJECTS

While this is the normal implementation, it is not the only implementation pos-
sible. The class factory can also create an instance of the object the first time and,
with subsequent calls, pass out the same object to clients. This type of implemen-
tation creates what is known as a singleton object since there is only one instance
of the object per process.

GLOBALLY UNIQUE IDENTIFIERS

A distributed system potentially has many thousands of interfaces, classes, and
servers, all of which must be referenced when locating and binding clients and
objects together at run time. Clearly, using human-readable names would lead to
the potential for clashes, hence COM uses GUIDs, 128-bit numbers that are
virtually guaranteed to be unique in the world. It is possible to generate 10
million GUIDs per second until the year 5770 A.D., and each one would be
unique.

The COM API defines a function that can be used to generate GUIDs; in addi-
tion, all COM-compliant development tools automatically assign GUIDs when
appropriate. GUIDs are the same as Universally Unique Identifiers (UUIDs),
defined by the Open Group’s Distributed Computing Environment (DCE) speci-
fication. Below is a sample GUID in registry format.

{E6BDAA76-4D35-11D0-98BE-00805F7CED21}

COM CLASSES AND INTERFACES

Developing with COM means developing using interfaces, the so-called interface-
based programming model. All communication between objects is made via their
interfaces. COM interfaces are abstract, meaning there is no implementation
associated with an interface; the code associated with an interface comes from a
class implementation. The interface sets out what requests can be made of an
object that chooses to implement the interface.

How an interface is implemented differs between objects. Thus the objects
inherit the type of interface, not its implementation, which is called type inherit-
ance. Functionality is modeled abstractly with the interfaces and implemented
within a class implementation. Classes and interfaces are often referred to as the
“What” and “How” of COM. The interface defines what an object can do, and
the class defines how it is done.

COM classes provide the code associated with one or more interfaces, thus encap-
sulating the functionality entirely within the class. Two classes can both have the
same interface, but they may implement them quite differently. By implementing
these interfaces in this way, COM displays classic object-oriented polymorphic
behavior. COM does not support the concept of multiple inheritance; however,

THE MicrosoFT CoMPONENT OBJEcT MODEL

this is not a shortcoming since individual classes can implement multiple inter-
Workspace- faces. See the diagram to the left on polymorphic behavior.
Factory [

i Within ArcObjects are three types of classes that the developer must be aware of:
y abstract classes, coclasses, and classes. An abstract class cannot be created; it is
solely a specification for instances of subclasses (through type inheritance).
ArcObjects Dataset or Geometry classes are examples of abstract classes. An
object of type Geometry cannot be created, but an object of type Polyline can.
This Polyline object in turn implements the interfaces defined within the Geom-
etry base class, hence any interfaces defined within object-based classes are acces-
This is a simplified portion of the geodatabase sible from the coclass.
abs‘:g;i;:;z:’;:gg:ﬁ] ?;z: ;’:]Zei:';t;:;;;'izsrg A coclass is a publicly creatable class. In other words, it is possible for COM to
classes. create an instance of that class and give the resultant object to the client in order
for the client to use the services defined by the interfaces of that class. A class
cannot be publicly created, but objects of this class can be created by other

objects within ArcObjects and given to clients to use.

To the left is a diagram that illustrates the polymorphic behavior exhibited in
COM classes when implementing interfaces. Notice that both the Human and
Parrot classes implement the [1a/k interface. The I1alk interface defines the
methods and properties, such as Startlalking, StopTalking, or Language, but clearly
the two classes implement these differently.

INSIDE INTERFACES

COM interfaces are how COM objects communicate with each other. When
working with COM objects, the developer never works with the COM object
directly but gains access to the object via one of its interfaces. COM interfaces
are designed to be a grouping of logically related functions. The virtual functions
are called by the client and implemented by the server; in this way an object’s

interfaces are the contract between the client and object. The client of an object
is holding an interface pointer onto that object. This interface pointer is referred
to as an opaque pointer since the client cannot gain any knowledge of the imple-
mentation details within an object or direct access to an object’s state data. The
client must communicate through the member functions of the interface. This
allows COM to provide a binary standard through which all objects can effec-

IDeath tively communicate.

IDeath

|Death Interfaces allow developers to model functionality abstractly. Visual C++ devel-

opers see interfaces as collections of pure virtual functions, while Visual Basic

This diagram shows how common behavior, developers see interfaces as collections of properties, functions, and sub routines.

expressed as interfaces, can be shared amon,
r:ultiple objects, animals in this example, tﬁ The concept of the interface is fundamental in COM. The COM Specification

support polymorphism. (Microsoft, 1995) emphasizes these four points when discussing COM interfaces:

1. An interface is not a class. An interface cannot be instantiated by itself since it
carries no implementation.

2. An interface is not an object. An interface is a related group of functions and
is the binary standard through which clients and objects communicate.

Appendix A ¢ Developer environments * |35

THE MicrosoFT CoMPONENT OBJEcT MODEL

An interface’s permanence is not restricted to
simply its method signatures, but extends to its
semantic behavior as well. For example, an
interface defines two methods,A and B, with no
restrictions placed on their use. It breaks the
COM contract if at a subsequent release
Method A requires that Method B be executed
first.A change like this would force possible
recompilations of clients.

The name IlUnknown came from a 1988
internal Microsoft paper called Object Archi-
tecture: Dealing with the Unknown — or —

Type Safety in a Dynamically Extensible Class
Library.

136 * ArcGIS Desktop Developer Guide

3. Interfaces are strongly typed. Every interface has its own interface identifier,
thereby eliminating the possibility of a collision between interfaces of the
same human-readable name.

4. Interfaces are immutable. Interfaces are never versioned. Once defined and
published, an interface cannot be changed.

Once an interface has been published, it is not possible to change the external
signature of that interface. It is possible at any time to change the implementa-
tion details of an object that exposes an interface. This change may be a minor
bug fix or a complete reworking of the underlying algorithm; the clients of the
interface do not care since the interface appears the same to them. This means
that when upgrades to the servers are deployed in the form of new DLLs and
EXE:s, existing clients need not be recompiled to make use of the new function-
ality. If the external signature of the interface is no longer sufficient, a new
interface is created to expose the new functions. Old or deprecated interfaces are
not removed from a class to ensure all existing client applications can continue to
communicate with the newly upgraded server. Newer clients will have the choice
of using the old or new interfaces.

THE IUNKNOWN INTERFACE

All COM interfaces detive from the [Unknown interface, and all COM objects
must implement this interface. The [Unknown interface performs two tasks: it
controls object lifetime and provides run-time type support. It is through the
1Unknown interface that clients maintain a reference on an object while it is in
use—leaving the actual lifetime management to the object itself.

Object lifetime is controlled with two methods, AddRef and Release, and an
internal reference counter. Every object must have an implementation of
IUnknown to control its own lifetime. Anytime an interface pointer is created or
duplicated, the AddRef method is called, and when the client no longer requires
this pointer, the corresponding Re/ase method is called. When the reference
count reaches zero, the object destroys itself.

Clients also use [Unknown to acquire other interfaces on an object. Querylnterface is
the method that a client calls when another interface on the object is required.
When a client calls Querylnterface, the object provides an interface and calls
AddRef. In fact, it is the responsibility of any COM method that returns an
interface to increment the reference count for the object on behalf of the caller.
The client must call the Release method when the interface is no longer needed.
The client calls AddRef explicitly only when an interface is duplicated.

When developing a COM object, the developer must obey the rules of
Querylnterface. These rules dictate that interfaces for an object are symmetric,
transitive, and reflexive and are always available for the lifetime of an object. For
the client this means that, given a valid interface to an object, it is always valid to
ask the object, via a call to Querylnterface, for any other interface on that object
including itself. It is not possible to support an interface and later deny access to
that interface, perhaps because of time or security constraints. Other mechanisms

THE MicrosoFT CoMPONENT OBJEcT MODEL

interfaces
are reflexive O =

interfaces (=
are symmetric el

interfaces -
are transitive 1

The rules of QuerylInterface dictate that
interfaces of an object are reflexive, symmetric,
and transitive. It is always possible, holding a
valid interface pointer on an object, to get any
other interface on that object.

The method Querylnterface is often referred
to by the abbreviation QI.

Since IlUnknown is fundamental to all COM
objects, in general there are no references to
IUnknown in any of the ArcObjects documenta-
tion and class diagrams.

Smart pointers are a class-based smart type and
are covered in detail later in this appendix.

MIDL is commonly referred to simply as IDL.

The IDL defines the public interface that
developers use when working with ArcObjects.
When compiled, the IDL creates a type library.

must be used to provide this level of functionality. Some classes support the
concept of optional interfaces. Depending on the coclass, they may optionally
implement an interface; this does not break this rule since the interface is either
always available or always not available on the class.

When requested for a particular interface, the Querylnterface method can return an
already assigned piece of memory for that requested interface, or it can allocate a
new piece of memory and return that. The only case when the same piece of
memory must be returned is when the IUnknown interface is requested. When
comparing two interface pointers to see if they point to the same object, it is
important that a simple comparison not be performed. To correctly compare two
interface pointers to see if they are for the same object, they both must be que-
ried for their [Unknown interface, and the comparison must be performed on the
1Unknown pointers. In this way, the [Unknown interface is said to define a COM
object’s identity.

It’s good practice in Visual Basic to call Re/ease explicitly by assigning an interface
equal to Nothing to release any resources it’s holding. Even if you don’t call Re-
Jease, Visual Basic will automatically call it when you no longer need the object—
that is, when it goes out of scope. With global variables, you must explicitly call
Release. In Visual Basic, the system performs all these reference-counting opera-
tions for you, making the use of COM objects relatively straightforward.

In C++, however, you must increment and decrement the reference count to
allow an object to correctly control its own lifetime. Likewise, the Querylnterface
method must be called when asking for another interface. In C++ the use of
smart pointers simplifies much of this. These smart pointers are class-based and
hence have appropriate constructors, destructors, and overloaded operators to
automate much of the reference counting and query interface operations.

INTERFACE DEFINITION LANGUAGE

Microsoft Interface Definition Language (MIDL) is used to desctibe COM objects
including their interfaces. This MIDL is an extension of the IDL defined by the
Distributed Computing Environment (DCE), where it used to define remote proce-
dure calls between clients and servers. The MIDL extensions include most of the
Object Definition Language (ODL) statements and attributes. ODL was used in the
carly days of OLE automation for the creation of type libraries.

TYPE LIBRARY

A type library is best thought of as a binary version of an Interface Definition
Language (IDL) file. It contains a binary description of all coclasses, interfaces,
methods, and types contained within a server or setvers.

There are several COM interfaces provided by Microsoft that work with type
libraries. Two of these interfaces are ITypelnfo and ITypel ib. By utilizing these
standard COM interfaces, various development tools and compilers can gain
information about the coclasses and interfaces supported by a particular library.

To support the concept of a language-independent development set of compo-
nents, all relevant data concerning the ArcObjects libraries is shipped inside type
libraries. There are no header files, source files, or object files supplied or needed
by external developers.

Appendix A ¢ Developer environments ¢ |37

THE MicrosoFT CoMPONENT OBJEcT MODEL

outbound interface
inbound interface

interface

interface

In the diagrams in this book and the ArcObjects
object model diagrams, outbound interfaces are
depicted with a solid circle on the interface jack.

The reason for making lUnknown the default
interface is because the VB object browser hides
information for the default interface.The fact
that it hides lUnknown is not important for VB
developers.

138 * ArcGIS Desktop Developer Guide

INBOUND AND OUTBOUND INTERFACES

Interfaces can be either inbound or outbound. An inbound interface is the most
common kind—the client makes calls to functions within the interface contained
on an object. An outbound interface is one where the object makes calls to the
client—a technique analogous to the traditional callback mechanism.

There are differences in the way these interfaces are implemented. The implementer
of an inbound interface must implement all functions of the interface; failure to do
so breaks the contract of COM. This is also true for outbound interfaces. If you use
Visual Basic, you don’t have to implement all functions present on the interface
since it provides stub methods for the methods you don’t implement. On the other
hand, if you use C++ you must implement all the pure virtual functions to compile
the class.

Connection points is a specific methodology for working with outbound COM
interfaces. The connection point architecture defines how the communication

between objects is set up and taken down. Connection points are not the most
efficient way of initializing bidirectional object communication, but they are in
common use because many development tools and environments support them.

Dispatch event interfaces

There are some objects with ArcObjects that support two outbound event inter-
faces that look similar to the methods they support. An example of two such
interfaces are the IDocumentEvents and the IDocumentEventsDisp. The “Disp” suffix
denotes a pure Dispatch interface. These dispatch interfaces are used by VBA when
dealing with certain application events, such as loading documents. A VBA program-
mer works with the dispatch interfaces, while a developer using another develop-
ment language uses the nonpure dispatch interface. Since these dispatch event
interfaces are application specific, the details are discussed in the application chap-
ters of the book, not the framework chapter.

Default interfaces

Every COM object has a default interface that is returned when the object is
created if no other interface is specified. All the objects within the ESRI object
libraries have [Unknown as their default interface, with a few exceptions.

The default interface of the Application object for both ArcCatalog and ArcMap is
the LApplication interface. These uses of nonlUnknown default interfaces are a
requirement of Visual Basic for Applications and are found on the ArcMap and
ArcCatalog application-level objects.

This means that variables that hold interface pointers must be declared in a
certain way. For more details, see the coding sections later in this appendix. When
COM objects are created, any of the supported interfaces can be requested at
creation time.

THE MicrosoFT CoMPONENT OBJEcT MODEL

Binding is the term given to the process of
matching the location of a function given a
pointer to an object.

In process
Binding type DLL

Late binding 22,250 5,000
825000 | 20000 |

Out of process

‘ Custom vTable binding ‘

This table shows the number of function calls
that can be made per second on a typical
Pentium® Ill machine.

Custom - Map

vTable

QuerylInterface

IUnknown AddRef
Release
Name
IMap Description

AreaOfInterest

Dual - Application

vTable
QuerylInterface
AddRef

IUnknown

Release

GetTypelnfoCount

GetTypelnfo
GetIDsOfNames

IDispatch

/—/\ﬁ/—Aﬁ —

Invoke

Name

|Application Document

StatusBar

These diagrams summarize the custom and
IDispatch interfaces for two classes in
ArcObjects.The layout of the vTable displays the
differences. It also illustrates the importance of
implementing all methods—if one method is
missing, the vTable will have the wrong layout,
and hence the wrong function pointer would be
returned to the client, resulting in a system
crash.

IDispatch interface
COM supports three types of binding:

1. Late. This is where type discovery is left until run time. Method calls made by
the client but not implemented by the object will fail at execution time.

2. ID. Method IDs are stored at compile time, but execution of the method is
still performed through a higher-level function.

3. Custom vTable (early). Binding is performed at compile time. The client can
then make method calls directly into the object.

The IDispatch interface supports late- and ID-binding languages. The IDispatch
interface has methods that allow clients to ask the object what methods it sup-
ports.

Assuming the required method is supported, the client executes the method by
calling the IDispatch::Invoke method. This method, in turn, calls the required
method and returns the status and any parameters back to the client on comple-
tion of the method call.

Clearly, this is not the most efficient way to make calls on a COM object. Late
binding requires a call to the object to retrieve the list of method IDs; the client
must then construct the call to the Invoke method and call it. The Invoke method
must then unpack the method parameters and call the function.

All these steps add significant overhead to the time it takes to execute a method.
In addition, every object must have an implementation for IDispatch, which
makes all objects larger and adds to their development time.

ID binding offers a slight improvement over late binding in that the method IDs
are cached at compile time, which means the initial call to retrieve the IDs is not
required. However, there is still significant call overhead because the

IDispatch::Invoke method is still called execute the required method on the object.

Early binding, often referred to as custom vTable binding, does not use the
IDispatch interface. Instead, a type library provides the required information at
compile time to allow the client to know the layout of the server object. At run
time, the client makes method calls directly into the object. This is the fastest
method of calling object methods and also has the benefit of compile-time type
checking,

Objects that support both IDisparch and custom vTable are referred to as dual
interface objects. The object classes within the ESRI object libraries do not
implement the [Dispatch interface; this means that these object libraries cannot be
used with late-binding scripting languages, such as JavaScript™ or VBScript,
since these languages require that all COM servers accessed support the IDispatch
interface.

Careful examination of the ArcGIS class diagrams indicates that the Application
objects support IDispatch because there is a requirement in VBA for the IDispatch
interface.

Appendix A ¢ Developer environments ¢ |39

THE MicrosoFT CoMPONENT OBJEcT MODEL

Interfaces that directly inherit from an interface
other than [lUnknown cannot be implemented
inVB.

COM

. O lUnknown
containment

class

method1
method2

interface2 o—pf method3
method4
COM

aggregation

interface1 ©

O IUnknown (controlling)
child class —

parent class class

interface1 o

method1
method2

interface2 O—pf method3
method4

O lUnknown

Custom
feature

class

method3
method4

interface1 ©

A

interface2 © method1

method2

method5
method6

interface3 ©

interface4 O—pf method7
method8

140 * ArcGIS Desktop Developer Guide

All ActiveX controls support IDispatch. This means it is possible to use the vari-
ous ActiveX controls shipped with ArcObjects to access functionality from
within scripting environments.

INTERFACE INHERITANCE

An interface consists of a group of methods and properties. If one interface
inherits from another, then all of the methods and properties in the parent are
directly available in the inheriting object.

The underlying principle here is interface inheritance, rather than the implementa-
tion inheritance you may have seen in languages such as SmallTalk and C++. In
implementation inheritance, an object inherits actual code from its parent; in
interface inheritance, it’s the definitions of the methods of the object that are
passed on. The coclass that implements the interfaces must provide the imple-
mentation for all inherited interfaces.

Implementation inheritance is not supported in a heterogeneous development
environment because of the need to access source and header files. For reuse of
code, COM uses the principles of aggregation and containment. Both of these are
binaty-reuse techniques.

AGGREGATION AND CONTAINMENT

For a third-party developer to make use of existing objects, using either contain-
ment or aggregation, the only requirement is that the server housing the contained
or aggregated object is installed on both the developer and target release ma-
chines. Not all development languages support aggregation.

The simplest form of binaty reuse is containment. Containment allows modifica-
tion of the original object’s method behavior but not the method’s signature.
With containment, the contained object (inner) has no knowledge that it is
contained within another object (outer). The outer object must implement all the
interfaces supported by the inner. When requests are made on these interfaces,
the outer object simply delegates them to the inner. To support new functionality,
the outer object can either implement one of the interfaces without passing the
calls on or implement an entirely new interface in addition to those interfaces
from the inner object.

COM aggregation involves an outer object that controls which interfaces it
chooses to expose from an inner object. Aggregation does not allow modification
of the original object’s method behavior. The inner object is aware that it is being
aggregated into another object and forwards any Querylnterface calls to the outer
(controlling) object so that the object as a whole obeys the laws of COM.

To the clients of an object using aggregation, there is no way to distinguish which
interfaces the outer object implements and which interfaces the inner object
implements.

Custom features make use of both containment and aggregation. The developer
aggregates the interfaces where no customizations are required and contains those
that are to be customized. The individual methods on the contained interfaces can
then either be implemented in the customized class, thus providing custom function-
ality, or the method call can be passed to the appropriate method on the contained
interface.

THE MicrosoFT CoMPONENT OBJEcT MODEL

Aggregation is important in this case since there are some hidden interfaces defined
on a feature that cannot be contained.

Visual Basic 6 does not support aggregation, so it can’t be used to create custom
features.

THREADS, APARTMENTS, AND MARSHALLING

A thread is a process flow through an application. There are potentially many
threads within Windows applications. An apartment is a group of threads that
work with contexts within a process. With COM+, a context belongs to one

Although an understanding of apartments and apartment. There are potentially many types of context; security is an example of

threading is not essential in the use of a type of context. Before successfully communicating with each other, objects
ArcObjects, basic knowledge will help you must have compatible contexts.
understand some of the implications with certain
development environments highlighted later in COM supports two types of apartments: single-threaded apartment and

this appendix. multithreaded apartment (MTA). COM+ supports the additional thread-neutral
apartment (TNA). A process can have any number of ST'As; each process creates
one STA called the main apartment. Threads that are created as apartments are
placed in an STA. All user interface code is placed in an STA to prevent deadlock
situations. A process can only have one MTA. A thread that is started as multi-
threaded is placed in the MTA. The TNA has no threads permanently associated
with it; rather, threads enter and leave the apartment when appropriate.

In-process objects have an entry in the registry, the ThreadingModel, that informs
the COM Service Control Manager (SCM) into which apartment to place the
object. If the object’s requested apartment is compatible with the creator’s apart-
ment, the object is placed in that apartment; otherwise, the SCM will find or

Apartments create the appropriate apartment. If no threading model is defined, the object
process space will be placed in the main apartment of the process. The ThreadingModel registry
Single threaded apartment Thread entry can have the following values:
(main apartment) neutral
O | |spariment 1. Apartment. Object must be executed within the STA. Normally used by UI
Single threaded apartment ObiCCtS.

© 2. Free. Object must be executed within the MTA. Objects creating threads are
Single threaded apartment normally placed in the MTA.

O

Multi-threaded apartment

3. Both. Object is compatible with all apartment types. The object will be created
in the same apartment as the creator.

© © 4. Neutral. Objects must execute in the TNA. Used by objects to ensure there is
no thread switch when called from other apartments. This is only available
Think of the SCM (pronounced scum) as the under COM+.

COM run-time environment.The SCM interacts
with objects, servers, and the operating system Marshalling enables a client to make interface-function calls to objects in other

and provides the transparency between clients apartments transparently. Marshalling can occur between COM apartments on
and the objects that they work with. different machines, between COM apartments in different process spaces, and
between COM apartments in the same process space (STA to MTA, for example).
COM provides a standard marshaller that handles function calls that use automa-
tion-compliant data types (see table below). Nonautomation data types can be
handled by the standard marshaller as long as proxy stub code is generated; other-
wise, custom marshalling code is required.

Appendix A ¢ Developer environments ¢ [4]

THE MicrosoFT CoMPONENT OBJEcT MODEL

i’ Registry Editor
Fle Edb View Favortes Hep

Type Description

Boolean | Data item that can have the value True or False

unsigned char | 8-bit unsigned data item

double | 64-bit IEEE floating-point number

float | 32-bit IEEE floating-point number

int | Signed integer, whose size is system dependent

long | 32-bit signed integer

short | 16-bit signed integer

BSTR | Length-prefixed string
CURRENCY | 8-byte, fixed-point number

DATE | 64-bit, floating-point fractional number of days since Dec 30, 1899
SCODE | For 16-bit systems - Built-in error that corresponds to VT_ERROR

Typedef enum myenum | Signed integer, whose size is system dependent

Interface IDispatch * | Pointer to the IDispatch interface

Interface IlUnknown * | Pointer to an interface that does not derive from IDispatch

dispinterface Typename * | Pointer to an interface derived from IDispatch

Coclass Typename * | Pointer to a coclass name (VT_UNKNOWN)

[ion] interface Typ * | Pointer to an interface that derives from IDispatch

SAFEARRAY(TypeName) | TypeName is any of the above types. Array of these types

TypeName* | TypeName is any of the above types. Pointer to a type

96-bit unsigned binary integer scaled by a variable power of 10. A decimal data

Decimal . . : "
type that provides a size and scale for a number (as in coordinates)

COMPONENT CATEGORY

Component categories are used by client applications to find all COM classes of a
particular type that are installed on the system efficiently. For example, a client
application may support a data export function in which you can specify the
output format—a component category could be used to find all the data export
classes for the various formats. If component categories are not used, the applica-
tion has to instantiate each object and interrogate it to see if it supports the
required functionality, which is not a practical approach. Component categories
support the extensibility of COM by allowing the developer of the client applica-
tion to create and work with classes that belong to a particular category. If at a
later date a new class is added to the category, the client application need not be
changed to take advantage of the new class; it will automatically pick up the new
class the next time the category is read.

COM AND THE REGISTRY

COM makes use of the Windows system registry to store information about the
vatious parts that compose a COM system. The classes, interfaces, DLLs, EXEs,
type libraries, and so forth, are all given unique identifiers (GUIDs) that the SCM
uses when referencing these components. To see an example of
| this, run regedit, then open HKEY_ CLASSES_ROOT. This

estiCarto.Featwelndex) [Hame [Type [Data

opens a list of all the classes registered on the system.

estiCarta, Featurelndex.1 [(pefauty REG_5Z
{2 esriCarta.FeatureL ayer
=@ atureLayer.l _j

{20 esriCarto FeatursLayerSels
esriCarto, FeatureLayersels
estiCarto.FieldInfo

{2 estiCarto.Fieldinfo. 1

{2 estiCarto, FormattedGridLat
{0 esriCarto, FormattedGridLat _,

T

{E663A651-5AAD-11 DO-BECT-D0BOSF7C4268}

COM makes use of the registry for a number of housekeeping
tasks, but the most important and most easily understood is
the use of the registry when instantiating COM objects into

My ComputeriHKEY_CLASSES ROOTesriCarto.Featurelayer. 11CLSID

ESRI keys in the Windows system registry

142 » ArcGIS Desktop Developer Guide

THE MicrosoFT CoMPONENT OBJEcT MODEL

memory. In the simplest case, that of an in-process server, the steps are as
follows:

1. Client requests the services of a COM object.

2. SCM looks for the requested objects registry entry by searching on the class ID
(a GUID).

The function DlIGetClassObject is the function 3. DLL is located and loaded into memory. The SCM calls a function within the

that makes a DLL a COM DLL. Other functions, DLL called D//GetClassObject, passing the desired class as the first argument.
such as DlIRegisterServer and

DllUnregisterServer, are nice to have but not 4. 'The class object normally implements the interface ICiassFactory. The SCM
essential for a DLL to function as a COM DLL. calls the method Createlnstance on this interface to instantiate the appropriate

object into memory.

5. Finally, the SCM asks the newly created object for the interface that the client
requested and passes that interface back to the client. At this stage, the SCM
drops out of the equation, and the client and object communicate directly.

From the above sequence of steps, it is easy to imagine how changes in the
object’s packaging (DLL versus EXE) make little difference to the client of the
object. COM handles these differences.

AUTOMATION

Automation is the technology used by individual objects or entire applications to
provide access to their encapsulated functionality via a late-bound language.
Commonly, automation is thought of as writing macros, where these macros can
access many applications for a task to be done. ArcObjects, as already stated, does
not support the IDispatch interface; hence it cannot be used alone by an automa-
tion controller.

It is possible to instantiate an instance of ArcMap by cocreating the document
object and making calls into ArcMap via the document object or one of its
connected objects. There are, however, problems with this approach since the
automation controller instance and the ArcMap instance are running in separate
processes. Many of the objects contained within ArcObjects are process depen-
dent, and therefore simple Automation will not work.

Appendix A ¢ Developer environments ¢ 143

DEVELOPING WITH ARcCcOBJECTS

For simplicity, some samples will not follow the
coding standards.As an example, it is recom-
mended that when coding in Visual Basic, all

types defined within an ESRI object library are
prefixed with the library name, for example,
esriGeometry.IPolyline.This is only done in
samples in which a name clash will occur.
Omitting this text makes the code easier to
understand for developers new to ArcObjects.

144 « ArcGIS Desktop Developer Guide

ArcGIS applications are built using ArcObjects and can be developed via several
APIs. These include COM (VB, VC++, Delphi, MainWin), NET (VB .NET and
C#), Java, and C++. Some APIs are more suitable than others for developing
certain applications. This is briefly discussed later, but you should also read the
appropriate developer guide for the product you are working with for more
information and recommendations on which API to use.

The subsequent sections of this appendix cover some general guidelines and
considerations when developing with ArcObjects regardless of the API. Some of
the more common API languages each then have a section describing the develop-
ment environment, programming techniques, resources, and any other issues you
must consider when developing with ArcObjects.

CODING STANDARDS

Each of the language-specific sections begins with a section on coding standards
for that language. These standards are used internally at ESRI and are followed by
the samples that ship with the software.

To understand why standards and guidelines are important, consider that in any
large software development project, there are many backgrounds represented by
the team members. Each programmer has personal opinions concerning how code
should look and be built. If each programmer engineers code differently, it be-
comes increasingly difficult to share work and ideas. On a successful team, the
developers adapt their coding styles to the tone set by the group. Often, this
means adapting one’s code to match the style of existing code in the system.

Initially, this may seem burdensome, but adopting a uniform programming style
and set of techniques invariably increases software quality. When all the code in a
project conforms to a standard set of styles and conventions, less time is wasted
learning the particular syntactic quirks of individual programmers, and more time
can be spent reviewing, debugging, and extending the code. Even at a social level,
uniform style encourages team-oriented, rather than individualist, outlooks—
leading to greater team unity, productivity and, ultimately, better software.

GENERAL CODING TIPS AND RESOURCES

This section on general coding tips will benefit all developers working with
ArcObjects no matter what language they are using. Code examples are shown in
VBA, however.

Class diagrams

Getting help with the object model is fundamental to successfully working with
ArcObjects. Appendix B, ‘Reading the object model diagrams’, provides an intro-
duction to the class diagrams and shows many of the common routes through
objects. The class diagrams are most useful if viewed in the eatly learning process
in printed form. This allows developers to appreciate the overall structure of the
object model implemented by ArcObjects. When you are comfortable with the
overall structure, the PDF files included with the software distribution can be
mote effective to wotk with. The PDF files ate searchable; you can use the
Search dialog box in Adobe® Acrobat® Readet® to find classes and interfaces
quickly.

DEVELOPING WITH ARCOBJECTS

Object browsers

In addition to the class diagram PDF files, the type library information can be
viewed using a number of object browsers depending on your development
platform.

Visual Basic and .NET have built-in object browsers; OLEView (a free utility
from Microsoft) also displays type library information. The best object viewer to
use in this environment is the ESRI object viewer. This object viewer can be used
to view type information for any type library that you reference within it. Infor-
mation on the classes and interfaces can be displayed in Visual Basic, Visual C++,
or object diagram format. The object browsers can view coclasses and classes but
cannot be used to view abstract classes. Abstract classes are only viewable on the
object diagrams, where their use is solely to simplify the models.

Java and C++ developers should refer to the ArcObjects JavaDoc or ArcGIS
Developer Help.

Component help

All interfaces and coclasses are documented in the component help file. Ulti-
mately, this will be the help most commonly accessed when you get to know the
object models better.

For Visual Basic and NET developers this is a compiled HTML file that can be
viewed by itself or when using an IDE. If the cursor is over an ESRI type when
the F1 key is pressed, the appropriate page in the ArcObjects Class Help in the
ArcGIS Developer Help system is displayed in the compiled HTML viewer.

For Java and C++ developers, refer to ArcObjects JavaDoc or ArcGIS Developer
Help.

Code wizards

There are a number of Code Generation Wizards available to help with the
creation of boilerplate code, both in Visual Basic, Visual C++, and .NET. While
these wizards are useful in removing the tediousness in common tasks, they do
not excuse you as the developer from understanding the underlying principles of
the generated code. The main objective should be to read the accompanying
documentation and understand the limitations of these tools.

Indexing of collections

- All collection-like objects in ArcObjects are zero-based for their indexing, This is
not the case with all development environments; Visual Basic has both zero- and

one-based collections. As a general rule, if the collection base is not known,

assume that the collection base is zero. This ensures that a run-time error will be
raised when the collection is first accessed (assuming the access of the collection

does not start at zero). Assuming a base of one means the first element of a zero-

This graph shows the performance benefits of based collection would be missed and an etror would only be raised if the end of
accessing a collection using an enumerator
opposed to the elements index.As expected, the
graph shows a classic power trend line
(y=cx®).The client (VB) and Server (VC++) code
used to generate these metrics are included in
the book samples.

the collection were reached when the code is executed.

Appendix A ¢ Developer environments ¢ 45

DEVELOPING WITH ARCOBJECTS

Exception handling is language specific and, since
COM is language neutral, exceptions are not
supported.

146 * ArcGIS Desktop Developer Guide

Accessing collection elements

When accessing elements of a collection sequentially, it is best to use an enumera-
tor interface. This provides the fastest method of walking through the collection.
The reason for this is that each time an element is requested by index, internally
an enumerator is used to locate the element. Hence, if the collection is looped
over getting each clement in turn, the time taken increases by power (y=cx®).

Enumerator use

When requesting an enumerator interface from an object, the client has no idea
how the object has implemented this interface. The object may create a new
enumerator, or it may decide for efficiency to return a previously created enu-
merator. If a previous enumerator is passed to the client, the position of the
clement pointer will be at the last accessed element. To ensure that the enumera-
tor is at the start of the collection, the client should reset the enumerator before
use.

Error handling

All methods of interfaces, in other words, methods callable from other objects,
should handle internal errors and signify success or failure via an appropriate
HRESULT. COM does not support passing exceptions out of interface method
calls. COM supports the notion of a COM exception. A COM exception utilizes
the COM error object by populating it with relevant information and returning an
appropriate HRESULT to signify failure. Clients, on receiving the HRESULT,
can then interrogate the COM Error object for contextual information about the
error. Languages such as Visual Basic implement their own form of exception
handling. For more information, see the API language with which you are devel-

oping.

Notification interfaces

There are a number of interfaces in ArcObjects that have no methods. These are
known as notification interfaces. Their purpose is to inform the application
framework that the class that implements them supports a particular set of
functionality. For instance, the Application Framework uses these interfaces to
determine if a menu object is a root-level menu (IRootLevelMenu) ot a context
menu (IShortcutMenn).

Clientside storage

Some ArcObjects methods expect interface pointers to point to valid objects
prior to making the method call. This is known as client storage since the client
allocates the memory needed for the object before the method call. Suppose you
have a polygon and you want to get its bounding box. To do this, use the
QueryEnvelope method on IPolygon. If you write the following code:

Dim pEnv As IEnvelope

pPolygon.QueryEnvelope pEnv
you’ll get an error because the QueryEnvelope method expects you (the client) to
create the Envelgpe. The method will modify the envelope you pass in and return
the changed one back to you. The correct code is shown below.

DEVELOPING WITH ARCOBJECTS

Dim pEnv As IEnvelope

Set pEnv = New Envelope

pPolygon.QueryEnvelope pEnv
How do you know when to create and when not to create? In general, all meth-
ods that begin with “Query”, such as QueryEnvelope, expect you to create the
object. If the method name is GezEnvelope, then an object will be created for you.
The reason for this clientside storage is performance. Where it is anticipated that
the method on an object will be called in a tight loop, the parameters need only
be created once and simply populated. This is faster than creating new objects
inside the method each time.

Property by value and by reference

Occasionally, you will see a property that can be set by value or by reference,
meaning that it has both a put XXX and a putref XXX method. On first appear-
ance this may seem odd—why does a property need to support both? A Visual
C++ developer sees this as simply giving the client the opportunity to pass own-
ership of a resource over to the server (using the putref XXX method). A Visual
Basic developer will see this as quite different; indeed, it is likely because of the
Visual Basic developer that both By Reference and By Value are supported on the

property.
To illustrate this, assume there are two text boxes on a form, Text]l and Text2.
With a propput, it is possible to do the following in Visual Basic:
Textl.text = Text2.text
It is also possible to write this:
Textl.text = Text2
or this:
Textl = Text2

All these cases make use of the propput method to assign the text string of text

DISPIDs are unique IDs given to properties and box Text2 to the text string of text box Textl. The second and third cases work

methods for the IDispatch interface to effi- K
ciently call the appropriate method using the because no specific property is stated, so Visual Basic looks for the property with

Invoke method. a DISPID of 0.

This all makes sense assuming that it is the text string property of the text box
that is manipulated. What happens if the actual object referenced by the variable
Text2 is to be assigned to the variable Text1? If there was only a propput method
it would not be possible; hence the need for a propputref method. With the
propputref method, the following code will achieve the setting of the object
reference.

Set Textl = Text2
Notice the use of the “Set”.

Initializing Outbound interfaces

When initializing an Outbound interface, it is important to only initialize the
variable if the variable does not already listen to events from the server object.
Failure to follow this rule will result in an infinite loop.

Appendix A ¢ Developer environments * [47

DEVELOPING WITH ARCOBJECTS

148 * ArcGIS Desktop Developer Guide

As an example, assume there is a variable |7ewEvents that has been dimensioned
as:
Private WithEvents ViewEvents As Map

To correctly sink this event handler, you can write code within the OnClick event
of a UI button control, like this:
Private Sub UIButtonControll_Click()

Dim pMxDoc As IMxDocument

Set pMxDoc = ThisDocument

' Check to see that the map is different than what is currently connected
If (Not ViewEvents Is pMxDoc.FocusMap) Then
' Sink the event since Tlistener has not been initialized with this map
Set ViewEvents = pMxDoc.FocusMap
End If
End Sub

Notice in the above code the use of the Is keyword to check for object identity.

DATABASE CONSIDERATIONS

When programming against the database, there are a number of rules that must
be followed to ensure that the code will be optimal. These rules are detailed
below.

If you are going to edit data programmatically, that is, not use the editing tools in
ArcMap, you need to follow these rules to ensure that custom object behavior,
such as network topology maintenance or triggering of custom-feature-defined
methods, is correctly invoked in response to the changes your application makes
to the database. You must also follow these rules to ensure that your changes are
made within the multiuser editing (long transaction) framework.

Edit sessions

Make all changes to the geodatabase within an edit session, which is bracketed
between StartEditing and StopEditing method calls on the IWorkspaceEdit interface
found on theWorkspace obiject.

This behavior is required for any multiuser update of the database. Starting an
edit session gives the application a state of the database that is guaranteed not to
change, except for changes made by the editing application.

In addition, starting an edit session turns on behavior in the geodatabase such that
a query against the database is guaranteed to return a reference to an existing
object in memory if the object was previously retrieved and is still in use.

This behavior is required for correct application behavior when navigating be-
tween a cluster of related objects while making modifications to objects. In other
words, when you are not within an edit session, the database can create a new
instance of a COM object each time the application requests a particular object
from the database.

DEVELOPING WITH ARCOBJECTS

Edit operations

Group your changes into edit operations, which are bracketed between the
StartEditOperation and StopEditOperation method calls on the [WorkspaceEdit inter-
face.

You may make all your changes within a single edit operation if so required. Edit
operations can be undone and redone. If you are working with data stored in
ArcSDE, creating at least one edit operation is a requirement. There is no addi-
tional overhead to creating an edit operation.

Recycling and nonrecycling cursors

Use nonrecycling search cursors to select objects or fetch objects that are to be
updated. Recycling cursors should only be used for read-only operations, such as
drawing and querying features.

Nonrecycling cursors within an edit session create new objects only if the object
to be returned does not already exist in memory.

Fetching properties using query filters

Always fetch all properties of the object; query filters should always use “*”. For
efficient database access, the number of properties of an object retrieved from
the database can be specified. As an example, drawing a feature requires only the
OID and the Shape of the feature, hence the simpler renderers only retrieve these
two columns from the database. This optimization speeds up drawing but is not
suitable when editing features.

If all properties are not fetched, then object-specific code that is triggered may
not find the properties that the method requires. For example, a custom feature
developer might write code to update attributes A and B whenever the geometry
of a feature changes. If only the geometry was retrieved, then attributes A and B
would be found to be missing within the OnChanged method. This would cause
the OnChanged method to return an error, which would cause the S7ore to return
an error and the edit operation to fail.

Marking changed objects

After changing an object, mark the object as changed (and guarantee that it is
updated in the database) by calling S7ore on the object. Delete an object by calling
the Delete method on the object. Set versions of these calls also exist and should
be used if the operation is being performed on a set of objects to ensure optimal
performance.

Calling these methods guarantees that all necessary polymorphic object behavior
built into the geodatabase is executed (for example, updating of network topol-
ogy or updating of specific columns in response to changes in other columns in
ESRI-supplied objects). It also guarantees that developer-supplied behavior is
correctly triggered.

Update and insert cursors

Never use update cursors or insert cursors to update or insert objects into object
and feature classes in an already loaded geodatabase that has active behavior.

Appendix A ¢ Developer environments ¢ 49

DEVELOPING WITH ARCOBJECTS

Application

2.

l A

[NS

Database

o,

The diagram above clearly shows that the
Feature, which is a COM object, has another
COM object for its geometry.The Shape
property of the feature simply passes the
IGeometry interface pointer to this geometry
object out to the caller that requested the
shape.This means that if more than one client
requested the shape, all clients point to the
same geometry object. Hence, this geometry
object must be treated as read-only. No changes
should be performed on the geometry returned
from this property, even if the changes are
temporary.Anytime a change is to be made to a
feature’s shape, the change must be made on
the geometry returned by the ShapeCopy
property, and the updated geometry should
subsequently be assigned to the Shape property.

150 ¢ ArcGIS Desktop Developer Guide

Update and insert cursors are bulk cursor APIs for use during initial database
loading. If used on an object or feature class with active behavior, they will
bypass all object-specific behavior associated with object creation (such as topol-
ogy creation) and with attribute or geometry updating (such as automatic recalcu-
lation of other dependent columns).

Shape and ShapeCopy geometry property

Make use of a Feature object’s Shape and ShapeCopy properties to optimally re-
trieve the geometry of a feature. To better understand how these properties relate
to a feature’s geometry, refer to the diagram to the left to see how features com-
ing from a data source ate instantiated into memory for use within an application.

Features are instantiated from the data source using the following sequence:

1. The application requests a Feazure object from a data source by calling the
appropriate geodatabase API method calls.

2. The geodatabase makes a request to COM to create a vanilla COM object of
the desired COM class (normally this class is es7iCore.Feature).

3. COM creates the Feature COM obiject.
. The geodatabase gets attribute and geometry data from a data source.
. The vanilla Feature object is populated with appropriate attributes.

. The Geometry COM object is created, and a reference is set in the Feature
object.

~

. The Feature object is passed to the application.

8. The Feature object exists in the application until it is no longer required.

USING A TYPE LIBRARY

Since objects from ArcObjects do not implement IDispatch, it is essential to make
use of a type library for the compiler to eatly-bind to the correct data types. This
applies to all development environments; although for both Visual Basic, Visual
C++, and .NET, there are wizards that help you set this reference.

The type libraries required by ArcObjects are located within the ArcGIS install
folder. For example the COM type libraties can be found in the COM folder
while the .NET Interop assemblies are within the DotNet folder. Many different
files can contain type library information, including EXEs, DLLs, OCXs, and
OLBs.

COM DATA TYPES

COM objects talk via their interfaces, and hence all data types used must be
supported by IDL. IDL supports a large number of data types; however, not all
languages that support COM support these data types. Because of this,
ArcObjects does not make use of all the data types available in IDL but limits the
majority of interfaces to the data type supported by Visual Basic. The following
table shows the data types supported by IDL and their corresponding types in a
variety of languages.

DEVELOPING WITH ARcOBJECTS

Language IDL Microsoft C++ Visual Basic Java
boolean unsigned char unsupported char
byte unsigned char unsupported char
small char unsupported char
short short Integer short
long long Long int
hyper __int64 unsupported long
125 fpes float float Single float
double double Double double
char unsigned char unsupported char
wchar_t wchar_t Integer short
enum enum Enum int
Interface Pointer Interface Pointer Interface Ref. Interface Ref.
VARIANT VARIANT Variant ms.com.Variant
Extended BSTR BSTR String java.lang String
T VARIANT_BOOL short (-1/0) Boolean [true/false]

Note the extended data types at the bottom of the table: I[ZARLANT, BSTR, and
VARIANT_BOOL.. While it is possible to pass strings using data types such as
char and wehar_t, these are not supported in languages such as Visual Basic. Visual
Basic uses BSTRs as its text data type. A BSTR is a length-prefixed wide charac-
ter array, in which the pointer to the array points to the text contained within it
and not the length prefix. Visual C++ maps IZARLANT_BOOL values onto 0
and —1 for the False and True values, respectively. This is different from the
normal mapping of 0 and 1. Hence, when writing C++ code, be sure to use the
correct macros— I ZARIANT _FAILSE and ARLANT _TRUE—not False and
True.

USING COMPONENT CATEGORIES

Component categories are used extensively in ArcObjects so developers can
extend the system without requiring any changes to the ArcObjects code that will
work with the new functionality.

ArcObjects uses component categories in two ways. The first requires classes to
be registered in the respective component category at all times, for example,
ESRI Mx Extensions. Classes, if present in that component category, have an
object that implements the IExtension interface and is instantiated when the
ArcMap application is started. If the class is removed from the component cat-
egory, the extension will not load, even if the map document (MXD file) is
referencing that extension.

The second use is when the application framework uses the component category
to locate classes and display them to a user to allow some user customization to
occur. Unlike the first method, the application remembers (inside its map docu-
ment) the objects being used and will subsequently load them from the map
document. An example of this is the commands used within ArcMap. ArcMap
reads the ESRI Mx Commands category when the Customization dialog box is
displayed to the user. This is the only time the category is read. Once the user
selects a command and adds it to a toolbar, the map document is used to deter-
mine what commands should be instantiated. Later, when this appendix covers
debugging Visual Basic code, you’ll see the importance of this.

Now that you’ve seen two uses of component categories, you will see how to get
your classes registered into the correct component category. Development envi-

Appendix A ¢ Developer environments ¢ |51

DEVELOPING WITH ARCOBJECTS

o [Nomama v] | Embowd | didbomie | o |

The Customize dialog box in ArcMap and
ArcCatalog

= Componant Calegary Manager

2l B Fu
1 e dlon Aot E dencn I_I
. Ak
2 ewdo Confictiwindow — ek
8 euii dio Divrord A eniion
25wt i St Propentmbireon _I

8 il dhin ootk
23 enlecDiatabeneDinibued A Dizconrecied 3 Fnd

i

B silocatonll| Cavarefl ol e ndin B

35 sirlocsionll e et f 4f warios

£ earkncanon | XYE vertf oo enson ol I
e ——r

& endurvepls LinkCol st Feel sk

% (2 LS Lt Propany Pagee
kS _Ibskihlwluiun

B) ESPI EdeT ol Menu Commards -
4 af

[V Skt the bt you vend 1o change.

The Component Category Manager

152 * ArcGIS Desktop Developer Guide

ronments have various levels of support for component categories; ESRI pro-
vides two ways of adding classes to a component category. The first can only be
used for commands and command bars that are added to either ArcMap or
ArcCatalog. Using the Add From File button on the Customize dialog box
(shown to the left), it is possible to select a server. All classes in that server are
then added to either the ESRI Gx Commands or the ESRI Mx Commands,
depending on the application being customized. While this utility is useful, it is
limited since it adds all the classes found in the server. It is not possible to remove
classes, and it only supports two of the many component categories implemented
within ArcObjects.

Distributed with ArcGIS applications is a utility application called the Compo-
nent Category Manager, shown to the left. This small application allows you to
add and remove classes from any of the component categories on your system,
not just ArcObjects categories. Expanding a category displays a list of classes in
the category. You can then use the Add Object button to display a checklist of all
the classes found in the server. You check the required classes, and these checked
classes are then added to the category.

Using these ESRI tools is not the only method to interact with component
categories. During the installation of the server on the target user’s machine, it is
possible to add the relevant information to the Registry using a registry script.
Below is one such script. The first line tells Windows for which version of
regedit this script is intended. The last line, starting with “[HKEY_LOCAL_”,
executes the registry command—all the other lines are comments in the file.
REGEDIT4

; This Registry Script enters coclasses into their appropriate Component
Category

; Use this script during installation of the components

; Coclass: Exporter.ExportingExtension

; CLSID: {E233797D-020B-4AD4-935C-F659EB237065}

; Component Category: ESRI Mx Extensions
[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{E233797D-020B-4AD4-935C-
F659EB237065}\Implemented Categories\{B56A7C45-83D4-11D2-A2E9-080009B6F22B}]

The last line in the code above is one continuous line in the script.

The last method is for the self-registration code off the server to add the relevant
classes within the server to the appropriate categories. Not all development
environments allow this to be set up. Visual Basic has no support for component
categories, although there is an add-in that allows this functionality. See the
sections on Visual Basic developer add-ins and ATL later in this appendix.

The tables below summarize suggested naming
standards for the various elements of your Visual

Basic projects.
Module Type Prefix
Form | frm
Class | cls

Standard | bas

Project | prj

Name your modules according to the overall
function they provide; do not leave any with
default names (such as “Form|1”,“Class|”, or
“Module I). Additionally, prefix the names of
forms, classes, and standard modules with three
letters that denote the type of module, as shown
in the table above.

Control Type Prefix

Check box chk

Combo box | cbo
Command button | cmd
Common dialog | cdI

Form | frm

Frame | fra

Graph | gph
Grid | grd
Image | img
Image list | iml
Label | Ibl

List box | Ist

List view Ivw

Map control map

Masked edit | msk

Menu | mnu

OLE client ole

Option button opt

Picture box pic

Progress bar pbr

Rich text box ref

Scroll bar srl

Slider | sld

Status bar | sbr

Tab strip | tab

Text box txt

Timer | tmr

Tool bar | tbr

Tree view tvw

As with modules, name your controls according
to the function they provide; do not leave them
with default names since this leads to decreased
maintainability. Use the three-letter prefixes
above to identify the type of the control.

THEVISUAL BAsic 6 ENVIRONMENT

This section is intended for both VB6 and VBA developers. Differences in the
development environments are clearly marked throughout the text.

USER INTERFACE STANDARDS
Consider preloading forms to increase the responsiveness of your application. Be

careful not to preload too many (preloading three or four forms is fine).

Use resource files (.res) instead of external files when working with bitmap files,
icons, and related files.

Make use of constructors and destructors to set variable references that are only
set when the class is loaded. These are the VB functions: Class_Initialize() and
Class_Terminate(), ot Form_Load() and Form_Unload(). Set all variables to Nothing
when the object is destroyed.

Make sure the tab order is set cortrectly for the form. Do not add scroll bars to the
tabbing sequence; it is too confusing,

Add access keys to those labels that identify controls of special importance on the
form (use the Tablndex property).

Use system colors where possible instead of hard-coded colors.

Variable declaration

* Always use Option Explicit (or turn on Require Variable Declaration in the VB
Options dialog box). This forces all variables to be declared before use and
thereby prevents careless mistakes.

* Use Public and Private to declare variables at module scope and Dz in local
scope. (Dim and Private mean the same at Module scope; however, using Private
is more informative.) Do not use Global anymore; it is available only for
backward compatibility with VB 3.0 and earlier.

* Always provide an explicit type for variables, arguments, and functions.
Otherwise, they default to [“ariant, which is less efficient.

* Only declare one variable per line unless the type is specified for each variable.

This line causes count to be declared as a [Variant, which is likely to be unintended.
Dim count, max As Long

This line declares both connt and max as Long, the intended type.
Dim count As Long, max As Long

These lines also declare count and max as Long and are more readable.

Dim count As Long
Dim max As Long

Parentheses
Use parentheses to make operator precedence and logic comparison statements
easier to read.

Result = ((x * 24) / (y / 12)) + 42
If ((Not pFoo Is Nothing) And (Counter > 200)) Then

Appendix A ¢ Developer environments ¢ 153

THEVIsuAL BAsic 6 ENVIRONMENT

Use the following notation for naming variables
and constants:

[<libraryName.>][<scope_>]<type><name>

<name> describes how the variable is used or
what it contains.The <scope> and <type>
portions should always be lowercase, and the
<name> should use mixed case.

Library Name Library

esriGeometry | ESRI Object Library
stdole | Standard OLE COM Library

<empty> | Simple variable data type

<libraryName>

Prefix Variable scope

c | constant within a form or class

public variable defined in a class form or

8 | standard module

m | private variable defined in a class or form

<empty> | local variable

<scope>

Prefix ~ Data Type

Boolean

o

by | byte or unsigned char

d | double

fn | function

handle

Ed

int (integer)

long

a pointer

o

“

string

<type>

154 * ArcGIS Desktop Developer Guide

Order of conditional determination

Visual Basic, unlike languages such as C and C++, performs conditional tests on
all parts of the condition, even if the first part of the condition is False. This
means you must not perform conditional tests on objects and interfaces that had
their validity tested in an earlier part of the conditional statement.

' The following Tine will raise a run-time error if pFoo is NULL.

If ((Not pFoo Is Nothing) And (TypeOf pFoo.Thing Is IBar)) then

End If

' The correct way to test this code is
If (Not pFoo Is Nothing) Then
If (TypeOf pFoo.Thing Is IBar) Then
' Perform action on IBar thing of Foo.
End If
End If

Indentation

Use two spaces or a tab width of two for indentation. Since there is only one
editor for VB code, formatting is not as critical an issue as it is for C++ code.

Default properties

Avoid using default properties except for the most common cases. They lead to
decreased legibility.

Intermodule referencing

When accessing intermodule data or functions, always qualify the reference with
the module name. This makes the code more readable and results in more effi-
cient run-time binding;

Multiple property operations
When performing multiple operations against different properties of the same
object, use a With ... End With statement. It is more efficient than specifying the
object each time.
With frmHello
.Caption = "Hello world"
.Font = "Playbill"
.Left = (Screen.Width - .Width) / 2
.Top = (Screen.Height - .Height) / 2
End With

Arrays

For arrays, never change Option Base to anything other than zero (which is the
default). Use LBound and UBound to iterate over all items in an array.

myArray = GetSomeArray

For i = LBound(myArray) To UBound(myArray)
MsgBox cstr(myArray(i))

Next I

THEVIsuAL BAsic 6 ENVIRONMENT

Recovery
Statement

Exit Sub

Frequency

usually

Meaning

Function failed, pass control
back to caller

Raise

often

Raise a new error code in
the caller's scope

Resume

rarely

Error condition removed,
reattempt offending
statement

Resume
Next

very rarely

Ignore error and continue
with next statement

Bitwise operators

Since And, Or, and Not are bitwise operators, ensure that all conditions using
them test only for Boolean values (unless, of course, bitwise semantics are what
is intended).

If (Not pFoo Is Nothing) Then
' Valid Foo do something with it
End If

Type suffixes

Refrain from using type suffixes on variables or function names (such as #yS#ings
or Right$(myString)), unless they are needed to distinguish 16-bit from 32-bit
numbers.

Ambiguous type matching

For ambiguous type matching, use explicit conversion operators (such as CSng,
CDbl, and CSt), instead of relying on VB to pick which one will be used.

Simple image display
Use an ImageControl rather than a PictureBox for simple image display. It is much
more efficient.

Error handling

Always use On Error to ensure fault-tolerant code. For each function that does
error checking, use Oz Eror to jump to a single error handler for the routine that
deals with all exceptional conditions that are likely to be encountered. After the
error handler processes the error—usually by displaying a message—it should
proceed by issuing one of the recovery statements shown on the table to the left.

Error handling in Visual Basic is not the same as general error handling in COM
(see the section “Working with HRESULTS’).

Event functions

Refrain from placing more than a few lines of code in event functions to prevent
highly fractured and unorganized code. Event functions should simply dispatch to
reusable functions elsewhere.

Memory management

To ensure efficient use of memory resources, the following points should be
considered:

* Unload forms regularly. Do not keep many forms loaded but invisible since
this consumes system resources.

* Be aware that referencing a form-scoped variable causes the form to be
loaded.

* Set unused objects to Nozhing to free up their memory.

* Make use of Class_Initialize() and Class_Terminate() to allocate and destroy
resources.

Appendix A ¢ Developer environments ¢ |55

THEVIsuAL BAsic 6 ENVIRONMENT

The VBVM was called the VB Runtime in earlier
versions of the software.

156 * ArcGIS Desktop Developer Guide

While Wend constructs

Avoid While ... Wend constructs. Use the Do While ... Loop or Do Until ... Logp
instead because you can conditionally branch out of this construct.
pFoos.Reset
Set pFoo = pFoos.Next
Do While (Not pFoo Is Nothing)
If (pFoo.Answer = "Done") Then Exit Loop
Set pFoo = pFoos.Next
Loop

TheVisual BasicVirtual Machine

The Visual Basic Virtual Machine (VBVM) contains the intrinsic Visual Basic
controls and services, such as starting and ending a Visual Basic application,
required to successfully execute all Visual Basic developed code.

The VBVM is packaged as a DLL that must be installed on any machine wanting
to execute code written with Visual Basic, even if the code has been compiled to
native code. If the dependencies of any Visual Basic compiled file are viewed,
the file msvbvm60.dll is listed; this is the DLL housing the Virtual Machine.

For more information on the services provided by the VBVM, see the sections
TInteracting with the IUnknown interface’ and ‘Working with HRESULTS’ in this
appendix.

Interacting with the lUnknown interface

The section on COM contains a lengthy section on the [Unknown interface and
how it forms the basis on which all of COM is built. Visual Basic hides this
interface from developers and performs the required interactions (Querylnterface,
AddRef, and Release function calls) on the developer’s behalf. It achieves this
because of functionality contained within the VBVM. This simplifies develop-
ment with COM for many developers, but to work successfully with ArcObjects,
you must understand what the VBVM is doing.

Visual Basic developers are used to dimensioning variables as follows:

Dim pColn as New Collection 'Create a new collection object.
PColn.Add "Foo", "Bar" 'Add element to collection.

It is worth considering what is happening at this point. From a quick inspection
of the code it looks like the first line creates a collection object and gives the
developer a handle on that object in the form of pCo/n. The developer then calls a
method on the object Add. Eatlier in the appendix you learned that objects talk
via their interfaces, never through a direct handle on the object itself. Remember,
objects expose their services via their interfaces. If this is true, something isn’t
adding up.

What is actually happening is some “VB magic” performed by the VBVM and
some trickery by the Visual Basic Editor in the way that it presents objects and
interfaces. The first line of code instantiates an instance of the collection class,
then assigns the default interface for that object, _Collection, to the variable pColn.
It is this interface, _ Collection, that has the methods defined on it. Visual Basic has
hidden the fact of interface-based programming to simplify the developer experi-

THEVIsuAL BAsic 6 ENVIRONMENT

ence. This is not an issue if all the functionality implemented by the object can be
accessed via one interface, but it is an issue when there are multiple interfaces on
an object that provides services.

The Visual Basic Editor backs this up by hiding default interfaces from the
IntelliSense completion list and the object browser. By default, any interfaces that
begin with an underscore, “_”, are not displayed in the object browser (to display
these interfaces turn Show Hidden Member on, although this will still not display
default interfaces).

You have already learned that the majority of ArcObjects have [Unknown as their
default interface and that Visual Basic does not expose any of [Unknown’s meth-
ods, namely, Querylnterface, AddRef, and Release. Assume you have a class Foo that
supports three interfaces, IUnknown (the default interface), IFoo, and IBar. This
means that if you were to dimension the variable pFoo as below, the variable plFoo
would point to the [Unknown interfaces.

Dim pFoo As New Foo ' Create a new Foo object
Since Visual Basic does not allow direct access to the methods of [Unknown, you
would immediately have to QI for an interface with methods on it that you can
call. Because of this, the correct way to dimension a variable that will hold
pointers to interfaces is as follows:

Dim pFoo As IFoo ' Variable will hold pointer to IFoo interface.

Set pFoo = New Foo ' Create Instance of Foo object and QI for IFoo.
Now that you have a pointer to one of the object’s interfaces, it is an easy matter
to request from the object any of its other interfaces.

Dim pBar as IBar 'Dim variable to hold pointer to interface

Set pBar = pFoo 'QI for IBar interface
By convention, most classes have an interface with the same name as the class
with an “T” prefix; this tends to be the interface most commonly used when
working with the object. You are not restricted to which interface you request
when instantiating an object; any supported interface can be requested, hence the
code below is valid.

Dim pBar as IBar

Set pBar = New Foo 'CoCreate Object

Set pFoo = pBar 'QI for interface

Objects control their own lifetime, which requires clients to call AddRef anytime
an interface pointer is duplicated by assigning it to another variable and to call
Release anytime the interface pointer is no longer required. Ensuring that there are
a matching number of AddRefs and Releases is important and, fortunately, Visual
Basic performs these calls automatically. This ensures that objects do not “leak”.
Even when interface pointers are reused, Visual Basic will correctly call release on
the old interface before assigning the new interface to the variable. The following
code illustrates these concepts; note the reference count on the object at the
vatious stages of code execution.

Appendix A ¢ Developer environments ¢ |57

THEVIsuAL BAsic 6 ENVIRONMENT

See the Visual Basic Magic sample on the disk
for this code.You are encouraged to run the
sample and use the code.This object also uses
an ATL C++ project to define the SimpleObject
and its interfaces; you are encouraged to look at
this code to learn a simple implementation of a
C++ ATL object.

158 * ArcGIS Desktop Developer Guide

Private Sub VBMagic()
' Dim a variable to the IUnknown interface on the simple object.
Dim pUnk As IUnknown

' Co Create simpleobject asking for the IUnknown interface.
Set pUnk = New SimpleObject 'refCount =1

' QI for a useful interface.
' Define the interface.
Dim pMagic As ISimpleObject

' Perform the QI operation
Set pMagic = punk 'refCount = 2

' Dim another variable to hold another interface on the object.
Dim pMagic2 As IAnotherInterface

' QI for that interface
Set pMagic2 = pMagic 'refCount = 3

' Release the interface pointer.
Set pMagic2 = Nothing 'refCount = 2

' Release the interface.
Set pMagic = Nothing 'refCount =1

' Now reuse the pUnk variable - what will VB do for this?
Set pUnk = New SimpleObject 'refCount = 1, then 0, then 1

' Let the interface variable go out of scope and let VB tidy up.
End Sub 'refCount =0
Often interfaces have properties that are actually pointers to other interfaces.
Visual Basic allows you to access these properties in a shorthand fashion by
chaining interfaces together. For instance, assume that you have a pointer to the
IFoo interface, and that interface has a property called Gak that is an [Gak inter-
face with the method DoSomething(). You have a choice on how to access the
DoSomething method. The first method is the long-handed way.

Dim pGak as IGak

Set pGak = pFoo 'Assign IGak interface to Tocal variable.

pGak .DoSomething 'Call method on IGak interface.
Alternatively, you can chain the interfaces and accomplish the same thing on one
line of code.

pFoo.Gak.DoSomething 'Call method on IGak interface.

When looking at the sample code, you will see both methods. Normally the
former method is used on the simpler samples, as it explicitly tells you what
interfaces are being worked with. More complex samples use the shorthand
method.

THEVIsuAL BAsic 6 ENVIRONMENT

This technique of chaining interfaces together can always be used to get the value
of a property, but it cannot always be used to set the value of a property. Inter-
face chaining can only be used to set a property if all the interfaces in the chain
are set by reference. For instance, the code below would execute successfully.

Dim pMxDoc As ImxDocument

Set pMxDoc = ThisDocument

pMxDoc . FocusMap. Layers (0) .Name = "Foo"

The above example works because both the Layer of the Map and the Map of the
document are returned by reference. The lines of code below would not work
since the Extent envelope is set by value on the active view.

pMxDoc.ActiveView.Extent.Width = 32

The reason that this does not work is that the VBVM expands the interface chain
to get the end property. Because an interface in the chain is dealt with by value,
the VBVM has its own copy of the variable, not the one chained. To set the
Width property of the extent envelope in the above example, the VBVM must
wrtite code similar to this:

Dim pActiveView as TActiveView
Set pActiveView = pMxDoc.ActiveView

Dim pEnv as IEnvelope
Set pEnv = pActiveView.Extent ' This is a get by value,

PEnv.Width = 32 ' The VBVM has set its copy of the Extent and not
' the copy inside the ActiveView

For this to work the VBVM requires the extra line below.

pActiveView.Extent = pEnv ' This is a set by value,

Accessing ArcObjects

You will now see some specific uses of the create instance and query interface

To find out what library an ArcObjects compo- operations that involve ArcObjects. To use an ArcGIS object in Visual Basic or
nent is in, either review the object model VBA, you must first reference the ESRI library that contains that object. If you
_ diagrams in the developer help or use the are using VBA inside ArcMap or ArcCatalog, most of the common ESRI object
LibraryLocator tool in your development kit tools i K . R L
directory. libraries are already referenced for you. In standalone Visual Basic applications or

components, you will have to manually reference the required libraties.

