
ArcGIS® 9.0

ArcGIS® Desktop Developer Guide

Copyright © 2004 ESRI
All rights reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of
ESRI. This work is protected under United States copyright law and
other international copyright treaties and conventions. No part of this
work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying and recording, or by any
information storage or retrieval system, except as expressly permitted in
writing by ESRI. All requests should be sent to Attention: Contracts
Manager, ESRI, 380 New York Street, Redlands, California 92373-8100,
USA.

The information contained in this document is subject to change without
notice.

ContrContrContrContrContribibibibibuting uting uting uting uting WrWrWrWrWriteriteriteriteritersssss
Euan Cameron, Rob Elkins, Shelly Gill, Sean Jones, Allan Laframboise,
Glenn Meister, Steve Van Esch

PUBLISHED BY

ESRI
380 New York Street

Redlands, California 92373-8100

U.S. GOVERNMENT RESTRICTED/LIMITED RIGHTSU.S. GOVERNMENT RESTRICTED/LIMITED RIGHTSU.S. GOVERNMENT RESTRICTED/LIMITED RIGHTSU.S. GOVERNMENT RESTRICTED/LIMITED RIGHTSU.S. GOVERNMENT RESTRICTED/LIMITED RIGHTS
Any software, documentation, and/or data delivered hereunder is
subject to the terms of the License Agreement. In no event shall the
U.S. Government acquire greater than RESTRICTED/LIMITED RIGHTS.
At a minimum, use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in FAR §52.227-14 Alternates I, II, and
III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or FAR §12.211/12.212
(Commercial Technical Data/Computer Software); and DFARS
§252.227-7015 (NOV 1995) (Technical Data) and/or DFARS §227.7202
(Computer Software), as applicable. Contractor/Manufacturer is ESRI,
380 New York Street, Redlands, California 92373-8100, USA.

ESRI, ArcView, ArcIMS, SDE, the ESRI globe logo, ArcGlobe, StreetMap,
ArcReader, ArcPad, ArcScan, ArcObjects, ArcGIS, ArcMap, ArcCatalog,
ArcScene, ArcInfo, ArcEdit, ArcEditor, ArcToolbox, 3D Analyst, ArcPress,
ArcSDE, GIS by ESRI, the ArcGIS logo, and www.esri.com are trademarks,
registered trademarks, or service marks of ESRI in the United States,
the European Community, or certain other jurisdictions.

Other companies and products mentioned herein are trademarks or
registered trademarks of their respective trademark owners.

Contents

CHAPTER 1: INTRODUCING ArcGIS DESKTOP DEVELOPMENT 1

ArcGIS 9 developer overview .. 2
ArcGIS Desktop developer overview ... 6
Using this guide ... 10
ArcGIS developer resources .. 12

CHAPTER 2: ArcGIS SOFTWARE ARCHITECTURE ... 17

ArcGIS software architecture ... 18
ArcGIS application programming interfaces ... 23
ArcGIS Engine libraries .. 25
ArcGIS Desktop application libraries .. 33

CHAPTER 3: DEVELOPING FOR ArcGIS DESKTOP APPLICATIONS 45

Customizing ArcGIS Desktop.. 46
Storing customizations .. 49
Customizing ArcGIS Desktop applications with VBA ... 53
Component development .. 64
Choosing a component development environment .. 67
Building an ArcGIS Desktop component ... 68

CHAPTER 4: LICENSING AND DEPLOYMENT ... 73

ArcGIS license checking .. 74
Packing and deploying customizations ... 86

CHAPTER 5: DEVELOPER SCENARIOS ... 93

Create a toolbar: Command, Tool, and Menu ... 94
Extensions ... 113
Dockable window ... 119

APPENDIX A: DEVELOPER ENVIRONMENTS .. 131

The Microsoft Component Object Model ... 132
Developing with ArcObjects .. 144
The Visual Basic 6 environment .. 153
Visual Basic for Applications .. 166
The Visual Basic 6 development environment .. 172
Visual C++.. 179
.NET Application Programming Interface... 221

iv • ArcGIS Desktop Developer Guide

APPENDIX B: READING THE OBJECT MODEL DIAGRAMS 259

Interpreting the object model diagrams ... 260

APPENDIX C: ILLUSTRATED CODE SAMPLES .. 263

Locate and execute command on toolbar ... 265
Draw digitized line on screen .. 266
Add feature class to ArcMap ... 268
Add layer to ArcMap using GxDialog ... 270
Style gallery auto symbol selection .. 272
Loop through selected area features .. 274
Spatial query ... 276
Add map surround to page layout .. 278
Add text callout to active view .. 280
Geometry projection ... 282
Display raster cell value in status bar .. 284
Export current view .. 286
Print current view .. 288
Display map extent in GxView as envelope ... 290
Edit feature class schema .. 292

APPENDIX D: ArcOBJECTS PROBLEM-SOLVING GUIDE 295

ArcObjects problem-solving guide .. 296

APPENDIX E: UICONTROLS .. 313

UIControl classes .. 314
UIButtonControl class .. 315
UIComboBoxControl class ... 316
UIEditBoxControl class .. 317
UIToolControl class ... 318

APPENDIX F: BIBLIOGRAPHY ... 319

INDEX ... 323

1

11111 Introducing
ArcGIS Desktop

development

The ESRI® ArcGIS® Desktop Developer Guide is an introduction for

anyone who wants to customize or extend ArcGIS Desktop applications, such

as ArcMap™ or ArcCatalog™.

This chapter introduces the ArcGIS Desktop development environment in the

context of the ArcGIS product family.

Topics covered in this chapter include an ArcGIS 9 developer overview, an

ArcGIS Desktop developer overview, using this guide, and ArcGIS developer

resources.

2 • ArcGIS Desktop Developer Guide

ArcGIS 9 is an integrated family of geographic information system (GIS) soft-
ware products for building a complete GIS. It is based on a common library of
shared GIS software components called ArcObjects™. ArcGIS 9 consists of four
key parts:

• Desktop GIS, an integrated suite of advanced GIS applications.

• Embedded GIS, embeddable GIS component libraries for building custom
applications using C++, COM, .NET, and Java™.

• Server GIS, a shared library of GIS software objects used to build server-side
GIS applications in enterprise and Web computing frameworks. Used for
building both SOAP-based Web services and Web applications using .NET/
ASP and Java/JSP.

• Mobile GIS, GIS Web services to publish maps, data, and metadata through
open Internet protocols.

ArcSDE® Gateway is an interface for managing geodatabases in numerous rela-
tional database management systems (RDBMSs).

ARCGIS 9 DEVELOPER OVERVIEW

Chapter 1 • Introducing ArcGIS Desktop development • 3

ArcGIS provides a scalable framework for implementing GIS for a single user or
for many users on desktops and servers. This book will be of greatest use to
developers who want to use the ArcGIS Desktop Developer Kit to customize
and extend the ArcView®, ArcEditor™, or ArcInfo™ desktop products. This
book provides a general explanation of the options and opportunities available to
developers with ArcGIS Desktop. Several scenarios will illustrate with code
examples the different types of customization that can be developed with the
ArcGIS Desktop Developer Kit.

ArcGIS is a platform for building geographic information systems. ArcGIS 9 will
extend the system with major new capabilities in the areas of geoprocessing, 3D
visualization, and developer tools. Two new products, ArcGIS Engine and
ArcGIS Server, are introduced at this release, making ArcGIS a complete system
for application and server development.

There is a wide range of possibilities when developing with ArcGIS, including
the following:

• Configure/Customize ArcGIS applications, such as ArcMap and ArcCatalog.

• Extend the ArcGIS architecture and data model.

• Embed maps and GIS functionality in other applications with ArcGIS Engine.

• Build and deploy custom desktop applications with ArcGIS Engine.

• Build Web services and applications with ArcGIS Server.

ArcGIS 9 has a common developer experience across all ArcGIS products
(Engine, Server, and Desktop). This book focuses on customizing and extending
the ArcGIS Desktop applications. Developers wanting to build custom
standalone applications or work with ArcGIS Server should refer to the ArcGIS
Engine Developer Guide and the ArcGIS Server Administration and Development Guide,
respectively.

The ArcGIS system is built and extended using ArcObjects
software components. ArcObjects includes a wide variety of
programmable components, ranging from fine-grained objects
(for example, individual geometry objects) to coarse-grained
objects (for example, a map object to interact with existing
ArcMap documents), which aggregate comprehensive GIS
functionality for developers.

Developers work with ArcObjects using standard program-
ming frameworks to extend ArcGIS Desktop, build custom
applications with ArcGIS Engine, and implement server GIS
applications for various enterprise purposes using ArcGIS
Server.

ARCGIS 9 DEVELOPER OVERVIEW

ArcObjects
ArcGIS

Desktop

ArcGIS
Server

ArcGIS
Engine

4 • ArcGIS Desktop Developer Guide

ARCGIS 9 DEVELOPER OVERVIEW

Each of the ArcGIS product architectures built with ArcObjects represents
alternative application development containers for GIS software developers,
including desktops, embeddable engines, and servers.

ARCGIS SOFTWARE DEVELOPER KITS

The ArcGIS Engine, Server, and Desktop have software developer kits (SDK)
for working with ArcObjects. The developer kits provide everything needed to
be successful with ArcObjects, including developer documentation, samples, and
object model diagrams.

The ArcGIS Desktop Developer Kit
ArcGIS Desktop includes a series of Windows® desktop application frame-
works—ArcMap, ArcCatalog, ArcToolbox™—and more, each with user inter-
face components. ArcGIS Desktop is available at three functional levels
(ArcView, ArcEditor, and ArcInfo) and can be customized and extended using
the ArcGIS Desktop Developer Kit.

The software developer kit for ArcGIS Desktop is included with ArcView,
ArcEditor, and ArcInfo and supports the COM and .NET programming frame-
works. Many users apply the ArcGIS Desktop Developer Kit to add extended
functions, new GIS tools, custom user interfaces (UIs), and full extensions for
improving professional GIS productivity of ArcGIS Desktop.

The ArcGIS Engine Developer Kit
ArcGIS Engine is a simple, application-neutral programming environment for
ArcObjects. The ArcGIS Engine Developer Kit provides a series of embeddable
ArcGIS components that are used outside the ArcGIS Desktop application

ArcGIS 9

DBMS

Desktop GIS Embedded GIS Server GIS

ArcGIS Desktop

Geodatabase

ArcSDE

Mobile GIS

ArcGIS Server ArcIMS ArcGIS Mobile
ArcPad

Desktop
Development Kit

Engine
Development Kit

Server
Development Kit

.NET C++ VB .NET C++ VB JAVA JAVA ADF NET ADF C++

ArcView ArcEditor

ArcReaderArcInfo

+ ArcGIS Extensions

File-based XML

PEI Compact Framework

Component Building Blocks

Desktop

Server

Web

Custom
Applications

ArcGIS Engine

Web Templates
Custom Templates

ArcObjects

Mobile
Development Kit

Chapter 1 • Introducing ArcGIS Desktop development • 5

framework (for example, mapping objects are managed as part of ArcGIS
Engine, rather than in ArcMap). Using the ArcGIS Engine Developer Kit, devel-
opers build focused GIS solutions with simple interfaces to access any set of GIS
functions or can embed GIS logic in existing user applications to deploy GIS to
broad groups of users. ArcGIS Engine has a COM, .NET, Java, and C++ applica-
tion programming interface (API) for developers.

The ArcGIS Server Developer Kit
ArcGIS Server defines and implements a set of standard GIS Web services (for
example, mapping, data access, and geocoding), as well as supports enterprise-
level application development based on ArcObjects for the server.

The ArcGIS Server Developer Kit enables developers to build central GIS servers
to host GIS functions that are accessed by many users, perform back office pro-
cessing on large central GIS databases, build and deliver GIS Web applications,
and perform distributed GIS computing.

ARCGIS 9 DEVELOPER OVERVIEW

6 • ArcGIS Desktop Developer Guide

ArcGIS Desktop includes a suite of integrated applications, including ArcMap,
ArcCatalog, and ArcToolbox. By using these applications and interfaces in unison,
you can perform any GIS task, simple to advanced, including mapping, geographic
analysis, data editing and compilation, data management, visualization, and
geoprocessing.

WHAT ARE ARCVIEW, ARCEDITOR, AND ARCINFO?

ArcGIS Desktop is the information authoring and usage tool for GIS profession-
als. It is scalable as three separate software products to meet the needs of many
types of users.

ArcView provides comprehensive mapping and analysis tools along with simple
editing and geoprocessing.

ArcEditor includes advanced editing capabilities for shapefiles and geodatabases
in addition to the full functionality of ArcView.

ArcInfo is the flagship ArcGIS Desktop product. It builds on the functionality
of ArcEditor with advanced geoprocessing. It also includes the legacy applica-
tions for ArcInfo Workstation.

Because ArcView, ArcEditor, and ArcInfo all share a common architecture, users
working with any of these GIS desktops can share their work with other users.
Maps, data, symbology, map layers, custom tools and interfaces, reports,
metadata, and so on, can be accessed interchangeably in all three products. This
means that you benefit from using a single architecture, minimizing the need to
learn and deploy several different architectures.

New capabilities can be added to all seats through a series of ArcGIS Desktop
extensions from ESRI and other organizations. Users can also develop their own
custom extensions to ArcGIS Desktop by working with ArcObjects, the ArcGIS
software component library. Users develop extensions and custom tools using
standard Windows programming interfaces, such as COM and .NET.

ArcObjects is a framework that lets you create domain-specific components from
other components. The ArcObjects components collaborate to serve every data
management and map presentation function common to most GIS applications.
ArcObjects provides an infrastructure for application customization that lets you
concentrate on serving the specific needs of your clients.

ArcMap
ArcMap is the central application in ArcGIS Desktop. It is the GIS application
used for all map-based tasks, including cartography, map analysis, and editing. In
this application, you work with maps. Maps have a page layout containing a
geographic window, or a data frame, with a series of layers, legends, scalebars,
North arrows, and other elements. ArcMap offers different ways to view a map’s
geographic data and layout views in which you can perform a broad range of
advanced GIS tasks.

ARCGIS DESKTOP DEVELOPER OVERVIEW

ArcMap is used for mapping and editing tasks as
well as map-based analysis.

Chapter 1 • Introducing ArcGIS Desktop development • 7

ArcCatalog
The ArcCatalog application helps you organize and manage all of your GIS infor-
mation (maps, globes, datasets, models, metadata, services, and so on). It includes
tools to:

• Browse and find geographic information.

• Record, view, and manage metadata.

• Define geodatabase schemas and designs.

• Administer an ArcGIS Server.

• Search for and discover GIS data on local networks and the Web.

GIS users apply ArcCatalog to organize, find, and use GIS data as well as to
document their data holdings using standards-based metadata. A GIS database
administrator uses ArcCatalog to define and build geodatabases. A GIS server
administrator uses ArcCatalog to administer the GIS server framework.

Customizing ArcGIS Desktop applications
You may want the ArcMap and ArcCatalog interfaces to reflect your own prefer-
ences and the way you work.

You can customize ArcMap and ArcCatalog in many ways. Here are some ex-
amples:

• Position toolbars in a specific area of the application.

• Group commands in a way that works best for you.

• Add new macros or load custom commands from another source.

• Always work with the same geographic data (via templates).

If you work in a larger organization, others may
want you to develop a customized work environ-
ment for them. You can handle many customization
tasks without writing a single line of code. In fact,
you may be able to instruct others on how to use the
customization environment to create the look and
feel they want on their own. You can change or
create toolbars, menus, shortcut keys, and so on, to
help you do your work in the most efficient way.
You can provide additional functionality by linking
code you or others have written to menu commands
or tools.

Several toolbars are provided with ArcMap and
ArcCatalog, but you may want to create new
toolbars to organize commands that you often use
together or to contain buttons that run your custom
scripts.

ARCGIS DESKTOP DEVELOPER OVERVIEW

ArcCatalog is used for managing your spatial
data holdings, defining your geographic data

schemas, and recording and viewing metadata.

The Customize dialog box is used to create new
toolbars and add or remove controls.

8 • ArcGIS Desktop Developer Guide

Writing VBA macros in ArcGIS applications
Both ArcMap and ArcCatalog come with Visual Basic® for Applications (VBA).
VBA is not a standalone program; it’s embedded in the applications. It provides
an integrated programming environment, the Visual Basic Editor (VBE), which
lets you write a Visual Basic (VB) macro, then debug and test it right away in
ArcMap or ArcCatalog. A macro can integrate some or all of VB’s functionality,
such as using message boxes for input, with the extensive object library that
ArcMap and ArcCatalog expose. The ESRI object libraries are always available to
you in the VBA environment.

There is an easy way to create custom commands with VBA. You can create a
new button, tool, combo box, or edit box (collectively called UIControls), then
attach code to the control’s events, such as what happens when you click a but-
ton. After you have created it, you can drag this new control onto a toolbar.

As mentioned, you should start development by using the VBA environment in
one of the existing ArcGIS applications. VBA is a simple programming language
with many utilities, such as design time code completion and the Object Browser
that will help you assemble code quickly.

Here are more reasons to choose the VBA environment:

• It’s fast and easy to create, test, and debug macros
inside ArcMap and ArcCatalog.

• The standard ESRI type libraries are already
referenced for you.

• Important global variables, such as the Applica-
tion and Document, are available.

• It’s simple to assemble UI forms using VBA and
ActiveX® components.

• It’s straightforward to integrate VBA code with
new ArcObjects UIControls.

• It’s relatively easy to migrate VBA code to VB
ActiveX Dynamic Link Library (DLL) projects.

• Many code samples available in the help system
are macros that can be cut, pasted, and run within
the VBA environment.

Writing custom components to extend the ArcGIS Desktop
applications
You don’t have to use VBA to create custom commands and toolbars—in fact, in
some cases, your custom commands and toolbars may require you to use another
development environment. You can create custom objects in any programming
language that supports the Microsoft® Component Object Model. Custom com-
mands or toolbars created outside VBA are often distributed as ActiveX DLLs. If
you have created some custom commands and toolbars, or someone else has given
you an ActiveX DLL containing custom commands and toolbars, you can easily
add these objects to ArcMap or ArcCatalog. After adding a custom object to
ArcMap or ArcCatalog, you can use it as you would any built-in command or
toolbar.

ARCGIS DESKTOP DEVELOPER OVERVIEW

A buffer command created in VBA

Chapter 1 • Introducing ArcGIS Desktop development • 9

If you want to use a programming language other than VBA, or if you want to
package ArcObjects functionality into a COM DLL, EXE, OCX, or .NET assem-
bly, you will have to work outside the VBA development environment. This
approach generally requires creating a project, referencing the ArcObjects type
libraries required, implementing ArcObjects interfaces, adding code, then compil-
ing the source into a binary file.

Following are some advantages of building custom components:

• They can be easily delivered to end users via custom setup programs.

• You can hide your code and logic in a binary file.

• You can extend and customize virtually every aspect of the ArcGIS technol-
ogy.

Components can be broadly categorized into two areas of customization: those
that reside at the application level, such as custom buttons, toolbars, windows,
and extensions, and those that reside at the geodatabase level, such as custom
feature class extensions and features. Some of these more advanced
customizations cannot be accomplished through the VBA environment.

ARCGIS DESKTOP DEVELOPER OVERVIEW

The Production Line Tool Set (PLTS) is an
example of a complex application extension

created with ArcObjects.

10 • ArcGIS Desktop Developer Guide

The ArcGIS Desktop Developer Guide is an introduction for anyone who wants to
customize or extend the ArcGIS Desktop applications, such as ArcMap or
ArcCatalog.

This guide will help you become a desktop developer by walking you through
numerous VBA code samples and providing a problem-solving guide and devel-
oper scenarios. Although the samples documented in this guide may not solve
your immediate problem, they will serve as a framework or template on which
you can build a more specific or complex solution.

To serve the greatest base of developers, most of the code samples in this guide
are written in VBA. As necessary, some code samples are written in Microsoft
Visual Basic, VB .NET, or Visual C++®.

CHAPTER GUIDE

Chapter 1, ‘Introducing ArcGIS Desktop development’, gives you an overview of
the ArcGIS 9 product family, the desktop developer framework, the types of
customizations that can be made, and additional resources.

Chapter 2, ‘ArcGIS software architecture’, describes the underlying technology
used to create the ArcGIS Desktop products, ArcObjects, and the software
architecture common to the ArcGIS product family.

Chapter 3, ‘Developing for ArcGIS Desktop applications’, guides you through the
basics of ArcGIS Desktop development. The chapter begins with some desktop
application framework theory, then walks you through some small tutorials for
toolbar customization and VBA macro writing. The chapter concludes with the
theory and steps in creating custom components that extend the ArcGIS Desktop
framework.

Chapter 4, ‘Licensing and deployment’, discusses license considerations when
developing your customizations and how to package and deploy your
customizations, including VBA macros and components, to other users.

Chapter 5, ‘Developer scenarios’, guides you through the creation of several types
of components that can plug into the ArcGIS Desktop applications.

Appendix A, ‘Developer environments’, describes in more detail the Microsoft
Component Object Model, the foundation for ArcObjects, and continues with a
language reference guide for each API supported by ArcGIS. These guides discuss
issues and considerations while developing ArcGIS with a particular API.

Appendix B, ‘Reading the object model diagrams’, discusses how to read and
interpret the ArcGIS object model diagrams. Understanding the structure and
relationships of ArcObjects represented in these diagrams is essential in ArcGIS
development.

Appendix C, ‘Illustrated code samples’, shows numerous VBA code snippets for
some common desktop applications. These are illustrated with components from
the ArcGIS object model to help you understand the structure and relationships.