You will start by identifying a simple object and an interface that it supports. In
this case, you will use a Point object and the [Point interface. One way to set the
coordinates of the point is to invoke the PutCoords method on the [Point interface
and pass in the coordinate values.

Dim pPt As IPoint

Set pPt = New Point

pPt.PutCoords 100, 100

1ID is short for Interface Identifier, a GUID. The first line of this simple code fragment illustrates the use of a variable to hold
a reference to the interface that the object supports. The line reads the IID for
the IPoint interface from the ESRI object library. You may find it less ambiguous
(as per the coding guidelines), particularly if you reference other object libraries
in the same project, to precede the interface name with the library name, for
example:

Dim pPt As esriCore.IPoint

Appendix A ¢ Developer environments ¢ |59

THEVIsuAL BAsic 6 ENVIRONMENT

Coclass is an abbreviation of component object
class.

A Ql is required since the default interface of
the object is [lUnknown. Since the pPt variable
was declared as type |Point, the default
IUnknown interface was QId for the IPoint
interface.

Microsoft Yisual Basic

& Campile error:

Method or data member not found

This is the compilation error message shown
when a method or property is not found on an
interface.

160 * ArcGIS Desktop Developer Guide

That way, if there happens to be another [Point referenced in your project, there
won’t be any ambiguity as to which one you are referring,

The second line of the fragment creates an instance of the object or coclass, then
performs a QI operation for the [Point interface that it assigns to pPz

With a name for the coclass as common as Point, you may want to precede the
coclass name with the library name, for example:

Set pPt = New esriCore.Point

The last line of the code fragment invokes the Pu/Coords method. If a method
can’t be located on the interface, an error will be shown at compile time.

Working with HRESULTs

So far you have seen that all COM methods signify success or failure via an
HRESULT that is returned from the method; no exceptions are raised outside of
the interface. You have also learned that Visual Basic raises exceptions when
errors are encountered. In Visual Basicc HRESULTs are never returned from
method calls and, to confuse you further when errors do occur, Visual Basic
throws an exception. How can this be? The answer lies with the Visual Basic
Virtual Machine. It is the VBVM that receives the HRESULT; if this is anything
other than §_OK, the VBVM throws the exception. If it was able to retrieve any
worthwhile error information from the COM error object, it populates the Visual
Basic Err object with that information. In this way, the VBVM handles all
HRESULTS returned from the client.

When implementing interfaces in Visual Basic, it is good coding practice to raise
an HRESULT error to inform the caller that an etror has occurred. Normally, this
is done when a method has not been implemented.

' Defined in module

Const E_NOTIMPL = &H80004001 'Constant that represents HRESULT

'Added to any method not implemented

On Error GoTo 0

Err.Raise E_NOTIMPL
You must also write code to handle the possibility that an HRESULT other than
S_OKis returned. When this happens, an error handler should be called and the
error dealt with. This may mean simply telling the user, or it may mean automati-
cally dealing with the error and continuing with the function. The choice depends
on the circumstances. Below is a simple error handler that will catch any error
that occurs within the function and report it to the user. Note the use of the Err
object to provide the user with some description of the error.

Private Sub Test()

On Error GoTo ErrorHandler

' Do something here.

Exit Sub ' Must exit sub here before error handler
ErrorHandler:

Msgbox "Error In Application - Description " & Err.Description
End Sub

THEVIsuAL BAsic 6 ENVIRONMENT

Working with properties

Some properties refer to specific interfaces in the ESRI object library, and other
properties have values that are standard data types, such as strings, numeric
expressions, and Boolean values. For interface references, declare an interface
variable and use the Sef statement to assign the interface reference to the prop-
erty. For other values, declare a variable with an explicit data type or use Visual
Basic’s Variant data type. Then, use a simple assignment statement to assign the
value to the variable.

Properties that are interfaces can be set either by reference or by value. Properties
that are set by value do not require the Sez statement.

Dim pEnv As IEnvelope

Set pEnv = pActiveView.Extent 'Get extent property of view.
pEnv.Expand 0.5, 0.5, True 'Shrink envelope.

pActiveView.Extent = pEnv 'Set By Value extent back on IActiveView.

Dim pFeaturelLayer as IfeaturelLayer
Set pFeaturelLayer = New FeaturelLayer 'Create New Layer.
Set pFeaturelLayer.FeatureClass = pClass 'Set ByRef a class into layer.

As you might expect, some properties are read-only, others are write-only, and
still others are read—write. All the object browsers and the ArcObjects Class Help
(found in the ArcGIS Developer Help system) provide this information. If you
attempt to use a property and either forget or misuse the Sez keyword, Visual
Basic will fail the compilation of the source code with a method or data member
not found error message. This error may seem strange since it may be given for
trying to assign a value to a read-only property. The reason for the message is that
Visual Basic is attempting to find a method in the type library that maps to the
property name. In the above examples, the underlying method calls in the type
library are put_Extent and putref_FeatureClass.

Working with methods

Methods perform some action and may or may not return a value. In some in-
stances, a method returns a value that’s an interface; for example, in the code
fragment below, EditSelection returns an enumerated feature interface:

Dim pApp As TApplication

Dim pEditor As IEditor

Dim pEnumFeat As IEnumFeature 'Holds the selection

Dim pID As New UID

'Get a handle to the Editor extension

pID = "esriEditor.Editor"

Set pApp = Application

Set pEditor = pApp.FindExtensionByCLSID(pID)

'Get the selection

Set pEnumFeat = pEditor.EditSelection
In other instances, 2 method returns a Boolean value that reflects the success of
an operation or writes data to a parameter; for example, the DoModa/Open
method of GxDialog returns a value of True if a selection occurs and writes the
selection to an IEnumGxObject parameter.

Appendix A ¢ Developer environments ¢ |61

THEVIsuAL BAsic 6 ENVIRONMENT

162 * ArcGIS Desktop Developer Guide

Be careful not to confuse the idea of a Visual Basic return value from a method
call with the idea that all COM methods must return an HRESULT. The VBVM
is able to read type library information and set up the return value of the VB
method call to be the appropriate parameter of the COM method.

Working with events

Events let you know when something has occurred. You can add code to respond
to an event. For example, a command button has a Click event. You add code to
perform some action when the user clicks the control. You can also add events
that certain objects generate. VBA and Visual Basic let you declare a variable with
the keyword WithEvents. WithEvents tells the development environment that the
object variable will be used to respond to the object’s events. This is sometimes
referred to as an “event sink”. The declaration must be made in a class module or
a form. Here’s how you declare a variable and expose the events of an object in
the Declarations section:

Private WithEvents m_pViewEvents as Map

Visual Basic only supports one outbound interface (marked as the default out-
bound interface in the IDL) per coclass. To get around this limitation, the
coclasses that implement more than one outbound interface have an associated
dummy coclass that allows access to the secondary outbound interface. These
coclasses have the same name as the outbound interface they contain, minus the 1.

Private WithEvents m_pMapEvents as MapEvents

Once you’ve declared the vatiable, search for its name in the Object combo box
at the top left of the Code window. Then, inspect the list of events you can
attach code to in the Procedure/Events combo box at the top right of the Code
window.

Not all procedutes of the outbound event interface need to be stubbed out, as
Visual Basic will stub out any unimplemented methods. This is different from
inbound interfaces, where all methods must be stubbed out for compilation to
occut.

Before the methods are called, the hookup between the event source and sink
must be made. This is done by setting the vatiable that represents the sink to the
event source.

Set m_pMapEvents = pMxDoc.FocusMap

Pointers to valid objects as parameters

Some ArcGIS methods expect interfaces for some of their parameters. The
interface pointers passed can point to an instanced object before the method call
or after the method call is completed.

For example, if you have a polygon (pPohgon) whose center point you want to
find, you can write code as follows:

Dim pArea As TArea

Dim pPt As IPoint

Set pArea = pPolygon ' QI for IArea on pPolygon

Set pPt = pArea.Center

THEVIsuAL BAsic 6 ENVIRONMENT

You don’t need to create pP# because the Center method creates a Point object for
you and passes back a reference to the object via its [Point interface. Only meth-
ods that use client-side storage require you to create the object prior to the
method call.

Passing data between modules

When passing data between modules it is best to use accessor and mutator func-

tions that manipulate some private member variable. This provides data encapsu-
lation, which is a fundamental technique in object-oriented programming. Public
variables should never be used.

For instance, you might have decided that a variable has a valid range of 1-100.
If you were to allow other developers direct access to that variable, they could
set the value to an illegal value. The only way of coping with these illegal values
is to check them before they get used. This is both error prone and tiresome to
program. The technique of declaring all variables private member variables of the
class and providing accessor and mutator functions for manipulating these vari-
ables will solve this problem.

In the example below, these properties are added to the default interface of the
class. Notice the technique used to raise an error to the client.

Private m_1Percentage As Long

PubTlic Property Get Percentage() As Long
Percentage = m_1Percentage
End Property

Public Property Let Percentage(ByVal TINewValue As Long)
If (INewalue >= 0) And (TINewValue <= 100) Then
m_1Percentage = TNewValue
Else
Err.Raise vbObjectError + 29566, "MyProj.MyObject", _
"Invalid Percentage Value. Valid values (0 -> 100)"
End If
End Property

When you write code to pass an object reference from one form, class, or module
to another, for example:
Private Property Set PointCoord(ByRef pPt As IPoint)
Set m_pPoint = pPt
End Property
your code passes a pointer to an instance of the IPoznt interface. This means that
you are only passing the reference to the interface, not the interface itself; if you
add the Byla/ keyword (as follows), the interface is passed by value.
Private Property Let PointCoord(ByVal pPt As IPoint)
Set m_pPoint = pPt
End Property
In both of these cases the object pointed to by the interfaces is always passed by
reference. To pass the object by value, a clone of the object must be made, and
that is passed.

Appendix A ¢ Developer environments ¢ 163

THEVIsuAL BAsic 6 ENVIRONMENT

Using the TypeOf keyword

To check whether an object supports an interface, you can use Visual Basic’s
TypeOf keyword. For example, given an item selected in the ArcMap table of
contents, you can test whether it is a Featurelayer using the following code:

Dim pDoc As IMxDocument

Dim pUnk As IUnknown

Dim pFeatLyr As IGeoFeaturelLayer

Set pDoc = ThisDocument

Set pUnk = pDoc.SelectedItem

If TypeOf pUnk Is IGeoFeatureLayer Then ' can we QI for IGeoFeaturelLayer?

Set pFeatLyr = pUnk ' actually QI happens here
' Do something with pFeatLyr.
End If

Using the Is operator

If your code requires you to compare two interface reference variables, you can
use the Is operator. Typically, you can use the Is operator in the following circum-
stances:

To check if you have a valid interface—for example, see the following code:

Dim pPt As IPoint

Set pPt = New Point

If (Not pPt Is Nothing) Then 'a valid pointer?
' do something with pPt

End If

To check if two interface variables refer to the same actual object—imagine that
you have two interface variables of type [Point, pPt1, and pPr2. Are they pointing
to the same object? If they are, then pP#7 Is pPr2.

The Is keyword works with the COM identity of an object. Below is an example
that illustrates the use of the Is keyword when finding out if a certain method on
an interface returns a copy of or a reference to the same real object.

In the following example, the Extent property on a map (IMap) returns a copy,
while the Activel zew property on a document (IMxDocument) always returns a
reference to the real object.

Dim pDoc As IMxDocument

Dim pEnvl As IEnvelope, pEnv2 as IEnvelope
Dim pActViewl As TActiveView

Dim pActView2 as IActiveView

Set pDoc = ThisDocument

Set pEnvl = pDoc.ActiveView.Extent
Set pEnv2 = pDoc.ActiveView.Extent
Set pActViewl = pDoc.ActiveView
Set pActView2 = pDoc.ActiveView

' Extent returns a copy,

' so pEnvl Is pEnv2 returns False
Debug.Print pEnvl Is pEnv2

' ActiveView returns a reference,
' so pActViewl Is pActView2
Debug.Print pActViewl Is pActView2

164 * ArcGIS Desktop Developer Guide

THEVIsuAL BAsic 6 ENVIRONMENT

Iterating through a collection

In your work with ArcMap and ArcCatalog, you’ll discover that in many cases
you’ll be working with collections. You can iterate through these collections with
an enumerator. An enumerator is an interface that provides methods for travers-
E t rt oth thods, but . p . s . :)
numerators can support other metfods, bu ing a list of elements. Enumerator interfaces typically begin with IEnum and have
these two methods are common among all . .
enumerators. two methods: Nexz and Reser. Next returns the next element in the set and ad-
vances the internal pointer, and Resez resets the internal pointer to the beginning.

Here is some VBA code that loops through the selected features (IEnumbeature) in
a map. To try the code, add the States sample layer to the map and use the Select
tool to select multiple features (drag a rectangle to do this). Add the code to a
VBA macro, then execute the macro. The name of each selected state will be
printed in the debug window.

Dim pDoc As IMxDocument
Dim pEnumFeat As IEnumFeature
Dim pFeat As IFeature
Set pDoc = ThisDocument
Set pEnumFeat = pDoc.FocusMap.FeatureSelection
Set pFeat = pEnumFeat.Next
Do While (Not pFeat Is Nothing)
Debug.Print pFeat.Value(pFeat.Fields.FindField("state_name™))
Set pFeat = pEnumFeat.Next
Loop
Some collection objects, the Visual Basic Collection being one, implement a
special interface called _NewEnum. This interface, because of the _ prefix, is
hidden, but Visual Basic developers can still use it to simplify iterating through a
collection. The Visual Basic For Each construct works with this interface to
perform the Reses and Next steps through a collection.
Dim pColn as Collection
Set pColn = GetCollection()' Collection returned from some function

Dim thing as Variant ' VB uses methods on _NewEnum to step through
For Each thing in pColn ' an enumerator.

MsgBox Cstr(thing)
Next

Appendix A ¢ Developer environments ¢ |65

VisuAL BAsic FORAPPLICATIONS

166 * ArcGIS Desktop Developer Guide

This section of the appendix discusses how to program in the VBA environment
to control ArcGIS Desktop products—such as ArcMap, ArcCatalog, ArcScene, or
ArcGlobe—by accessing the objects they expose. Your code manipulates the
objects by getting and setting properties on their interfaces, such as setting the
MascimumScale and MinimumScale of a map’s Featurelayer, invoking methods on
the interfaces, such as adding a vertex to a polyline, or setting a field’s value. The
code runs when an event occurs, for example, when a user opens a document,
clicks a button, or alters data by modifying an edit sketch.

First, though, you’ll see the aspects of the VBA development environment in
which you’ll do your work that are specific to the ESRI applications. Consult the
Visual Basic Reference, the online help file that displays when you click Microsoft
Visual Basic Help in the Help menu of the VBA Editor for generic help on the
user interface, conceptual topics, how-to topics, language reference topics, cus-
tomizing the Visual Basic Editor, and user forms and controls.

In the VBA development environment you can add modules, class modules, and
user forms to the default project contained in every ArcGIS application docu-
ment. A project can consist of as many modules, class modules, and user forms as
your work requires. A project is a collection of items to which you add code. A
module is a set of declarations followed by procedures—a list of instructions
that your code performs. A class module is a special type of module that contains
the definition of a class, including its property and method definitions. A user
form is a container for user interface controls, such as command buttons and text
boxes.

ArcMap has a default project associated with its document that’s listed in the
Project Explorer as Project followed by its filename. In addition, you’ll see
another project listed in the Project Explorer called Normal (Normal.mxt).

Normal is, in fact, a template for all documents. It’s always loaded into the docu-
ment. It contains all the user-interface elements that users see, as well as the class
module named ArcID, which contains all the UIDs for the application’s com-
mands.

Since any modifications made to Normal will be reflected every time you create
or open a document, you should be careful when making changes to Normal.

In ArcMap, users can start by opening a template other than the default template.
These templates are available to them in the New dialog box. From a developet’s
perspective this is a base template, a document that loads an additional project
into the document; it is listed in the Project Explorer as the TemplateProject fol-
lowed by its filename. This project can store code in modules, class modules,
forms, and any other customizations, such as maps with data or page layout
frames. Any modifications or changes made to this base template are reflected
only in documents that are derived from it.

In ArcCatalog, Normal (Normal.gxt) is the only project that appears in the
Project Explorer. There is no default Project in ArcCatalog, and you can’t load
any templates. You can, of course, add code to Normal.gxt inside modules, class
modules, or forms, but again, be careful when making changes.

Once you’ve invoked the Visual Basic Editor, you can insert a module, class
module, or user form. Then you insert a procedure or enter code for an existing

VisuaL BAsic FORAPPLICATIONS

event procedure in the item’s Code window, where you can write, display, and
edit code. You can open as many Code windows as you have modules, class
modules, and user forms, so you can easily view the code and copy and paste
between Code windows. In addition to creating your own modules, you can
import other modules, class modules, or user forms from disk.

If your work requites it, you can add an external object library or type library
reference to your project. This makes another application’s objects available in
your code. Once a reference is set, the referenced objects are displayed in the
development environment’s object browser.

GETTING STARTED WITH VBA

To begin programming with VBA in ArcMap or ArcCatalog, you start the Visual
Basic Editor.

To start theVisual Basic Editor
1. Start ArcMap or ArcCatalog;

2. Click the Tools menu, point to Macros, then click Visual Basic Editor. You can
also use the shortcut keys Alt+F11 to display the Visual Basic Editor. To
navigate among the projects in the Visual Basic Editor, use the Project Ex-
plorer. It displays a list of the document’s modules, class modules, and user
forms.

To add a macro to a module

ArcMap and ArcCatalog both provide a shortcut for creating a simple macro in a
module.

1. Click the Tools menu, point to Macros, then click Macros.

2. Type the name of the macro you want to create in the Macro name text box.
If you don’t specify a module name, the application creates a module called
modnlexx and stores the macro in that module. If no module is specified after
you specify a module, and a module is already active, the macro is placed in
that module. Preceding a macro’s name with a name and a dot stores it in a
module with the specified name. If the module doesn’t exist, the application
creates it.

3. Click the dropdown arrow of the Macros in the combo box and choose the
VBA project in which you want to create the macro.

4. Press the Enter key or click Create.

5. The stub for a Sub procedure for the macro appears in the Code window:

Adding modules and class modules

All ArcGIS application documents contain the class module ThisDocument, a
custom object that represents the specific document associated with a VBA
project. The document object is called MxDocument in ArcMap and GxDocument
in ArcCatalog. The [Document interface provides access to the document’s title,
type, accelerator table, command bars collection, parent application, and Visual
Basic project.

Modules and class modules can contain more than one type of procedure: sub,

Appendix A ¢ Developer environments ¢ |67

VisuaL BAsic FORAPPLICATIONS

168 * ArcGIS Desktop Developer Guide

function, or property. You can choose the procedure type and its scope when you
insert a procedure. Inserting a procedure is like creating a code template into
which you enter code.

Every procedure has either private or public scope. Procedures with private scope
are limited to the module that contains them—only a procedure within the same
module can call a private procedure. If you declare the procedure public, other
programs and modules can call it.

Variables in your procedures may either be local or global. Global variables exist
during the entire time the code executes, whereas local variables exist only while
the procedure in which they are declared is running. The next time you execute a
procedure, all local variables are reinitialized. However, you can preserve the
value of all local vatiables in a procedure for the code’s lifetime by declaring them
static, thereby fixing their value.

To add a procedure to an existing module

1. In the Project Explorer, double-click the ArcMap Objects, ArcCatalog Ob-
jects, or Modules folder, then choose the name of a module. Ensure that the
code view of the module is active by clicking the View Code button.

2. Click the Insert menu and click Procedure.
3. Type the name of the procedure in the Name text box.

4. Click the Type dropdown arrow and click the type of procedure: Sub, Func-
tion, or Property.

5. Click the Scope dropdown arrow and click Public or Private.

6. To declare all local variables static, check the All Local variables as Statics
check box.

7. Click OK. VBA stubs in a procedure into the item’s Code window into which
you can enter code. The stub contains the first and last lines of code for the
type of procedure you've added.

8. Enter code into the procedure.

For more information about procedures, see the Microsoft Visual Basic online
help reference.

Adding user forms

If you want your code to prompt the user for information, or you want to display
the result of some action performed when the user invokes an ArcGIS applica-
tion command or tool or in response to some other event, use VBA’s user forms.
User forms provide a context in which you can provide access to a rich set of
integrated controls. Some of these controls are similar to the UlIControls that are
available as part of the Customize dialog box’s Commands tab. In addition to text
boxes or command buttons, you have access to a rich set of additional controls.
A user form is a container for user-interface controls, such as command buttons
and text boxes. A control is a Visual Basic object you place on a user form that
has its own properties, methods, and events. You use controls to receive user
input, display output, and trigger event procedures. You can set the form to be
cither modal, in which case the user must respond before using any other part of

VisuaL BAsic FORAPPLICATIONS

the application, or modeless, in which case subsequent code is executed as it’s
encountered.

To add and start coding in a user form

1. In the Project Explorer, select the Project to which you want to add a user
form.

2. Click the Insert menu and click UserForm.
3. VBA inserts a user form into your project and opens the Controls Toolbox.

4. Click the controls that you want to add to the user interface from the Controls
Toolbox.

5. Add code to the user form or to its controls.

For more information about adding controls, see the Microsoft Visual Basic
online help reference.

To display the Code window for a user form or control, double-click the user
form or control. Then, choose the event you want your code to trigger from the
dropdown list of events and procedures in the Code window and start typing
your code. Or, just as in a module or class module, insert a procedure and start
typing your code.

To display the form during an ArcMap or ArcCatalog session in response to some
action, invoke its Show method, as in this example:

UserForml.Show vbModeless 'show modeless

SOME VBA PROJECT MANAGEMENT TECHNIQUES

To work efficiently in the ArcGIS application’s VBA development environment
and reduce the amount of work you have to do every time you start a new task,
make use of several techniques that will streamline your work:

Reusing modules, class modules, and user forms

To add an existing module or form to the Normal template, the Project, or a
TemplateProject, click the name of the destination in the Project Explorer, then
choose Import File from the File menu. You can choose any VBA module, user
form, or class module to add a copy of the file to your project. To export an item
from your project so that it is available for importing into other projects, choose
the item you want to export in the Project Explorer, click Export File from the
File menu, then navigate to where you want to save the file. Exporting an item
does not remove it from your project.

Removing project items

When you remove an item, it is permanently deleted from the project list
can’t undo the Remove action; however, this action doesn’t delete a file if it
exists on disk. Before removing an item, make sure the remaining code in other
modules and user forms doesn’t refer to code in the removed item. To remove an
item, select it in the Project Explorer, then click Remove <Name> from the File
menu. Before you remove the item, you’ll be asked whether you want to export
it. If you click Yes in the message box, the Export File dialog box opens. If you
click No, VBA deletes the item.

you

Appendix A ¢ Developer environments ¢ |69

VisuaL BAsic FORAPPLICATIONS

170 * ArcGIS Desktop Developer Guide

Protecting your code

To protect your code from alteration and viewing by users, you can lock a
Project, a TemplateProject, or even the Normal template. When you lock one of
these items, you set a password that must be entered before it can be viewed in
the Project Explorer. To lock one of these items, right-click Project,
TemplateProject, or Normal in the Project Explorer, then click the Properties
item in the context menu that appears. In the Properties dialog box, click the
Protection tab and click the option to Lock Project for Viewing. Enter a pass-
word and confirm it. Finally, save your ArcMap or ArcCatalog file and close it.
The next time you or anyone else opens the file, the project is locked. If anyone
wants to view or edit the project, they must enter the password.

Saving aVBA project

VBA projects are stored in a file that can be a base template (*.mxt), the Normal
template, or a document (*.mxd). When a user creates a new ArcMap document
from a base template, the new document references the base template’s VBA
project and its items. To save your ArcMap document and your VBA project,
click Save from the ArcMap File menu or Save <File Name> from the File menu
in the Visual Basic Editor. Both commands save your file with the project and
any items stored in it. After saving the file, its filename is displayed in the Project
Explorer in parentheses after the project name. To save the document as a tem-
plate, click Save As from the ArcMap File menu and specify ArcMap Templates
(*.mxt) as the File type.

RunningVBA code

As you build and refine your code, you can run it within VBA to test and debug
it. This section discusses running your code in the Visual Basic Editor during
design time. For more information about running and debugging a VBA program,
such as adding break points, adding watch expressions, and stepping into and out
of execution, see Microsoft Visual Basic online help.

To run your code in the Visual Basic Editor or from the Macros dialog
box

1. Click the Tools menu and click Macros.
2. In the Macro list, click the macro you want and click Run.

If the macro you want is not listed, make sure you’ve chosen the appropriate
item: either Normal, Project, or TemplateProject in the Macros In box. Private
procedures do not appear in any menus or dialog boxes.

To run only one procedure in the Visual Basic Editor

1. In the Project Explorer, open the module that contains the procedure that you
want to run.

2. In the Code window, click an insertion point in the procedure code.
3. Click the Run menu and click Run Sub/UserForm.

Only the procedure in which your cursor is located runs.

VisuaL BAsic FORAPPLICATIONS

After you’ve finished writing your code

After you have finished writing code, users can run it from ArcMap or
ArcCatalog. To do this, click Macros and click it again from the Tools menu. You
can also associate the code with a command or tool, or it can run in response to
events or in other ways that you design.

USING THE GLOBAL APPLICATION OBJECTS

Since ArcCatalog does not support the use of Application and ThisDocument are 'examples of glgbal system variables that' can be
documents, the ThisDocument global variable is accessed by any module or class in the VBA environment while ArcMap is run-
not available to developers. However, the ning. This variable is automatically set to reference the current document when
Application variable is available f a developer ArcMap opens the document. You can use ThisDocument as a shortcut when
wishes to access IGxApplication or S X
IApplication. programming in VBA to access the current document. Here is an example of how
to use both the Application and ThisDocument:

Dim pMxDoc as IMxDocument

Set pMxDoc = Application.Document
or

Set pMxDoc = ThisDocument

Both methods illustrated above result in a reference being set to the local docu-
ment.

Appendix A ¢ Developer environments ¢ |71

THEVIsuAL BAsIC 6 DEVELOPMENT ENVIRONMENT

The ESRIVB Add-In interface implementer can
be used to automate Steps 3 and 4.

172 + ArcGIS Desktop Developer Guide

In the previous section of this appendix, the focus was primarily on how to write
code in the VBA development environment embedded within the ArcGIS
Desktop applications. This section focuses on particular issues related to creating
ActiveX DLLs that can be added to the applications and writing external
standalone applications using the Visual Basic development environment.

CREATING COM COMPONENTS

Most developers use Visual Basic to create a COM component that works with
ArcMap or ArcCatalog. Eatrlier in this appendix you learned that since the ESRI
applications are COM clients—their architecture supports the use of software
components that adhere to the COM specification—you can build components
with different languages, including Visual Basic. These components can then be
added to the applications easily. For information about packaging and deploying
COM components that you’ve built with Visual Basic, see the last section of this
appendix.

This section is not intended as a Visual Basic tutorial; rather, it highlights aspects
of Visual Basic that you should know to be effective when working with
ArcObjects.

In Visual Basic you can build a COM component that will work with ArcMap or
ArcCatalog by creating an ActiveX DLL. This section will review the rudimentary
steps involved. Note that these steps are not all-inclusive. Your project may
involve other requirements.

1. Start Visual Basic. In the New Project dialog box, create an ActiveX DLL
Project.

2. In the Properties window, make sure that the Instancing property for the
initial class module and any other class modules you add to the Project is set to
5—MultiUse.

3. Reference the ESRI Object Libraties that you will require.

4. Implement the required interfaces. When you implement an interface in a class
module, the class provides its own versions of all the public procedures speci-
fied in the type library of the interface. In addition to providing mapping
between the interface prototypes and your procedures, the Implements state-
ment causes the class to accept COM Querylnterface calls for the specified
interface ID. You must include all the public procedures involved. A missing
member in an implementation of an interface or class causes an error. If you
don’t put code in one of the procedures in a class you are implementing, you
can raise the appropriate error (Const E_NOTIMPIL. = &H80004001). That
way, if someone else uses the class, they’ll understand that a member is not
implemented.

5. Add any additional code that’s needed.

6. Establish the Project Name and other properties to identify the component. In
the Project Properties dialog box, the project name you specify will be used as
the name of the component’s type library. It can be combined with the name
of each class the component provides to produce unique class names (these
names are also called ProgIDs). These names appear in the Component Cat-
egory Manager. Save the project.

THEVIsuAL BAsic 6 DEVELOPMENT ENVIRONMENT

7. Compile the DLL.

8. Set the component’s Version Compatibility to binary. As your code evolves, it’s

Visual Basic automatically generates the good practice to set the components to Binary Compatibility so, if you make
necessary GUIDs for the classes, interfaces, and

| nee o © | changes to a component, you’ll be warned that you’re breaking compatibility.
libraries. Setting binary compatibility forces VB to . k . P . R L
reuse the GUIDs from a previous compilation of For additional information, see the ‘Binary compatibility mode’ help topic in
the DLL.This is essential since ArcMap stores the Visual Basic online help.
the GUIDs of commands in the document for .
subsequent loading. 9. Save the project.

10. Make the component available to the application. You can add a component
to a document or template by clicking the Add from file button in the Cus-
tomize dialog box’s Commands tab. In addition, you can register a component
in the Component Category Manager.

IMPLEMENTING INTERFACES

You implement interfaces differently in Visual Basic depending if they are in-
bound or outbound interfaces. An outbound interface is seen by Visual Basic as
an event source and is supported through the WizhEvents keyword. To handle the
outbound intetface, LActivel iewEvents, in Visual Basic (the default outbound
interface of the Map class), use the WithEvents keyword and provide appropriate
functions to handle the events.

Private WithEvents ViewEvents As Map

Private Sub ViewEvents_SelectionChanged()
' User changed feature selection update my feature 1ist form
UpdateMyFeatureForm

End Sub

Inbound interfaces are supported with the Implements keyword. However, unlike
the outbound interface, all the methods defined on the interface must be stubbed
out. This ensures that the vTable is correctly formed when the object is instanti-
ated. Not all of the methods have to be fully coded, but the stub functions must
be there. If the implementation is blank, an appropriate return code should be
given to any client to inform them that the method is not implemented (see the
section “Working with HRESULTS’). To implement the IExtension interface, code
similar to that below is required. Note that all the methods are implemented.
Private m_pApp As TApplication
Implements IExtension

Private Property Get IExtension_Name() As String

IExtension_Name = "Sample Extension"
End Property

Private Sub IExtension_Startup(ByRef initializationData As Variant)
Set m_pApp = initializationData
End Sub

Private Sub IExtension_Shutdown()

Set m_pApp = Nothing
End Sub

Appendix A ¢ Developer environments ¢ 173

THEVIsuAL BAsic 6 DEVELOPMENT ENVIRONMENT

Microsoft ¥isual Basic

& iZompile error;

User-defined bype not defined

Help

L350 AT ookon Qusty Dusbder Mecosce Livary &
EZAl AseTilbxos Tiookins Fecinatos Libaaay
ESAI fucT ook Lty Tooks
Lo+ Coda Ganaration Wiasd [CASE) | Drowse...
Lo Cods Germ dhon Wizind Hevonace Lisar

v +
E5AI Cantol]l Qbamct Lixary J
E£HI Cane Took GLI Locakzaton Fesowee Liby Fricity
S Cataiogll Dibjact Liuay “ Belp
ESAI Corall ool Mhierwirst Obyect Ly ﬂ
£5AI € iF e alechion Doject Lixery
E5RI Contall golil e Otpmct Lixay
ESHI Contrall nohilGlobe Obsect Librasy
31l Ceitall ook GischicE ack Disct Ly LI:I

ESRI Carto Obiject Libeary
tocatun: GGl o o
Language: Standwrd

Dim pRap A3 1map
Ser pRap = Hew N

& MapDvents

& MapEvents2

& MapFrama

8 MapFramaLoc oeFopamFage

8 MapFramaPropenyPage

B MapdranhicsLaverPronertyFags -

After the ESRI Object Library is referenced, all
the types contained within it are available to
Visual Basic. IntelliSense will also work with the
contents of the object library.

174 * ArcGIS Desktop Developer Guide

SETTING REFERENCES TO THE ESRI OBJECT LIBRARIES

The principal difference between working with the VBA development environ-
ment embedded in the applications and working with Visual Basic is that the
latter environment requires that you load the appropriate object libraries so that
any object variables that you declare can be found. If you don’t add the refer-
ence, you'll get the error message to the left. In addition, the global variables
ThisDocument and Application are not available to you.

To add a reference to an object library

Depending on what you want your code to do, you may need to add several ESRI
core object and extension libraries. You can determine what library an object
belongs to by reviewing the object model diagrams in the developer help or by
using the LibraryLocator tool located in the tools directory of you developer kit.

To display the References dialog box in which you can set the references you
need, select References in the Visual Basic Project menu.

After you set a reference to an object library by selecting the check box next to its
name, you can find a specific object and its methods and properties in the object
browser.

If you are not using any objects in a referenced library, you should clear the check
box for that reference to minimize the number of object references Visual Basic
must resolve, thus reducing the time it takes your project to compile. You should
not remove a reference for an item that is used in your project.

You can’t remove the “Visual Basic for Applications” and “Visual Basic objects
and procedures” references because they are necessary for running Visual Basic.

REFERRING TO A DOCUMENT

Each VBA project (Normal, Project, TemplateProject) has a class called
ThisDocument, which represents the document object. Anywhere you write code
in VBA you can reference the document as ThisDocument. Further, if you are
writing your code in the ThisDocument Code window, you have direct access to all
the methods and properties on IDocument. This is not available in Visual Basic.
You must first get a reference to the Application, then the document. When adding
both extensions and commands to ArcGIS applications, a pointer to the
IApplication interface is provided.

Implements IExtension
Private m_pApp As TApplication

Private Sub IExtension_Startup(ByRef initializationData As Variant)
Set m_pApp = initializationData ' Assign IApplication.
End Sub

Implements ICommand
Private m_pApp As TAppTlication

Private Sub ICommand_OnCreate(ByVal hook As Object)
Set m_pApp = hook ' QI for IApplication
End Sub

THEVIsuAL BAsic 6 DEVELOPMENT ENVIRONMENT

Now that a reference to the application is in an LApplication pointer member
variable, the document and, hence, all other objects can be accessed from any
method within the class.

Dim pDoc as IDocument

Set pDoc = m_pApp.Document

MsgBox pDoc.Name

GETTING TO AN OBJECT

In the previous example, navigating around the objects within ArcMap is a
straightforward process since a pointer to the Application object, the root object
of most of the ArcGIS application’s objects, is passed to the object via one of its
interfaces. This, however, is not the case with all interfaces that are implemented
within the ArcObjects application framework. There are cases when you may
implement an object that exists within the framework and there is no possibility
to traverse the object hierarchy from that object. This is because very few objects
support a reference to their parent object (the IDocument interface has a property

Singlet bjects that only rt Lo .
ingletons are opjects that only support one named Parent that references the LApplication interface). To give developers access

instance of the object.These objects have a class

factory that ensures that anytime an object is to the application object, there is a singleton object that provides a pointer to the
requested, a pointer to an already existing object running application object. The code below illustrates its use.
is returned.

Dim pAppRef As New AppRef

Dim pApp as IApplication

Set pApp = pAppRef
You must be careful to ensure that this object is only used where the implementa-
tion will always run only within ArcMap and ArcCatalog. For instance, it would
not be a good idea to make use of this function from within a custom feature
since that would restrict what applications could be used to view the feature
class.

RUNNING ArcMar WITH A COMMAND LINE ARGUMENT

You can start ArcMap from the command line and pass it an argument that is
cither the pathname of a document (.mxd) or the pathname of a template
(mxt). In the former case, ArcMap will open the document; in the latter case,
ArcMap will create a new document based on the template specified.

You can also pass an argument and create an instance of ArcMap by supplying
arguments to the Win32 API’s Shel/Execute function or Visual Basic’s She// func-
tion as follows:

. S . . Dim ret As Variant
InVisual Basic, it is not possible to determine . . i
the command line used to start the application. ret = Shell("d:\arcgis\bin\arcmap.exe _

There is a sample on disk that provides this d:\arcgis\bin\templates\LetterPortrait.mxt", vbNormalFocus)

functionality. It can be found at <ArcGIS Devel- } .
oper Kit install>\samples\COM By default, She// runs other programs asynchronously. This means that ArcMap

Techniques\Command Line. might not finish executing before the statements following the She// function are
executed.

To execute a program and wait until it is terminated, you must call three Win32
API functions. First, call the CreateProcessA function to load and execute
ArcMap. Next, call the WaitlorSingleObject function, which forces the operating
system to wait until ArcMap has been terminated. Finally, when the user has
terminated the application, call the CloseHandle function to release the
application’s 32-bit identifier to the system pool.

Appendix A ¢ Developer environments ¢ |75

THEVIsuAL BAsic 6 DEVELOPMENT ENVIRONMENT

ot Fomat ebup Eun
) Add Form
8% 0 P

it ackd Hockide

o) Add Class Mode

- T

450 A Broperty Page

81 Acd User Dooument:
] WebClass
Add Dt Report
A DHTM. Page
Adkd Dot Ermronmerk
addle.. CrkD

Ramave dstsloMan.d

A i tew Rizsource ke

Genessl| Make | Comple| Comgonent Deteggng
[~ When this project starts.

Wk for components o be crested

< St grograes:
[C:lprogram FlesiEstiprc ol Bl ane =

St prowser weh AL

[+ Wi eisting broweser

O | Cacd | Hee

oo om | SR BB B e B

176 * ArcGIS Desktop Developer Guide

DEBUGGING VISUAL BASIC CODE

Visual Basic has a debugger integrated into its development environment. This is
in many cases a valuable tool when debugging Visual Basic code; however, in
some cases it is not possible to use the VB debugger. The use of the debugger and
these special cases are discussed below.

Running the code within an application

It is possible to use the Visual Basic debugger to debug your ArcObjectssoftware-
based source code even when ActiveX DILs are the target server. The applica-
tion that will host your DLL must be set as the Debug application. To do this,
select the appropriate application, ArcMap.exe, for instance, and set it as the Start
Program in the Debugging Options of the Project Properties.

Using commands on the Debug toolbar, ArcMap can be started and the DILL
loaded and debugged. Break points can be set, lines stepped over, functions
stepped into, and variables checked. Moving the line pointer in the left margin
can also set the current execution line.

Visual Basic debugger issues

In many cases, the Visual Basic debugger will work without any problems; how-
ever, there are two problems when using the debugger that is supplied with
Visual Basic 6. Both of these problems exist because of the way that Visual Basic
implements its debugger.

Normally when running a tool within ArcMap, the DLL is loaded into ArcMap
address space, and calls are made directly into the DLL. When debugging, this is
not the case. Visual Basic makes changes to the registry so that the CLSID for
your DLL does not point to your DLL but, instead, it points to the Visual Basic
Debug DLL (VB6debug.dll). The Debug DLL must then support all the interfaces
implemented by your class on the fly. With the VB Debug DLL loaded into
ArcMap, any method calls that come into the DLL are forwarded on to Visual
Basic, where the code to be debugged is executed. The two problems with this
are caused by the changes made to the registry and the cross-process space method
calling. When these restrictions are first encountered, it can be confusing since the
object works outside the debugger or at least until it hits the area of problem
code.

Since the method calls made from ArcMap to the custom tool are across apart-
ments, there is a requirement for the interfaces to be marshalled. This marshalling
causes problems in certain circumstances. Most data types can be automatically
marshalled by the system, but there are a few that require custom code because
the standard marshaller does not support the data types. If one of these data
types is used by an interface within the custom tool and there is no custom mar-
shalling code, the debugger will fail with an “Interface not supported error”.

The registry manipulation also breaks the support for component categories. Any
time there is a request on a component category, the category manager within
COM will be unable to find your component because, rather than asking whether
your DLL belongs to the component category, COM is asking whether the VB

THEVIsuAL BAsic 6 DEVELOPMENT ENVIRONMENT

debugger DLL belongs to the component category, and it doesn’t. What this
means is that anytime a component category is used to automate the loading of a
DLL, the DLL cannot be debugged using the Visual Basic debugger.

This causes problems for many of the ways to extend the framework. The most
common way to extend the framework is to add a command or tool. Previously,
it was discussed how component categories were used in this instance. Remember
the component category was only used to build the list of commands in the
dialog box. This means that if the command to be debugged is already present on
a toolbar, the Visual Basic debugger can be used. Hence, the procedure for debug-
ging Visual Basic objects that implement the ICommand interface is to ensure that
the command is added to a toolbar when ArcMap is executed standalone and,
after saving the document, load ArcMap through the debugger.

In some cases, such as extensions and property pages, it is not possible to use the
Visual Basic debugger. If you have access to the Visual C++ debugger, you can
use one of the options outlined below. Fortunately, there are a number of ESRI
Visual Basic Add-ins that make it possible to track down the problem quickly and
effectively. The add-ins, described in the ArcGIS Developer Help in the section
“Visual Basic Developer Add-Ins’, provide error log information including line
and module details. A sample output from an error log is given below; note the
call stack information along with line numbers.

Error Log saved on : 8/28/2000 - 10:39:04 AM

Record Call Stack Sequence - Bottom 1ine is error Tine.

chkVisible_MouseUp C:\Source\MapControl\Commands\frmLayer.frm Line : 196
RefreshMap C:\Source\MapControl\Commands\frmLayer.frm Line : 20

Description
Object variable or With block variable not set

Alternatives to the Visual Basic debugger

If the Visual Basic debugger and add-ins do not provide enough information, the
Visual C++ debugger can be used, either on its own or with C++ ATL wrapper
classes. The Visual C++ debugger does not run the object to be debugged out of
process from ArcMap, which means that none of the above issues apply. Common

Projeet 1 - Project Properties

— — debug commands are given in the Visual C++ section ‘Debugging tips in Devel-

W | oper Studio’. Both of the techniques below require the Visual Basic project to be
s | compiled with Debug Symbol information.

= Optwmize for East Code | Paveg Pentium Proftan)

I optimie for Sosl Code (v G 5

The Visual C++ debugger can work with this symbolic debug information and

(L R the source files.
Visual C++ debugger
(o [mit 1000000

It is possible to use the Visual C++ debugger directly by attaching to a running

| process that has the Visual Basic object to be debugged loaded and setting a break
) Scemiy| e point in the Visual Basic file. When the line of code is reached, the debugger will
halt execution and step into the source file at the correct line. The required steps

Create Debug Symbol information using the
Create Symbolic Debug info option on the are as follows:

Compile tab of the Project Properties dialog box. . L
P f g P ¢ 1. Start an appropriate application, such as ArcMap.exe.

Appendix A ¢ Developer environments ¢ |77

THEVIsuAL BAsic 6 DEVELOPMENT ENVIRONMENT

178 * ArcGIS Desktop Developer Guide

2. Start Microsoft Visual C++.

3. Attach to the ArcMap process using Menu option Build > Start Debug >
Attach to process.

4. Load the appropriate Visual Basic Source file into the Visual C++ debugger
and set the break point.

5. Call the method within ArcMap.

No changes can be made to the source code within the debugger, and variables
cannot be inspected, but code execution can be viewed and altered. This is often
sufficient to determine what is wrong, especially with logic-related problems.

ATL wrapper classes

Using the Active Template Library, you can create a class that implements the
same interfaces as the Visual Basic class. When you create the ATL object, you
create the Visual Basic object. All method calls are then passed to the Visual Basic
object for execution. You debug the contained object by setting a break point in
the appropriate C++ wrapper method, and when the code reaches the break
point, the debugger is stepped into the Visual Basic code. For more information
on this technique, look at the ATL Debugger sample in the Developer Samples of
the ArcGIS Developer Help system.

VisuaL C++

Developing in Visual C++ is a large and complex subject, as it provides a much
lower level of interaction with the underlying Windows APIs and COM APIs
when compared to other development environments.

While this can be a hindrance for rapid application development, it is the most
flexible approach. A number of design patterns, such as COM aggregation and
singletons, that are possible in Visual C++ are not possible in Visual Basic 6. By
using standard class libraries, such as Active Template Library, the complex COM
plumbing code can be hidden. However, it is still important to have a thorough
understanding of the underlying ATL COM implementation.

The documentation in this section is based on Microsoft Visual C++ version 6
and provides some guidance for ArcGIS development in this environment. With
the release of Visual Studio C++ NET, (also referred to as VC7), many new
enhancements are available to the C++ developer. While VC7 can work with the
managed .NET environment, and it is possible to work with the ArcGIS NET
There are many enhancements to ATL inVC7. API, this will only add overhead to access the underlying ArcGIS COM objects.

Some of the relevant changes are covered in the So for the purposes of ArcGIS development in VC7, it is recommended to work
section ATL in Visual C:++ .NET, Iatz;;:ﬂf the “traditional” way—that is, directly with the ArcGIS COM interfaces and
' objects.

With the addition of the Visual C# NET language, it is worth considering
porting Visual C++ code to this environment and using the ArcGIS NET APL
The syntax of C# is not unlike C++, but the resulting code is generally simpler
and more consistent.

This section is intended to serve two main purposes:

1. To familiarize you with general Visual C++ coding style and debugging, begin-
ning with a discussion on ATL

2. To detail specific usage requirements and recommendations for working with
the ArcObjects programming platform in Visual C++

WORKING WITH ATL

This section cannot cover all the topics that a developer working with ATL
should know to be effective, but it will serve as an introduction to ATL. ATL
helps you implement COM objects and saves typing, but it does not excuse you
from knowing C++ and how to develop COM objects.

ATL is the recommended framework for implementing COM objects. The ATL
code can be combined with Microsoft Foundation Class Library (MFC) code,
which provides more support for writing applications. An alternative to MFC is
the Windows Template Library (WTL), which is based on the ATL template
methodology and provides many wrappers for window classes and other applica-
tion support for ATL. WTL is available for download from Microsoft; at the time
of writing, version 7.1 is the latest and can be used with Visual C++ version 6
and Visual C++ NET.

ATL in brief

ATL is a set of C++ template classes designed to be small, fast, and extensible,
based loosely on the Standard Template Library (STL). STL provides generic
template classes for C++ objects, such as vectors, stacks, and queues. ATL also

Appendix A ¢ Developer environments ¢ 179

VisuaL C++

CComXxxThreadModel
CComObjectRootEx<>

IMylne2

CMyObject
CComObject<CMyObiject>

The hierarchical layers of ATL

A more detailed discussion on Direct-To-COM,
follows in the section ‘Direct-To-COM smart

types’.

180 * ArcGIS Desktop Developer Guide

provides a set of wizards that extend the Visual Studio development environ-
ment. These wizards automate some of the tedious plumbing code that all ATL
projects must have. The wizards include, but are not limited to, the following:

* Application—Used to initialize an ATL C++ project.

* Object—Used to create COM objects. Both C++ and IDL code is generated,
along with the appropriate code to support the creation of the objects at run
time.

* Property—Used to add properties to interfaces.

* Method—Used to add methods to interfaces; both the Property and Method
wizards require you to know some IDL syntax.

* Interface Implementation—Used to implement stub functions for existing
interfaces.

* Connection Point Implement—Used to implement outbound events’ inter-
faces.

Typically these are accessed by a right-click on a project, class, or interface in
Visual Studio Workspace/Class view.

ATL provides base classes for implementing COM objects as well as implementa-
tions for some of the common COM interfaces, including [Unknown, IDispatch,
and IClassFactory. There are also classes that provide support for ActiveX controls
and their containers.

ATL provides the required services for exposing ATL.-based COM objects, includ-
ing registration, server lifetime, and class objects.

These template classes build a hierarchy that sandwiches your class. These inherit-
ances are shown to the left. The CComxxxThreadModel class supports thread-safe
access to global, instance, and static data. The CComObjectRootEx class provides
the behavior for the IUnknown methods. The interfaces at the second level repre-
sent the interfaces that the class will implement; these come in two varieties. The
IXoexlmpl interface contains ATL-supplied interfaces that also include an imple-
mentation; the other interfaces have pure virtual functions that must be fully
implemented within your class. The CComObject class inherits your class; this class
provides the implementation of the [Unknown methods along with the object
instantiation and lifetime control.

ATL and DTC

Along with smart types, covered later in this appendix, Direct-To-COM (DTC)
provides some useful compiler extensions you can use when creating ATL-based
objects. The functions __declspec and __nuidof are two such functions, but the
most useful is the #zmport command.

COM interfaces are defined in IDL, then compiled by the Microsoft IDL com-
piler (MIDL.exe). This results in the creation of a type library and header files.
The project uses these files automatically when compiling software that refer-
ences these interfaces. This approach is limited in that, when working with
interfaces, you must have access to the IDL files. As a developer of ArcGIS, you
only have access to the ArcGIS type library information contained in .olb and

VisuaL C++

.ocx files. While it is possible to engineer a header file from a type library, it is a
tedious process. The #zmport command automates the creation of the necessary
files required by the compiler. Since the command was developed to support
DTC, when using it to import ArcGIS type libraries, there are a number of
parameters that must be passed so that the correct import takes place. For further
information on this process, see the later section ‘Importing ArcGIS type
libraries’.

Handling errors in ATL

It is possible to just return an E_FAIL HRESULT code to indicate the failure
within a method; however, this does not give the caller any indication of the
nature of the failure. There are a number of standard Windows HRESULTs
available, for example, E_INVALIDARG (one or more arguments are invalid)
and E_POINTER (invalid pointer). These error codes are listed in the Windows
header file winerror.h. Not all development environments have comprehensive
support for HRESULT; Visual Basic clients often see error results as “Automation
Error — Unspecified Error”. ATL provides a simple mechanism for working with
the COM error information object that can provide an error string description, as
well as an error code.

When creating an ATL object, the Object wizard has an option to support
1SupportErrorlnfo. If you toggle the option on, when the wizard completes, your
object will implement the interface ISupportErrorlnfo, and a method will be added
that looks something like this:

STDMETHODIMP MyClass: : InterfaceSupportsErrorInfo(REFIID riid)

{
static const IID* arr[] =
{
&IID_IMyClass,
}
for (int i =0; i < sizeof(arr) / sizeof(arr[0]); i++)
{
if (InlineIsEqualGUID(*arr[i], riid))
return S_OK;
}
return S_FALSE;
}

It is now possible to return rich error messages by calling one of the ATL error
functions. These functions even work with resource files to ensure easy interna-
AlthoughVisual C++ does support an exception tionalization of the message strings.

mechanism (try ... catch), it is not recommended

to mix this with COM code. If an exception // Return a simple string

unwinds out of a COM interface, there is no At1ReportError(CLSID_MyClass, _T("No connection to Database."),
guarantee the client will be able to catch this, IID_TMyClass, E_FAIL);
and the most likely result is a crash. // Get the Error Text from a resource string

AtTReportError(CLSID_MyClass, IDS_DBERROR, IID_IMyClass, E_FAIL,
_Module.m_hInstResource);

To extract an error string from a failed method, use the Windows function
GetErrorlnfo. This is used to retrieve the last IErrorInfo object on the current
thread and clears the current error state.

Appendix A ¢ Developer environments ¢ |81

VisuaL C++

182 * ArcGIS Desktop Developer Guide

Linking ATL code

One of the primary purposes of ATL is to support the creation of small fast
objects. To support this, ATL gives the developer a number of choices when
compiling and linking the source code. Choices must be made about how to link
or dynamically access the C run-time (CRT) libraries, the registration code, and
the various ATL utility functions. If no CRT calls are made in the code, this can
be removed from the link. If CRT calls are made and the linker switch
_ATL,_MIN_CRT is not removed from the link line, the following error will be
generated during the build:

LIBCMT.1ib(crt0.0bj) : error LNK2001: unresolved external symbol _main
ReleaseMinSize/History.d11 : fatal error LNK1120: 1 unresolved externals
Error executing Tink.exe.

When compiling a debug build, there will probably not be a problem; however,

depending on the code written, there may be problems when compiling a release
build. If you receive this error either remove the CRT calls or change the linker

switches.

If the utilities code is dynamically loaded at run time, you must ensure that the
appropriate DLL (ATL.DLL) is installed and registered on the user’s system. The
ArcGIS 9 run-time installation will install ATL.dIl. The table below shows the
various choices and the related linker switches.

Symbols Utilities Registrar

Debug yes static dynamic
~ATL_MIN_CRT no static static
RelMinDepend _ATL_STATIC_REGISTRY
_ATL_MIN_CRT . .
RelMinSize _ATL_DLL no dynamic dynamic

By default, there are build configurations for ANSI and Unicode builds. A com-
ponent that is built with ANSI compilation will run on Windows 9.x; however,
considering that ArcGIS is only supported on unicode operating systems (Win-
dows NT, Windows 2000, and Windows XP), these configurations are redun-
dant. To delete a configuration in Visual Studio, click Build / Configurations ...”.
Then delete Win32 Debug, Win32 Release MinSize, and Win32 Release
MinDependency.

Registration of a COM component

The ATL project wizard generates the standard Windows entry points for regis-
tration. This code will register the DLL’s type library and execute a registry script
file (.rgs) for each COM object within the DLL. Additional C++ code to perform
other registration tasks can be inserted into these functions.
STDAPI D11RegisterServer(void)
{

// registers object in .rgs, typelib and all interfaces in typelib

// TRUE instructs the type 1library to be registered

return _Module.RegisterServer(TRUE) ;
}

STDAPI D11UnregisterServer(void)
{

VisuaL C++

return _Module.UnregisterServer(TRUE) ;
}
ATL provides a text file format, .rgs, that is parsed by the ATL’s registrar compo-
nent when a DLL is registered and unregistered. The .rgs file is built into a DLL
as a custom resource. The file can be edited to add additional registry entries and
contains ProglD, ClassID, and component category entries to place in the registry.
The syntax describes keys, values, names, and subkeys to be added or removed
from the registry. The format can be summarized as follows:

[NoRemove | ForceRemove | val] Name | [=s 'Value' | d "Value' | b "Value']
{
. optional subkeys for the registry
3
NoRemove signifies that the registry key should not be removed on unregistration.
ForceRemove will ensure the key and subkeys are removed before registering the
new keys. The s, d, and b values indicate string (enclosed with apostrophes),
double word (32-bit integer value), and binary registry values. A typical registra-
tion script is shown below.
HKCR
{
SimpleObject.SimpleCOMObject.1 = s 'SimpleCOMObject Class'
{
CLSID = s '{2AFFC10E-ECFB-4697-8B3D-0405650B7CFB}’
}
SimpleObject.SimpleCOMObject = s 'SimpleCOMObject Class'
{
CLSID = s '{2AFFC10E-ECFB-4697-8B3D-0405650B7CFB}"
CurVer = s 'SimpleObject.SimpleCOMObject.1'
}
NoRemove CLSID

{
ForceRemove {2AFFC10E-ECFB-4697-8B3D-0405650B7CFB} = s 'SimpleCOMObject
Class'

{
ProgID = s 'SimpleObject.SimpleCOMObject.1’
VersionIndependentProgID = s 'SimpleObject.SimpleCOMObject'
InprocServer32 = s "%VMODULE%'
{
val ThreadingModel = s "Apartment’
}
'TypeLib' = s '{855DD226-5938-489D-986E-149600FEDD63} '
'Implemented Categories'’
{
{7DD95801-9882-11CF-9FA9-00AA006C42C4}

}

NoRemove CLSID ensures the registry key CLSID is never removed. This is the
subkey below which all COM objects use to register their ProglDs and GUIDs, so

Appendix A ¢ Developer environments ¢ |83

VisuaL C++

If the GUID of a component is changed during
development or the type library name is
changed, then it is important to keep the .rgs
content consistent with these changes; otherwise,
the registry will be incorrect and object creation
can fail.

184 * ArcGIS Desktop Developer Guide

its removal would result in a serious corruption of the registry. luprocServer32 is
the standard COM mechanism that relates a component GUID to a DLL file;
ATL will insert the correct module name using the % MODULE% variable.
Other entries under the GUID specify the ProglD, threading model, and type
library to use with this component.

To register a COM coclass into a component category, there are two approaches.
The recommended approach is illustrated above: place GUIDs for component
categories beneath an Implemented Categories key, which in turn is under the
GUID of the coclass. The second approach is to use ATL macros in an objects
header file: BEGIN_CATEGORY_MAP, IMPLEMENTED_CATEGORY, and
END_CATEGORY_MAP. However, these macros do not correctly remove
registry entries as explained in MSDN article 0279459 BUG: Component Category
Registry Entries Not Removed in ATL Component. A header file is supplied with the
GUIDs of all the component categories used by ArcGIS; this is available in
\Program Files\ ArcGIS\include\CatIDs\ ArcCATIDs.h.

Debugging ATL code

In addition to the standard Visual Studio facilities, ATL provides a number of
debugging options with specific support for debugging COM objects. The output
of these debugging options is displayed in the Visual C++ Output window. The
Querylnterface call can be debugged by setting the symbol _ATI.,_ DEBUG_({I,
AddRef and Release calls with the symbol _ATI, DEBUG_INTEREACES, and
leaked objects can be traced by monitoring the list of leaked interfaces at termi-
nation time when the _ATI, DEBUG_INTEREACES symbol is defined. The
leaked interfaces list has entries like the following:

INTERFACE LEAK: RefCount = 1, MaxRefCount = 3, {Allocation = 10}

On its own, this does not tell you much apart from the fact that one of your
objects is leaking because an interface pointer has not been released. However,
the Allocation number allows you to automatically break when that interface is
obtained by setting the 7_nlndexBreakAt member of the CComModule at server
startup. This in turn calls the function DebugBreak() to force the execution of the
code to stop at the relevant place in the debugger. For this to work the program
flow must be the same.

extern "C"
BOOL WINAPI D11Main(HINSTANCE hInstance, DWORD dwReason, LPVOID /
1pReserved/)
{
if (dwReason == DLL_PROCESS_ATTACH)
{
_Module.Init(ObjectMap, hInstance, &LIBID_HISTORYLib);
DisableThreadLibraryCalls(hInstance);
_ModuTle.m_nIndexBreakAt = 10;
}
else if (dwReason == DLL_PROCESS_DETACH)
{
_Module.Term(Q);
}
return TRUE;

VisuaL C++

Boolean types

Historically, ANSI C did not have a Boolean data type and used int value instead,
where 0 represents false and nonzero represents true. However, the bool data-
type has now become part of ANSI C++. COM APlIs are language independent
and define a different Boolean type, VARIANT_BOOL. In addition, Win32 API
uses a different bool type. It is important to use the correct type at the appropri-
ate time. The following table summarizes their usage:

Type True value False value Where defined When to use
This is an intrinsic compiler type so
there is more potential for the
compiler to optimize its use. This type

bool true (1) false (0) Dceof'n':e‘ijlet:y can also be promoted to an int value.

P! Expressions (e.g., i'=0) return a type
of bool. Typically used for class
member variables and local variables.
Windows
Data Used with windows API functions,
BOOL (int) TRUE (1) FALSE (0) Type often as a return value to indicate
(defined in |success or failure.
windef.h)
Used in COM APIs for boolean
values. Also used within VARIANT
types: if the VARIANT type is
VT_BOOL, then the VARIANT value
(boolval) is populated with a
com VARIANT_BOOL. Take care to
VARIANT_BOOL|VARIANT_TRUE|VARIANT_FALSE| Boolean |convert a bool class member variable
(16 bit short) 1) ©) values [to the correct VARIANT_BOOL value.
(wtypes.h) |Often the conditional test
"hook - colon” operator is used. For
example, where bRes is defined as a
bool, then set a result type:
“pVal = bRes ? VARIANT_TRUE :
VARIANT_FALSE;
String types

Considering that strings (sequences of text characters) are a simple concept, they
have unfortunately become a complex and confusing topic in C++. The two main
reasons for this confusion are the lack of C++ support for variable length strings
combined with the requirement to support ANSI and Unicode character sets
within the same code. As ArcGIS is only available on Unicode platforms, it may
simplify development to remove the ANSI requirements.

The C++ convention for strings is an array of characters terminated with a 0.
This is not always good for performance when calculating lengths of large strings.
To support variable length strings, the character arrays can be dynamically allo-
cated and released on the heap, typically using malloc and free or new and delete.
Consequently, a number of wrapper classes provide this support; CString defined
in MFC and WTL is the most widely used. In addition, for COM usage the BSTR
type is defined and the ATL wrapper class CComBSTR is available.

To allow for international character sets, Microsoft Windows migrated from an
8-bit ANSI character string (8-bit character) representation (found on

Windows 95, Windows 98, and Windows Me platforms) to a 16-bit Unicode
character string (16-bit unsigned short). Unicode is synonymous with wide chat-
acters (wchar_t). In COM APIs, OLECHAR is the type used and is defined to be
wchar_t on Windows. Windows operating systems, such as Windows NT, Win-
dows 2000, and Windows XP, natively support Unicode characters. To allow the
same C++ code to be compiled for ANSI and Unicode platforms, compiler
switches are used to change Windows API functions (for example,
SetWindowText) to resolve to an ANSI version (SetWindowTextA) or a Unicode
version (SetWindowTextW). In addition, character-independent types (TCHAR
defined in tchar.h) were introduced to represent a character; on an ANSI build
this is defined to be a char, and on a Unicode build this is a wehar_t, a typedef

Appendix A ¢ Developer environments ¢ |85

VisuaL C++

To check if two CComBSTR strings are different,
do not use the not equal (“!=") operator.The
“==" operator performs a case-sensitive compari-
son of the string contents; however, “I=""will
compare pointer values and not the string

contents, typically returning false.

186 * ArcGIS Desktop Developer Guide

defined as unsigned short. To perform standard C string manipulation, there are
typically three different definitions of the same function; for example, for a case-
insensitive comparison, stremp provides the ANSI version, wesemp provides the
Unicode version, and _zesemp provides the TCHAR version. There is also a fourth
version, _mbsenp, which is a variation of the 8-bit ANSI version that will inter-
pret multibyte character sequences (MBCS) within the 8-bit string,

// Initialize some fixed length strings

char* pNameANSI = "Bil1"; // 5 bytes (4 characters plus a terminator)

wchar_t* pNameUNICODE = L"Bi11"; // 10 bytes (4 16-bit characters plus a
16-bit terminator)

TCHAR* pNameTCHAR = _T("Bi11"); // either 5 or 10 depending on compiler
settings
COM APIs represent variable length strings with a BSTR type; this is a pointer to
a sequence of OLECHAR characters, which is defined as Unicode characters and
is the same as a wchar_t. A BSTR must be allocated and released with the
SysAllocString and SysFreeString windows functions. Unlike C strings, they can
contain embedded zero characters although this is unusual. The BSTR also has a
count value, which is stored four bytes before the BSTR pointer address. The
CComBSTR wrappers atre often used to manage the lifetime of a string.

Do not pass a pointer to a C style array of Unicode characters (OLECHAR or
wchar_t) to a function expecting a BSTR. The compiler will not raise an error as
the types are identical. However, the function receiving the BSTR can behave
incorrectly or crash when accessing the string length, which will be random
memory values.
ipFoo->put_WindowTitle(L"Hello™); // This is bad!
ipFoo->put_WindowTitle(CComBSTR(L"Hel10™)); // This correctly initializes
and passes a BSTR
ATL provides conversion macros to switch strings between ANSI (A), TCHAR
(T), Unicode (W), and OLECHAR (OLE). In addition, the types can have a
const modifier (C). These mactros use the abbreviations shown in brackets with a
“2” between them. For example, to convert between OLECHAR (for example,
an input BSTR) to const TCHAR (for use in a Windows function), use the
OLE2CT conversion macro. To convert ANSI to Unicode, use A2W. These
macros requite the USES_ CONVERSION macro to be placed at the top of a
method; this will create some local variables that are used by the conversion
macros. When the soutce and destination character sets ate different and the
destination type is not a BSTR, the macro allocates the destination string on the
call stack (using the _alloca run-time function). It’s important to realize this
especially when using these macros within a loop; otherwise, the stack may grow
large and run out of stack space.

STDMETHODIMP CFoo: :put_WindowTitTe(BSTR bstrTitle)

{
USES_CONVERSION;
if (::SysStringLen(bstrTitle) == 0)
return E_INVALIDARG;
: :SetWindowText (m_hWnd, OLE2CT (bstrTitle));
return S_OK;
}

VisuaL C++

Implementing noncreatable classes

Noncreatable classes are COM objects that cannot be created by CoCreatelnstance.
Instead, the object is created within a method call of a different object, and an
interface pointer to the noncreatable class is returned. This type of object is
found in abundance in the geodatabase model. For example, FeatureClass is
noncreatable and can only be obtained by calling one of a number of methods;
one example is the [FeatureWorkspace::OpenteatureClass method.

One advantage of a noncreatable class is that it can be initialized with private
data using method calls that are not exposed in a COM API Below is a simplified
example of returning a noncreatable object:

// Foo is a cocreatable object.
IFooPtr ipFoo;
HRESULT hr = ipFoo.CreateInstance(CLSID_Foo);

// Bar is a noncreatable object,cannot use ipBar.CreateInstance(CLSID_Bar).
IBarPtr ipBar;

// Use a method on Foo to create a new Bar object.

hr = ipFoo->CreateBar (&ipBar) ;

ipBar->DoSomething() ;

The steps required to change a cocreatable ATL class into a noncreatable class are
shown below:

1. Add “noncreatable” to the .idl file’s coclass attributes.
[
uuid(DCB87952-0716-4873-852B-F56AE8F9B(42) ,
noncreatable
1
coclass Bar
{
[default] interface IUnknown;
interface IBar;

};

2. Change the class factory implementation to fail any cocreate instances of the

noncreatable class. This happens via ATL’s object map in the main DLL
module.

BEGIN_OBJECT_MAP(ObjectMap)
OBJECT_ENTRY (CLSID_Foo, CFoo) // Creatable object

OBJECT_ENTRY_NON_CREATEABLE (CLSID_Bar, CBar) // Noncreatable object
END_OBJECT_MAP(Q)

3. Optionally, the registry entries can be removed. First, remove the registry

script for the object from the resources (Bar.rgs in this example). Then change
the class definition DECLARE_REGISTRY_RESOURCEID(IDR_BAR) to
DECLARE_NO_REGISTRY().

4. To create the noncreatable object inside a method, use the CComObject

template to supply the implementation of Createlnstance.

// Get NonCreatable object Bar (implementing IBar) from COM object Foo
STDMETHODIMP CFoo: :CreateBar(IBar **pVal)
{

Appendix A ¢ Developer environments ¢ |87

VisuaL C++

188 * ArcGIS Desktop Developer Guide

if (pval==0) return E_POINTER;
// Smart pointer to noncreatable object Bar
IBarPtr ipBar = 0;

// C++ Pointer to Bar, with ATL template to supply Createlnstance
impTlementation

CComObject<CBar>* pBar = 0;

HRESULT hr = CComObject<CBar>: :CreateInstance(&pBar);

if (SUCCEEDED(hr))

{
// Increment the ref count from O to 1 to protect the object
// from being released in any initialization code.
pBar->AddRef () ;

// @11 G+ methods (not exposed to COM) to initialize the Bar object.
pBar->InitialiseBar(10);

// QI to IBar and hold a smart pointer reference to the object Bar.
hr = pBar->QueryInterface(IID_IBar, (void**)&ipBar);

pBar->Release();

// Return IBar pointer to the caller.
*pVal = ipBar.Detach(Q);

return S_OK;
}

ATL inVisual C++ .NET

Visual C++ version 6 is used for the majority of this help. However, with the
release of Visual C++ NET, there are enhancements and changes that are
relevent to the ArcGIS ATL developer. Some of these are summarized below:

Attribute-based programming—This is a major change introduced in VC7.
Attributes are inserted in the source code enclosed in square brackets—for ex-
ample, [coclass]. Attributes are designed to simplify COM programming and
NET framework common language run-time development. When you include
attributes in your source files, the compiler works with provider DLLs to insert
code or modify the code in the generated object files. There are attributes that aid
in the creation of .idl files, interfaces, type libraries, and other COM elements. In
the IDE, attributes are supported by the wizards and by the Properties window.
The ATL wizards make extensive use of attributes to inject the ATL boilerplate
code into the class. Consequently, typical COM coclass header files in VC7 con-
tain much less ATL code than at VC6. As IDL is generated from attributes, there
is typically no .idl file present in COM projects as before, and the .idl file is gener-
ated at compile time.

Build configurations—There are only two default build configurations in VC7;
these are ANSI Debug- and Release-based builds. As ArcGIS is only available on

VisuaL C++

Unicode platforms, it is recommended to change these by modifying the project
properties. The general project properties page has an option for “Character Set”.
Change this from “Use Multi-Byte Character Set” to “Use Unicode Character

i

Set”.

Character conversion macros—The character conversion macros
(USES_CONVERSION, W2A, W2CT, and so forth) have improved alternative
versions. These no longer allocate space on the stack, so they can be used in loops
without running out of stack space. The USES_CONVERSION macro is also no
longer required. These macros are now implemented as classes and begin with a
“C”—for example, CW2A, CW2CT.

Safe array support—This is available with CComSafeArray and
CComSafeArrayBound classes.

Module level global—The module level global CComModule _module has
been split into a number of related classes, for example, CAtliComModule and
CAtlWinModule. To retrieve the resource module instance, use the following
code: _At1BaseModule.GetResourceInstance();

String support—General variable length string support is now available through
CString in ATL. This is defined in the header files atlstr.h and cstringt.h. If ATL
is combined with MFC, this defaults to MFC’s CString implementation.

Filepath handling—A collection of related functions for processing the com-
ponents of filepaths is available through the CPath class defined in atlpath.h.

ATLServer—This is a new selection of ATL classes designed for writing Web
applications, XML Web services, and other server applications.

#import issues—When using #import, a few modifications are required. For
example, the #import of estiSystem requires an exclude or rename of GefObject,
and the #import of esriGeometry requires an exclude or rename of ISegment.

ATL REFERENCES

The Microsoft Developer Network (MSDN) provides a wealth of documenta-
tion, articles, and samples that are installed with Visual Studio products. ATL
reference documentation for Visual Studio version 6 is under:

MSDN Library - October 2001 | Visual Tools and Languages | Visual Studio 6.0
Documentation | Visual C++ Documentation | Reference | Active Template 1ibrary

Additional documentation is also available on the MSDN Web site at
http:/ /www.msdn.microsoft.com.

You may also find the following books to be useful:

Grimes, Richard. ATL. COM Programmer’s Reference. Chicago: Wrox Press Inc.,
1988.

Grimes, Richard. Professional AT1. COM Programming. Chicago: Wrox Press Inc.,
1988.

Grimes, Richard, Reilly Stockton, Alex Stockton, and Julian Templeman. Begin-
ning ATL. 3 COM Programming. Chicago: Wrox Press Inc. 1999.

King, Brad and George Shepherd. Inside ATI.. Redmond, WA: Microsoft Press,
1999.

Appendix A ¢ Developer environments ¢ |89

VisuaL C++

190 * ArcGIS Desktop Developer Guide

Rector, Brent, Chris Sells, and Jim Springfield. ATL Internals. Reading, MA:
Addison—Wesley, 1999.

SMART TYPES

Smart types are objects that behave as types. They are C++ class implementations
that encapsulate a data type, wrapping it with operators and functions that make
working with the underlying type easier and less error prone. When these smart
types encapsulate an interface pointer, they are referred to as swart pointers. Smart
pointers work with the IUnknown interface to ensure that resource allocation and
deallocation is correctly managed. They accomplish this by various functions,
construct and destruct methods, and overloaded operators. There are numerous
smart types available to the C++ programmer. The two main smart types covered
here are Direct-To-COM and Active Template Library.

Smart types can make the task of working with COM interfaces and data types
casier, since many of the API calls are moved into a class implementation; how-
ever, they must be used with caution and never without a clear understanding of
how they are interacting with the encapsulated data type.

Direct-To-COM smart types

The smart type classes supplied with DTC are known as the Compiler COM
Support Classes and consist of:

* _com_error—This class represents an exception condition in one of the COM
support classes. This object encapsulates the HRESULT and the IErrorlnfo
COM exception objects.

* _com_ptr_+—This class encapsulates a COM interface pointer. See below for
common uses.

* _bstr_t—This class encapsulates the BSTR data type. The functions and opera-
tors on this class are not as rich as the ATL. CComBSTR smatt type; hence, this
is not normally used.

* _variant_t—This class encapsulates the IZ4RLANT data type. The functions
and operators on this class are not as rich as the ATL. CCom 1 ariant smart type;
hence, this is not normally used.

To define a smart pointer for an interface, you can use the macro
_COM_SMARTPTR_TYPEDEF like this:
_COM_SMARTPTR_TYPEDEF (IFoo, __uuidof(IFoo));
The compiler expands this as follows:
typedef _com_ptr_t< _com_IIID<IFoo, _ uuidof(IFoo)> > IFooPtr;

Once declared, it is simply a matter of declaring a variable as the type of the

interface and appending P to the end of the interface. Below are some common

uses of this smart pointer that you will see in the numerous C++ samples.

// Get a CLSID GUID constant.

extern "C" const GUID __decTspec(selectany) CLSID_Foo = \
{0x2f3b470c,0xb01f,0x11d3, {0x83,0x8e,0x00,0x00,0x00,0x00,0x00,0x003} } ;

VisuaL C++

// Declare Smart Pointers for IFoo, IBar, and IGak interfaces.
_COM_SMARTPTR_TYPEDEF (IFoo, __uuidof(IFoo));
_COM_SMARTPTR_TYPEDEF(IBar, __uuidof(IBar));
_COM_SMARTPTR_TYPEDEF (IGak, __uuidof(IGak));

STDMETHODIMP SomeClass::Do()

{

// Create Instance of Foo class and QueryInterface (QI) for IFoo
interface.

IFooPtr ipFoo;
HRESULT hr = ipFoo.CreateInstance(CLSID_Foo);
if (FAILED(hr)) return hr;

// Call method on IFoo to get IBar.
IBarPtr ipBar;

hr = ipFoo->get_Bar(&ipBar);

if (FAILED(hr)) return hr;

// QI IBar interface for IGak interface.
IGakPtr ipGak(ipBar);

// Call method on IGak.
hr = ipGak->DoSomething();
if (FAILED(hr)) return hr;

// Explicitly call Release().
ipGak = 0;
ipBar = 0;

// Let destructor call IFoo's Release.

return S_OK;
}
One of the main advantages of using the DT'C smart pointers is that they are
automatically generated from the #import compiler statement for all interface and
coclass definitions in a type library. For more details on this functionality, see the
later section ‘Importing ArcGIS type libraries’.

It is possible to create an object implicitly in a DTC smart pointer’s constructor,
for example:

IFooPtr ipFoo(CLSID_Foo)

However, this will raise a C++ exception if there is an error during object cre-
ation—for example, if the DLL file containing the object implementation was
accidentally deleted. This exception will typically be unhandled and cause a crash.
A more robust approach is to avoid exceptions in COM, call CreateInstance
explicitly, and handle the failure code, for example:

IFooPtr ipFoo;

HRESULT hr = ipFoo.CreateInstance(CLSID_Foo);

if (FAILED(hr))
return hr; // Return object creation failure code to caller.

Appendix A ¢ Developer environments ¢ |91

VisuaL C++

ActiveTemplate Library smart types

ATL defines various smart types, as seen in the list below. You are free to com-
bine both the ATL and DTC smart types in your code. However, it is typical to
use the DTC for smart pointers, as they are easily generated by importing type

The equality operator (“== ") may have
different implementations when used during
smart pointer comparisons.The COM specifica-
tion states object identification is performed by
comparing the pointer values of [Unknown.The
DTC smart pointers will perform necessary QI
and comparison when using the “=="operator.
However, the ATL smart pointers will not do
this, so you must use the ATL IsEqualObject()
method.

192 « ArcGIS Desktop Developer Guide

libraries. For BSTR and VARIANT types, the ATL versions for CComBSTR,
CComVariant are typically used.

ATL smart types include:

CComPtr—encapsulates a COM interface pointer by wrapping the AddRef and
Release methods of the 1Unknown interface

CComQIPtr—encapsulates a COM interface and supports all three methods of
the [Unknown interface: Querylnterface, AddRef, and Release

CComBSTR—encapsulates the BSTR data type
CComVariant—encapsulates the 1ZARIANT data type
CRegKey—provides methods for manipulating Windows registry entries

CComDispatchDriver—provides methods for getting and setting properties and
calling methods through an object’s IDispatch interface

CSecurityDescripto—provides methods for setting up and working with the
Discretionary Access Control List (DACL)

This section examines the first four smart types and their uses. The example code
below, written with ATL smart pointers, looks like the following:

// Get a CLSID GUID constant.
extern "C" const GUID __decTspec(selectany) CLSID_Foo = \

{0x2f3b470c,0xb01f,0x11d3, {0x83,0x8e,0x00,0x00,0x00,0x00,0x00,0x003} } ;

STDMETHODIMP SomeClass::Do ()

{

// Create Instance of Foo class and QI for IFoo interface.
CComPtr<IFoo> ipFoo;
HRESULT hr = CoCreateInstance(CLSID_Foo, NULL, CLSCTX_INPROC_SERVER,

IID_IFoo, (void **)&ipFoo);

if (FAILED(Chr)) return hr;

// Call method on IFoo to get IBar.
CComPtr<IBar> ipBar;

HRESULT hr = ipFoo->get_Bar(&ipBar) ;
if (FAILED(hr)) return hr;

// IBar interface for IGak interface
CComQIPtr<IGak> ipGak(ipBar);

// Call method on IGak.
hr = ipGak->DoSomething();
if (FAILED(hr)) return hr;

// Explicitly call Release().
ipGak = 0;

VisuaL C++

ipBar = 0;

// Let destructor call Foo's Release.

return S_OK;
}
The most common smart pointer seen in the Visual C++ samples is the DTC type.
In the examples below, which illustrate the BSTR and IZARLANT data types, the
DTC pointers are used. When working with CComBSTR, use the text mapping
L*” to declare constant OLECHAR strings. CCom 1 ariant derives directly from
the VARIANT data type, meaning that there is no overloading with its implemen-
tation, which in turn simplifies its use. It has a rich set of constructors and func-
tions that make working with IZARLANTs straightforward; there are even meth-
ods for reading and writing from streams. Be sure to call the Clear method before
reusing the variable.

ipFoo->put_Name (CComBSTR(L"NewName")) ;

if FAILED(Chr)) return hr;

// Create a VT_I4 variant (signed long).
CComvariant value(12);

// Change its data type to a string.

hr = vwalue.ChangeType(VT_BSTR) ;

if (FAILED(hr)) return hr;
Some method calls in IDL are marked as being optional and take a variant param-
cter. However in Visual C++, these parameters still have to be supplied. To

signify that a parameter value is not supplied, a variant is passed specifying an
error code or type DISP_E_PARAMNOTFOUND:

CComBSTR documentFiTlename(L"World.mxd");

CComVariant noPassword;

noPassword.vt = VT_ERROR;

noPassword.scode = DISP_E_PARAMNOTFOUND;

HRESULT hr = ipMapControl->LoadMxFile(documentFilename, noPassword) ;
When working with CCoBSTR and CComl ariant, the Detach() function releases
the underlying data type from the smart type so it can be used when passing a

result as an [out] parameter of a method. The use of the Detach method with
CComBSTR is shown below:

STDMETHODIMP CFoo: : get_Name (BSTR* name)
{
if (name==0) return E_POINTER;
CComBSTR bsName(L"FooBar™) ;

CComVariant(VARIANT_TRUE) will create a *name = bsName.Detach();
short integer variant (type VT_I2) and not a }

Boolean variant (type VT_BOOL) as expected. . . R . . .
You can use CComVariant(true) to create a CComVariant myVar(ipSmartPointer) will result in a variant type of Boolean

Boolean variant. (VI_BOOL) and not a variant with an object reference (VI_UNKNOWN) as
expected. It is better to pass unambiguous types to constructors, that is, types
that are not themselves smart types with overloaded cast operators.

Appendix A ¢ Developer environments ¢ 193

VisuaL C++

194 * ArcGIS Desktop Developer Guide

// Perform QL if IUnknown.

IUnknownPtr ipUnk = ipSmartPointer;

// Ensure IUnknown* constructor of CComvVariant is used.

CComvariant myVar2(ipUnk.GetInterfacePtrQ);

A common practice with smart pointers is to use Dezach() to return an object from
a method call. When returning an interface pointer, the COM standard is to
increment reference count of the [out] parameter inside the method implementa-
tion. It is the caller’s responsibility to call Release when the pointer is no longer
required. Consequently, care must be taken to avoid calling Defach() directly on a
member variable. A typical pattern is shown below:

STDMETHODIMP CFoo: :get_Bar(IBar **pVal)

{
if (pVal==0) return E_POINTER;

// Constructing a Tocal smart pointer using another smart pointer
// results in an AddRef (if pointer is not 0).
IBarPtr ipBar(m_ipBar);

// Detach will clear the local smart pointer, and the
// interface is written into the output parameter.
*pVal = ipBar.Detach();

// This can be combined into one Tine
// *pVal = IBarPtr(m_ipBar) .Detach();

return S_OK;
}

The above pattern has the same result as the following code; note that a condi-
tional test for a zero pointer is required before AddRef can be called. Calling
AddRef (or any method) on a zero pointer will result in an access violation
exception and typically crash the application:

STDMETHODIMP CFoo: :get_Bar(IBar **pVal)

{
if (pVal==0) return E_POINTER;

// Copy the interface pointer (no AddRef) into the output parameter.
*pVal = m_ipBar;

// Make sure interface pointer is nonzero before calling AddRef.
if (fpval)
*pVal->AddRef () ;

return S_OK;
}
When using a smart pointer to receive an object from an [out] parameter on a
method, use the smart pointer “&” dereference operator. This will cause the
previous interface pointer in the smart pointer to be released. The smart pointer is
then populated with the new [out] value. The implementation of the method will

VisuaL C++

have already incremented the object reference count. This will be released when
the smart pointer goes out of scope:

{
IFooPtr ipFool, ipFoo2;
ipFool.CreateInstance(CLSID_Foo);
ipFoo2.CreateInstance(CLSID_Foo);

// Initalize ipBar Smart pointer from Fool.
IBarPtr ipBar;
ipFool->get_Bar(&ipBar);

// The "&" dereference will call Release on ipBar.
// ipBar is then repopulated with a new instance of IBar.
ipFoo2->get_Bar(&ipBar);

}

// ipBar goes out of scope, and the smart pointer destructor calls
Release.

Naming conventions

Type names

All type names (class, struct, enun, and typedef) begin with an uppercase letter and
use mixed case for the rest of the name:

class Foo : public CObject { . . .};
struct Bar { . . .};
enum ShapeType { . . . };

typedef int* FoolInt;
Typedefs for function pointers (callbacks) append Proc to the end of their names.
typedef void (*FooProgressProc) (int step);

Enumeration values all begin with a lowercase string that identifies the project; in
the case of ArcObjects this is esti, and each string occurs on a separate line:

typedef enum esriQuuxness
{

esriQLow,

esriQMedium,

esriQHigh
} esriQuuxness;

Function names

Name functions using the following conventions:

* For simple accessor and mutator functions, use Get<Property> and
Set<Property>:

int GetSize(Q);
void SetSize(int size);

 If the client is providing storage for the result, use Query<Property>:

void QuerySize(int& size);

Appendix A ¢ Developer environments ¢ 195

VisuaL C++

Here are some suggestions for a naming
convention.These help identify the variables’
usage and type and so reduce coding errors.This
is an abridged Hungarian notation:

[<scope>_]<type><name>
Prefix Variable scope
m | Instance class members

a

Static class member (including constants)

Globally static variable

oo

local variable or struct or public class

<empty>

member
<type>
Prefix ~ Data Type
b | Boolean

by | byte or unsigned char

cx/cy | shortused as size

d | double

dw | DWORD, double word or unsigned long

f | float

fn | function

h | handle

i | int (integer)

ip | smart pointer

I | long

p | apointer

s | string

sz | ASCIIZ null-terminated string
w | WORD unsigned int

X,y | shortused as coordinates

<name> describes how the variable is used or
what it contains.The <scope> and <type>
portions should always be lowercase, and the
<name> should use mixed case:

Variable Name ~ Description

m_hWnd | ahandle to a HWND

ipEnvelope a smart pointer to a COM interface

m_pUnkOuter a pointer to an object

c_isLoaded a static class member

g_pWindowlList a global pointer to an object

196 * ArcGIS Desktop Developer Guide

e For state functions, use Set<State> and Is<State> or Can<State>:

bool IsFileDirty(Q;
void SetFileDirty(bool dirty);
bool1 CanConnect();

* Where the semantics of an operation are obvious from the types of argu-
ments, leave type names out of the function names.
Instead of:
AddDatabase(Database& db) ;
consider using:
Add(Database& db);
Instead of:
ConvertFoo2Bar(Foo* foo, Bar* bar);
consider using:
Convert(Foo* foo, Bar* bar)

* If a client relinquishes ownership of some data to an object, use
Give<Property>. If an object relinquishes ownership of some data to a
client, use Take<Property>:
void GiveGraphic(Graphic* graphic);

Graphic* TakeGraphic(int itemNum);
* Use function overloading when a particular operation works with different

argument types:
void Append(const CString& text);
void Append(int number);

Argument names

Use descriptive argument names in function declarations. The argument name
should clearly indicate what purpose the argument serves:

bool Send(int messageID, const char* address, const char* message);
DEBUGGING TIPS IN DEVELOPER STUDIO

Visual C++ comes with a feature-rich debugger. These tips will help you get the
most from your debugging session.

Backing up after failure

When a function call has failed and you’d like to know why (by stepping into
it), you don’t have to restart the application. Use the Set Next Statement
command to reposition the program cursor back to the statement that failed
(right-click on the statement to bring up the debugging context menu). Then
step into the function.

Edit and Continue

Visual Studio 6 allows changes to source code to be made during a debugging
session. The changes can be recompiled and incorporated into the executing code
without stopping the debugger. There are some limitations to the type of changes
that can be made; in this case, the debug session must be restarted. This feature is
enabled by default; the settings are available in the Settings command of the

VisuaL C++

project menu. Click the C/C++ tab, then choose General from the Category
dropdown list. In the Debug info dropdown list, click Program Database for Edit
and Continue.

Unicode string display

To set your debugger options to display Unicode strings, click the Tools menu,
click Options, click Debug, then check the Display Unicode Strings check box.

Variable value display

Pause the cursor over a variable name in the source code to see its current
value. If it is a structure, click it and bring up the QuickWatch dialog box (the
Eyeglasses icon or Shift+F9) or drag and drop it into the Watch window.

Undocking windows

If the Output window (or any docked window, for that matter) seems too
small to you, try undocking it to make it a real window by right-clicking it and
toggling the Docking View item.

Conditional break points

Use conditional break points when you need to stop at a break point only once
some condition is reached—for instance, when a for loop reaches a particular
counter value. To do so, set the break point normally, then bring up the
Breakpoints window (Ctrl+B or Alt+F9). Select the specific break point you just
set and click the Condition button to display a dialog box in which you specify
the break point condition.

Preloading DLLs

You can preload DLLs that you want to debug before executing the program.
This allows you to set break points up front rather than wait until the DLL has
been loaded during program execution. To do this, click Project, click Settings,
click Debug, click Category, then click Additional DLLs. Then, click in the list
area to add any DLLs you want to preload.

Changing display formats

You can change the display format of variables in the QuickWatch dialog box or
in the Watch window using the formatting symbols in the following table.

Symbol Format Value Displays
d,i | signed decimal integer 0xFOO0F065 268373915
u | unsigned decimal integer 0x0065 101
o | unsigned octal integer 0xF065 0170145
x X | hexadecimal integer 61541 0x0000F065
I,h | long or short prefix for d, I, u, 0, x, X 00406042, hx 0x0C22
f | signed floating-point 3. 1500000
e | signed scientific notation 3. 1.500000e+00
g | eorf, whichever is shorter 3. 15
¢ | single character 0x0065 e
s | string 0x0012FDES "Hello"
su | Unicode string "Hello"
hr | string 0 s oK

Appendix A ¢ Developer environments ¢ |97

VisuaL C++

198 * ArcGIS Desktop Developer Guide

To use a formatting symbol, type the variable name followed by a comma and the
appropriate symbol. For example, if var has a value of 0x0065, and you want to
see the value in character form, type “var,c” in the Name column on the tab of
the Watch window. When you press Enter, the character format value appears:
var,c = ‘¢’. Likewise, assuming that /r is a variable holding HRESULTS, view a
human-readable form of the HRESULT by typing “hr,hr” in the Name column.

hr. hr E FAIL
plUnicode 0x004200d4 “string'
plnicode, su "Hellao"

Wiatch 1 { Watch2)\ Watch3 Watchd

You can use the formatting symbols shown in the following table to format the
contents of memory locations.

Symbol Format Value
0x0012ffac

m: 64 ASCII characters

E

0x00 1 2ffac

16 bytes in hex, followed by 16 ASCII
characters

B3 34 CB 00 84 30 94 80
FF 22 8A 30 57 26 00 00 .4..0....".OW&..

mb

16 bytes in hex, followed by 16 ASCII
characters

0x0012ffac
B3 34 CB 00 84 30 94 80
FF 22 8A 30 57 26 00 00 .4..0...". OW&..

mw

8 words

0x001 2ffac
34B3 00CB 3084 8094

22FF 308A 2657 0000

0x00 1 2ffac
00CB34B3 80943084 308A22FF 00002657

a

m 4 double-words

0x0012fc60
mu | 2-byte characters (Unicode) 8478 774 fff ffff
0000 0000 0000 0000

With the memory location formatting symbols, you can type any value or expres-
sion that evaluates a location. To display the value of a character array as a string,
precede the array name with an ampersand, &yourname. A formatting character
can also follow an expression:

e reptlx

e alps/0],mb
* xlocg

e count,d

To watch the value at an address or the value to which a register points, use the
BY, WO, or DW operators:

* BY returns the contents of the byte pointed at.
* VO returns the contents of the word pointed at.
* DIV returns the contents of the doubleword pointed at.

Follow the operator with a variable, register, or constant. If the BY, WO, or DWW
operator is followed by a variable, then the environment watches the byte, word,
or doubleword at the address contained in the variable.

VisuaL C++

You can also use the context operator { } to display the contents of any location.

To display a Unicode string in the Watch window or the QuickWatch dialog box,
use the su format specifier. To display data bytes with Unicode characters in the
Watch window or the QuickWatch dialog box, use the mu format specifier.

Keyboard shortcuts
There are numerous keyboard shortcuts that make working with the Visual

Studio Editor faster. Some of the more useful keyboard shortcuts follow.

The text editor uses many of the standard shortcut keys used by Windows
applications, such as Word. Some specific source code editing shortcuts are
listed below.

Shortcut Action

Alt+F8 | Correctly indent selected code based on surrounding lines.

Ctrl+] | Find the matching brace.

Ctrl+] | Display list of members.

Complete the word, once the number of letters entered allows the editor to recognize it. Use full when

Ctrl+Spacebar N N N
completing function and variable names.

Tab | Indents selection one tab stop to the right.

Shift+Tab | Indents selection one tab to the left.

Below is a table of common keyboard shortcuts used in the debugger.

Shortcut ~ Action

F9 | Add or remove breakpoint from current line.

Ctrl+Shift+F9 | Remove all breakpoints.

Ctrl+F9 | Disable breakpoints.

Ctrl+Alt+A | Display auto window and move cursor into it.

Ctrl+Alt+C | Display call stack window and move cursor into it.

Cerl+Ale+L | Display locals window and move cursor into it.

Crtrl+Alt+A | Display auto window and move cursor into it.

Shift+F5 | End debugging session.
Fl

Execute code one statement at a time, stepping into functions.

FI0 | Execute code one statement at a time, stepping over functions.

Ctrl+Shift+F5 | Restart a debugging session.

Ctrl+FI0 | Resume ion from current to selected

F5 | Run the application.

Ctrl+F5 | Run the application without the debugger.

Crrl+Shift+FI0 | Set the next statement.

Ctrl+Break | Stop execution.

Appendix A ¢ Developer environments ¢ |99

VisuaL C++

200 ¢ ArcGIS Desktop Developer Guide

Loading the following shortcuts can greatly increase your productivity with the
Visual Studio development environment.

Shortcut Action

ESC | Close a menu or dialog box, cancel an operation in progress, or place focus in the current document window.

CTRL+SHIFT+N | Create a new file.

CTRL+N | Create a new project.

CTRL+F6 or
CTRL+TAB

CTRL+ALT+A | Display the auto window and move the cursor into it.

Cycle through the MDI child windows one window at a time.

CTRL+ALT+C | Display the call stack window and move the cursor into it.

CTRL+ALT+T | Display the document outline window and move the cursor into it.
CTRL+H | Display the find window.

CTRL+F | Display the find window. If there is no current Find criteria, put the word under your cursor in the find box.

CTRL+ALT+| | Display the immediate window and move the cursor into it. Not available if you are in the text editor window.

CTRL+ALT+L | Display the locals window and move the cursor into it.

CTRL+ALT+O | Display the output window and move the cursor into it

CTRL+ALT+) | Display the project explorer window and move the cursor into it.

CTRL+ALT+P | Display the properties window and move the cursor into it.

CTRL+SHIFT+O | Open a file.
CTRL+O | Open a project.

CTRL+P | Printall or part of the document.

CTRL+SHIFT+S | Save all of the files, projects, or documents.

CTRL+S | Selectall.

CTRL+A | Save the current document or selected item or items.

Navigating through online help topics

Right-click a blank area of a toolbar to display a list of all the available
toolbars. The Infoviewer toolbar contains up and down arrows that allow you
to cycle through help topics in the order in which they appear in the table of
contents. The left and right arrows cycle through help topics in the order that
you visited them.

IMPORTING ArcGIS TYPE LIBRARIES

To reference ArcGIS interfaces, types, and objects, you will need to import the
definitions into Visual C++ types. The #import command automates the creation
of the necessaty files required by the compiler. The #import was developed to
support Direct-To-Com. When importing ArcGIS library types, there are a num-
ber of parameters that must be passed.

#pragma warning(push)

#pragma warning(disable : 4192) /* Ignore warnings for types that are
dupTlicated in win32 header files.

%/

#pragma warning(disable : 4146) /* Ignore warnings for use of minus on
unsigned types. */

#import "\Program Files\ArcGIS\com\esriSystem.olb"
/* Type Tibrary to generate C++ wrappers.*/ \

raw_interfaces_only, /* Don't add raw_ to method names. */ \
raw_native_types, /* Don't map to DTC smart types. */ \
no_namespace, /* Don't wrap with C++ name space. */ \
named_guids, /* Named guids and declspecs. */\
exclude("OLE_COLOR", "OLE_HANDLE", "VARTYPE")

/* Exclude conflicting types. */

#pragma warning(pop)

VisuaL C++

The main use of #import is to create C++ code for interface definitions and
GUID constants (LIBID, CLSID, and IID) and to define smart pointers. The
exclude (“OLE_COLOR”, “OLE_HANDLE”, “VARTYPE?”) is required because
Windows defines these to be unsigned longs, which conflicts with the ArcGIS
definition of long—this was required to support Visual Basic as a client of
ArcObjects, since Visual Basic has no support for unsigned types. There are no
issues with excluding these.

You can view the code generated by #import in the type library header (.tlh) files,
which are similar in format to a .h file. You may also find a type library imple-
mentation (.tli) file, which corresponds to a .cpp file. These files can be large but
are only regenerated when the type libraries change.

There are many type libraries at ArcGIS 9 for different functional areas. You can
start by importing those that contain the definitions that you require. However,
#import does not automatically include all other definitions that the imported
type library requires. For example, when importing the type library esriGeometry,
it will contain references to types that are defined in estriSystem, so esriSystem
must be imported before esriGeometry.

A complete list of library dependencies can be found in the Overview topic for
cach library.

Choosing the minimum set of type libraries helps reduce compilation time, al-
though this is not always significant. Here are some steps to help determine the
minimum number of type libraries required:

1. Do a compilation and look at the “missing type definition” errors generated
from code (for example, ICommand not found).

2. Place a #import statement for the library you need a reference for into your
stdafx.h file. Use the LibraryLocator utility or component help to assist in this
task.

3. Compile the project a second time.

4. The compiler will issue errors for types it cannot resolve in the imported type
libraries; these are typically type definitions, such as WKSPoint or interfaces
that are inherited into other interfaces. For example, if working with geom-
etry objects, such as points, start by importing esriGeometry. The compiler will
issue various error messages, such as:

c:\temp\sample\debug\esrigeometry.t1h(869) : error C2061: syntax error :
jdentifier WKSPoint

Looking up the definition of WKSPoint, you see it is defined in esriSystem.
Therefore, importing esriSystem before esriGeometry will resolve all these
issues.

Below is a typical list of imports for working with the ActiveX controls.

#pragma warning(push)

#pragma warning(disable : 4192) /* Ignore warnings for types that are
dupTlicated in win32 header files. */

#pragma warning(disable : 4146) /* Ignore warnings for use of minus on
unsigned types. */

Appendix A ¢ Developer environments ¢ 201

VisuaL C++

#import "\Program Files\ArcGIS\com\esriSystem.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids, exclude("OLE_COLOR",
"OLE_HANDLE", "VARTYPE™)

#import "\Program Files\ArcGIS\com\esriSystemUI.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "\Program Files\ArcGIS\com\esriGeometry.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "\Program Files\ArcGIS\com\esriDisplay.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "\Program Files\ArcGIS\com\esriOutput.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "\Program Files\ArcGIS\com\esriGeoDatabase.olb"
ran_interfaces_only, raw_native_types, no_namespace, named_guids

#import "\Program Files\ArcGIS\com\esriCarto.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

// Some of the Engine controls

#import "\Program Files\ArcGIS\bin\TOCControl.ocx" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "\Program Files\ArcGIS\bin\ToolbarControl.ocx"
ran_interfaces_only, raw_native_types, no_namespace, named_guids

#import "\Program Files\ArcGIS\bin\MapControl.ocx" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "\Program Files\ArcGIS\bin\PageLayoutControl.ocx"
ran_interfaces_only, raw_native_types, no_namespace, named_guids

// additionally for 3D controls

#import "\Program Files\ArcGIS\com\esri3DAnalyst.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "\Program Files\ArcGIS\com\esriGlobeCore.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "\Program Files\ArcGIS\bin\SceneControl.ocx" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "\Program Files\ArcGIS\bin\GlobeControl.ocx" raw_interfaces_only,
raw_native_types, no_namespace, named_guids
A similar issue arises when writing IDL that contains definitions from other type
libraries. In this situation, use importlib just after the library definition. For
example, writing an external command for ArcMap would require you to create a
COM object implementing ICommand. This definition is in esriSystensUI and is
imported into the IDL as follows:
Tibrary WALKTHROUGH1CPPLib
{
import1lib("stdole32.t1b");
importlib("stdole2.t1b");
import1ib("\Program Files\ArcGIS\com\esriSystemUI.olbh");

coclass ZoomIn
{
[default] interface IUnknown;
interface ICommand;
}
1

202 ¢ ArcGIS Desktop Developer Guide

VisuaL C++

ATL AND THE ActiveX CONTROLS

For a general discussion of ATL, see the earlier This section covers how to use ATL to add controls to a dialog box. Although
section ‘ATL in brief”. ATL is focused on providing COM support, it also supplies some useful Windows
programming wrapper classes. One of the most useful is CWindow, a wrapper
around a window handle (HWND). The method names on CWindow correspond
to the Win32 API functions. For example:
HWND buttonHwnd = GetD1gItem(IDC_BUTTONL); // Get window handle of button.
QWindow myButtonWindow(buttonHwnd); // Attach window handle to QWindow class.
myButtonWindow.SetWindowText (_T("Button Title™")); // Win32 function to
change button caption.
CWindow is a generic wrapper for all window handles, so for specific Windows
messages to common windows controls, such as buttons, tree views, or edit
boxes, one approach is to send window messages directly to the window, for
example:
// Set button to be checked (pushed in or checkmarked, depending on button
style)
myButtonWindow.SendMessage (BM_SETCHECK, BST_CHECKED);
However, there are some wrapper classes for these standard window common
controls in a header file atlontrols.h. This is available as part of an ATL sample
ATLCON supplied in MSDN. See the article “HOWTO: Using Class Wrappers to
Access Windows Common Controls in ATI.”. This header file is an eatly version of
Windows Template Libraries (WTL), available for download from Microsoft.

The Visual Studio Resource Editor can be used to design and position common
windows and ActiveX controls on a dialog box. To create and manipulate the
dialog box, a C++ class is typically created that inherits from CAxDialoglnpl.
This class provides the plumbing to create and manage the ActiveX control on a
window. The ATL wizard can be used to supply the majority of the boilerplate
code. The steps to create a dialog box and add an ActiveX control in an ATL
project are discussed below.

1. Click the menu command Insert/New ATL Object.
2. Click the Miscellaneous category, then click the Dialog object.

3. A dialog box resource and a class inheriting from CAxDialogImpl will be
added to your project.

4. Right-click the dialog box in resource view and click Insert ActiveX Control.
This will display a list of available ActiveX controls.

5. Double-click a control in the list to add that control to the dialog box.

Appendix A ¢ Developer environments ¢ 203

VisuaL C++

Make sure dialog boxes that host ActiveX
controls inherit from CAxDialoglmpl and not
CDialoglmpl. If this mistake is made, the
DoModal method of the dialog box simply exits
with no obvious cause.

Make sure applications that use common
window controls, such as treeview, correctly call
InitCommonControlsEx to load the window

class. Otherwise, the class will not function
correctly.

Make sure applications using COM objects call
Colnitialize. This initializes COM in the
application.Without this call,any CoCreate calls
will fail.

For a detailed discussion on handling events in
ATL, see the later section ‘Handling COM events
in ATL.

204 ¢ ArcGIS Desktop Developer Guide

6. Right-click the control and click Properties to set the control’s design-time

properties.

*., ATLCOMDialog - Microsoft Yisual C-++ - [ATLCOMDialog.rc - IDD_MYDIALOG [-lof x|
=lEle Edt Wiew Insert BoundsChecker Project Buld Layout Took Window Help — & x|
A EEHE s me0- - OER B a v eh 8= oo

=24 ATLCOMDialog resa
(] "REGISTRY"
423 Dialog
[1DD_MYDIALO!
IDD_MvDIALOI
(¥ String Table
B[] Yersion

3 4

@« 0=

ESRI MapControl

& ocu
Copy
L=}

i —| i)
20 | g Re.. |]Fie

bl T el e = 2 e i _‘”

el
AN Classwizard. ..
Build { Debug % FindinFiles1 & Findin Files2 % Results) SOL Debugging

Everts...
Properties

Activate embedded or inked object

Accessing a control on a dialog box through a COM interface

To retrieve a handle to the control that is hosted on a form, use the GerD/gContro/
ATL method that is inherited from CAxDialoglmpl to take a resource ID and
return the underlying control pointer:

ITOCControlPtr ipTOCControl;

GetD1gControl (IDC_TOCCONTROL1, IID_ITOCControl, (void**) &ipTOCControl);
ipTOCControl->AboutBox() ;

Listening to events from a control

The simplest way to add events is to use the class wizard. Simply right-click the
control and choose Events. Next, click the resource ID of the control, then click
the event (for example, OnMonseDown). Next click Add Handler. Finally, ensure
the dialog box begins listening to events by adding
AtlAdviseSinkMap(this, TRUE) to the OnlnitDialog. To finish listening to events,
add a message handler for OnDestroy and add a call to AtlAdviseSinkMap(this,
FALSE).

Creating a control at run time

The CAxWindow class provides a mechanism to create and host ActiveX controls
in a similar manner to any other window class. This may be desirable if the parent
window of the control is also created at run time.

AtTAXWinInit(Q;

CAxWindow wnd;

//m_hWnd 1is the parent window handle.

//rect is the size of ActiveX control in client coordinates.

//IDC_MYCTL is a unique ID to identify the controls window.

RECT rect = {10,10,400,300};

wnd.Create(m_hWnd, rect, _T("esriReaderControl.ReaderControl™),
WS_CHILD|WS_VISIBLE, 0, IDC_MYCTL);

VisuaL C++

Setting the buddy control property

The ToolbarControl and TOCControl/ need to be associated with a “buddy” control
on the dialog box. This is typically performed in the OnlnitDialog windows mes-
sage handler of a dialog box.

LRESULT CEngineControlsD1g: :OnInitDialog(UINT uMsg, WPARAM wParam, LPARAM
1Param, BOOL& bHandled)

{

// Get the Control's interfaces into class member variables.

GetDlgControl (IDC_TOOLBARCONTROL, IID_IToolbarControl, (void **)
&m_ipToolbarControl);

GetDlgControl(IDC_TOCCONTROL, IID_ITOCControl, (void **) &m_ipTOCControl);

GetDlgControl (IDC_PAGELAYOUTCONTROL, IID_IPagelLayoutControl, (void **)
&m_ipPagelLayoutControl);

// Connect to the controls.
At1AdviseSinkMap(this, TRUE);

// Set buddy controls.
m_ipTOCControl->SetBuddyControl(m_ipPagelLayoutControl);
m_ipToolbarControl->SetBuddyControl(m_ipPageLayoutControl);

return TRUE;
}

Known limitations of Visual Studio C++ Resource Editor and ArcGIS
ActiveX controls

Disabled buddy property on property page

In Visual Studio C++ you cannot set the ‘Buddy’ property of the TOCControl and
the ToolbarControl through the General property page. Visual C++ does not sup-
port controls finding other controls at design time. However, this step can be
performed in code in the OnlnitDialog method.

ToolbarControl not resized to the height of one button

In other environments (Visual Basic 6, NET) the ToolbarControl will automati-
cally resize to be one button high. However, in Visual Studio C++ 6 it can be any
size. In MFC and ATL the ActiveX host classes do not allow controls to deter-
mine their own size.

Design-time property pages disappearing when displaying context-sensitive
help

When viewing the controls property page at design time, right-clicking and click-
ing “What’s This?” will cause the help tip to display; however, the property pages
will then close. This is a limitation of the Visual Studio floating windows com-
bined with the floating tip window from HTML help. Clicking the Help button
provides the same text for the whole property page.

MFC AND THE ActiveX CONTROLS

There are many choices for how to work with ArcGIS ActiveX Controls in Visual

Appendix A ¢ Developer environments ¢ 205

VisuaL C++

C++, the first of which is what framework to use to host the controls (for
example, ATL or MFC). A second decision is where the control will be hosted
(Dialog, MDI app, and so forth). This section discusses MFC and hosting the
control on a dialog box.

Creating an MFC dialog box-based application

If you do not have a dialog box in your application or component, here are the
steps to create an MFC dialog box application.

1. Launch Visual Studio C++ 6 and click New.

2. Click the Projects tab and choose MFC AppWizard (exe). Enter the project
name and location and click OK.

3. For Step 1 of the wizard: From the radio buttons, change the application type
to Dialog Based. Click Next.

4. For Step 2 of the wizard: The default project features are fine, although you
can uncheck AboutBox to simplify the application. Ensure that the option to
support ActiveX Controls is checked. Click Next.

5. For Step 3 of the wizard: The default settings on this page are fine. The MFC
DLL is shared. Click Next.

6. For Step 4 of the wizard: This shows you what the wizard will generate. Click
Finish.

You should now have a simple dialog box-based application. In the resource view,

you will see “TODO: Place Dialog Controls Here”. You can place buttons, list

boxes, and so forth in this dialog box. The dialog box can also host ActiveX

Inserting ActiveX controls on a dialog box in controls; there are two approaches to doing this, as discussed below. You can also

Visual Studio C++ design time.The

TOCControl and MapControl have been compile and run this application.
added to the dialog box.The ToolbarControl is
next. Hosting controls on an MFC dialog box and accessing them using
IDispatch

1. Right-click the MFC dialog box and click Insert ActiveX control.

2. Double-click a control from the list box. The control
| - urple - Mrormasi, Vvl €4+ - [=lolx]

Sk 1 Yo bt Bt DY Lk Tk ik £ i8] appears on the dialog box with a default size.
A = e L@ Dy - DEYE W : . .
e o lec < 3. Size and position the control as required.
bbb bt i W 4. Repeat Steps 1 through 3 for each control.
- | = HixE
E —~ & 5. You can right-click the control and choose Properties to
Concet_| = & set the control’s design-time properties.
= M=
: —. = § - 6. To access the control in code, you will need ArcGIS
S T | interface definitions for IMapControl, for example. To do
ESRITOCConrol ESAI MagCont g:jﬁ?ﬂ“‘ Sl | this, use the #import command in your stdafx.h file. See the
3 P L S section ‘Importing ArcGIS type libraries’ on how to do this.
3 Bppiwiens Subiwicd
- Rateklind G alch
Casbrclae Coontocd 8100
Heten i =
- Pally
=
3 i
Pieody 4 00 R0 |

206 ¢ ArcGIS Desktop Developer Guide

VisuaL C++

7. MFC provides control hosting on a dialog box; this will translate Windows
messages, such as WM_SIZE, into appropriate control method calls. How-
evet, to be able to make calls on a control, there are a few steps you must
perform to go from a resource ID to a controls interface. The following code
illustrates setting the TOCControl’s Buddy to be the MapControl:

// Code to set the Buddy property of the TOCControl to be the MapControl
// Get a pointer to the PageLayoutControl and TOCControl.
IPagelayoutControlPtr ipPagelLayoutControl;

GetDTgControl (IDC_PAGELAYOUTCONTROL1, IID_IPagelayoutControl, (void**)
&ipPagelLayoutControl) ;

ITOCControlPtr ipTOCControl;
GetD1gControTl(IDC_TOCCONTROL1, IID_ITOCControl, (void**) &ipTOCControl);

// Get the IDispatch of the PagelLayoutControl.
IDispatchPtr ipBuddyDisp = ipPagelLayoutControl;

// Set the TOCControls Buddy to the map control.
ipTOCControl->putref_Buddy (ipBuddyDisp) ;

8. To catch events from the controls, double-click the control on the form and
supply the name of a method to be called. By default, the wizard will add an
extra word “On” to the beginning of the event handler. Remove this to avoid
the event handler’s name from becoming “OnOnMouseDownMapcontroll1”.
The wizard will then automatically generate the necessary MFC sink map
macros to listen to events.

Adding controls to an MFC dialog box using
+. Sample - Microsoft Visual C++ - [Sample.rc - IDD_SAMPLE | nglic =S| IDispatch wrappers

ZlFle Edt View Inssrt Project Buid Layoulsample - Microsoft Visual C++ - [Sample.rc - IDD_SAMPLE_DI

As all ActiveX controls support IDispatch, this is the typical

3 = (& 55 ol N . .
asdg = DEE W approach to add an ActiveX control to an MFC project:
|ESamp\eD\g _'JI[AI\ class members) _jl & CSampleDlg i
T — — 1. Click Project, click Add, then click Components and
- | =
_ : AR ot aitntiial R : 2. Click Registered ActiveX Controls.
E: | > 3. Double-click to select a control (for example, ESRI
g s TOCControl), then click OK to insert a component. Click
& ¢ x B2 OK to generate wrappers. This will add an icon for the
abl [O control to the Controls toolbar in Visual Studio.
L %@
3 ESRI TOCControl ESRI MapControl m B 4. Additional source files are added to your project (for
] Yy s example, toccontrol.cpp and toccontol.h). These files
] B B | '
E =4 | a5 contain a wrapper class (for example, CTOCControl) to
3 & B provide methods and properties to access the control.
i % :ﬁ:E - This class will invoke the control through the [Disparch
:] i - 2 calling mechanism. Note that IDispatch does incur some
= H - o performance overhead to package parameters when
Ready A 00 17 320% 200 .
making method and property calls. The wrapper class
The design environment showing the inherits from a MFC CWrd class that hosts an ActiveX
TOCControl,MapControl, and control.
ToolbarControl has been added to the)
Controls toolbar and to the dialog box. 5. Repeat Steps 1 through 4 to add each control to the project’s Controls toolbar.

Appendix A ¢ Developer environments ¢ 207

VisuaL C++

Visual Studio C++ Class Wizard.Adding member
variables to the dialog box for the ActiveX

Do not use the method GetlIDispatch (inher-
ited from MFC’s CCmdTarget) on the wrapper
classes; it is intended for objects implementing
IDispatch and not the wrapper classes that are
calling 1Dispatch. Instead, to get a control’s
IDispatch use
m_mapcontrol.GetControlUnknown() and
Querylnterface to IDispatch. See the above
example of setting the Buddy property.

208 ¢ ArcGIS Desktop Developer Guide

6. Select a control from the Controls toolbar and drag it onto the dialog box.

7. Right-click the control and click Properties. This will allow design-time

properties to be set on the control. NOTE: in Visual Studio C++, you cannot
set the Buddy property of the TOCControl and the ToolbarControl.

This environment does not support controls finding other controls at design
time. However, this step can be performed in code using the OnlnitDialog
method.

// Note no addref performed with GetControlUnknown, so no need to release
// this pointer.

LPUNKNOWN pUnk = m_mapcontrol.GetControlUnknown() ;

LPDISPATCH pDisp =

0; pUnk->QueryInterface(IID_IDispatch, (void **) &poDisp);

// Set TOCControls buddy to be MapControl.
m_toccontrol.SetRefBuddy (pDisp) ;
pDisp->Release();

. Right-click the control and choose Class Wizard to launch the class wizard.

Click the Member Variables tab and click the resource ID corresponding to the
control to give the control member variable name. The dialog box class mem-
ber variable can now be used to invoke methods and properties on the con-
trol.

MFC ClassWizard 2lx]

Message Maps Member Variables | Autamation | Activel Events ‘ Class Infa]
Add Class.. =
Add Wariable...

Control [Ds: Type Member 8 i ‘

IDC_MAPCONTROLT
0L st il

Froject: Class name:
Sample j |E5 ampleDlg
Z:h ASamplehSampleDig h, Z:4 A5 ampleh5 ampleDlg.cpp

Add Member Variable

Member vanable name:

2lx)
J

I Cancel

Description Lategory:
[Cotal =]
Wanable type:

CToolbarCantiolDefault =

Cancel

Description:

map to CToolbarControlD efault member
controls.

9. To catch control events, click the Message Maps tab of the class wizard and

choose the resource ID of the control. In the list of messages click the event
to catch—for example, OnBeginl_abelEidit. Double-click this event and a
handler for it will be added to your dialog box class. By default, the wizard
will add an extra word “On” to the beginning of the event handler. Remove
this to avoid the event handler name becoming OnOnBeginl .abelEdit Toccontrol1.

VisuaL C++

HANDLING COM EVENTS IN ATL

Here is a summary of terminology used here when discussing COM events in
Visual C++ and ATL.

Inbound interface—This is the normal case where a COM object implements a
predefined interface.

Outbound interface—This is an interface of methods that a COM object will
fire at various times. For example, the MapCoClass will fire an event on the
L ActiveliewEvents in response to changes in the map.

Event source—The source COM object will fire events to an outbound inter-
face when certain actions occur. For example, the MapCoClass is a source of
LActivel GewEvents and will fire the LActivel GewEvents::ltemAdded event when a
new layer is added to the map. The source object can have any number of clients,
or event sink objects, listening to events. Also, a source object may have more than
one outbound interface; for example, the MapCoClass also fires events on an
IMapEvents interface. An event source will typically declare its outbound inter-
faces in IDL with the /[source] tag.

Event sink—A COM object that listens to events is said to be a “sink” for
events. The sink object implements the outbound interface; this is not always
advertised in the type libraries because the sink may listen to events internally. An
event sink typically uses the connection point mechanism to register its interest in
the events of a source object.

Connection point—COM objects that are the source of events typically use the
connection point mechanism to allow sinks to hook up to a source. The connec-
tion point interfaces are the standard COM interfaces [ConnectionPointContainer and
1ConnectionPoint.

Fire event—When a source object needs to inform all the sinks of a particular
action, the source is said to “fire” an event. This results in the source iterating all
the sinks and making the same method call on each. For example, when a layer is
added to a map, The Map coclass is said to fire the Ifem.Added event. So all the
objects listening to the Map’s outbound LActivel iewEvents interface will be called
on their implementation of the ItemAdded method.

Advise and unadvise events—To begin receiving events a sink object is said to
“advise” a source object that it needs to receive events. When events are no
longer required, the sink will “unadvise” the source.

The ConnectionPoint mechanism

The soutce object implements the IConnectionPointContainer interface to allow sinks
to query a source for a specific outbound interface. The following steps are
performed to begin listening to an event. ATL implements this with the A#Advise
method.

1. The sink will QI the source object’s [ConnectionPointContainer and call
FindConnectionPoint to supply an interface ID for outbound interfaces. To be
able to receive events, the sink object must implement this interface.

2. The source may implement many outbound interfaces and will return a pointer
to a specific connection point object implementing [ConnectionPoint to repre-
sent one outbound interface.

Appendix A ¢ Developer environments * 209

VisuaL C++

Wnknawn {_— Source Object

IConnectionPaint

IConnectionPointContainer {_—|

Interface

O Connection Paint
tfar authound Evert

« 3. The sink calls [ConnectionPoint::Advise,
passing a pointer to its own [Unknown
IR B Sink Object implementation. The source will store this
H::fﬂacaof Cookiz with any other sinks that may be listening
| Saurce to events. If the call to Advise was suc-
cessful, the sink will be given an identi-

Connection point mechanism for hooking source
to sink objects

New Windows Message and Event Handlers for class CMyD;

Hew Windows messages/events: Eristing message/event handlers: oK

OndfterDiaw
OndfterScreenDraw
OrBeforeScreenDraw
OnDoubleClick

OnE stentl pdated
OnFulEstentUpdated
OnkeyDown
OnkeylUp
OnMapReplaced
Oriousetove

OnSelectionChanged
OriiewR efreshed

Llass or object to handle:

Eilter for messages available to class:
> tions.

OnkMousellp : Fires when the user releases a mouse button while over the MapControl

fier—a simple unsigned long value, called
a cookie—to give back to the source at a
later point when it no longer needs to
listen to events.

Cther Sink objects

The connection is now complete; methods will be called on any listening sinks by
the source. The sink will typically hold onto an interface pointer to the source, so
when a sink has finished listening it can be released from the source object by
calling [ConnectionPoint::Unadpise. This is implemented with A#Unadyise.

IDispatch events versus pure COM events

An outbound interface can be a pure dispatch interface. This means instead of
the source calling directly onto a method in a sink, the call is made via the
IDispatch::Invoke mechanism. The IDispatch mechanism has a
performance overhead to package parameters compared to a
pure vtable COM call. However, there are some situations
where this must be used. ActiveX controls must implement
once! their default outbound interface as a pure IDispatch interface;

for example, IMapControlEvents2 is a pure dispatch interface.
Agd and Edit Second, Microsoft Visual Basic 6 can only be a source of pure
Edi Exfsting IDispatch events. The connection point mechanism is the same
as for pure COM mechanisms, the main difference being in how
the events are fired.

21|

ATL provides some macros to assist with listening to IDispatch

W events; this is discussed on MSDN under ‘Event Handling and
o ATL. There are two templates available, IDispEventImp! and

IDispEventSimplelmpl, that are discussed in the following sec-

Using IDispEventimpl to listen to events

Visual Studio C++ Class Wizard.Adding event
handler to an ActiveX control on a dialog box

There is a bug in the wizard: it does not add
the advise and unadvise code to the dialog box.
To fix this issue, add a message handler for
OnDestroy.Then in the OnlnitDialog handler,
call AtlAdviseSinkMap with a TRUE second
parameter to begin listening to events. Place a
corresponding call to AtlAdviseSinkMap (with
FALSE as the Second parameter) in the
OnDestroy handler.This is discussed further in
the MSDN article “BUG:ActiveX Control
Events Are Not Fired in ATL Dialog
(Q190530)".

210 ¢ ArcGIS Desktop Developer Guide

The ATL template IDispEventlmpl will use a type library to

“crack” the IDispatch calls and process the arguments into C++

method calls. The Visual Studio Class wizard can provide this

mechanism automatically when adding an ActiveX control to a
dialog box. Right-click the Control and click Events. In the Class wizard choose
the resource ID of the control, choose the event, then click Add Handler.

The following code illustrates the event handling code added by the wizard, with
some modifications to ensure advise and unadvise are performed.

VisuaL C++

#pragma once

#include "resource.h" // Main symbols
#include <atlhost.h>

I111777777177711777717
// MyDialog
class (MyDialog :
public CAxDialogImpl<CMyDialog>,
public IDispEventImp1<IDC_MAPCONTROL1, CMyDialog>
{
public:

enum { IDD = IDD_MYDIALOG };

BEGIN_MSG_MAP(MyDialog)
MESSAGE_HANDLER (WM_INITDIALOG, OnInitDialog)

// Add a handler to ensure event unadvise occurs.
MESSAGE_HANDLER (WM_DESTRQY, OnDestroy)

COMMAND_ID_HANDLER (IDOK, OnOK)
COMMAND_ID_HANDLER (IDCANCEL, OnCancel)
END_MSG_MAP()

LRESULT OnInitDialog(UINT uMsg, WPARAM wParam, LPARAM 1Param, BOOL&
bHandTed)

{

// Calls IConnectionPoint::Advise() for each control on the dialog box
with sink map entry

At1AdviseSinkMap(this, TRUE);
return 1; // Let the system set the focus.
}

LRESULT OnDestroy (UINT uMsg, WPARAM wParam, LPARAM TParam, BOOL& bHandTed)
{

// Calls IConnectionPoint::Unadvise() for each control on the dialog box
with sink map entry

At1AdviseSinkMap(this, FALSE);
return 0;

}

LRESULT OnOK(WORD wNotifyCode, WORD wID, HWND hWndCt1, BOOL& bHandled)
{

EndDialog(wID);

return 0;

}
LRESULT OnCancel (WORD wNotifyCode, WORD wID, HWND hwWndCt1, BOOL& bHandled)

{
EndDialog(wID);

Appendix A ¢ Developer environments * 21 |

VisuaL C++

The following issues with events are documented
on the MSDN Knowledge Base when using
IDispEventlmpl. Fixes to ATL code are shown in
MSDN for these issues; however, it is not always
desirable to modify or copy ATL header files. In
this case, the IDispEventSimplelmpl can be
used instead.

BUG: Events Fail in ATL Containers when
Enum Used as Event Parameter (Q237771)
BUG: IDispEventlmpl Event Handlers May
Give Strange Values for Parameters
(Q241810)

See the ‘Importing ArcGlS type libraries’section
earlier in this appendix for an explanation of
#import.

212 + ArcGIS Desktop Developer Guide

return 0;

}

// ATL callback from SinkMap entry

VOID __stdcall OnMouseDownMapcontrol1(LONG button, LONG shift, LONG x,
LONG y, DOUBLE mapX, DOUBLE mapY)

{
MessageBox (_T(""MouseDown!"));
}

BEGIN_SINK_MAP(CMyDialog)
// Make sure the Event Handlers have __stdcall calling convention.
// The 0x1 is the Dispatch ID of the OnMouseDown method.
SINK_ENTRY (IDC_MAPCONTROL1, 0x1, OnMouseDownMapcontroll)

END_SINK_MAP()

15

Using IDispEventSimplelmpl to listen to events

As the name of this template suggests, it is a simpler version of IDispEventlmpl.
The type library is no longer used to turn the IDispatch arguments into a C++
method call. While this may be a simpler implementation, it now requires the
developer to supply a pointer to a structure describing the format of the event
parameters. This structure is typically placed in the .cpp file. For example, here is
the structure describing the parameters of an OnMouseDown event for the
MapControl:

_ATL_FUNC_INFO g_ParamInfo_MapControl_OnMouseDown =

{
CC_STDCALL, // Calling convention
VT_EMPTY, // Return type
6, // Number of arguments

{VT_I4, VI_I4, VT_I4, VI_I4, VT_R8, VI_R8} // VariantArgument types
5
The header file now inherits from IDispEventSimplelmpl and uses a different
macro, SINK_ENTRY_INFO, in the SINK_MAP. Also, the events interface ID is
required; #zmport can be used to define this symbol. Note that a dispatch interface
is normally prefixed with DIID instead of IID.

#pragma once

#include "resource.h" // Main symbols
#include <atlhost.h>

// reference to structure defining event parameters
extern _ATL_FUNC_INFO g_ParamInfo_MapControl_OnMouseDown;

I111777777177777777771771177717
// MyDialog2
class (MyDialog2 :

public CAxDialogImpl<CMyDialog2>,

pubTic IDispEventSimpleImpl1<IDC_MAPCONTROL1, CMyDialog2,
&DIID_IMapControlEvents2>

VisuaL C++

{
public:

// Message handler code removed, it is the same as CMyDialog using
IDispEventSimple

BEGIN_SINK_MAP(MyDialog2)
// Make sure the Event Handlers have __stdcall calling convention.
// The 0x1 is the Dispatch ID of the OnMouseDown method.
SINK_ENTRY_INFO(IDC_MAPCONTROL1, // ID of event source

DIID_IMapControlEvents2, // interface to listen to
ox1, // dispatch ID of MouseDown
OnMapControlMouseDown, // method to call when event arrives
&g_ParamInfo_MapControl_OnMouseDown) // parameter info for method
call
END_SINK_MAP()
b

Listening to more than one IDispatch event interface on a COM
object

If a single COM object needs to receive events from more than one IDispatch
source, then this can cause compiler issues with ambiguous definitions of the
DispEventAdvise method. This is not normally a problem in a dialog box, as
AtlAdviseSinkMap will handle all the connections. The ambiguity can be avoided
by introducing different typedefs each time IDzpEventSimplelmpl is inherited. The
following example illustrates a COM object called CListen, which is a sink for
dispatch events from a MapControl and a Pagel_ayontControl.

#pragma once
#include "resource.h" // Main symbols
// This is the parameter information

extern _ATL_FUNC_INFO g_ParamInfo_MapControl_OnMouseDown;
extern _ATL_FUNC_INFO g_ParamInfo_PagelLayoutControl_OnMouseDown;

//
// Define some typedefs of the dispatch template.
//

class CListen; // Forward definition

typedef IDispEventSimpleImpl<0, CListen, &IID_IMapControlEvents2>
IDispEventSimpleImp1_MapControl;

typedef IDispEventSimpleImpl<l, CListen, &IID_IPagelLayoutControlEvents>
IDispEventSimpleImpl_PagelLayoutControl;

I11171777717777777717717777717
// ClListen

class ATL_NO_VTABLE CListen :

Appendix A ¢ Developer environments * 213

VisuaL C++

214 « ArcGIS Desktop Developer Guide

public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<CListen,&CLSID_Listen>,
public IDispEventSimpleImpl_MapControl,
public IDispEventSimpleImpl_PagelLayoutControl,
public IListen

{

public:
CListen()
{
}

DECLARE_REGISTRY_RESOURCEID(IDR_LISTEN)

DECLARE_PROTECT_FINAL_CONSTRUCT(O)

BEGIN_COM_MAP(CListen)
COM_INTERFACE_ENTRY (IListen)

END_COM_MAP()

// Associated source and dispatchID to a method call

BEGIN_SINK_MAP(CListen)
SINK_ENTRY_INFO(O, // ID of event source
DIID_IMapControlEvents2, // Interface to Tisten to
0ox1, // Dispatch ID to receive
OnMapControlMouseDown, // Method to call when event arrives

&g_ParamInfo_MapControl_OnMouseDown) // Parameter info for
// method call

SINK_ENTRY_INFO(1,
DIID_IPagelLayoutControlEvents,
0x1,
OnPagelLayoutControlMouseDown,
&g_ParamInfo_PagelayoutControl_OnMouseDown)
END_SINK_MAP()

// IListen
public:

STDMETHOD (SetControls) (IUnknown* pMapControl, IUnknown*
pPagelLayoutControl);

STDMETHOD(CTear) Q;

private:

void __stdcall OnMapControlMouseDown(Tong button, long shift, Tong x, long
y, double mapX, double mapY);

void __stdcall OnPageLayoutControlMouseDown(Tong button, Tong shift, long
x, long y, double pageX, double pageY);

IUnknownPtr m_ipUnkMapControl;
IUnknownPtr m_ipUnkPagelLayoutControl;
iE

VisuaL C++

The implementation of Clisten contains the following code to start listening to
the controls; the typdef avoids the ambiguity of the DispEventAdyise implementa-
tion.