Appendix D, ‘ArcObjects problem-solving guide,’ presents a methodology to help
you solve real-world ArcObjects programming tasks that customize or extend the
ArcGIS Desktop applications.

USING THIS GUIDE

Chapter 1 • Introducing ArcGIS Desktop development • 11

Appendix E, ‘UIControls’, shows class and interface diagrams for UIControls,
which are VBA-based commands with interfaces available only in VBA.

Appendix F, ‘Bibliography’, is not intended as a complete resource, but it does
contain many of the everyday references that ESRI developers use when devel-
oping Visual Basic, Visual C++, Visual Studio .NET code, and ArcObjects.

USING THIS GUIDE

12 • ArcGIS Desktop Developer Guide

The following topics describe some of the additional resources available to you as
a developer. These include books and guides and various help systems.

ArcGIS SOFTWARE DEVELOPER KIT

The ArcGIS SDK is a collection of diagrams, utilities, add-ins, samples, and
documentation geared to help developers implement custom ArcGIS functional-
ity.

ARCGIS Developer Help system
The ArcGIS Developer Help system is the gateway to all SDK documentation,
including help for the add-ins, developer tools, and samples; in addition, it serves
as the complete syntactical reference for all object libraries.

Each supported API has a version of the help system that works in concert with
it. Regardless of the API you choose to use, you will see the appropriate library
reference syntax and have a help system that is integrated with your development
environment. For example, if you are a Visual Basic 6 developer, you will use
ArcGISDevHelp.chm, which has the VB6 syntax and integrates with the VB6
integrated development environment (IDE), thereby providing F1 help support
in the Code window.

The help systems reside in the DeveloperKit\Help folder but are typically
launched from the Start menu or F1 Help in Visual Basic 6 and Visual Studio
.NET 2003. The graphic below shows the Start menu options for opening the
help systems.

Samples
The ArcGIS developer kit contains more than 600 samples, many of which are
written in several languages. The samples are described in the help system, and
source code and project files are installed in the DeveloperKit\samples folder.
The help system’s table of contents for the samples section mirrors the samples
directory structure.

The help system organizes samples by functionality. For example, all the
geodatabase samples are grouped under Samples\Geodatabase. Most first-tier
groupings are further subdivided. You can also find samples in the SDK using the
‘Query the Samples’ topic in the help system, which lists all the samples alpha-
betically; in addition, you can sort the list by language. For example, you can elect
to only list the available VB6 samples.

A typical SDK installation

ARCGIS DEVELOPER RESOURCES

Chapter 1 • Introducing ArcGIS Desktop development • 13

Installing the sample source code and project files is an option in the Desktop
Developer Kit install. The samples are installed under the
ArcGIS\DeveloperKit\samples folder. If you don’t have this folder on your
computer, you can rerun the install program and check Samples under Developer
Kit.

Developer tools
The ArcGIS developer tools are executables that ESRI has provided to facilitate
your ArcObjects development. For example, if you are a Visual Basic 6 desktop
developer, you will likely use the Categories.exe tool to register components in
component categories.

The list below features some of the more important developer tools available
with ArcGIS Desktop. Refer to the help system for more developer tool details
and instructions.

• Component Categories Manager—Registers components within a specific
component category

• Library Locator—Identifies an object library containing a specified interface,
coclass, enumeration, or structure

• ESRI Object Browser—Lets you explore the structure of ArcObjects, over-
coming certain limitations of other standard object browsers

The developer tools are installed in the DeveloperKit\tools folder. There is one
exception—the Component Category Manager is located in the ArcGIS\bin
folder.

ARCGIS DEVELOPER RESOURCES

You can use the ‘Query the Samples’ topic in the
help system to find specific samples that interest

you.

ESRI Library Locator

ESRI Object Browser

14 • ArcGIS Desktop Developer Guide

Add-ins
The ESRI add-ins automate some of the tasks performed by the software engi-
neer when developing with ArcObjects, as well as provide tools that make debug-
ging code easier. ESRI provides add-ins for the Visual Basic 6 IDE and the Visual
Studio .NET IDE. Listed below are the add-ins available for these development
environments.

Visual Basic 6
• ESRI Align Controls With Tab Index—Ensures control creation order

matches tab index

• ESRI Automatic References—Automatically adds ArcGIS library references

• ESRI Code Converter—Converts projects from ArcGIS 8.x to ArcGIS 9.x

• ESRI Command Creation Wizard—Facilitates the creation of commands and
tools

• ESRI Compile and Register—Aids in compiling components and registering
these in desired component categories

• ESRI ErrorHandler Generator—Automates the generation of error handling
code

• ESRI ErrorHandler Remover—Removes the error handlers from the source
files

• ESRI Interface Implementer—Automatically stubs out implemented inter-
faces

Visual Studio .NET
• ESRI Component Category Registrar—Stubs out registration functions to

enable self-component category registration

• ESRI .NET Code Converter—Converts projects from ArcGIS 8.x to ArcGIS
9.x

• ESRI GUID Generator—Inserts a Global Unique Identifier (GUID) attribute

The .NET add-ins are automatically installed during setup if a version of Visual
Studio .NET 2003 is detected; the Visual Basic 6 add-ins are only installed if you
select them on the install. Once installed the add-ins have to be registered manu-
ally using the .bat files in the Addins directory.

THE ARCGIS DEVELOPER DOCUMENTATION SERIES

This guide is part of the ArcGIS Developer documentation series.

The ArcGIS Engine Developer Guide provides information for developers who
want to create applications based on ArcGIS Engine. ArcGIS Engine allows you
to embed GIS functionality within other applications and create desktop-like
applications using the supplied ArcGIS controls, such as MapControl, Toolbar,
and PageLayout controls. ArcGIS Engine is also based on ArcObjects compo-
nents and may be programmed through a number of APIs.

Visual Basic 6 add-ins are only installed if you
select them on the install.

ARCGIS DEVELOPER RESOURCES

Chapter 1 • Introducing ArcGIS Desktop development • 15

The ArcGIS Server Administrator and Developer Guide is for developers who will
create ArcGIS Server applications and customizations. At the core of ArcGIS
Server is a rich ArcObjects object library that can be consumed in Web applica-
tions and Web services to deliver advanced GIS functionality to a wide range of
users who interact with the server through Web browsers and other thin client
applications. ArcGIS Server may also be programmed through a number of APIs.

ARCGIS DEVELOPER ONLINE WEB SITE

ArcGIS Developer Online is the place to find the most up-to-date ArcGIS 9
developer information, including sample code, technical documents, object model
diagrams, and the complete object library reference.

The Web site is a reflection of the ArcGIS Developer Help system, except it is
online and, therefore, more current. The Web site has some additional features
including an advanced search utility that enables you to control the scope of your
searches. For example, you can create a search that only scans the library refer-
ence portion of the help system.

Visit the site at http://arcgisdeveloperonline.esri.com.

ARCGIS DEVELOPER RESOURCES

16 • ArcGIS Desktop Developer Guide

ESRI SUPPORT CENTER

The ESRI Support Center at http://support.esri.com contains software information,
technical documents, samples, forums, and a knowledge base for all ArcGIS
products.

ArcGIS developers can take advantage of the forums, knowledge base, and
samples sections in particular to aid in development of their ArcGIS applications.

TRAINING

ESRI offers a number of instructor-led and Web-based training courses for the
ArcGIS Desktop developer. These courses range from the introductory level for
VBA to more advanced courses in component development with specific APIs.

For more information visit http://www.esri.com and click the Training and Events
tab.

The ESRI Virtual Campus can also be found directly at http://campus.esri.com/.

ARCGIS DEVELOPER RESOURCES

ArcGIS software
architecture22222

The architecture of ArcGIS has evolved over several releases of the technology to

be a modular, scalable, cross-platform architecture implemented by a set of

software components called ArcObjects.

This chapter focuses on the main themes of this evolution at ArcGIS 9 and

introduces the reader to the libraries that comprise the ArcGIS system.

18 • ArcGIS Desktop Developer Guide

The ArcGIS software architecture supports a number of products, each with its
unique set of requirements. ArcObjects, the components that make up ArcGIS,
are designed and built to support this. This chapter introduces ArcObjects.

ArcObjects is a set of platform-independent software components, written in
C++, that provides services to support GIS applications on the desktop in the
form of thick and thin clients and on the server.

As stated, the language chosen to develop ArcObjects was C++; in addition to
this language, ArcObjects makes use of the Microsoft Component Object Model.
COM is often thought of as simply specifying how objects are implemented and
built in memory and how these objects communicate with one another. While
this is true, COM also provides a solid infrastructure at the operating system level
to support any system built using COM. On Microsoft Windows operating sys-
tems, the COM infrastructure is built directly into the operating system. For
operating systems other than Microsoft Windows, this infrastructure must be
provided for the ArcObjects system to function.

Not all ArcObjects components are created equally. The requirements of a par-
ticular object, in addition to its basic functionality, vary depending on the final
end use of the object. This end use broadly falls into one of the three ArcGIS
product families:

• ArcGIS Engine—Use of the object is within a custom application. Objects
within the Engine must support a variety of uses; simple map dialog boxes,
multithreaded servers, and complex Windows desktop applications are all
possible uses of Engine objects. The dependencies of the objects within the
Engine must be well understood. The impact of adding dependencies external
to ArcObjects must be carefully reviewed, since new dependencies may intro-
duce undesirable complexity to the installation of the application built on the
Engine.

• ArcGIS Server—The object is used within the server framework, where
clients of the object are most often remote. The remoteness of the client can
vary from local, possibly on the same machine or network, to distant, where
clients can be on the Internet. Objects running within the server must be
scalable and thread safe to allow execution in a multithreaded environment.

• ArcGIS Desktop—Use of the object is within one of the ArcGIS Desktop
applications. ArcGIS Desktop applications have a rich user experience, with
applications containing many dialog boxes and property pages that allow end
users to work effectively with the functionality of the object. Objects that
contain properties that are to be modified by users of these applications
should have property pages created for these properties. Not all objects
require property pages.

Many of the ArcObjects components that make up ArcGIS are used within all
three of the ArcGIS products. The product diagrams on these pages show that
the objects within the broad categories of base services, data access, map analysis,
and map presentation are contained in all three products. These four categories
contain the majority of the GIS functionality exposed to developers and users in
ArcGIS.

ARCGIS SOFTWARE ARCHITECTURE

For a detailed explanation of COM see the
COM section of Appendix A, ‘Developer

environments’.

ArcGIS Engine

Developer
Components

Map
Presentation

Map
Analysis

Data
Access

Base
Services

 Chapter 2 • ArcGIS software architecture • 19

This commonality of function among all the products is important for developers
to understand, since it means that when working in a particular category, much
of the development effort can be transferred between the ArcGIS products with
little change to the software. After all, this is exactly how the ArcGIS architec-
ture is developed. Code reuse is a major benefit of building a modular architec-
ture, but code reuse does not simply come from creating components in a modu-
lar fashion.

The ArcGIS architecture provides rich functionality to the developer, but it is not
a closed system. The ArcGIS architecture is extendable by developers external to
ESRI. Developers have been extending the architecture for a number of years,
and the ArcGIS 9 architecture is no different; it, too, can be extended. However,
ArcGIS 9 introduces many new possibilities for the use of objects created by
ESRI and you. To realize these possibilities, components must meet additional
requirements to ensure that they will operate successfully within this new and
significantly enhanced ArcGIS system. Some of the changes from ArcGIS 8 to
ArcGIS 9 appear superficial, an example being the breakup of the type libraries
into smaller libraries. That, along with the fact that the objects with their meth-
ods and properties that were present at 8.3 are still available at 9, masks the fact
that internally ArcObjects has undergone some significant work.

The main focus of the changes made to the ArcGIS architecture at 9 revolves
around four key concepts:

• Modularity—A modular system where the dependencies between components
are well-defined in a flexible system.

• Scalability—ArcObjects must perform well in all intended operating environ-
ments, from single user desktop applications to multiuser/multithreaded
server applications.

• Multiple Platform Support—ArcObjects for the Engine and Server should be
capable of running on multiple computing platforms.

• Compatibility—ArcObjects 9 should remain equivalent, both functionally and
programmatically, to ArcObjects 8.3.

MODULARITY

The esriCore object library, shipped as part of ArcGIS 8.3, effectively packaged
all of ArcObjects into one large block of GIS functionality; there was no distinc-
tion between components. The ArcObjects components were divided into smaller
groups of components, these groups being packaged in DLLs. The one large
library, while simplifying the task of development for external developers, pre-
vented the software from being modular. Adding the type information to all the
DLLs, while possible, would have greatly increased the burden on external devel-
opers and, hence, was not an option. In addition, the DLL structure did not
always reflect the best modular breakup of software components based on func-
tionality and dependency.

There is always a trade-off in performance and manageability when considering
architecture modularity. For each criteria, thought is given to the end use and the
modularity required for support. For example, the system could be divided into
many small DLLs with only a few objects in each. Although this provides a
flexible system for deployment options, at minimum memory requirements, it

ArcGIS Desktop

ArcGIS Server

ARCGIS SOFTWARE ARCHITECTURE

Web
Development
Framework

Map
Presentation

Map
Analysis

Data
Access

Base
Services

User
Interface

Map
Presentation

Map
Analysis

Data
Access

Applications

Extensions

Base Services

20 • ArcGIS Desktop Developer Guide

ESRI has developed a modular architecture for
ArcGIS 9 by a process of analyzing features and

functions and matching those with end user
requirements and deployment options based on

the three ArcGIS product families. Developers
who have extended the ArcGIS 8 architecture

with custom components are encouraged to go
through the same process to restructure their

source code into similar modular structures.

An obvious functionality split to make is user
interface and nonuser interface code. UI libraries

tend to be included only with the ArcGIS
Desktop products.

would affect performance due to the large number of DLLs being loaded and
unloaded. Conversely, one large DLL containing all objects is not a suitable
solution either. Knowing the requirements of the components allows them to be
effectively packaged into DLLs.

The ArcGIS 9 architecture is divided into a number of libraries. It is possible for
a library to have any number of DLLs and EXEs within it. The requirements that
components must meet to be within a library are well-defined. For instance, a
library, such as esriGeometry (from the base services set of modules), has the
requirements of being thread safe, scalable, without user interface components,
and deployable on a number of computing platforms. These requirements are
different from libraries, such as esriArcMap (from the applications category),
which does have user interface components and is a Windows-only library.

All the components in the library will share the same set of requirements placed
on the library. It is not possible to subdivide a library into smaller pieces for
distribution. The library defines the namespace for all components within it and is
seen in a form suitable for your chosen API.

• Type Library—COM

• .NET Interop Assembly—.NET

• Java Package—Java

• Header File—C++

SCALABILITY

The ArcObjects components within ArcGIS Engine and ArcGIS Server must be
scalable. Engine objects are scalable because they can be used in many different
types of applications; some require scalability, while others do not. Server objects
are required to be scalable to ensure that the server can handle many users con-
necting to it, and as the configuration of the server grows, so does the perfor-
mance of the ArcObjects components running on the server.

The scalability of a system is achieved using a number of variables involving the
hardware and software of the system. In this regard, ArcObjects supports
scalability with the effective use of memory within the objects and the ability to
execute the objects within multithreaded processes.

There are two considerations when multithreaded applications are discussed:
thread safety and scalability. It is important for all objects to be thread safe, but
simply having thread-safe objects does not automatically mean that creating
multithreaded applications is straightforward or that the resulting application
will provide vastly improved performance.

The ArcObjects components contained in the base services, data access, map
analysis, and map presentation categories are all thread safe. This means that
application developers can use them in multithreaded applications; however,
programmers must still write multithreaded code in such a way as to avoid appli-
cation failures due to deadlock situations and so forth.

In addition to the ArcObjects components being thread safe for ArcGIS 9, the
apartment threading model used by ArcObjects was analyzed to ensure that

Thread safety refers to concurrent object access
from multiple threads.

ARCGIS SOFTWARE ARCHITECTURE

 Chapter 2 • ArcGIS software architecture • 21

The classic singleton per process model means
that all threads of an application will still access

the main thread hosting the singleton objects.
This effectively reduces the application to a

single-threaded application.

ArcObjects could be run efficiently in a multithreaded process. A model referred
to as “Threads in Isolation” was used to ensure that the ArcObjects architecture is
used efficiently.

This model works by reducing cross-thread communication to an absolute mini-
mum or, better still, removing it entirely. For this to work, the singleton objects
at ArcGIS 9 were changed to be singletons per thread and not singletons per
process. The resource overhead of hosting multiple singletons in a process was
outweighed by the performance gain of stopping cross-thread communication
where the singleton object is created in one thread (normally the Main single-
threaded apartment [STA]) and the accessing object is in another thread.

ArcGIS is an extensible system, and for the Threads in Isolation model to work,
all singleton objects must adhere to this rule. If you are creating singleton objects
as part of your development, you must ensure that these objects adhere to the
rule.

MULTIPLE PLATFORM SUPPORT

As stated earlier, ArcObjects components are C++ objects, meaning that any
computing platform with a C++ compiler can potentially be a platform for
ArcObjects. In addition to the C++ compiler, the platform must also support
some basic services required by ArcObjects.

Although many of the platform differences do not affect the way in which
ArcObjects components are developed, there are areas where differences do
affect the way code is developed. The byte order of different computing architec-
tures varies between little endian and big endian. This is most readily seen when
objects read and write data to disk. Data written using one computing platform
will not be compatible if read using another platform, unless some decoding
work is performed. All the ArcGIS Engine and ArcGIS Server objects support
this multiple platform persistence model. ArcObjects components always persist
themselves using the little endian model; when the objects read persisted data, it
is converted to the appropriate native byte order. In addition to the byte order
differences, there are other areas of functionality that differ between platforms;
the directory structure, for example, uses different separators for Windows and
UNIX®—“\” and “/”, respectively. Another example is the platform-specific
areas of functionality, such as OLE DB.

COMPATIBILITY

Maintaining compatibility of the ArcGIS system between releases is important to
ensure that external developers are not burdened with changing their code to
work with the latest release of the technology. Maintaining compatibility at the
object level was a primary goal of the ArcGIS 9 development effort. Although
this object-level compatibility has been maintained, there are some changes
between the ArcGIS 8 and ArcGIS 9 architectures that will affect developers,
mainly related to the compilation of the software.

Although the changes required for software created for use with ArcGIS 8 to
work with ArcGIS 9 are minimal, it is important to understand that to realize any
existing investment in the ArcObjects architecture at ArcGIS 9, you must review
your developments with respect to ArcGIS Engine, ArcGIS Server, and ArcGIS
Desktop.

Microsoft Windows is a little endian platform,
while Sun™ Solaris™ is a big endian platform.

While the aim of ArcGIS releases is to limit the
change in the APIs, developers should still test
their software thoroughly with later releases.

ARCGIS SOFTWARE ARCHITECTURE

22 • ArcGIS Desktop Developer Guide

ESRI understands the importance of a unified software architecture and has
made numerous changes for ArcGIS 9 so the investment in ArcObjects can be
realized on multiple products. If you have been involved in creating extensions to
the ArcGIS architecture for ArcGIS 8, you should think about how the new
ArcGIS 9 architecture affects the way your components are implemented.

ARCGIS SOFTWARE ARCHITECTURE

Chapter 2 • ArcGIS software architecture • 23

ARCGIS APPLICATION PROGRAMMING INTERFACES

The functionality of ArcObjects can be accessed using four APIs: COM, .NET,
Java, and C++. The choice of which API to use is not a simple one and will
depend on a number of factors, including the ArcGIS product that you are
developing with, the end user functionality that you are developing, and your
development experience with particular languages. ArcGIS Desktop supports the
following APIs:

• COM—Any COM-compliant language (for example, Visual Basic, Visual C++,
Delphi) can be used with this API.

• .NET—Visual Basic .NET and C# are supported by this API.

When working with ArcObjects, developers can consume functionality exposed
by ArcObjects or extend the functionality of ArcObjects with their own compo-
nents. When referring to these APIs, there are differences with respect to con-
suming and extending the ArcObjects architecture.

CONSUMING THE API

The APIs support consuming the functionality of the ArcObjects components;
however, not all interfaces implemented by ArcObjects are supported on all
platforms. In some cases, interfaces make use of data types that are not compat-
ible with an API. In situations like this, an alternative implementation of the
interface is provided for developers to use. The naming convention of a “GEN”
postfix on the interface name is used to signify this kind of interface; IFoo would
have an IFooGEN interface. This alternative interface is usable by all APIs;
however, if the nongeneric interface is supported by the API, it is possible to
continue to use the API-specific interface.

EXTENDING THE API

Extending ArcObjects entails creating your own objects and adding them to the
ArcObjects architecture. ArcObjects is written to be extensible in almost all
areas. Support for extending the architecture varies among the APIs and, in some
cases, varies among languages of an API.

The COM API provides the most possibilities for extending the system. The
limitation within this API is with the Visual Basic language. Visual Basic does not
support the implementation of interfaces that have one or more of the following
characteristics:

• The interface inherits from an interface other than IUnknown or IDispatch. For
example, ICurve, which inherits from IGeometry, cannot be implemented in VB
for this reason.

• Method names on an interface start with an underscore (“_”). You will not
find functions beginning with “_” in ArcObjects.

• A parameter of a method uses a data type not supported by Visual Basic.
IActiveView cannot be implemented in Visual Basic for this reason.

In addition to the limitations on the interfaces supported by VB, the binary reuse
technique of COM aggregation is not supported by VB. This means that certain
parts of the architecture cannot be extended; Custom Features is one such ex-
ample. In reality, the above limitations of Visual Basic have little effect on the

Since ArcObjects are developed in C++, there are
some cases in which data types compatible with

C++ have been used for performance reasons.
These performance considerations mostly affect
the internals of ArcObjects; hence, using one of

the generic interfaces should not adversely affect
performance or your ArcObjects developments.

24 • ArcGIS Desktop Developer Guide

vast majority of developers, since the percentage of ArcObjects affected is small,
and for this small percentage, it is unlikely that developers will have a need to
extend the architecture. Other COM languages, such as Visual C++, do not
have any of these limitations.

The .NET API supports extending ArcObjects fully, with the one exception being
interfaces that make use of non-OLE automation-compliant data types (see the
table below for a complete list of all OLE automation-compliant data types).

The majority of differences between the API’s
support for ArcObjects revolves around data
types. All APIs fully support the automation-

compliant data types shown on the right.
Differences occur with data types that are not

OLE automation compliant.

The ArcGIS Desktop applications are rich, professional GIS applications with a
lot of functionality, but if viewed simply, the applications can be broken down
into a series of toolbars, along with a table of contents (TOC) and map viewing
area. The desktop applications are all extended by adding new commands and
tools. In a similar way, developers can build applications with rich functionality
using any of the four ArcGIS Engine APIs.

The COM and .NET APIs are only supported on the Microsoft Windows plat-
form.

ARCGIS APPLICATION PROGRAMMING INTERFACES

OLE automation data types

Type Description
Boolean
unsigned char
double
float
int
long
short
BSTR
CURRENCY
DATE
SCODE
Typedef enum myenum
Interface IDispatch *
Interface IUnknown *
dispinterface
 Typename *
Coclass Typename *
[oleautomation]
 interface Typename *
SAFEARRAY
 (TypeName)
TypeName*
Decimal

Data item that can have the value True or False.
8-bit unsigned data item.
64-bit IEEE floating-point number.
32-bit IEEE floating-point number.
Signed integer, whose size is system dependent.
32-bit signed integer.
16-bit signed integer.
Length-prefixed string.
8-byte, fixed-point number.
64-bit, floating-point fractional number of days since Dec 30, 1899.
For 16-bit systems - Built-in error that corresponds to VT_ERROR.
Signed integer, whose size is system dependent.
Pointer to the IDispatch interface.
Pointer to an interface that does not derive from IDispatch.
Pointer to an interface derived from IDispatch.

Pointer to a coclass name (VT_UNKNOWN).
Pointer to an interface that derives from IDispatch.

TypeName is any of the above types. Array of these types.

TypeName is any of the above types. Pointer to a type.
96-bit unsigned binary integer scaled by a variable power of 10. A decimal
 data type that provides a size and scale for a number (as in coordinates).

Chapter 2 • ArcGIS software architecture • 25

Contains components that expose
services used by the other libraries
composing ArcGIS.

Defined types used by user
interface components in the
ArcGIS system such as
ICommand and ITool.

Contains the core geometry
objects and defines and
implements the spatial reference
objects for coordinate systems.

Contains types for all the definitions relating
to data access. Features, tables, networks,
and TINs are all defined in this library.

Contains components that support
drawing symbology to an output
device.

Contains the workspace factories and
workspaces for vector and raster data
formats supported by the geodatabase
that are stored within an RDBMS.

Contains the objects used to
obtain a connection to the
ArcGIS Server.

Contains the workspace factories and
workspaces for vector data formats
supported by the geodatabase API.

Contains the workspace
factories and workspaces
for file-based raster
data formats.

Contains the objects required to
support a distributed geodatabase.

Provides workspaces for
working with OleDB-based
data sources.

Contains objects for working
with remote GIS services
provided by either ArcIMS
or the ArcGIS Server.

Contains the objects required
to generate output to both
printers and plotters or
exporting to files.

1
System

2
SystemUI

3
Geometry

Server
5

4
Display

7
GeoDatabase

6
Output

Carto

DataSources-
GDB

10
11

DataSources-
OleDB

9
DataSources-

File
8

GISClient

DataSource-
Raster

12

GeoDatabase-
Distributed

13

ARCGIS ENGINE LIBRARIES

26 • ArcGIS Desktop Developer Guide

The libraries contained within the ArcGIS Engine are also available in ArcGIS
Desktop and are summarized below. The diagrams that accompany this section
indicate the library architecture of the ArcGIS Engine. Understanding the library
structure, dependencies, and basic functionality will help you as a developer
navigate through the components of ArcGIS Engine.

The libraries are discussed in dependency order. The diagrams show this with
sequential numbers in the upper right corner of the library block. For example,
System, as the library at the base of the ArcGIS architecture, is numbered one,
while GeoDatabase, numbered seven, depends on the six libraries that precede it
in the diagram—System, SystemUI, Geometry, Display, Server, and Output.

SYSTEM

The System library is the lowest level library in the ArcGIS architecture. The
library contains components that expose services used by the other libraries
comprising ArcGIS. There are a number of interfaces defined within the System
library that can be implemented by the developer. The AoInitializer object is
defined in System; all developers must use this object to initialize and uninitialize
the ArcGIS Engine in applications that make use of Engine functionality. The
developer does not extend this library but can extend the ArcGIS system by
implementing interfaces contained within this library.

SYSTEMUI
The SystemUI library contains the interface definitions for user interface compo-
nents that can be extended within the ArcGIS Engine. These include the
ICommand, ITool, and IToolControl interfaces. The developer uses these interfaces
to extend the UI components that the ArcGIS Engine developer components use.
The objects contained within this library are utility objects available to the devel-
oper to simplify some user interface developments. The developer does not
extend this library but can extend the ArcGIS system by implementing interfaces
contained within this library.

GEOMETRY

The Geometry library handles the geometry, or shape, of features stored in fea-
ture classes or other graphical elements. The fundamental geometry objects with
which most users will interact are Point, MultiPoint, Polyline, and Polygon. Beside
those top-level entities are geometries that serve as building blocks for Polylines
and Polygons. Those are the primitives that compose the geometries. They are
Segments, Paths, and Rings. Polylines and Polygons are composed of a sequence of
connected Segments that form a Path. A Segment consists of two distinguished
points, the start and the endpoint, and an element type that defines the curve
from beginning to end. The kinds of segments are CircularArc, Line, EllipticArc,
and BezierCurve. All geometry objects can have Z, M, and IDs associated with
their vertices. The fundamental geometry objects all support geometric opera-
tions, such as Buffer and Clip. The geometry primitives are not meant to be ex-
tended by developers.

Entities within a GIS refer to real-world features; the location of these real-
world features is defined by a geometry along with a spatial reference. Spatial

For a comprehensive discussion on each library
the library overviews, refer to the ArcGIS

Developer Help system.

Knowing the library dependency order is
important, since it affects the way in which

developers interact with the libraries as they
develop software. For example, C++ developers

must include the type libraries in the library
dependency order to ensure correct compilation.

Understanding the dependencies also helps when
deploying your developments.

ARCGIS ENGINE LIBRARIES

 Chapter 2 • ArcGIS software architecture • 27

reference objects for both projected and geographic coordinate systems are in-
cluded in the Geometry library. Developers can extend the spatial reference
system by adding new spatial references and projections between spatial
references.

DISPLAY

The Display library contains objects used for the display of GIS data. In addition
to the main display objects responsible for the actual output of the image, the
library contains objects that represent symbols and colors used to control the
properties of entities drawn on the display. The library also contains objects that
provide the user with visual feedback when interacting with the display. Devel-
opers most often interact with the display through a view like the ones provided
by the Map or PageLayout objects. All parts of the library can be extended, with
the commonly extended areas being symbols, colors, and display feedbacks.

SERVER

The Server library contains objects that allow you to connect and work with
ArcGIS Servers. Developers gain access to an ArcGIS Server using the
GISServerConnection object. The GISServerConnection object gives access to the
ServerObjectManager. Using this object a developer works with ServerContext
objects to manipulate ArcObjects running on the server. The Server library is not
extended by developers. Developers can also use the GISClient library when
interacting with the ArcGIS Server.

OUTPUT

The Output library is used to create graphical output to devices, such as printers
and plotters, and hardcopy formats, such as enhanced metafiles and raster image
formats (JPG, BMP, and so forth). The developer uses the objects in the library
with other parts of the ArcGIS system to create graphical output. Commonly,
these would be objects in the Display and Carto libraries. Developers can extend
the output library for custom devices and export formats.

GEODATABASE

The GeoDatabase library provides the programming API for the geodatabase. The
geodatabase is a repository of geographic data built on standard industry rela-
tional and object relational database technology. The objects within the library
provide a unified programming model for all supported data sources within
ArcGIS. The GeoDatabase library defines many of the interfaces that are imple-
mented by data source providers higher in the architecture. The geodatabase can
be extended by developers to support specialized types of data objects (Features,
Classes, and so forth); in addition, it can have custom vector data sources added
using the PlugInDataSource objects. The native data types supported by the
geodatabase cannot be extended.

GISCLIENT

The GISClient library allows developers to consume Web services; these Web
services can be provided by ArcIMS and ArcGIS Server. The library includes
objects for connecting to GIS servers to make use of Web services. There is

ARCGIS ENGINE LIBRARIES

28 • ArcGIS Desktop Developer Guide

Raster Data Objects (RDO) is a COM API that
provides display and analysis support for file-

based raster data.

support for ArcIMS Image Services and Feature Services. The library provides a
common programming model for working with ArcGIS Server objects in a state-
less manner, either directly or through a Web service catalog. ArcObjects running
on the ArcGIS Server is not accessible through the GISClient interface. To gain
direct access to ArcObjects running on the server, you should use functionality in
the Server library.

DATASOURCESFILE

The DataSourcesFile library contains the implementation of the GeoDatabase
API for file-based data sources. These file-based data sources include shapefile,
coverage, TIN, CAD, SDC, ArcGIS StreetMap™, and VPF. The DataSourcesFile
library is not extended by developers.

DATASOURCESGDB
The DataSourcesGDB library contains the implementation of the GeoDatabase
API for the database data sources. These data sources include Microsoft Access
and SDE®software-supported RDBMSs. The DataSourcesGDB library is not
extended by developers.

DATASOURCESOLEDB
The DataSourcesOleDB library contains the implementation of the GeoDatabase
API for the Microsoft OLE DB data sources. This library is only available on the
Microsoft Windows operating system. These data sources include any OLE DB-
supported data provider and text file workspaces. The DataSourcesOleDB library
is not extended by developers.

DATASOURCESRASTER

The DataSourcesRaster library contains the implementation of the GeoDatabase
API for the Raster data sources. These data sources include SDE software-
supported RDBMSs, along with all the supported RDO raster file formats. De-
velopers do not extend this library when support for new raster formats is re-
quired; rather, they extend RDO. The DataSourcesRaster library is not extended
by developers.

GEODATABASEDISTRIBUTED

The GeoDatabaseDistributed library supports distributed access to an enterprise
geodatabase by providing tools for importing data into and exporting data out of
a geodatabase. The GeoDatabaseDistributed library is not extended by develop-
ers.

CARTO

The Carto library supports the creation and display of maps; these maps can
consist of data in one map or a page with many maps and associated marginalia.
The PageLayout object is a container for hosting one or more maps and their
associated marginalia: North arrows, legends, scalebars, and so forth. The Map
object is a container of layers. The Map object has properties that operate on all
layers within the map: spatial reference, map scale, and so forth, along with
methods that manipulate the map’s layers. There are many different types of

ARCGIS ENGINE LIBRARIES

 Chapter 2 • ArcGIS software architecture • 29

Contains the objects for displaying
data. The PageLayout and Map
objects are in this library along
with map layers and renderers for
all the supported data types.

Contains core spatial analysis operations
that are used by the ArcGIS Spatial
Analyst and ArcGIS 3D Analyst extensions.

Supports the creation and
analysis of utility networks.

Contains objects for performing
analysis and supports the display
of globe data.

Performs 3D analysis of
data and supports 3D
data display.

Contains objects related to working with
location data, either route events or
geocoding locations.

Contains controls for application
development including commands and
tools for use with the controls.

Spatial-
Analyst

21

Carto
14

Network-
Analysis

16

Location
15

18
GeoAnalyst

3DAnalyst
19

GlobeCore
20

Controls
17

ARCGIS ENGINE LIBRARIES

30 • ArcGIS Desktop Developer Guide

The ArcGIS Server uses the MapServer object for
its MapService.

layers that can be added to a map. Different data sources often have an associated
layer responsible for displaying the data on the map; vector features are handled
by the FeatureLayer object, raster data by the RasterLayer, TIN data by the
TinLayer, and so forth. Layers can, if required, handle all the drawing operations
for their associated data, but it is more common for layers to have an associated
Renderer object. The properties of the Renderer object control how the data is
displayed in the map. Renderers commonly use symbols from the Display library
for the actual drawing; the renderer simply matches a particular symbol with the
properties of the entity that is to be drawn. A Map, along with a PageLayout, can
contain elements. An element has geometry to define its location on the map or
page, along with behavior that controls the display of the element. There are
elements for basic shapes, text labels, complex marginalia, and so forth. The Carto
library also contains support for map annotation and dynamic labeling.

Although developers can directly make use of the Map or PageLayout objects in
their applications, it is more common for developers to use a higher-level object,
such as the MapControl, PageLayoutControl, or ArcGIS Application. These higher-
level objects simplify some tasks, although they always provide access to the
lower-level Map and PageLayout objects, allowing the developer fine control of
the objects.

The Map and PageLayout objects are not the only objects in Carto that expose the
behavior of Map and Page drawing. The MxdServer and MapServer objects both
support the rendering of Maps and Pages, but instead of rendering to a window,
these objects render directly to a file.

Using the MapDocument object, developers can persist the state of the Map and
PageLayout within a Map Document (MXD), which can be used in ArcMap, or one
of the ArcGIS controls.

The Carto library is commonly extended in a number of areas. Custom renderers,
layers, and so forth, are common. A custom layer is often the easiest method of
adding custom data support to a mapping application.

LOCATION

The Location library contains objects that support geocoding and working with
route events. The geocoding functionality can be accessed through fine-grained
objects for full control, or the GeocodeServer objects offer a simplified API.
Developers can create their own geocoding objects. The linear referencing func-
tionality provides objects for adding events to linear features and rendering these
events using a variety of drawing options. The developer can extend the linear
reference functionality.

NETWORKANALYSIS

The NetworkAnalysis library provides objects for populating a geodatabase with
network data and objects to analyze the network when it is loaded in the geoda-
tabase. Developers can extend this library to support custom network tracing.
The library is meant to work with utility networks—gas lines, electricity supply
lines, and so forth.

ARCGIS ENGINE LIBRARIES

 Chapter 2 • ArcGIS software architecture • 31

CONTROLS

The Controls library is used by developers to build or extend applications with
ArcGIS functionality. The ArcGIS Controls simplify the development process by
encapsulating ArcObjects and providing a coarser-grained API. Although the
controls encapsulate the fine-grained ArcObjects, they do not restrict access to
them. The MapControl and PageLayoutControl encapsulate the Carto library’s
Map and PageLayout objects, respectively. The ReaderControl encapsulates both
the Map and PageLayout objects and provides a simplified API when working
with the control. If the map publisher has granted permission, the developer can
access the internal objects in a similar way to the Map and PageLayout controls.
The library also contains the TOCControl that implements a table of contents
and a ToolbarControl for hosting commands and tools that work with a suitable
control.

Developers extend the Controls library by creating their own commands and tools
for use with the controls. To support this the library has the HookHelper object.
This object makes it straightforward to create a command that works with any of
the controls, in addition to ArcGIS applications, such as ArcMap.

GEOANALYST

The GeoAnalyst library contains objects that support core spatial analysis func-
tions. These functions are used within both the ArcGIS Spatial Analyst and
ArcGIS 3D Analyst™ libraries. Developers can extend the library by creating a
new type of raster operation. An ArcGIS Spatial Analyst or 3D Analyst license is
required to make use of the objects in this library.

3DANALYST

The 3DAnalyst library contains objects for working with three-dimensional scenes
in a similar way that the Carto library contains objects for working with two-
dimensional maps. The Scene object is one of the main objects of the library,
since it is the container for data similar to the Map object. The Camera and Target
objects specify how the scene is viewed regarding the positioning of the features
relative to the observer. A scene consists of one or more layers; these layers
specify the data in the scene and how the data is drawn.

The 3DAnalyst library has a developer control along with a set of commands and
tools to use with this control. This control can be used in conjunction with the
objects in the Controls library. It is not common for developers to extend this
library beyond the creation of commands and tools. A 3D Analyst license is
required to work with objects in this library.

GLOBECORE

The GlobeCore library contains objects for working with globe data similar to the
way that the Carto library contains objects for working with two-dimensional
maps. The Globe object is one of the main objects of the library, since it is the
container for data similar to the Map object. The GlobeCamera object specifies
how the Globe is viewed regarding the positioning of the globe relative to the
observer. The Globe can have one or more layers; these layers specify the data on
the Globe and how the data is drawn.

ARCGIS ENGINE LIBRARIES

ArcGIS Engine comes with more than
150 commands.

The contents of the Map and PageLayout
controls can be specified programmatically, or

they can load Map Documents.

The ReaderControl only supports Published Map
Files (PMF).

32 • ArcGIS Desktop Developer Guide

The GlobeCore library has a developer control along with a set of commands and
tools to use with this control. This control can be used in conjunction with the
objects in the Controls library. It is not common for developers to extend this
library beyond the creation of commands and tools. A 3D Analyst license is
required to work with objects in this library.

SPATIALANALYST

The SpatialAnalyst library contains objects for performing spatial analysis on
raster and vector data. Developers most commonly consume the objects within
this library and do not extend it. An ArcGIS Spatial Analyst license is required to
work with objects in this library.

ARCGIS ENGINE LIBRARIES

Chapter 2 • ArcGIS software architecture • 33

Provides user interfaces to
support objects contained in
the GeoDatabase library.

Provides the implementation
of a data catalog and
its contents.

Provides core components to support
user interface components and applications.

Provides user interfaces to
support objects in the
Display library.

Provides user interfaces to
support objects contained
in the Carto library.

Provides user interfaces to
support objects contained in
the DataSourcesRaster library.

Provides user interfaces to
support objects contained
in the Output library.

Provides user interfaces to
support objects contained
in the Catalog library.

22
Framework

Geo-
DatabaseUI

23

24
DisplayUI

27
CatalogUI

26
Catalog

OutputUI
25

28
CartoUI

ArcCatalogUIDataSources-
RasterUI

29

ArcMapUI

Output-
ExtentionsUI

ARCGIS DESKTOP APPLICATION LIBRARIES

34 • ArcGIS Desktop Developer Guide

ARCGIS DESKTOP APPLICATION LIBRARIES

The libraries contained within ArcGIS Desktop are summarized below. The
diagrams that accompany this section indicate the library architecture of the
ArcGIS Desktop applications. Understanding the library structure, their depen-
dencies, and basic functionality will help you as a developer navigate through the
components of the ArcGIS Desktop applications. The libraries are discussed in
dependency order. The diagrams show this with a number in the upper right
corner of the library block.

FRAMEWORK

The Framework library provides core components and software interfaces to
support user interface components and the ArcGIS applications. A number of the
objects in the Framework library are used internally by the ArcGIS applications
to support their customization environment. There are a number of helper ob-
jects in Framework that developers can use when creating user interfaces for
inclusion in one of the ArcGIS applications—ComPropertySheet,
ModelessFrame, and MouseCursor are three examples—along with a set of dialog
boxes that support common UI operations within an ArcGIS application—
ColorSelector and NumberDialog are two commonly used dialog boxes. The
Framework library defines the software interfaces that developers use when
creating user interfaces for extending the ArcGIS system using property pages and
dockable windows. The Framework library is not extended by the developer, but
by implementing interfaces defined in the library, developers can extend the
ArcGIS architecture with UI components.

GEODATABASEUI
The GeoDatabaseUI library provides user interfaces, including property pages, to
support objects contained in the GeoDatabase library. The library supports a
number of dialog boxes that developers can use; TableView, Calculator, and the
version dialog boxes are all defined in the library. It is not common for developers
to extend this library.

DISPLAYUI
The DisplayUI library provides user interfaces, including property pages, to
support objects contained in the Display library. All the symbols defined in the
Display library have their property pages defined in this library. There are dialog
boxes to manage styles and symbols in this library. Developers extend this library
when they create UIs for corresponding components they have created in the
Display library.

OUTPUTUI
The OutputUI library provides user interfaces, including property pages, to
support objects contained in the Output library. In addition to the property pages,
there are a number of dialog boxes, including the PrintDialog and ExportDialog,
available for developers to use. Developers extend this library when they create
UIs for corresponding components they have created in the Output library.

CATALOG

The Catalog library contains objects and defines interfaces to support data cata-

The modular architecture of ArcObjects makes a
split between UI and non-UI code. The objects

that have the GIS functionality do not have UI in
the same DLL. The UI is provided by a comple-
mentary UI library. This UI library uses frame-

work components, as well as components from
its corresponding non-UI library.

 Chapter 2 • ArcGIS software architecture • 35

Although implemented in libraries, commands
are not exposed directly to developers. Develop-
ers obtain references to commands through the

hosting application.

ARCGIS DESKTOP APPLICATION LIBRARIES

logs. The catalog is a representation of persistent data. The data can be both local
and remote. By using the objects within the catalog, developers can browse data
holdings and, if required, obtain connections to the data. Many of the objects
defined in Catalog are referred to as “GX” objects. These GX objects all imple-
ment the interface IGxObject. Objects that implement this interface can be
manipulated within a catalog. GxFilters, which allow developers to browse for
certain types of data, are also defined in this library. Developers commonly
extend this library when they want to add catalog support for a data type not
already supported by the ArcGIS system.