// Start listening to the MapControl.

IUnknownPtr ipUnk = pMapControl;

HRESULT hr = IDispEventSimpleImpl_MapControl: :DispEventAdvise(ipUnk);

if (SUCCEEDED(hr))

m_ipUnkMapControl = ipUnk; // Store pointer to MapControl for Unadvise.

// Start 1istening to the PagelLayoutControl.

ipUnk = pPageLayoutControl;

hr = IDispEventSimpleImpl_PagelLayoutControl: :DispEventAdvise(ipUnk) ;
if (SUCCEEDED(hr))

m_ipUnkPageLayoutControl = ipUnk; // Store pointer to PageLayoutControl
// for Unadvise.

The implementation of CListen also contains the following code to UnAdvise
and stop listening to the controls.
// Stop listening to the MapControl.
if (m_ipUnkMapControl!=0)
IDispEventSimpleImp]_MapControl: :DispEventUnadvise(m_ipUnkMapControl);
m_ipUnkMapControl = 0;

if (m_ipUnkPageLayoutControl!=0)
IDi spEventSimpleImpl_PagelayoutControl : :DispEventUnadvi se (m_ipUnkPageLayoutControl) ;
m_ipUnkPageLayoutControl= 0;

Creating a COM events source

For an object to be a source of events, it will need to provide an implementation
of IConnectionPointContainer and a mechanism to track which sinks are listening to
which [ConnectionPoint interfaces. ATL provides this through the
1ConnectionPointContainerlmpl template. In addition, ATL provides a wizard to
generate code to fire [Disparch events for all members of a given dispatch events
interface. Below are the steps to modify an ATL COM coclass to support a con-
nection point:

1. First ensure that your ATL coclass has been compiled at least once. This will
allow the wizard to find an initial type library.

2. In Class view, right-click the COM object and click Implement Connection
Point.

3. Either use a definition of events from the IDL in the project or click Add
Type Lib to browse for another definition.

4. Check the outbound interface to be implemented in the coclass.

Appendix A ¢ Developer environments * 215

VisuaL C++

Inmplement Connection Point 2 x|

Ok

Cancel

Eile: name: TOCContmlCP b Browse... Add Typslb...

Interfaces

i

ATLEVENTSOURCELL esiTOCCantiol l

ITOCCantralE vents

5. Clicking OK will modify your ATL class and generate the proxy classes in a
header file, with a name ending in CP, for firing events.

If the wizard fails to run, use the following example, which illustrates a
coclass that is a source of ITOCControlEvents, a pure dispatch interface.

#pragma once

#include "resource.h" // Main symbols

#include "TOCControlCP.h" // Include generated connection point class
// for firing events.

/1771777177777777777777777777777777777777/77777777777777777/777777777777///
// QMyEventSource
class ATL_NO_VTABLE CMyEventSource :

public CComObjectRootEx<CComSingleThreadvodel>,

pubTic CComCoClass<CMyEventSource,&LSID_MyEventSource>,

publ1ic IMyEventSource,

pub1ic CProxyITOCControlEvents< C(MyEventSource >, // Generated
// ConnectionPoint class

pub1ic IConnectionPointContainerImpl< CMyEventSource > // Implementation
// of Connection point Container

{

public:
MyEventSource()
{
}

DECLARE_REGISTRY_RESOURCEID(IDR_MYEVENTSOURCE)
DECLARE_PROTECT_FINAL_CONSTRUCTO)

BEGIN_COM_MAP((MyEventSource)
COM_INTERFACE_ENTRY (IMyEventSource)

COM_INTERFACE_ENTRY (IConnectionPointContainer) // Allow QI to this
// interface.

END_COM_MAP()

216 * ArcGIS Desktop Developer Guide

VisuaL C++

// List of available connection points
BEGIN_CONNECTION_POINT_MAP((MyEventSource)
CONNECTION_POINT_ENTRY(DIID_ITOCControlEvents)
END_CONNECTION_POINT_MAPQ)
}
The connection point class (TOCContro/EventsCP.b in the above example) contains
code to fire an event to all sink objects on a connection point.

There is one method in the class for each event beginning “Fire_". Each method
will build a parameter list of variants to pass as an argument to the dispatch
Invoke method. Each sink is iterated, and a pointer to the sink is stored in a
vector m_vec member variable inherited from IConnectionPointContainerImpl. Note
that m_vec can contain pointers to zero; this must be checked before firing the
event.

template <class T>

class CProxyITOCControlEvents : public IConnectionPointImpl<T,
&DIID_ITOCControlEvents, CComDynamicUnkArray>

{
public:
VOID Fire_OnMouseDown(LONG button, LONG shift, LONG x, LONG y)
{
// Package each of the parameters into an IDispatch argument list.
T* pT = static_cast<T*>(this);
int nConnectionIndex;
CComVariant* pvars = new CComVariant[4];
int nConnections = m_vec.GetSize();

// Iterate each sink object.

for (nConnectionIndex = 0; nConnectionIndex < nConnections;
nConnectionIndex++)

{

pT->Lock();

CComPtr<IUnknown> sp = m_vec.GetAt(nConnectionIndex);
pT->Unlock();

IDispatch* pDispatch = reinterpret_cast<IDispatch*>(sp.p);

// Note m_vec can contain 0 entries so it is important to check for this.
if (pDispatch !'= NULL)

{

// Build up the argument 1ist.

pvars[3] = button;

pvars[2] = shift;

pvars[1l] = x;

pvars[0] = y;

DISPPARAMS disp = { pvars, NULL, 4, 0 };

// Fire the dispatch method, 0x1 is the DispatchId for MouseDown.

pDispatch->Invoke(Ox1, IID_NULL, LOCALE_USER_DEFAULT,
DISPATCH_METHOD, &disp, NULL, NULL, NULL);

Appendix A ¢ Developer environments * 217

VisuaL C++

218 * ArcGIS Desktop Developer Guide

}
}
delete[] pvars; // Clean up the parameter 1ist.

}
VOID Fire_OnMouseUp(LONG button, LONG shift, LONG x, LONG y)
{

// ... Other events

To fire an event from the source, simply call the Fire_OnMouseDown when re-
quired.

A similar approach can be used for firing events to a pure COM (non IDispatch)
interface. The wizard will not generate the connection point class, so this must be
written by hand; the following example illustrates a class that will fire an
ITOCBuddyEvents::Activel iewReplaced event; ITOCBuddyEvents is a pure COM,
non-IDispatch interface. The key difference is that there is no need to package
the parameters. A direct method call can be made.

template < class T >

class CProxyTOCBuddyEvents : public IConnectionPointImpl< T,
&IID_ITOCBuddyEvents, CComDynamicUnkArray >

{
// This class based on the ATL-generated connection point class
public:
void Fire_ActiveViewReplaced(TActiveView* pNewActiveView)
{
T* pT = static_cast< T* >(this);
int nConnectionIndex;
int nConnections = this->m_vec.GetSize();

for (nConnectionIndex = 0; nConnectionIndex < nConnections;
nConnectionIndex++)

{

pT->Lock();

CComPtr< IUnknown > sp=this->m_vec.GetAt(nConnectionIndex);

pT->Unlock(Q);

ITOCBuddyEvents* pTOCBuddyEvents = reinterpret_cast< ITOCBuddyEvents*
>(sp.p);

if (pTOCBuddyEvents)

pTOCBuddyEvents->ActiveViewReplaced(pNewActiveView) ;
}
}

15

IDL declarations for an object that supports events

When an object is exported to a type library, the event interfaces are declared by
using the [source] tag against the interface name. For example, an object that fires
ITOCBuddyEvents declares

[source] interface ITOCBuddyEvents;

If the outbound interface is a dispatch events interface, dispinterface is used in-
stead of #nterface. Additionally, a coclass can have a default outbound interface;

VisuaL C++

this is specified with the /defanlt] tag. Default interfaces are identified by some
design environments (for example, Visual Basic 6). Following is the declaration
for the default outbound events interface:

[default, source] dispinterface IMyEvents2;

Event circular reference issues

After a sink has performed an advise on the source, there is typically a COM
circular reference. This occurs because the source has an interface pointer to a
sink to fire events, and this keeps the sink alive. Similarly, a sink object has a
pointer back to the source so it can perform the unadvise at a later point. This
keeps the source alive. Therefore, these two objects will never be released and
may cause substantial memory leaks. There are a number of ways to tackle this
issue:

1. Ensure the advise and unadvise are made on a method or windows message
that is guaranteed to happen in pairs and is independent of an object’s life
cycle. For example, in a coclass that is also receiving windows messages, use
the Windows messages OnCreate (WM_CREATE) and OnDestroy
(WM_DESTROY) to advise and unadvise.

2. If an ATL dialog box class needs to listen to events, one approach is to make
the dialog box a private COM class and implement the events interface di-
rectly on the dialog box. ATL allows this without much extra coding. This
approach is illustrated below. The dialog box class creates a CustomizeDialog
coclass and listens to [CustomizeDialogEvents. The OnlnitDialog and OnDestroy
methods (corresponding to window messages) are used to advise and unadvise
on the CustomizeDialog.

class CEngineControlsD1g :
public CAxDialogImpl<CEngineControlsD1g>,
pub1ic CComObjectRoot, // Make Dialog Class a COM Object as welT.

pubTic ICustomizeDialogEvents // Implement this interface directly on
this object.

CEngineControlsD1g() : m_dwCustD1gCookie(0) {} // initialize cookie for
event Tistening

// ... Event handlers and other standard dialog code has been removed ...

BEGIN_COM_MAP(CEngineControlsD1g)

COM_INTERFACE_ENTRY (ICustomizeDialogEvents) // Make sure QI works for
// this event interface.

END_COM_MAP()

// ICustomizeDialogEvents implementation to receive events on this
// dialog box.

STDMETHOD(OnStartDialog) O ;
STDMETHOD(OnCloseDialog) O ;

ICustomizeDialogPtr m_ipCustomizeDialog; // The source of events

DWORD m_dwCustD1gCookie; // Cookie for
// CustomizeDialogEvents

Appendix A ¢ Developer environments * 219

VisuaL C++

220 ¢ ArcGIS Desktop Developer Guide

The dialog box needs to be created like a noncreatable COM object, rather
than on the stack as a local variable. This allocates the object on the heap and
allows it to be released through the COM reference counting mechanism.

// Create dialog class on the heap using ATL CComObject template.
CComObject<CEngineControlsD1g> *myDlg;

CComObject<CEngineControlsD1g>: :CreateInstance(&nyD1g) ;

myD1g->AddRef(); // Keep dialog box alive until you're done with it.

myD1g->DoModal(); // Launch the dialog box; when method returns, dialog box
// has exited.

myD1g->Release(); // Typically, the refcount now goes to 0 and frees the
// dialog object.

3. Implement an intermediate COM object for use by the sink; this is sometimes
called a listener or event helper object. This object typically contains no imple-
mentation but simply uses C++ method calls to forward events to the sink
object. The listener has its reference count incremented by the source, but the
sink’s reference count is unaffected. This breaks the cycle, allowing the sink’s
reference count to reach 0 when all other references ate released. As the sink
executes its destuctor code, it instructs the listener to unadvise and release the
source.

An alternative to using C++ pointers to communicate between listener and sink
is to use an interface pointer that is a weak reference. That is, the listener con-
tains a COM pointer to the sink but does not increment the sink’s reference
count. It is the responsibility of the sink to ensure that this pointer is not ac-
cessed after the sink object has been released.

-.NET ArPPLICATION PROGRAMMING INTERFACE

WHAT IS THE .NET FRAMEWORK?

The NET Framework is an integral Windows component that supports building
and running the next generation of applications and XML Web services. The
NET Framework is designed to fulfill the following objectives:

* Provide a consistent object-oriented programming environment whether
object code is stored and executed locally, executed locally but Internet-
distributed, or executed remotely.

* Provide a code execution environment that minimizes softwatre deployment
and versioning conflicts.

* Provide a code execution environment that guarantees safe execution of code,
including code created by an unknown or semitrusted third party.

* Provide a code execution environment that eliminates the performance prob-
lems of scripted or interpreted environments.

* Make the developer expetience consistent across widely varying types of
applications, such as Windows-based applications and Web-based applications.

* Build all communication on industry standards to ensure that code based on
the NET Framework can integrate with any other code.

The NET Framework has two main components: the common language run time
and the NET Framework class library. The common language run time is the
foundation of the NET Framework. You can think of the run time as an agent
that manages code at execution time, providing core services such as memory
management, thread management, and remoting, while also enforcing strict type
safety and other forms of code accuracy that ensute security and robustness. In
fact, the concept of code management is a fundamental principle of the run time.
Code that targets the run time is known as managed code, while code that does
not target the run time is known as unmanaged code. The class library, the other
main component of the NET Framework, is a comprehensive, object-oriented
collection of reusable types that you can use to develop applications ranging from
traditional command-line or graphical user interface applications to applications
based on the latest innovations provided by ASPNET, such as Web Forms and
XML Web setvices.

The NET Framework can be hosted by unmanaged components that load the
common language run time into their processes and initiate the execution of
managed code, thereby creating a software environment that can exploit both
managed and unmanaged features. The NET Framework not only provides
several run-time hosts but also supports the development of third-party run-time
hosts.

For example, ASPNET hosts the run time to provide a scalable, server-side
environment for managed code. ASPNET works directly with the run time to
enable ASPNET applications and XML Web services, both of which are dis-
cussed later in this topic.

Internet Explorer is an example of an unmanaged application that hosts the run
time (in the form of a MIME type extension). Using Internet Explorer to host
the run time enables you to embed managed components or Windows Forms
controls in HTML documents. Hosting the run time in this way makes managed

Appendix A ¢ Developer environments * 22|

.NET AprpPLICATION PROGRAMMING INTERFACE

Operating system/

Hardware

This diagram shows the relationship of the
common language run time and the class library
to your applications and to the overall system. It

also illustrates how managed code operates
within a larger architecture.

222 « ArcGIS Desktop Developer Guide

mobile code (similar to Microsoft ActiveX controls) possible, but with significant
improvements that only managed code can offer, such as semitrusted execution
and secure isolated file storage.

The following sections describe the main components and features of the NET
Framework in greater detail.

Features of the common language run time

The common language run time manages memory, thread execution, code execu-
tion, code safety verification, compilation, and other system services. These
features are intrinsic to the managed code that runs on
the common language run time.

Regarding security, managed components are awarded
varying degrees of trust, depending on a number of
factors that includes their origin, such as the Internet,
enterprise network, or local computer. This means that
a managed component might or might not be able to
perform file access operations, registry access opera-
tions, or other sensitive functions, even if it is being
used in the same active application.

The run time enforces code access security. For ex-
ample, users can trust that an executable embedded in a
Web page can play an animation onscreen or sing a song
but cannot access their personal data, file system, or
netwotk. The secutity features of the run time thus
enable legitimate Internet-deployed software to be
exceptionally feature rich.

The run time also enforces code robustness by imple-
menting a strict type-and-code-verification infrastruc-
ture called the common type system (CTS). The CTS
ensures that all managed code is self-describing, The
various Microsoft and third-party language compilers generate managed code that
conforms to the CTS. This means that managed code can consume other managed
types and instances, while strictly enforcing type fidelity and type safety.

In addition, the managed environment of the run time eliminates many common
software issues. For example, the run time automatically handles object layout
and manages references to objects, releasing them when they are no longer being
used. This automatic memory management resolves the two most common appli-
cation etrors: memory leaks and invalid memory references.

The run time also accelerates developer productivity. For example, programmers
can write applications in their development language of choice, yet take full
advantage of the run time, the class library, and components written in other
languages by other developers. Any compiler vendor who chooses to target the
run time can do so. Language compilers that target the NET Framework make
the features of the NET Framework available to existing code written in that
language, greatly easing the migration process for existing applications.

.NET AprpPLICATION PROGRAMMING INTERFACE

While the run time is designed for the software of the future, it also supports
software of today and yesterday. Interoperability between managed and
unmanaged code enables developers to continue to use necessary COM compo-
nents and DLLs.

The run time is designed to enhance performance. Although the common lan-
guage run time provides many standard run-time services, managed code is never
interpreted. A feature called just-in-time (JIT) compiling enables all managed
code to run in the native machine language of the system on which it is execut-
ing. Meanwhile, the memory manager removes the possibilities of fragmented
memory and increases memory locality-of-reference to further increase perfor-
mance.

Finally, the run time can be hosted by high-performance, server-side applications,
such as Microsoft SQL Server™ and Internet Information Services (IIS). This
infrastructure enables you to use managed code to write your business logic, while
still enjoying the superior performance of the industry’s best enterprise servers
that support run-time hosting.

.NET Framework class library

The NET Framework class library is a collection of reusable types that tightly
integrate with the common language run time. The class library is object-oriented,
providing types from which your own managed code can derive functionality.
This not only makes the NET Framework types easy to use, but also reduces the
time associated with learning new features of the NET Framework. In addition,
third-party components can integrate seamlessly with classes in the NET Frame-
work.

For example, the NET Framework collection classes implement a set of inter-
faces that you can use to develop your own collection classes. Your collection
classes will blend seamlessly with the classes in the NET Framework.

As you would expect from an object-oriented class library, the NET Framework
types enable you to accomplish a range of common programming tasks, including
string management, data collection, database connectivity, and file access. In
addition to these common tasks, the class library includes types that support a
variety of specialized development scenarios. For example, you can use the NET
Framework to develop the following types of applications and services:

* Console applications

* Windows GUI applications (Windows Forms)
* ASPNET applications

* XML Web services

* Windows services

For example, the Windows Forms classes are a comprehensive set of reusable
types that vastly simplify Windows GUI development. If you write an ASPNET
Web Form application, you can use the Windows Forms classes.

Appendix A ¢ Developer environments * 223

.NET AprpPLICATION PROGRAMMING INTERFACE

224 « ArcGIS Desktop Developer Guide

Client application development

Client applications are the closest to a traditional style of application in Win-
dows-based programming. These are the types of applications that display win-
dows or forms on the desktop, enabling a user to perform a task. Client applica-
tions include applications such as word processors and spreadsheets, as well as
custom business applications such as data entry and reporting tools. Client appli-
cations usually employ windows, menus, buttons, and other GUI elements, and
they likely access local resources, such as the file system, and peripherals such as
printers.

Another kind of client application is the traditional ActiveX control (now re-
placed by the managed Windows Forms control) deployed over the Internet as a
Web page. This application is much like other client applications: it is executed
natively, has access to local resources, and includes graphical elements.

In the past, developers created such applications using C or C++ in conjunction
with the Microsoft Foundation Classes or with a rapid application development
(RAD) environment such as Microsoft Visual Basic. The .NET Framework
incorporates aspects of these existing products into a single, consistent develop-
ment environment that drastically simplifies the development of client applica-
tions.

The Windows Forms classes contained in the NET Framework are designed to
be used for GUI development. You can easily create command windows, buttons,
menus, toolbars, and other screen elements with the flexibility necessaty to
accommodate shifting business needs.

For example, the NET Framework provides simple properties to adjust visual
attributes associated with forms. In some cases the underlying operating system
does not support changing these attributes directly, and in these cases the NET
Framework automatically re-creates the forms. This is one of many ways in
which the .NET Framework integrates the developer interface, making coding
simpler and more consistent.

Unlike ActiveX controls, Windows Forms controls have semitrusted access to a
user’s computer. This means that binary or natively executing code can access
some of the resources on the uset’s system, such as GUI elements and limited file
access, without being able to access or compromise other resources. Because of
code access security, many applications that once needed to be installed on a user’s
system can now be safely deployed through the Web. Your applications can imple-
ment the features of a local application while being deployed like a Web page.

Server application development

Server-side applications in the managed world are implemented through run-time
hosts. Unmanaged applications host the common language run time, which allows
your custom managed code to control the behavior of the server. This model
provides you with all the features of the common language run time and class
library while gaining the performance and scalability of the host server.

.NET AprpPLICATION PROGRAMMING INTERFACE

Server-side managed code

ASPNET is the hosting environment that enables developers to use the NET
Framework to target Web-based applications. However, ASPNET is more than a
run-time host; it is a complete architecture for developing Web sites and Internet-
distributed objects using managed code. Both Web Forms and XML Web services
use 1IS and ASPNET as the publishing mechanism for applications, and both
have a collection of supporting classes in the NET Framework.

XML Web services, an important evolution in Web-based technology, are distrib-
uted, server-side application components similar to common Web sites. However,
unlike Web-based applications, XML Web services components have no UI and
are not targeted for browsers, such as Internet Explorer and Netscape Navigator.
Instead, XML Web services consist of reusable

ASP.MET hosta XML Web software components designed to be consumed

services applications

ASP.NET hosts
Web Forms
applications

by other applications, such as traditional client
applications, Web-based applications, or even
Windows Server 2003, other XML Web services. As a result, XML Web
Enterprise Edition, hosts the
runtime and managed code services technology is rapidly moving application
development and deployment into the highly

distributed environment of the Internet.

Client

This diagram illustrates a basic network schema
with managed code running in different server
environments. Servers, such as IIS and SQL

If you have used eatlier versions of ASP technology, you will immediately notice
the improvements that ASPNET and Web Forms offer. For example, you can

Server, can perform standard operations while develop Web Forms pages in any language that supports the NET Framework. In
your application logic executes the managed addition, your code no longer needs to share the same file with your HTTP text
code.

(although it can continue to do so if you prefer). Web Forms pages execute in
native machine language because, like any other managed application, they take
full advantage of the run time. In contrast, unmanaged ASP pages are always
scripted and interpreted. ASPNET pages are faster, more functional, and easier to
develop than unmanaged ASP pages because they interact with the run time like
any managed application.

The NET Framework also provides a collection of classes and tools to aid in
development and consumption of XML Web services applications. XML Web
services are built on standards such as SOAP, a remote procedure-call protocol;
XML, an extensible data format; and WSDL, the Web Services Description
Language. The NET Framework is built on these standards to promote
interoperability with non-Microsoft solutions.

For example, the Web Services Description Language tool included with the
NET Framework SDK can query an XML Web service published on the Web,
parse its WSDL description, and produce C# or Visual Basic source code that
your application can use to become a client of the XML Web service. The source
code can create classes derived from classes in the class library that handle all the
underlying communication using SOAP and XML parsing. Although you can use
the class library to consume XML Web services directly, the Web Services De-
scription Language tool and the other tools contained in the SDK facilitate your
development efforts with the NET Framework.

If you develop and publish your own XML Web service, the NET Framework
provides a set of classes that conform to all the underlying communication stan-

Appendix A ¢ Developer environments * 225

.NET AprpPLICATION PROGRAMMING INTERFACE

dards, such as SOAP, WSDL, and XML. Using those classes enables you to focus
on the logic of your service, without concerning yourself with the communica-
tions infrastructure required by distributed software development.

Finally, like Web Forms pages in the managed environment, your XML Web
service will run with the speed of native machine language using the scalable
communication of IIS.

INTEROPERATING WITH COM

Code running under the NET Framework’s control is called managed code;
conversely, code executing outside the NET Framework is termed unmanaged
code. COM is one example of unmanaged code. The .NET framework interacts
with COM via a technology known as COM Interop.

For COM Interop to work, the CLR requires metadata for all the COM types.
This means that the COM type definitions normally stored in the type libraries
need to be converted to NET metadata. This is easily accomplished with the
Type Library Importer utility (tlbimp.exe), which ships with the NET Frame-
work SDK. This utility generates interop assemblies containing the metadata for
all the COM definitions in a type library. Once metadata is available, NET clients
can seamlessly create instances of COM types and call its methods as though they
were native .NET instances.

Primary interop assemblies

Primary interop assemblies (PIAs) are the official, vendor-supplied, NET type
definitions for interoperating with underlying COM types. Primary interop assem-
blies are strongly named by the COM library publisher to guarantee uniqueness.

ESRI provides primary interop assemblies for all the ArcObjects type libraries
that are implemented with COM. ArcGIS NET developers should only use these
primary interop assemblies that are installed in the Global Assembly Cache (GAC)
during install if version 1.1 of the NET Framework is detected. ESRI only
supports the interop assemblies that ship with ArcGIS. You can identify a valid
ESRI assembly by its public key (8FC3CC631E44ADS8O6).

COM wrappers

The NET run time provides wrapper classes to make both managed and
unmanaged clients believe
they are communicating

Unmanaged Managed with objects within their
u‘f"’_‘\ respective environment.
| l_§ | p— | o *—I ‘ :alrlfg :Ilent When managed clients call
COM erver a method on a COM

A COM client
calling a
MNET server

Consumer

226 ¢ ArcGIS Desktop Developer Guide

Consumer object, the run time creates

a run-time callable wrapper
(RCW) that handles the
D_l:l marshalling between the

two environments. Simi-
larly, the NET run time
creates COM callable
wrappers for the reverse
case, COM clients communicating with NET components. The illustration above
outlines this process.

.NET AprpPLICATION PROGRAMMING INTERFACE

Exposing .NET components to COM

When creating NET components that COM clients will make use of, follow the
guidelines listed below to ensure interoperability.

* Avoid using parameterized constructors.

* Avoid using static methods.

* Define event source interfaces in managed code.
* Include HRESULTS in user-defined exceptions.
* Supply GUIDs for types that require them.

* Expect inheritance differences.

For more information, review ‘Interoperating with Unmanaged Code’ in the
MSDN help collection.

Performance considerations

COM Interop clearly adds a new layer of overhead to applications, but the over-
all cost of interoperating between COM and .NET is small and often unnotice-
able. However, the cost of creating wrappers and having them marshall between
environments does add up; if you suspect COM Interop is the bottleneck in your
application’s performance, try creating a COM worker class that wraps all the
chatty COM calls into one function that managed code can invoke. This improves
performance by limiting the marshalling between the two environments.

COM to .NET type conversion

Generally speaking, the type library importer imports types with the same name
they originally had in COM. All imported types are additionally added to a
namespace that has the following naming convention: ESRI.ArcGIS plus the
name of the library. For example, the namespace for the Geometry library is
ESRI.ArcGIS.Geometry. All types are identified by their complete namespace and
type name.

Classes, Interfaces, and Members

All COM coclasses are converted to managed classes; the managed classes have
the same name as the original with ‘Class’ appended. For example, the Point
coclass is PointClass.

All classes additionally have an interface with the same name as the coclass that
corresponds to the default interface for the coclass. For example, the PointClass
has a Point interface. The type library importer adds this interface so clients can
register event sinks.

The .NET classes additionally have class members that NET supports but COM
does not. Each member of each interface the class implements is added as a class
member. Any property or method a class implants can be accessed directly from
the class rather than having to cast to a specific interface. Since interface member
names are not unique, name conflicts are resolved by prefixing the interface name
and an underscore to the name of each conflicting member. When member names
conflict, the first interface listed with the coclass remains unchanged.

Appendix A ¢ Developer environments ¢ 227

.NET AprpPLICATION PROGRAMMING INTERFACE

228 ¢ ArcGIS Desktop Developer Guide

Properties in C# that have by-reference or multiple parameters are not supported
with the regular property syntax. In these cases, it is necessary to use the accessor
methods instead. The following code excerpt shows an example.
ILayer layer = mapControl.get_Layer(0);
MessageBox . Show(layer.Name) ;

Events

The type library importer creates several types that enable managed applications
to sink to events fired by COM classes. The first type is a delegate that is named
after the event interface plus an underscore followed by the event name, then the
word EventHandler. For example, the SelectionChanged event defined on the
LActiveliewEvents interface has the following delegate defined:

LActivelV iewEvents_SelectionChangedEventHandler. The importer additionally creates
an event interface with a _Event’ suffix added to the end of the original inter-
face name. For example, LActivel iewEvents generates LActivel jewEvents_Event.
Use the event interfaces to set up event sinks.

Non-OLE Automation Compliant Types

COM types that are not OLE automation compliant generally do not work in
NET. ArcGIS contains a few noncompliant methods and these cannot be used in
NET. However, in most cases, supplemental interfaces have been added that
have the offending members rewritten compliantly. For example, when defining
an envelope via a point array, you can’t use IEnvelgpe::DefineFromPoints; instead,
you must use [EnvelopeGEN::DefinelromPoints.

[VB.NET]
Dim pointArray(1) As IPoint
pointArray(0) = New PointClass
pointArray(1l) = New PointClass
pointArray(0) . PutCoords(0, 0)
pointArray (1) . PutCoords (100, 100)

Dim env As IEnvelope

Dim envGEN As IEnvelopeGEN
env = New EnvelopeClass
envGEN = New EnvelopeClass

'Won't compile
'env.DefineFromPoints(2, pointArray)

'Doesn' t work
env.DefineFromPoints(2, pointArray(0))

"Works
envGEN.DefineFromPoints (pointArray)

[C#]
IPoint[] pointArray = new IPoint[2];
pointArray[0] = new PointClass();
pointArray[1] = new PointClassQ);
pointArray[0] . PutCoords(0,0);

.NET AprpPLICATION PROGRAMMING INTERFACE

pointArray[1].PutCoords(100,100);

IEnvelope env = new EnvelopeClass(Q);
IEnveTlopeGEN envGEN = new EnvelopeClass(Q);

// Won't compile
env.DefineFromPoints(3, ref pointArray);

// Doesn't work
env.DefineFromPoints(3, ref pointArray[0]);

// Works
envGEN.DefineFromPoints(ref pointArray);

.NET PROGRAMMING TECHNIQUES AND CONSIDERATIONS

This section contains several programming tips and techniques to help developers
who are moving to .NET.

Casting between interfaces (Querylnterface)

NET uses casting to jump from one interface to another interface on the same
class. In COM this is called QueryInterface. VB NET and C# cast differently.

VB .NET

There are two types of casts, implicit and explicit. Implicit casts require no
additional syntax, whereas explicit casts require cast operators.

geometry = point 'Implicit cast

geometry = CType(point, IGeometry) 'Explicit cast
When casting between interfaces, it perfectly acceptable to use implicit casts
because there is no chance of data loss as there is when casting between numeric
types. However, when casts fail, an exception (System.InvalidCastException) is
thrown; to avoid handling unnecessary exceptions, it’s best to test if the object
implements both interfaces beforehand. The recommended technique is to use the
TypeOf keyword, which is a comparison clause that tests whether an object is
derived from or implements a particular type, such as an interface. The example
below performs an implicit conversion from an [Point to an 1Geometry only if at
run time it is determined that the Point class implements IGeometry.

Dim point As New PointClass

Dim geometry As IGeometry

If (TypeOf point Is IGeometry) Then

geometry = point

End If
If you prefer using the Option Strict On statement to restrict implicit conver-
sions, use the CType function to make the cast explicit. The example below adds
an explicit cast to the code sample above.

Dim point As New PointClass

Dim geometry As IGeometry

If (TypeOf point Is IGeometry) Then
geometry = CType(point, IGeometry)

End If

Appendix A ¢ Developer environments ¢ 229

.NET AprpPLICATION PROGRAMMING INTERFACE

230 ¢ ArcGIS Desktop Developer Guide

Ci

In C#, the best method for casting between interfaces is to use the as operator.
Using the as operator is a better coding strategy than a straight cast because it
yields a null on a conversion failure rather than raising an exception.

The first line of code below is a straight cast. This is acceptable practice if you
are absolutely certain the object in question implements both interfaces; if the
object does not implement the interface you are attempting to get a handle to,
NET will throw an exception. A safer model is to use the as operator that re-
turns a null if the object cannot return a reference to the desired interface.

IGeometry geometry = point; // Straight cast

IGeometry geometry = point as IGeometry; // As operator
The example below shows how to handle the possibility of a returned null inter-
face handle.

IPoint point = new PointClass(Q);
IGeometry geometry = point;
IGeometry geometry = point as IGeometry;
if (geometry !=null)
{
Console.WriteLine(geometry.GeometryType.ToString());
}

Binary compatibility

Most existing ArcGIS Visual Basic 6 developers are familiar with the notion of
binary compatibility. This compiler flag in Visual Basic ensures that components
maintain the same GUID each time they are compiled. When this flag is not set, a
new GUID is generated for each class every time the project is compiled. This has
the adverse side effect of having to then re-register the components in their
appropriate component categories.

To keep from having the same problem in .NET, you can use the GUIDA##ribute
class to manually specify a GUID for a class. Explicitly specifying a GUID guar-
antees that it will never change. If you do not specify a GUID, the type library
exporter will automatically generate one when you first export your components
to COM and, although the exporter is meant to keep using the same GUIDs on
subsequent exports, it’s not guaranteed to do so.

The example below shows a GUID attribute being applied to a class.
[VB.NET]
<CuidAttribute("9ED54F84-A89D-4fcd-A854-44251E925F09")> _
PubTic Class SampleClass

End Class

[C#]
[GuidAttribute("9ED54F84-A89D-4fcd-A854-44251E925F09™)]
PubTic class SampleClass
{

//
}

.NET AprpPLICATION PROGRAMMING INTERFACE

Events

An event is a message sent by an object to signal the occurrence of an action. The
action could be caused by user interaction, such as a mouse click, or it could be
triggered by some other program logic. The object that raises (triggers) the event
is called the event sender. The object that captures the event and responds to it is
called the event receiver.

In event communication, the event sender class does not know which object or
method will receive (handle) the events it raises. What is needed is an intermedi-
ary (or pointer-like mechanism) between the source and the receiver. The NET
Framework defines a special type (<Delegate>) that provides the functionality
of a function pointer.

A delegate is a class that can hold a reference to a method. Unlike other classes, a
delegate class has a signature, and it can hold references only to methods that
match its signature. A delegate is thus equivalent to a type-safe function pointer
or a callback.

To consume an event in an application, you must provide an event handler (an
event-handling method) that executes program logic in response to the event and
register the event handler with the event source. The event handler must have the
same signature as the event delegate. This process is referred to as event wiring;

The ArcObjects code excerpt below shows a custom ArcMap command wiring up
to the Map object’s selection changed event. For simplicity, the event is wired up
in the OnClick event.
[VB.NET]

'Can't use WithEvents because the outbound interface is not the

'default interface

'TActiveViewEvents is the sink event interface.
'SelectionChanged is the name of the event.

'TActiveViewEvents_SelectionChangedEventHandler is the delegate name.

'Declare the delegate.
Private SelectionChanged As TActiveViewEvents_SelectionChangedEventHandler

Private m_mxDoc As IMxDocument

Public Overloads Overrides Sub OnCreate(ByVal hook As Object)
Dim app As TApplication

app = hook
m_mxDoc = app.Document
End Sub

Pub1ic Overrides Sub OnClick()
Dim map As Map
map = m_mxDoc.FocusMap

'Create an instance of the delegate, add it to SelectionChanged event.

SelectionChanged = New
TActiveViewEvents_SelectionChangedEventHandler(AddressOf OnSelectionChanged)

Appendix A ¢ Developer environments * 231

.NET AprpPLICATION PROGRAMMING INTERFACE

232 * ArcGIS Desktop Developer Guide

AddHandler map.SelectionChanged, SelectionChanged
End Sub

'Event handler

Private Sub OnSelectionChanged()
MessageBox. Show("'Selection Changed™)

End Sub

[C#]
// IActiveViewEvents is the sink event interface.
// SelectionChanged is the name of the event.
// IActiveViewEvents_SelectionChangedEventHandler is the delegate name.
TActiveViewEvents_SelectionChangedEventHandler m_selectionChanged;
private ESRI.ArcGIS.ArcMapUI . IMxDocument m_mxDoc;

public override void OnCreate(object hook)
{
TApplication app = hook as IApplication;
m_mxDoc = app.Document as IMxDocument;

pubTic override void OnClick()
{

IMap map = m_mxDoc.FocusMap;

// Create a delegate instance and add it to SelectionChanged event.

m_selectionChanged = new
TActiveViewEvents_SelectionChangedEventHandTler(SelectionChanged);

((TActiveViewEvents_Event)map) .SelectionChanged += m_selectionChanged;
}
// Event handler
private void SelectionChanged()

{

MessageBox.Show("Selection changed™);

}

Error handling

The error handling construct in Visual Studio NET is known as structured
exception handling. The constructs used may be new to Visual Basic users but
should be familiar to users of C++ or Java.

Structured exception handling is straightforward to implement, and the same
concepts are applicable to either VB NET or C#. VB NET allows backward
compatibility by also providing unstructured exception handling, via the familiar
On Error GoTo statement and Err object, although this model is not discussed in
this section.

Exceptions

Exceptions are used to handle error conditions in Visual Studio NET. They
provide information about the error condition.

.NET AprpPLICATION PROGRAMMING INTERFACE

An exception is an instance of a class that inherits from the System.Exception
base class. Many different types of exception classes are provided by the NET
Framework, and it is also possible to create your own exception classes. Each
type extends the basic functionality of the System.Exception class by allowing
further access to information about the specific type of error that has occurred.

An instance of an Exception class is created and thrown when the NET Frame-
work encounters an error condition. You can deal with exceptions by using the
Try, Catch, Finally construct.

Try, Catch, Finally

This construct allows you to catch errors that are thrown within your code. An
example of this construct is shown below. An attempt is made to rotate an
envelope, which throws an error.
[VB.NET]

Dim env As IEnvelope = New EnvelopeClass()

env.PutCoords (0D, OD, 10D, 10D)

Dim trans As ITransform2D = env

trans.Rotate(env.LowerLeft, 1D)
Catch ex As System.Exception

MessageBox.Show("Error: " + ex.Message)

' Perform any tidy up code.
End Try

[C#]

{
IEnvelope env = new EnvelopeClass(Q);
env.PutCoords (0D, OD, 10D, 10D);
ITransform2D trans = (ITransform2D) env;
trans.Rotate(env.LowerLeft, 1D);

}

catch (System.Exception ex)

{
MessageBox.Show("Error: " + ex.Message) ;

}

// Perform any tidy up code.
}
You place a try block around code that may fail. If the application throws an
error within the Try block, the point of execution will switch to the first Catch
block.

The Catch block handles a thrown error. The application executes the Catch
block when the Type of a thrown error matches the Type of error specified by
the Catch block. You can have more than one Catch block to handle different
kinds of errors. The code shown below checks first if the exception thrown is a
DivideByZeroE xception.

Appendix A ¢ Developer environments * 233

.NET AprpPLICATION PROGRAMMING INTERFACE

234 « ArcGIS Desktop Developer Guide

[VB.NET]

Catch divEx As DivideByZeroException

' Perform divide by zero error handling.
Catch ex As System.Exception

' Perform general error handling.

[

catch (DivideByZeroException divEx)
{
// Perform divide by zero error handling.
}
catch (System.Exception ex)
{
// Perform general error handling.

}

If you do have more than one Catch block, note that the more specific exception,
Types, should precede the general System.Exception, which will always succeed
the type check.

The application always executes the Finally block, either after the Try block
completes, or after a Catch block, if an error was thrown. The Finally block
should, therefore, contain code that must always be executed, for example, to
clean up resources such as file handles or database connections.

If you do not have any cleanup code, you do not need to include a Finally block.

Code without exception handling

If aline of code not contained in a Try block throws an error, the NET run time
searches for a Catch block in the calling function, continuing up the call stack
until a Catch block is found.

If no Catch block is specified in the call stack at all, the exact outcome may
depend on the location of the executed code and the configuration of the NET
run time. Therefore, it is advisable to include at least a Try, Catch, Finally con-
struct for all entry points to a program.

Errors from COM components

The structured exception handling model differs from the HRESULT model used
by COM. C++ developers can easily ignore an error condition in an HRESULT if
they want; in Visual Basic 6, however, an error condition in an HRESULT popu-
lates the Err object and raises an error.

The NET run time’s handling of errors from COM components is somewhat
similar to the way COM errors were handled at VB6. If a NET program calls a

.NET AprpPLICATION PROGRAMMING INTERFACE

function in a COM component (through the COM interop services) and returns
an error condition as the HRESULT, the HRESULT is used to populate an
instance of the COMExveption class. This is then thrown by the NET run time,
where you can handle it in the usual way, by using a Try, Catch, Finally block.

Therefore, it is advisable to enclose all code that may raise an error in a COM
component within a Try block with a corresponding Catch block to catch a
COMException. Below is the first example rewritten to check for an error from a
COM component.

[VB.NET]
Dim env As IEnvelope = New EnvelopeClass()
env.PutCoords (0D, OD, 10D, 10D)
Dim trans As ITransform2D = env
trans.Rotate(env.LowerLeft, 1D)

Catch COMex As COMException
If (COMex.ErrorCode = -2147220984) Then

MessageBox.Show("You cannot rotate an Envelope™)

MessageBox. Show _
("Error " + COMex.ErrorCode.ToString() + ": " + COMex.Message)
End If
Catch ex As System.Exception
MessageBox.Show("Error: " + ex.Message)

[C#]

{
IEnvelope env = new EnvelopeClass(Q);
env.PutCoords (0D, OD, 10D, 10D);
ITransform2D trans = (ITransform2D) env;
trans.Rotate(env.LowerLeft, 1D);

}

catch (COMException COMex)

{
if (COMex.ErrorCode == -2147220984)

MessageBox.Show("You cannot rotate an Envelope™);

MessageBox.Show ("Error " + COMex.ErrorCode.ToString() + ": " +
COMex .Message) ;
}
catch (System.Exception ex)
{
MessageBox.Show("Error: " + ex.Message) ;
}

The COMException class belongs to the System.Runtime.InteropSetvices
namespace. It provides access to the value of the original HRESULT via the
ErrorCode property, which you can test to find out which error condition
occurred.

Appendix A ¢ Developer environments ¢ 235

.NET AprpPLICATION PROGRAMMING INTERFACE

236 ¢ ArcGIS Desktop Developer Guide

Throwing errors and the exception hierarchy

If you are coding a user interface, you may want to attempt to correct the error
condition in code and try the call again. Alternatively, you may want to report the
error to the user to let them decide which course of action to take; here you can
make use of the Message property of the Exception class to identify the problem.

However, if you are writing a function that is only called from other code, you
may want to deal with an error by creating a specific error condition and propa-
gating this error to the caller. You can do this using the Throw keyword.

To throw the existing error to the caller function, write your error handler using
the Throw keyword, as shown below.

[VB.NET]
Catch ex As System.Exception

[C#]
catch (System.Exception ex)
{

throw;

}

If you wish to propagate a different or more specific error back to the caller, you
should create a new instance of an Exception class, populate it appropriately, and
throw this exception back to the caller. The example shown below uses the
ApplicationException constructor to set the Message property.
[VB.NET]
Catch ex As System.Exception

Throw New ApplicationException _

("You had an error in your application")

[C#]
catch (System.Exception ex)
{
throw new AppTicationException("You had an error in your application™);

}

If you do this, however, the original exception is lost. To allow complete error
information to be propagated, the Exception class includes the InnerException
property. This property should be set to equal the caught exception, before the
new exception is thrown. This creates an error hierarchy. Again, the example
shown below uses the ApplicationException constructor to set the
InnerException and Message properties.

[VB.NET]
Catch ex As System.Exception
Dim appEx As System.ApplicationException = _
New ApplicationException("You had an error in your application”, ex)

.NET AprpPLICATION PROGRAMMING INTERFACE

Throw appEx

[C#]
catch (System.Exception ex)
{
System.ApplicationException appEx =
new ApplicationException("You had an error in your application”, ex);
throw appEx;

In this way, the function that eventually deals with the error condition can access
all the information about the cause of the condition and its context.

If you throw an error, the application will execute the current function’s Finally
clause before control is returned to the calling function.

Working with resources

Using strings and embedded images directly (no localization)

If your customization does not support localization now, and you do not intend
for it to support localization later, you can use strings and images directly without
the need for resource files. For example, strings can be specified and used directly
in your code:

[VB.NET]
Me.TextBox1.Text = "My String"

[GA]
this.textBox1l.Text = "My String";

Image files (BMPs, JPEGs, PNGs, and so forth) can be embedded in your assem-
bly as follows:

1. Right-click the Project in the Solution Explorer, click Add, then click Add
Existing Item.

2. In the Add Existing Item dialog box, browse to your image file and click
Open.

3. In the Solution Explorer, select the image file you just added, then press F4 to
display its properties.

4. Set the Build Action property to Embedded Resource.

Appendix A ¢ Developer environments ¢ 237

.NET AprpPLICATION PROGRAMMING INTERFACE

238 * ArcGIS Desktop Developer Guide

K|
i Pan.bmp File Properties :_I
Build Action Embedded Resource -
Custom Toal
Custom Tool Mamespace
File Mame Pan.brmp |
L Full Path n"lqa.co.nlﬁsldntrf.uuﬁlbﬁalk.’k;j
Build Action
Hows the File related to the build and deployment processes,

Now you can reference the image in your code. For example, the following
code creates a bitmap object from the first embedded resource in the assembly:
[VB.NET]
Dim res() As String = GetType(Forml) .Assembly.GetManifestResourceNames()
If (res.GetLength(0) > 0)
Dim bmp As System.Drawing.Bitmap = New System.Drawing.Bitmap(_
GetType(Forml) .Assembly.GetManifestResourceStream(res(0)))

[C#]
string[] res = GetType() .Assembly.GetManifestResourceNames() ;
if (res.GetLength(0) > 0)
{
System.Drawing.Bitmap bmp = new System.Drawing.Bitmap(
GetType() .Assembly.GetManifestResourceStream(res[0]));

Creating resource files

Before attempting to provide localized resources, you should ensure you are
familiar with the process of creating resource files for your NET projects. Even
if you do not intend to localize your resoutces, you can still use resource files
instead of using images and strings directly, as described above.

Visual Studio NET projects use an XMIL-based file format to contain managed
resources. These XML files have the extension .resx and can contain any kind of
data (images, cursors, and so forth) so long as the data is converted to ASCII
format. RESX files are compiled to .resources files, which are binary representa-
tions of the resource data. Binary .resources files can be embedded by the com-
piler into either the main project assembly or a separate satellite assembly that
contains only resources.

The following options are available to create your resource files. Each is discussed
below.

.NET AprpPLICATION PROGRAMMING INTERFACE

* Creating a .resx file for string resources
* Creating resource files for image resources

* Compiling a .resx file into a .resources file

Creating a .resx file for string resources

If all you need to localize is strings—not images or cursors—you can use Visual
Studio.NET to create a new .resx file that will be compiled automatically into a
.resources module embedded in the main assembly.

1. Right-click the Project name in the Solution Explorer, click Add, then click
Add New Item.

2. In the Add New Item dialog box, click Assembly Resource File.

Add New Item - PanTool

Categories: Templates:

=L Local Project Ttems I
“au ¥
-1 Code

Bitmap File Cursor File Icon File

3 riliey .
“-{23 Resources

A NET resource file

Mame: PanToolstrings.resx

open |~ concel | wp |

3. Open the new .resx file in Visual Studio, and add name—value pairs for the
culture-specific strings in your application.

Data for data

| name ivalue i | cormment Etype ‘ mimetype
iPan_Categnr Developer Samples (il {rully {null}
\Pan_Message Mave sround the display by dragaing ({rully {rully {rully

R N S TS
*

4. When you compile your project, the .resx file will be compiled into a .re-
sources module inside your main assembly.

Creating resource files for image resources

The process of adding images, icons, or cursors to a resources file in NET is more
complex than creating a file containing only string values, because the tools
currently available in the Visual Studio NET IDE can only be used to add string

resources.

A list of tools useful for working with resources However, a number of sample projects are available with the Visual Studio NET

can be found in the Microsoft .NET Framework Framework SDK that can help you work with resource files. One such sample is
documentation. the Resource Editor (ResEditor).

Appendix A ¢ Developer environments ¢ 239

.NET AprpPLICATION PROGRAMMING INTERFACE

Additional information on the ResEditor sample
can be found in the Microsoft .NET Framework
documentation.

The ResEditor sample is provided by Microsoft
as source code.You must build the sample first if
you want to create resource files using this tool.

You can find information on building the SDK
samples under the SDK subdirectory of your
Visual Studio .NET installation.

240 « ArcGIS Desktop Developer Guide

The ResEditor sample can be used to add images, icons, imagelists, and strings to
a resource file. The tool cannot be used to add cursor resources. Files can be
saved as either .resx or .resource files.

@ Resource Editor =10 x|
Eiz Resource
il
B Widamagi |
5 [(6 :en.Craing Biman =
B Arow’? B3 SystemDravang Bitmap
& Glbe Bl Gesten Dravang Bimap
& Pan B3 Gestem Diavang Bimap
3 Zoomln ER cvstemDiawing Bimap
E II.'-LI'-
&l shie 5 (lcon)
El Sinmg

Shrngl This todl 200ms n 1o the map

Slrrg2 Thiz tood can be uzed 1o pan sround e map
Asrowl

Add

iS;Js'.crrﬁWlndWJs Frtrmz |"1aDCLI:] |

Hename
&

Creating resource files programmatically

You can create XML .resx files containing resources programmatically by using
the ResXResourceWriter class (part of the NET framework). You can create
binary .resources files programmatically by using the ResourcelVriter class (also part
of the NET framework). These classes will allow more flexibility to add the
kind of resources you require.

These classes may be particularly useful if you want to add resources that cannot
be handled by the NET Framework SDK samples and tools, for example, cur-
sors. The basic usage of the two classes is similar: first, create a new resource
writer class specifying the filename, then add resources individually by using the
AddResonrce method.

The code below demonstrates how you could create a new .resx file using the
ResXResourceWriter class and add a bitmap and cursor to the file.

[VB.NET]

Dim img As System.Drawing.Image = CType(New
System.Drawing.Bitmap("ABitmap.bmp™), System.Drawing.Image)
Dim cur As New System.Windows.Forms.Cursor("Pencil.cur™)

Dim rsxw As New System.Resources.ResXResourceWriter("en-AU.resx")
rsxw.AddResource("MyBmp_jpg", img)
rsxw.AddResource("Mycursor_cur", cur)

rsxw.Close()

.NET AprpPLICATION PROGRAMMING INTERFACE

[GA]
System.Drawing.Image img = (System.Drawing.Bitmap) new
System.Drawing.Bitmap("ABitmap.bmp");

System.Windows . Forms.Cursor cur = new
System.Windows.Forms.Cursor("Pencil.cur");

System.Resources.ResXResourceWriter rsxw = new
System.Resources.ResXResourceWriter("en-GB.resx");

rsxw.AddResource("MyBmp_jpg", img);
rsxw.AddResource("Mycursor_cur", cur);
rsxw.Close();

The PanTool developer sample (Samples\Map Analysis\'Tools) includes a sctipt—
MakeResources—that shows you how to use the ResXResourceWriter class to
write bitmap, cursor files, and strings into a .resx file. It also shows you how to
read from a .resx file using the ResXResourceReader class. The sample includes a
.resx file that holds a bitmap, two cursors, and three strings.

Compiling a .resx file into a .resources file

XMI-based .resx files can be compiled to binary .resources files either by using
the Visual Studio IDE or the ResX Generator (ResXGen) sample in the tutorial.

* Any .resx file included in a Visual Studio project will be compiled to a
.resources module when the project is built. See the ‘Using resources with

More information on the ResXGen can be found ., . K . X
localization’ section below for more information on how multiple resource

in the Microsoft NET Framework documenta-
tion. files are used for localization.
* You can convert a .resx file into a .resources file independently of the build
process using the NET Framework SDK command resgen, for example:

resgen PanToolCS. resx PanToolCS. resources

Using resources with localization

This section explains how you can localize resources for your customizations.

How to use resources with localization

In .NET, a combination of a specific Language and Country/Region is called a
culture. For example, the American dialect of English is indicated by the string
“en-US”, and the Swiss dialect of French is indicated by “fr-CH”.

If you want your project to support various cultures (languages and dialects), you
should construct a separate .resources file containing culture-specific strings and
images for each culture.

When you build a NET project that uses resources, NET embeds the default
.resources file in the main assembly. Culture-specific .resources files are compiled
into satellite assemblies (using the naming convention <Main Assembly
Name>.resources.dll) and placed in subdirectories of the main build directory.
The subdirectories are named after the culture of the satellite assembly they
contain. For example, Swiss—French resources would be contained in a fr-CH
subdirectory.

Appendix A ¢ Developer environments ¢ 24|

.NET AprpPLICATION PROGRAMMING INTERFACE

The Visual Basic .NET and C# flavors of the Pan
Tool developer sample illustrate how to localize
resources for German language environments.
The sample can be found in the Developer
Samples\ArcMap\Commands andTools\Pan Tool
folder. Strictly speaking, the sample only requires
localized strings, but the images have been
changed for the “de” culture as well, to serve as
illustration.

A batch file named buildResources.bat has been
provided in the Pan Tool sample to create the
default .resources files and the culture-specific
satellite assemblies.

242 « ArcGIS Desktop Developer Guide

When an application runs, it automatically uses the resources contained in the
satellite assembly with the appropriate culture. The appropriate culture is deter-
mined from the Windows settings. If a satellite assembly for the appropriate
culture cannot be found, the default resources (those embedded in the main
assembly) will be used instead.

The following sections give more information on creating your own .resx and
.resources files.

Embedding a default .Resources file in your project

1. Right-click the Project name in the Solution Explorer, click Add, then click
Add Existing Item to navigate to your .resx or .resources file.

2. In the Solution Explorer, choose the file you just added and click F4 to dis-
play its properties.

3. Set the Build Action property to Embedded Resource.

This will ensure that your application always has a set of resources to fall back
on if there isn’t a resource DLL for the culture your application runs in.

Creating .Resources.dll files for cultures supported by your project

1. First, ensure you have a default .resx or .resources file in your project.

2. Take the default .resx or .resources file and create a separate localized file for
cach culture you want to support.

¢ Fach file should contain resources with the same Names; the Value of each
resource in the file should contain the localized value.

* Localized resource files should be named according to their culture, for
example, <BaseName>.<Culture>.resx or
<BaseName>.<Culture>.resources.

3. Add the new resource files to the project, ensuring each one has its Build
Action set to Embedded Resource.

4. Build the project.

The compiler and linker will create a separate satellite assembly for each
culture. The satellite assemblies will be placed in subdirectories under the
directory holding your main assembly. The subdirectories will be named by
culture, allowing the NET run time to locate the resources appropriate to the
culture in which the application runs.

The main (default) resources file will be embedded in the main assembly.

Assembly versioning and redirection

Applications that are built using a specific version of a strongly named assembly
require the same assembly at run time. For example, if you create an application
that uses ESRI.ArcGIS.System version 9.0.452, you will not be able to run this
application on a system that has a newer version of ESRI.ArcGIS.System (for
example, 9.0.0.692) installed. This may be the case if someone has installed a
newer version of ArcGIS; however, using configuration files you can redirect an
application to use a newer version of an assembly.

.NET AprpPLICATION PROGRAMMING INTERFACE

You have two choices for redirecting assemblies:
* Application configuration files

* Machine configuration files

Application configuration files

Application configuration files contain settings specific to an application. This file
contains configuration settings that the common language run time reads, such as

assembly binding policy or remoting objects, and settings that the application can

read.

The name and location of the application configuration file depend on the
application’s host, which can be one of the following:

* Executable-hosted application—The configuration file for an application
hosted by the executable host is in the same directory as the application. The
name of the configuration file is the name of the application with a .config
extension. For example, an application called myApp.exe can be associated
with a configuration file called myApp.exe.config,

* ASPNET-hosted application—ASP.NET configuration files are called
Web.config. Configuration files in ASPNET applications inherit the settings of
configuration files in the URL path. For example, given the URL
www.esti.com/aaa/bbb, where www.esti.com/aaa is the Web application, the
configuration file associated with the application is located at www.esti.com/
aaa. ASPNET pages that are in the subdirectory /bbb use both the settings
that are in the configuration file at the application level and the settings in the
configuration file that ate in /bbb.

* Internet Explorer-hosted application—If an application hosted in Internet
Explorer has a configuration file, the location of this file is specified in a
<link> tag with the following syntax:
<1link rel="ConfigurationFileName" href="Tlocation">

In this tag, /ocation is a URL to the configuration file. This sets the application
base. The configuration file must be located on the same Web site as the
application.

Machine configuration files

The machine configuration file, Machine.config, contains settings that apply to an
entire computer. This file is located in the %runtime install path%\Config direc-
tory. Machine.config contains configuration settings for machinewide assembly
binding, built-in remoting channels, and ASPNET.

The configuration system first looks in the machine configuration file for the
<appSettings> element and other configuration sections that a developer might
define. It then looks in the application configuration file. To keep the machine
configuration file manageable, it is best to put these settings in the application
configuration file. However, putting the settings in the machine configuration file
can make your system more maintainable. For example, if you have a third-party
component that both your client and server application use, it is easier to put the
settings for that component in one place. In this case, the machine configuration
file is the appropriate place for the settings, so you don’t have the same settings in
two different files.

Appendix A ¢ Developer environments * 243

.NET AprpPLICATION PROGRAMMING INTERFACE

Deploying an application using XCOPY will not The configuration file below shows how to bind to an assembly and redirect it to
copy the settings in the machine configuration :
file. a newer version.
<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<dependentAssembly>

<assemblyIdentity name="ESRI.ArcGIS.System"

pub1icKeyToken="8fc3cc631e44ad86"
culture="neutral" />

<!— Assembly versions can be redirected in application,
pubTisher policy, or machine configuration files. —>

<bindingRedirect oldVersion="9.0.0.452"
newVersion="9.0.0.692"/>

</dependentAssembly>
</assemblyBinding>
</runtime>
</configuration>

ArcGIS DEVELOPMENT USING .NET

Using .NET, you can customize the ArcGIS applications, create standalone
applications that use ESRI’s types, and extend ESRI’s types. For example, you
can create a custom tool for ArcMap, create a standalone application that uses the
MapControl, or create a custom layer. This section discusses several key issues
related to developing with ArcGIS and .NET.

Registering .NET components with COM

Extending ArcGIS applications with custom .NET components requires register-
ing the components in the COM registry and exporting the NET assemblies to a
type library (TLB). When developing a component, there are two ways to pet-
form this task: you can use the RegAsm utility that ships with the NET Frame-
work SDK or Visual Studio. NET, which has a Register for COM Interop com-
piler flag,

The example below shows an EditTools assembly being registered with COM.
The /tlb parameter specifies that a type library should additionally be generated
and the /codebase option indicates that the path to the assembly should be
included in the registry settings. Both of these parameters are required when
extending the ArcGIS applications with NET components.

regasm EditTools.d11 /t1b:EditTools.t1b /codebase

Visual Studio NET performs this same operation automatically if you set the
Register for COM Interop compiler flag; this is the simplest way to perform the
registration on a development machine. To check a project’s settings, click Project
Properties from the Project menu, then look at the Build property under Configu-
ration Properties. The last item, Register for COM Interop, should be set to True.

Registering .NET classes in COM component categories

Much of the extensibility of ArcGIS relies on COM component categories. In
fact, most custom ArcGIS components must be registered in component catego-
ries appropriate to their intended context and function for the host application to

244 « ArcGIS Desktop Developer Guide

.NET AprpPLICATION PROGRAMMING INTERFACE

make use of their functionality. For example, all ArcMap commands and tools
must be registered in the ESRI Mx Commands component category. There are a
few different ways you can register a .NET component in a particular category
but before doing so, the NET components must be registered with COM. See the
Registering NET components with COM’ section above for details.

Customize dialog box

Custom .NET ArcGIS commands and tools can quickly be added to toolbars via
the Add From File button on the Customize dialog box. In this case, you simply
have to browse for the TLB and open it. The ArcGIS framework will automati-
cally add the classes you select in the type library to the appropriate component

category.

Categories utility

Another option is to use the Component Categories Manager (Categories.exe). In
this case, you select the desired component category in the utility, browse for your
type library, and choose the appropriate class.

COM Register Function

The final and recommended solution is to add code to your .NET classes that will
automatically register them in a particular component category whenever the
component is registered with COM. The NET Framework contains two at-
tribute classes (ComRegisterEunctionAttribute and ComUnregisterEunctionAttribute)
that allow you to specify methods that will be called whenever your component
is being registered or unregistered. Both methods are passed the CLSID of the
class currently being registered. With this information you can write code inside
the methods to make the appropriate registry entries or deletions. Registering a
component in a component category requires that you also know the component
category’s unique ID (CATID).

The code excerpt below shows a custom ArcMap command that automatically
registers itself in the MxCommands component category whenever the NET
assembly in which it resides is registered with COM.

public sealed class AngleAngleTool: BaseTool
{

[ComRegisterFunction()]
static void Reg(String regKey)
{
Microsoft.Win32.Registry.ClassesRoot.CreateSubKey(regKey.

Substring(18)+ "\\Implemented Categories\\" + "{B56A7C42-83D4-11D2-A2E9-
080009B6F22B}") ;

}

[ComUnregisterFunction()]

static void Unreg(String regKey)
{

Microsoft.Win32.Registry.ClassesRoot.DeleteSubKey (regKey.Substring(18)+
"\\Implemented Categories\\" + "{B56A7C42-83D4-11D2-A2E9-080009B6F22B}") ;

}

Appendix A ¢ Developer environments * 245

.NET AprpPLICATION PROGRAMMING INTERFACE

246 * ArcGIS Desktop Developer Guide

To simplify this process, ESRI provides classes for each component category
ArcGIS exposes with static functions to register and unregister components. Each
class knows the GUID of the component category it represents, so registering
custom components is greatly simplified. For more details on using these classes,
see the “Working with the ESRI .NET component category classes’ section below.

Simplifying your code using the ESRI.ArcGIS.Utility assembly

Part of the ArcGIS Developer Kit includes a number of NET utility classes that
facilitate NET development by taking advantage of a few .NET capabilities
including object inheritance and static functions.

Working with the ESRI .NET Base Classes

ESRI provides two abstract base classes (BaseCommand and BaseTool) to help
you create new custom commands and tools for ArcGIS. The classes are abstract
classes (marked as Mustlnherit in Visual Basic NET), which means that although
the class may contain some implementation code, it cannot itself be instantiated
directly and can only be used by being inherited by another class. Both base classes
are defined in the ESRI.ArcGIS. Utility assembly and belong to the

ESRI.ArcGIS. Utility.BaseClasses namespace.

These base classes simplify the creation of custom commands and tools by pro-
viding a default implementation for each of the members of ICommand and
ITool. Instead of stubbing out each member and providing implementation code,
you only have to override the members that your custom command or tool re-
quires. The exception is [Command::OnCreate; this member must be overridden in
your detived class.

Using these base classes is the recommended way to create commands and tools
for ArcGIS applications in NET languages. You can create similar COM classes
from first principles; however, you should find the base class technique to be a
quicker, simpler, less error-prone method of creating commands and tools.

Syntax

Both base classes have an overloaded constructor, allowing you to quickly set
many of the properties of a command or tool, such as Name and Category, via
constructor parameters.

The overloaded BaseCommand constructor has the following signature:

[VB.NET]
PubTic Sub New(_
ByVal bitmap As System.Drawing.Bitmap _
ByVal caption As String _
ByVal category As String _
ByVal helpContextId As Integer _
ByVal helpFile As String _
ByVal message As String _
ByVal name As String _
ByVal tooltip As String)

.NET AprpPLICATION PROGRAMMING INTERFACE

[C#]
public BaseCommand(
System.Drawing.Bitmap bitmap,
string caption,
string category,
int helpContextId,
string helpFile,
string message,
string name,
string toolTip,
);
The overloaded BaseTool constructor has the following signature:

[VB.NET]
Public Sub New(_
ByVal bitmap As System.Drawing.Bitmap _
ByVal caption As String _
ByVal category As String _
ByVal cursor As System.Windows.Forms.Cursor _
ByVal helpContextId As Integer _
ByVal helpFile As String _
ByVal message As String _
ByVal name As String _
ByVal tooltip As String _

[C#]

pubTic BaseTool(
System.Drawing.Bitmap bitmap,
string caption,
string category,
System.Windows . Forms.Cursor cursor,
int helpContextId,
string helpFile,
string message,
string name,
string toolTip,

);

Inheriting the base classes

You can use these parameterized constructors when you write your new classes,
for example, as shown below for a new class called PanTool that inherits the
BaseTool class.