CATALOGUI
The CatalogUI library provides user interfaces, including property pages, to
support objects contained in the Catalog library. In addition to the property pages,
there are a number of dialog boxes, including the GxDialog, that can be used
when interacting with catalogs and their contents. The GxDialog object supports
the “Add Data” functionality of the ArcGIS applications. The FindDialog is also
implemented by this library. Many of the commands and context menus seen in
the ArcCatalog application are defined in this library. Developers extend this
library when they create UIs for corresponding components they have created in
the Catalog library.

CARTOUI
The CartoUI library provides user interfaces, including property pages, to support
objects contained in the Carto library. In addition to the property pages, there are
a number of dialog boxes, including the IdentifyDialog, available for developers
to use, although many of the dialog boxes contained in this library are commonly
accessed through a property page. Developers extend this library when they create
UIs for corresponding components they have created in the Carto library.

DATASOURCESRASTERUI
The DataSourcesRasterUI library provides user interfaces, including property
pages, to support objects contained in the DataSourcesRaster library. In addition
to the property pages, there are dialog boxes, including RasterSdeLoader and
SidEncoder, available for developers to use. Developers extend this library when
they create UIs for corresponding components they have created in the
DataSourcesRaster library.

ARCCATALOGUI
The ArcCatalogUI library provides user interface components specific to the
ArcCatalog application. The dialog box IDs for specific ArcCatalog dialog boxes
are found in this library. Developers do not extend this library.

ARCCATALOG

The ArcCatalog library contains the ArcCatalog application, including the Appli-
cation and Document objects. Some of the interfaces, such as IGxApplication,
are defined in the ArcCatalogUI library. This is because the objects in the
ArcCatalogUI library use the IGxApplication interface to interact with the
ArcCatalog application. The GxDocument object fires various events during the

36 • ArcGIS Desktop Developer Guide

As earlier noted, it is advantageous for develop-
ers to develop their commands and tools for use
within the various ArcGIS controls, as well as the

ArcMap application.

lifetime of the ArcCatalog application that can be used by developers to synchro-
nize with ArcCatalog events. Developers do not extend this library; instead, they
create commands and tools for use within the ArcCatalog application.

ARCMAPUI
The ArcMapUI library provides user interface components specific to the ArcMap
application. The components contained in this library cannot be used outside the
context of ArcMap. The IMxApplication and IMxDocument interfaces are
defined in this library, although they are implemented in the ArcMap library. The
ArcMap table of contents is implemented in this library, along with many of the
commands present in ArcMap. Developers extend this library by creating custom
commands and tools for use within the ArcMap application.

EDITOR

The Editor library implements the ArcMap object editor. The editor supports the
editing of simple features, network features, annotations, and topological fea-
tures, along with attributes for all these features. The library supports both a user
interface and a programming API. The API provided by the Editor is a higher-
level API than that of the GeoDatabase library. Developers are encouraged to use
the Editor API when editing and manipulating features in the geodatabase.
Developers can extend the library with their own editing commands, edit tasks,
and snap agents; and for more advanced customization, developers can create
extensions to the editor. The object inspector interface is implemented by the
Editor library; however, to extend this user interface, a Class extension is imple-
mented by extending the GeoDatabase library for the appropriate data source.

LOCATIONUI
The LocationUI library provides user interfaces, including property pages, to
support objects contained in the Location library. In addition to the property
pages, there are a number of dialog boxes, including the EventFinder and
AddressLocatorUI, available for developers to use. This library also contains
objects that extend other core libraries of the ArcGIS system, such as Catalog,
CatalogUI, and CartoUI. Developers extend this library when they create UIs for
corresponding components they have created in the Location library.

ARCMAP

The ArcMap library contains the ArcMap application, which is implemented by
the Application object. Similar to the ArcCatalog library, the Application object
implements interfaces from other libraries; namely, ArcMapUI. The ArcMap
application can be programmatically controlled either by developers who write
new commands and tools that are included in the application or through OLE
automation. When interacting with ArcMap and OLE automation, it is impor-
tant that all objects used by ArcMap are created within the context of ArcMap.
To support this programming model, the application implements the
IObjectFactory interface. Developers also use the Application object to work
with ArcMap documents, dockable windows, extensions, and the various data
windows supported by ArcMap. Developers do not extend this library; instead,
they create commands and tools for use within the ArcMap application.

ARCGIS DESKTOP APPLICATION LIBRARIES

 Chapter 2 • ArcGIS software architecture • 37

Provides user interface
components for ArcMap.

Implements the ArcMap object
editor, supporting both a user
interface and a programming API.

Contains extensions
to the ArcMap Editor.

Provides user interfaces
to support objects
contained in the
Location library.

Contains the ArcMap
application.

Provides user interfaces
to support objects
contained in the
GeoDatabase-
Distributed library.

Implements the
geoprocessing framework
in addition to the base set
of geoprocessing tools.

Provides the user interface
to support objects in the
Geoprocessing library.

Provides user interface
components for ArcCatalog.

Contains the ArcCatalog
application.

Geo-
processingUI

39

ArcCatalogUI
30

ArcCatalog
31

ArcMapUI
32

ArcMap
35

Editor
33

Geo-
processing

38

GeoDatabase-
DistributedUI

37

LocationUI
34

EditorExt
36

Maplex
Survey-

Ext

Tracking-
Analyst

GeoStatistical-
Analyst

3DAnalystUI

Spatial-
AnalystUI

ArcScan

ARCGIS DESKTOP APPLICATION LIBRARIES

38 • ArcGIS Desktop Developer Guide

As earlier noted, it is advantageous for develop-
ers to develop their commands and tools for use
within the various ArcGIS controls, as well as the

ArcMap application.

ARCGIS DESKTOP APPLICATION LIBRARIES

EDITOREXT

The EditorExt library contains extensions to the ArcMap Editor and components
dependent on the Editor. The functionality supported by this library is diverse,
with the commonality being its reliance on the Object Editor. The library has
functionality and associated UI to support network tracing, database loading,
ArcPad® integration, edge matching, and managing map topology within ArcMap.
Developers do not commonly extend this library; rather, they create their own
editor extensions in their own library.

GEODATABASEDISTRIBUTEDUI
The GeoDatabaseDistributedUI library provides user interfaces, including prop-
erty pages and dialog boxes, to support objects contained in the
GeoDatabaseDistributed library. Developers do not extend this library.

GEOPROCESSING

The Geoprocessing library contains the objects that implement the unified
geoprocessing framework. This framework supports the execution of geoprocess-
ing tools using Dialogs, Models, Scripts, Command Line, and the ArcObjects
COM or .NET APIs. In addition to the core framework, the library contains
more than 200 geoprocessing tools. Developers can programmatically interact
with the framework using the objects in this library. More commonly, developers
will extend this library with new geoprocessing tools for subsequent use within
the geoprocessing framework. Other libraries within the ArcGIS system imple-
ment geoprocessing tools so their functionality is exposed to users through the
unified framework.

GEOPROCESSINGUI
The GeoprocessingUI library provides user interfaces, including property pages, to
support objects contained in the Geoprocessing library. In addition to the prop-
erty pages, there are a number of dialog boxes available for developers to use.
Developers extend this library when they create UIs for corresponding compo-
nents they have created in the Geoprocessing library. In addition to the normal
property pages created to support objects in a non-UI library, it is possible that
new ActiveX controls will be required to support data types used by
geoprocessing tools. The ActiveX controls are used by the geoprocessing dialog
boxes when requesting the parameters for a geoprocessing tool from users. This
library contains all the parameter controls required by the geoprocessing tools
defined in the Geoprocessing library.

OUTPUTEXTENSIONS

The OutputExtensions library extends the core output functionality with more
advanced output capabilities. The ArcPress™ printing engine is implemented by
this library. This library is not extended by developers. Depending on the compo-
nents used from the library, an extension license may be required.

 Chapter 2 • ArcGIS software architecture • 39

Extends the core output
functionality with more
advanced output capabilities.

Provides user interfaces to
support objects contained in
the OutputExtensions library.

Provides user interfaces to
support objects contained in
the GeoStatisticalAnalyst library.

Implements the nonuser interface
functionality of the ArcGIS
Geostatistical Analyst extension.

Provides user interfaces to
support objects contained in the
ArcGIS SpatialAnalyst library.

Provides user interfaces to
support objects contained in
the TrackingAnalyst library.

Provides objects to display,
analyze, and manipulate
time series data.

Supports the Maplex labeling
extension to ArcMap.

Contains the StreetMap
USA extension.

Provides user interfaces to
support objects in the
3DAnalyst library.

Provides user interface
components specific to
the ArcGlobe application.

Supports the ArcScan raster to
vector conversion extension
to ArcMap.

Contains objects used for
managing survey data and
survey processes.

Provides worker objects and
object classes built from the
base classes of the
SurveyExt library.

Provides objects used for
importing and exporting survey
data to and from data collector
observation files, ASCII file,
and other sources.

Contains the ArcScene
application.

Contains the ArcGlobe
application.

Provides objects that support the
creation of Published Map Files, and
the creation of Data Packages.

Supports the ArcReader object
model providing the ability to
create custom ArcReader-based
applications.

Provides user interfaces including
property pages and extensions to
ArcMap and ArcCatalog to support
objects contained in the
Publisher library.

Publisher
51

ArcReader-
Control

50

Spatial-
AnalystUI

42

Maplex
53

ArcScan
47

3DAnalystUI
43

Survey-
Ext

57

Survey-
Pkgs

58

Survey-
DataEx

59

Tracking-
Analyst

55

Tracking-
AnalystUI

56

PublisherUI
52

GeoStatistical-
AnalystUI

49

GeoStatistical-
Analyst

48

DataSources-
SMUUI

54

Output-
Extensions

40

Output-
ExtentionsUI

41

GlobeCoreUI
45

ArcGlobe

46

ArcScene
44

ARCGIS DESKTOP APPLICATION LIBRARIES

40 • ArcGIS Desktop Developer Guide

Similar to developing tools for ArcMap, develop-
ers should develop commands and tools that

work in both the ArcScene application and the
SceneControl developer component.

ARCGIS DESKTOP APPLICATION LIBRARIES

OUTPUTEXTENSIONSUI
The OutputExtensionsUI library provides user interfaces, including property
pages, to support objects contained in the OutputExtensions library. Developers
do not extend this library. Depending on the components used from the library,
an extension license may be required.

SPATIALANALYSTUI
The SpatialAnalystUI library provides user interfaces, including property pages, to
support objects contained in the SpatialAnalyst library. The library also contains a
comprehensive set of geoprocessing tools that expose the SpatialAnalyst library
functionality for use within the geoprocessing framework. The SpatialAnalyst
Extension object is implemented by this library. Developers extend this library
when they create UIs or geoprocessing functions for corresponding components
they have created in the SpatialAnalyst library. An ArcGIS Spatial Analyst license
is required to work with objects in this library.

3DANALYSTUI
The 3DAnalystUI library provides user interfaces, including property pages, to
support objects contained in the 3DAnalyst library. The library also contains a
comprehensive set of geoprocessing tools that expose the 3DAnalyst library
functionality for use within the geoprocessing framework. The 3DAnalyst Exten-
sion object is implemented by this library. Developers extend this library when
they create UIs or geoprocessing functions for corresponding components they
have created in the 3DAnalyst library. A 3D Analyst license is required to work
with objects in this library.

ARCSCENE

The ArcScene library contains the ArcScene™ application, along with its associ-
ated user interface components, commands, and tools. The ArcScene Application
and SxDocument objects are both defined and implemented by this library.
Developers can use the Application object when customizing the ArcScene
application or working with one of the ArcScene extensions. Developers extend
this library by creating commands, tools, and extensions for use within the
ArcScene application. A 3D Analyst license is required to work with objects in
this library.

GLOBECOREUI
The GlobeCoreUI library provides user interface components specific to the
ArcGlobe™ application. The library also provides property pages for objects
contained in the GlobeCore library. It is not common for developers to extend
this library. A 3D Analyst extension license is required to work with objects in
this library.

ARCGLOBE

The ArcGlobe library contains the ArcGlobe application, along with its associated
user interface components, commands, and tools. The ArcGlobe Application and
GMxDocument objects are both defined and implemented by this library. Devel-
opers can use the Application object when customizing the ArcGlobe application

Within ArcGIS Desktop it is not uncommon to
see extensions broken up into non-UI and UI
libraries; OutputExtensions and Publisher are

two such examples.

 Chapter 2 • ArcGIS software architecture • 41

or working with one of the ArcGlobe extensions. Developers extend this library
by creating commands, tools, and extensions for use within the ArcGlobe applica-
tion. A 3D Analyst license is required to work with objects in this library.

ARCSCAN

The ArcScan library supports the ArcScan™ raster-to-vector conversion exten-
sion to ArcMap, along with its associated user interface components, commands,
and tools. The ArcScan extension object, Vectorization, is implemented by this
library. Developers do not extend this library. An ArcScan extension license is
required to work with objects in this library.

GEOSTATISTICALANALYST

The GeoStatisticalAnalyst library implements the non-UI functionality of the
Geostatistical Analyst extension to ArcMap. The geostatistics engine, along with
the GeoStatistical Layer and its associated renderers, are implemented by this
library. Developers do not extend this library. A Geostatistical Analyst extension
license is required to work with objects in this library.

GEOSTATISTICALANALYSTUI
The GeoStatisticalAnalyst UI library provides user interfaces, including property
pages, to support objects contained in the GeoStatisticalAnalyst library. In addi-
tion to the property pages, there are a number of dialog boxes available for
developers to use. The library also contains a set of geoprocessing tools that
expose the GeoStatisticalAnalyst library functionality for use within the
geoprocessing framework. A Geostatistical Analyst extension license is required
to work with objects in this library.

ARCREADERCONTROL

The ArcReaderControl library contains the ArcReaderControl along with the
objects that make up the ArcReaderControl API. This API supports the creation
of custom ArcReader™ applications through a simplified API. The encapsulated
ArcObjects are not accessible using this control. The functionality supported by
the control is similar to that of ArcReader with the addition of query features.
There is no cost to deploy applications built using the ArcReaderControl because
it uses the free ArcReader application to provide the run-time environment. The
ArcReaderControl is not extended by developers.

PUBLISHER

The Publisher library implements the non-UI functionality of the Publisher
extension to ArcGIS. The PublisherEngine and PackagerEngine objects support
the publishing of PMF files and the subsequent packaging of the published map
files. Developers do not extend this library. An ArcGIS Publisher extension
license is required to work with objects in this library.

ARCGIS DESKTOP APPLICATION LIBRARIES

Similar to developing tools for ArcScene, develop-
ers should develop commands and tools that

work in both the ArcGlobe application and the
GlobeControl developer component.

42 • ArcGIS Desktop Developer Guide

PUBLISHERUI
The PublisherUI library provides user interfaces, including property pages along
with ArcCatalog and ArcMap commands, to support objects contained in the
Publisher library. Developers do not extend this library. An ArcGIS Publisher
extension license is required to work with objects in this library.

MAPLEX

The Maplex library implements the non-UI functionality of the Maplex extension
to ArcMap. Developers do not extend this library. A Maplex extension license is
required to work with objects in this library.

TRACKINGANALYST

The TrackingAnalyst library implements the non-UI functionality of the Tracking
Analyst extension to ArcGIS. The Tracking Analyst extension supports the dis-
play, analyses, and manipulation of time series data within ArcGIS. Developers
do not extend this library. A Tracking Analyst extension license is required to
work with objects in this library.

TRACKINGANALYSTUI
The TrackingAnalystUI library provides user interfaces, including property pages,
along with commands and tools, to support objects contained in the
TrackingAnalyst library. Developers do not extend this library. A Tracking
Analyst extension license is required to work with objects in this library.

SURVEYEXT

The SurveyExt (Survey Extension) library handles the core objects used to man-
age survey data and survey processes. The system allows angle and distance mea-
surements observed using field survey equipment to be processed in order to
generate computed coordinates. The objects in this library are data objects and
data management objects. Data management objects are manifested through
ArcCatalog as survey-specific datasets, projects, and folders and through ArcMap
as survey layers and a Survey Explorer UI. The fundamental survey data objects
with which users interact are survey points, coordinates, simple measurements,
composite measurements, and computations. These objects are persisted as rows
in a set of tables that represent the survey dataset. These tables are called survey
classes. Each row in the table is called a survey object. A computation is a survey
process that is persisted in a computation survey class. Each has a signature
behavior, makes reference to survey points and measurements, and generates
coordinates based on the observation values held by the reference objects. Two
examples of a computation are a traverse and a least-squares adjustment.

The SurveyExt library is the set of primitive objects that forms the foundation
for the objects in the SurveyPkgs and SurveyDataEx libraries.

SURVEYPKGS

The SurveyPkgs (Survey Packages) library provides a set of concrete worker
objects and object classes that are built from the base classes of the SurveyExt

ARCGIS DESKTOP APPLICATION LIBRARIES

 Chapter 2 • ArcGIS software architecture • 43

library. There are three survey packages provided with Survey Analyst in
ArcGIS 9. They are the Point, TPS (total station), and COGO packages. The
existing survey packages can be extended and customized, and new survey pack-
ages can be created. To create your own survey package, you need to aggregate the
core Survey Analyst objects from the SurveyExt library. To do this, a program-
ming language that supports aggregation is required. VB does not support aggrega-
tion, but C++ does. Survey packages may depend on each other in a hierarchical
manner. For instance, instead of defining their own point and coordinate data
types, the COGO and TPS packages use the point and coordinate data types of
the point package.

SURVEYDATAEX

The SurveyDataEx (Survey Data Exchange) library handles the core objects used
to import and export survey data to and from data collector observation files,
ASCII files, and other sources. The objects in this library are used to ensure data
integrity when merging imported data with preexisting data in a survey dataset.
Data exchange objects may be used through ArcCatalog and ArcMap or instanti-
ated and executed through standalone applications.

The fundamental survey data exchange objects with which users interact are
survey converters. These objects are registered in two component categories:
ESRI Survey Analyst Survey Import Converters and ESRI Survey Analyst Survey
Export Converters. Custom survey converters must also be registered in these
component categories.

The core ArcGIS Survey Analyst extension supports the following import con-
verters: Configurable ASCII coordinate importer, Geodimeter, Geo Serial Inter-
face, Tripod Data Systems, and Sokkia SDR. In addition, its export converters
allow the transfer of coordinates into these same formats.

ARCGIS DESKTOP APPLICATION LIBRARIES

45

Developing for
ArcGIS Desktop

applications
33333

The most common way developers customize ArcGIS Desktop applications is

through Visual Basic for Applications, which is embedded within each

application. The application framework also provides for the creation of

plug-in components to extend the applications.

This chapter discusses the application framework, customization options,

customization of the applications with VBA, and the creation of plug-in

components.

46 • ArcGIS Desktop Developer Guide

In the beginning of this book, you were introduced to the development possibili-
ties provided by the ArcGIS Desktop applications. This chapter will outline in
greater detail those customization options and introduce you to their develop-
ment.

COMMON APPLICATION FRAMEWORK

In Chapter 2, ‘ArcGIS software architecture’, you learned that the ArcGIS prod-
uct family shared a similar architecture based on ArcObjects. The desktop appli-
cations also share a common application framework, which you should under-
stand before undertaking any desktop development.

The ArcGIS Desktop applications are developed using ArcObjects. When you use
an application, such as ArcMap, most of the time you are simply looking at or
working with ArcObjects.

The graphical user interface in each application is also developed using the same
objects, such that in each application you will find the interface contains toolbars,
menus, commands, and tools that have the same look and feel. The interfaces can
also be easily manipulated in terms of adding and removing toolbars, docking
toolbars, adding and removing commands, and so on. This nonprogrammatic
manipulation of the interface is actually the first of the customization options
that will be described later.

It’s important to remember that every command or tool you use, for adding data,
editing, or performing some GIS analysis, is simply running some code that in-
cludes ArcObjects behind the scenes. The application framework of the desktop
applications allows you, as a developer, to write your own code using ArcObjects
to perform some customization.

Each desktop application includes VBA. The VBA development environment is
integrated within the application and provides the Customize dialog box for user
interface manipulation, as described above, and the Visual Basic Editor, which
provides an interface for creating forms and writing ArcObjects code. The inte-
gration between the application and VBA allows you to create your own controls
and work with the application and current document.

The application framework also provides for the creation of components, such as
new commands, tools, or extensions, that plug in to one or more of the desktop
applications. These components are typically created with development environ-
ments, such as Visual Basic 6 or .NET.

Recall that all the desktop applications are built using the same objects, share a
common interface, and allow for the creation and integration of your own
ArcObjects code. The way you develop a customization for applications, such as
ArcMap, is no different from creating a customization for another desktop appli-
cation, such as ArcGlobe or ArcCatalog. The ArcObjects that you consume will
be different, but the implementation is essentially the same due to the common
application framework that these applications share.

Exactly how you perform these customizations is the focus of this chapter and
will be described later.

CUSTOMIZING ARCGIS DESKTOP

Chapter 3 • Developing for ArcGIS Desktop applications • 47

Customization options

The types of customization possible within ArcGIS Desktop are summarized in
the following list and described below:

• User interface customization

• VBA macros

• VBA UI controls

• Framework components

• Extensions

• Custom layers, features, and symbology

User interface customizations

User interface customizations involve a developer or user altering the application
graphical user interface. As mentioned previously, this may be as simple as adding
or removing toolbars, but more commonly involves adding, removing, or rear-
ranging controls on existing toolbars. This is typically done to de-clutter or sim-
plify the user interface in certain work flow situations. For example, an edit work
flow task may make use of several controls on two or more existing toolbars. A
customization here may involve the creation of a new toolbar and the moving of
existing controls or controls not usually displayed with the new toolbar. This
enables operators to perform the work flow task with all the required tools on
one toolbar so they can focus on the task at hand and not spend time searching
for the next control, thus increasing productivity.

User interface customization is perhaps the easiest customization because they do
not involve programming. All the modifications are performed via the Customize
dialog box, part of the VBA development environment, or click-and-drag opera-
tions. The user interface can, of course, be altered programmatically, but this is
usually done in conjunction with delivering other controls (commands, tools, and
so forth), which will be described later.

VBA macros

VBA offers a quick and easy entry point for ArcGIS Desktop development. The
simplest customization through code is the creation of VBA macros, also called
procedures, that can be run from within the VBA development environment or
by calling the macro from the desktop application. The macro contains VBA
code, which uses ArcObjects to perform operations and can also include calls to
existing ArcGIS Desktop commands. Macros often become the foundation for
the more advanced customizations as they provide a good prototyping environ-
ment.

VBA UI controls

Through VBA you can also create your own commands, tools, and menus and
place them on the interface via the Customize dialog box. These controls contain
code that runs when you, for example, click a button or apply a tool. The code
contained within macros is often converted to controls, or alternatively, controls
may call existing macros.

CUSTOMIZING ARCGIS DESKTOP

48 • ArcGIS Desktop Developer Guide

Framework components

Although VBA may meet most of your development needs, there are some situa-
tions in which you may want to write ArcObjects code using a separate develop-
ment environment, such as Visual Basic 6, Visual C++, Visual Studio .NET, and
so forth. These offer richer development environments and the ability to create
more advanced customizations that are not possible in VBA. Through these
environments you can create components that plug in to the desktop framework
as controls, such as commands, tools, menus, and toolbars. These types of com-
ponents offer more advantages for the developer but often take longer and are
more complicated to develop.

Extensions

Extensions provide users with additional GIS functionality. Typically, GIS func-
tions that perform a specific task are grouped into an extension. 3D Analyst and
Tracking Analyst are examples of extensions provided by ESRI. Extensions are
often used by developers who require the license and management functions
provided by the extension framework. Extensions cannot be created in VBA.

Custom objects

Advanced developers create custom objects for specific applications. Custom
layers, features, and symbology are examples of such objects and can only be
created in development environments, such as Visual C++ or .NET. Developing
custom objects is beyond the scope of this book.

CUSTOMIZING ARCGIS DESKTOP

Chapter 3 • Developing for ArcGIS Desktop applications • 49

DOCUMENTS AND TEMPLATES

Understanding documents and templates is an essential part in understanding
customization with ArcObjects in ArcGIS Desktop applications.

Whenever you are using ArcMap, ArcGlobe, or ArcScene, you are working with a
document, usually referred to as a map, globe, or scene document. This document
stores the map state, the state of the user interface, custom user interface set-
tings, a Visual Basic for Applications project, and other application-specific
information, such as cartographic layouts for ArcMap documents.

Templates are kinds of documents that serve as starting points for new docu-
ments. All the desktop applications have a template known as the Normal tem-
plate, which stores the default or original state of the application. ArcCatalog is a
special case because it only uses the Normal template and has no documents.

As a desktop developer you can store your customizations in either the current
document or the Normal template. ArcMap developers can also store the
customizations in another map template usually established for different carto-
graphic layouts.

When you open a desktop document, the corresponding desktop application first
reads the customizations from the Normal template, then the map template, if
applicable, then finally the document itself. The graphic below illustrates how
customizations are read from top to bottom to incorporate customizations from
all levels.

The order in which these are read is important because changes in one template
can affect other templates and the desktop document. For example, an ArcMap
Normal template may have the AddData command turned off, but a map tem-
plate or document may turn the command back on.

The structure and function of documents and templates are further explained
below in the context of each respective application.

STORING CUSTOMIZATIONS

map document

data references

map layout

user interface

VBA project

The ArcMap table of
contents manages the
geographic data
referenced in the map.

A map can be composed
with data frames and
cartographic elements
and saved.

ArcMap has a standard
user interface which can
be customized and saved
in a document.

A Visual Basic for
Applications project
contains forms, modules,
and classes.

This
Document

Map
Template

Normal
Template

Affects this document.

Affects all ArcMap documents
using this template.

Affects all documents.

50 • ArcGIS Desktop Developer Guide

CUSTOMIZING ARCMAP

You can customize ArcMap in several ways:

• You can add references to geographic data and define how the data is dis-
played.

• You can create a map layout with a spatial reference and ancillary cartographic
elements.

• You can add, remove, or rearrange elements of the standard user interface.

• You can write code in a Visual Basic for Applications project.

All customization in ArcMap is stored in a map document or a map template.

The changes you make to the ArcMap table of contents, the layout of a map, the
toolbars and their command items, and the VBA code you write all get saved to
the map document.

A map document can reside anywhere on your file system; it has a file extension
of .mxd.

Map templates

You can use map templates to disseminate customization throughout an organiza-
tion—globally, by project, or by document.

A map template is a kind of map document. In nearly every respect, map tem-
plates are structurally identical to map documents. The functional difference is
that ArcMap recognizes and uses templates as a starting point to create new map
documents. This is similar to how you work with templates in Microsoft Office
applications.

Any customization of the user interface or the VBA project becomes part of the
newly created map document. Furthermore, any changes to a template will
propagate to template-based documents when they are next loaded.

There are three levels of templates and documents in ArcMap. You can save
changes to any level to control how widely your customizations are used.

Custom map documents

When you are working with a map, you are setting references to data, designing a
map layout, customizing the user interface, and writing VBA code, all for the
lifetime of the document.

Selective customization with project templates

Other projects and other users can share the customizations that you make
through templates. A template is a kind of map document that is specified to be a
starting point for a new map document. The new map document will inherit all
the customizations from the template (data references, map layout, user interface
state, and VBA project).

Normal template

There is always a normal
template in the

\arcexe\bin\Templates folder. Any
changes to the normal template

propagate to all templates and
documents.

Project templates

Map documents

Project templates can be
created anywhere on your
file system. Changes made

to project templates
propagate to all documents

based on that template.

Map documents are
based on templates.

They can be based on a
project template or

directly on the normal
template.

Normal.mxt

Plat.mxt

Tierra.mxd TanoRoad.mxd

ArcMap automatically creates a Normal
template if one does not exist. If you have
applied unintended customizations, such as

removing toolbars and command items, you can
simply remove the Normal.mxt file, and a new

one with the standard user interface will be
generated. This is easier than undoing a set of

unintended customizations.

This is how the three loaded templates in
ArcMap—normal, project (current document),

and project template—appear in the VBA
project explorer.

STORING CUSTOMIZATIONS

Chapter 3 • Developing for ArcGIS Desktop applications • 51

Global customizations with the Normal template

The Normal template in ArcMap stores any personal settings you have made to
the user interface that you want loaded every time you start ArcMap. Any
customizations that you save to the Normal template, including code and control
customizations, will get propagated to all the other map documents when they
are next opened.

When you first start ArcMap after installing the software, a Normal template is
automatically created and put in your profiles location, which is one of the
following folders, depending on your operating system.

For Windows NT®:
C:\WINNT\Profiles\<your username>\Application Data\ESRI\ArcMap\Templates\

For Windows 2000 and XP:
C:\Documents and Settings\<your username>\Application
Data\ESRI\ArcMap\Templates\

This is the default Normal template that contains all the standard toolbars and
commands and places the toolbars and the table of contents in their default
positions. Any customizations that you save in your Normal template get saved to
this file.

If you want to make changes that appear every time you open ArcMap, save them
in the Normal template.

Suppose your administrator has custom toolbars or tools to which he or she
would like everyone in your organization to have access. Your administrator
could create a customized Normal template and allow everyone in your organiza-
tion to use that Normal template instead of the default Normal template. To
accomplish this, your administrator would customize the Normal template and
copy that Normal.mxt file to the \ArcGIS\bin\Templates folder. Everyone
would then start with this Normal template instead of the default Normal tem-
plate. The following is an explanation of how this works.

If there is no Normal.mxt file in your profiles location when you start ArcMap,
the application will look in the \ArcGIS\bin\Templates folder. If a Normal.mxt
file exists in the \ArcGIS\bin\Templates folder, that file will be copied to your
profiles location and will be treated as your personal Normal template. Therefore,
you start off with a copy of your organization’s customized Normal template,
but from that point on you can save your own customizations to it.

If a Normal.mxt file is not found in your Profiles location or in the
\ArcGIS\bin\Templates folder, then a new default Normal.mxt file will be
created and placed in your Profiles location.

CUSTOMIZING ARCSCENE AND ARCGLOBE

ArcScene and ArcGlobe can be customized in the following ways:

• You can add references to geographic data and define how the data is dis-
played.

• You can add, remove, or rearrange elements of the standard user interface.

• You can write code in a Visual Basic for Applications project.

STORING CUSTOMIZATIONS

In ArcMap the Normal template is also referred
to as the Normal.mxt file.

52 • ArcGIS Desktop Developer Guide

All customizations are stored as documents. For ArcScene the document exten-
sion is .sxd; for ArcGlobe it is .3dd.

The changes you make to the table of contents, the toolbars and their command
items, and the VBA code you write all get saved to these documents.

Like ArcMap, these applications also have a Normal template that behaves the
same way. For ArcScene the file is called Normal.sxt; for ArcGlobe it is
Normal.3dt. You can find these files at the following locations, depending on
your operating system:

For Windows NT:
C:\WINNT\Profiles\<your username>\Application Data\ESRI\ArcScene (or
ArcGlobe)

For Windows 2000 and XP:
C:\Documents and Settings\<your username>\Application Data\ESRI\ArcScene
(or ArcGlobe)

CUSTOMIZING ARCCATALOG

You can customize ArcCatalog in several ways:

• Add, remove, or rearrange elements of the standard user interface.

• Write code in a Visual Basic for Applications project.

ArcCatalog does not employ the full structure of documents and templates like
ArcMap does. The ArcCatalog application does not use documents or base tem-
plates; it only uses a Normal template. Therefore, all customizations to the
ArcCatalog user interface are stored in the Normal template.

When you first start ArcCatalog after installing the software, a Normal template
called Normal.gxt is automatically created and put in your Profiles location,
which is one of the following folders, depending on your operating system.

For Windows NT:
C:\WINNT\Profiles\<your username>\Application Data\ESRI\ArcCatalog\

For Windows 2000:
C:\Documents and Settings\<your username>\Application
Data\ESRI\ArcCatalog\

STORING CUSTOMIZATIONS

This is how the ArcCatalog Normal template
appears in the VBA project explorer.

Chapter 3 • Developing for ArcGIS Desktop applications • 53

This section details the various VBA customizations available to desktop develop-
ers. Specifically, it will cover user interface customizations, VBA macros, and
VBA UI controls in the form of quick-start tutorials.

Before attempting these tutorials, however, you should have at least a basic
understanding of ArcObjects, Microsoft COM, and the Visual Basic 6/VBA
syntax. This information can be found in Chapter 2, ‘ArcGIS software architec-
ture’, and Appendix A, ‘Developer environments’, the language reference appen-
dix found in this guide.

After completing this section you should also review Appendix C, ‘Illustrated
code samples’, and Appendix D, ‘Problem-solving guide’. The illustrated code
samples show numerous ArcObjects code examples that can be used in VBA
utilizing the techniques shown in this section. The problem-solving guide walks
you through a typical customization problem in ArcGIS Desktop using
ArcObjects and VBA.

1. To start this tutorial, click the Windows Start button, point to Programs,
point to ArcGIS, and click ArcMap.

2. On the startup dialog box, in the ‘Start ArcMap using’ options, click A new
empty map. Click OK.

3. Add some sample data or your own data to the map.

4. Save the map document.

USER INTERFACE CUSTOMIZATIONS

The following tutorials describe nonprogrammatic user interface customizations
through the use of the Customize dialog box.

Showing and hiding toolbars using the Customize dialog box

1. Click the Tools menu and click Customize.

The Customize dialog box appears.

You can also double-click any unoccupied area of any toolbar to display the
Customize dialog box.

2. If it is not visible, click the Toolbars tab.

The presence or absence of a check mark next to the toolbar name indicates
its visible state.

3. Check and uncheck the check boxes.

Creating a new toolbar

1. On the Toolbars tab of the Customize dialog box, click New.

2. On the dialog box that appears, type “MyToolbar” as the name of the new
toolbar or use the default setting.

3. Store the toolbar in the document by changing its name on the Save in
dropdown list from Normal.mxt to the name of the current project you
saved.

VBA is available in all the ArcGIS Desktop
applications such as ArcMap, ArcCatalog, and

ArcGlobe. The examples in this quick-start
tutorial work within ArcMap, but the process of

creating macros and commands for the other
applications is the same.

The Customize dialog box

The New Toolbar dialog box

CUSTOMIZING ARCGIS DESKTOP APPLICATIONS WITH VBA

54 • ArcGIS Desktop Developer Guide

4. Click OK.

The newly created toolbar appears near the top of the application window.

Adding buttons to a toolbar

1. Make sure the toolbar you just created, MyToolbar, is visible.

2. Open the Customize dialog box.

3. Click the Commands tab on the Customize dialog box.

4. Click Pan/Zoom from the Categories list on the left of the dialog box.

5. Scroll to the bottom of the Commands list on the right of the dialog box.

6. Click the Zoom in command and drag it to the MyToolbar toolbar. Release the
command when the arrow cursor with a small box below it appears.

7. Continue adding commands from the Pan/Zoom category until you have your
own version of the built-in Tools toolbar.

NOTE: You may switch to other categories to select commands.

You can dock the toolbar or drag it to any of the toolbar drop sites on the appli-
cation window.

Renaming a toolbar

1. On the Toolbars tab, click the name of the toolbar whose name you want to
change. In this case, click MyToolbar.

2. Click the Rename button.

3. In the dialog box that appears, type “My Own Tools” for the new name.

NOTE: You can only rename toolbars you’ve created.

4. Click OK.

If you decide not to rename the toolbar, click Cancel.

Removing buttons from a toolbar

1. Make sure the toolbar you just renamed, My Own Tools, is visible.

2. Open the Customize dialog box.

Dragging a toolbar

Your toolbar might look like this.

My Own Tools toolbar

CUSTOMIZING ARCGIS DESKTOP APPLICATIONS WITH VBA

Chapter 3 • Developing for ArcGIS Desktop applications • 55

3. Drag some of the commands off the toolbar.

Even though you’ve removed the buttons from the toolbar, they are still
available in the Customize dialog box.

Adding a menu to a toolbar

1. Make sure the My Own Tools toolbar is visible.

2. Open the Customize dialog box.

3. Click the Commands tab and choose the Menus category from the Categories
list on the left side of the dialog box.

4. In the Commands list on the right side of the dialog box, click Selection.

5. Drag and drop it to the left of the Zoom In button on the My Own Tools
toolbar.

6. Click Close in the Customize dialog box.

7. Click Selection on the My Own Tools toolbar and note the menu that appears.

Saving changes to a template

You can save your work to a document or template. Changes saved to a docu-
ment are specific to the document, whereas changes saved to a template will be
reflected in all documents based on the template.

1. Click the File menu and click Save. This saves the current document.

2. Click the File menu and click Save As.

3. Navigate to the Templates folder of the <installation directory>\bin folder.

4. Click the Create New Folder button.

Type a new name for the folder and double-click it. You’ll see the folder name
as a tab the next time you create a document from a template.

5. Type the template name in the filename text box, click ArcMap Templates
(*.mxt) from the Save as type dropdown menu, then click Save.

6. Reopen the original document you saved in Step 1.

VBA MACROS

You can use the VBA IDE to create macros to help you automate tasks you
perform repeatedly or to extend the application’s built-in functionality.

Before starting the tutorial you need to be aware of the following framework
properties.

Preset ArcObjects Variables

In the ArcGIS Desktop applications you have two preset variables that will serve
as the starting point for much of your code: Application and ThisDocument.
These object variables are always available as soon as you launch the desktop
application. While the number of methods and properties that are available on
these variables is fairly limited, they serve as a stepping stone to other objects you
might want to program with, such as maps, layers, and files.

Selection menu on the My Own Tools toolbar

Documents and templates are explained in
more detail in the previous section.

CUSTOMIZING ARCGIS DESKTOP APPLICATIONS WITH VBA

56 • ArcGIS Desktop Developer Guide

Application Variable

Application is a preset variable that points you to the current application. In
ArcMap, Application refers to the ArcMap application, while in ArcCatalog, it
refers to ArcCatalog, and so forth. In either environment, the Application vari-
able will always have the same methods and properties.

Below is a sample of some methods and properties available on Application.

• Caption: A read/write property to get or set the text that appears on the
applications title bar

• Name: A read-only property that will always return the name of the applica-
tion as a string (ArcMap, ArcCatalog, and so forth)

• RefreshWindow: A method to redraw the application window

ThisDocument

The ThisDocument preset variable points to the document that is currently open
in the application. In ArcCatalog this always refers to the Normal template, while
in the other desktop applications it refers to the current, map, scene, or globe
document. Unlike the Application preset variable, there are some differences in
the methods and properties available on ThisDocument in ArcCatalog versus the
other desktop applications.

Here are some methods and properties you will find on ThisDocument:

• AddLayer: ArcMap only. A method to add a new layer to a document. A layer
is required as an argument.

• Title: A read-only property to get the name of the document (for example,
normal.mxt, WestAust.mxd).

• Type: A read-only property that describes the type of current document (for
example, Normal template, map template, or document).

VBA project organization

When working within the VBA editor, the project explorer window displays two
or more projects. The Normal project refers to the Normal template associated
with the application. If you write macros within this project, they will be saved
to the Normal template and, thus, will be available to all documents for this
application. If you write macros in the document project, however, the code will
only be available in that current document. A third project may be displayed if
you are working with a map template. Any code saved to a template project will
be available to documents based on that template.

ArcID module

Each VBA project contains a module that is automatically added called ArcID.
This module, stored in the Normal template, contains a reference to all existing

To see all the methods and properties available
with the Application variable, see the

IApplication entry in the ArcGIS Developer help.

The VBA project explorer displays the available
VBA projects.

CUSTOMIZING ARCGIS DESKTOP APPLICATIONS WITH VBA

Chapter 3 • Developing for ArcGIS Desktop applications • 57

controls (commands, tools, and so forth) within the current application. Using
this information you can call or run an existing control from within your code.
This procedure is described in the tutorials.

Creating a macro

With the Visual Basic Editor, you can create and edit macros, copy macros from
one module to another, rename the modules that store the macros, or rename the
macros.

1. Click the Tools menu, point to Macros, then click Macros.

2. In the Macros dialog box, type “MyZoomIn” in the Macro name text box and
click Create.

The application creates a new module named Module1 and stubs out the Sub
procedure.

3. Enter the following code for MyZoomIn:

Sub MyZoomIn()

'

' macro: MyZoomIn

'

Dim pDoc As IMxDocument

Dim pEnv As IEnvelope

Set pDoc = ThisDocument

Set pEnv = pDoc.ActiveView.Extent

pEnv.Expand 0.5, 0.5, True

pDoc.ActiveView.Extent = pEnv

pDoc.ActiveView.Refresh

End Sub

The first line of the macro declares a variable that represents the ArcMap
document. At this point, the coding techniques that are used with the ArcInfo
COM-based object model will not be addressed. These techniques are dis-
cussed in greater detail later in this guide.

The second line declares a variable that represents a rectangle with sides
parallel to a coordinate system defining the extent of the data. You’ll use pEnv
to define the visible bounds of the map.

The predefined variable, ThisDocument, is the IDocument interface to the Mx-
Document object that represents the ArcMap document.

The ActiveView property provides an IActiveView interface that links the
document data to the current screen display of that data.

By reducing the size of the envelope that represents the extent of the map,
the macro zooms in on the map’s features once the screen display is refreshed.

4. Switch back to ArcMap by clicking the File menu, then clicking Close and
Return to ArcMap.

5. Click the Tools menu, point to Macros, then click Macros.

The Macros dialog box

Some macros will not run correctly if the VBA
editor window is still open.

CUSTOMIZING ARCGIS DESKTOP APPLICATIONS WITH VBA

58 • ArcGIS Desktop Developer Guide

6. Select the Module1.MyZoomIn macro and click Run.

The display zooms in.

Adding a macro to a toolbar

You’ll want convenient access to the macros you write. You can add a macro to
built-in toolbars or toolbars you’ve created.

1. Click the Tools menu and click Customize.

2. In the Toolbars tab, ensure that the toolbar you created is visible.

3. Click the Commands tab and click the Macros category.

4. Click the name of your project in the Save in dropdown menu.

The Commands pane to the right of the dialog box lists
Project.Module1.MyZoomIn.

5. Drag the macro name to the My Own Tools toolbar you created.

The macro appears as a button on the toolbar with a default icon.

6. To change its properties, right-click the icon.

7. In the context menu that appears, click Change Button Image and choose a
button from the palette of icons.

8. Close the Customize dialog box.

9. Click the button on the toolbar to run the macro.

Invoking the Visual Basic Editor directly

As an alternative to the Create button in the Macros dialog box, you can navigate
directly to the Visual Basic Editor and create procedures on your own. In this
section, you’ll create a macro named MyZoomOut in the Module1 module that will
zoom out from the display. You can use the same code that you used for
MyZoomIn, with only a minor modification to one line.