[VB.NET]
PubTic Sub New(O
MyBase.New(Nothing, "Pan

, "My Custom Tools", _

System.Windows . Forms.Cursors.Cross, 0, "", "Pans the map.",
"PanTool1", "Pan")
End Sub

[C#]

Appendix A ¢ Developer environments ¢ 247

.NET AprpPLICATION PROGRAMMING INTERFACE

248 « ArcGIS Desktop Developer Guide

public PanToo1(Q) : base (null,"Pan", "My Custom Tools",
System.Windows.Forms.Cursors.Cross, 0, "","Pans the map.", "PanTool",
“Pan™

{

}

Setting base class members directly

As an alternative to using the parameterized constructors, you can set the mem-
bers of the base class directly.

The base classes expose their internal member variables to the inheritor class, one
per property, so you can directly access them in your derived class. For example,
instead of using the constructor to set the Caption or overriding the Caption
function, you can set the m_caption class member variable declared in the base
class.

[VB.NET]
PubTic Sub New()
MyBase.New()

MyBase..m_bitmap = New
System.Drawing.Bitmap([CetType] O .Asserbly.GetMani festResourceStream('Namespace . Pan.bmp'™))

MyBase. .m_cursor = System.Windows.Forms.Cursors.Cross
MyBase..m_category = "My Custom Tools"
MyBase..m_caption = "Pan"
MyBase..m_message = "Pans the map."
MyBase..m_name = "PanTool"
MyBase..m_toolTip = "Pan"

End Sub

[C#]
public PanTool()
{

base.m_bitmap = new
System.Drawing.Bitmap(GetType .Asserbly.GetMani festResourceStream("'Namespace. Pan.bmp™)) ;

base.m_cursor = System.Windows.Forms.Cursors.Cross;
base.m_category = "My Custom Tools";

base.m_caption = "Pan";

base.m_message = "Pans the map.";

base.m_name = "PanTool";

base.m_toolTip = "Pan";

}

Overriding members

When you cteate custom commands and tools that inherit a base class, you will
more than likely need to override a few members. When you override a member
in your class, the implementation code that you provide for that member will be
executed instead of the default member implementation inherited from the base
class. For example, the OnClick method in the BaseCommand has no implementa-
tion code at all, as OnClick will not do anything by default. This may be suitable
for a tool, but is probably not for a command.

To override any member, you can right-click the member of the base class in the
Solution Explorer Window, click Add, then click Override to stub out the mem-

.NET AprpPLICATION PROGRAMMING INTERFACE

ber as overridden. Note that if you right-click the member of the underlying
interface (ICommand or I'Tool) instead of the base class member, the overridden
member will not include the overrides keyword, and the method will instead be
shadowed.

[VB.NET]

Public Overrides Sub OnClick()
' Your OnClick

End Sub

[C#]
public override void OnClick()
{

// Your OnClick
}
Alternatively, to override a member of the base class, click Overrides from the
dropdown list on the right on the Code Window Wizard bar, then choose the
member you want to override from the left dropdown list. This will stub out the
member as overridden.

What do the base classes do by default?

The table below shows the base class members that have a significant base class
implementation, along with a description of that implementation. Override these
members when the base class behavior is not consistent with your customization.
For example, Enabled is set to True by default; if you want your custom com-
mand enabled only when a specific set of criteria has been met, you must over-
ride this property in your derived class.

Member Description

The given hitmap is made transparent
ICommand: Bitmap based on the pixel value at position 1,1, The
bitmap is null until set by the derived class,

ICommand::Category If null, sets the category "Misc.”
ICommand:: Checked Set to False.
ICommand::Enabled Set to True.
ITool:: OnCortextMenu Set to False,
ITool::Deactivate Set to True.

Working with the ESRI .NET component category classes

To help register NET components in COM component categories, ESRI provides
the ESRI.ArcGIS. Utility. CATIDs namespace, which has classes that represent
cach of the ArcGIS component categories. Each class knows its CATID and
exposes static methods (Register and Unregister) for adding and removing com-
ponents. Registering your component becomes as easy as adding COM registration
methods with the appropriate attributes and passing the received CLSID to the
appropriate static method.

The example below shows a custom Pan tool that registers itself in the ESRI Mx

Appendix A ¢ Developer environments ¢ 249

.NET AprpPLICATION PROGRAMMING INTERFACE

250 ¢ ArcGIS Desktop Developer Guide

Commands component category. Notice in this example MxCommands.Register
and MxCommands.Unregister are used instead of
Microsoft.Win32.Registry.ClassesRoot.CreateSubKey and
Microsoft.Win32.Registry.ClassesRoot.DeleteSubKey.
[VB.NET]
Public NotInheritable Class PanTool

Inherits BaseTool

<ComRegisterFunction()> _

Public Shared Sub Reg(ByVal regKey As [String])
MxCommands .Register(regKey)

End

<ComUnregisterFunction()> _

PubTic Shared Sub Unreg(ByVal regKey As [String])
MxCommands .Unregister(regKey)

End Sub

[GA]
pubTlic sealed class PanTool : BaseTool
{

[ComRegisterFunction()]

static void Reg(string regKey)

{

MxCommands .Register(regKey) ;
}

[ComUnregisterFunction(]
static void Unreg(string regKey)
{

MxCommands .Unregister (regKey) ;

3

Extending the server

When using NET to create a COM object for use in the GIS server, there are
some specific guidelines you need to follow to ensure that you can use your object
in a server context and that it will perform well in that environment. The guide-
lines below apply specifically to COM objects you create to run within the server.

* You must explicitly create an interface that your COM class implements.
Unlike Visual Basic 6, NET will not create an implicit interface for your
COM class that you can use when creating the object in a server context.

* Your COM class should be marshalled using the Automation marshaller. You
specify this by adding AutomationProxyAttribute to your class with a value of
true.

* Your COM class should generate a dual class interface. You specify this by
adding ClassInterfaceAttribute to your class with a value of
ClassInterfaceType.AutoDual.

.NET AprpPLICATION PROGRAMMING INTERFACE

* To ensure that your COM object performs well in the server, it must inherit
trom ServicedComponent, which is in the System.EnterpriseServices assembly.
This is necessary due to the current COM interop implementation of the
NET Framework.

For more details and an example of a custom Server COM object written in
NET, see Chapter 4, ‘Developing ArcGIS Server applications’ in the ArGILS
Server Administrator and Developer Guide.

Releasing COM references

ArcGIS Engine and ArcGIS Desktop applications

An unexpected crash may occur when a standalone application attempts to shut
down. For example, an application hosting a MapControl with a loaded map
document will crash on exit. The crashes result from COM objects hanging
around longer than expected. To avoid crashes, all COM references must be
unloaded prior to shutdown. To help unload COM references, a special static
Shutdown function has been added to the ESRI.ArcGIS. Utility assembly. The
following code excerpt shows the function in use.

[VB.NET]

Private Sub Forml_Closing(ByVal sender As Object, ByVal e As
System.ComponentModel.CancelEventArgs) Handles MyBase.Closing

ESRI.ArcGIS.Uti1ity.COMSupport.AOUninitialize.Shutdown()
End Sub

[GA]
private void Forml_Closing(object sender, CancelEventArgs e)
{
ESRI.ArcGIS.UtiTity.COMSupport.AOUninitialize.Shutdown(Q);
}
The AOUninitialize.Shutdown function handles most of the shutdown problems in
standalone applications, but you may still experience problems as there are COM
objects that require explicit releasing; in these cases, call
System. Runtime. InteropServices.Marshal. ReleaseComObject() to decrement the refer-
ence count, allowing the application to terminate cleanly. The StyleGallery is one
such object, and the following example documents how to handle references to
this class.
[VB.NET]
Dim styleGallery As IStyleGallery
styleGallery = New StyleGalleryClass
MessageBox. Show(styleGallery.ClassCount)
Marshal.ReleaseComObject(styleGallery)
[GA]
IStyleGallery sg = new StyleGalleryClass() as IStyleGallery;
MessageBox . Show(sg.ClassCount.ToString());
Marshal.ReleaseComObject(sg) ;

Working with cursors in ArcGIS Server

Some objects that you can create in a server context may lock or use resources

Appendix A ¢ Developer environments ¢ 251

.NET AprpPLICATION PROGRAMMING INTERFACE

252 ¢ ArcGIS Desktop Developer Guide

that the object frees only in its destructor. For example, a geodatabase cursor may
acquite a shared schema lock on a file-based feature class or table on which it is
based or may hold onto an SDE stream.

While the shared schema lock is in place, other applications can continue to query
or update the rows in the table, but they cannot delete the feature class or modify
its schema. In the case of file-based data sources, such as shapefiles, update
cursors acquire an exclusive write lock on the file, which will prevent other
applications from accessing the file for read or write. The effect of these locks is
that the data may be unavailable to other applications until all of the references
on the cursor object are released.

In the case of SDE data sources, the cursor holds onto an SDE stream, and if the
application has multiple clients, each may get and hold onto an SDE stream,
eventually exhausting the maximum allowable streams. The effect of the number
of SDE streams exceeding the maximum is that other clients will fail to open
their own cursors to query the database.

Because of the above reasons, it’s important to ensure that your reference to any
cursor your application opens is released in a timely manner. In NET, your refer-
ence on the cursor (or any other COM object) will not be released until garbage
collection kicks in. In a Web application or Web service servicing multiple con-
cutrent sessions and requests, relying on garbage collection to release references
on objects will result in cursors and their resources not being released in a timely
manner.

To ensure 2 COM object is released when it goes out of scope, the WebControls
assembly contains a helper object called WebObject. Use the Managel ifetime
method to add your COM object to the set of objects that will be explicitly
released when the WebObject is disposed. You must scope the use of WebObject
within a Using block. When you scope the use of WebObject within a using block,
any object (including your cursor) that you have added to the WebObject using the
Managel fetime method will be explicitly released at the end of the using block.

The following example demonstrates this coding pattern:

[VB.NET]

Private Sub doSomething_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles doSomething.Click

Dim webobj As WebObject = New WebObject

Dim ctx As IServerContext = Nothing

Try
Dim serverConn As ServerConnection = New ServerConnection("doug", True)
Dim som As IServerObjectManager = serverConn.ServerObjectManager

ctx = som.CreateServerContext("Yellowstone", "MapServer")
Dim mapsrv As IMapServer = ctx.ServerObject

Dim mapo As IMapServerObjects = mapsrv

Dim map As IMap = mapo.Map (mapsrv.DefaultMapName)

Dim flayer As IFeaturelLayer = map.Layer(0)
Dim fClass As IFeatureClass = flayer.FeatureClass

Dim fcursor As IFeatureCursor = fClass.Search(Nothing, True)

.NET AprpPLICATION PROGRAMMING INTERFACE

webobj .Managel i fetime(fcursor)

Dim f As IFeature = fcursor.NextFeature()
Do Until f Is Nothing
' Do something with the feature.
f = fcursor.NextFeature()
Loop

Finally
ctx.ReleaseContext()
webobj.Dispose()

End Try

End Sub

[C#]
private void doSomthing_Click(object sender, System.EventArgs e)
{
using (WebObject webobj = new WebObject())
{
ServerConnection serverConn = new ServerConnection("doug",true);
IServerObjectManager som = serverConn.ServerObjectManager;

IServerContext ctx =
som.CreateServerContext("Yellowstone", "MapServer");

IMapServer mapsrv = ctx.ServerObject as IMapServer;
IMapServerObjects mapo = mapsrv as IMapServerObjects;
IMap map = mapo.get_Map(mapsrv.DefaultMapName) ;

IFeaturelLayer flayer = map.get_Layer(0) as IFeaturelLayer;
IFeatureClass fclass = flayer.FeatureClass;

IFeatureCursor fcursor = fclass.Search(null, true);
webobj .ManageLifetime(fcursor);

IFeature f = null;
while ((f = fcursor.NextFeature()) !=null)

{
// Do something with the feature.

ctx.ReleaseContext();

}

The WebMap, WebGeocode, and WebPagel ayout objects also have a Managel ifetime
method. If you are using, for example, a WebMap and scope your code in a using
block, you can rely on these objects to explicitly release objects you add with
Managel ifetime at the end of the using block.

Appendix A ¢ Developer environments * 253

.NET AprpPLICATION PROGRAMMING INTERFACE

254 ¢ ArcGIS Desktop Developer Guide

Deploying .NET ArcGIS customizations

All ArcGIS Engine and Desktop customizations require an ArcGIS installation on
all client machines. The ArcGIS installation must include the ESRI primary
interop assemblies, which the setup program installs in the global assembly cache.
For example, deploying a standalone GIS application that only requires an
ArcGIS Engine license requires an ArcGIS Engine installation on all target ma-
chines.

Standalone applications

Deploying standalone applications to either ArcGIS Engine or Desktop clients
involves copying over the executable to the client machine. Copying over the
executable can be as simple as using xcopy or more involved, such as creating a
custom install or setup program. Note that aside from the ArcGIS primary
interop assemblies and the NET Framework assemblies, all dependencies must
additionally be packaged and deployed.

ArcGIS components

Components that extend the ArcGIS applications are trickier to deploy than
standalone applications because they must be registered with COM and in specific
component categories. As discussed earlier, implementing COMRegisterFunction
and COMUnregisterFunctions facilitates deployment by providing self category
registration, but this only occurs when the components are registered.

There are two techniques for registering components with COM. One option is to
run the register assembly utility (RegAsm.exe) that ships with the NET Frame-
work SDK. This is typically not a viable solution as client machines may or may
not have this utility and it’s difficult to automate. The second and recommended
approach is to add an automatic registration step to a custom setup or install
program.

The key to creating a custom install program that both deploys and registers
components is the Systen. Runtime InteropServices. RegistrationServices class. This class
has the members RegisterAssembly and UnregisterAssembly, which register and
unregister managed classes with COM. These are the same functions the RegAsm
utility uses. Using these functions inside a custom installer class along with a
setup program is the complete solution.

The basic steps below outline the creation of a deployable solution. NOTE: the
steps assume you are starting with a solution that already contains a project with
at least one COM-enabled class.

1. In Visual Studio.NET, add a new Installer Class and name it accordingly.

.NET AprpPLICATION PROGRAMMING INTERFACE

Add New Item - Events E|
Cateqgories: Templates: E o
+-_ Local Project Items ‘Web Custom Inherited User Windows ~
Conitral Control Service

Text File Frameset ®3LT File

g B

Style Sheet Installer Class EBitmap File

T ==
l% = @

[=

£ class to be invoked at setup time

Mame: | {nstaller cs

Cpen cancel ‘ Help ‘

Override the Install and Uninstall functions that are implemented in the
Installer base class and use the RegistrationServices class’s RegisterAssensbly and
UnregisterAssembly methods to register the components. Make sure you use the
SetCodeBase flag; this indicates that the code base key for the assembly should
be set in the registry.

[VB.NET]

Public Overrides Sub Install(ByVal stateSaver As
System.Collections.IDictionary)

MyBase.Install(stateSaver)
Dim regsrv As New RegistrationServices

regsrv.RegisterAssembly(MyBase.GetType() .Assembly,
AssemblyRegistrationFlags.SetCodeBase)

End Sub

PubT1ic Overrides Sub Uninstall(ByVal savedState As
System.Collections.IDictionary)

MyBase.Uninstall(savedState)
Dim regsrv As New RegistrationServices
regsrv.UnregisterAssembly(MyBase.GetType() .Assembly)
End Sub
End Class

[C#]
public override void Install(IDictionary stateSaver)
{
base.Install (stateSaver);
RegistrationServices regSrv = new RegistrationServices(Q);

regSrv.RegisterAssembly(base.GetType() .Assembly,
AssemblyRegistrationFlags.SetCodeBase) ;

}

public override void Uninstall(IDictionary savedState)

{

base.Uninstall (savedState);

Appendix A ¢ Developer environments ¢ 255

.NET AprpPLICATION PROGRAMMING INTERFACE

RegistrationServices regSrv = new RegistrationServices(Q);
regSrv.UnregisterAssembly(base.GetType() .Assembly) ;
}

2. Add a setup program to your solution.

Add New Project

Project Types: Templates:
(] visual Basic Projects
(2] visual C# Projects .@“-p

(1 visual 24 Projects Setup Project Web Setup Merge Module
* D Visual C++ Projects Project Project
{2y Setup and Deployment Projects

"
] Other Projects o
=

Setup Wizard Cab Project

Create a Windows Installer project to which files can be added,

Marne: | Setup

Location; | Di\ArcGISCustamizstions|CustomTocls - Browse...

Project will be created st D:yArcEISCustomizationsiCustomT ools|Sstup.

oK concel | el |

o

In the Solution Explorer, right-click the new project and click Add >
Project Output. Choose the project you want to deploy and choose Primary
output.

b. From the list of detected dependencies that is regenerated, remove all
references to ESRI primary interop assemblies (for example,
ESRI.ArcGIS.System) and stdole.dll. The only items typically left in the list
are your TLB and Primary output from <AssemblyName><Version>,
which represent the DLL or EXE you are compiling.

]

. The final steps involve associating the custom installation steps configured
in the new installer class with the setup project. To do this, right-click the
setup project in the Solution Explorer and click View Custom Actions.

d. In the resulting view, right-click the Install folder and click Add Custom
Action. Double-click the Application folder, then double-click the Primary
output from the <AssemblyName><Version> item. This step associates the
custom install function created earlier with the setup’s custom install ac-
tion.

g

Repeat the last step for the setup’s uninstall.

256 ¢ ArcGIS Desktop Developer Guide

.NET AprpPLICATION PROGRAMMING INTERFACE

3.

s0ft Development Environment [design] - Custom Action... [= |[E7][5€)

file Edit Yiew Project Buld Debug Tools Action Window Help

=] » Debug - mxcommands - BAER G
Custom Actions {Setup1) \ File System (Setupt) | Classt 4 b % || Solution Explorer - Setupt 1 ox

Bad 5T

=3 mnstall solution Exploring' (2 projects) &
@ Primary output from CustomTools (Active) = CustomTools 3
23 commi ¥ (3] References
(1 Rollback [#] AssemblyInfo.cs
=3 Uninstall [¥] Classi.es
4§ Primary output from CustomTools {Active) 5] Installer.cs
|E) setupt

¥ (] Detected Dependencies
=1 Tk

< >
@[Br. 1.

Propetties X

~

Output L3

Taskl.. Bl ouput |[ERerdr. (@B Frds.. TRindec .| E9 Properties | @ Dynamie Help

Ready

Finally, rebuild the entire solution to generate the setup executable file. Run-
ning the executable on a target machine installs the components and registers
them with COM. The COMRegisterFunction routines then register the compo-
nents in the appropriate component categories.

ArcGIS Server deployments

To deploy Web applications developed on a development server to product
production servers, use the built-in Visual Studio. NET tools.

1.
2.
3.
4.

In the Solution Explorer, click your project.

Click the Project menu, then click Copy Project.

In the Copy Project dialog box, specify the deployment location.
Click OK.

In addition to copying the project, you must copy and register any related DLLs

containing custom COM objects onto your Web server and all the GIS server’s

server object container machines.

Appendix A ¢ Developer environments ¢ 257

Reading the
object model
diagrams

The ArcObjects object model diagrams are an important supplement to the
information you receive in object browsers.This chapter describes the
diagram notation used throughout this book and in the object model

diagrams that are accessed through ArcGIS Developer Help.

INTERPRETING THE OBJECT MODEL DIAGRAMS

The diagram notation used in this book and the ArcObjects component model
diagrams are based on the Unified Modeling Language (UML) notation, an indus-
try diagramming standard for object-oriented analysis and design, with some
modifications for documenting COM-specific constructs.

The object model diagrams are an important supplement to the information you
receive in object browsers. The development environment, Visual Basic or other,
lists all the classes and members but does not show the structure or relationships
of those classes. These diagrams complement your understanding of the
ArcObjects components.

Object model key Types of Classes
An abstract class cannot be used to create new objects, itisa
specification for instances of subclasses (through type
AbstractClass inheritance.)
Inbound interface 0—— Interface:Inherited interface | |_ |lstimft£n_ A coclass can directly create objects by declaring a new object.
Outbound interface @— | Properties | A class cannot directly create objects, but objects of a class can
Methods. I be created as a property of another class or instantiated by
objects from another class.
Type inheritance | Types of Relationships
| | A represent relationships b classes. They
1 have defined multiplicities at both ends.
COCIaSS Composmon | Type inheritance defines specialized classes of objects that
Inbound interface o—|| Interface:Inherited interface share properties and methods with the superclass and have
. - . | additional properties and methods. Note that interfaces in
Outbound interface @— | Properties v superclasses are not duplicated in subclasses.
Msthods I specifies that one object from one class has a
Class method with which it creates an object from another class.
) - - Composition is a rel. hip in which objects from the "whole"
Inbound interface 0— Interface:Inherited interface class control the lifetime of objects from the "part” class.
Outbound interface @— | Properties An N-ary association specifies that more than two classes are
Methods associated. A diamond is placed at the intersection of the
association branches.
1. A Multiplicity is a constraint on the number of objects that can
Interface k Association - . be associated with another object. Association and composition
Sriacolxey; Multlpllcn:y relationships have multiplicities on both sides. This is the notation
— Property Get Special Interfaces for multiplicities:
—= Property Put 1-0O d onl, if hown, is implied
0o Propeny Get/Put (Optional) represents interfaces that are inherited by some subclasses pelandenlvonel(ifeneRtou el Sinplicd)
REIL but not all. The subclasses list the optional interfaces they implement. 0..1 - Zero or one
—a Property Put by Reference
d represents interfaces that are only on specific instances of M..N - From M to N (positive integers)
b Eunm?n . ekl * or 0..* - From zero to any positive integer
< vent function (<classnape>) im%icztes the. nar.ne of thg helper class required to 1..* - From one to any positive integer
support this event interface in Visual Basic.

Object model diagram key showing the types of
ArcObjects and the relationships between them

260 * ArcGIS Desktop Developer Guide

INTERPRETING THE OBJECT MODEL DIAGRAMS

CLASSES AND OBJECTS

There are three types of classes shown in the UML diagrams: abstract classes,
coclasses, and classes.

abstract | Iandaten

class g

Type i
inheritance H
Composition
class

N
Association Voo

1
coclass

Multiplicity

A coclass represents objects that you can directly create using the object declara-
tion syntax in your development environment. In Visual Basic, this is written
with the Dim pFoo As New FooObject syntax.

A class cannot directly create new objects, but objects of a class can be created as
a property of another class or by functions from another class.

An abstract class cannot be used to create new objects; it is a specification for
subclasses. An example is that a “line” could be an abstract class for “primary
line” and “secondary line” classes. Abstract classes are important for developers
who wish to create a subclass of their own since it shows which interfaces are
required and which are optional for the type of class they are implementing.
Required interfaces must be implemented on any subclass of the abstract class to
ensure the new class behaves correctly in the ArcObjects system.

RELATIONSHIPS

Among abstract classes, coclasses, and classes, there are several types of class
relationships possible.

Owner = Land parcel

In this diagram, an owner can own one or many land parcels, and a land parcel
can be owned by one or many owners.

Alssociations represent relationships between classes. They have defined multiplici-
ties at both ends.

A multiplicity is a constraint on the number of objects that can be associated with
another object. This is the notation for multiplicities:

1—One and only one. Showing this multiplicity is optional; if none is shown, “1”
is implied.

0..1—Zero or one

M.N—From M to N (positive integers)

* or 0.4—From zero to any positive integer

1.4—From one to any positive integer

Appendix B * Reading the object model diagrams * 261

INTERPRETING THE OBJECT MODEL DIAGRAMS

262 * ArcGIS Desktop Developer Guide

TYPE INHERITANCE

Type inberitance defines specialized classes that share properties and methods with the
superclass and have additional properties and methods.

Line

Primary Secondary
line line

This diagram shows that a primary line (creatable class) and secondary line
(creatable class) are types of a line (abstract class).

INSTANTIATION

Instantiation specifies that one object from one class has a method with which it
creates an object from another class.

Pole | [-==---- » Transformer

A pole object might have a method to create a transformer object.

COMPOSITION

Composition is a stronger form of aggregation in which objects from the “whole”
class control the lifetime of objects from the “part” class.

1.
Pole Crossarm

A pole contains one or many crossarms. In this design, a crossarm cannot be
recycled when the pole is removed. The pole object controls the lifetime of the
crossarm object.

Illustrated
code samples

The illustrated code samples in this appendix show the fundamentals of
programming with ArcObjects. Each sample is accompanied by illustrations of
the associated objects and their relationships.The code can be typed or

copied into VBA, after which you can follow through with the VBA debugger.

Reading the illustrated code samples

The illustrated code samples in this section show you the fundamentals of programming with COM

components in ArcObijects. Start by entering the VBA environment in ArcMap or ArcCatalog and type in
the code. Step through the code in the VBA debugger. Look at these pages and study the relationships

between coclasses and interfaces. A careful reading of the samples in this section gives you all the important

concepts you need for developing with ArcObijects, as well as an introduction to the most important

ArcObjects components.

The interface

IFeatureClass : IObjectClass

=— AreaField: IField

=— FeatureClassID: Long

=— FeatureDataset: |FeatureDataset
=— FeatureType: esriFeatureType
®=— |engthField: IField

=— ShapeFieldName: String

®— ShapeType: tagesriGeometry Type

4 CreateFeature: IFeature

4 CreateFeatureBuffer: IFeatureBuffer

<4 FeatureCount (in QueryFilter:
IQueryFilter) : Long

4 GetFeature (in ID: Long) : IFeature

<4 GetFeatures (in fids: Variant, in
Recycling: Boolean) : IFeatureCursor

<4 Insert (in useBuffering: Boolean) :
IFeatureCursor

& Search (in Filter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

4 Select (in QueryFilter: IQueryFilter, in
selType: esriSelectionType, in
selOption: esriSelectionOption, in
selectionContainer: IWorkspace) :
ISelectionSet

<4 Update (in Filter: IQueryFilter, in
Recycling: Boolean) ;' IFeatureCursor

Queryinterface

An interface is a specification of
properties and methods. Many coclasses
can implement the same interface.

Interfaces allow a high degree of interface1 © method1
interoperability and shared behavior method2
among a set of objects. QuerylInterface
AreaField is a return property of type interface2 ©

IField. FeatureClassID is of type long.

method3
method4
The CreateFeature method creates an

object of type IFeature. FeatureCount QueryInterface is a method in the [Unknown

takes in a query filter and returns a long. interface, which all COM objects inherit
from. This method lets you query for and
navigate to methods in other interfaces
implemented by an object.

Type inheritance

IBoundsProperties 0— Element
IClone 0—

|IElement 0—{ IElement : [lUnknown

|ElementProperties 0—
IElementProperties2 o— [*® Geometry: IGeometry
IPersist o— |*™ Locked: Boolean
|PersistStream o— |*— SelectionTracker:ISelectionTracker

IPropertySupport o—

ITransform2D o—| 4 Activate (in Display: IDisplay)

¢ Deactivate

<4 Draw (in Display: IDisplay, in
trackCancel: ITrackCancel)

<4 HitTest (in X: Double, in Y: Double,

The object model diagrams reveal a in Tolerance: Double) : Boolean

structure not evident in standard object | | QueryBounds (in Display: IDisplay,

. in Bounds: IEnvelope)
browsers. Shown here is an abstract < QueryOutiine (in Display: IDisplay,

Interface Inhel"ltal‘lce class, Element, with nine interfaces. The in Outline: IPolygon)

IElement interface is shown because a

IFrameElement:IUnknown

code sample made a call to it.

=—= Background: IBackground
IMapFrame and IMapSurroundFrame s poraer \Border - oo

N . — . i .
inherit frgm IFrameElement. All __g{)al'e‘c":':o\';:-’:?ea" |GraphicElement 0— Graphic-
properties and methods of |=—Thumbnail: Long Element
IFrameElement are accessible to the A GraphicElement is an abstract class that specifies

developer who accesses IMapFrame ZF the one interface shown here as well as the nine

or IMapSurroundFrame. | interfaces on the Element abstract class. %

== Map: IMap

IMapFrame : IFrameElement IMapSurroundFrame:IFrameElement m
= B |IElementEditCallout TextElement
Container: IGraphicsContainer =~ MapFrame: IMapFrame & n
— N ' |IElementEditVertices
ExtentType: esriExtentTypeEnum =~ MapSurround: IMapSurround
=— LocatorRectangleCount: Long IGroupSymbolElement
ITextElement : [lUnknown

=8 \lapBounds: IEnvelope
=== MapScale: Double

<-AddLocatorRectanlgle (in Locator:

ILocatorRectangle)

& CreateSurroundFrame (in CLSID: 1UID,
in optionalStyle: IMapSurround) :
IMapSurroundFrame

& LocatorRectangle (in Index: Long) :
ILocatorRectangle

& RemoveAllLocatorRectangles

RemoveLocatorRectangle (in Locator:
ILocatorRectangle)

264 + ArcGIS Desktop Developer’s Guide

ITextElement
ITransformEvents

== ScaleText: Boolean
=—a Symbol: ITextSymbol
=—a Text: String

TextElement is a coclass that
implements five interfaces in addition
to the one from GraphicElement and
nine from Element.

LOCATE AND EXECUTE COMMAND ON TOOLBAR

Locate and Execute Command on Toolbar

This sample illustrates how to

programmatically execute existing

commands on command bars
within ArcMap.

IChangeLayout O—
IContentsViewEdit O— MxDocument
IDataGraphs O—| -
IDocument o——{ IDocument : IDispatch
IDocumentDatasets O
IDocumentDefaultSymbols 0— | ®— Accelerators: |AcceleratorTable
IDocumentDirty O—| {#— CommandBars. IC dB
IDocumentDirty2 ©— [gm— D: IUID
IDocumentEvents ®—| | 7 - -
IDocumentEventsDisp Parent: |Application
IDocumentinfo ©— | ®— Title: String
'MXDOIC“"‘E_"‘ &7 |*— Type: esriDocumentType
Persist 71 | =— VBProject: Obiject
IReportUnitFormat O—

To find the command to execute, you can use the CommandBars collection. The

I command bars collection is a property on the IDocument interface
(ThisDocument). Using the Find method, search using the ArcID module to
provide the command's identifier. The ArclD module has members that can be
identified using the Name property of a command. The convention for naming
commands is: <command category> "_" <caption>.

ICommanditem : IUnknown

=—a Action: String

=— Builtin: Boolean

=—a Caption: String

=— Category: String

=— Command: ICommand
=—a FacelD: Variant

== Group: Boolean

=—a HelpContextID: Long

=—a HelpFile: String

=— |D: IUID

=— Index: Long

=—a \essage: String

=—a Name: String

=— Parent: ICommandBar
=—= Style: esriCommandStyles
=—a Tag: String

=—8 Tooltip: String

=— Type: esriCommandTypes

<& Delete
xecute

<4 Refresh

4 Reset

2 Assuming a valid command

the command is executed by

calling the Execute method.

item is returned from the find,

The process is repeated for another

3 command. In this way, several existing
ArcMap commands can be executed
with only one click of a button.

ICommandBars : IlUnknown

=—a | argelcons: Boolean
=—a ShowToolTips: Boolean

4= Create (in Name: Striné;, barType:
esriCmdBarType) : ICommandBar

Find (in identifier: Variant, noRecurse:

Boolean, noCreate: Boolean) :

HideAllToolbars

Framework

Dim pCommandItem As ICommandItem

Add this code to the Click event of a command in ArcMap.

Set pCommandItem = ThisDocument.CommandBars.Find(ArcID.Query_ZoomToSelected)
If (pCommandItem Is Nothing) Then Exit Sub

pCommandItem.Execute

Set pCommandItem = ThisDocument.CommandBars.Find(ArcID.ReportObject_CreateReport)

If (pCommandItem Is Nothing) Then Exit Sub

pCommandItem.Execute

Appendix C e lllustrated code samples * 265

DRAW DIGITIZED LINE ONSCREEN

This sample uses a rubber banding line to
obtain a digitized line geometry. With the
geometry created, a symbol is created. The
symbol is set as the current display symbol
and the line is drawn. The color thickness

and the style of the line symbol are set.

IChangeLayout
IContentsViewEdit
IDataGraphs

IDocument
IDocumentDatasets
IDocumentDefaultSymbols
IDocumentDirty
IDocumentDirty2
IDocumentEvents

isp

MxDocument

1D¢

IMxDocument
IPersist
IPropertySupport
IReportUnitFormat

777992 PPPTT9TY

- Unk

=— ActivatedView: |ActiveView
[==0 ActiveView; |ActiveView)

=— ActiveViewCommand: ICommand

=— ContentsView (in Index: Long) :
IContentsView

=— ContentsViewCount: Long

== Contextltem: IUnknown Pointer

== CurrentContentsView: IContentsView

== CurrentLocation: IPoint

== DefaultColor (in Y
tagesriMxDefaultColorTypes) : IColor

== DefaultTextFont: Font

== DefaultTextFontSize: IFontSize

—a DelayUpdateContents: Boolean

=— FocusMap: IMap

®=— Maps: IMaps

=— OperationStack: I0peratior

The IMxDocument interface is used
to retrieve the currently active view,
which can be a Map or a PageLayout.

IActiveView : lUnknown g

ntainer

IDisplay : lUnknown

=w— ClipEnvelope: IEnvs\cpe

=— ClipEnvelopes: |

=—a ClipGeometry: IGsomelry

=—a DisplayTransformation:
IDisplayTransformation

= Filter: IDisplayFilter

=— hDC: Long

= hPalette: Long

w—a [lluminationProps: IllluminationProps

=—a SuppressEvents: Boolean

& DrawMuitipoint (in Multipoint:
IGeometry)

& DrawPoint (in Point: IGeometry)

DrawRectangle (in rectangle:
IEnveloy
& DrawText (in Shape: IGeometry, in
ext, String

- TSelee
— ShcwRuIers Boolean
=—a ShowScrollBars: Boolean
=—a ShowSelection: Boolean

=— TipText (in X: Double, in Y: Double) :
String

IScreenDisplay : IDisplay

=== ActiveCache: Integer

== CacheCount: Integer

== CacheMemDC (in Index: Integer) : Long
==° CancelTracker: ITrackCancel

=== hWnd: Long

®=* |sFirstCacheTransparent: Boolean

"% |sFramed: Boolean

=== ScaleContents: Boolean

=== SuppressResize: Boolean

-

& Activate (hWnd: Long)
& Clear

& ContentsChanged

4 Deactivate

- Draw (m th Long, n trackGancal:
ITrackCancel)

<+ GelContextMenu (in X: Double, in Y:
Double, out clsidMenu: 1UID)

4 HitTestMap (in Location: [Point) :

- IsActive: Boolean

& OnMessage (in msg: Unsigned Long, in

wParam: Unslgned Machine Int, in

IParam: L

- Output (in prated Long.in ap| Long, in
PixelBound: tagh

in
trackCancel: |TrackCance|)

& PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
|Unknown Pointer, in Envelope:
|Envelope)

& PrinterChanged (in Printer: IPrinter)

- Refresh

Boolean
*— WindowDC: Long

& AddCache: Integer

4 DoScroll (in xDelta: Long, in yDelta:
Long, in updateScreen: Boolean)

& DrawCache (in hDC: Long, in Index:
Integer, in devlceHecl 1agRECT, in
cacheRect: tagl

& Invalidate (in recl IEnveIope |n erase

ean, in cachelndex: |

& IsCacheDirty (in cachelndex: Integer) g

Boolean

& PanMoveTo (in mouseLocation: IPoint)

- PanStart (in mouseLocation: IPoint)

& PanStop: |Envelope

& RemoveAllCaches

& RemoveCache (in cachelD: Integer)

& RotateMoveTo (in pPoint: IPoint)

< RotateStar (in mouscP: IPoin, in
enter|

L o Ru(ateSlop Doube

& RotateTimer

& SetScrollbarHandles (in

IRubberBand o—|

RubberBand

IRubberBand :

IUnknown

IPolyline : IPolycurve

4= Reshape (reshapeSource: IPath) :
Boolean
4 SimplifyNetwork

3

A RubberLine object is used to capture a
digitized line geometry from the user. The
TrackNew method takes the screen to draw
to and the symbol to draw with and returns
the created geometry.

266 * ArcGIS Desktop Developer Guide

<+ TrackExisting (in ScreenDisplay:
IScreenDisplay, in Symbol: ISymbol,
in Geomet : Boolean

TrackNew (in ScreenDisplay:
IScreenDisplay, in Symbol: ISymbol)

: |IGeomet

RubberLine

hWndk ong
hWndVertScrollbar: Long
& StartRecording
StopRecording
TrackPan
TrackRotate
& UpdateWindow

Finally, the geometry is drawn on the
screen. Notice the call to start
drawing followed by the setting of
the symbol, and then the actual
drawing of the geometry.
FinishDrawing ensures the
synchronization of the drawing
events.

5

2

Since the IScreenDisplay interface
of the active view is to be used
frequently within the function, a
local variable is used.

IClone O—|

IColor O—

IPersist O—
IPersistStream O—

IPropertySupport o—| ILineSymbol : IlUnknown

ISimpleLineSymbol 0—

Color

— IColor : lUnknown

=—a CMYK: Long

== NullColor: Boolean

=—a RGB: Long

=—a Transparency: Unsigned Char
=& UseWindowsDithering: Boolean

4~ GetCIELAB (out I: Double, out a:
Double, out b: Double)

4~ SetCIELAB (in I: Double, in a:
Double, in b: Double)

A

RGBColor

IRGBColor

IRgbColor : IColor

=—8 Blue: Lon
=—= Green: Lon

=—= Red: Lon

ILineSymbol o—| LineSymbol
IMapLevel 0—

((=—="Color: IColor
(== Width: Double

SimpleLineSymbol

ISimpleLineSymbol : ILineSymbol

(== Stzle: 1a§esriSimEIeLineSt§le)

To draw a geometry on the screen, an appropriate symbol is required.
This symbol instructs the screen how to draw the geometry. This step
creates a SimpleLineSymbol object and sets its properties. The Color
of the Line is defined by creating an RGBColor object and setting its
Red, Green, and Blue properties.

Add this to the MouseDown event of a tool in ArcMap.

I Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

2 Dim pScreen As IScreenDisplay
Set pScreen = pMxDoc.ActiveView.ScreenDisplay

3 Dim pPolyline As IPolyline
Dim pRubber As IRubberBand
Set pRubber = New RubberLine

Set pPolyline = pRubber.TrackNew(pScreen, Nothing)

4 Dim pLineSymbol As ISimplelLineSymbol
Set pLineSymbol = New SimpleLineSymbol

Dim pRGBColor As IRgbColor
Set pRGBColor = New RgbColor
With pRGBColor

.Red = 255

.Green = 128

.Blue = 128
End With

With pLineSymbol
Width = 2
.Color = pRGBColor
.Style = esriSLSSolid
End With

5 With pScreen
.StartDrawing pScreen.hDC, esriNoScreenCache
.SetSymbol pLineSymbol
.DrawPolyline pPolyline
.FinishDrawing
End With

Appendix C ¢ lllustrated code samples * 267

ADD FEATURE cLASS To ARcMAP

This sample opens a shapefile on the user's
local disk and adds the contents to the map
as a feature layer. The default symbology is
used. This sample could easily be changed
to support different data sources.

IWorkspaceFactory O—{

WorkspaceFactory

IWorkspaceFactory : [lUnknown

y2 (optional) O—

ILocalDatabaseCompact (optional) O—]
RemoteDatabaseWorkspaceFactory (optional) O—|
ISetDefaultConnectionlnfo (optional) O—
ISetDefaultCe (optional) O—

" WorkspaceDescription (in plural:
Boolean) : String
=— WorkspaceType: estiWorkspaceType

4 ContainsWorkspace (in
ParentDlrectorg String, in fileNames:
oolean

IDataset

|IDatabaseCompact (optional)
IDatabaseConnectioninfo (optional)
IDatasetContainer
IFeatureWorkspace
|IFeatureWorkspaceAnno (optional)
|IFeatureWorkspaceManage
|IFeatureWorkspaceManage2
IFeatureWorkspaceSchema€Edit
IGeodatabaseRelease (optional)
ISpatialCacheManager
ISpatialCacheManager2
I1SQLSyntax

ITransactions (optional)
ITransactionsOptions (optional)
IWorkspace

IWorkspace2
IWorkspaceConfiguration (optional)
IWorkspaceDomains (optional)
IWorkspaceDomains2 (optional)
IWorkspaceEdit
IWorkspaceEditEvents
IWorkspaceExtensionManager (optional)
IWorkspaceProperties (optional)
|WorkspaceSpatialReferencelnfo

FileNames)

<+ Copy (in WorkspaceName:

,in Ider;

Smng, out workspaceNameCopy
IWorkspaceName) : Boolean

4 Create (in parentDirectory: String, in
Name: String, in ConnectionProperties:
IPropertySet, in hWnd: Long) :
IWorkspaceName

4 GetClassID: IUID

4 GetWorkspaceName (in
parentDirectory: String, in fileNames:
IFileNames) : WorkspaceName

4 IsWorkspace (in FileName: String) :
Boolean

4= Move (in WorkspaceName:
IWorkspaceName, in
destinationFolder: String) : Boolean

4= Open (in ConnectionProperties:
IPropertySet, in hWnd: Long) :

4— OpenFromFile (m FileName: String, in
hWnd: Long) : IWorkspace
Read onnecnonPropemesFromFlle in
FileName: String) : IPropertySet

ClassSchemakdit (optional) ©
IClassSchemaEdit2 (optional)
IModelinfo (optional)

The OpenFromFile method returns
a reference to a workspace.

2

A Workspace object contains an
|IFeatureWorkspace interface. This 3
has an OpenFeatureClass method

that returns a FeatureClass.

Dataset |
IDatasetAnalyze
optional) o
oaceear o-| Dataset
IDatasetEditinfo O
1SchemaL ock
(optional) O

ITableCapabilities

IObjectClass : IClass

10bjectClassinfo (optional) ©

I0bjectClasslnfo2 (optional) ©
ObjectClassSchemaEents ©
es (optional) ©

IValidation (optional

IValidation2 (optional) ©

1Subtyps

The ShapefileWorkspaceFactory

coclass creates a shapefile
workspace factory object.

268 * ArcGIS Desktop Developer Guide

Geodatabase

IFeatureClass ©
|IFeatureClassLoad (optional) &
IFeatureClassWrite ©
IGeoDataset o

INetworkClass ©

=— AliasName: String

=— ObjectClassID: Long

" RelationshipClasses (in
role: esriRelRole) :
|EnumRelationshipClass

IFeatureClass : I0bjectClass

=— AreaField: IField

=— FeatureClassID: Long

=— FeatureDataset: IFeatureDataset
=— FeatureType: esriFeatureType
=— LengthField: IField

=— ShapeFieldName: String

=— ShapeType: tagesriGeometryType

4 CreateFeature: IFeature

4 CreateFeatureBuffer: IFeatureBuffer

4 FeatureCount (in QueryFilter:
IQueryFilter) : Long

44— GetFeature (in ID: Long) : IFeature

44— GetFeatures (in fids: Variant, in
Recycling: Boolean) : IFeatureCursor

4 Insert (in useBuffering: Boolean) :
IFeatureCursor

& Search (in Filter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

< Select (in QuezFilter: IQueryFilter, in
selType: esriSelectionType, in
selOption: esriSelectionOption, in
selectionContainer: IWorkspace) :
ISelectionSet

4 Update (in Filter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

IFeatureWorkspace : [lUnknown

& CreateFeatureClass (in Name: String, in
Fields: IFields, in CLSID: IUID, in
EXTCLSID: |UID, in FeatureType:
esriFeatureType, in ShapeFieldName:
String, in ConfigKeyword: String) :
IFeatureClass

4 CreateFeatureDataset (in Name:
String, in SpatialReference:
ISpatialReference) : IFeatureDataset

4 CreateQueryDef: IQueryDef

4 CreateRelationshipClass (in
relClassName: String, in OriginCla:
|0bjectClass, in DestinationClass:
|ObjectClass, in forwardLabel: String,
in backwardLabel: String, in

Notification: esriRelNotificatio
IsComposite: Boolean, in IsAttrlbuted
Boolean, in relAttrFields: IFields, in
OriginPrimaryKey: String, in
destPrimaryKey: String, in
OriginForeignKey: String, in
destForeignKey: String) :
IRelationshipClass

&= CreateTable (in Name: String,
IFleIds in CLSID: IUID, |n XTCLSID

tri Table|

ID. K
<+ OpenFeatureCIass (in Nam Smng)

<+ OpenFeatureDataset (in Name: String)
: IFeatureDataset
<+ OgenFeatureQuery (in queryName:
tring, in pQueryDef: IQueryDef) :
IFeatureDataset
4~ OpenRelationshipClass (in Name:
String) : IRelationshipClass
4 OpenRelationshipQuery (in pRelClass:
IRelationshipClass, in joinForward:
Boolean, in pSrcQueryFilter:
IQueryFllter in pSrcSelectionSet:
ISelectionSet, in TargetColumns:
String, in DonPushJomToDB
Boolean) : ITable
= OpenTable (in Name: String) : ITable

in Fields:

IChangeLayout O—|
6 iComenvnd o] MxDocument
IDataGraphs O
IDocument O—|
i ; ; IDocumentDatasets O—
The IMxDocument interface is obtained |DocumentDefaultSymbols O
from the ThisDocument global variable. IDocumentDirty O—|
IDocumentDirty2 ©—
IDocumentEvents ®—
Disp ®—| —
lm;csmemlmo‘ &J IMxDocument : IlUnknown IActiveView : IlUnknown
xDocument
o 'S"e'sisr: i =— ExportFrame: tagRECT
‘Re;%‘fﬁ(F‘g",ﬁ’a‘ o] A W | == Extent: |[Envelope
=— ActiveViewCommand: ICommand =— ExtentStack: |IExtentStack
=— ContentsView (in Index: Long) : == FocusMap: IMap
IContentsView =—a FyllExtent: |[Envelope
=— ContentsViewCount: Long =— GraphicsContainer: IGraphicsContainer
=—a Contextltem: IUnknown Pointer =—a |sMapActivated: Boolean
|GeoDataset o =—0 CurrentContentsView: IContentsView = ScreenCachelD (in phase:
eoDatase! | N =—a CurrentLocation: IPoint tagesriViewDrawPhase, in data:
5 I 'Lfsy.Z[: ILayer : lUnknown === DefaultColor (in Type: IUnknown Pointer) : Integer
IPersistStream ©— [#— AreaOfinterest: IEnvelope tagesriMxDefaultColorTypes) : IColor =— ScreenDisplay: IScreenDisplay
=—a Cached: Boolean =—a DefaultTextFont: Font =0 Selection: ISelection
The Name property is set =—a MaximumScale: Double =—= DefaultTextFontSize: IFontSize == ShowRulers: Boolean
to display the | —* DelayUpdateContents: Boolean === ShowScrollBars: Boolean
o display the layer name in =— FocusMap: IMap =—a ShowSelection: Boolean
the ArcMap table of e e =— Maps: IMaps = TipText (in X: Double, in Y: Double) :
contents. Notice that tiaIFF{)ef-erencee- |SpatialReference =— QOperationStack: |OperationStack String
although the Name =— BupportedDrawPhases: Long 2 ;Z?;k;g;ﬁ;?ggi:‘eal:m 4 Activate (hWnd: Long)
property is on the ILayer =—NipText (in X: Double, in Y: Double, #— SearchTolerance: Double <« Clear
interfc it i d in Tolerance: Double) : String i 8 4 ContentsChanged
Interjace, It Is accesse Valid: Boolean == SearchTolerancePixels: Long & Deactivate
directly via the Visible: Boolean :Selectedltem: !Unknown Pointer <= Draw (in hDC: Long, in trackCancel:
|IFeaturelayer interface o — gslee%eaclilﬁyy‘elrétl;’_l:geillery ITrackCancel)
i inheri (T e 115 e . 4 GetContextMenu (in X: Double, in Y:
due to interface inheritance. ’ }B?Se’;g)[’)r?r\]wg’;\gksgég}:g)ll_splay: ®— TableProperties: ITableProperties Sou‘iznlee,)éul_ecnlgiéll\?le_nu: ?d”?? n
ITrackCéncel) (#— AddLayer (in Layer: ILayer] :HllTe§tMap i RocationdIRoinbilMap
CanlnsertObject (pEnabled: Boolean) IsActive: Boolean
< |nsertObject <4 OnMessage (in msg: Unsigned Long,
Z> 4 UpdateContents in wParam: Unsigned Machine Int, in
l IParam: Long)
AttributeTable O <4 Output (in hDC: Long, in dpi: Long, in
(Class O] FeatureLayer Y/ PixelBounds: tagRECT, in
\Datalayer 07 1 VisibleBounds: [Envelope, in
IDataayer2 o1 The AddLayer method on the trackCancel: ITrackCancel
|DisplayAdmin O—| 7) PartialRefresh (in phase: _
|Disp\ayﬁ‘i§y?/\yanag$ o IMxDocument interface adds the tagesriViewDrawPhase, in data:
IDisplayRelationshipClass g Featurelayer object to ArcMap. :LEJnknlown Pointer, in Envelope:
IDisplay Table nvelope
IF;a?ureysLayer o——| IFeatureLayer : ILayer
IFeatureLayer2 O—|
IFeatureLayerDefintion | |w—a DataSourceType: String 4= Refresh
IFeatureLayerSelectionEvents ®—| |y PigplavField: String
IF lection O -
eatureSe efpt:ﬁrd‘ o—| | FeatureClass: IFeatureClas:

|GeoFeatureLayer

=8 ScaleSymbols: Boolean Finally, the newly added layer is drawn on the
IHotlinkContainer 8

=—a Selectable: Boolean screen. Notice the use of the PartialRefresh
< Search (in QueryFilter: method instead of the Refresh method; this

IQueryFilter, in Recycling: ensures optimal drawing of all the map layers.
Boolean) : IFeatureCursor

ILayer2

\gPropertie:
ILayerEffects
ILayerEvents
ILayerExtensions
ILayerFields
ILayerlnfo
ILayerPosition
ILegendinfo
IMapLevel
I0bjectClassSchemaEvents
IPropertySupport
IRelationshipClassCollection
IRelationshipClassCollectionEdit
ITable
ITableFields
ITableSelection

Add this code to the Click event of a UlButtonControl in ArcMap.

I Dim pWorkspaceFactory As IWorkspaceFactory
Set pWorkspaceFactory = New ShapefileWorkspaceFactory

77777 7797997727779¢¢

2 Dim pWorkSpace As IFeatureWorkspace
Set pWorkSpace = pWorkspaceFactory.OpenFromFile("C:\Source\", 0)

In order to add data to the map, .
4 create a Featurelayer and 3 Dim pClass As IFeatureClass
associate the FeatureClass with it. Set pClass = pWorkSpace.OpenFeatureClass("USStates™)

4 Dim pLayer As IFeaturelayer
Set pLayer = New FeaturelLayer
Set plLayer.FeatureClass = pClass
pLayer.Name = pClass.AliasName

6 Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

pMxDoc.AddLayer pLayer
pMxDoc.ActiveView.PartialRefresh esriViewGeography, plLayer,
Nothing

Appendix C ¢ lllustrated code samples * 269

ADD LAYER TO ARCMAP UsING GxDiaLoOG

IMap : IlUnknown

This example allows the user to select a
feature dataset or feature class to be added
to ArcMap using the GxDialog.

=0 ActiveGraphicsLayer: ILayer
=0 AnnotationEngine: |AnnotateMap
—= AreaOflnterest: |IEnvelope
»— Barriers (pEx(en(IEnve\ope)
IBarrierCollect
-—BaschraphlcsLayer IGraphicsLayer
w—a ClipBorder: IBorder
n—a ClipGeometry: IGeometry
=—a Description: String
=—a DistanceUnits: esriUnl(s
== Expanded: Boole:
- Featuresalecnon ISs\ecnoﬂ
=—a |sFramed: Boolean
=— Layer (in Index: Long) : ILayer
=— LayerCount: Long
=— Layers (UID: IUID, recursive: Boolean)
+ IEnumLayer
== MapScale: Double
'—Ma Surround (m Index: Long) :
IMapSurr
-—MapSurroundOoum Long
== MapUnits: esriUnits
== Name: String

To obtain the active map, use the FocusMap
I property of the IMxDocument interface.

IChangeLayout O— =—a ReferenceScale: Double
IContentsViewEdit 0— MxDocument »— SelectionCount: Long
IDataGraphs O—| = SpatialReference: SpatialReference
IDocument O— == SpatialReferenceLocked: Boolean
IDocumentDatasets O— =—a UseSymbolLevels: Boolean
IDocumentDefaultSymbols O—
IDocumentDirty O—
IDocumentDirty2 O—]
IDocumentEvents @
D Disp ®—| <-AddMapSurmund (in MapSurround:
IDocumentinfo O - IMapSurround)
MsDocument o—L—| IMxDocument : IUnknown & Clearlayers
o ny'SPEfﬁlsr: o7 f==Activatedview: IActiveview tg:z::’é";‘;fxg:“”ds
ropertySuppo =5 ActiveView: IActiveView
IReportunitFom; *— ActiveViewCommand: [Command *C?Eﬂn“‘j["s‘a"ce (AR [RE, (G
= ContentsView (in Index: Long) : The GxDialog coclass provides the user - Createl apSurround (in CLSID: 1UID, in
IContentsView X e optionalStyle: IMapSurround) :
=— ContentsViewCount: Long interface used by all ArcGIS applications IMapSurround

== Contextltem: |Unknown Pointer
=2 CurrentContentsView: IContentsView
== CurrentLocation: IPoint
" DefaultColor (in Y

ta gesnMxDefau ICoIorTypes)
== DefaultTextFont: F
= De!auhTex(FonlSnze IFonIS\ze
ents: Boole;

& DelayDrawing (in delay: Boolean)

& DelayEvents (in delay: Boolean)

& DeleteLayer (in Layer: ILayer)

¢~ DeleteMapSurround (in MapSurround:
IMapSurround)

-4 GetPageSize (out w1d|h|nches Double,
out heightinches: ible)

& Movelayer (in Layer: ILayev in tolndex:

ong

& RecalcFullExtent

-4~ SelectByShape (in Shape: |Geometry,
inenv: ISeIechonEnvwonmem in

when selecting data sources.

GxDialog

H—Opevanonstack IOperationStack

Pagelayout: |PageLayout i I i .
o g :
== Pag Pagel . |GxDialog O—= IGxDialog : IUnknown justOne: Bool
== RelativePaths: Boolean |1GxObjectFilterCollection O— & SelectFeature (m Layev ILayer, in
:gearcmo:erance;: po‘lmli |GxSelectionEvents O— {—= i 5 « Feature: IFeature)
earchTolerancePixels: Long TorE S SetPa eSize m w1d|h|nches Double, in
=— Selecteditem: [Unknown Pointer —= ButtonCaption: String oo Soune)

»— SelectedLay 1y
=— StyleGallery: IStyleGallery
=— TableProperties: |TableProperties

& AddLayer (in Layer: ILayer)
& CanlnsertObject (pEnabled: Boolean)
InsertObject

®=— FinalLocation: IGxObject
=— |nternalCatalog: IGxCatalog
= Name Strin

—= RememberLocation: Boolean

& UpdateContents — ReplgcingObjgct: Boqlean 4
—* StartingLocation: Variant
—= Title: Strin§)
The DoModalOpen method on
(< DoMogaiopen (n h the IGxDialog inpterfuce is called
. . . arentWindow: Long, out
Tz? Ilmlt the .data sources uvu:lqble ﬂ?r seléctlon gelectlon JEnumGxObject) to display the GxDialog. Once the
— within the dialog box, a GxObjectFilter is : Boolean user has finished, the selected
ctiveView: lunknown | used. For this example, the filter only allows DoModalSave (in feature classes con be accessed via
= EXFOTFE'"EIBQHECT feature classes to be selected. Using filters [B)%:ﬁggﬁllndow. Long) : the GxObject enumerator that is
== Extent: IEnveloj o =
= X: IEX K simplifies the code after the selection is made.
= F:éi’:a?; IMaptemStac plifi f passed out of the method call.
m—a FullExtent: IEnvelope
=— GraphicsContainer: |Graphics§ontainer

=—= IsMapActivated: Boolean

=— ScreenCachelD (in phase:
tagesriViewDrawPhase, in dat
1Unknown Pointer) : Integer

— ScreenDisplay: IScreenDisplay

= Selection: ISelection

=—= ShowRulers: Boolean

== ShowScrollBars: Boolean

== ShowSelection: Boolean

" TipText (in X: Double, in Y: Double) :

ring

GxFilterFeatureClasses
1GxObjectFilter >—— 1GxObjectFilter : IUnknown

=— Description: String
=— Name: String

: <= CanChooseObject (in Object:
Activate (hWnd: Lt ject (in Object:
< fe'av,”(nd: Long) IGxObject, result:
¢ ContentsChanged tagesriDoubleClickResult) : Boolean
& Deactivate “ CanDlspIayObJect (in Object:
& Draw (in hDC: Long, in trackCancel: 1GxObject) : Boolean
IMrackCancel) - CanSaveObJecl (in Location:
GetContextMenu (in X: Double, in Y:
< Double, oulclslgMenu 1UID) IGxObject, in newObjectName:
& HitTestMap (in Location: IPoint) : IMap String, objectAlreadyExists:

4 IsActive: Boolean Boolean) : Boolean
& OnMessage (in msg: Unsigned Long, in

wParam: Unsigned Machine Int, in 8

IParam: Long) s
& Output (in hDC: Long, in dpi: Long, in
Clxebllﬂ%unds tagR C‘T, in
isibleBoun nvelope, in . . If the enumerator is nothing, no selections
Finally, the newly added layer is drawn on the f S S
were made and the sub is exited.

. screen. Notice the use of the PartialRefresh Otherwise. the enumerator is reset in
i S—— method instead of the Refresh method; this X

JEnvolope) -) . ’ preparation for its iteration. {,4= Next: IGxObject
<_Fpgfmerﬁhanged (in Printer: IPrinter) ensures optimal drawing of all the map layers. «— Reset
resl

IEnumGxObject : IlUnknown
Partial S| phase:
tagesriViewDrawPhase, in data:

270 * ArcGIS Desktop Developer Guide

IGeoDataset O
ILayer O——|_ILayer:
7 IPersist O— [g—
. AreaOfinterest: IEnve\ e
IPersistStream O |a—u ot B o op
IPublishLayer ©—|

The enumerator is iterated over
and for each GxObject
accessed, a Featurelayer object
is created that is associated with

TpTexI (in X: Double, in Y: Double, N
the FeatureClass. Notice that ._v'll'%leme Double) : String

the Dataset property of the
GxDataset is assigned to the
FeatureClass property of the
Layer.

Layer

=" MaximumScale: Doub\e
— MinimumScale: Dogble

== ShowTips: Boolean
=8 SpatialReference: ISpatialRef¢
— SupponedDrawPhases: Long

=" Visible: Boolean

<4~ Draw (in drawPhas
tagesnDrawPhase in Display:
IDisplay, in trackCancel:
ITrackCancel)

IAttributeTable #— AreaField: IField
IClass =— FeatureClassID: Long
IDatalayer =— FeatureDataset: |FeatureDataset
IDataLayer2 =— FeatureType: esriFeatureType
IDataset =— LengthField: IField
IDisplayAdmin =— ShapeFieldName: String
IDisplayFilterManager =— ShapeType: tagesriGeometry Type
IDepyhocrarss < careates: ratae

.Feai’.,,lmye, IFeatureLayer : ILayer & CreateFeatureBuffer: IFeatureBuffer

IFeatureLayer2
IFeatureLayerDefinition
IFeatureLayerSelectionEvents
IFeatureSelection

IFind

IGeoFeatureLayer
IHotlinkContainer

=—a DataSourceType: String

=—a DisplayField: String

(=0 FeatureClass: IFeatureClass)
=—a ScaleSymbols: Boolean

=—a Selectable: Boolean

IHyperlinkContainer

lidentify

lidentify2

ILayer2
ILayerDrawingProperties
ILayerEffects

ILayerEvents
ILayerExtensions
ILayerFields

ILayerInfo

ILayerPosition

ILegendinfo

IMapLevel
I10bjectClassSchemaEvents
IPropertySupport
IRelationshipClassCollection
IRelationshipClassCollectionEdit
Table

ITableFields

ITableSelection

<4 Search (in QueryFilter:
IQueryfFilter, in Recycling:
Boolean) : IFeatureCursor

IGxDataset : lUnknown

>

Geodatabase

| I0bjectClass : IClass

" RelationshipClasses (in
role: esriRelRole) :
|IEnumRelationshipClass

JaN

IFeatureClass : IObjt

4 FeatureCount (in QueryFlIler:
1QueryFilter) : Lor

& GetFeature (i Long) IFeature

& GetFeatures (in fids: Variant, in
Recycling: Boolean) : IFeatureCursor

& Insert (in useBuffering: Boolean) :
IFeatureCursor

& Search (in Filter: IQueryFilter, in
Recycling: Boolean) : |FeatureCursor

¢ Select (in QueréFlller IQueryFilter, in
selType: esriSelectionType, in
selOption: seriSelectiont ption, in
selectionContainer: IWorkspace) :
ISelectionSet

4~ Update (in Filter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

Add this to the Click event of a UIButtonControl in ArcMap.

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pGxDialog As IGxDialog

Set pGxDialog = New GxDialog

pCGxDialog.AllowMultiSelect = True

pGxDialog.Title = "Select Feature Classes to Add to Map"

Dim pGxFilter As IGxObjectFilter
Set pGxFilter = New GxFilterFeatureClasses
Set pGxDialog.ObjectFilter = pGxFilter

Dim pGxObjects As IEnumGxObject
pGxDialog.DoModalOpen ThisDocument.Parent.hWnd, pGxObjects

=— Dataset: |Dataset r' 5

== DatasetName: IDatasetName
=— Type: esriDatasetType

If (pGxObjects Is Nothing) Then Exit Sub
pGxObjects.Reset

Dim pLayer As IFeaturelLayer
Dim pGxDataset As IGxDataset
6 Set pGxDataset = pGxObjects.Next
Do Until (pGxDataset Is Nothing)
Set pLayer = New FeaturelLayer
Set plLayer.FeatureClass = pGxDataset.Dataset
pLayer.Name = plLayer.FeatureClass.AliasName
pMxDoc . FocusMap.AddLayer plLayer
Set pGxDataset = pGxObjects.Next
Loop
8 pMxDoc.ActiveView.PartialRefresh esriViewGeography, _
Nothing, Nothing

Since an appropriate GxObjectFilter

6 object was used, the GxObjects returned 7
from the enumerator will support the
IGxDataset interface.

Appendix C e lllustrated code samples * 271

STYLE GALLERY AUTO SYMBOL SELECTION

This sample goes through all polygon layers in the
map and attempts to match the symbology from
the standard style set to the layer name. ArcMap
does this by default. Therefore, to see a real
difference before testing the tool, layer names
should be changed to reflect suitable styles. For
example, try changing a layer name to "Glacier" and
executing this command.

To begin, you must gain access to
the current document.