1. Press Alt+F11, which is the Visual Basic Editor keyboard accelerator.

2. Click Project Explorer in the Visual Basic Editor View menu.

3. In the Project Explorer, click the Project entry, then Modules, then Module1.

4. In the Code window, copy the MyZoomIn code from the beginning of the Sub
to the End Sub.

5. Paste the MyZoomIn Sub code below the existing code.

6. Change the name of the copied Sub to MyZoomOut.

7. Change the line:
pEnv.Expand 0.5, 0.5, True

to:
pEnv.Expand 2.0, 2.0, True

You can only change the properties of an object,
such as a macro, command, or tool, while the

Customize dialog box is visible.

The Customize dialog box

CUSTOMIZING ARCGIS DESKTOP APPLICATIONS WITH VBA

Chapter 3 • Developing for ArcGIS Desktop applications • 59

8. Follow Steps 1–9 of the ‘Adding a macro to a toolbar’ section above to add
and run your second macro.

Getting help in the Code window

The two macros you’ve just completed perform operations similar to the Fixed
Zoom In and Fixed Zoom Out commands on the Tools toolbar. You didn’t really
add any new functionality, but you’ve perhaps learned something about the object
model and how to start to write some useful code. You can learn more about
these methods you’ve worked with by making use of the help that’s available in
the Object Browser or in the Code window.

1. Click the Tools menu, point to Macros, then click Visual Basic Editor.

2. Locate the Module1 module. In the MyZoomIn Sub, click the method name
Expand in the line:
pEnv.Expand 0.5, 0.5, True

3. Press F1.

The ArcGIS Developer Help window displays the help topic for Expand. In
addition, consult the ArcGIS Developer Help, which you can also start from the
ArcGIS program group, for object model diagrams, samples, tips, and tricks.

Calling built-in commands

If you’ve read any of the ArcGIS user guides, you know that the code you’ll be
writing will add functionality to an already rich environment. There may be
instances in which you want to make use of several built-in commands executed
in sequence or combine built-in commands with your own code.

Calling existing commands involves working with the ArcID module. Using the
ArcID module you can get the unique ID (UID) of a particular command. By
using its UID you can Find a command in ArcMap and run it. If you want to look
at the ArcID module in greater detail, it’s in the Normal template of your appli-
cation.

The following steps outline how to write a macro that calls existing commands:

1. If you are not in the Visual Basic Editor, click the Tools menu, point to
Macros, then click Visual Basic Editor.

2. In the Module1 module, create a Sub procedure with the following code:

Sub FullExtentPlus()

 '

 ' macro: FullExtentPlus

 '

 Dim intAns As Integer

 Dim pItem As ICommandItem

 With ThisDocument.CommandBars

 Set pItem = .Find(ArcID.PanZoom_FullExtent)

 pItem.Execute

 intAns = MsgBox("Zoom to previous extent?", vbYesNo)

 If intAns = vbYes Then

The Name of a command in the ArcID module
can be derived using the following formula:

Category In Customize Categories List + “_” +
Command Caption in Customize Commands
List. Any spaces are removed from the name.

CUSTOMIZING ARCGIS DESKTOP APPLICATIONS WITH VBA

60 • ArcGIS Desktop Developer Guide

 Set pItem = .Find(ArcID.PanZoom_ZoomToLastExtentBack)

 pItem.Execute

 End If

 End With

End Sub

3. Add the FullExtentPlus macro to a toolbar or menu.

4. Run the MyZoomIn macro, then run FullExtentPlus.

Creating a command in VBA

Up to this point in the tutorial, you’ve only created macros. A command is similar
to a macro but allows more customization in the way it interacts with the user
and provides ToolTips, descriptions, and so on. Once invoked, a command usually
performs some direct action without user intervention. A command is a type of
UIControl. You can read more about all the UIControls in Appendix E, ‘UI
Controls’.

1. Click the Tools menu and click Customize.

2. In the Customize dialog box, click the Commands tab and click the Save in
dropdown menu to navigate to your project.

3. In the Categories list, click UIControls.

4. Click New UIControl.

5. On the dialog box that appears, choose UIButtonControl as the UIControl
Type, then click Create and Edit.

Adding code for the UIButtonControl

The application adds an entry in the Object box for the UIButtonControl and stubs
in an event procedure for the UIButtonControl’s Click event. You’ll add code to
this event to zoom the display to the extents of the dataset.

1. Add the following code to the Click event:

Private Sub UIButtonControl1_Click()

 Dim pDoc As IMxDocument

 Set pDoc = ThisDocument

 pDoc.ActiveView.Extent = pDoc.ActiveView.FullExtent

 pDoc.ActiveView.Refresh

End Sub

So far there is no difference from the macros you developed earlier. You will
now add a ToolTip and message for the command.

2. Click Message in the Procedure combo box. This creates a stub function, to
which you should add the following code:

Private Function UIButtonControl1_Message() As String

 UIButtonControl1_Message = _

 "Zooms the display to the full dataset extents"

End Function

The New UIControl dialog box

The following code assumes the
UIButtonControl was named

UIButtonControl1. If another name was used
because this name was already in use, make the

necessary changes to the code snippets.

The code in the Click event procedure will run
when you click the button.

VBA Editor showing the Code window, Object
and Procedure combo box.

CUSTOMIZING ARCGIS DESKTOP APPLICATIONS WITH VBA

Chapter 3 • Developing for ArcGIS Desktop applications • 61

3. Click ToolTip in the Procedure combo box. This creates a stub function, to
which you should add the following code:

Private Function UIButtonControl1_ToolTip() As String

 UIButtonControl1_ToolTip= "Full Extent"

End Function

4. Click the Visual Basic Editor’s File menu, click Close and click Return to
ArcMap.

5. Click the Tools menu, click Customize, then click the Commands tab.

6. In the Customize dialog box, click the Commands tab and click the Save in
dropdown menu to navigate to the name of your saved project or to Untitled.

7. In the Categories list, choose UIControls and drag the UIButtonControl you
created to a toolbar. Close the Customize dialog box.

Try the new command by zooming in on the map and clicking the button. Also,
test the ToolTip and description properties. The ToolTip will display if you pause
the cursor over the button, while the description, the code in the message proce-
dure, will display in the status bar as the cursor moves over the button.

Creating a tool in VBA

As you’ve seen in the built-in toolbars and menus, users interact with other
controls in addition to commands. As part of the customization environment,
you can add sophisticated controls to toolbars and menus. A tool is a type of
control that allows you to interact with the display. The Identify tool, in ArcMap,
is an example of a tool control that shows the attributes of geographic features
that you click on in the ArcMap display. In this section of the tutorial, you’ll
create a UIToolControl to interact with the ArcMap display.

1. Click the Tools menu and click Customize.

2. Click the Commands tab and click in the Save in combo box to locate your
project.

3. Choose UIControls from the Categories list.

4. Click New UIControl.

5. In the dialog box that appears, choose UIToolControl as the UIControl Type,
then click Create and Edit.

Adding code for the UIToolControl

The application adds an entry in the Object box for the UIToolControl and stubs in
an event procedure for the UIToolControl’s Select event. You won’t add any code
to the Select event procedure at this time; instead, select the MouseDown event in
the Procedures combo box on the right side of the Code window. You’ll add
code to this event to enable you to drag a rectangle on the screen display; the
application will zoom to the rectangle’s extent.

1. Add the following code to the MouseDown event procedure:

CUSTOMIZING ARCGIS DESKTOP APPLICATIONS WITH VBA

62 • ArcGIS Desktop Developer Guide

Private Sub UIToolControl1_MouseDown(ByVal button As Long, ByVal shift As
Long, ByVal x As Long, ByVal y As Long)

 Dim pDoc As IMxDocument

 Dim pScreenDisp As IScreenDisplay

 Dim pRubber As IRubberBand

 Dim pEnv As IEnvelope

 Set pDoc = ThisDocument

 Set pScreenDisp = pDoc.ActiveView.ScreenDisplay

 Set pRubber = New RubberEnvelope

 Set pEnv = pRubber.TrackNew(pScreenDisp, Nothing)

 pDoc.ActiveView.Extent = pEnv

 pDoc.ActiveView.Refresh

End Sub

The key line of this procedure is the one that contains the TrackNew method,
which rubberbands a new shape on the specified screen. The code uses the
Envelope object that the method returns to set the new extent for the map.

When you selected the MouseDown event to add code to, you may have noticed
that UIToolControl supports several other events. The customization frame-
work handles many of the details of coding for you, so you only have to code
the event procedures you need. Later in this chapter, you’ll find that this is in
contrast to what is required when implementing a tool as part of an ActiveX
DLL. A tool is not appropriate for all occasions. You can control when a tool
or command is available by adding code to its Enabled event.

2. Add the following code to the Enabled event procedure of UIToolControl1:

Private Function UIToolControl1_Enabled() As Boolean

 Dim pDoc As IMxDocument

 Set pDoc = ThisDocument

 UIToolControl1_Enabled = (pDoc.FocusMap.LayerCount <> 0)

End Function

3. Add the following code to the CursorID event procedure to control the cursor
that appears when you use the tool:

Private Function UIToolControl1_CursorID() As Variant

 UIToolControl1_CursorID = 3 ' Crosshair

End Function

4. Add a ToolTip and message for the tool control as you did for UIButtonControl
in the steps above.

5. Click the Visual Basic Editor File menu, click Close, then click Return to
ArcMap.

6. Click the Tools menu, click Customize, then click the Commands tab.

7. In the Customize dialog box, click the Commands tab and click the Save in
dropdown menu to navigate to the name of your project or to Untitled.

8. In the Categories list, choose UIControls and drag the UIToolControl that you
created to a toolbar. Close the Customize dialog box.

The code in the Mouse Down event will run
when you click the mouse down in the display

when the tool is active.

The code on the right assumes the
UIToolControl was named UIToolControl1. If
another name was used because this name was

already in use, make the necessary changes to
the code snippets.

CUSTOMIZING ARCGIS DESKTOP APPLICATIONS WITH VBA

Chapter 3 • Developing for ArcGIS Desktop applications • 63

Try out the tool by selecting it and dragging a rectangle on the display. You can
also see the Enabled event procedure code in action if you remove all layers from
the map. Once you add data back to the map, the tool will be enabled again.

Changing button properties

You can change the image on any toolbar button or menu command, except for a
button that displays a list or a menu when you click it. You can display text, an
icon, or both on a toolbar button. You can also display either an icon and text or
text only on a menu command. You can change the image that represents the tool
and other properties by right-clicking the button.

1. Right-click any toolbar to determine whether a context menu is available and
click Customize in the context menu that appears.

2. Right-click the button whose properties you want to change.

3. In the context menu that appears, click Image and Text. The button now
displays the image and the name of the button.

4. Close the Customize dialog box.

Congratulations! You now have the basic knowledge to tackle the example code
samples located in the appendixes. Along with each of these code samples is a
hint about where best to develop the code—in a macro, command, or tool.

Additional information on the VBA environment and developing with VBA and
ArcObjects can be found in the appendixes.

CUSTOMIZING ARCGIS DESKTOP APPLICATIONS WITH VBA

64 • ArcGIS Desktop Developer Guide

VBA is an ideal prototyping environment that provides the means for deploying
customizations. In previous sections, you have seen that you can make toolbar
customizations and quickly develop modest applications. Many of the developer
samples available with ArcGIS are simply VBA code snippets and procedures that
you can copy, paste, and run in the VBA development environment.

Developing with VBA does have some disadvantages, however:

• To deploy your customization or code, you need to ship the .mxd file or
export the code to text files. This is not very flexible for the end user.

• Your VBA code is also exposed by default. Although you can lock the VBA
environment to prevent other users from seeing your code, this also means
that they cannot extend your customizations or make any other changes in
VBA.

You can overcome these disadvantages and get access to a richer development
experience by using a COM-compliant environment, such as Visual Basic 6, Visual
C++ with Active Template Library (ATL), or Visual Studio .NET. These envi-
ronments can all create COM-compliant components, typically as DLLs or OCXs
that contain your customizations. These components simply plug into the ArcGIS
Desktop framework, revealing your customizations and making them available
for use.

Following are some advantages of building custom components:

• You can integrate a wider range of third party controls and code into your
customizations.

• Your code is hidden within the binary-compiled component.

• You can extend and customize virtually every aspect of the ArcGIS Desktop
applications.

• They can be easily delivered to end users via custom setup programs.

The disadvantage, of course, is that you must obtain one of these development
environments, which are not included with ArcGIS, and learn the particular
language syntax, increasing development time.

Before looking at how these components are developed, see the explanation
below on what COM is and how these customizations are possible.

COM REVIEW

Of the set of components that make up the ArcGIS Desktop applications,
ArcObjects is platform independent and written in C++, which makes use of
Microsoft’s COM. COM is a standard or protocol that connects one software com-
ponent, or module, with another. With this protocol it is possible to build reusable
software components that can be dynamically interchanged in a distributed system.

ArcObjects classes based on this model have interfaces that organize the various
properties and methods for an object or component. Developing with ArcObjects
means developing with interfaces, since all communication between components
happens via their interfaces. Interfaces are standardized by COM rules, so it does not
matter what language is used to create the component, as long as that language is
COM compliant.

COMPONENT DEVELOPMENT

ArcGIS applications are COM-based. This means
to extend them, you must use a development

language capable of creating COM components.

See Appendix A, ‘Developer environments’, for
more information on COM.

Chapter 3 • Developing for ArcGIS Desktop applications • 65

If you are an existing ArcGIS VBA developer or have worked through the quick-
start tutorials in the previous section, you have already been programming with
ArcObjects components based on this model and can see how these components
work together.

Plugging into ArcGIS Desktop

Using a component in ArcGIS is similar to adding a new CD player to your stereo
system. If the plug on your CD player fits the plug on your stereo receiver, the
components will be able to work together. Both the stereo and the CD player can
be ignorant of how the other works, as long as the communication between them
occurs as expected.

When designing a new ArcGIS component, such as a command or tool, the
interface you choose to implement is the equivalent of the type of plug used by a
stereo component. If you want your component to plug in as a new command in
ArcMap, for example, you must implement the interface that ArcMap expects for
commands, ICommand.

How does ArcMap know the new command exists?

ArcMap knows what commands are available via component categories. A com-
ponent category is an operating system registry key that contains component class
IDs. Every component within ArcGIS, including components you create, has a
globally unique identifier, also called a GUID. Once a component is registered
with the operating system, it can be registered to a particular component category.
ArcMap and the other desktop applications look for these component categories
to work out which commands, tools, edit tasks, and so forth, are available.
ArcGIS Desktop applications include the component category manager to help
you manage this task. This step can also be automated with setup programs and
developer add-ins for the various development environments.

Where can components plug in?

Here are some examples of components that can be added to ArcMap:

• Command—A button, tool, or menu choice. To create this
component you must implement ICommand, and you may also
need to implement ITool, IToolCommand, or both.

• Edit Task—A task that works with the ArcMap Editor in
conjunction with the Sketch tool. It must implement
IEditTask.

• Table of Contents tab—An additional tab on the ArcMap
table of contents that implements the IContentsView inter-
face.

• Class extension—A component that works with a dataset
(feature class or table) to provide limited custom behavior
(attribute calculation or validation, for example). A class
extension must implement IClassExtension, and it may also
implement IPropertyInspector, IObjectClassValidation, or several
others.

COMPONENT DEVELOPMENT

Implement ICommand to create your own
command.

ArcMap interface showing where components
can plug in

66 • ArcGIS Desktop Developer Guide

What can components do?

Anything you can do in VBA, you can do with a component. However, the
reverse is not true, which is one advantage of using a custom component. You
can take any of the tutorial samples you have seen so far or any of the illustrated
code samples in the appendixes and easily create a component, such as a com-
mand or tool, using one of the development languages. In some cases you may
only have to make small changes to the VBA code to make it into a component.
For example, if you’re developing in Visual Basic 6, the syntax is almost identical
to VBA, requiring you only to make minor changes and implement the required
interfaces.

It’s important to reiterate that if you don’t intend to take advantage of the
benefits that components offer, such as using the code in other documents or
deploying to other users, you should continue to make your customizations
within VBA. In most cases it will be less complicated and quicker to develop.

COMPONENT DEVELOPMENT

Chapter 3 • Developing for ArcGIS Desktop applications • 67

WHICH COMPONENT DEVELOPMENT ENVIRONMENT?

The choice of development environment is not a simple task, and it is influenced
by many factors. Many developers will select either Visual Basic 6 or Visual C++,
while others will use Visual Studio .NET, Delphi™, C++ Builder, and so on. The
primary driving force behind the decision is the experience and skill level of the
developers who will write the code. Other issues worth considering are the
application requirements, performance, development process, and security of
code.

Performance differences between development languages are not as significant as
you might think. Since the majority of the work will be performed within the
ArcObjects components, which are all written in C++, the developer’s
customization language is, for the most part, used to control the program flow
and user interface interaction. Since Visual Basic 6 uses the same optimized back-
end compiler technology that Visual C++ uses, the generated machine code
performs at a comparable level. Tests have shown that when performing typical
actions on features contained within a database (drawing, querying, editing, and
so on), Visual Basic 6 is approximately two percent slower than optimized Visual
C++ code, and Visual Basic for Applications is two percent slower than Visual
Basic 6.

Performance in Visual Studio .NET can be slightly slower than the other lan-
guages due to the intermediate layer, run-time call wrapper (RCW), that .NET
code goes through to communicate with ArcGIS COM objects. If you suspect
that performance is being hindered by this process, you may be able to restructure
your code to make it more efficient. For more information see the ‘Performance
of ArcObjects in .NET’ section in the ArcGIS Developer Help under the .NET
development environment.

Visual Basic 6 is a productive tool, especially for user interface development, but
there are limitations to what can be done in Visual Basic. In the majority of cases,
these limitations will not affect a developer’s ability to customize and extend
ArcObjects. Many of the limitations that do exist are directly associated with the
development environment itself. Visual Basic does not support COM aggregation,
for example, so it cannot be used to create custom features. In addition, debug-
ging Visual Basic code is not as flexible as Visual C++. Using Visual Basic 6 in a
large development environment with many developers is not as productive as
Visual C++ since partial compilations of projects are not supported. If one file is
changed in a Visual Basic project, all the files must be recompiled. Since Visual
Basic 6 hides much of the interaction with COM inside the Visual Basic Virtual
Machine, low-level COM plumbing code cannot be written in Visual Basic.

Visual Studio .NET overcomes many of the limitations of its predecessor, Visual
Studio 6, providing a productive IDE, a large supporting class library, more
object-oriented functionality, better support for data types, and so forth.

CHOOSING A COMPONENT DEVELOPMENT ENVIRONMENT

For more information on development environ-
ments, see Appendix A, ‘Developer environments’.

68 • ArcGIS Desktop Developer Guide

In this section you will learn how to create a component that you can plug into
the ArcGIS Desktop applications.

The emphasis here is not how to program in a particular language or how to solve
a particular ArcObjects problem; there are many code samples as well as the
problem-solving guide in the appendixes that illustrate these. This section pro-
vides an overview on how to wrap the solution in a component and make it
available in ArcGIS. Chapter 5, ‘Developer scenarios’, shows you how to create
specific components using a development environment.

BASIC STEPS IN BUILDING A COMPONENT

The following basic steps are used in building a component. These are explained
in more detail in the subsequent paragraphs.
1. Create a new project.

To create a custom component you must use a standalone programming
environment. This section will illustrate Visual Basic 6, but you could also use
any language that supports COM components.

2. Reference the ArcObject libraries.
Unlike VBA within the desktop applications, Visual Basic will not know
about the ArcObject libraries.

3. Implement the required interfaces.
To ensure that your component works with the existing architecture, you
must implement the proper interfaces that ArcGIS will expect.

4. Write the implementation code.
Write the code to accomplish the component’s purpose.

5. Compile the component as a DLL.
Write your component out as a Dynamic Link Library. You may need to
perform some debugging before your component compiles without error.

6. Plug the component into ArcGIS Desktop.
Register the component with the operating system and make it available to
ArcGIS through the component categories.

7. Test/Debug/Recompile.
Test the component in the intended ArcGIS Desktop application. If it does
not work as expected, you may need to return to your project to fix bugs and
recompile your DLL.

BUILDING AN ARCGIS DESKTOP COMPONENT

Chapter 3 • Developing for ArcGIS Desktop applications • 69

1. Create a new project.

To design new ArcGIS Desktop components, you need to make sure you create a
new ActiveX DLL Visual Basic project as opposed to a standard executable.

When creating your new VB project, be sure to provide meaningful names for the
project and for each class that you create. The name of the project will also be
the default name of the DLL when it is compiled. Each class in your project will
be an individual component in your DLL. If you create a class called Class1 that
is going to be a custom control, for example, ‘my new control’, it would also be
called Class1 inside the DLL.

Components that you want your user to create, such as commands on the user
interface, should have their instancing property set to MultiUse.

A single DLL can contain several classes, or components. It is not necessary,
therefore, to create a new ActiveX DLL project for each component you want to
create. If needed, you could deliver dozens of commands, toolbars, and other
components in a single DLL.

2. Reference the ArcObjects libraries.

When you are programming within the ArcGIS Desktop applications with VBA,
you do not normally need to explicitly reference the ArcObjects libraries, since
most of the ones you will use are already referenced for you. This is not the case
when programming in a standalone development environment, such as Visual
Basic. Any libraries that are referenced by your code, beyond the standard Visual
Basic libraries, need to be explicitly brought into your project.

To reference additional class libraries, choose References from the Project menu.
Almost all projects need a reference to esriSystemUI since this library contains the
plug-in interfaces for commands and tools (for example, ICommand, ITool).