IChangeLayout
IContentsViewEdit
IDataGraphs

IDocument
IDocumentDatasets
IDocumentDefaultSymbols
IDocumentDirty
IDocumentDirty2
IDocumentEvents

Disp

MxDocument

IDocumentinfo
IMxDocument
IPersist
IPropertySupport
IReportUnitFor

== ActiveView: IActiveView
=— ActiveViewCommand: |Command

-—Co(n:(erzlstw (in Index: Long) :
ontel
-—Conlsn(sVlewCoum Long
=—a Contextltem: IUnknown Pointer
=0 CurrentContentsView: IContentsView
=—= CurrentLocation: IPoint
=—a DefaultColor (in Type:
ta esnMxDeraultColorTypes)
— Dslau\lTextFon Font
=—a DefaultTextFontSize: IFon(SlZe
UpdateContents:

IColor

aps:
s— OperationStack: [OperationStack
- PageLayout: IPageLayout

=—a RelativePaths: Boolean

=— SearchTolerance: Double

== SearchTolerancePixels: Long
a— Selecteditem: 1Unknown Point
=— SelectedLayer: ILayer

1)

IActiveView : lUnknown

=— ExportFrame: tagRECT

=—a Extent: IEnveloj

=— ExtentStack: |ExtentStack

=—0 FocusMap: IMay

== FullExtent: IEnvelope

=— GraphicsContainer: |GraphicsContainer

== |sMapActivated: Boolean

=— ScreenCachelD (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer

"— ScreenDisplay: IScreenDisplay

"0 Selection: ISelection

"= ShowRulers: Boolean

"= ShowScrollBars: Boolean

"= ShowSelection: Boolean

" TipText (in X: Double, in Y: Double) :

ring
& Activate (hWnd: Long)

& AddLayer (in Layer: ILayer)
- CaninsertObject (pEnabled: Boolean)
4 InsertObject

¢ UpdateContents

lear

& ContentsChanged

& Deactivate

¢ Draw (in hDC: Long, in trackCancel:
ITrackCancel)

& GetContextMenu (in X: Double, in Y:
Double, out clsidMenu: 1UID)

4 HitTestMap (in Location: IPoint) : IMap

& IsActive: Boolean

& OnMessage (in msg: Unsigned Long, in
wParam: Unsigned Machine Int, in
IParam: Long)

& Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: [Envelope, in

Finally, all the geographic layers are
refreshed to update the map display.

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:

PrlmerChanged (in Printer: IPrinter)
< Refresh

272 + ArcGIS Desktop Developer Guide

An enumerator is
gallery's FillSymb
all the FillSymbol

2

obtained from the style gallery for the style
ol entries that, when accessed, will loop over

s.

IStyleGall

ery : IlUnknown

4 Clear

=— Categori
IEnumBSTR

=— Class (in Index: Long) :
IStyleGalleryClass

=— ClassCount: Long
tems (In g, In

(styleSet: String, in Category: String) :

N IEnumStyleGalleryltem A

<« Addltem (in Item: IStyleGalleryltem)

<4 ImportStyle (in FileName: String)

& LoadStyle (in FileName: String, in
ClassName: String)

4= Removeltem (in Item:
IStyleGalleryltem)

<4 SaveStyle (in FileName: String, in
styleSet: String, in ClassName: String)

<4 Updateltem (in Item: IStyleGalleryltem)

ies (in ClassName: String) :

lassName: String, |

3

Using the IMap layer properties,
loop over all the layers in the
map.

IMap : IlUnknown

=—a ActiveGraphicsLayer: ILayer

== AnnotationEngine: |AnnotateMap

—= AreaOfinterest: IEnvelope

=— Barriers (pEx(en(IEnvelope) :
|BarrierCollection

— EaschraphlcsLayer: |GraphicsLayer

=—a ClipBorder: |Border

n—a ClipGeometry: IGeometry

== Description: String

=—a DistanceUnits: esriUnits.

=—a Expanded: Boolean

w0 FeatureSelection: Selection

=—a |sFramed: Boolean

— MapSurround (|n Index: Long) :
IMapSur

l—MapSurroundOoum Long

= MapUnits: esriUnits

=—a Name: String

w—a ReferenceScale: Double

»— SelectionCount: Long

= SpatialReference: ISpatialReference

=—a SpatialReferencelocked: Boolean

=—a UseSymbolLevels: Boolean

& AddLayer (in Layer: ILayer)

& AddLayers (in Layers IEnumLayer, in
autoArrange: Boolean)

& AddMapSurround (|n MapSurround:
IMapSurround)

& ClearLayers

& ClearMapSurrounds

& ClearSelection

Q-CcmputeDlstance (in p1: IPoint, in p2:
1Point) :

¢ Createl apSurround (in CLSID: 1UID, in
optionalStyle: IMapSurround) :
IMapSurround

& DelayDrawing (in delay: Boolean)

- DelayEvents (in delay: Boolean)

- DeleteLayer (in Layer: ILayer)

<« DelaeMapSurround (in MapSurround:
IMapSurround)

<-GetPages|ze (out wldlhlnches Double,

htinches: Double)
Q-McL\éeLayer (in Layer: ILayer, in tolndex:

4— Recalcl FuIIExienI

: IGeometry,
nem/ \SelschonEnvwonmem in
istOne: Boolean)
<-S'IectFeamre (m Layev ILayer, in
Feature: |Feature)
<-SetPa?“Slze (m w1d|h|nches Double, in
Inches: Double)

IStyleGalleryltem : IlUnknown GeOdatabase

=—a Category: String
= |D: L

IFeatureClass : IObjectClass

=— AreaField: IField
I ®— FeatureClassID: Long

=— FeatureDataset: IFeatureDataset
=— FeatureType: esriFeatureType
=— | engthField: IField

4 CreateFeature: IFeature
4 CreateFeatureBuffer: IFeatureBuffer
<4 FeatureCount (in QueryFilter:
IQueryFilter) : Long
<4 GetFeature (in ID: Long) : IFeature
<4 GetFeatures (in fids: Variant, in
Recycling: Boolean) : IFeatureCursor
<4 Insert (in useBuffering: Boolean) :
IFeatureCursor
<4 Search (in Filter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor
5 <4 Select (in QueryFilter: IQueryFilter, in
selType: esriSelectionType, in
selOption: esriSelectionOption, in
Using the FeatureClass property, selectionContainer: IWorkspace) :
check the shape type of the layer. oslsciionsst
pe typ yer. <4 Update (in Filter: IQueryFilter, in
If it is not Polygon, skip to the next Recycling: Boolean) :'IFeatureCursor

layer.

6

The style gallery enumerator is reset and
then iterated over to look for a match
between the style item name and the layer
name.

Carto

ILayer : lUnknown /

=— AreaOfInterest: IEnvelope
=—a Cached: Boolean

=—= MaximumScale: Double
=== Mini : Double

Carto

If a match in name is found, the
symbol obtained from the style
=—= Description: String gallery is set into the renderer.

=—a | abel: Strin
=] Simbo R ISE‘mboI}

ISimpleRenderer:lUnknown 7

—0 SpatialReference: ISpatialReference

=— SupportedDrawPhases: Long

= TipText (in X: Double, in Y: Double,
in Tolerance: Double) : String

=— Valid: Boolean

=—= Visible: Boolean

4 Draw (in drawPhase:
tagesriDrawPhase, in Display:
IDisplay, in trackCancel:
ITrackCancel)

7aN

IFeatureLayer : ILayer

Add this to the Click event of a UIButtonControl in ArcMap.

I Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

2 Dim pStyleItems As IEnumStyleGalleryItem
Set pStyleltems = pMxDoc.StyleGallery.Items("Fill Symbols", _
"ESRI.style", "Default")
Dim pGalleryItem As IStyleGalleryItem

=—= DataSourceType: String
=—= DisplayField: Strin
— 0

=—a ScaleSymbols: Boolean
=—= Selectable: Boolean

Dim pRenderer As ISimpleRenderer
Dim pGeoFeaturelLayer As IGeoFeaturelayer
Dim i As Long
For i = 0 To pMxDoc.FocusMap.LayerCount - 1
If (TypeOf pMxDoc.FocusMap.Layer(i) Is IGeoFeaturelLayer) Then
Set pGeoFeaturelLayer = pMxDoc.FocusMap.Layer(i)
5 If (pGeoFeaturelLayer.FeatureClass.ShapeType = _
esriGeometryPolygon) Then
pStyleItems.Reset
6 Set pGalleryItem = pStyleItems.Next
Do While (Not pGalleryItem Is Nothing)
If (pGeoFeaturelLayer.Name = pGalleryItem.Name) Then
Set pRenderer = pGeoFeaturelLayer.Renderer

<4 Search (in QueryFilter:
IQueryFilter, in Recycling:
Boolean) : IFeatureCursor

7N

IGeoFeatureLayer : IFeatureLayer

»

==& AnnotationProperties:
IAnnotateLayerPropertiesCollection

=—a AnnotationPropertiesID: IUID

—= CurrentMapLevel: Long

== DisplayAnnotation: Boolean

=— DisplayFeatureClass: IFeatureCl

| =2 ExclusionSet: IFeature|DSet
=—0 Renderer: IFeatureRenderer

== RendererPropertyPageClassID: UID 7 Set pRenderer.Symbol = pGalleryItem.Item
4= searchDisplayFeatures (in QueryFilter: Exit Do
IQueryFilter, in Recycling: Boolean) : End If
IFeatureCursor Set pGalleryItem = pStyleItems.Next
Loop
If the type of layer is not an End If
4 |GeoFeaturelayer, continue to End If
the next layer. Next i
8 pMxDoc.ActivatedView.PartialRefresh esriViewGeography, _

Nothing, Nothing

Appendix C e lllustrated code samples * 273

LooP THROUGH SELECTED AREA FEATURES

This sample loops through the selected Carto
features of the focus map. It loops using the
IEnumFeature interface, which is reached

IFeatureSelection : IlUnknown

=—a BufferDistance: Double

through a Querylnterface from the g Comtinationhisliod S

FeatureSelection property of the map. For e e T
each feature it checks the geometry type ﬁgg{gﬂg;?gng;jygggl'ean
and if Polygon, it performs a Querylnterface <4 Add (in Feature: IFeature) \

for the IArea interface‘ USing the Area :g::l:tr:tFeatures (in Filter: IQueryFilter,
property of the interface, it adds the area o Baotoms onResuftEnu,

to a running total. At the end, it reports the = Seectonchanged
total area via a message box. 6 Obtain the |FeatureSelection interface by performing
a QuerylInterface to the IFeaturelayer interface.

I To obtain the layers of the map, you must first get IFeatureClass : IObjectClass
access to the currently active map. Do this through the))
v P firoug "— AreaField: IField
FocusMap property of the IMxDocument interface. =— FeatureClassID: Long
=— FeatureDataset: IFeatureDataset
=— FeatureType: esriFeatureType
5 =— LengthField: IField
If the shape type of
IChangeLayout O— i 4 CreateFeature: IFeature
'C°"'fg'as'\a/grg§ﬁ's' o MxDocument ,:Zi Zesf)ul;t;;l:s:hl: 4 CreateFeatureBuffer: IFeatureBuffer
IDocument O—| e 4 FeatureCount (in QueryFilter:
IDocumentDatasets O—| layer is skipped. IQueryFilter) : Long
'DOC“’“E"“I:‘;'“““"‘SJS‘S;'S . <4 GetFeature (in ID: Long) : IFeature
ocu S co
IDocumenlDiny% o 44— GetFeatures (in fids: Variant, in
IDocumentEvents @—| - Recy(t_:llng: Bo?'lezgn) :‘I?'Fealnure)Cursor
IDocumentEventsDisp ®—| nsert (in useBuffering: Boolean) :
o o IMxDoct 1t : lUnkne c a rt o |IFeatureCursor
lMchﬁ:umen: o ument: T IO 4 Search (in Filter: IQueryFilter, in
IPrcperIySu:r::'\ o | [=— Activateaview: IActiveview Recycling: Boolean) : IFeatureCursor
IReportUnitFormat 0—| [*=2 ActiveView: [ActiveView IMap : lUnknown <4 Select (in QueryFilter: IQueryFilter, in
=— ActiveViewCommand: ICommand o ActveGroniosLaver 1o selType: esng electionType, in
" ContentsView (in Index: Long) : cliveGraphicsLayer. [Layer selOption: esriSelectionOption, in
IContentsView =~ AnnotationEngine: |AnnotateMap ionContainer: IW .
=— ContentsViewCount: Long —a AreaOfinterest: IEnvelope |SelectionSet B .
=—= Contextltem: IUnknown Pointer s— Barriers (pExtent: |Envelope) : electionSet o
== CurrentContentsView: IContentsView IBarrierCollection <4 Update (in Filter: IQueryFilter, in
=—= CurrentLocation: IPoint I—BasmGraphlcsLayer IGraphicsLayer Recycling: Boolean) : IFeatureCursor
== DefaultColor (in TYpe: == ClipBorder: IBorder
tagesriMxDefaultColorTypes) : IColor = ClipGeometry: Geomelry
== DefaultTextFont: Font =—a Description: String
== DefaultTextFontSi: i =—a DistanceUnits: esriUnits.
=—a Expanded: Boolean
=—a FeatureSelection: |Selection
=—a |sFramed: Boolean IFeatureLayer : ILayer /
=— OperationStack: IOperationStack =— Layer (in Index: Long) : ILayer
=0 PageLayout: |PageLayout =—LaverCount: Lon =—a DataSourceType: Strin
== RelativePaths: Boolean yers ecursive: Boolean) == DisplayField: ySp(rln 9
=— SearchTolerance: Double |EnumLayer
== SearchTolerancePixels: Long ‘== MapScale: Double =—0 FeatureClass: |IFeatureClass
'—gg:ec:i:_l:m: llIJE:nown Pointer '—Mla'asurround (in Index: Long) : =—a ScaleSymbols: Boolean
»— Selec yer: ILayer — .
=— StyleGallery: IStyleGallery -—MapSurroundCounl Long Selectable: Boolean
P g i MapUnits: esriUnits - - T
| TobleProperties: TablePropertes | == Nemo: Sting = Search (in QueryFilter: IQueryFilter, in
& AddLayer (in Layer: ILayer) =—a ReferenceScale: Double Recycling: Boolean) : IFeatureCursor
& CanlnsertObject (pEnabled: Boolean) s— SelectionCount: Long
& InsertObject - SpatialReference: ISpatialReference
| % UpdateContents | =—u SpatialReferenceLocked: Boolean
-l evels: Boolean
& AddLayer (in Layer: ILayer) The layers enumerator is iterated
& AddLayers (in Layers: IEnumLayer, in 4 over using the standard enumerator
autoArrange: Boolean)
4—A1&Mag$urround (in MapSurround: method, Next.
apSur
&-ClearLayers
& ClearMapSurrounds IEnumLayer : IlUnknown
4 ClearSelection V!
<-ComputeD|stance (in pt: IPoint, in p2:
IPoint) : Doudlo =
& CreateMapSurround (in CLSID: 1UID, in
UID © 1UID : IDispatch optionalStyle: IMapSurround) : Reset
) IMapSurround
IPersistStream O Hlu a g7y pe: Long & DelayDrawing (in delay: Boolean)
2 IXMLSerialize © = \fari - DelayEvents (in delay: Boolean)
Value: Variant DoloreL Loy
¢ DeleteLayer (in Layer: ILayer) The UID obj d iously i d
ject created previously is use
o < Compare (in otherID: tDelaeMapSurmund (in MapSurround: -
The UID helper object is used pay : IMapSurround) to obtain an enumerator for all layers that
he GUID h 1UID) : Boolean 4'GetPageS|ze (out widthinches: Double, X
to represent the for the & Generate out heightinches: Double) support the |GeoFeaturelayer interface.
|GeoFeatureLayer interface. "M°"e'§iye’ Upitayerditayerlinfiondexy Notice the resetting of the enumerator
4 RecalcFullExtent i
*Selectﬂysha,:e (in Shape: IGeometry, before its use.
lectionEnvironment, in
justOne: Boolean)
s st e m *SelectFeaﬁure (m Layev ILayer, in
Feature: I re)
<-SetPageS|ze (m W|d(hlnches Double, in
heightinches: Double)

274 + ArcGIS Desktop Developer Guide

7

that there are selected features for the
current layer. If there are no selected
features, the layer is skipped.

ISelectionSet : lUnknown

=— Count: Lona)
= FullName: IName
=— |Ds: IEnumIDs
#— Target: ITable

<= Add (in OID: Long)

4= AddList (in Count: Long, in OIDList:
Long)

<4 Combine (in otherSet: ISelectionSet, in
setOp: esriSetOperation, out
resultSet: ISelectionSet)

MakePermanent

4 Refresh

<4 Removelist (in Count: Long, in
OlIDList: Lon

Search (in pQueryFilter: IQueryFilter, in’
Recycling: Boolean, out ppCursor:

A |Cursor)

4 Select (in QueryFilter: IQueryFilter, in
selType: esriSelectionType, in
selOption: esriSelectionOption, in
selectionContainer: IWorkspace) :
ISelectionSet

Geometry

Before attempting to loop through selected
features, a check is performed to ensure

IFeatureCursor : IlUnknown
" Fields: IFields

< DeleteFeature) IFeature : IObject
I E:Egr’:leld (in Name: String) : Long ﬂ =— Extent: IEnvelope

= |nsertFeature (in Buffer:
. Variant

®— FeatureType: esriFeatureType
=0 Shape: IGeomet!
hapeCopy: IGeometry

If there are selected features, a
cursor onto these features is
obtained from the layers
selection set.

8

Geodatabase

For each feature returned by the cursor,
the Area of the feature's shape is
obtained and totalled. The area is obtained
by performing a Querylnterface on the
feature's shape for the |Area interface and
getting the Area property from it.

IArea : IlUnknown

=— Area: Double
=— Centroid: IPoint
=— LabelPoint: IPoint

Finally, the totalled area is displayed
to the user in a standard Visual Basic
Message Box.

4— QueryCentroid (Center: [Point)
4— QueryLabelPoint (LabelPoint: IPoint)

10

Add this code to the Click event of a UlButtonControl in ArcMap.

I Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

2 Dim pUID As New UID
pUID = "{E156D7E5-22AF-11D3-9F99-00C04F6BC78E}" 'IGeoFeaturelLayer IID

3 Dim pEnumLayer As IEnumLayer
Set pEnumLayer pMxDoc. FocusMap.Layers(pUID, True)
pEnumLayer.Reset

Dim
Dim

pFeaturelLayer As IFeaturelayer
pFeatureSelection As IFeatureSelection

Dim pFeatureCursor As IFeatureCursor
Dim pFeature As IFeature
Dim pArea As IArea
Dim dTotalArea As Double
4 Set pFeaturelLayer = pEnumLayer.Next
Do Until (pFeatureLayer Is Nothing)
5 If (pFeaturelLayer.FeatureClass.ShapeType = esriGeometryPolygon) Then
6 Set pFeatureSelection = pFeaturelLayer
7 If (pFeatureSelection.SelectionSet.Count <> 0) Then
pFeatureSelection.SelectionSet.Search Nothing, True, pFeatureCursor
8 Set pFeature = pFeatureCursor.NextFeature
Do Until (pFeature Is Nothing)
9 Set pArea = pFeature.Shape
dTotalArea = dTotalArea + pArea.Area
Set pFeature = pFeatureCursor.NextFeature
Loop
End If
End If
Set pFeaturelLayer = pEnumLayer.Next
Loop
10 MsgBox "Total Area for selected polygon features = " & CStr(dTotalArea)

Appendix C e lllustrated code samples * 275

SPATIAL QUERY

This sample builds a spatial query filter,
gets a feature cursor based on the filter

and then loops over all the features, 6
totalling the number of points, lines, and

areas, and reports these to the user.

Each layer in the map is looped over; if the
layer is not of type |GeoFeaturelayer,

the layer is skipped.
Carto

IMap :

=0 ActiveGraphicsLayer: ILayer

== AnnotationEngine: |AnnotateMap

—= AreaOfinterest: [Envelope

®=—Barriers (pExtent: IEnvelope) :
|BarrierCollection

=— BasicGraphicsLayer: |GraphicsLayer

IFeatureLayer : ILayer

=—a DataSourceType: String

== DisplayField: Strin
== FeatureClass: IFeatureClass)
=== ScaleSymbols: Boolean

\ChangeLayout O] = ClipBorder: IBorder
IContentsViewEdit 0—| MxDocument =2 ClipGeometry: IGeometry =8 Selectable: Boolean
IDataGraphs O—| s-a Description: String
IDocument O— =—a DistanceUnits: esriUnits /& Search (in QueryFilter:
IDocumentDatasets O—| ot XpendedBoolcan R IQueryFilter, in Recycling:
IDocumentDefaultSymbols O—f =0 FeatureSelection: ISelection Boolean) : IFeatureCursor,
IDocumentDirty O—| =—a |sFramed: Boolean -
IDocumentDirty2 O
IDocumentEvents ®—
IDocumentEventsDisp ®—| erEvs recursive: Boolean)
IDocumentinfo O— : IEnumLayer - 1Obj
MxDocument oI IMxDocument : IUnknown = MapScale: Double IFeatureClass : IObjectClass
IPersist O0—| " iow: IACtiveVi =— MapSurround (in Index: Long) : =— AreaField: IField
|PropertySupport O— :ﬁiilﬁ{ii‘vﬁ'eﬁcm'vﬁw” IMapSurround »— FeatureClassID: Long
IReportUnitFormat O—| | ;— ActiveViewC d: 1C: 4 =— MapSurroundCount: Long »— FeatureDataset: |FeatureDataset
ctiveviewSommand: |Gomman =—a MapUnits: esriUnits =— FeatureType: esriFeatureType
*— ContenisView (in Index: Long): == Name: String — !

=—a ReferenceScale: Double #— ShapeFieldName: String

=— SelectionCount: Long '=— ShapeType: tagesriGeometryType
=0 SpatialReference: ISpatialReference
=—a SpatialReferenceLocked: Boolean
=—a UseSymbolLevels: Boolean

- AddLayer (in Layer: ILayer)

& AddLayers (in Layers: [EnumLayer, in
autoArrange: Boolean)

n <+ AddMagSunound (in MapSurround:

—_— COnlentsVlewCoum: Long

== Contextltem: IUnknown Pointer

=0 CurrentContentsView: IContentsView

=—a CurrentLocation: |Point

=1 DefaultColor (in Type:
tagesriMxDefaultColorTypes) : I

== DefaultTextFont: Font

w—a DefaultTextFontSize: IFontSi;

UpdateContents:

I IContentsVie\

& CreateFeature: IFeature

4 CreateFeatureBuffer: IFeatureBuffer

& FeatureCount (in QueryFilter:
IQuer‘yFM(er) : Long

& GefFeature (in ID: Long) : IFeature

& GetFeatures (in fids: Variant, in
Recycling: Boolean) : IFeatureCursor

& Insert (in useBuffering: Boolean) :

The IMxDocument
interface is obtained from
the ThisDocument
global variable.

faps: Maps <-C\earLayers IFeat
=— OperationStack: IOperationStack 4 ClearMapSurrounds 4—Seagu(ﬁc;\[(zgloueryl:iller in
=0 Pagelayout: IPageLayout tC\earSe\ecnon Recycling: Boolean) : |FeatureCursor
== RelativePaths: Boolean CompuIeDlstance (in p1: IPoint, in p2: Selecl n QueryFilter: IQueryFilter, in
=— SearchTolerance: Double IPoint) : «* . Qu srielectionT, L} o in '

Q-CreateMapSurrcund (in CLSID: IUID, in

=8 SearchTolerancePixels: Long optionalStyle: IMapSurround) :

seIOpnon “esriSelectionOption, in
»— Selecteditem: [Unknown Pointer

selectionContainer: IWorkspace) :

. IMapSurround
o gf'f:éeaﬁ'lﬁy?jéﬁgg;"e & DelayDrawing (in delay: Boolean) <« u;l,g:«lgc((\ﬂﬁ?e(v 1QueryFilter, in
y| VB i 2 ¢ DelayEvents (in delay: Boolean) Recycling: Boolean) : IFeatureCursor

=— TableProperties: ITableProperties
& AddLayer (in Layer: ILayer)

- DeleteLayer (in Layer: ILayer)
<+ De\eleMapSurrgund (in MapSurround:

4 CanlnsertObject (pEnabled: Boolean) IMapSur:
- InsertObject & GetPageSize (out mdthlnches Double,
-4 UpdateContents out heightinches: le)
MoveLayer (in Layer: ILayer, in tolndex:
4—Heca\% uIIExlent
hape: Y,
. . . . in env: ISéTéctlonEnvlronmem in
The active view associated with the focus justOne: Boolean)
3 map is acquired in order for the rubber *Se,l‘e’ca“ﬁfj‘“':“" "?Ve’ iLayeriin

& SetPageSize (in widthinches: Double, in

banding geometry to have the correct i AU

spatial reference.

IActiveView : lUnknown

The TrackNew method is called.
This allows the user to drag the
mouse to define the envelope.

=—a Extent: [Envelope

=— ExtentStack: |ExtentStack

=0 FocusMap: IMap

== FullExtent: IEnvelope

»— GraphicsContainer: IGraphicsContainer
= IsMapActivated: Boolean

IEnvelope : IGeometry

s— ExportFrame: tagRECT l

=—a Depth: Double
=—a Height: Double
== LowerLeft: IPoint
== |owerRight: IPoint

RubberBand

IRubberBand 0—|

»— ScreenCachelD (in phase:
(ageanlevaawPhase in data:
IUnknown Pointer) : Integer

=— ScreenDisplay: IScreenDisplay

=—a Selection: ISelection

=—= ShowRulers: Boolean

=—a ShowScrollBars: Boolean

=—a ShowSelection: Boolean

'—Ti%Te)d (in X: Double, in Y: Double) :

IRubberBand : IlUnknown

& TrackExisting (in ScreenDisplay:

in Geomet

IScreenDisplay, in Symbol: ISymbol,
: Boolean

<-Acnva«e (hWnd: Long)

< Conlenlschanged

& Deactivate

& Draw (in hDC: Long, in trackCancel:
ITrackCancel)

& GetContextMenu (in X: Double, in Y:
Double, out clsidMenu: [UI D)

<-H||Tes|Map (in Location: IPoint) : IMap

& IsActive: Boolean

& OnMessage (in msg: Unsigned Long, in
wParam: Unsigned Machine Int, in
IParam: Long)

<+ Oulpul (in hDC: LongE in dpl Long, in

PixelBounds: t
VisibleBounds: IEnve\ope in
trackCancel: ITrackCancel)

& partialRefresh (in phase:
tagesriViewDrawPhase, in data:
|Unknown Pointer, in Envelope:
|Envelope)

<+ PrlnlerChanged (in Printer: IPrinter)

& Refresh

TrackNew (in ScreenDisplay:
IScreenDisplay, in Symbol: ISymbol)

A |Geometry

=—a MMax: Double
=—a MMin: Double
=—a UpperLeft: IPoint
== UpperRight: IPoint
=—a Width: Double
=—a XMax: Double
=—a XMin: Double

=—a YMax: Double

2

A user-defined envelope defining the
extent of the spatial query is required.
The rubber envelope object is used.

276 * ArcGIS Desktop Developer Guide

Rubber-
Envelope

=—a YMin: Double
=—a ZMax: Double
m—a ZMin: Double

- CenterAt (p: IPoint)

& DefineFromPoints (Count: Long, in
Points: IPoint)

Expand (dx Double dy: Double,

asRatio: an)

& ExpandM ldm Dcuble asRatio:Boolean)

& ExpandZ (dz: Double, asRatio: Boolean)

& Intersect (inEnvelope: IEnvelope)

& Offset (X: Double, Y: Double)

4 OffsetM (M: Double)

& OffsetZ (Z: Double)

& PutCoords (XMin: Double, YMin: Double,
XMax: Double, YMax: Double)

& QueryCoords (out XMin: Double, out

Min: Double, out XMax: Double, out

YMax: Doublé)

& Union (inEnvelope: IEnvelope)

[[e] try : IUnki
*’ IFeatureCursor : IlUnknown eometry nknown Enumeration esriGeometryTypeConstants
)) =— Dimension: tagesriGeometryDimension 0 - esriGeometryNull
=— Fields: IFiel i
8 B AL =— Envelope: [Envelope 1 - esriGeometryPoint
4 DeleteFeature - Geome eitagesiieome 2 - esriGeometryMultipoint
4 FindField (in Name: String) : Long *— IsEmpty: Boolean : 3 - esriGeometryPolyline
A feature cursor is obtained I Flush) ®—0 SpatialReference: ISpatialReference 4 - esriGeometryPolygon
from the layer by calling the Inls’:%r;l;'l?raetg[‘eﬁg:\ ?\l;gfi;nt t Geomorma:!ze’: Lonai g i :::g:g?::wgg;ﬁlope
Search method passing in extFeature: TFeature SephomalizsomEcgotiude ; e
et Undateroat e obect)Feat (Longitude: Double) 7 - esriGeometryAny
the SpatialFilter. pdateFeature (in ObjectjiFeature) 4= Project (newReferenceSystem: 9 - esriGeometryMultiPatch
ISpatialReference) 11 - esrG tryRi
G d t b <4 QueryEnvelope (outEnvelope: IEnvelope) 13- Z:::e:gxtzuﬁg
eo a a ase I getE?ptSy - 14 - estiGeometryCircularArc
paplooparal eterence 15 - esriGeometryBezier3Curve

16 - esriGeometryEllipticArc

- 17 - esriGeometryBag
5 IFeature : I0bject \ G e o m et ry 18 - esriGeometryTriangleStrip
— . 19 - esriGeometryTriangleFan
A new spatial filter object is created. - E:t:tztr'elfnveezlgzzFeature pe 20 - esriGeometryRay
The shape and spatial reference is set. "3 Shape: 1Geomet 21 - esriGeometrySphere
#— ShapeCopy: |Geometry

This cursor is looped over and the features returned by
9 the cursor are inspected. Based on their geometry type,
the totals are updated accordingly.

IClone
|PersistStream &
IQueryFilter O
IQueryFilter2 &
IXMLSerialize O

Add this to the MouseDown event of a UlToolControl in ArcMap.

ISpatialFilter &

Dim pMxDoc As IMxDocument
ISpatialFilter : IQueryFilter || e ikl = TIPuamaE

=— FilterOwnsGeometry: Boolean Dim pEnv As IEnvelope

Dim pRubber As IRubberBand
‘ _uGeOEx W Geoew: 2 Set pRubber = New RubberEnvelope

Dim pActiveView As IActiveView
3 Set pActiveView = pMxDoc.FocusMap
4 Set pEnv = pRubber.TrackNew(pActiveView.ScreenDisplay, Nothing)

Dim pSpatialFilter As ISpatialFilter

§ Set pSpatialFilter = New SpatialFilter
Set pSpatialFilter.Geometry = pEnv
pSpatialFilter.SpatialRel = esriSpatialRelIntersects

The spatial filter must be told what
7 column in the database table holds the

Dim 1Points As Long, 1Polygons As Long, 1Polylines As Long

Dim pLayer As IFeaturelLayer

Dim pFeatureCursor As IFeatureCursor

Dim pFeature As IFeature

Dim i As Long

For i = 0 To pMxDoc.FocusMap.lLayerCount - 1
6 If (TypeOf pMxDoc.FocusMap.lLayer(i) Is IGeoFeaturelLayer) Then

Set plLayer = pMxDoc.FocusMap.Layer(i)

Enumeration esriSpatialRelEnum 7 pSpatialFilter.GeometryField = plLayer.FeatureClass.ShapeFieldName
8
9

feature shape. This information is
retrieved from the feature class.

0 - esriSpatialRelUndefined

1 - esriSpatialRellntersects

2 - esriSpatialRelEnvelopelntersects
3 - esriSpatialRellndexIntersects

Set pFeatureCursor = plLayer.Search(pSpatialFilter, True)
Set pFeature = pFeatureCursor.NextFeature

4 - esriSpatialRelTouches Do Until (pFeature Is Nothing)

5 - esriSpatialRelOverlaps Select Case pFeature.Shape.GeometryType
6 - esriSpatialRelCrosses Case esriGeometryPoint

7 - esriSpatialRelWithin c q

8 - esriSpatialRelContains 1Poi nts = 1Points + l

9 - esriSpatialRelRelation Case esriGeometryPolyline

1Polylines = 1Polylines + 1
Case esriGeometryPolygon

Finally, the results of the selection are 1Polygons = 1Polygons + 1
I o displayed in a Visual Basic message box. End Select
Set pFeature = pFeatureCursor.NextFeature
Loop
End If
Next i

10 MsgBox "Features Found:" & vbCrLf & TPoints & " Points " & vbCrLf & _
TPolylines & " Polylines " & vbCrLf & TPolygons & " Polygons "

Appendix C ¢ lllustrated code samples * 277

ADD MAP SURROUND TO PAGE LAYOUT

This example adds legend map surround to
a page layout and fills the legend with the
layers of the map. Map surrounds are
dynamically linked to their associated map;
therefore, any changes to the map are
reflected in the map surround.

IFrameElement:IUnknown

c a rt o "= Background: IBackground
"= Border: |Border

" DraftMode: Boolean

The FindFrame method on the =— Object: Variant
4 IGraphicsContainer is used to iTtunbnaltJLovg
IChangeLayout O— find the map frame associated
IContentsViewEdit O—| MxDocument with the focus map.
IDataGraphs O—| .
IDocument O—|
IDocumentDatasets O—|
IDocumentDefaultSymbols O—| |
o o]
|t|>[§gﬁum";§?5?r;'y‘§ O IMapFrame : IFrameElement IMapSurroundFrame:IFrameElement
o 'D““EE"‘?’S"‘S o =3 Gontainer: IGraphicsContainer -0 MapFrame: IMapFrame
ocumentEventsieD | =8 ExtentType: esriExtentTypeEnum =5 MapSurround: IMapSurround
" ["— LocatorRectangleCount: Long
xDocument O— — e -
IPersist O—| |=— ActivatedView: IActiveView == MapBounds: [Envelope
| |7 Activeview: == MapScale: Double
IReportUnitFormat =— ActiveViewCommand: ICommand -
= Contents\iew (nIndex: Long) & AddLocatorRectangle (in Locator: 6
ontent:
=— ContentsViewCount: Long & CreateSurroundFrame (in CLSID: IUIDY
I == Contextltem: [Unknown Pointer ‘ :'h'ﬂgp"%':?(‘)ﬁ%grm:usllrmund) :
50 CurrentContentsView: IContentsView
: TocatorRectangle (in Index: Long) - The legend map surround
The IMxD t - g:'f;i“%:;l\(fi):-#;z:m <_R|Lma'%m‘a‘"g§ - frame is created and its
et ron I et Sy i s v i name s set
- = DefaultTextFontSize: IFontSize ILocatorRectangle)
the ThisDocument |—= DelayUpdateContents: Boolean T T /
; urround : Unknown
global variable.
= Icon: Long
B 4
=— ScarchTolerance: Double & DelayEvents (in delay: Boolean)
== SearchTolerancePixels: Long & Draw (in Display: IDisplay, in
=— Selecteditem: [Unknown Pointer trackCancel: ITrackCancel, in
=— SelectedLayer: ILayer Bounds: |IEnvelope)
=— StyleGallery: IStyleGallery & FitToBounds (in Display: IDisplay,
=— TableProperties: ITableProperties in Bounds: [Envelope, out
& AddLayer (in Layer: ILayer) The graphic container <_Queryaounds (in Dlsplay IDlspIay‘
& CaninsertObject (pEnabled: Boolean) associated with the in oldBounds: IEnvelop
InsertObject N X newBounds: IENVEIope)
& UpdateContents Pagelayout is obtained. & Refresh
A |
IActiveView : lUnknown
o ExporFame: aghECT \GraphicsContainer : [Unknown | | The legend is added to the
=—a Extent: IEnvelope
=— ExtentStack: |ExtentStack ‘ AddE(Ijemenl (in Element: IElement, in I o graphicg container uf the
= FocusMap: IMap zorder: Lon ¢
=—= FullExtent: IEnvelope AddElernents (i Flemens — Pagelayout. This ensures
=— GraphicsContainer: IGraphicsContainer IElementCollection, in zorder: Long i
= IsMapActivated: Boolean “&-BringForward (in Elements: that the fegend element is
=— ScreenCachelD (in phase: . IEnumElement) saved in the map
‘tagesriViewDrawPhase, .n da(a You must ensure that the active &~ BringToFront (in Elements:
|Unknown Pointer) : Int view associated with th IEnumElement) document.
ew associate € & DeleteAllElements
a3 Selection: ISelection Pagelayout is used. Hence, you | DeleteElement (in Element: IElement
=—= ShowRulers: Boolean Vi Findrame (in frameObject: Varian!)
=—= ShowScrollBars: Boolean cannot use the ActiveView (e
=—= ShowSelection: Boolean property of the IMxDocument <-G?éElem;|mow%r I Elements:
i 4 i o . N . numElement ‘ariant
-—ﬁ%‘{ﬁ;t (in X: Double, in Y: Double) : interface since that may be <-Lo_<|_:a|(eElemerSs (g“ ';°‘|"E(IPo\Er;l in
i - i i ‘olerance: Double) : IEnumElement
<-éfég/race (hWnd: Long) z;ssocmted with the FocusMap. « LogatsElome EsB}]Envf‘o& e
u mu: rm a nvelope: IEnvelope) : [EnumElement
& ContentsChanged ° st perfo ¢ MoveElementFromGroup (in Group:
- Deactivate Querylnterface on PagelLayout IGroupElement, in Element: IEIemenl
4= Draw {in hDC: Long, n traokCancel: its ActiveView i in zorder: Long)
ITrackCancel) for its IActiveView interface. & MoveElementToGroup (in Element:
< Ge[;Cog\ltextmenlu g’r\;l)(D?ltjllallje), inY: PRy IE(Ieiré?n(in Group IGroupElement)
ouble, out clsidMenu: lex
& HitTestMap (in Location: IPoint) : IMap <-PutElememc>rder (in order: Variant)
& IsActive: Boolean 4 Reset
& OnMessage (in msg: Unsigned Long, in 4 SendBackward (in Elements:
wparem; Llalns)lgned Machine Int, in <-Se|§$;"§:{<"ﬁ:(:5 ements:
aram: Long 3
<+ hi |EnumElement)
O‘IJ’(&uetl lgun[t;g tlaorF‘(gE & dpr: Long.n I I <'UpdaleElemem (in Element: |IElement)

VisibleBounds: \Envelope, in

PartialRefresh (in phase: . R
«@;eanlewDrawPhase, in data: Finally, the graphics layer
inknown Pointer, in Envelope: B
|Envelope) of the screen is refreshed.
PrinterChanged (in Printer: IPrinter)

& Refresh

| 278 « ArcGIS Desktop Developer Guide

lArea &
|Envelope & IEnvelope : IGeometry
IGeometry2 o— Depth: Double
IHitTest O— 8., Heignt: Double
IMAware & = LowerLeft: IPoint

IPersist & w—u LowerRight: IPoint
c a rtO IPersistStream o—{is— MMax: Double
IProximityOperator O—{i|=—= MMin: Double
IRelationalOperator O
ITransform2D o
1ZAware &

IElement : IlUnknown

(=== Geometry: IGeomet:
=—a [ocked: Boolean
=— SelectionTracker: ISelectionTracker

ispia) 8 <-CemerA« (p: 1Point)
< DeﬂneFrolrgPo\r;(s (Count: Long, in
nts:

Activate (in Di
activate
& Draw (in Display: IDisplay, in
p trackCancel: ITrackCancel) & Expand (dx: Double, dy: Double,
HitTest (in X: Double, mv Double, in Th m associas asRallo Boolean)
Tolerance: Double) : e geometry dssociated & ExpandM (dm: Double, asRatio:Boolean)

<-QuBeryB§unldEs (in Dls;:lay IDlsplay, in with the focus map's

ounds: lope) P i

& QueryOutline (m Display: IDisplay, in MapFrame is obtained. & Offset (X: Double, Y: Double)
Outline: IPolygon) ¢ OffsetM (M: Double)

The |IElement interface is accessed by a Querylnterface A new envelope geometry
P B . ¢ QueryCoords (out XMin: Double, out B

from IMapSurroundFrame. This interface is required to M Double, out Xax: Double, out for the legend is created and

set the geometry of the frame. The geometry controls the positioned relative to the

location of the legend on the paper. focus map's map frame.

ouble)
€ Union (inErvelope: IEnvelope)

Geometry

Add this to the Click event of a UlButtonControl in ArcMap, and execute the
"= Value: Val command when in Page View.

*Cﬁ"ﬁ‘ga'e B 1 Dim pMxDoc As IMxDocument
<—Gener)ate Set pMxDoc = ThisDocument

2 Dim pActiveView As IActiveView
Set pActiveView = pMxDoc.PagelLayout

5

Dim pGraphicsContainer As IGraphicsContainer

Dim pMapFrame As IMapFrame

Set pGraphicsContainer = pMxDoc.Pagelayout

Set pMapFrame = pGraphicsContainer.FindFrame(pMxDoc.FocusMap)

The CreateSurroundFrame method requires 3
the GUID of the surround element type. A UID
object is created and its value is set to the ID of

the legend class. .
Dim pMapSurroundFrame As IMapSurroundFrame

Dim pUID As New UID
Dim pElement As IElement

5 puID.value = "esriCarto.Legend"

6 Set pMapSurroundFrame = pMapFrame.CreateSurroundFrame(pUID, Nothing)
pMapSurroundFrame.MapSurround.Name = "Legend"

7 Set pElement = pMapSurroundFrame

Dim pMainMapElement As IElement
Dim pMainEnv As IEnvelope
8 Set pMainMapElement = pMapFrame
Set pMainEnv = pMainMapElement.Geometry.Envelope

Dim pEnv As IEnvelope
9 Set pEnv = New Envelope
pEnv.PutCoords pMainEnv.XMax + 1.5, pMainEnv.YMin + 1.5, _
pMainEnv.XMax - 1.5, pMainEnv.YMax - 1.5
pElement.Geometry = pEnv
pElement.Activate pActiveView.ScreenDisplay
10 pGraphicsContainer.AddETement pElement, O
11 PActiveView.PartialRefresh esriViewGraphics, Nothing, Nothing

Appendix C ¢ lllustrated code samples * 279

ADD TEXT CALLOUT TO ACTIVE VIEW

q IClone 0— Element
This sample adds one of the more IBoundsProperties o—
licated types of graphic elements to a iEtementPropertes o | Element! linknow
complicate ementProperties o— = -
P YPI 8 d P di h IElementProperties2 o— o= f:ggz‘_ B'olgzgr:net
map eI Page ayout, ep?n mg Onjtie IDared IPersist S; ®#— SelectionTracker:ISelectionTracke!
current view. The callout is added to the IPropertySupport o—| | = Activate (in Display: [Display)

H ITransform2D O— | 4 Deactivate
center of the view. 4 Draw (in Display: IDisplay, in
trackCancel: TrackCancel)
4 HitTest (in X: Double, in Y: Double,

The IElement interface is used to set the geometry in Tolerance: Double) : Boolean
3 of the elem.enn The IElement interface is obtained + Qiﬁ']eéyal?fr’]“'d”sﬁémgﬁgsy‘ IDisplay,

by performing a Querylnterface on the 4 QueryOutline (in Display: IDisplay,

ITextElement interface. in Outline: IPolygon)

Carto A

|IGraphicElement ©

Geometry

Graphfc. IClone 0—
IGeometry C—f
Element ISupportErrorIanw Geometfy

A TextElement object is created and its Text
2 property is set. This is the object that will be
added to the graphics container.

|IElementEditCallout ©
|IElementEditVertices ©
IGroupSymbolElement o
ITextElement o
ITransformEvents

IConstructPoint ©
IConstructPoint2 O

ITextElement : IlUnknown IPoint : IGeometry

=—a ScaleText: Boolean G v
#—a Symbol: [TextSymbol eom

== |D: Long

etry4 o
=—= M: Double

=—= Text: Strini IHitTest O "
I g IMAware o : ¢: ggﬂg::
IPersist O :

|PersistStream o—| ™ Z: Double

The IMxDocument interface is IPoint ©
IPointIDAware o

4 Compare (pOtherPoint: IPoint)
: Long

obtained from the ThisDocument e
lobal variabl IProximityOperator © - ConstrainAngle
global variable. s RelationalOperator O (constraintAngle: Double,
ITopglogicalOperator & Anchor: IPoint,
IChangeLayout O— . allowOpposite: Boolean)
iConteisViewEdt o— MxDocument The geometry of the text element is <4 ConstrainDistance
‘DfSESJ:Z":. o a point. A new Point object is 1ZAware x:onhs(railrgﬂadius: Double,
IDocumentDatasets 0| created and the coordinates are set, B tnc o, |_n 7
IDocumentDefaultSymbols O—| utCoords (X: Double, Y:
IDocumentDirty O—| then the Geometry property of the Double!
IDocumentDirty2 O p i ; QueryCoords (out X
DosmonEvert o TextElemjent is assigned this newly out - Double)
D Disp ®—| created point.
1D o—| _
IMxDocument O—— - 1 e —
IPersist O—| |#— Acti - liveVi
IPropertySupport & =0 ActiveView: IActiveView

IReportUnitFormat tiveViewComman

" ContentsView (in Index: L
|ContentsView

=— ContentsViewCount: Long

"= Contextltem: IUnknown Points

== CurrentContentsView: |Content

ExtentStack: |ExtentStack
=0 FocusMap: IMap
=& FyllExtent: |Envelope

— iicsContainer: icsContainer
"= CurrentLocation: IPoint =1 |sMapActivated: Boolean
* DefaultColor (in Type: »— ScreenCachelD (in phase: Envelope:iGeomety)
tagesriMxDefaultColorTypes) : tagesriViewDrawPhase, in data: .
== DefaultTextFont: Font iChknown Pointer) : Integer : DepihdDolble)
= DefaultTextFontSize: IFontSize =— ScreenDisplay: IScreenDisplay FhERRECrED
—* DelayUpdateContents: Boolean =0 Selection: ISelection = LowerLgﬂ. IPoint
*— FocusMap: IMap "= ShowRulers: Boolean = Lomerﬁght:bllPom(
= Maps: IMaps == ShowScrollBars: Boolean i
®— OperationStack: |OperationStack "= ShowSelection: Boolean a—a UppeI:Leﬂ‘ IPoint
s ;:?ae‘;aeypo::;‘ snggzll.:ay:m P'ﬁ;é]’gxt (in X: Double, in Y: Double) : = UpperRight: [Point
Ry : 1ing =—= Widih: Double
e H D & Activate (Wnd: Long) \ o Dot
G EE R B 2 & Clear =—= XMin: Double
Selectedltem: |Unknown Pointer - ContentsChanged == \Max: Double
" SelectedLayer: ILayer & Deactivate o
N YMin: Doubl
:SlerGallely. IStyleGallery & Draw (in hDC: Long, in trackCancel: o Doublo 4
TableProperties: ITableProperties ITrackCancel) === Z\Min: Double
. 4 GetContextMenu (in X: Double, in Y: =
t éﬁl—:sy:r:gg !e'?«y e"e'nféiﬂ Boolean) Double, out clsidMenu: IUID) - Centert (p: IPoint) Th h o
e (P :) - HitTestMap (in Location: IPoint) : IMap & DefineFromPoints (Count: Long, in e center of the active view is
< UpdateContents & IsActive: Boolean Points: IPoint) calculated. This will be used to
& OnMessage (in msg: Unsigned Long, in & Expand (dx: Double, dy: Double,
g i Igr ng, A I h il
wParam: Unsigned Machine Int, in asRatio: Boolean] X place the text element.
IParam: Long) & ExpandM (dm: Double, asRatio:Boolean)
<'Output in hDC: Long, in dpi: Long, in - ExpandZ (qz: Double, asRatio: Boolean)
. . PixelBounds: tagFlgECT, in &~ Intersect (inEnvelope: IEnvelope)
The graphics layer is redrawn to VisibleBounds: [Envelope, in tOﬂset (X: Double, Y: Double)
. . OffsetM (M: Double)
I o display the newly added text element. PartialRefresh (in phase: - OffsetZ (Z: Double)
i i tagesriViewDrawPhase, in data: PutCoords (XMin: Double, YMin: Double,
gnce ’GRgr;rlﬂ, :mlcehths use Of the IUnknown Pointer, in Envelope: I XMax: chuble, ‘YMax: Double)
artialRefresh method. |Envelope) QueryCoords (out XMin: Double, out
PrinterChanged (in Printer: IPrinter) YMin: Double, out XMax: Double, out
4 Refresh YMaxJDoLbio)
& Union (inEnvelope: IEnvelope)

280 * ArcGIS Desktop Developer Guide

TextSymbol

| IFormattedTextSymbol:ITextSymbol

IFormattedTextSymbol O—
IMapLevel O—
IMask =0 Background: ITextBackgroun

1QueryGeom == Case: tagesriTextCase
=—a CharacterSpacing: Double

The text symbol is set into the

8 . IPropert port O—| 0
TextElement. This ensures the text 1Simi iSymbol o—| | CharacterWidth: Double
element draws itself using the callout. mbolRotation o— [*™ D'lrectmn: laggsrlTextDlrect|on
TextParserSupport ©— |* FillSymbol: IFillSymbol
IText % [*= FlipAngle: Double

=—a Kerning: Boolean

=—a | eading: Double

== Position: tagesriTextPosition
== ShadowColor: IColor

== ShadowXOffset: Double

=—a ShadowYOffset: Double

=—a TypeSetting: Boolean

IClone o oL
[TextBackground o—| Text- =—= WordSpacing: Double

IPersist o-{ Background

IPersistStream o—

ICallout O— Callout
IQueryGeometry O—

/ ICallout : lUnknown
7 * =—a AnchorPoint: IPoint
== [eaderTolerance: Double
A Point is used to set the
AnchorPoint of the Callout. A

To display the text element as a callout, an appropriate
6 text symbol must be used with the background set to be
|BalloonCallout © the Callout. The TextSymbol and BalloonCallout
ITextMargins © Balloon- objects are created and associated with each other.
ITextBackground2 © Callout

Add this code to the Click event of a UlIButtonControl in ArcMap.

IGraphicsContainer : IlUnknown

I Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

& AddElement (in Element: IElement, in
zorder: Lon

IEIemenlengcnoir,nin zorder: Long))
<-Brligg5<r>r:g:rrge(m)aemems: 2 Dim pTextElement As ITextElement
& BringToFront (in Elements: Set pTextElement = New TextElement
o IEnumElement)
DeleteAllElements -
& DeleteElement (in Element: IElement) 3 Dim pElement As IElement
& FindFrame (in frameObiject: Variant) : Set pElement = pTextElement
IFrameElement " _ " " . "
& GetElementOrder (in Elements: pTextElement.Text = "Text in a callout" & vbCrLf & "In middle of screen

IEnumElement) : Variant
- LocateElements (in Point: IPoint, in

4_L;‘;'ggg;ﬁg;’;'gm;eﬂim(Eemeﬂ‘ 4 Dim dMidX As Double, dMidY As Double, pPoint As IPoint
Envelope: IEnvelope) : [EnumEloment dMidX = (pMxDoc.ActiveView.Extent.XMax + pMxDoc.ActiveView.Extent.XMin) / 2
< ?é?ou%@@%ewnggﬁ\gﬁ: Element, dMidY = (pMxDoc.ActiveView.Extent.YMax + pMxDoc.ActiveView.Extent.YMin) / 2
in zorder: Long Hrvn :
& MoveElementToGroup (in Element: 5 Set.me nt = New P01. (i .
<_N§|I§iré?é|rlﬁérr|“(5mup:l roupElement) pPoint.PutCoords dMidX, dMidY
& PutElementOrder (in order: Variant) pElement.Geometry = pPoint
4 Reset
4 SendBackward (in Elements: .
<_SIE$rréEI‘gE1enl‘)El . Dim pTextSymbol As IFormattedTextSymbol
el'énu%égmggn ements: Set pTextSymbol = New TextSymbol
& UpdateElement (in Element: IElement) 6 Dim pCallout As ICallout

Set pCallout = New BalloonCallout
Set pTextSymbol.Background = pCallout

9 7 pPoint.PutCoords dMidX - pMxDoc.ActiveView.Extent.Width / 4, _

dMidY + pMxDoc.ActiveView.Extent.Width / 20

The graphics container associated with the pCallout.AnchorPoint = pPoint

active view of the document is obtained by

performing a Querylnterface on the 8 pTextElement.Symbol = pTextSymbol

|ActiveView interface. The TextElement is 9 Dim pGraphicsContainer As IGraphicsContainer

then added to the container. This ensures that Set pGraphicsContainer = pMxDoc.ActiveView

the element is saved within the map document. pGraphicsContainer.AddETement pElement, 0

pElement.Activate pMxDoc.ActiveView.ScreenDisplay
10 PMxDoc.ActiveView.PartialRefresh esriViewGraphics, Nothing, Nothing

Appendix C ¢ lllustrated code samples * 281

GEOMETRY PROJECTION

This sample takes the current cursor
coordinates and converts them from
pixels to map units. It then projects these
map coordinates to a projected and
geographic spatial reference system,
displaying the results in the Status Bar.

MxDocument

Framework

J IApplication : IDispatch

=—= Caption: String

= CurrentTool: ICommanditem
=— Document: |Document

=— hWnd: Long

=— Templates: ITemplates
=— VBE: Object
== Visible: Boolean

& FindExtensionByCLSID (in
extensionCLSID:UID) : IExtension|

& FindExtensionByName (in
extensionName: String):IExtension|

- IsDialogVisible (in dialogID: Long) :

9

The string is
displayed in the
status bar of the

ArcMap application.

IStatusBar : [Unknown

=—= Message (in pane: Long) : String

= Panes: Long

=— ProgressAnimation :
|AnimationProgressor

=— ProgressBar: |StepProgressor

== Visible: Boolean

¢ HideProgressAnimation

¢ HideProgressBar

<+ Pla?/ngressAmmahon (in
playAnim: Boolean)

& ShowProgressAnimation (in
Message: String, in
animationPath: String)

& ShowProgressBar (in Message:
String, in min: Long, in max:
Long in Step: Long, in
onePanel: Boolean)

IChangeLayout O—|
Ic vk oA o IDocument : IDispatch
Io: o= Table
‘Docume'n[:g:‘t‘a’"sg't‘s‘ I |=— CommandBars: ICommandgars
IDocumentDefaultSymbols O
IDocumentDirty O—| ;
IDocumentDirty2 O] ::'l.-'“e _St"f‘g -
IDocumentEvents ®— D =
" o | |=— VBProject: Object
D o—
IMxDocument O——| IMxDocument : lUnknown
tPersist O [
IReportUnitFormat o—| |0 ActiveView: IActiveView
=— ActiveViewCommand: ICommand
=— ContentsView (in Index: Long) :
IContentsView
=— ContentsViewCount: Long

The IMxDocument
interface is obtained from
the ThisDocument

global variable.
ocUs

=—= Contextltem: IUnknown Pointer

= CurrentContentsView: IContentsView

=—= CurrentLocation: Point

=—= DefaultColor (in Type:
tagesriMxDefaultColorTypes) : IColor

=—= DefaultTextFont: Font

=—= DefaultTextFontSize: IFontSize

|—a DelayUpd:

jateContents: Boolean
RLYET

&— Maps: IMaps
=— OperationStack: [OperationStack
= PageLayout: IPageLayout

=—= RelativePaths: Boolean

=— SearchTolerance: Double

=—= SearchTolerancePixels: Long
=— Selecteditem: IUnknown Pointer
=— SelectedLayer: ILayer

=— StyleGallery: IStyleGallery

=— TableProperties: ITableProperties

& AddLayer (in Layer: ILayer)

& CaninsertObject (pEnabled: Boolean)
InsertObject

& UpdateContents

4

Bool

String, custFilter :
ICustomizationFilter)

& NewDocument (selectTemplate:
Boolean, templatePath: String)

& OpenDocument (Path: String)

& PrintDocument

4 PrintPreview

& RefreshWindow

& SaveAsDocument (saveAsPath:
String, saveAsCopy: Boolean)

& ShowDialog (in dialoglD: Long,
bShow: Variant) : Variant
4 Shutdown

String)

ean
& LockCustomization (in Password :

& StepProgressBar

IDisplay Transformation:ITransformation

& SaveDocument (saveAsPath: String)

& UnlockCustomization (in Password:

== Bounds: |Envelope

*— ConstrainedBounds: |Envelope
== DeviceFrame: tagRECT

*— FittedBounds: [Envelope

== ReferenceScale: Double

== Resolution: Double

— Rotation: Double

== ScaleRatio: Double

=2 SpatialReference: ISpatialReference
== SuppressEvents: Boolean

== Units: esriUnits

== VisibleBounds: [Envelope

== ZoomResolution: Boolean

IDisplay :

=— ClipEnvelope: IEgve\cpe
1Set

Display Transformation:

== Filter: IDisplayFilter

=— hDC: Long

= hPalette: Long

=4 [juminationProps: lllluminationProps
=—= SuppressEvents: Boolean

& DrawMultipoint (in Multipoint: IGeometry)
& DrawPoint (in Point: IGeometry)

& DrawPolygon (in Polygon: IGeometry)
< y

(in Polyline: IGeometry)

interface.

IActiveView : lUnknown

=— ExportFrame: tagRECT

a—a Extent: IEnvelope

=— ExtentStack: [ExtentStack

a0 FocusMap: IMap

w—a FullExtent: IEnvelope

s— GraphicsContainer: IGraphicsContainer

=—a IsMapActivated: Boolean

=— ScreenCachelD (in phase:
tagesriViewDrawPhase, in

inknown Pointer) : Int

data:
r

=0 Selec! Selection

=—a ShowRulers: Boolean

=—a ShowScrollBars: Boolean

=—a ShowSelection: Boolean

" TipText (in X: Double, in Y: Double) :
String

<& Activate ("Wnd: Long)
Clear

lear

4 ContentsChanged

& Deactivate

<« Draw (in hDC: Long, in trackCancel:
ITrackCancel)

4 GetContextMenu (in X: Double, in Y:
Double, out clsidMenu: IUID)

& HitTestMap (in Location: IPoint) : IMap

& IsActive: Boolean

4 OnMessage (in msg: Unsigned Long, in
wParam: Unsigned Machine Int, in
IParam: Lon:

Output (in hDC: Long, in dpi: Long, in

PixelBounds: tagRECT, in

VisibleBounds: [Envelope, in

trackCancel: | TrackCancel
PartialRefresh (in phase:

tagesriViewDrawPhase, in data:

The active view of the focus map is obtained
by performing a Querylnterface on the
FocusMap property of the IMxDocument

|Unknown Pointer, in Envelope: & startRecording
- |Envelope) o StopRecording
PrinterChanged (in Printer: IPrinter) TrackPan
Refresh & TrackRotate

282 * ArcGIS Desktop Developer Guide

D gle (in rectangle:
& DrawText (in Shape: IGeometry, in
Text: String)
& FinishDrawing
Progress (in VertexCount: Long)
& SetSymbol (in sym: ISymbol)
StartDrawing (in hDC: Long, in cachelD:
Integer)

: IDisplay

== ActiveCache: Integer
=— CacheCount: Integer

=— CacheMemDC (in Index: Integer) : Long
=0 CancelTracker: ITrackCancel

=—= hWnd: Long

=-a IsFirstCacheTransparent: Boolean

w4 IsFramed: Boolean

== ScaleContents: Boolean

== SuppressResize: Boolean

== UseScrollbars: Boolean

=— WindowDC: Long

& AddCache: Integer

-« DoScroll (in xDelta: Long, in yDelta:
Long, in updateScreen: Boolean)

& DrawCache (in hDC: Long, in Index:
Integer, in deviceRect: tagRECT, in
cacheRect: tagRECT)

& Invalidate (in rect: IEnvelope, in erase:
Boolean, in cachelndex: Integer)

& IsCacheDirty (in cachelndex: Integer) :

lean
& PanMoveTo (in mouseLocation: IPoint)
4 PanStart (in mouseLocation: IPoint)
& PanStop: IEnvelope
4 RemoveAllCaches
4 RemoveCache (in cachelD: Integer)
4 RotateMoveTo (in pPoint: IPoint)
4 RotateStart (in mousePt: IPoint, in
centerPt: IPoint)
& RotateStop: Double
RotateTimer
& SetScrollbarHandles (in
hWndHorzScrollbar: Long, in
hWndVertScrollbar: Long

& UpdateWindow

& FromMapPoint ‘$in mapPoint: IPoint, out
X: Long, out Y: Long)

& FromPoints (in pointDistance: Double) :
Doubl

“& ToMapPoint (in X: Long, in Y: Long))
IDain:

ToPoints (in mapDistance: Double) :

TRMREnCoords (in mapPoints:
_WKSPoint, in devPoints: tagPOINT,
in numPoints: Long, in options: Long)

TransformRect (in mapRect: |Envelope,
in devRect: tagRECT, in options:
Long)

5

The cursor location
in pixels (x,y) is
converted to map
units using a method
on the IDisplay-
Transformation
interface, then stored
in a Point object.
This point object will
have the same
spatial reference as
the map.

The cursor point is projected from the Cassini
coordinate system into the WGS 84 reference system
and the coordinates are appended to a string.

8 IGeometry : lUnknown

=— Envelope: IEnvel

=— Dimension: tagesriGeometryDimension

=— GeometryType: tagesriGeometryType
=— |sEmpty: Boolean
=—0 SpatialReference: ISpatialReference

ope

4 GeoNormalize

ISpatialReferen

4 SetEmpty

4 GeoNormalizeFromLongitude
Longitude: Double

Project (newReferenceSystem: (
ce
ueryEnvelope (outEnvelope: IEnvelop

<4 SnapToSpatialReference

Geo

etry

IPoint : IGeometry

== |D: Long
"= M: Double

4 Z: Double

& Gompare (pOtherPoint:
<_c%ys‘??ain%
o

Double, Anchor: |

& PutCoords (X: Double, Y: Double)
6 & QueryCoords (out X: Double, out Y:
Double)

le (constraintAngle:
uble, Anchor: IPoint,
allowOpposite: Boolean)

< ConstrainDistance {gonsteaintRadius:
oint

IPojnt) : Long

The cursor point is projected from the map coordinates
into the Cassini coordinate system and the projected

coordinates are written to a string.

IProjectedCoordinateSystem :
ISpatialReference

=—= Azimuth: Double

=== CentralMeridian (in inDegrees:
Boolean) : Double

= CentralParallel: Double

=— CoordinateUnit: ILinearUnit

=—a FalseEasting: Double

=—a FalseNorthing: Double

®— GeographicCoordinateSystem:
IGeographicCoordinateSystem

®— Horizon (in horizonIndex: Long) :

esriSRHorizon
=— HorizonCount: Long
= | atitudeOf1st: Double
== LatitudeOf2nd: Double
=—a | atitudeOfOrigin: Double
=—a | ongitudeOf1st: Double
=8 | ongitudeOf2nd: Double
=—a | ongitudeOfOrigin: Double
=— Projection: IProjection
=—a ScaleFactor: Double

3

IClassFactory &
ISpatialReferenceFactory &
ISpatialReferenceFactory2 &

2

A new SpatialReferenceEnvironment
object is created. This object will be
used to create coordinate system
objects for the required reference
systems.

<+ ClrgateDatum (datumType: Long) :

atum
4 CreateESRISpatialReference
(spatRefInfo: String, out
SpatialReference: ISpatialReference,
out cBytesRead: Long)
Ci patialReferenceFromPRJ
(prj: String) : ISpatialReference
C ialReferenceFromPRJFile
priFile: String) : ISpatialReference
"4~ CreateGeographicCoordinateSystem
(gesType: Long)
eog 00

4 CreateGeoTransformation
(gTransformationType: Long) :
ITransformation

<4 CreateParameter (parameterType:

Using the object
created in the previous
step, a projected
coordinate system
based on the world

Long) : IParameter
4 CreatePredefinedAngularUnits: ISet
4 CreatePredefinedDatums: ISet
4 CreatePredefinedLinearUnits
4 CreatePredefinedPrimeMeridial

=—a StandardParallel1: Double
=—= StandardParallel2: Double
=— Usage: String

4= Forward (in Count: Long, Points:

_WKSPoint) N .
4= GetParameters (out parameters: Cassini projection is - CreatePredefinedSpheroids: ISet
|Parameter) created. 4 CreatePrimeMeridian (primeMeridianType:
4= Inverse (in Count: Long, Points: L
_WKSPoint)

Long) : IProjection

4 CreateSpheroid (spheroidType: Long) :
ISpheroid

4 CreateUnit (unitType: Long) : 1Unit

4 ExportESRISpatialReference ToPRJFile
(priFile: String, SpatialReference:
|SpatialReference)

IGeographicCoordinateSystem :
ISpatialReference

=— CoordinateUnit: IAngularUnit
=— Datum: IDatum

=— PrimeMeridian: IPrimeMeridian
=— Usage: String

Using the object created in step 2, a geographic
coordinate system based on the WGS 84 reference
system is created.