You will also need to add ArcObjects libraries throughout your development,
depending on which parts of the ArcGIS object model you are using.

Visual Basic users may also use the ESRI Automatic References add-in, which
provides an easier way to reference the ArcObject libraries. For more information
see the section on add-ins within the ArcGIS Developer Help.

3. Determine the required interfaces.

To make sure your component will be understood by the ArcGIS Desktop appli-
cations, you need to implement an interface, or interfaces, appropriate for your
component.

If ArcMap is to place a new control on its user interface, it needs to be able to
apply to the control some basic properties, such as what image should be dis-
played on the control (Bitmap property), what text should be displayed when the
user hovers over the control with the mouse (ToolTip), and most important,
what it should do when the control is clicked (OnClick event procedure). As a
programmer, you address these by writing code for the proper methods and
properties. This is performed in the next step.

BUILDING AN ARCGIS DESKTOP COMPONENT

Each class module will become a component or
control.

The Visual Basic References dialog box.
Standard and ESRI object libraries have been

checked.

The ICommand interface in esriSystemUI

70 • ArcGIS Desktop Developer Guide

4. Write component code.

After deciding which interface your component needs to implement, the next
step is to write code for every method and property on each interface. To satisfy
the rules of COM, this simply means having all the method and property proce-
dure stubs in your class module.

Upon entering the implements statement in the general declarations
(top) portion of the class module, you will be able to choose the
interface from the object list (upper left) and see all its associated
methods and properties in the procedure list (upper right). You may
only need to provide code for a handful of these procedures to make
your component work as desired. You must, however, have stub code
for at least each member of your implemented interfaces before your
DLL will compile.

You can now write the code to perform some action, the purpose of
the command or tool. For commands, your start point will typically be in the
OnClick event property; for tools, it may be one of the OnMouse event properties.
Your code may consist of only a few lines, or it may call other procedures or VB
forms as part of a larger application. During this step you will probably need to
reference additional ArcObject libraries, as described in Step 2, to support your
code.

Referencing the application

A major difference you will find when programming in a standalone environment,
such as Visual Basic as opposed to VBA, is the lack of the available preset vari-
ables. When programming in ArcMap or ArcCatalog using VBA, you can jump
into your code using the preset Application or ThisDocument variables. To get
access to the current application or document in VB, you must use another tech-
nique.

The ArcObjects interfaces you will most commonly implement on
your components, for example, ICommand and IExtension, pass a
reference to the current Application object into one of their inter-
face members. On the ICommand interface, the OnCreate event
passes in a parameter called hook that is referred to as Object. This
object is the equivalent of the Application preset variable. To use
this object throughout your component, you will need to store it as
a module-level variable.

The OnCreate event fires when a user drags the Custom command from the Cus-
tomize dialog box to a toolbar or menu or when a map containing the control is
opened.

BUILDING AN ARCGIS DESKTOP COMPONENT

Visual Basic code module showing the imple-
mentation of IEditTask and its members

Visual Basic users may also use the Interface
Implementer add-in, which automatically adds

an interface and stubs out all the required
methods and properties.

The Application object is passed to your compo-
nent as hook.

Chapter 3 • Developing for ArcGIS Desktop applications • 71

Creating an all-purpose command

It is possible to create a command that works in all the desktop
applications. The class shown on the left implements the ICommand
interface, which is required for all desktop commands.

When the OnCreate event fires, the TypeOf statement is used to see
if the hook is the ArcMap or ArcCatalog application in this ex-
ample. A string variable is set to record which application the
control is being used in.

The OnClick event uses the string variable (m_StrApp) to see if the
control is being used in ArcMap or ArcCatalog. Depending on the
application, the control will serve a different purpose: reporting the
selected layer in ArcMap or reporting the selected layer in
ArcCatalog.

5. Compile your component DLL.

Once you have written all the required code to make your control work inside
the desktop applications, you need to compile the project to a DLL on disk.
Choose ‘Make <project name>’ to compile your DLL, specifying an output file
location. If there are no syntax errors in your code, the DLL will compile; other-
wise, VB will report an error.

Common errors encountered when compiling

• ‘Object module needs to implement <member name> for interface <interface
name>’—You did not stub all the methods and properties on the interface that
you implemented.

• ‘User-defined type not defined’—You probably forgot to reference a required
library.

• ‘Permission denied: <DLL filename>’—The DLL is likely being used, by
ArcMap or ArcCatalog, for example. This error might be encountered when
you are in the testing/debugging phase of developing your component.

BUILDING AN ARCGIS DESKTOP COMPONENT

Different tasks are performed in ArcMap and
ArcCatalog. TypeOf is used to see where the

control was added.

72 • ArcGIS Desktop Developer Guide

6. Plug the component into ArcGIS Desktop.

Before you can use your custom component in one of the ArcGIS Desktop
applications, you need to make sure it is registered with your operating
system and registered to the correct component category.

There are several ways in which you can do this:

• Customize dialog box—When you use the Add from file button to
bring in a component, your component DLL is automatically registered.
You cannot use this method for DLLs created with Visual Studio .NET.

• Component Category Manager—The Component Category Manager
allows you to add and remove ArcGIS components. Components are orga-
nized into various categories. By adding your DLL to the proper category,
your components will be incorporated into ArcGIS. To add a new edit task
that you have created, for example, add your component to the ESRI Edit
Tasks category.

This task may be automated to some extent, depending on which development
environment you use. In VB6, for example, ESRI provides a Compile and Regis-
try add-in that compiles your project and creates a Windows registry merge file
that will place the component in the appropriate component category. For more
information about this add-in and others, see the add-ins help in the ArcGIS
Developer Help.

7. Test/Debug/Recompile.

Test your component inside the desktop application. If it does not work as
expected or produces an error, debug and recompile the code and test again. The
ease with which you can debug your code depends on the development environ-
ment and the complexity of your code. Debugging techniques for each develop-
ment language supported by ArcGIS are discussed in detail in Appendix A, ‘De-
veloper environments’.

SUMMARY

The ArcGIS Desktop applications are built using component object technology.
This allows you, as a developer, to create your own components that can easily
plug into the existing architecture as new controls, tools, menus, and applications,
for example.

This section provided an overview of component development options and
outlined the basic steps in creating a component to plug into ArcGIS. The devel-
oper scenarios in Chapter 5 will show in more detail the steps to create specific
components using a development environment.

BUILDING AN ARCGIS DESKTOP COMPONENT

The Component Category Manager

Visual Basic developers can make use of several
add-ins to aid debugging.

73

Licensing and
deployment

Some of your customizations may be for personal use on your PC, while others

may have been developed for a wider audience. This chapter describes ArcGIS

license considerations when developing your applications and illustrates some

simple ways to package and deploy your customizations, ranging from VBA

macros to more complex applications.

4

74 • ArcGIS Desktop Developer Guide

Developing ArcGIS Desktop applications should not be undertaken in isolation
from the deployment of the final application. Currently, there are three possible
deployments or software products with ArcGIS Desktop: ArcView, ArcEditor,
and ArcInfo. There may be more deployment options in the future. As a devel-
oper you may need to know what product a user has installed so your code can be
robust enough to work on all deployments or at least have the appropriate error
checking. This maxmizes the potential number of users for your components.

This section outlines how to write code in a way that requires only one code base
to support all possible deployment options, both at present and in the future.

DEPLOYMENT OBJECT MODELS

The object models for ArcView, ArcEditor, and ArcInfo are identical. All classes,
interfaces, methods, and properties are present in all products. This means that
the same DLLs containing the same components with the same GUIDs are
installed for all deployments; in other words, code written on one deployment
will successfully compile on another. What will differ for the various deploy-
ments is the behavior of certain method calls.

All the ESRI-developed components handle the possible deployment options in a
unified manner. The functionality available with these different deployments is
controlled via a license. This means that if a user installs a new license, the soft-
ware does not require a reinstallation to access the functionality permitted under
the new license.

ArcObjects performs several types of license checking:

• Application: Each ArcGIS Desktop application requires a valid application
license to run.

• Extension: Extension products also have licenses associated with them.

• Component: The components within ArcObjects perform license checking.

• Functional: When methods are executed, the behavior of the method varies
depending on the available licenses.

It is likely that you will be interacting with more than one of these
license-checking mechanisms. For instance, you may check for the appropriate
component-level license; then, when working with individual methods, you will
have to be aware of the license restrictions associated with these methods.

ESRI engineers use the same coding techniques outlined in this chapter to write
code that works with the various deployment options of ArcGIS. Using these
techniques, you will be able to write your code to handle the various deployment
models.

ARCGIS DESKTOP LICENSE CHECKING

When executing code, no query interface call will
fail because of a license issue, for this would

break the rules of COM. If license checking were
implemented at the query interface level,

depending on licenses being checked in and out,
the query interface call may succeed the first

time but fail the next or vice versa.

For more information on the ArcGIS license
manager, view the license manager reference

guide under the ArcGIS > license manager
Programs menu.

Chapter 4 • Licensing and deployment • 75

Application license checking
The simplest form of license checking for you to deal with is when your compo-
nents are running within an ArcGIS Desktop application, since there is little for
you to do. The license-checking procedures are contained within the ArcGIS
applications, and the fact that your components are initialized means that the user
has a valid ArcGIS license. However, determining what license is currently
checked out by the user can be useful for working with licensing at the functional
level.

To determine the level of license currently in use, use the AOInitialize coclass and
the Initialized method on its IAOInitialize interface.
Private Function GetLicenseLevel() As String

 Dim pLicense As IAoInitialize

 Set pLicense = New AoInitialize

 Select Case pLicense.InitializedProduct

 Case esriLicenseProductCodeArcView

 GetLicenseLevel = "ArcView"

 Case esriLicenseProductCodeArcEditor

 GetLicenseLevel = "ArcEditor"

 Case esriLicenseProductCodeArcInfo

 GetLicenseLevel = "ArcInfo"

 End Select

End Function

Extension license checking
ESRI desktop extension products, such as 3D Analyst or Spatial Analyst, provide
additional functionality and components for ArcGIS Desktop users and develop-
ers. To use an extension, a valid extension license must be available. If you are
using the desktop interface, a license is checked out when you select an extension
in the Extension Manager dialog box. When you are developing, however, you
must ensure the appropriate extension is checked out before making calls to

ARCGIS DESKTOP LICENSE CHECKING

IAoInitialize : IUnknown

Check in an extension.

Check out an extension.

Deterimines if the product code is available. If it is, it then
 determines if the extension code is available.

This must be called before any other ArcObjects components
 are created to initialize product Code. If called a second time
 during the lifetime of an executable with a new product code,
 it will return esriLicenceAlreadyInitialized.
Retrieves the product code where the application has
 been initialized.
Specifies if the extension is checked out.

CheckInExtension (in extensionCode:
 ersiLicenceExtensionCode):
 esriLicenceStatus

CheckOutExtension (in extensionCode:
 ersiLicenceExtensionCode):
 esriLicenceStatus

Initialize (in ProductCode:
 esriLicenceProductCode):
 esriLicenceStatus

InitializeProduct: esriLicenceProductCode

IsExtensionCheckedOut (in extensionCode:
 esriLicenceExtensionCode): Boolean

IsExtensionCodeAvailable (in ProductCode:
 esriLicenceProductCode, in extensionCode:
 esriLicenceExtensionCode):
 esriLicenceStatus

IsProductCodeAvailable (in ProductCode:
 esriLicenceProductCode): esriLicenceStatus

Shutdown

Determines if the product code is available.

The Shutdown method. This should be the last call to
 ArcObjects in an application.

IAoInitialize

AoInitialize

76 • ArcGIS Desktop Developer Guide

objects within that extension, since you cannot guarantee the user has checked
out an extension before running your code. For example, if the following lines of
code are executed in a VBA macro, an error will be raised when the StartExporting
method is executed, since an ArcPress license has not been checked out. The
method calls do not attempt to check one out; they only ensure that one already
has been checked out. This gives you license usage control.
 Dim pExporter As IExporter

 Set pExporter = New ArcPressExporterJPEG

 ...

 Dim hDc As OLE_HANDLE

 hDc = pExporter.StartExporting

For the above code to execute without the license error, the ArcPress extension
must be initialized before the call to the StartExporting method. The function
below shows how to check out an ArcPress license:
Public Function GetArcPressLicense() As Boolean

 Dim pUid As UID

 Set pUid = New UID

 pUid.Value = "esriOutputExtensions.ArcPressExtension"

 Dim pExtAdmin As IExtensionManagerAdmin

 Set pExtAdmin = New ExtensionManager

 'Necessary in standalone application

 pExtAdmin.AddExtension pUid, 0

 Dim pExtManager As IExtensionManager

 Set pExtManager = pExtAdmin

 Dim pExtConfig As IExtensionConfig

 Set pExtConfig = pExtManager.FindExtension(pUID)

 If (Not pExtConfig.State = esriESUnavailable) Then

 On Error Resume Next

 'Check the license out. Enabling the extension checks out a license.

 pExtConfig.State = esriESEnabled

 'Return TRUE if the license was checked out successfully

 GetArcPressLicense = (pExtConfig.State = esriESEnabled)

 End If

 If (Not GetArcPressLicense) Then _

 MsgBox "No ArcPress licenses available"

End Function

Assuming that the process of exporting only requires access to the license for a
short time, the license should be released upon completion of the export. Releas-
ing the license means that another user can export using the same license; the only
restriction is that the other user cannot export at the same time, assuming you
only have one ArcPress license.
Public Sub ReleaseArcPressLicense()

 Dim pUid As UID

 Set pUid = New UID

 pUid.Value = "esriOutputExtensions.ArcPressExtension"

A license will fail to check out if you have
exceeded the number of licenses available for a

product.

Note that license checking is per machine rather
than per process. Checking out the same license
in different processes on the same machine will

only check out one license.

If you are developing an ArcGIS Engine compo-
nent, you may use AoInitialize to check out an

extension instead.

ARCGIS DESKTOP LICENSE CHECKING

Chapter 4 • Licensing and deployment • 77

 Dim pExtManager As IExtensionManager

 Set pExtManager = New ExtensionManager

 Dim pExtConfig As IExtensionConfig

 Set pExtConfig = pExtManager.FindExtension(pUID)

 If (Not pExtConfig.State = esriESUnavailable) Then

 pExtConfig.State = esriESDisabled

 End If

End Sub

If you are developing an extension to which you want to add license checking in
a way similar to ESRI, you must follow certain rules when dealing with the
configuration state of your extension. These rules are outlined in the ‘Framework
Library’ reference within the ArcGIS Developer Help.

Component license checking
When embedding ArcObjects components within another application, careful
thought must be given to license issues.

Before calling any other ArcObjects code, you must first initialize the application
with a suitable license in order for it to run successfully. Failure to do so will
result in application errors.

Initialization is performed with the Initialize method on the IAoInitialize interface
and establishes the product level—for example, ArcView, ArcEditor, or
ArcInfo—for the duration of the application. The product license determines the
functionality the application will be able to access. Once the product license has
been initialized, it cannot be changed for the duration of the application’s life, as
it is not possible to reinitialize the application.

The following Visual Basic 6 code shows an example of intializing an application
during the form load procedure.
Option Explicit

Private m_pAoInitialize As IAoInitialize

Private Sub Form_Load()

 'This sample is designed to perform license initialization on a system

 'that may have access to a floating license. An ArcEditor license will be
used.

 Dim licenseStatus As esriLicenseStatus

 licenseStatus = CheckOutLicenses(esriLicenseProductCodeArcEditor)

 'Take a look at the licenseStatus to see if it failed

 'Not licensed

 If (licenseStatus = esriLicenseNotLicensed) Then

 MsgBox "You are not licensed to run this product"

 Unload Form1

 'The licenses needed are currently in use

 ElseIf (licenseStatus = esriLicenseUnavailable) Then

 MsgBox "There are insufficient licenses to run"

 Unload Form1

For more information on embedding ArcObjects
components within other applications or to

create standalone applications, see the ‘ArcGIS
Engine Developer Guide’.

The AoInitialize help topic in the ArcGIS Devel-
oper help contains more information and

examples.

ARCGIS DESKTOP LICENSE CHECKING

78 • ArcGIS Desktop Developer Guide

 'The licenses unexpectedly failed.

 ElseIf (licenseStatus = esriLicenseFailure) Then

 MsgBox "Unexpected license failure please contact your administrator"

 Unload Form1

 'Already initialized (Initialization can only occur once)

 ElseIf (licenseStatus = esriLicenseAlreadyInitialized) Then

 MsgBox "Your license has already been initialized please check your
implementation"

 Unload Form1

 'Everything was checked out successfully.

 ElseIf (licenseStatus = esriLicenseCheckedOut) Then

 MsgBox "Licenses checked out successfully"

 End If

End Sub

Private Function CheckOutLicenses(productCode As esriLicenseProductCode) As
esriLicenseStatus

 Dim licenseStatus As esriLicenseStatus

 Set m_pAoInitialize = New AoInitialize

 CheckOutLicenses = esriLicenseUnavailable

 'Check the productCode

 licenseStatus = m_pAoInitialize.IsProductCodeAvailable(productCode)

 If (licenseStatus = esriLicenseAvailable) Then

 'Initialize the license

 licenseStatus = m_pAoInitialize.Initialize(productCode)

 End If

 CheckOutLicenses = licenseStatus

End Function

Before an application is shut down, the AOInitialize object must be shut down
via the Shutdown method. This ensures that any ESRI libraries that have been used
are unloaded in the correct order. Failure to do this may result in random crashes
on exit due to the operating system unloading the libraries in the incorrect order.

The following Visual Basic 6 code shows an example of the Shutdown method
being called in the form unload procedure associated with the example above.
Private Sub Form_Unload(Cancel As Integer)

 'Shutdown

 m_pAoInitialize.Shutdown

End Sub

Functional license checking
Interaction with the three previous forms of license checking in ArcObjects is
relatively straightforward. Depending on the functionality accessed, the func-
tional license checking is more involved.

ARCGIS DESKTOP LICENSE CHECKING

Chapter 4 • Licensing and deployment • 79

The differences between ArcObjects software-based functionality available
through ArcGIS deployments are centered on the geodatabase. ArcEditor and
ArcInfo products have the same capabilities, and ArcView has reduced function-
ality.

ArcView can view all supported ArcGIS data sources, but only shapefiles and
personal geodatabases can be edited. Geodatabase functionality is further refined
to provide a user read access to all geodatabases. What can be created and edited
within a personal geodatabase is further refined to prohibit the following:

• Geometric networks

• Feature classes using nonsimple classes (for example, network feature classes
and dimension classes), except annotation

• Feature classes with subtypes

• Feature classes participating in a relationship class (for example, feature-linked
annotation)

• Tables with subtypes

• Tables participating in a relationship class

Knowing this list of supported functionality will help you make decisions on
whether licensing issues are of concern for the components you are developing.

As a developer, you have the choice to write proactive or reactive code when
dealing with these functional license checks. Proactive code determines the
license that is currently in use, which dictates the flow through the program.
Reactive code does not perform up-front checking, but it does perform checks
after the methods with license behavior are called. In reality, you will most often
employ a mixture of both techniques.

An example of proactive code might involve an application that will display and
edit data from a variety of data sources. You might choose to limit the data that a
user can add to the application based on the license in use. This can be achieved
in conjunction with the GxDialog coclass and a selection of GxObject filters, as
illustrated below:
Private Function SelectLicensedEditClasses() As IEnumGxObject

 Dim pGxDialog As IGxDialog

 Set pGxDialog = New GxDialog

 Dim pFilters As IGxObjectFilterCollection

 Set pFilters = pGxDialog

 pFilters.RemoveAllFilters

 'Add filters common to all products

 pFilters.AddFilter New GxFilterShapefiles, False

 pFilters.AddFilter New GxFilterPGDBFeatureClasses, False

 pFilters.AddFilter New GxFilterPGDBFeatureDatasets, False

 pFilters.AddFilter New GxFilterPGDBTables, False

 Dim pLicInfo As IAoInitialize

 Set pLicInfo = New AoInitialize

ARCGIS DESKTOP LICENSE CHECKING

A personal geodatabase is stored in the
Microsoft Access .mdb format. An enterprise

geodatabase is stored within an RDBMS.

80 • ArcGIS Desktop Developer Guide

 'Add filters based on product level - ArcEditor, ArcInfo

 If ((pLicInfo.InitializedProduct = esriLicenseProductCodeArcEditor) Or _

 (pLicInfo.InitializedProduct = esriLicenseProductCodeArcInfo)) Then

 pFilters.AddFilter New GxFilterCoverageAnnotationClasses, False

 pFilters.AddFilter New GxFilterCoverageFeatureClasses, False

 pFilters.AddFilter New GxFilterCoverages, False

 pFilters.AddFilter New GxFilterDimensionFeatureClasses, False

 pFilters.AddFilter New GxFilterGeometricNetworks, False

 pFilters.AddFilter New GxFilterInfoTables, False

 pFilters.AddFilter New GxFilterRelationshipClasses, False

 pFilters.AddFilter New GxFilterSDEFeatureClasses, False

 pFilters.AddFilter New GxFilterSDEFeatureDatasets, False

 pFilters.AddFilter New GxFilterSDETables, False

 End If

 With pGxDialog

 .AllowMultiSelect = True

 .Title = "Select Editable data"

 .DoModalOpen 0, SelectLicensedEditClasses

 End With

End Function

Functional changes take two forms. A method either returns an appropriate error
HRESULT to signal that there is not an appropriate license available to success-
fully execute the method, or it returns a successful HRESULT, but the behavior
of the method changes to reflect the available licenses.