Geometry

Add this code to the MouseMove event of a UlToolControl in ArcMap.

1 Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument
Dim pSpatialRefFactory As ISpatialReferenceFactory
2 et pSpatialRefFactory = New SpatialReferenceEnvironment
Dim pProjectedCoodinateSystem As IProjectedCoordinateSystem
3 Set pProjectedCoodinateSystem =

pSpatialRefFactory.CreateProjectedCoordinateSystem(esriSRProjCS_World_Cassini)

4 Dim pActiveView As TActiveView
Set pActiveView = pMxDoc.FocusMap

§ Dim pPoint As IPoint
Set pPoint = pActiveView.ScreenDisplay.DisplayTransformation.ToMapPoint(x, y)

6 pPoint.Project pProjectedCoodinateSystem
Dim sMessage As String
sMessage = "Cassini " & CStr(Round(pPoint.x, 2)) & ", " & _
CStr(Round(pPoint.y, 2))

7 Dim pGeographicCoordinateSystem As IGeographicCoordinateSystem
Set pGeographicCoordinateSystem = _
pSpatialRefFactory.CreateGeographicCoordinateSystem(esriSRGeoCS_WGS1984)

8 pPoint.Project pGeographicCoordinateSystem
sMessage = sMessage & " and WGS84 " & CStr(Round(pPoint.x, 2)) & ", " &
CStr(Round(pPoint.y, 2))

9 ThisDocument.Parent.StatusBar.Message(0) = sMessage

Appendix C e lllustrated code samples * 283

DISPLAY RASTER CELL VALUE IN STATUS BAR

This sample displays the pixel value
of the first raster layer in the map.
This sample will display multiplane
data in the form "(value I, value 2,
value 3)" for three planes.

Vad

1Application : IDispatch

=—a Caption: String

/
f

IDisplay’

IStatusBar : [Unknown

=—a Panes: Long
=— ProgressAnimation :
IAnimationProgressor

=—a Message (in pane: Long) : String

== Bounds: IEnvelope

®— ConstrainedBounds: |Envelope
" DeviceFrame: tagRECT

= FittedBounds: |Envelope

=== ReferenceScale: Double

=—0 CurrentTool: IC¢ P - |StepProgr
=— Document: IDocument =—= Visible: Boolean
— :
et long & HideProgressAnimation
4 HideProgressBar
=— Templates: ITemplates <+ P\a?'ProgressAnlmatlon (in
IChangeLayout O— — ~ Obi layAnim: Boolean)
IContentsViewEdit C—| MxDocument / = xiasﬁileo'lgiztlean & ShowProgressAnimation (in
1D o— - Message: PSl‘rrl‘ngS t|n)
IDocument O : animationPath: String
IDocumentDatasets O—| ocument IDISP&E“ I *Fi Di(in <+ ShovaogvessEar (in Message
o ou b Tab) extens.onCLSWD \um) SHing, in min: Long, in max.
oumentl & FindExtensionByName (in Long, in Step: Long, in
H:I’Docume‘n[\)Dr\';qz/ . :CommandBars |Command§ extensionName: String):|Extension| T E°°|ea%
ocumentDi
DocumontEvent o < IstIogVnsane (in dialogID: Long) : & StepProgressBar
IDocumentEventsDisp ®—{ [=— Title: String <-LockCustom|za(|on (|n Password :
IDocumentinfo ©—{ |=—Type: esriDocumentType String, custFilter
=— VBProject: Object ICustomnzanonFnlter) The raster values
4 NewDocument (selectTemplate:
Boolean, templatePath: String) are displayed in
& OpenDocument (Path: String) h b
IMxDocument O——{ IMxDocument : IlUnknown & PrintDocument the status bar.
IPersist O— " — & PrintPreview
o—{ |" Activate - 1ACtive & RefreshWindow
I |ReportUnitFormat 0—| |2 ActiveView: IActiveView & SaveAsDocument (savepsPain
=— ActiveViewCommand: ICommand String, saveAsCopy: Boolean)

The IMxDocument
interface is obtained from
the ThisDocument global
variable.

2

The active view for the
focus map is obtained.

=— ContentsView (in Index: Long) :
IContentsView

=— ContentsViewCount: Long

== Contextltem: IUnknown Pointer

=3 CurrentContentsView: |ContentsView

== CurrentLocation: IPoinI

=—= DefaultColor (in Ty
1agesnMxDefaultColorTypes)

== DefaultTextFont: Font

== DefaultTextFontSize: IFontSize

—= DelayUpdateContents;

E— FocusMap: TMa,

—Viaps:

'—Opera(lonS(ack IOperationStack

=3 pagel ayout: IPagelLayout

== RelativePaths: Boolean

®=— SearchTolerance: Double

== SearchTolerancePixels: Long

=— Selectedltem: IUnknown Pointer

=— SelectedLayer: ILayer

=— StyleGallery: IStyleGallery

=— TableProperties: ITableProperties

IColor

b \

4~ SaveDocument (saveAsPalh String)

<+ Shclean\? (in dialog|D: Long,
iant) : Variant

& Shutdown

& UnlockCustomization (in Password:
String)

" == Resolution: Double
=== Rotation: Double

=% ScaleRatio: Double

=0 SpatialReference: ISpatialReference
== SuppressEvents: Boolean

== Units: esriUnits

=== VisibleBounds: |Envelope

""" ZoomResolution: Boolean

<'FrcmMapPolm (in mapPomI- IPoint, out
X: Long, out Y: Lon
<'FromPalms (in pom(D\sIance Double)

IDisplay : IlUnknown

=— ClipEnvelope: [Envelope
=— ClipEnvelopes: ISet
Geometry: |Geomet
ay Transformation

a— Filter: IDisplayFilter

=—a hPalette: Lon
a—a llluminationProps: lliluminationProps
s Boolean

& AddLayer (in Layer: ILayer)
& CanlnsertObject (pEnabled: Boolean)
& InsertObject

& UpdateContents

& DrawMultipoint (in Multipoint: IGeometry)
& DrawPoint (in Point: IGeometry)

& DrawPolygon (in Polygon: IGeometry)
& DrawPolyline (in Polyline: IGeometry)
<D

IActiveView : lUnknown

=— ExportFrame: tagRECT
s Extent: IEnvel

m— ExtentStack: IExtentStack
= FocusMap: IM:

== FullExtent: IEnvelope

=—s IsMapActivated: Boolean
=— ScreenCachelD (in phase:
tagesriViewDrawl

el election
=—a ShowRulers: Boolean
m—a ShowScrollBars: Boolean
=—a ShowSelection: Boolean

'=— GraphicsContainer: IGraphicsContainer

ase, in data:

=— TipText (in X: Double, in Y: Double) :
String

& Activate (Wnd: Long)
& Clear

- ContentsChanged
& Deactivate

ITrackCancel)

Double, out clsidMenu:

& IsActive: Boolean

IParam:

PixelBounds: tagRECT, i
& partialRefresh (in phase:

IEnvelope)

& Draw (in hDC: Long, in trackCancel:
& GetContextMenu (in X: Double, in Y:

& HitTestMap (in Location: IPolnt) : IMap

& OnMessage (in msg: Unsigned Long, in
wParam: Unsigned Machine Int, in

& Output (in hDC: Long, in dpi: Long, in

in

VisibleBounds: |Envelope, in
trackCancel: ITrackCancel)

tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:

& printerChanged (in Printer: IPrinter)
Refresh

284 « ArcGIS Desktop Developer Guide

gle (in rectangle: |Enveiope)
& DrawText (in Shape: IGeometry, in
Text: String)
& FinishDrawing
& Progress (in VertexCount: Long)
- SetSymbol (in sym: ISymbol)
& StartDrawing (in hDC: Long, in cachelD:
integer

IScreenDisplay : IDisplay

=—= ActiveCache: Integer

w— CacheCount: Integer

=— CacheMemDC (in Index: Integer) : Long
=—a CancelTracker: [TrackCancel

=—= hWnd: Long

=—a |sFirstCacheTransparent: Boolean
=—a |sFramed: Boolean

=—a ScaleContents: Boolean

== SuppressResize: Boolean

=—a UseScrollbars: Boolean

=— WindowDC: Long

4 AddCache: Integer

& DoScroll (in xDelta: Long, in yDelta:
Long, in updateScreen: Boolean)

& DrawCache (in hDC: Long, in Index:
Integer, in deviceRect: tagRECT, in
cacheRect: tagRECT)

& Invalidate (in rect: IEnvelope, in erase:
Boolean, in cachelndex: Integer)

<+ IsCacheDlrty (in cachelndex: Integer) :

< P (in mouseLocation: IPoint)

& PanStart (in mouseLocation: IPoint)

& PanStop: IEnvelope

& RemoveAliCaches

& RemoveCache (in cachelD: Integer)

& RotateMoveTo (in pPoint: IPoint)

& RotateStart (in mousePt: IPoint, in
centerPt: IPoint)

4~ RotateStop: Double

& RotateTimer

& SetScrollbarHandles (in

IndHorzScrollbar: Long, in

hWndVertScrollbar: Long)

4 StartRecording

& StopRecording

& TrackPan

& TrackRotate

& UpdateWindow

ToPoints (in mapDistanc

- Trans| of?mCoovds (in mapPoints:
_WKSPoint, in devPoints: tagPOINT,
in numPoints: Long, in options: Long)
<.TranslormRec| (in mapRect: |Envelope,
in devRect: tagRECT, in options:
Long)

IMap :

8- ActiveGraphicsLayer: ILayer

= AnnotationEngine: AnnotateMap

—s AreaOfinterest: IEnvelope

»—Barriers (pExtent: [Envelope) :
IBarrierCollection

=—BasicGraphicsLayer: IGraphicsLayer

= ClipBorder: IBorder

-2 ClipGeometry: IGeometry

= Description: Strin

= DistanceUnits: esriUnits

- Expanded: Boolean

o FeatureSelection: [Selection

== IsFramed: Boolean

B ecursive: Boolean)

 IEnumLayer

=—a MapScale: Double

= MapSurround (in Index: Long)
apSurr

-—MapSurmundCoum Long

== MapUnits: esriUnits

=—a Name: String

= ReferenceScale: Double

s— SelectionCount: Long

= SpatialReference: SpatialReference

= SpatialReferencelocked: Boolean

»—a UseSymbolLevels: Boolean

- AddLayer (in Layer: ILayer)

& AddLayers (in Layers: IEnumLayer, in
autoArrange: Boolean)

& AddMapSurround (in MapSurround:
IMapSurround)

& ClearLayers

& ClearMapSurrounds

& ClearSelection

4 ComputeDistance (in p1: IPoint, in p2:

<-Createrxzap5urround (in CLSID: 1UID, in
optionalStyle: IMapSurround) :
IMapSurround

- DelayDrawing (in delay: Boolean)

- DelayEvents (in delay: Boolean)

- DeleteLayer (in Layer: ILayer)

& DeleteMapSurround (in MapSurround:
IMapSurround)

4 GetPageSize (out widthinches: Double,
out heightinches: Double)

& Movelayer (in Layer: ILayer, in tolndex:

<-gelcalch{=ugEX(em Sh 1G¢ t

elec ape (in Shay eometry,

« ylsaf’ec((lonEnvﬁ%nmem in v
1us(0ne Boolean)

& SclectFeature (m Layer:ILayer, in
Feature: IFeature)

& SetPageSize (in widthinches: Double, in
heightinches: Double)

The layers of the map are looped through.
The first raster layer is processed and then the
function is exited.

IPoint : IGeometry

== |D: Long

"% X: Double

"= Y: Double

"—* Z: Double

& Compare (pOtherPoint: IPoint) : Long

¢ ConstrainAngle (constraintAngle:
Double, Anchor: [Point,
allowOpposite: Boolean)

& ConstrainDistance g:o istraintRadius:
oint

Double, Anchor: IPoil
& PutCoords (X: Double, V Double)

QueryCoords (out X: Double, out Y:
Double)

The cursor coordinates, in pixels,

3 must be converted to map units.
The ToMapPoint method on the
IDisplayTransformation interface
does this.

6

The ILayer interface is accessed through
a Querylnterface for the IRasterLayer
interface. This interface gives access to
raster-specific properties of the layer.

IRasterLayer : ILayer I

=— BandCount: Long

=— ColumnCount: Long

®=— DataFrameExtent: [Envelope

=—a DisplayResolutionFactor: Long

®=— FilePath: String

=—a PrimaryField: Long
PyramidPresent: Boolean

ution: Boolean
t: IEnvelope

IRasterD
4 CreateFrogfiFilePath (in FilePath: String)
4= CreateFr

o
7]
@

“ CreateFr} bataset (in RasterDataset:
t)

Raster (in Raster: IRaster)

IRaster : IlUnknown

=—8 ResampleMethod: rstResamplingTypes

4= CreateCursor: |RasterCursor

1 CreatePixelBlock (in Size: IPnt) :
b IPixelBlock

{ <= Read (in tic: IPnt, in block: IPixelBlock))

A pixel block the size of
7 one pixel is created.

=== \1: Double 1Pnt

IPnt : lUnknown

A dblPoint object is created and the coordinates are
4 setto 1.0, 1.0. This will be used to define the size of
the pixel block used to interrogate the raster.

=—a X: Double

=—aY: Double

IRasterProps : IlUnknown

<4 Convert2Point (in env: IPoint)
<= Set2Point (in env: IPoint]
SetCoords (in X: Double, in Y: Double;

ataSour -
Rast

=—= Extent: |[Envelope)

=—a Height: Long

=— |sInteger: Boolean

== NoDataValue: Variant

= PixelType: rstPixelType

=& SpatialReference: ISpatialReference
=—a Width: Long

4 MeanCellSize: [Pnt

The coordinates of the
9 cursor are calculated in
raster pixel units.

The IRasterProps interface is obtained. This
8 provides information about the extent of the
raster in both real-world units and pixels.

The planes or the raster
are looped over, extracting
the pixel values.

11
10

The pixel block for the raster
location is populated.

IPixelBlock : IlUnknown

=— BytesPerPixel: Long
=— Height: Long

= SafeArray
=— Width: Long

plane: Long) : rstPixelType

plane: Long) : Variant

& GetVal (in plane: Long, in X: Long, in
Y: Long) : Variant

12

Checks are made to ensure that there are
raster values present at the location. If
there are, they are appended to the value
string.

Add this code to the MouseMove event of a UlToolControl in ArcMap.

0 NO wn

10
11
12

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pActiveView As IActiveView

Set pActiveView = pMxDoc.FocusMap

Dim pPoint As IPoint

Set pPoint = pActiveView.ScreenDisplay.DisplayTransformation.ToMapPoint(x, y)

Dim pBlockSize As IPnt
Set pBlockSize = New Db1Pnt
pBlockSize.SetCoords 1#, 1#

Dim pLayer As IRasterlLayer

Dim pPixelBlock As IPixelBlock

Dim vValue As Variant

Dim i As Long, j As Long

Dim sPixelVals As String

sPixelvals = "No Raster"

Dim pRasterProps As IRasterProps

Dim dXSize As Double, dYSize As Double

Dim pPixel As IPnt

Set pPixel = New Db1Pnt

For i = 0 To pMxDoc.FocusMap.LayerCount - 1

If (TypeOf pMxDoc.FocusMap.Layer(i) Is IRasterLayer) Then

Set plLayer = pMxDoc.FocusMap.Layer(i)
Set pPixelBlock = pLayer.Raster.CreatePixelBlock(pBlockSize)

Set pRasterProps = plLayer.Raster

dXSize = pRasterProps.Extent.XMax - pRasterProps.Extent.XMin
dYSize = pRasterProps.Extent.YMax - pRasterProps.Extent.YMin
dXSize = dXSize / pRasterProps.Width

dYSize = dYSize / pRasterProps.Height

(pPoint.x - pRasterProps.Extent.XMin) / dXSize
(pRasterProps.Extent.YMax - pPoint.y) / dYSize

pPixel.x =
pPixel.y =

pLayer.Raster.Read pPixel, pPixelBlock
For j = 0 To pPixelBlock.Planes - 1
If (sPixelvals = "No Raster") Then
sPixelvals = "
Else
sPixelVals = sPixelvals & ", "
End If
vValue = pPixelBlock.GetVal(j, 0, 0)
sPixelVals = sPixelVals & CStr(vVvalue)

Next j
If (sPixelvals <> "No Raster") Then sPixelVals = sPixelvals & ")"
ThisDocument.Parent.StatusBar.Message(0) = "Raster value = " & sPixelVals
Exit For
End If
Next I

Appendix C e lllustrated code samples * 285

EXPORT CURRENT VIEW

Export current view

This sample takes the current active view

Export

and exports it to a JPEG file. This code is 3
similar to the next sample, which prints the A new Export)PEG object is

active view to a PostScript printer. created and the |[Exporter
interface is obtained. The

filename and resolution are set. —a TragkCagoel ITra

IExport o— IExport : lUnknown

PI'O ressor

Finally, the FinishExporting

[€—_FinishExportin

The IMxDocument interface is 9 method is called. This call ensures
I obtained from the ThisDocument that the drawing is completed and
global variable. the export file is closed.
IChangeLayout O—| IJpegExporter
IContentsViewEdit 0— MxDocument
IDataGraphs 0—
IDocument O—|
IDocumentDatasets O—|
IDocumentDefaultSymbols O—|
IDocumentDirty 0|
IDocumentDirty2 O—]
IDocumentEvents 8 IDisplay : IUnknown
IDocumentEventsDisp @]
D o— =— ClipEnvelope: IEnvelope
IMxDocument 0—4 IMxDocument : IUnknown =— ClipEnvelopes: ISet
IPersist O—| — =—= ClipGeometry: IGeometry
IPropertySupport 0— < Display Transformation:
IReportUnitFormat ©— It it

=— ContentsView (in Index: Long) :

== Filter: [Display
=— hDC: Long

IContentsView
: = hPalette: Long
=— ContentsViewCount: Long i T
= Contextltem: IUnknown Pointer o AR I A
s CurrentContentsView: IContentsView i :

=—= CurrentLocation: IPoint

DefaultCol <D (in Multipoint: y
T et DrawPoint (in Point: IGeometr
T ﬂa“,z‘c""’ﬁypes) ooy Doy Pyt nety)
— Da::m::wzms;e- IFontSize & DrawPolyline (in Polyline: IGeometry)
[—= DelayUpdateContents: Boolean & DrawRectangle (in rectangle: IEnveiope)
=— FocusMap: IMap <« DrTa;Ieg (in Shape: IGeometry, in

=— Maps: IMaps

=— OperationStack: |OperationStack
== Pagelayout: IPagelayout

== RelativePaths: Boolean

=— SearchTolerance: Double

& FinishDrawing

& Progress (in VertexCount: Long)

& SetSymbol (in sym: 1Symbol)

& StartDrawing (in hDC: Long, in cachelD:

== SearchTolerancePixels: Long fiegen)
=— Selecteditem: IUnknown Pointer
=— SelectedLayer: ILayer
=— StyleGallery: IStyleGallery
=— TableProperties: ITableProperties P ——— y 4
creenDisplay : IDisplay
& AddLayer (in Layer: ILayer) e p—
& CaninsertObject (pEnabled: Boolean) = écl"rl‘ecaci:“e- Ilr;!eger
InsertObject acheCount: Integer
< UpdateGontents =— CacheMemDC (in Index: Ifger) : Long

" CancelTracker: ITrackC;
"% hWnd: Long
=—= |sFirstCacheTranspaffnt: Boolean

"= IsFramed: Booleat
=& ScaleContents:

IActiveView : IlUnknown

(in xDelta: Long, in yDelta:
, in updateScreen: Boolean)
Cache (in hDC: Long, in Index:
er, in devlceRect tagRECT, in
cac eRect:

Invalidate (in rect IErweIope in erase:

Boolean, in cachelndex: Integer)

< IsCacheDlny (in cachelndex: Integer) :

s— ExportFrame: tagRECT

a—a Extent: IEnvelope D,

=— ExtentStack: IExtentStack

=—c FocusMap: IM

=—a FullExtent: IEnvelope

=— GraphicsContainer: IGraphicsContainer

== IsMapActivated: Boolean
ScreenCachelD (in phase:

tagesriViewDrawPhase, n data:

1Unknown Pointer) ; Inte

<+ PanMoveTo (in mouseLocation: IPoint)
& PanStart (in mouseLocation: [Point)
PanStop: |Envelope
4 RemoveAlCaches
RemoveCache (in cachelD: Integer)
& RotateMoveTo (in pPoint: IPoint
4 RotateStart (|n mousePt: IPoint, in
centerPt: IPoint)
& RotateStop: Double
RotateTimer
& setScrollbarHandles (in
hWndHorzScrollbar: Long,

el
— ShowFlulers Eoo\ean

=—a ShowScrollBars: Boolean

=—a ShowSelection: Boolean

-— TipTgxl (in X: Double, in Y: Double) :

L d Achvale (hWnd: Long)
<l

t gg:::e'::ll:ghanged o hWndVertScrollbar: Long
- Draw (in hDC: Long, n trackCanosl: 2:“,?;"53,’3‘.‘,’,‘9
ITrackCancel) < Tr:ngan ¢
-« GelComextMenu (in X: Double, in Y: & TrackRotate
Double, out clsidMenu: 1UID)

& HitTestMap (in Location: IPoint) : IMap & UpdateWindow

& IsActive: Boolean

& OnMessage (in msg; Unsigned Long, in
wParam: Unsigned Machine Int, in
IParam: Lon

Gutput (in hDC: Long, I dpi: Long, n
PixelBounds tagRECT, in
VisibleBounds: [Envelope, in
ragCancel, ueckCence

PartialRefresh (In phast
tagesriviewDrawPhase, in data:
1Unknown Pointer, in Envelope:
IEnvelope)

& PrinterChanged (in Printer: IPrinter)

Refresh

A call to the active view's Output method writes the current view to
8 the exporter. Notice the hDC required by the Output method is
obtained by calling StartExporting on the Exporter.

Output

The driver bounds envelope is populated
with the coordinates from the device
rectangle. This envelope is used to set
the |[Exporter PixelBounds property.

6 tagRECT

bottom: Long
Left: Long
Right: Long
Top: Long

For convenience, the
resolution of the screen
is set to a local variable.

The device rectangle is
4 stored as a local variable.

IDisplayTransformation:|Transformation

=—a Bounds: IEnvelope

Bounds: |IEnvelope
agRECT
Envelope
: Double
= Resolutlon Double
=—a Rotation: Double
=—a ScaleRatio: Double
®=—0 SpatialReference: ISpatialReference
=—a SuppressEvents: Boolean
=—a Units: esriUnits
=—a V/jsibleBounds: |IEnvelope
=—a ZoomResolution: Boolean

<—FromMapPomt (in mapPoint: IPoint, out
Long, out Y: Lon
<+ FromPomts (in pointDistance: Double) :
Double
<—ToMapPolnt (in X: Long, in Y: Long) :

<—ToPo|nts (in mapDistance: Double) :
Double

4 TransformCoords (in mapPoints:
_WKSPoint, in devPoints: tagPOINT,
in numPoints: Long, in options: Long)

4 TransformRect (in mapRect:
IEnvelope, in devRect: tagRECT,

options: Long)

286 * ArcGIS Desktop Developer Guide

IClone 0—
IGeometry O—|

ITransform2D O—|
ISupportErrorinfo 0—

Geometry

IGeometry2 o—

CancelTracker

ITrackCancel 0—

ITrackCancel : lUnknown

== CancelOnClick: Boolean

=—a CancelOnKeyPress: Boolean
=—8 CheckTime: Long

=& ProcessMessages: Boolean
=—a Progressor: IProgressor

=— TimerFired: Boolean

<4 Cancel

4 Continue: Boolean

4 Reset

<= StartTimer (in hWnd: Long, in
milliseconds: Long)

4 StopTimer

7

A new CancelTracker object is
created. This object will allow the

export process to be aborted.

IPersistStream O0—|
IProximityOperator O—
IRelationalOperator O—|
ITransform2D 0—|

IArea 0—|
IEnvelope &

IHitTest 0—

1ZAware 0—|

5

A new envelope object
is created. This object
will represent the driver
bounds envelope.

IEnvelope : IGeometry

== Depth: Double
== Height: Double

& CenterAt (p: IPoint)
DefineFromPoints (Count: Long, in
Points: IPoint)
& Expand (dx: Double, dy: Double,

asRatio: Boolear

& ExpandM (dm: Double, asRatio:Boolean)
& ExpandZ (dz: Double, asRatio: Boolean)
& Intersect (inEnvelope: [Envelope)

& Offset (X: Double, Y: Double)
<+

<& QueryCoords (out XMin: Double, out
YMin: Double, out XMax: Double, out

. Double]
& Union (inEnvelope: [Envelope)

Geometry

deviceRECT = pMxDoc.ActiveView.ScreenDisplay.DisplayTransformation.DeviceFrame

pPixelBounds.PutCoords deviceRECT.Left, deviceRECT.bottom, deviceRECT.Right, _

pMxDoc.ActiveView.Output pExport.StartExporting, 1ScrRes, deviceRECT,

Add this code to the Click event of a UlButtonControl in ArcMap.
Dim pMxDoc As IMxDocument
1 Set pMxDoc = ThisDocument
Dim 1ScrRes As Long
2 1ScrRes = 96
Dim pExport As IExport
Set pExport = New ExportJPEG
3 pExport.ExportFileName = "C:\Export.jpg"
pExport.Resolution = 1ScrRes
Dim deviceRECT As tagRECT
a4
Dim pDriverBounds As IEnvelope
5 Set pDriverBounds = New Envelope
6 deviceRECT.Top
pExporter.PixelBounds = pDriverBounds
Dim pCancel As ITrackCancel
7 set pCancel = New CancelTracker
8 Ny
nothing, pCancel
9 pExport.FinishExporting

Appendix C ¢ lllustrated code samples * 287

PRINT CURRENT VIEW

. . ’ IClone o Printer
This sample takes the currently active view IPersist o
i i i IPrinter 0—{ IPrinter : IlUnknown
aer prlntst th'e ﬁle toa PostScr'lpt printer. PerssSiream o [= E o
This code is similar to the previous sample, Is[g’;;gﬁtgr'foﬁ;rnt;g 7] |»— FileExtension: String

=— Filter: String
A new PsPrinter object is =— Name: Strin:

; =—0 Paper: |Paper
3 Freazed a‘nd the .IPrlnter =— PrintableBounds: |[Envelope
interface is obtained.

=4 PrintToFile: Strin:
= Resolution: Integer >
=—a SpoolFileName: String

The resf)lutton of the —= StepProgressor: IStepProgressor

screen is then passed to =— Units: esriUnits \

the printer.

<+ DoesDnverSupponPrlnter (in
String) : Boolean

which exports the active view to a JPEG file.

The IMxDocument interface is 6
I used to access the active view.

IChangeLayout O—] Finally, the FinishPrinting method P FImSh:"n“ns_ o —
'C""‘Iegf:(:g‘;iﬁ'sf b MxDocument I I is called. This call ensures that the Query a_per B (out MEig (ool
o |[:SC:.IIT\E:“ ?; drawing is completed and the Starannllng (|n PlerBounds
ocumentDatasets . .

IDocumentDefaultSymbols O— printer receives the plot. / W E"‘VDl = “hD Pan Ir Long) : Lon
IDocumentDirty O— erifyDriverSettings: Boolean
IDocumentDirty2 ©—]

IDocumentEvents @

IDocumIe:lEvenlsDisp ; IDisplay : out ut
IMxDocument %4' INxDocument : lUnknown =— ClipEnvelope: IEnvelope P
\Persist o—| =— ClipEnvelopes: ISet .
IPropertySupport O— = ClipGeometry: IGeometr IColorCorrection
IReportUnitFormat O—| a [piaylpanstomat IFontMapEnvironment
i ransfor;
'—Cfl)glen(swe\';v (in Index: Long) : =5 Filter: IDisplayFilter IPsDriver
ontentsView ')

=— ContentsViewCount: Long o oaata IPsDriver2
=—= Contextltem: IUnknown Pointer m—a |lluminationProps: IllluminationProps |PsPrinter

=—a CurrentContentsView: IContentsView

=== CurrentLocation: IPoint

== DefaultColor (in Type: <D (in Multipoint:
lagesnMxDefaultCoIorTypes) IColor & DrawPoint (in Point: IGeometry)

== DefaultTextFont: Font P :
== DefaultTextFontSize: IFontSize & DrawPalygon (in Polygon: IGeometry)

=~ SuppressEvents: Boolean

I1SpotPlateCollection

Y)

! <4 DrawPolyline (in Polyline: IGeometry)

= Eelaywpdé‘f’amems» Boolean & DrawRectangle (in rectangle: IEnvelope) tagRECT

CEEATBUAED & DrawText (in Shape: IGeometry, in
=—Maps: IMaps § Text: String) bottom: L
=— OperationStack: IOperationStack & FinishDrawing ottom: Long
=0 PageLayout: IPageLayout & Progress (in VertexCount: Long) Left: Long
== RelativePaths: Boolean & SetSymbol (in sym: ISymbol) Right: Long
=— SearchTolerance: Double & StartDrawing (in hDC: Long, in cac] .
=—a SearchTolerancePixels: Long Integer) Top: Long
=— Selecteditem: |Unknown Pointer

»— SelectedLayer: ILayer
=— StyleGallery: IStyleGallery
=— TableProperties: ITableProperties

& AddLayer (in Layer: ILayer)

& CanlnsertObject (pEnabled: Boolean)
InsertObject

& UpdateContents

For convenience,
2 the resolution of
the screen is set to
a local variable.

=== ActiveCache: Integer
®— CacheCount: Inleger

For convenience, the
, device rectangle is stored
as a local variable.

IActiveView : lUnknown

=— ExportFrame: tagRECT
=—a Extent: |Envelope
m— ExtentStack: |ExtentStack
m—0 FocusMap: IMap
w—a FullExtent: |IEnvelope
m— GraphicsContainer: |GraphicsContainer
m—a IsMapActivated: Boolean
— ScreenCacheID (in phase:
wDrawPhase, in data
I nknown Pointer) : Inte

ng, in updateScreen: Boolean)

& pfawCache (in hDC: Long, in Index:
Integer, in dewceRect tagRECT, in
cacheRect: ta

Invalidate (in rect: IEnveIope in erase:
oolean, in cachelndex: Integer)

& IsCacheDirty (in cachelndex: Integer) :

Boolean

IDisplayTransformation:ITransformation

—a Bounds |Envelope

& panMoveTo (in mouseLocation: IPoint)
PanStart (in mouseLocation: IPoint)
PanStop: |Envelope

& RemoveAllCaches

-0 Selection: ISelection
=—a ShowRulers: Boolean

== ShowScrollBars: Boolean <& RemoveCache (in cachelD: Integer) : ScaIeHatlo D°“b|e)
=—a ShowSelection: Boolean RotateMoveTo (in pPoint: Point) SpatialReference: ISpatialReference
= TipText (in X: Double, in Y: Double) : Rolalfﬁg‘r_‘ |(|'>" m‘ousePt: IPoint, in — Suppressgve_nts: Boolean
trin Crp = Units: esriUnits
<-Acllvale (hWnd: Long) & RotateTimer == VisibleBounds: IEnvelope
& setScrallbarHandes (in =—a ZoomResolution: Boolean
e i L.
ndVertScrollbar: Lon int (i
<+ Drlgrw ('E gnc I]ong. in trackCancel: & StartRecording J <+ F;g_r[l\(l)lﬁpPomt (in mapPoint: IPoint, out
racl StopRecordi y 8 T it
& GetContextMenu (in X: Double, in Y: € Taaban 4= FromPoints (in pointDistance: Double) :
Double, out clsidMenu: U & TrackRotate Double
& HitTestMap (in Location: IPoint) : IMap & UpdateWindow 4 ToMapPoint (in X: Long, in Y: Long) :
& IsActive: Boolean IPoint
& OnMessage (in msg: Unsigned Long, in ints (i : . .
wParam: Unsigned Machine Int, in <+ T%nglts (in mapDistance: Double) :
1Param; Lon: ouble

Output (in hDC: Long, in dpr: Long, in

PixelBounds: tagRECT, in
IEnvelope, in

trackCancel: TrackC

PartialRefresh (in phas
tagesrViowDrawPhase, in data:
1Unknown Pointer, in Envelope:
IEnvelope)

& PrinterChanged (in Printer: IPrinter)
Refresh

I o A call Fu the actf’ve view's Outpu.t method exports the currenF view .tu & TransformGoords (in mapPoj
the printer. Notice the hDC required by the Output method is obtained _WKSPoint, in devPoi
by calling the StartPrinting method of the Printer. : options: Long)

288 * ArcGIS Desktop Developer Guide

CancelTracker

ITrackCancel : IlUnknown

ITrackCancel O—

=—a CancelOnClick: Boolean

=—a CancelOnKeyPress: Boolean
=—= CheckTime: Long

=—a8 ProcessMessages: Boolean
=—a Progressor: IProgressor

=— TimerFired: Boolean

<4—Cancel

4= Continue: Boolean

44— Reset

4= StartTimer (in hWnd: Long, in
milliseconds: Long)

4 StopTimer

9

A new CancelTracker object is
created. This object allows the
printing process to be aborted.

IClone O—|
IGeometry 0—
ITransform2D ©—
|SupportErrorinfo 60—

Geometry

|Area o

|IEnvelope &
|Geometry2 o
IHitTest O

IMAware &

IPersist O
IPersistStream ©
IProximityOperator &
IRelationalOperator O
ITransform2D o
1ZAware &

IEnvelope : IGeometry

=—= Depth: Double
== Height: Double
=== LowerLeft: IPoint
== LowerRight: IPoint
== MMax: Double
== MMin: Double

=—a UpperLeft: IPoint
=—a UpperRight: IPoint
== Width: Double

=== ZMin: Double

4 CenterAt (p: IPoint)
DeﬁneFromPpiGIs (Count: Long, in
in

Points: IPoi
Expand (dx: Double, dy: Double,
asRatio: Boolean)
& ExpandM (dm: Double, asRatio:Boolean)
& ExpandZ (dz: Double, asRatio: Boolean)
& Intersect (inEnvelope: IEnvelope)
& Offset (X: Double, Y: Double)

A new envelope object is created.

The paper object used
by the application is set
into the printer object.

5

IMxApplication : IlUnknown

=— Display: IAppDisplay
=— Paper: |Paper

4 OffsetM (M: Double)

Offse B
PutCoords (. : Double, YMin: Double}
XMax: Double, YMax: Double]
QueryCoords (out XMin: Double, out
YMin: Double, out XMax: Double, out

This object will represent the driver
bounds. The driver bounds envelope
is populated with the coordinates
from the device rectangle. This
envelope is used to set the IPrinter
PixelBounds property.

YMax: Double)
& Union (inEnvelo;];e: IEnvelope)

Geometry

== Printer: IPrinter
®— SelectionEnvironment:
ISelectionEnvironment
4 CopyToClipboard
4 Export 1
4 2
The IMxApplication interface on the
application object is required in order to get the 3
page details. This interface is obtained by
performing a Querylnterface on the Parent 4
property of the ThisDocument variable.
5
6
7
8
9
10
11

Add this code to the Click event of a UlIButtonControl in ArcMap.

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim 1ScrRes As Long
1ScrRes = pMxDoc.ActiveView.ScreenDisplay.DisplayTransformation.Resolution

Dim pPrinter As IPrinter
Set pPrinter New PsPrinter

Dim pMxApp As IMxApplication
Set pMxApp = ThisDocument.Parent

Set pPrinter.Paper
pPrinter.Resolution

pMxApp . Paper
1ScrRes

Dim deviceRECT As tagRECT
deviceRECT = pMxDoc.ActiveView.ScreenDisplay.DisplayTransformation.DeviceFrame

Dim pDriverBounds As IEnvelope

Set pDriverBounds = New Envelope

pDriverBounds.PutCoords deviceRECT.Left, deviceRECT.bottom, deviceRECT.Right,
deviceRECT.Top

Dim pCancel As ITrackCancel
Set pCancel = New CancelTracker

pMxDoc.ActiveView.Output pPrinter.StartPrinting(pDriverBounds, 0), 1ScrRes,
deviceRECT, pMxDoc.ActiveView.Extent, pCancel
pPrinter.FinishPrinting

Appendix C e lllustrated code samples * 289

DisPLAY MAP EXTENT IN GXVIEW AS ENVELOPE

This command takes the current displayed If the current view is not a
data layer and draws the data extent in a 2 Freview te procedure s exed
thick red line in the preview.

IGxView : IlUnknown

=— ClassID: IUID

=— DefaultToolbarCLSID: IUID
=—hWnd: Long

=— Name: String

=— SupportsTools: Boolean

|Application ©0— <= Activate (in Application: IGxApplication,
IDockableWindowManager 0—| in Catalog: IGxCatalog)
IExtensionManager o— Application <& Applies (in Selection:IGxObject):Boolean
IMultiThreadedApplication 0— ZR : g:far:tsn;]ate
IVBAApplication 0—|
IWindowPosition o—| 4= SystemSettingChanged (in Flag: Long,

in section: String)

IGxApplication o— GXAppIication /

IGxCatalogEvents @—

3

To access the preview-specific
properties, the IGxPreview
interface is accessed through a
Querylnterface call on the
IGxView interface.

|GxCatalogEventsDisp e— [jGxApplication : IUnknowI

IGxViewContainer O—| | IGxPreview : lUnknown

=—a AreaOfinterest: IEnvelo)
=— CanDeleteSelection: B
=— CanRenameSelection;,
®=— Catalog: IGxCatalog

ortedViewClassIDs: ISet
=—a ViewClassID: IUID

—= Location: String

I =— Selection: IGxSel

B— TreeView: IGxTr There are potentially many types of

4 previews. If it is not a geographic preview,
the procedure is exited.

The IGxApplication interface == ViewClassID: IUID

is obtained by accessing the < DeleteSelection

Applicationglobal variable. 4 ExpandSelection

4 Refresh (in startingPath: String)

4—RenameSelection

4= ShowContextMenu (in X: Long,
in Y: Long)

IGxGeographicView : IlUnknown
=— DisplayedLayer: ILaxer)

=— Map: IMa
0= MaEDisEIazz IScreenDisEIazl

Finally, with the symbol and
geometry of the extent obtained,
the extent is drawn on the screen.

IDisplay :

=— ClipEnvelope: IEnvelope

=— ClipEnvelopes: 1Set

=== ClipGeometry: |Geometry

™" DisplayTransformation:
IDisplay Transformation

==C Filter: IDisplayFilter

®— hDC: Long

== ppaette: Long

=4 ||luminationProps: IllluminationProps

=—= SuppressEvents: Boolean

«p ipoint (in Multipoint: y)
& DrawPoint (in Point: IGeometry)
&= DrawPolygon (in Polygon: IGeometry)
C D) line (in Polyline:
C D) linrectangle:

IEnvelope : IGeometry \
: BePtL‘tﬁ DDOL.%I? The extent of the currently
eight: Double . . .
»—a | owerLeft: IPoint 5 displayed layer is assigned

== | owerRight: IPoint to an envelope variable.
=—a MinMaxAttributes: _esriPointAttributes
=—a MMax: Double
=—= MMin: Double

=—= UpperLeft: IPoint
=—a UpperRight: IPoint ILayer : IlUnknown
: Y(V,\T;;] ggt:g:: =— AreaOfinterest: IEnveIoEe)
o XMin"DoubIe =—8 Cached: Boolean
== YMax: Double == MaximumScale: Double
=—a YMin: Double =—a MinimumScale: Double
== ZMax: Double =—a Name: String
== ZMin: Double == ShowTips: Boolean
—1 SpatialReference: ISpatialReference
4 CenterAt (p: IPoint) =— SupportedDrawPhases: Long
4= DefineFromPoints (Count: Long, in ®— TipText (in X: Double, in Y: Double,
Points: IPoint) in Tolerance: Double) : String
4= DefineFromWKSPoints (Count: Long, =— Valid: Boolean
in Points: _WKSPoint) =—a Vijsible: Boolean
4= Expand (dx: Double, dy: Double, =
asRatio: Boolean) 4= Draw (in drawPhase:
4 ExpandM (dm: Double, asRatio:Boolean) tagesriDrawPhase, in Display:
4 ExpandZ (dz: Double, asRatio: Boolean) :?'Sp:fé’v n (rlackCanceL
<& Intersect (inEnvelope: IEnvelope) rackCancel)

4 Offset (X: Double, Y: Double)
& OffsetM (M: Double)

4 OffsetZ (Z: Double) c a I't o

4= PutCoords (XMin: Double, YMin: Double,
XMax: Double, YMax: Double)

4 PutWKSCoords (e: _WKSEnvelope)

<+ QueryCoords (out XMin: Double, out
YMin: Double, out XMax: Double, out
‘YMax: Double)

4= QueryWKSCoords (out e:

_WKSEnvelope) G e o m et I'Y

<& Union (inEnvelope: IEnvelope)

290 * ArcGIS Desktop Developer Guide

- DrawText (in Shape: IGeometry, in

& FinishDrawing)

C Progress (in VertexCount: | ¢
C {in sym. 1Symbol
* StartDrawing (in hDC: Long, in cachelD:

IScreenDisplay : IDisplay

= ActiveCache: Integer

=— CacheCount: Integer

=— CacheMemDC (in Index: Integer) : Long
"= CancelTracker: ITrackCancel

"= hWnd: Long

"—* |sFirstCacheTransparent: Boolean
"% |sFramed: Boolean

== ScaleContents: Boolean

=== SuppressResize: Boolean

"= UseScrollbars: Boolean

®— WindowDC: Long

& AddCache: Integer
DoScroll (in xDelta: Long, in yDelta:
Long, in updateScreen: Boolean)
& DranCache (in hDC: Long, in Index:
Integer, in deviceRect: tagRECT, in
cacheRect: tagRECT)
& |nvaidate (in rect: IEnvelope, in erase:
Boolean, in cachelndex: Integer)
& |sCacheDirty (in cachelndex: Integer) :
oolean
& panMoveTo (in mouseLocation: IPoint)
PanStart (in mouseLocation: |Point)
& panstop: IEnvelope
RemoveAllCaches
RemoveCache (in cachelD: Integer)
RotateMoveTo (in pPoint: IPoint)
RotateStart (in mousePt: IPoint, in
centerPt: Point
& RotateStop: Double
RotateTimer
SetScrollbarHandies (in
hWndHorzScrollbar: Long, in
hWndVertScrollbar: Long)
& StartRecording
& StopRecording
TrackPan
& TrackRotate

& UpdateWindow

IClone o—

IPersist 0—
IPersistStream o— Symbol

ISymbol o—|
A line symbol is created for later
6 use as the fill symbol's outline. 4
[
LineSymbol

The fill symbol is
created.

FillSymbol 9

ILineSymbol © ILineSymbol: IlUnknown IFillSymbol IFillSymbol : IlUnknown
IMapLevel & — - IMapLevel R
IPropertySupport o—dk=—= Color: IColor IPropertySupport =—= Color: IColor

=& Qutline: ILineSimboI)

JA

SimpleFillSymbol

ISimpleFillSymbol : IFillSymbol

8 Style: tagesriSimpleFillSlyle)

== Width: Double

AN

SimpleLineSymbol

ymbol : ILineSymbol

This color object is
8 assigned to the line
symbol, along with
a width of 2.

10

The line symbol created
in step 6 is assigned to
the fill symbol's outline,
and the style of the fill
symbol is set to hollow.

ISimpleFillSymbol

ISimpleLjyfe

=—a Style: tagesriSimpleLineStyle

Add this to the Click event of a UlIButtonControl in ArcCatalog.

Dim pGxApp As IGxApplication
1 Set pGxApp = Application

Color Dim pGxView As IGxView
I%ore ét7 e S oo 2 Set pGxView = pGxApp.View
|pegng - If (TypeOf pGxView Is IGxPreview) Then
IPrsistStream o—| [*—% CMYK: Long Dim pGxPreview As IGxPreview

=—a NullColor: Boolean . o A
(=== RGB: Long) 3 Set pGxPreview = pGxView

== Transparency: Unsigned Char

=4 UseWindowsDithering: Boolean If (TypeOf pGxPreview.View Is IGxGeographicView) Then
<= GetCIELAB (out I: Double, out Dim pGxGeoView As IGxGeographicView
a: Double, out b: Double) 4 Set pGxGeoView = pGxPreview.View

4= SetCIELAB (in I: Double, in a:
Double, in b: Double)

5 Dim pEnv As IEnvelope
Set pEnv = pGxGeoView.DisplayedLayer.AreaOfInterest

Dim pLineSymbol As ISimpleLineSymbol

RGBColor ! : -
6 Set pLineSymbol = New SimpleLineSymbol

IRGBColor O

Dim pColor As IColor
7 Set pColor = New RgbColor
An RGB color object is created and
7 its color set to red. 8 pColor.RGB = vbRed
With pLineSymbol
.Color = pColor

Width = 2
End With
Dim pFi11Symbol As ISimpleFil11Symbol
9 Set pFill1Symbol = New SimpleFil1Symbol
10 With pFil1Symbol

.Style = esriSFSHolTlow
.Outline = pLineSymbol
End With

11 With pGxGeoView.MapDisplay
.StartDrawing 0, esriNoScreenCache
.SetSymbol pFi11Symbol
.DrawRectangle pEnv
.FinishDrawing

End With
End If
End If

Appendix C ¢ lllustrated code samples * 291

EDIT FEATURE CLASS SCHEMA

This code sample inspects the selected
objects in the ArcCatalog browser and if
they are feature classes in a geodatabase,

makes an edit to their alias name.

|Application 0—
IDockableWindowManager o—
|ExtensionManager o—
IMultiThreadedApplication o—
IVBAApplication 0—
IWindowPosition 0—

Application

IGxApplication o—|
IGxCatalogEvents e—|
IGxCatalogEventsDisp @—
IGxViewContainer 0—

The IGxApplication interface
is obtained by accessing the
Application global variable.

GxApplication

IGxApplication : lUnknown I

=—= AreaOfInterest: IEnvelope
=— CanDeleteSelection: Boolfan

—
=— SelectedObject: IGxObject
=— Selection: IGxSelection

- IGxTreeView
=— View: IGxView

=—a ViewClassID: IUID

4 DeleteSelection

4— ExpandSelection

4—Refresh (in startingPath: String)

4— RenameSelection

4— ShowContextMenu (in X: Long,
in Y: Long)

Check for Null. If it is Null, use
6 the selected object from the

For convenience, the
2 |GxCatalog interface is
stored as a local variable.

IGxCatalog : IlUnknown

=— FileFilter: IGxFileFilter

=— SelectedObject: IGxObjec
{{=— Selection: IGxSelection

<4 Close

4= ConnectFolder (in folderPath: Strin:
IGxFolder

<= ConstructFullName (in Object:
IGxObject) : Strin

4 ObjectAdded (in Object: IGxObject)

<4 DisconnectFolder (in folderPath: String)
4 GetObjectFromFullName (in FullName:
String, out numFound: Long) : Variant

<4 ObjectChanged (in Object: IGxObject)
4 ObjectDeleted (in Object: IGxObject)
4 ObjectRefreshed (in Object: IGxObject)

The selection of
3 GxObjects is obtained
from the Catalog.

4

The SelectedObjects property is accessed
through a Querylnterface for an enumerator.
This will allow you to iterate over all the
selected objects within the Catalog.

IEnumGxObject : IUnknown

= -
4 Rese

Start iterating by asking the
5 enumerator for its next object.

This is repeated until the

enumerator returns nothing.

IGxSelection : IlUnknown

=— Count: Long
=—a DelayEvents: Boolean
=— FirstObject: IGxObject
=— Location: IGxObject

4 Clear (in initiator: IlUnknown Pointer)

= |sSelected (in Object: IGxObject) :
Boolean

<= select (in Object: IGxObject, in
appendToExistingSelection: Boolean,
in initiator: lUnknown Pointer)

4= Setlocation (in Location: IGxObject,
plnitiator: IlUnknown Pointer)

= Unselect (in Object: IGxObject, in

initiator: IUnknown Pointer)

IGxObject : lUnknown

=— BaseName: String
=— Category: String
=— ClassID: IUID

Catalog and not the enumerator. |®— FullName: String

292 « ArcGIS Desktop Developer Guide

=— |nternalObjectName: IName
=— |sValid: Boolean

=— Name: String

=— Parent: IGxObject

7

The type of the GxObject is
checked. If it supports the
IGxDataset interface, its type is a
feature class, and the workspace

= Attach (in Parent: IGxObject, in
pCatalog: IGxCatalog)

4 Detach

4 Refresh

type is not filesystem, it is processed.
Otherwise it is skipped.

Notice the error handling

I 3 code that checks for a
specific error return value.

IClassSchemakEdit : IlUnknown

I I The schema edit is made.

AlterAliasName (in Name: Strin 9 "

¥ AlterClassExtensionCLSID (in e L Oek s (Ao

ClassExtensionCLSID: IUID, in
< Alerpeiauae (n FolName. Sitng, | - The method to edit the schema s S e s

in Value: Variant) on the 1ClassSchemaEdit GetCurrentSchemaLocks (out The exclusive lock is
+ Allijeorggmnailrl\)g'r;lgiﬁ)ldNamei String, in interface. This is accessed through schemalockinfo: I 2 released.
<+ AIterFlelldAllasNa:ne (in FieldName: a Querylnterface from the IEnumSchemaCockinfo)

String, in AliasName: String) |ObjectClass interface.

<+ AIéerFleldModelName (mSF|eIdr)\lame
tring, in ModelName: String
& AlterlnstanceCLSID (in InstanceCLSID: G eo d at a b ase
1UID)
4 AlterModelName (in Name: String)

+ RegisterAsObijectClass (in
suggestedOIDFieldName: String, in

ConfigKeyword: String) : Long Add this to the Click event of a command in ArcCatalog.
It is possible that when you ask the database Dim pGxApp As IGX/:\PIﬂ " cation
I o for an exclusive lock it will fail because another I Set pGxApp = Application
user is editing, hence you must prepare for this X
with a specialized error handler. Dim pGxCatalog As IGxCatalog

2 Set pGxCatalog = pGxApp.Catalog

I0bjectClass : IClass 8 Dim pGxSelection As IGxSelection
3 Set pGxSelection = pGxCatalog.Selection

=— AliasName: String
®=— ObjectClassID: Long q q .
=— RelationshipClasses (in role: esriRelRole) Dim pGxObjects As IEnumGxObject

- IEnumRelationshipClass change, you must have a 4 Set pGxObjects = pGxSelection.SelectedObjects

schema lock. The schema pGxObjects.Reset
lock interface is accessed

through a
Querylnterface from the 5
10bjectClass interface.

To make the schema

Dim pGxObject As IGxObject
Set pGxObject = pGxObjects.Next

If (pGxObject Is Nothing) Then Set pGxObject =
| IGxDataset : IUnknownl 6 pGCxCatalog.SelectedObject
fl=— Dataset: IDataset)

50 DatasetName: [DatasetName
{=— Type: esriDatasetType

Dim pGxDataset As IGxDataset
Dim pObjectClass As IObjectClass
AN Dim pClassSchemaEdit As IClassSchemaEdit
Dim pSchemaLock As ISchemalock
Do Until (pGxObject Is Nothing)
If (TypeOf pGxObject Is IGxDataset) Then
7 Set pGxDataset = pGxObject
If ((pGxDataset.Type = esriDTFeatureClass) And _
(pGxDataset.Dataset.Workspace.Type <> _

esriFileSystemWorkspace)) Then
IDataset : lUnknown 8 .
Set pObjectClass = pGxDataset.Dataset

== BrowseName: String — 7
e Set pSchemalock = pObqectC]ass
=— FullName: IName Enumeration esriDatasetType 9 Set pSchemalLock = pObjectClass
=— Name: String)
=— PropertySet: IPropertySet ;'esr!g;ényt’ 10 on E GoTo TockDB
»— Subsets: [EnumDataset - esriDTContainer n Error GoTo Toc
=— Type: esriDatasetType 3-esriDTGeo
w— 4- esriDTFeatureDataset . .
e Zz::g;;;ﬁr:::gcr;a;‘s 11 pSchemalock.ChangeSchemalLock esriExclusiveSchemalock
& CanDelete: Boolean 7 - estiDTG icNetwork On Error GoTo O
SuCanonamerBovien SedTren ClassSchemaEdit.AlterAliasN "ArcObjects Updated Alias"
<€ Copy {in copyNameStringin - esribrext pClassSchemaEdit.AlterAliasName "ArcObjects Update ias
<_DglgrtaeyWorkspace:IWcrkspace):lDataset 11 - esriDTRelationshipClass 12 pSchemalLock.ChangeSchemalLock esriSharedSchemalock
& Rename (in Name: String) 12- corDTRasterDataset End If

14 - esriDTTin End If

15 - esriDTCadDrawing Set pGxObject = pGxObjects.Next

16 - esriDTRasterCatalog

17 - estiDTToolbox Loop

18 - esriDTTool

IWorkspace : lUnknown Exit Sub

=— ConnectionProperties: IPropertySet

=— DatasetNames (in DatasetTyp .
eerDataseiType) : [EnumbatasetName TockDB:

=— Datasets (in DatasetType:
esnDalaselType) |EnumDataset

— If (Err.Number = FDO_E_SCHEMA_LOCK_CONFLICT) Then

m— Type: esr\Works aceT

eseaceFacion- WedpaceFactory 13 MsgBox "Unable to obtain exclusive database Tock",
& ExecuteSQL (in sqiStmt: String) vbExclamation + vbOKOnly, "Database Lock Error"
& Exists: Boolean Else

- IsDirectory: Boolean

MsgBox "Unknown error getting schema lock", vbExclamation +
vbOKOnly, "Database Error"
Enumeration esriWorkspaceType End If

0 - esriFileSystemWorkspace Err.Clear
1 - esriLocalDatabaseWorkspace
2 - esriRemoteDatabaseWorkspace

Appendix C e lllustrated code samples * 293

ArcObjects
problem-=solving
guide

The ArcObjects problem-solving guide presents a methodology to help you
solve real-world ArcObjects programming tasks that customize or extend the

ArcGIS Desktop applications.

The guide helps you describe and categorize your task and documents how
to use the help resources and tools to solve the problem programmatically.
In the end, the guide will not only help solve individual problems but will also

help you understand and navigate the structure of ArcObjects.

Steps of the ArcObjects
problem solving guide

Part I: Define the ArcObjects
programming task

Describe problem
in ArcObjects terms

Divide task
into subtasks

Decide where to
write code

Search for a
related sample

Part II: Find the
correct object
model diagram

YVYVY

ArcObjects programming task

Subtask | ...

Subtask 2 ...

Subtask 3 ...

A2,

Part Ill: Navigate the

object model diagram

Trace the flow
between classes and
write code

Extract keywords

v

Review the
Ez::zz:g;.cerz structure of the
model dia r!ams Rlecdiode
8! diagram

Review all related
documentation

296 * ArcGIS Desktop Developer Guide

ARCOBJECTS PROBLEM-SOLVING GUIDE

The ArcObjects library is a comprehensive set of COM components designed to
provide developers with the ability to extend and customize ArcGIS applications,
such as ArcMap and ArcCatalog. The ArcObjects library consists of more than
1,000 classes and 2,000 interfaces that are visually documented in several dozen
object model diagrams.

With this extensive set of classes, you can create a wide variety of
customizations and custom applications to extend existing ArcGIS applications.
However, as you begin developing with ArcObjects, you may find the extent of
the ArcObjects library overwhelming, and it may be difficult to know where to
begin. The goal of this problem-solving guide is to present a methodology to help
you solve real-world ArcObjects programming tasks that customize or extend the
ArcGIS Desktop applications.

The guide helps you describe and categorize your task and documents how to use
the help resources and tools to solve the problem programmatically. In the end,
the guide will not only help solve individual problems but will also help you
understand and navigate the structure of ArcObjects.

The guide is broken into three parts. Part One is designed to help you define the
ArcObjects programming task as cleatly as possible. Part Two illustrates how to
use the help resources to locate the correct object model diagram you should start
with. Part Three provides an example of how to navigate the object model
diagrams to assemble the code required to solve the task.

The following steps outline each part of the problem-solving guide:

PART ONE: DEFINE THE ArcOsgjects PROGRAMMING TASK
1. Describe the problem in ArcObjects terms.

2. Identify subtasks.
3. Decide where to write the code.

4. Search for a related sample or recommended methodology.

PART TWO: LOCATE THE CORRECT OBJECT MODEL
1. Identify a subtask.

2. Extract keywords.
3. Search for the correct object model diagrams.

4. Review all related documentation.

PART THREE: NAVIGATE THE OBJECT MODEL DIAGRAM

1. Review the structure of the object model diagram.
2. Trace the flow between classes and assemble code.

Although there are three parts, this type of problem solving is really one continu-
ous process. You may find it necessary to revisit some steps as you gain knowledge
about a particular topic by reading the pages in this book and exploring the wide
variety of code samples available.

ARCOBJECTS PROBLEM-SOLVING GUIDE

The best way to learn ArcObjects is to first
become familiar with the fundamental ArcGIS
and COM terminology and concepts, then learn
how to effectively use all the help resources,
tools, documentation, and samples that are at
your disposal. Chapter 2,ArcGIS software
architecture, and Appendix A,‘Developer environ-
ments’, of this book provide a good foundation
for the basic terms and concepts, while this
section focuses specifically on how to use the
help resources to solve programming tasks
related to ArcObjects.

For detailed information on Visual Basic and
COM programming techniques, reference
Appendix A, ‘Developer environments’, in this
book.

This guide does not attempt to provide an all-
encompassing method for every ArcObjects
programming task. It simply provides a method-
ology that can help you clearly define your initial
objective and make effective use of the many
resources and tools available.

ARE YOU READY?

Before getting started with this problem-solving guide, you should be familiar
with the basic terminology behind COM and ArcObjects, and you should know
how to use the available help resources and tools. Here is a checklist of some
topics discussed eatlier in this developer guide that should be familiar to you:

* How to program with COM interfaces and classes in Visual Basic
(Appendix A, ‘Developer environments’)

* How to use the ArcGIS Developer Help system

* How to read and interpret the ArcObjects object model diagrams with
Acrobat Reader

* How to use ESRI’s object browser, EOBrowser, to inspect the structure of
ArcObjects not visible with other object browsers

* How to access continually updated information at ESRI’s technical resource
Web site, bttp://arcgisdeveloperonline.esri.com

It is particularly important to understand the previous appendixes in this guide
along with the illustrated code samples before starting with this problem-solving
guide.

USING THE ArcOsjects PROBLEM-SOLVING GUIDE

This problem-solving guide uses a real-world ArcObjects programming problem
to explain the details of each step. To learn the methodology behind this guide,
first follow the instructions and complete the real-world programming task
defined below, then define your own problem and use these steps to solve your
own development task.

This problem-solving guide will solve this example task: Add a dataset called
States to ArcMap.

PART ONE: DEFINE THE ArcOsgjects PROGRAMMING TASK

The most important aspect of successfully using the problem-solving guide is
being able to define the task itself. A task may originate from a real-world GIS
problem at your workplace or may be the result of an enhancement you would
like to make to the existing ArcGIS system. A task may be as simple as adding a
Ul'ToolControl to the user interface of ArcMap to zoom in on the map or as de-
tailed as creating a custom feature for the geodatabase. In either case, to define
the task as completely as possible, you should consider the following steps:

1. Describe the problem using ArcGIS terminology.
2. Divide the task into smaller subtasks.
3. Decide where to compile the source code.

4. Find an existing sample or recommended methodology.

Appendix D ¢ ArcObjects problem-solving guide * 297

ARCOBJECTS PROBLEM-SOLVING GUIDE

To become familiar with basic ArcGIS terminol-
ogy, refer to these ESRI books: Getting Started
with ArcGlIS, Building a Geodatabase, and
Modeling Our World, as well as the other
resources mentioned earlier.

You should always begin by trying to write
ArcObjects code in the VBA environment in
ArcMap orArcCatalog. If necessary, this code can
be moved to a different development environ-
ment before final compilation and distribution.

298 « ArcGIS Desktop Developer Guide

Describe the problem in ArcGIS terms

When defining the problem, it is useful to frame the task with ArcGIS terminol-
ogy and describe the actions as completely as possible. This will help you find
topics in the help system and the relevant components in ArcObjects.

In many cases, this step will also force you to go back and review important
background topics and reading materials related to the task at hand. From this
research, you will gain further insight about how a particular task can be solved.

For this example, the original task description is Add a dataset called States to
ArcMap.

Using ArcGIS terminology, this statement could be expanded like this: Access the
States feature class from a personal geodatabase and add it to ArcMap.

The most noticeable change to the description is that it has been expanded by
identifying the datasets involved and using the proper ArcObjects terminology.
For example, the dataset named States has been more accurately defined as a
feature class that resides in an existing personal geodatabase (stored in a Microsoft
Access database).

Another important change is that the actions in the description have also been
more completely defined. It now reveals the fact that it will be necessary to open
the database first, then add a feature class in it to ArcMap. As you will see in the
next step, it is important to identify these actions, since they can be treated as
two separate programming tasks when building the final code.

Define subtasks

This step forces you to revisit the original task description and determine if it can
be broken down into smaller, more manageable subtasks. This process allows you
to focus on smaller parts of the original problem at one time and, therefore,
smaller sections of the ArcObjects object model diagrams when it comes time to
wrtite code. The easiest way to identify subtasks is to look for verbs or action
words that are hidden in the description. From the original task description, two
subtasks can be casily identified.

From your expanded statement—Access the States feature class from a personal
geodatabase and add it to ArcMap—you can identify two subtasks:

e Access the States feature class.
* Add the new layer to the map.

Each subtask will be solved individually as you traverse through Parts Two and
Three of this guide. This is important because it enables you to focus on small
parts of the problem and smaller sections of the object model diagrams.

Decide where to write the code

With the problem description and subtasks defined, you need to decide where to
write the code and how to provide the functionality to end users.

Remember that where you test code and where you write the final code are two
different issues. During the testing and initial design phase, it is always recom-
mended to start writing code as a VBA macro in either ArcMap or ArcCatalog,

ARCOBJECTS PROBLEM-SOLVING GUIDE

There, you can easily assemble, test, and debug the source and experiment with
any number of classes or interfaces. After completing the testing phase, you can
decide to leave the code as a VBA macro or move it to another format.

Deciding where to write the final application code can be a complicated matter,
and as you gain experience developing with ArcObjects, your decision making
will improve. In general, the answer is governed by the type of application you
are developing and how you want to deliver the functionality to end users.

In general, there are three ways to write ArcObjects code for ArcGIS Desktop
applications:

* Asa VBA macro in an ArcGIS Desktop application
* Asan ActiveX COM component, such as a DLL or OCX
e Asastandalone EXE

You should also note that browsing the samples and associated documentation
might help you determine where to locate your code. This is covered in detail in
the next step.

Writing VBA macros in ArcGIS applications

For information about how o get started with As mentioned, you should start development by using the VBA environment in

the VBA environment, see the VBA topic in one of the existing ArcGIS applications. VBA is a simple programming language
Appendix A, ‘Developer environments’, as well as with many utilities, such as design-time code completion and the object browset,
related topics in the ArcGIS Developer Help

that will help you assemble code quickly.
system.
Here are some more reasons to choose the VBA environment:

* It’s fast and easy to create, test, and debug macros inside ArcMap and
ArcCatalog.

* The standard ESRI type libraries are already referenced for you.

* Important global variables, such as the Application and Document, are available.
e It’s simple to assemble Ul forms using VBA and ActiveX components.

e It’s straightforward to integrate VBA code with new ArcObjects UIControls.
e It’s relatively easy to migrate VBA code to VB ActiveX DLL projects.

* Many code samples available in the help system are macros that can be cut,
pasted, and run within the VBA environment.

After the testing phase, you can easily save the VBA code into a Normal.mxt,
Project.mxd, or custom Project.mxt file. Projects, documents, and templates can
then be delivered to end users so they can take advantage of the new functional-
ity your application provides. (See the topic on storing customizations in
Chapter 3, ‘Developing for ArcGIS Desktop applications’.)

Writing ActiveX COM components

This approach of writing ActiveX COM compo-
nents must be taken if you want to extend the
existing ArcObjects architecture. Custom

If you want to use a programming language other than VBA or if you want to
package ArcObjects functionality into a COM DLL, EXE, or OCX, you will have

components can reside at the application or to work outside the VBA development environment. This approach generally
geodatabase level. requires creating a project, referencing ArcObject type libraties, adding code, then

compiling the source into a binary file.

Appendix D ¢ ArcObjects problem-solving guide ¢ 299

ARCOBJECTS PROBLEM-SOLVING GUIDE

More information on ArcGIS Engine can be found
in the What is ArcGIS? book.

For information on building standalone applica-

tions with ArcGIS Engine, refer to the ArcGIS
Engine Developer Guide.

300 ¢ ArcGIS Desktop Developer Guide

Writing ActiveX COM components should be done when you want to extend the
existing ArcObjects architecture by adding new custom components. The process
requires implementing one or more ArcObjects interfaces in the new object.

Unlike working in the VBA environment, all new components require Compo-
nent Category registration to work correctly.

Both these topics are discussed in Chapter 3, ‘Developing for ArcGIS Desktop
applications’.

These are some advantages of building custom components:
* They can be easily delivered to end users via custom setup programs.

* You can hide ArcObjects code in a binary file and deliver the functionality to
end users with a setup program.

* You can extend and customize virtually every aspect of the ArcGIS technol-
ogy.

Components can be broadly categorized into two areas of customization: those

that reside at the application level, such as custom buttons, toolbars, windows,

and extensions, and those that reside at the geodatabase level, such as custom

feature class extensions and custom features. Some of these more advanced

customizations cannot be accomplished through the VBA environment.

The main disadvantage of working outside the VBA environment is that you will
have to acquire and use another COM-compliant development tool. Another
consideration is the fact that you do not have direct access to the Application and
ThisDocument global variables.

The development tool you choose must support the creation of new components
as well as the implementation of COM interfaces to acquire a hook back into the
ArcGIS applications. For more details, see Chapter 3, ‘Developing for ArcGIS
Desktop applications’. Interfaces that provide this functionality will allow you to
acquite references to the Application and ThisDocument global variables, just as if
you were working in the VBA environment. Another disadvantage is that it is
often more difficult to debug the code. See the topic on Visual Basic in
Appendix A, ‘Developer environments’.

Standalone applications

ArcObjects can be used to write standalone applications. This generally requires
creating a project, referencing ArcObject type libraries, then assembling the
required code to support the functionality of the application.

There are several ESRI controls that can help you embed ArcObjects functional-
ity in your application. However, as an ArcGIS Desktop developer you can only
work with the ESRI Map and Pagel_ayont controls. The ArcGIS Engine Developer
Kit provides more controls and functionality and is the recommended solution
for creating complex standalone applications.

ARCOBJECTS PROBLEM-SOLVING GUIDE

Following are some advantages of building standalone applications with either
ArcGIS Desktop or ArcGIS Engine:

* You can use the ESRI Map control to simplify the embedding of ArcObjects
functionality in your application.

* You can design a highly customized user interface specific to your application.
* You can quickly create small, lightweight applications.
These are the disadvantages of building standalone applications:

* You cannot take advantage of the extensive functionality that ESRI has built
into the existing ArcGIS applications, such as ArcMap or ArcCatalog.

* If you are not using the Map control, you will have to provide your own map
display for visual applications.

* You will have to design your own data loading and layer management tools.
* You cannot use ArcMap documents or templates to their fullest capacity.

* You cannot take advantage of the components that give you the ability to
extend the existing ArcMap and ArcCatalog framework.

* None of the extensions, including the Editor, can be used.

Although it is possible, it is not recommended to create standalone applications if
the functionality you desire can be realized by extending existing ArcGIS applica-
tions, such as ArcMap and ArcCatalog. All ArcGIS applications share the same
application framework, designed to be extended by third-party developers.

If you create a standalone application, you have a significantly higher develop-
ment effort. The Map control mitigates but does not eliminate this additional
effort. Standalone applications are appropriate only for highly specialized imple-
mentations.

Of the three options for writing code—as VBA macros in ArcMap or ArcCatalog,
as ActiveX COM components, or as standalone applications—the example used
in this problem-solving guide, adding a dataset called States to ArcMap, will
simply be run as a VBA macro stored in a map document (.mxd file).

Find a related sample or recommended methodology

The last step is to search all the available resources for a code
sample and look for any documentation that may be related to the
task at hand. To accomplish this, you will need to make use of the
help resources and tools. As you may already know, there is often
more than one way to accomplish a programming task. The rec-
ommendation here is to search the available resources for
similar implementations to help you decide how to go about
solving the problem.

The easiest way to locate a sample is to search using the ArcGIS
Developer Help system.

1. Start the ArcGIS Developer Help system.
2. Click the Search tab and type “Add”.

Appendix D ¢ ArcObjects problem-solving guide * 301

ARCOBJECTS PROBLEM-SOLVING GUIDE

The samples in the ArcGIS Developer Help
system fall into two categories: tips and tools.
Tips are smaller examples of ArcObjects code

that you can generally cut and paste, then run as
aVBA script in ArcMap or ArcCatalog.Tools are
more complete examples of applications that
often require compilation and component
category registration. Many of the tools are
COM components themselves. If you find a tip or
tool that may be useful, be sure to store it in
the Favorites tab for future reference.

3. Sort by clicking the Title field. You can sort by location as well.

4. Browse down until you find “samples” and locate the “Add a shapefile pro-
grammatically” sample. Open the page and study the sample.

5. Click the Contents tab. This reveals the location of the sample. Browse the
other samples in this folder structure. Make note of the location of the
sample.

6. Click the Favorites tab, give the current topic a title, and add the sample to
your Favorites list.

Unfortunately, in this case it was not possible to find a sample that solves the
exact problem, but a sample was found that relates to the problem. The sample
found illustrates how to open and load a shapefile into ArcMap. Since you are not
ready to write code at this point, the sample was simply stored in the Favorites
list so it can be referenced later. This will still prove to be a valuable step later
when writing code.

Whether a sample was located or not, it is a good idea to look for
background information related to the current task. The ArcGIS

Developer Help system contains some topics that you might find
valuable in the development environments section. These pages

provide some useful information, such as the basic principles
related to working with ArcObjects in VB and VBA. Although
the documentation doesn’t relate to the problem description, it
still relates to the overall task since this example will be written as
a VBA macro. Therefore, it is a good idea to review this documen-
tation.

1. Open the Development Environments section in the ArcGIS
Developer Help system.

3

302 ¢ ArcGIS Desktop Developer Guide

2. Open the COM and Visual Basic 6 subsections, then review
the documentation related to the VBA development environment.

If nothing is found that directly relates to the task at hand, it is a good idea to
visit the other documentation available. You can check some other resources,
such as the ArcGIS Desktop Help, and ESRI books, such as What is AreGIS?,
Building a Geodatabase, and Modeling Our World.

Summary of Part One

Now that you have more cleatly defined the various components of the task and
have done some research on the topic, it is possible to move on to the next step,
which will help identify which object model diagram to start with.

Here is all the task-related information found in Part One of the problem-solving
guide for the current example:

Task defined in ArcGIS terminology: Access the States feature class from an
existing Access personal geodatabase and add it to ArcMap.

Subtask 1: Access the States feature class.

Subtask 2: Add the new layer to the map.

ARCOBJECTS PROBLEM-SOLVING GUIDE

It is important to use the correct ArcObjects
terminology when describing the original task to
extract meaningful keywords from each subtask.
These keywords are important because they can
be used later to search for topics in the help
system and for classes in the object model
diagrams.

. T T
N@sEEAT VN ee DDA

Where to write the code: As a VBA macro in ArcMap.
Located sample: Add a shapefile to ArcMap programmatically.

PART TWO: FIND THE CORRECT OBJECT MODEL DIAGRAM

This section explains how to use the help resources and tools to locate the correct
object model diagram required to solve a task. As a reminder, the remaining steps
in Parts Two and Three are designed to work through one subtask at a time.
Therefore, you will need to proceed through all the remaining steps with

Subtask 1, then come back here to solve Subtask 2.

Identify a subtask

Start with the first subtask defined in Part One.

Original task: Access the States feature class from an existing Access personal
geodatabase and add it to ArcMap.

Subtask 1: Access the States feature class.

Subtask 2: Add the new layer to ArcMap.

Extract keywords

This step requires that you extract keywords from the subtask description. This is
not an exact science, but the more ArcObjects terms used in the original descrip-
tion, the mote success you will have here. Therefore, it should be evident that it

is critical to define the initial task correctly in the first step of Part One.

Two terms can be extracted from the previously defined subtask: “access” and
“feature class”.

Search for the correct object model diagram

The objective of this step is to use the keywords defined above to identify the
correct object model diagram. One way to find the object model diagram is to use
Adobe Acrobat Reader to search the ArcGIS object model PDF
file. Searching the entire ArcGIS object model should lead you to
one or more words or classes that are directly associated with an

object model diagram.

The ArcGIS object model is a simplified version of the entire
ArcObjects library. This object model contains subsystems that are
composed of one or more object model diagrams.

The methodology here is to search the object model with the key-
words defined in the last step, identify the appropriate subsystem or

The ArcGIS Object Model.pdf file contains
subsystems that contain one or more object
model diagrams.This diagram only shows those
classes that are documented in the ArcObjects
book.To search against the entire ArcObjects
library,you can also use the AIOMDs.pdf file.

object model diagram, then go directly to the associated chapter in
the book to learn more about the related classes. The chapters of the book pro-
vide both a detailed description of the classes and a number of helpful code
samples.

Another method to find the object model diagram is to search the AIOMDs.pdf
file. This diagram contains all the object model diagrams with expanded inter-

Appendix D ¢ ArcObjects problem-solving guide * 303

ARCOBJECTS PROBLEM-SOLVING GUIDE

faces, members, and enumerations. It can be searched using Acrobat Reader just
like the ArcGIS object model diagram, but since it contains considerably more
detail, expect the search to point to many more hits. The advantage of using this
object model diagram is that it will cover virtually every class and interface in the
entire ArcObjects library at one time.

The remaining method involves searching the ArcGIS Developer Help system.
Here you can enter the keywords into the Index or Search tabs and look for
results that return an ArcObjects class, leading you to the object model diagram
documenting that class.

Use the Index tab to search for keywords in the ArcGIS Developer Help.
1. Open the ArcGIS Developer Help.

2. Click the Index tab and type in the keyword “access”.

You will find the only ArcObject class listed is the
gl s sccens wosonce poctony AccessWorkspaceFactory coclass.

Product Avalshiny

Avadatie wilh ArCQS Erre , ArCGIS Deskiog, and ArCGIS Server . . .

Itaces 3. Click AccessWorkspaceFactory coClass in the list and read the
. i description in the right pane. The library that contains this class is in
e Sty et e . o

R e patrentheses next to the class name at the top. In this case it is the
iy e esriDataSourcesGDB library. The corresponding object model dia-
IWorkspacFactony? Provalel scomss 1o members 1R Create ad . . R .
(esrGeabaiabae) s kil el it gram is DataSourcesGDBODbjectModel. Each library is usually
s) associated with an object model with a similar name.
Tra AccessWorkspaceF actory crastes Access Workipacet
|| Accessworkspaceractory i iha one and ordy instance of ts class. .:_I

4. Next type the “featureclass” keyword into the index.
The list will display the FeatureClass class.

5. Click the FeatureClass class and read the description in the right pane. This
class is located in the esriGeodatabase library. The corresponding object model
diagram is GeoDatabaseObjectModel.

In this example, the search results point to two geodatabase libraries and object
model diagrams. Therefore, this clearly indicates that you should start with these
diagrams to solve the subtask.

Review the documentation

With the object model diagrams identified, the last step in Part Two is to review
the available ArcObjects documentation. The best place to start is with the
Object Model Overviews section of the ArcGIS Developer Help
T ————————————; Y StEM. The Object Model Overviews Start page provides a brief

& x 3 & description of each subsystem that composes the ArcObjects
Object Model Overviews (o library. At a minimum, you will find an overview of each sub-

system that provides a description of the main classes associated
with each subsystem.

Review the appropriate Object Model Overview page in the
ArcGIS Developer Help system.

1. Go to the ArcGIS Developer Help system and click Object
Model Overviews.

2. From the Object Model Overviews Start page, click the de-
sired object model. For this example, click Geodatabase.

304 * ArcGIS Desktop Developer Guide

ARCOBJECTS PROBLEM-SOLVING GUIDE

3. Read the overview information available to learn about the classes that belong
to the selected object model diagram.

The object model diagram overviews provide some background information for
the most important classes in each object model diagram. From this, you should
be able to identify new keywords that you may have missed or even class names
that are directly related to the current subtask. Add these keywords to the exist-
ing keyword list to improve your ability to navigate through the object model
diagram.

From the Geodatabase Overview page, you should have been able to identify the
following keywords: Access, Feature class, Workspace, and Factory.

Reviewing this chapter should provide you with a solid understanding of what
the main classes and interfaces are for as well as some good code samples. This
last step is one of the most important parts of the entire problem-solving guide.

PART THREE: NAVIGATE THE OBJECT MODEL DIAGRAM

The last part of the guide involves navigating the object model diagrams and
assembling the required code to solve each subtask. This is generally the most
difficult step because it involves the use of many of the help resources and tools
and is generally not a linear process. As you become more familiar with the help
tools and the object model diagrams, this process will become easier.

Review the structure of the object model diagrams

It is a good idea to familiarize yourself with the general structure of the object
model diagrams before proceeding. The easiest way to accomplish this is to use
Acrobat Reader to zoom in and pan around each model.

1. Open the DataSourcesGDBObjectModel object model diagram with
Acrobat Reader.

2. Zoom in and pan around the diagram to view the overall structure.
You will notice that the workspace factories all inherit from the
WorkSpace Factory class in the geodatabase object model.

3. Repeat the steps with the GeoDatabaseObjectModel.

Another way to become familiar with the object model diagram is to
examine the relationship between classes and interfaces of an existing
sample. It is recommended that you physically trace the flow between
the classes and interfaces to understand how the classes relate to one
another. This knowledge will be useful since it will help you assemble
your own code in the next step.

| R

When searching the object model diagrams, it is

important to pay attention to the UML symbols In Part One, step 4, the “Add a shapefile to ArcMap programmatically” sample
that identify relationships between classes. If ~ was located. Use this to start exploring the geodatabase object model diagram.
there is no obvious relationship joining two))) . .
classes, or if they are located in completely 1. Click the Favorites tab where you saved the link to this sample in the ArcGIS
different parts of the model, you should keep in Developer Help system. Make note of the classes used in this sample.

mind that they are still likely associated with
each other in some way. It’s also important to
inspect all the interfaces associated with the
classes since they may contain members that are
references to other classes.

Appendix D ¢ ArcObjects problem-solving guide * 305

ARCOBJECTS PROBLEM-SOLVING GUIDE

b EE @

i) .
DataSourcesGDB Object Model 3

ArcGIS™ 9.0

o I Tt e e v e
CL—=—r— it

T

Product Ausilability

Intwstaves

Interaces

B354 Access Workapacs Factary

Svadatle wih ArCCIS Engew , ArTGIS Desktog, and AcGiS Server

actory CoClass (esriDalaSourcesGDBE) i

Bescription

{miriGentatabasn)
apacal acti
(wsriCenDatatins)

IWerkspacaF actary?
{osriGennatshase)

Enmarks

T AccessWorkspacaFactony Creates ACCass Warl spaces
ACcessWOrkspaceFactuey i tha ore and oy nataece of its Class =

Provades access 1o members for compacing
an Aceets databane

Eroveled accaes 1o mambans that ereste and
Opan workEpaces and supply werkspace
Ractery informataon.

Prvales access 1o mambers that Craate and
opan workrpacas and supply

factory miomatin.

T il

2. Open the geodatabase object model diagram and search for the
main classes used in the sample.

3. Follow the inheritance symbols all the way to the feature class.

4. Pay special attention to any inheritance relationships that may
exist.

Trace the flow between the classes and assemble code

In this step you will search for classes in the object model diagrams
based on the keywords identified for the current subtask. After
locating some potential classes, you will go to the ArcObjects
Developer Help system and look for any help topics that may be
available. The last step is to start writing the code based on the
knowledge you have gained from these steps.

Start with the first subtask by searching for the keywords in the
DataSourcesGDBODbjectModel object model diagram.

Subtask 1: Access the States feature class.
Keyword List: Access, Feature Class, Workspace, Factory

1. Using Acrobat Reader, zoom in to about 75 percent, and search
the DataSourcesGDBODbjectModel object model diagram for the
first keyword in the list: Access.

You should easily find the AccessWorkspacelactory class.

2. Once you find the class, go back to the ArcObjects Developer
Help system and use the Index tab to search for all instances of
AccessWorkspaceFactory. Once a help topic is located, browse the
available information along with any examples. To determine what
interfaces the class supports, expand the Interfaces hyperlink on the
page. Identify these below.

AccessWorkspacelactory supports the following interfaces:
IWorkspaceFactory, IWorkspaceFactory2, and IlocalDatabaseCompact.

If no help topic is available, use the Search tab to find all related
help documents in the system, such as samples, you might have
missed in the initial steps.

3. Now, return to the object model diagram and follow the inherit-
ance symbols that connect the AwessWorkspacelactory class to the
wormhole that says WorkspaceFactory in esriGeodatabase. A
wormhole is a link to another part of the ArcGIS Object model.

4. Open the Geodatabase object model diagram and locate the
Workspacelactory abstract class. Note that the abstract class supports
the IWorkspaceFactory interface. This information is valuable because
it indicates that AeccessWorkspacelactory also must implement

IWorkspaceFactory. It is important to note that this inheritance information can
only be derived from the object model diagram itself or from the discussions in
the associated chapters in this book.

306 * ArcGIS Desktop Developer Guide

ARCOBJECTS PROBLEM-SOLVING GUIDE

Al

= f‘g =]
AccessWorkspaceF actory Example

g

ahl—

At this point, you might also be interested in discovering what other coclasses
implement [Workspacelactory. The easiest way is to look at the coclasses that
inherit from Workspace on the object model diagram, but this can also be discov-
ered two other ways. The first is to use the ArcObjects Developer
Help system and click the Index tab to search for IWorkspace-

Factory. Expand the CoClasses that implement the
IWorkspaceFactory hypetlink to list the classes that support the
interface.

This will list all the coclasses for you. The second way is to use the
ESRI EOBrowser application to search for all the coclasses that
implement the same interface.

5. With the information you have gathered from the object
model diagram, the sample, the help system, and the EOBrowser,
you should be able to write some basic code to cocreate an in-
stance of the AccessWorkspaceFactory class. At this point, you

o

TN e L] e

could also go back to the ArcGIS Help system and look for an
example on the same page that was located for the AeessWorkspacelactory search.
With this information and from browsing the object model diagram, the code
could be assembled like this:

' Subtask 1. Access the States feature class.

Dim pWSF as IWorkspaceFactory

Set pWSF = New AccessWorkspaceFactory

6. Now, inspect the members of the IWorkspaceFactory interface and try to iden-
tify which one can be used to open the database. Again, this information can be
acquired using multiple tools. You can:

* Read and interpret the members on the object model diagram.

joiela)
-Bl[n—smmu—

e Search for the interface in the ArcGIS Developer Help system

WorkspaceFactory

actory O——

W WeorkspsaceCesripton (n pural Bockean] Smg
O Wrkspac Ty msilicrapaceTyon

b=

by expanding the Members hyperlink.

* Display the members in VB/VBA using IntelliSense or by
pressing F2 to view the object browser.

* Secarch for the interface using the ESRI EOBrowser and ex-
pand it to inspect all its members.

Although there are many avenues to take, it is generally recom-
mended to use the ArcGIS Developer Help system since it pro-
vides a description of each member, the required parameters, and
often a code sample.

Y
[FYE

7. After inspecting the members of [WorkspaceFactory, it should be obvious that
there are multiple members that can be used to open a geodatabase. In this case,
since the filepath of the database is known to be C:\data\US.mdb, the
IWorkspaceFactory::OpenFromFile member can be used. Since the
1WorkspaceFactory::OpenFromFile member returns a reference to an IWorkspace
interface, it will be necessary to store this return value.

Appendix D ¢ ArcObjects problem-solving guide « 307

ARCOBJECTS PROBLEM-SOLVING GUIDE

The code so far might look like this:
' Subtask 1. Access the States feature class.
Dim pWSF as IWorkspaceFactory
Dim pWS as IWorkspace

Set pWSF = New AccessWorkspaceFactory
Set pWS = pWSF.OpenFromFile("c:\data\US.mdb", 0)

8. If you inspect the [Workspace interface, you will see that it will take several
calls to search and open the States feature class if IWorkspace::Datasets or
IWorkspace::DatasetNames are used. In this case it will be necessary to loop
through all the feature classes available just to identify the S7azes feature class
in the enumeration. Since you already know the name of the feature class to
open, you should look for a way to optimize this process. The best resource at
this point would be the esriGeodatabase library overview in ArcGIS Devel-
oper Help, but if you inspect the class carefully, you might find it immediately.

9. If you look at the Workspace class on the object model diagram
e or if you revi.cw the esriGeodatabase library overview, you will
- m— T 3 notice that this class also supports the [FeaturelWWorkspace interface.
oz o1 m = 'This interface is designed to provide feature class-level access to a
= . workspace. It supports an [FeatureWorkspace::OpenFeatureClass
member, which takes a string name directly and returns an

B ubotes Fleades - [Geolkatabas{lbjectModel pil]

IFeatureClass reference. Since you can provide the name as a string
and directly return a reference, you should use this interface to
return a reference to the States feature class. To access the intet-
face, it will be necessary to use Querylnterface against the
IWorkspace reference. It should also be noted that the return value
must be stored as an [FeatureClass reference.

I : k|_=1 You should recognize that there is often more than one way to
oz o] [s . ; ;
solve a problem using the numerous classes and interfaces avail-
able in the ArcObjects library. When this is the case, you should
research the documentation and test to find out which set of classes and intet-
faces work best to solve your particular programming task.

After assembling the code it might look like this:
' Subtask 1. Access the States feature class.
Dim pWSF as IWorkspaceFactory
Dim pWS as IWorkspace
Dim pFWS as IFeatureWorkspace
Dim pFC as IFeatureClass

Set pWSF = New AccessWorkspaceFactory

Set pWS = pWSF.OpenFromFile("c:\data\US.mdb", 0)
Set pFWS = pWS ' QI

Set pFC = pFWS.OpenFeatureClass("States")

308 ¢ ArcGIS Desktop Developer Guide

ARCOBJECTS PROBLEM-SOLVING GUIDE

SRR

To optimize the code even further, rewrite it as follows:

' Subtask 1. Access the States feature class.
Dim pWSF as IWorkspaceFactory

Dim pFWS as IFeatureWorkspace

Dim pFC as IFeatureClass

Set pWSF = New AccessWorkspaceFactory
Set pFWS = pWSF.OpenFromFile("c:\data\US.mdb", 0)
Set pFC = pFWS.OpenFeatureClass(""States™)

Now that the code for the first subtask has been completed, you must return to
Part Two of the problem-solving guide to assemble the code for the last subtask.

If you return to the sample that was identified in Part One, step 4, you will
notice that there ate classes and interfaces that have not yet been located on an
object model diagram. Take this time to look for these classes in the ArcGIS
object model diagrams, step 1 of Part Two.

New keyword list: Application, MxDocument, Map, FeatureLayer, Add

AccessWorkspaceF actory Example

1. Using the ArcGIS Developer Help system, click the Favorites
tab where you saved the link to this sample. View the sample.

2. Click the Index tab and seatch for the keywords. Remember,
you are looking for items that lead to object classes and, ulti-
mately, library and object model names.

This step reveals matches in the following libraries and object
models:

Application coClass in esriArcMap; MxDocument coClass in
esriArcMapUI; Map and Featurelayer coClasses in esriCarto.

Go to step 2, trace the flow between the classes, and assemble
code. Start this process by searching for the keywords for the
current subtask.

Subtask 2: Add the layer to ArcMap.
Keyword List: Application, MxDocument, Map, FeatureLayer,
| Add
- R —
@;"::[E:\ _':::'Emé‘%';ﬂ,‘z 1. Using Acrobat Reader, search Fhe.relevant object model dia-
rrf-:‘y e J gram forh each keword. For Apphc?uon, you sh.ould find the
o= ﬁ'}"ﬁw%::‘;" Application class in the ArcMap object model diagram.
;%Lﬁ%ﬁm Inspect the interfaces that the class supports.
f%ﬁwﬁ:" 2. Once you find the class, go back to the ArcGIS Developer
;E*::“::;Y:; Help system and use the index to search for that class. For this
3 1 e [l ! LIj
i IEE T - | L

Appendix D ¢ ArcObjects problem-solving guide « 309

ARCOBJECTS PROBLEM-SOLVING GUIDE

first keyword, click Application coClass, then the esriArcMap reference in the
popup. Read the information available. The help documentation reveals that
Application is the primary object for ArcMap and the other desktop applications
that appeared in the popup. Click the Interfaces hyperlink and view the interfaces
associated with the Application class. Click LApplication (estiFramework) to view
the information available. Look for an example and write code to access the

application.

Tapphcation Interface (eswd ramework)

PMuDocument Interface {esritrodaplily
Breunben #ccass 1 marsters Ihat Seriid the b Dicumsot
Fresduct Availaisty

Ausisthe with ArcCIS Daviicy.

e T i
= Fhes mtasfica i3 & 3tirtre ot s wasch 4 T it skiects o Aizblap. Fior amarngle, 1t
e s iartacy provces wcce oot 2 . P cummently Taieced map, o8 04 tre mapt,
e Eocprtens rafacind m tha rurrs apche sty
foimsh Tolaranca wowry Az
[y
D gy
Dning ey
Dl e ey
et
futta o 45t s s v
—— - e & data Bpms @ sctated wihen
e —
[y r it

il o command sqssciah o active v

SRR 51 by 12 the carrent. foca g
Ty st # the document shews coects 15 ba masrted.
T
ke et -

et The rumtar of coreares vrmt o1 the, documart

| 310 * ArcGIS Desktop Developer Guide

' Subtask 2. Add the new Tayer to the map.
Dim pApp as IApplication
Set pApp = Application

Now expand the members of LApplication with the Members
hyperlink. This information reveals that it is possible to access the
current document with the LApplication::Document member. The
code could be updated as follows:

' Subtask 2. Add the new Tayer to the map.
Dim pApp as IApplication

Dim pDoc as IDocument

Set pApp = Application

Set pDoc = pApp.Document

3. Now open the ArcMapUI object model diagram and find the
MxDocument class. Notice the wormhole link from this class to
Application and Map. Inspect the interfaces associated with this
class. Notice that IDocument does not provide a member to access
the Map class, but the IMxDocument interface does. Navigate the
diagram to find the Map class.

4. Go back to the ArcGIS Developer Help system and use the
index to search for MxDocument. Read the information available.
Click the Interfaces hyperlink. Click IMxDocument and expand the
members. Notice that the IMxDocument interface supports the
FocusMap member and returns a reference to IMap. Use this mem-
ber to access the Map class.

Update the code to get a reference to the document’s map.

' Subtask 2. Add the new Tayer to the map.

Dim pApp as IApplication
Dim pDoc as IDocument
Dim pMxDoc as IMxDocument
Dim pMap as IMap

Set pApp = Application
Set pDoc = pApp.Document

ARCOBJECTS PROBLEM-SOLVING GUIDE

Set pMxDoc = pDoc 'QIL
Set pMap = pMxDoc.FocusMap

| 1Mo tnterface (esncanio)

5. Go back to the ArcGIS Developer Help system and use the
index to search for the Map coclass. Click the Interfaces hyperlink
and the IMap interface. Expand the members and locate the
AddlLayer member. This member will be used later to add a layer to
the map, but first you need to create the new layer and associate it
s with the “States” data.

e . 1o
Py fpagAs e e b created
- adayer a3t u tnyew 1 the mag

L ayers 4801 i ayes T i, o s
A A g vt aad 8 map RaToad 16 e map
B Arveert o el g The et afion [lbe') erogee the map of whe
Sl e S o et 6. Locate the wormhole in the Carto object model diagram that

Thoh s it B]

connects the Map class (page 1 of the Carto OMD) to the map layer
object model diagram (page 3 of the Carto OMD). Open the map
layer object model diagram and browse the contents. Search for the
Featurel_.ayer keyword until you find the class. Inspect the inheritance
relationship between Featurel_ayer and Layer. Also, identify the
intetface inheritance between [Featurel ayer and ILayer.

The interface inheritance information can also be acquired if you go
back to the ArcGIS Developer Help system and use the index to
search for the Featurel ayer coclass. Expand the Interfaces hyperlink
and notice that it supports the ILayer interface.

7. Now, inspect the members of IFeaturel ayer more closely by using
the ArcObjects Developer Help system or the object model diagram.
Notice it supports an IFeatnrelayer::FeatureClass member property.
From the documentation and the information in the esriCarto
library overview, it should be obvious that you need to use this
property to connect the FeatureClass class to the Featurel_ayer class.
The feature class contains a reference to the “States” dataset that
was acquired in Subtask 1. Also, set the name of the layer to
IFeatureClass::AliasName.

Crama 10 Lager 10 e msweed Saciy for th guen as
phase

i R The last step is to add the new layer to the Map.
B = L . =

' Subtask 2. Add the new Tayer to the map.

Dim pApp as IApplication
Dim pDoc as IDocument

Dim pMxDoc as IMxDocument
Dim pMap as IMap

Dim pFL as IFeaturelLayer

Set pApp = Application

Set pDoc = pApp.Document
Set pMxDoc = pDoc ' QI

Appendix D ¢ ArcObjects problem-solving guide < 311

ARCOBJECTS PROBLEM-SOLVING GUIDE

Set pMap = pMxDoc.FocusMap

Set pFL = New FeaturelLayer

Set pFL.FeatureClass = pFC ' pFC From Subtask 1.
pFL.Name = pFC.AliasName

pMap.AddLayer pFL

8. Now that you understand the relationship between the classes and interfaces,
the code can be optimized. Rewrite the code as follows:

' Subtask 2. Add the new Tayer to the map.

Dim pApp as IApplication

Dim pDoc as IMxDocument

Dim pFL as IFeaturelLayer

Set pApp = Application

Set pMxDoc = pApp.Document

Set pFL = New FeaturelLayer

Set pFL.FeatureClass = pFC ' pFC From Subtask 1.
pFL.Name = pFC.ATiasName

pMxDoc . FocusMap . AddLayer pFL

9. Now, assemble all the code from Subtasks 1 and 2. It will look like this:

' Subtask 1. Access the states feature class.
Dim pWSF as IWorkspaceFactory

Dim pFWS as IFeatureWorkspace

Dim pFC as IFeatureClass

Set pWSF = New AccessWorkspaceFactory
Set pFWS = pWSF.OpenFromFile("c:\data\US.mdb", 0)
Set pFC = pFWS.OpenFeatureClass(""States™)

' Subtask 2. Add the new Tayer to the map.
Dim pApp as IApplication

Dim pMxDoc as IMxDocument

Dim pFL as IFeaturelLayer

Set pApp = Application

Set pMxDoc = pApp.Document

Set pFL = New FeatureLayer

Set pFL.FeatureClass = pFC ' pFC from Subtask 1.
pFL.Name = pFC.ATiasName

pMxDoc . FocusMap . AddLayer pFL

SUMMARY

It should be clear now that there are several ways to solve ArcObjects program-
ming problems. The similarities between all of them, however, are being able to
use the help documents and resources effectively and being able to read the object
model diagrams. Hopefully, this guide has provided you with an opportunity to
visit the main resources that are available and exercise their use to solve this real-
world problem.

312 « ArcGIS Desktop Developer Guide

UlControls

UlControls are VBA-based commands whose
interfaces are only available in VBA.This
appendix shows class and interface diagrams

for these controls.

UICONTROL CLASSES

ICommanditem

UlControls represent buttons, combo
boxes, edit boxes, or tools in a custom
dialog box.

Button Combobox Editbox Tool
[[[

= | =

314 + ArcGIS Desktop Developer Guide

UlControls are VBA-based commands. This means that VBA code stored in a
document or template defines and determines the behavior of this type of com-
mand. If a UlControl was created in a document, it can only be accessed in that
document. If a UIContro/ was created in a template, it can be accessed in the
template and any document that uses the template. If a UlContro/ was created in
the Normal template, it can be accessed at all levels. There are four different
types of UlControl: UlButtonControl, UlComboBoxControl, ULEditBoxControl, and
UI'ToolControl.

To create a new UlControl, use the New UlContro/ button on the Customize dialog
box in the ArcGIS applications; this creates a UlContro/ stub. While the Custom-
ize dialog box is still open, you can drag the new UlContro/ to any toolbar. You
can then write the code that defines and determines the behavior of the
UlControl. This code is written in the Visual Basic Editor in the ThisDocument
Code window for the document or template in which you created the UIControl.

The new UlControl is listed in the Object box on the Code window; select the
UlControl in this list. Then, click one of the functions listed in the Procedures/
Events box on the Code window. This will stub out the function in the Code
window. You can now write your code. When the Visual Basic Editor is open,
your UlButtonControl is in design mode. To fully test your button in ArcMap or
ArcCatalog, you need to close the Visual Basic Editor.

The interfaces for UlControls are usable only in Visual Basic for Applications.

UIBUTTONCONTROL CLASS

|UIButton- A UlButtonControl acts as a button or menu item that performs a simple task when

CORUOIERETEIC UlButton- clicked.
Control
IUIButtonControlEvents : UlButtonControl Events interface
A UlButtonControl acts butt «4— Checked: Boolean Requests whether the specified item is checked.
u 'on ontrof a as a. utton or <4— Click The specified item was clicked.
menu item that performs a simple task 4— Enabled: Boolean Requests whether the specified item is enabled.
when clicked.You can set properties such 4— Message: String Requests the current message text for the specified item.
" <4— ToolTip: Strin, Requests the current Tooltip text for the specified item.
as status bar message, ToolTip, enabled P 9 = 2 =

state, and checked state. The 1UIButtonControlEvents interface defines the properties of a UlButtonControl,

such as the enabled state, checked state, ToolTip, and status bar message. This
interface also has a Click method that defines what action occurs when the
button is clicked.

The following VBA code is a full implementation of a UIButtonControl that re-
ports the number of selected features in all the layers. This control is enabled only
when there are layers in the map.

Private Function UIButtonControll_Checked() As Boolean
UIButtonControll_Checked = False
End Function

Private Sub UIButtonControll_Click()
Dim pMxDoc As IMxDocument
Dim SelCount As Long
Set pMxDoc = Application.Document
SelCount = pMxDoc.FocusMap.SelectionCount
MsgBox SelCount

End Sub

Private Function UIButtonControll_Enabled() As Boolean
Dim pMxDoc As IMxDocument
Dim LayerCount As Long
Set pMxDoc = Application.Document
LayerCount = pMxDoc.FocusMap.LayerCount
If LayerCount > O Then
UIButtonControll_Enabled = True
Else
UIButtonControll_Enabled = False
End If
End Function

Private Function UIButtonControll Message() As String
UIButtonControll_Message = "Return selection count for all Tayers"
End Function

Private Function UIButtonControll _ToolTip() As String

UIButtonControll_ToolTip = "Selection Count"
End Function

Appendix E ¢ UlControls < 315

UIComMmBoBoxCONTROL CLASS

A UlComboBoxControl has properties and methods that allow you to change, add,
and remove items in the combo box list. The EditChange, SelectionChange, and
Keydown events allow you to control what happens when a user changes the text

IUIComboBoxControl &
1UIComboBox-
ControlEvents O

UlCombo-

BoxControl

A UlComboBoxControl is a dropdown
list box control that can be added to a
toolbar.

or selection in the combo box.

IUIComboBoxControlEvents :

<— EditChange

<— Enabled: Boolean

<— GotFocus

<4— KeyDown (in keyCode: Long, in shift:
Long)

«— LostFocus

<4— Message: String

<— SelectionChange (in newindex: Long)
<«4— ToolTip: String

UlComboBoxControl Events interface

Occurs when the user types within the edit portion of the combobox.
Requests whether the specified item is enabled.

Occurs when UlComboBoxControl gets focus.

Occurs when the user presses a key.

Occurs when UlComboBoxControl loses focus.

Requests the current message text for the specified item.
Occurs when the user selects an item in the combobox.
Requests the current Tooltip text for the specified item.

The IUIComboBoxControlEvents interface defines the properties of a
UlIComboBoxControl, such as the enabled state, ToolTip, and status bar message.
This intetface also has EditChange, KeyDown, and SelectionChange methods that
allow you to control what happens when a user changes the text or selection in

the combo box.

The following VBA code displays a message box that reports the currently se-
lected item when the selection changes in the combo box.

Private Sub UIComboBoxControll_SelectionChange(ByVal newIndex As Long)
MsgBox UIComboBoxControll.Item(newIndex)

End Sub

IUIComboBoxControl : IDispatch

=—a EditText: String

=— |tem (in index: Long) : String
=— |temCount: Long

=—a |istindex: Long

«4— Addltem (in itemText: String, index:
Variant)

4— Deleteltem (in index: Long)

«4— RemoveAll

UlComboBox Control interface

Returns or sets the edit text within the combobox.

Returns the text at the specified index.

Returns the number of items currently inside of the combobox.
Returns or sets the selected index within the combobox.

Adds an item to the combobox, optionally at the specified index.

Deletes an item from the combobox at the specified index.
Removes all items from the combobox.

The IUIComboBoxControl interface has properties and methods that allow you to
change, edit, and remove items in the combo box list.

The following VBA macro adds items to UIComboBoxControll and selects the first

item in the list.
Pub1ic Sub PopulateComboBox()

316 * ArcGIS Desktop Developer Guide

UIComboBoxControll.AddItem "Red"

UIComboBoxControll.AddItem "Green"

UIComboBoxControll.AddItem "Blue"

UIComboBoxControll.AddItem "Yellow"

UIComboBoxControll.ListIndex = 0
End Sub

UIEDITBOXCONTROL CLASS

A UIEditBox has a property to set the text that appears in the Edit box. The
ViEdiBoxConvel | UIEditBox- Change and Keydown events allow you to control what happens when a user
ControlEvents Control changes the text in the Edit box.

IUIEditBoxControlEvents : UIEditBoxControl Events interface
A UlEditBoxControl is an editable text

box control that can be added to a <«4— Change Occurs when the user types within the editbox.

<4— Enabled: Boolean Requests whether the specified item is enabled.
toolbar. <4— GotFocus Occurs when UIEditBoxControl gets focus.
“ KEyDO)Wﬂ (in keyCode: Long, in shift: Occurs when the user presses a key.
ong,

<— LostFocus Occurs when UIEditBoxControl loses focus.
4— Message: String Requests the current message text for the specified item.
<«4— ToolTip: String Requests the current Tooltip text for the specified item.

The IUIEditBoxControlEvents interface defines the properties of a
UIEditBoxControl, such as the enabled state, ToolTip, and status bar message.

This interface also has Change and KeyDown methods that allow you to control
what happens when a user changes the text in the Edit box.

The following VBA code uses the KeyDown method to report the current text in
the Edit box if Return is pressed.
Private Sub UIEditBoxControll_KeyDown(ByVal keyCode As Long, ByVal shift As
Long)
If keyCode = vbKeyReturn Then
MsgBox UIEditBoxControll.Text

End If
End Sub

IUIEditBoxControl : IDispatch UIEditBoxControl interface
== Text: String Returns or sets the editbox text.
<4— Clear Clears the contents of the editbox.

The IUIEditBoxControl interface has a Texz property for getting and setting the
text in the UIEditBox control and a Clear method for deleting the text.

The following VBA macro sets the text in a UIEditBoxContro/ called
UIEditBoxControll.

Public Sub SetText()
UIEditBoxControll.Text = "Hello"
End Sub

Appendix E ¢ UlControls * 317

UITooLCONTROL CLASS

A UlIToolControl is similar to a COM command that implements the IToo/ inter-
face. This type of control can interact with the application’s display. You can set
all the properties that UlButtonControls have and define what occurs on events,
including mouse move, mouse button press and release, keyboard key press and
release, double-click, and right-click.

IUIToolControlEvents ©

UlTool-

Control

A UlToolControl interacts with the
application’s display.

IUIToolControlEvents :

<— ContextMenu (in x: Long, iny: Long) :
Boolean

<— CursorlD: Variant

<— DblClick

4— Deactivate: Boolean

<— Enabled: Boolean

<4— KeyDown (in keyCode: Long, in shift:
Long)

<— KeyUp (in keyCode: Long, in shift: Long)

<— Message: String

4— MouseDown (in button: Long, in shift:
Long, in x: Long, in y: Long)

4— MouseMove (in button: Long, in shift:
Long, in x: Long, in y: Long)

<— MouseUp (in button: Long, in shift: Long,
in x: Long, iny: Long)

<— Refresh (in hDC: Long)

<— Select

UlToolControl Events interface

Occurs when the user clicks the right mouse button.

Requests the cursor ID of the specified item.
Occurs when the user double clicks the mouse.
Occurs when the tool is deactivated.

Requests whether the specified item is enabled.
Occurs when the user presses a key.

Occurs when the user releases a key.

Requests the current message text for the specified item.
Occurs when the user presses a mouse button.

Occurs when the user moves the mouse.

Occurs when the user releases a mouse button.

Occurs when the map is refreshed.
Occurs when the tool is selected.

<«4— ToolTip: String

Requests the current Tooltip text for the specified item.

The IUIToolControlEvents interface defines the properties of a UlToo/Control, such
as the enabled state, cursor, ToolTip, and status bar message. This interface also
has methods that allow you to control what happens on events, including mouse

move, mouse button press and release, keyboard key press and release, double-
click, and right-click.

The following VBA code displays the x,y coordinates of the left mouse button
click in the ArcMap status bar message.

Private Sub UIToolControll_MouseDown(ByVal button As Long, _
ByVal shift As Long, ByVal x As Long, ByVal y As Long)
' Check for Teft button press
If button = 1 Then
' Convert x and y to map units.
Dim pPoint As IPoint
Dim pMxApp As IMxApplication
Set pMxApp = Application
Set pPoint = pMxApp.Display.DisplayTransformation.ToMapPoint(x, y)
' Set the statusbar message
Application.StatusBar.Message(0) = Str(pPoint.x) & "," & Str(pPoint.y)
End If
End Sub

318 * ArcGIS Desktop Developer Guide

Bibliography

This bibliography represents some of the books developers at ESRI

reference when developing ArcGIS applications.

BIBLIOGRAPHY

320 * ArcGIS Desktop Developer Guide

This bibliography is not intended as a complete resource, but it does contain many
of the everyday references that ESRI developers use when developing Visual
Basic, Visual C++, Visual Studio .NET code, and ArcObjects.

It is not necessary to buy all these books before programming in COM,; rather,
look at these books and others that are available, and perhaps buy the one most
suitable to your development track. The books listed are from vatrious companies;
however, there are many other companies producing books for developers of
COM components. You are encouraged to look at these other books, too.

ATL

Grimes, Richard. ATIL. COM Programmer’s Reference. Chicago: Wrox Press Inc., 1998.
Grimes, Richard. Professional ATI. COM Programmeing. Chicago: Wrox Press Inc., 1998.

Grimes, Richard, et al. Beginning ATI. 3 COM Programming. Chicago: Wrox Press
Inc., 1999.

King, Brad, and George Shepherd. Inside ATI .. Redmond, WA: Microsoft Press, 1999.
Rector, Brent, Chris Sells, and Jim Springfield. ATL. Internals. Reading, MA:
Addison—Wesley, 1999.

C++

Lippman, Stanley. C++ Primer: Second Edition. Reading, MA: Addison—Wesley, 1991.
Lippman, Stanley. Inside the C++ Object Model. Reading, MA: Addison—Wesley, 1996.

Meyers, Scott. Effective C++: 50 Specific Ways to Improve Your Programs and Designs.
Reading, MA: Addison—Wesley, 1992.

Meyers, Scott. More Effective C++: 35 New Ways to Lmprove Your Programs and
Designs. Reading, MA: Addison—Wesley, 1996.

Shepard, George, and David Kruglinski. Inside Visual C++: Fifth Edition.
Redmond, WA: Microsoft Press, 1998.

Stroustrup, Bjarne. The C++ Programming Language: Third Edition. Reading, MA:
Addison—Wesley, 1997.

COM

Box, Don. Essential COM. Reading, MA: Addison—Wesley, 1998.

Chappell, David. Understanding ActiveX and OLE: A Guide for Developers and
Managers. Redmond, WA: Microsoft Press, 1996.

Effective COM: 50 Ways to Improve Your COM and MTS-Based Applications. Edited
by Don Box, Keith Brown, Tim Ewald, and Chris Sells. Reading, MA:
Addison—Wesley, 1998.

Major, Al. COM IDL. and Interface Design. Chicago: Wrox Press Inc., 1999.
Platt, David S. Understanding COM+. Redmond, WA: Microsoft Press, 1999.

Rogerson, Dale. Inside COM: Microsoft’s Component Object Model. Redmond, WA:
Microsoft Press, 1997.

BIBLIOGRAPHY

Software Engineering

Gamma, Erich, et al. Design Patterns: Elements of Rensable Object-Oriented Software.
Reading, MA: Addison—Wesley, 1995.

The New Hacker’s Dictionary: Second Edition. Edited by Eric Raymond. Cambridge,
MA: MIT Press, 1993.

VBA

Cummings, Steve. ["'BA For Dummies. New York: IDG Books Worldwide, 1999.

Getz, Ken, and Mike Gilbert. IV'BA Develgpers Handbook. San Francisco: Sybex, 1997.

Lomax, Paul. VB and V'BA in a Nutshell: The I.angnage. Sebastopol, CA: O’Reilly
& Associates, 1998.

Visual Basic 6
Lewis, Thomas. I”B COM. Chicago: Wrox Press Inc., 1999.
Microsoft Visual Basic 6.0 Programmer’s Guide. Redmond, WA: Microsoft Press, 1998.

Pattison, Ted. Programming Distributed Applications With COM and Microsoft Visual
Basic 6.0. Redmond, WA: Microsoft Press, 1998.

Wright, Peter. Beginning Visual Basic 6 Objects. Chicago: Wrox Press Inc., 1998.

Visual Studio .NET

Blair, Richard, et al. Beginning 1V'B .NET. Birmingham, UK: Wrox Press Inc.,
2002.

Box, Don, and Chris Sells. Essential NET, The Common Langnage Runtine.
Volume 1. Boston: Addison—Wesley, 2002.

Chappell, David. Understanding NET, A Tutorial and Analysis. Boston: Addison—
Wesley, 2002.

Nathan, A. .NET and COM: The Complete Interoperability Guide. Indianapolis, IN:
Sams Publishing, 2002.

Reynolds—Haertle, Robin A. OOP With Microsoft V'isual Basic INET and Microsoft
Visnal C# Step by Step. Redmond, WA: Microsoft Press, 2002.

Templeman, Julian, and John Paul Mueller. COM Programming With Microsoft
.NET. Redmond, WA: Microsoft Press, 2003.

Appendix F ¢ Bibliography « 321

Index

A

Abstract class 135

Active Template Library. See ATL
ActiveX DLL 8, 172-173

Addref method. See IUnknown interface
Aggregation. See COM: aggregation
AOiInitialize coclass 75

Apartment 141142

APl 12
Application object 171, 174
ArcCatalog
customizing 52
described 7
ArcGIS

development
possibilities 3
ArcGIS 9 Developer overview 2
ArcGIS architecture
ArcObjects libraries 20
developed 19
extendable 19
key concepts 19
modular
benefits 19
requirements 19
compatibility 19
modularity 19
multiple platform support 19
scalability 19
ArcGIS Desktop
common application framework 46
customization options 47
custom objects 48
extensions 48
framework components 48
user interface customization 47
VBA macros 47
VBA Ul controls 47
deployments
ArcEditor 74
Arcinfo 74
ArcView 74
object models 74
using one code base 74
graphical user interface 46
supported APIs
COM 23
NET 23

ArcGIS Desktop application libraries 33
3DAnalystUl 40
ArcCatalog 35
ArcCatalogUl 35
ArcGlobe 40
ArcMap 36
ArcMapUl 36
ArcReaderControl 41
ArcScan 4l
ArcScene 40
CartoUl 35
Catalog 34
CatalogUl 35
DataSourcesRasterUl 35
DisplayUl 34
Editor 36
EditorExt 38
Framework 34
GeoDatabaseDistributedUl 38
GeoDatabaseUl 34
Geoprocessing 38
GeoprocessingUl 38
GeoStatisticalAnalyst 41
GeoStatisticalAnalystUl 41
GlobeCoreUl 40
LocationUl 36
Maplex 42
OutputExtensions 38
OutputExtensionsUl 40
OutputUl 34
Publisher 41
PublisherUl 42
SpatialAnalystUl 40
SurveyDataEx 43
SurveyExt 42
SurveyPkgs 42
TrackingAnalyst 42
TrackingAnalystUl 42

ArcGIS Desktop applications 4
ArcCatalog 6
ArcMap 6
ArcToolbox 6

ArcGIS Desktop components
building 68

basic steps 68

ArcGIS Desktop Developer Kit
described 4

ArcGIS Desktop extensions 6

ArcGIS Desktop license checking 74

ArcGIS Desktop software products 6
ArcEditor 6
Arcinfo 6
ArcView 6

ArcGIS Developer resources 12
add-ins 14

Index * 323

ArcGIS Developer Documentation Series 14
ArcGIS Developer Online Web site 15
Developer Tools 13
ESRI Support Center 16
Samples 12
Training 16
Visual Basic 6 14
ESRI Align Controls with Tab Index 14
ESRI Automatic References 14
ESRI Code Converter 14
ESRI Command Creation Wizard 14
ESRI Compile and Register 14
ESRI ErrorHandler Generator 14
ESRI ErrorHandler Remover 14
ESRI Interface Implementer 14
Visual Studio .NET 14
ESRI .NET Code Converter 14
ESRI Component Category Registrar 14
ESRI GUID Generator 14
ArcGIS developer tools
Component Categories Manager |13
ESRI Object Browser |3
install directory 13
exceptions 13
Library Locator 13
ArcGIS Engine
developer components

shown 18

ArcGIS Engine Developer Guide
described 14

ArcGIS Engine Developer Kit
described 4

ArcGIS Engine libraries 25, 26-27
3DAnalyst 31
Carto 28

Controls 31
DataSourcesFile 28
DataSourcesGDB 28
DataSourcesOleDB 28
DataSourcesRaster 28
Display 27
GeoAnalyst 31
GeoDatabase 27
GeoDatabaseDistributed 28
Geometry 26
GISClient 27
GlobeCore 31
Location 30
NetworkAnalysis 30
Output 27

Server 27
SpatialAnalyst 32
System 26

SystemUl 26

324 ¢ ArcGIS Desktop Developer Guide

ArcGIS objects
library
subdividing 20
ArcGIS Server Developer Guide

described 15
ArcGIS Software Developer Kit. See SDK
ArcGlobe

customizing 51

document extension (.3dd) 52

Normal.3dt 52

ArcMap

customizing 50
global customization with project templates 51
map documents 50
map templates 50
selective customization with project templates 50

described 6

document extension (.mxd) 50

starting programmatically 175

template 166, 170

ArcObjects 3

accessing APls 23

apartment threading model 20

categories 18

coarse-grained objects 3

consuming the APl 23

described 18

developing with 4

end use of objects 18
ArcGIS Desktop 18
ArcGIS Engine 18
ArcGIS Server 18

extending the APl 23
COM 23
NET 24

fine-grained objects 3

illustrated code samples 263
add feature class to ArcMap 268
add layer to ArcMap using GxDialog 270
add map surround to page layout 278
add text callout to active view 280
display map extent in GxView as envelope 290
display raster cell value in status bar 284
draw digitized line onscreen 266
edit feature class schema 292
export current view 286
geometry projection 282
locate and execute command on toolbar 265
loop through selected area features 274
print current view 288
spatial query 276
style gallery auto symbol selection 272

license checking
application 75
extension 75

functional 77, 78
types of 74

problem-solving guide 295
Part I: Define the ArcObjects Programming Task 297
Part 2: Find the correct object model diagram 303
Part 3: Navigate the object model diagram 305

requirements 18

Threads in Isolation model 21

ArcObjects library

C++

header file 20
COM

type library 20
components

requirements 20
Java

Java package 20
NET

.NET Interop Assembly 20

ArcScene

customizing 51
document extension (.sxd) 52
Normal.sxt 52

ArcToolbox 6

ATL 178

Bibliography 319
Binding 139
BSTR 151

C

C++. See Visual C++
Callback mechanism 138
Class factory. See COM: class factory
Classes 134
Coclass 135
Coding standards 144. See also Visual Basic: coding
guidelines; Visual C++: coding guidelines
COM
Active Template Library. See ATL
aggregation 140-141
background 132-133
class factory 134
client 133
client storage 146
containment 140-141
described 132-143
Direct-To-COM (DTC). See also Direct-To-COM
DLL 133
EXE 133
instantiating objects 142
instantiation of features 150

interface. See also Interface
described 135

marshalling 141

review 64

server 133

COM API 23

limitations
Visual Basic language 23

supported platform 24

Com DLLs
packing and deploying
methods 89
Commands with VBA
custom
creating 8

Compatibility 19, 21
maintaining between releases 21
Component category 65, 142, I51-152, 173
Component Category Manager 152
Component development 64
languages
C++ Builder 67
Delphi 67
Visual Basic 6 67
Visual C++ 67
Visual Studio 6 67
Visual Studio NET 67
performance differences 67
Component development environment
choosing 67
factors 67
Component Object Model. See COM
Components
application level 9
custom 9
advantages of building 9
writing 8
domain-specific 6
functionality
described 66
geodatabase level 9
plugging into ArcGIS Desktop 65
Containment. See COM: containment
CORBA 132
Cross-thread communication
reducing 21
Cursor
insert 149-150
recycling 149
update 149-150
Custom feature 140
Custom objects
creating 8
Customizations
storing

Index * 325

documents and templates 49

Customizing ArcGIS Desktop applications

introduced 7

D

Data types 150-151
DCE 134, 137

Debugging. See Visual Basic: debugging; Visual C++:

debugging
Desktop GIS 2
Developer help
Start menu options
shown 12
Direct-To-COM 180
Dispatch event
interface 138
DLL 136, 143, 172-173
customizations
packing and deploying 86
developments
packing and deploying 87
DTC. See Direct-To-COM
Dynamic Link Library (DLL). See DLL

Edit operations 149
Editing

rules for geodatabase integrity 148—150

Editor coclass 148
EditSelection coclass 161
Embedded Gl 2
Enumerator interfaces 146, 165
Envelope coclass 146
Error handling 146, 155, 160
ESRI Object Browser
displayed 13
Event handling 147-148, 162
Exception handling. See Error handling

F

Feature
COM instantiation of 150
editing shape of 150
Feature CoClass 150
FeatureLayer CoClass 164, 166

G

Geodatabase

editing rules 148-150
Globally unique identifier. See GUID
GUID 65, 134, 142

326 ¢ ArcGIS Desktop Developer Guide

GxDocument CoClass 167

H

HRESULT 80, 81, 146, 160
license-related 83

|ActiveViewEvents interface 173
IAOInitialize interface 75
|IApplication interface 138, 174, 175
|ICommand interface 65, 177
Identifies interface 146

IDispatch interface 139-140, 147
IDL 137, 150-152

|IDocument interface 167, 174, 175
IDocumentEvents interface 138
IDocumentEventsDisp interface 138
IEnumFeature interface 165
IEnumGxObject interface 161
|Extension interface |51, 173

IMap interface 164

IMxDocument interface 164

Inheritance

interface 140

type. See Type inheritance
Interface

and Visual Basic 156—159

default 138, 157

deprecated 136

described 134-136

notification interface 146

optional 136

outbound 138, 147-148, 162, 173
Interface Definition Language (IDL). See IDL
IPoint interface 159, 160, 163, 164
IPolygon interface 146
IRootLevelMenu interface 146
Is keyword 148, 164
IShortcutMenu interface 146
IlUnknown interface 136137, 138, 156—159
IWorkspaceEdit interface 148, 149

J

Java 132
JavaScript 139

M

Main STA 21
Map template
described 50
Marshalling. See COM: marshalling

Method calls
license-related HRESULTs
returned 84
Microsoft Component Object Model (COM)
8, 18, 132. See also COM
Microsoft Interface Definition Language. See IDL
Mobile GIS 2
Modularity 19
Multithreaded applications
considerations 20
scalability 20
thread safety 20
MxDocument CoClass 167

N

NET 46

NET API
exceptions 24
supported platform 24

NET Framework DLLs
packing and deploying

methods 87

Normal template 51
Normal.3dt 52
Normal.gxt 52
Normal.mxt 51
Normal.sxt 52
Windows 2000 and XP 51

Notification interface 146

o

Object browser utility 145
Object Definition Language. See IDL
Object library. See Type library
Object model diagrams
classes and objects
abstract class 261
class 261
coclass 261
described 261
composition
described 262
instantiation
described 262
interpreting 260
relationships
abstract class 261
multiplicity 261
types of 261
type inheritance
described 262
OLE automation 24
Open Group's Distributed Computing Environment. See

DCE
Outbound interface. See Interface: outbound

P

Platform support
multiple 19
described 21
Point CoClass 159, 160, 163
Polymorphism 135
ProglD 172, 183
Programmable identifier. See Prog ID
Property by reference 147, 159, 161
Property by value 147, 161

Q

Ql. See Query interface
Query

performance 149
Query interface 136-137

R

Regedit 152
Registry 142-143, 152
script 152

Release method. See IUnknown interface

S

Scalability 19, 20
achieving 20
ArcEngine
ArcObjects components 20
ArcServer
ArcObjects components 20
memory within the objects 20
multithreaded applications 20
SCM 141, 142
SDK 225, 226, 239, 240, 241, 244, 254
Server GIS 2
Set |6l
Singleton objects 134, 175
SRI Library Locator
displayed 13

T

Tabindex property 153

Table 139, 173
ThisDocument object 167, 171, 174
Thread 141

Type inheritance 134
Type library 137, 150, 159, 174

Index * 327

VB reference 174 tutorial 57

TypeOf keyword 164 creating a tool in VBA
tutorial 61
U getting help in the Code window
tutorial 59
UML diagrams invoking the Visual Basic Editor directly
types of classes shown 261 tutorial 58
Unicode 197, 199 preset ArcObjects variables 55
Unified Modeling Language (UML) 260 Application variable 56
Universally Unique Identifier (UUID). See GUID ThisDocument 56
Using this guide 10 VBA project organization 56
chapter guide 10 VBA macros in ArcGIS applications
writing 8
A" VBScript 139
VBVM. See Visual Basic: Virtual Machine (VBVM)
VB. See Visual Basic Visual Basic
VBA. See Visual Basic; Visual Basic for Applications arrays 154
VBA customizations 53 coding guidelines 153-165
adding a menu to a toolbar coding standards
tutorial 55 ambiguous type matching 155
adding buttons to a toolbar arrays 154
tutorial 54 bitwise operators 155
creating a new toolbar default properties 154
tutorial 53 indentation 154
removing buttons from a toolbar intermodule referencing 154
tutorial 54 multiple property operations 154
renaming a toolbar order of conditional determination 154
tutorial 54 parentheses 153
saving changes to a template type suffixes 155
tutorial 55 variable declaration 153
showing and hiding toolbars While Wend constructs 156
tutorial 53 collection object 165
tutorials 53 collections 165
user interface creating COM components 172
tutorial 53 data types |51
VBA development environment 46 debugging 176—178
VBA developments with ATL helper object 178
packing and deploying with Visual C++ 177
methods 86 error handling 155
VBA environment event handling 162
reasons to choose 8 getting handle to application 174-176
VBA macros 55 implementing interfaces 173
adding a macro to a toolbar interfaces 156159
tutorial 58 Is keyword 164
adding code for the UlButtonControl Magic example 158
tutorial 60 memory management |55
adding code for the UlToolControl methods 161
tutorial 61 parameters 162
ArcID module 56 passing data between modules 163
calling built-in commands PictureBox 155
tutorial 59 starting ArcMap 175
changing button properties 63 TypeOf keyword 164
creating a command in VBA variables
tutorial 60 Option Explicit 153
creating a macro Private 153

328 ¢ ArcGIS Desktop Developer Guide

Public 153
Virtual Machine (VBVM) 156, 159, 160
Visual Basic 6 46
add-ins
displayed 14
limitations 67
Visual Basic for Applications 138
and ArcGIS 166-171
customizations
packing and deploying 86
developing
disadvantages 64
getting started 167
locking code 170
UlControls
described 313
UlButtonControl class 315
UlComboBoxControl class 316
UlControl classes 314
UlEditBoxControl class 317
UlToolControl class 318
Visual C++
Active Template Library. See ATL
coding guidelines 195-220
coding standards
argument names 196
function names 195
type names |95
data types |51
debugging 196-220
naming conventions 195

w

Windows NT
profiles location 51
Workspace CoClass 148

Index * 329

	Contents
	1: Introducing ArcGIS Desktop development
	ArcGIS 9 developer overview
	ArcGIS Desktop developer overview
	Using this guide
	ArcGIS developer resources

	2: ArcGIS software architecture
	ArcGIS software architecture
	ArcGIS application programming interfaces
	ArcGIS Engine libraries
	ArcGIS Desktop application libraries

	3: Developing for ArcGIS Desktop applications
	Customizing ArcGIS Desktop
	Storing customizations
	Customizing ArcGIS Desktop applications with VBA
	Component development
	Choosing a component development environment
	Building an ArcGIS Desktop component

	4: Licensing and deployment
	ArcGIS Desktop license checking
	Packing and deploying customizations

	5: Developer scenarios
	Create a toolbar: Command, Tool, and Menu
	Create a toolbar: command
	Create a toolbar: tool
	Create a toolbar: menu
	Create a toolbar: toolbar

	Extensions
	Dockable window

	Appendix A: Developer environments
	The Microsoft Component Object Model
	Developing with ArcObjects
	The Visual Basic 6 environment
	Visual Basic for Applications
	The Visual Basic 6 development environment
	.NET Application Programming Interface

	Appendix B: Reading the object model diagrams
	Interpreting the object model diagrams

	Appendix C: Illustrated code samples
	Reading the illustrated code samples
	Locate and execute command on toolbar
	Draw digitized line onscreen
	Add feature class to ArcMap
	Add layer to ArcMap using GxDialog
	Style gallery auto symbol selection
	Loop through selected area features
	Spatial query
	Add map surround to page layout
	Add text callout to active view
	Geometry projection
	Display raster cell value in status bar
	Export current view
	Print current view
	Display map extent in GxView as envelope
	Edit feature class schema

	Appendix D: ArcObjects problem solving guide
	Appendix E: UIControls
	UIControl classes
	UIButtonControl class
	UIComboBoxControl class
	UIEditBoxControl class
	UIToolControl class

	Appendix F: Bibliography
	Index