As an example of the first kind of functional license check, the Delete method on
the IDataset interface may return the HRESULT
FDO_E_NO_OPERATION_LICENSE to say that you did not have the correct
license to complete the operation. This type of error can be easily found reac-
tively, then reported to the user using an informative message box.
Private Function DeleteDataset(pDataset As IDataset) As Boolean

 On Error GoTo ErrorHandler

 pDataset.Delete

 DeleteDataset = True

 Exit Function

ErrorHandler:

 If (Err.Number = FDO_E_NO_OPERATION_LICENSE) Then

 MsgBox "You do not have a license that enables you to delete _

 dataset " & pDataset.Name, vbCritical

 Else

 MsgBox "Error Deleting Dataset " & pDataset.Name & vbCrLf & _

 "Error Description : " & Err.Description, vbCritical

 End If

End Function

ARCGIS DESKTOP LICENSE CHECKING

Chapter 4 • Licensing and deployment • 81

The alternative is to determine the license in use and the type of dataset that the
user wants to delete, then decide whether or not to allow the DeleteDataset
function to be called.

The more difficult scenario is when the behavior of a method changes depending
on the available licenses. For instance, assume that the user has defined a personal
geodatabase using ArcEditor and has a number of classes defined. Two of these
feature classes have a relationship class. This means that as long as an ArcEditor
or ArcInfo license is used to edit the database, all classes are editable. If an
ArcView user starts editing on the database, the start edit operation will succeed
for all the classes except the two with the relationship. The method’s behavior has
changed, but there was no failure HRESULT returned from the method call since
it successfully started editing all the other classes. In this case, you must perform
another step after calling StartEdit to determine whether or not the start edit
operation was successful on all classes. If you find that it was not successful, you
can retrieve the reason from the database and present that information to the user
or perhaps configure your tools accordingly.
Private Sub StartEditWithCheck(pWorkspace As IWorkspace)

 Dim pWorkspaceEdit As IWorkspaceEdit

 Set pWorkspaceEdit = pWorkspace

 pWorkspaceEdit.StartEditing True

 Dim pDatasets As IEnumDataset

 Set pDatasets = pWorkspace.Datasets(esriDTFeatureClass)

 pDatasets.Reset

 Dim pDataset As IDataset

 Dim pDatasetEdit As IDatasetEdit

 Set pDatasetEdit = pDatasets.Next

 Dim failedClasses As String

 Do Until (pDatasetEdit Is Nothing)

 If (Not pDatasetEdit.isBeingEdited) Then

 Set pDataset = pDatasetEdit

 failedClasses = failedClasses & pDataset.Name & vbCrLf

 End If

 Set pDatasetEdit = pDatasets.Next

 Loop

 If (failedClasses <> "") Then _

 MsgBox "Start edit failed for the following classes : " & _

 failedClasses, vbCritical

End Sub

The above function can be changed slightly to perform the checking proactively.
In the following function, the class is checked to see if it can be edited using its
IDatasetEditInfo interface. This is the preferred method of checking since there are
a number of reasons, in addition to the license issues discussed here, that a user
may not be able to start editing a feature class. For more information, see the
Geodatabase library overview in the ArcGIS Developer Help.

ARCGIS DESKTOP LICENSE CHECKING

82 • ArcGIS Desktop Developer Guide

Private Function AllOrNothingStartEdit(pWorkspace As IWorkspace) As Boolean

 Dim pDatasets As IEnumDataset

 Set pDatasets = pWorkspace.Datasets(esriDTFeatureClass)

 pDatasets.Reset

 Dim pDatasetEditInfo As IDatasetEditInfo

 Set pDatasetEditInfo = pDatasets.Next

 Do Until (pDatasetEditInfo Is Nothing)

 If (Not pDatasetEditInfo.CanEdit) Then Exit Function

 Set pDatasetEditInfo = pDatasets.Next

 Loop

 Dim pWorkspaceEdit As IWorkspaceEdit

 Set pWorkspaceEdit = pWorkspace

 pWorkspaceEdit.StartEditing True

 AllOrNothingStartEdit = True

End Function

When designing your functionality, being aware of these license issues will help
you create a solid application that will work on any deployment of the ArcGIS
functionality.

In general, in any application you should always:

• Check for product licensing in custom extensions that depend on other exten-
sions.

• Decide if you want to check out a license for the duration of the application
or just for the function use.

Using the following tables will help you decide when it is appropriate to check
for license-related HRESULTs. You should not treat this as a fixed list of method
calls since changes in ArcGIS deployments may result in changes to the functional
license-checking routines.

ARCGIS DESKTOP LICENSE CHECKING

Chapter 4 • Licensing and deployment • 83

ARCGIS DESKTOP LICENSE CHECKING

The following table lists the license-related HRESULTs:

-2147220962

-2147220961

-2147220974

-2147221247

-2147217407

-2147220734

-2147217402

-2147220960

-2147216062

-2147210395

-2147216084

-2147216085

-2147220735

-2147220976

-2147217302

-2147217304

FDO_E_NO_EDIT_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_LICENSE_FAILURE

GEOCODING_E_NO_LICENSE

E_RASTERENCODER_NO_LICENSE

E_LICENSENOTAVAILABLE

E_RASTER_FILE_LZW_FAILED

FDO_E_NO_OPERATION_LICENSE

FDO_E_SE_LICENSE_EXPIRED

E_TIN_LICENSE_NOT_AVAILABLE

FDO_E_SE_OUT_OF_LICENSES

FDO_E_SE_LICENSE_FAILURE

E_GEOSTAT_LICENSENOTAVAILABLE

LOCATION_E_NO_LICENSE

E_SPATIAL_ANALYST_SHAREDLICENSENOTAVAILABLE

E_SPATIAL_ANALYST_LICENSENOTAVAILABLE

ROUTEEVENT_E_NOT_LICENSED

0x8004021E

0x8004021F

0x80040212

0x80040101

0x80041001

0x80040302

0x80041006

0x80040220

0x80041542

0x80042B65

0x8004152C

0x8004152B

0x80040301

0x80040210

-21472209560x80040224

0x8004106A

0x80041068

Name Hexidecimal value Decimal value

84 • ArcGIS Desktop Developer Guide

ARCGIS DESKTOP LICENSE CHECKING

The following tables list the method calls that can return license-related
HRESULTs:

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_EDIT_LICENSE

E_LICENSENOTAVAILABLE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_OPERATION_LICENSE

GEOCODING_E_NO_LICENSE

GEOCODING_E_NO_LICENSE

GEOCODING_E_NO_LICENSE

GEOCODING_E_NO_LICENSE

GEOCODING_E_NO_LICENSE

GEOCODING_E_NO_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_OPERATION_LICENSE

E_LICENSENOTAVAILABLE

E_RASTER_FILE_LZW_FAILED

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_OPERATION_LICENSE

ROUTEEVENT_E_NOT_LICENSED

ROUTEEVENT_E_NOT_LICENSED

ROUTEEVENT_E_NOT_LICENSED

ROUTEEVENT_E_NOT_LICENSED

ROUTEEVENT_E_NOT_LICENSED

ROUTEEVENT_E_NOT_LICENSED

ROUTEEVENT_E_NOT_LICENSED

ROUTEEVENT_E_NOT_LICENSED

ROUTEEVENT_E_NOT_LICENSED

ROUTEEVENT_E_NOT_LICENSED

ROUTEEVENT_E_NOT_LICENSED

ROUTEEVENT_E_NOT_LICENSED

ROUTEEVENT_E_NOT_LICENSED

E_TIN_LICENSE_NOT_AVAILABLE

Interface Method HRESULT

IArcInfoWorkspace

ICheckIn

ICheckInDataSyncronizer

ICheckOut

Iclass

IDatasetContainer

IDeltaDataChangesInit

IDeltaDataChangesInit2

Ieditor

Iexport

IExportDataChanges

IFeatureDataset

IFeatureWorkspace

IGeoDBDataTransfer

IGPFunction

IImportDataChanges

ILocatorAttach2

ILocatorExtension

ILocatorLibrary

ILocatorWorkspace

INetworkCollection2

IObjectClass

IPlugInLicense

Iprinter

IRasterBandCollection

IRasterWorkspaceEx

IReplicaDataChangesInit

IReplicaValidation

IRouteLocatorOperations

IRouteMeasureCalibrator

IRouteMeasureCreator

IRouteMeasureCreator2

IRouteMeasureEvent-

Geoprocessor2

ISceneGraph

CreateCoverage

CreateInfoTable

CheckInFromDeltaFile

CheckInFromGDB

Synchronize

CheckOutData

CheckOutSchema

AddField

AddDataset

Init

Init2

StartEditing

StartExporting

ExportDataChanges

CreateFeatureClass

CreateGeometricNetwork

CreateRelationshipClass

Delete

CreateAnnotationClass

CreateFeatureClass

CreateFeatureDataset

CreateRelationshipClass

CreateTable

GenerateNameMapping

Execute

Validate

ImportDataChanges

AttachLocator

AddLocator

ReBuildIndexes

AddLocatorStyle

DeleteWorkspace

UpdateLocator

CreateGeometricNetworkEx

DeleteField

CheckExtensionLicense

StartPrinting

SaveAs

CreateRasterCatalog

Init

ValidateReplicaPair

LocateLineFeatures

LocatePointEvents

LocatePointFeatures

LocatePolygonFeatures

CalibrateRoutesByDistance

CalibrateRoutesByMs

CreateUsingPointS

CreateUsing2Fields2

CreateUsingCoordinatePriority2

Concatenate2

Dissolve2

Intersect2

Union2

AddSimpleActor

Chapter 4 • Licensing and deployment • 85

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_EDIT_LICENSE

FDO_E_NO_SCHEMA_LICENSE

Interface Method HRESULT

Isubtypes

ISurface

ITinAdvanced

ITinEdit

ITopologyContainer2

IVersion

IVersionDataChangesInit

IWorkspaceEdit

IWorkspaceLicense

AddSubtype

DeleteSubtype

put_DefaultSubtypeCode

put_DefaultValue

putref_Domain

AsPolygons

Contour

ContourList

ConvertToPolygons

GetContour

GetLineOfSight

GetPartialVolumeAndArea

GetProjectedArea

GetSteepestPath

GetSurfaceArea

GetVolume

GetVolumeAndArea

QueryPixelBlock

ConvertToVoronoiRegions

MakeEdgeEnumerator

MakeNodeEnumerator

MakeTriangleEnumerator

InitNew

StartEditing

CreateTopologyEx

CreateVersion

Delete

put_Access

put_Description

put_VersionName

Init

StartEditing

StartEditing

putref_Domain

ARCGIS DESKTOP LICENSE CHECKING

86 • ArcGIS Desktop Developer Guide

PACKING AND DEPLOYING CUSTOMIZATIONS

This section describes how you can package your developments and deploy them
to other users.

Exactly what must be packaged depends on the type of development—VBA or
DLLs; but you should also consider including the following:

• Object Diagrams—Since you have developed your code using the same open
and extensible architecture that ESRI uses, other developers are free to work
with your components in the same way you work with ArcObjects. Object
diagrams and help within the DLLs are good ways of supplying developers
with information.

• Other files to package can include data files, help files, documentation, and so
on.

It is important not to package any of the files within the ArcGIS installation. If
you did this and the user uninstalled your software, there would be a danger that
some of the files ArcGIS requires to function correctly might be removed.

VBA DEVELOPMENTS

For VBA developments, there are several ways to distribute the code and UI
customizations. Recall from Chapter 3, the ‘Storing customizations’ section, that
all the code and UI customizations may be packaged in either the document
file—for example, a .mxd file for ArcMap—or a template file.

The first method to deploy this information is to simply copy the document
and/or template to the appropriate directory on the target machine, as described
in Chapter 3.

This method has some disadvantages, however. If your document contains an
enabled extension and the target machine does not have that extension installed,
the document will not open on the target machine, and the user cannot extract
any code from that document. Another disadvantage is that if you are distribut-
ing a Normal template, it will overwrite any customizations that already exist on
the target machine.

Also, keep in mind that when you save a document, you have a choice of storing
absolute or relative pathnames. If you intend to distribute a .mxd file and data to
other users, try to use relative pathnames such that when they open the document
it will look for the data in a pathname relative to the .mxd file rather than a hard-
coded path that may not exist on the target machine.

The second method is to export the VBA code modules to text files, copy those
files to the target machine, then import the files into an application’s VBA ses-
sion.

The disadvantages with this second method include the manual process of ex-
porting and importing potentially large numbers of files and the fact that UI
customizations cannot be transferred this way.

You can change the data storage options under
the File > Document Properties menu in

ArcMap, ArcGlobe, and ArcScene.

Chapter 4 • Licensing and deployment • 87

DLL DEVELOPMENTS

How you package and deploy your DLL development depends on the API used
to create the DLL. For this section .NET DLLs created with the .NET frame-
work and COM DLLs created by languages such as Visual Basic 6 and Visual C++
will be considered.

.NET Framework DLLs
This includes DLLs created with either VB .NET or C# .NET. To utilize these
DLLs on a target machine, the .NET framework must be installed. This is avail-
able as a free download from Microsoft. In addition, the ESRI interop assemblies
must be present, but these are installed with ArcGIS.

The two popular methods to package and deploy .NET customizations are de-
scribed below.

Just the binaries
When you compile a .NET project, the resulting DLL will be contained within a
folder called bin in the project directory. This directory will also contain the Type
library file for the project with the extension .tlb.

It is possible to simply give the user a copy of these compiled binaries with
instructions on how to register them on the system. This is often the easiest
method if you’re sharing customizations with colleagues. Many of the developer
samples within ArcGIS Developer Help are provided this way.

Before you can use the DLL in a desktop application, you must register the DLL
with the operating system, then register the classes it contains with the appropri-
ate component category.

To register the DLL with the operating system, use the following command line
syntax:
regasm.exe MyCustom.DLL

To unregister the DLL, the command is run with the /u option:
regasm.exe MyCustom.DLL /u

If you have used the ESRI Component Category Registrar add-in for Visual
Studio .NET, the component category information is embedded within the DLL,
and the classes will be automatically registered with the component category
when you register the DLL.

If you did not use the add-in during development, the user will have to manually
register the classes using the Component Category Manager located at <ArcGIS
Install>\bin\categories.exe.

To use the Component Category Manager with .NET DLLs, follow these steps:

1. Open the Component Category Manager.

2. Select the component category to which you want to add the class.

3. Click Add Object, then browse to and select the compiled .tlb file, not the
DLL.

4. Select the classes to be registered in the selected component category and click
OK.

PACKING AND DEPLOYING CUSTOMIZATIONS

You do not have to register a .NET DLL with
the operating system on the machine on which

you build it since that occurs during the build
process.

The .NET framework must be installed for the
ESRI interop assemblies to be installed.

88 • ArcGIS Desktop Developer Guide

Repeat these steps for additional classes within the DLL that need to be regis-
tered in other component categories.

Using an installation program
A setup package is useful when you want to deploy a large application consisting
of several DLLs, associated documents, and data. These packages usually create
simple executable files that can be easily deployed and installed by users. These
packages also make the uninstallation of your customization much easier.

There are many commercial installation packages available that vary in functional-
ity. Visual Studio .NET also includes a straightforward Setup and deployment
option that will be shown in the following example.

To create a setup program for your .NET customization use the following steps:

1. Open your customization solution in Visual Studio .NET.

2. From the File menu, select New Project and click the Setup and Deployment
projects folder in the New Project dialog box. Click the Setup Project tem-
plate, accept the default name and location, and click the Add to Solution
button.

This creates a new project in your solution that builds your setup files.

3. Right-click the application folder, point to Add, then click Project Output. In
the Add Project Output Group dialog box, click your customization project in
the Project dropdown list. Click Primary output in the pane below. Leave the
configuration as Active and click OK.

This will add the primary output, the DLL, to the setup project and any
dependents, in this case the referenced libraries.

4. Exclude the ESRI-referenced libraries from the Detected Dependencies folder
in the Solution Explorer by right-clicking each library name and clicking
Exclude.

This ensures that the ESRI libraries do not get deployed with the setup. You
may also like to add any files, such as release notes, at this stage by right-
clicking the setup project and clicking Add.

5. Finally, create the setup files by right-clicking the setup project in the Solution
Explorer and clicking Build. This creates the setup files in the setup directory
created in Step 2 under the active configuration name, debug or release.

The three files in the Setup directory—setup.exe and the .msi and .ini files—
can then be given to users for a seamless install.

For more information on this process and additional options, search for and
review ‘Setup, deployment methods’ within Microsoft Developer Network
(MSDN) Help, provided with Visual Studio .NET.

PACKING AND DEPLOYING CUSTOMIZATIONS

Step 2

Step 3

Step 4

Chapter 4 • Licensing and deployment • 89

Com DLLs
These include DLLs created with Visual Basic 6, Visual C++, Delphi, and so
forth. The only requirement for installation on the target machine is that it must
have ArcGIS Desktop installed.

There are two popular methods for packaging and deploying COM DLLs.

Just the DLL
It is possible to simply give the user a copy of the DLL with instructions on how
to register the DLL on the system. Normally, this involves the use of the Win-
dows Utility RegSvr32.EXE. To register a DLL, the user must type a command
line similar to that below.
 RegSvr32 MyServer.DLL

To unregister a server, the command is run with the /U switch.
 RegSvr32 /U MyServer.DLL

A dialog box appears when the operation completes. When running regsvr32 on
several files, it is advisable to run it in silent mode with the /S switch—this
disables the dialog box.

Depending on how the DLL was developed, registering the DLL may not be the
only task. The coclasses contained with the DLL may have to be added to the
appropriate component categories. If ATL was used, as shown in the ATL sec-
tion, this can be made automatic on server registration. Other alternatives include
the facility in the applications for commands; the Category Manager utility appli-
cation; and the ComponentCategoryManager coclass, which is part of the framework
subsystem or the creation of a registry script.

Included in the Tools directory of the ArcGIS Developer Kit folder is a small
registry script called reg_in_menu.reg. The registry script adds options to the
Windows Explorer context menu when DLL, EXE, OLB, and OCX files are
selected. The five options provide support for registering and unregistering the
files. The context menu is shown in the figure to the left.

Using registry scripts
After the server is registered on the system, registry scripts provide a good mecha-
nism for adding supplemental information about the server to the registry, includ-
ing the component category information. These registry scripts can either be
written by hand or generated from the Compile and Register Visual Basic add-in.
A sample script is shown below. The lines beginning “[HKEY” must all be on one
line in the file.
REGEDIT4

; This Registry Script enters CoClasses Into their appropriate Component
Category ; Use this script during installation of the components

; Coclass: prjDisplay.ZoomIn ; CLSID: {FC7EC05F-6B1B-4A59-B8A2-37CE33738728}
; Component Category: ESRI Mx Commands
[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{FC7EC05F-6B1B-4A59-B8A2-
37CE33738728}\Implemented Categories\{B56A7C42-83D4-11D2-A2E9-080009B6F22B}]

PACKING AND DEPLOYING CUSTOMIZATIONS

90 • ArcGIS Desktop Developer Guide

; Coclass: prjDisplay.ZoomOut ; CLSID: {2C120434-0248-43DB-AD8E-
BD4523A93DF8} ; Component Category: ESRI Mx Commands
[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{2C120434-0248-43DB-AD8E-
BD4523A93DF8}\Implemented Categories\{B56A7C42-83D4-11D2-A2E9-080009B6F22B}]

Using an installation program
Most setup packages work well with registry scripts. For example, the Visual
Basic Package and Deployment wizard provides a straightforward way of creat-
ing setup programs. To create a setup program for your server, follow these steps:

1. Click the Start menu and click the Package and Deployment Wizard. The
dialog box to the left is displayed. Click the Visual Basic project to be pack-
aged and choose the package option. This will build the setup program and
gather all files required by the setup program into a support directory for easy
regeneration of the package. The wizard then performs some checks to ensure
that the server created by the Visual Basic project is up-to-date with its source
files. If not, you are given the option to recompile the project.

2. Next, choose the package type; this will normally be a Standard Setup Pack-
age.

3. The next step allows you to specify the folder where the package is created.
This folder will contain the Setup executable and cabinet files and a support-
ing folder with all the files used to build the package.

4. Ensure that the files list shown doesn’t include any ArcGIS installed files and
that any other files required by the installation are added. The additional files
normally include a registry script to perform advanced registration, along with
help files, and so on.

5. The next panel depends on whether a registry file was added in the previous
step. If the file was added, the dialog box to the left is shown. If no file was
added, go to Step 6. The simplest option is to accept the default. This will
cause the registry script to be executed when the setup program has registered
the servers on the target machine but will not copy the registry script to the
machine.

6. The wizard then asks if one or multiple cabinet files will be created. This
depends on whether or not the setup program will span multiple floppy disks.

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

PACKING AND DEPLOYING CUSTOMIZATIONS

Chapter 4 • Licensing and deployment • 91

7. Next, follow a couple of panels asking for the Installation Screen title and
where on the Windows Start menu the setup program should group files.
Often when installing DLLs it is not appropriate to define an entry on the
Start menu. Sometimes, even with DLLs, it may be desirable to add access to
documents containing help information.

8. The next panel allows the user to define the location of the various files after
they have been installed. Various macros are defined that will point to differ-
ent locations, depending on the configuration of the target machine.

9. The next panel allows files to be marked as shared. Any files of the installa-
tion that will be used by other programs or installations must be marked as
shared. This ensures that the uninstall program does not remove them auto-
matically, which would break the other programs.

10. Finally, the Finish panel is displayed. Click Finish to assemble the package.
The three files in the package directory—setup, cabinet, and list files—can
then be given to third parties for a seamless install.

This is just one method of packaging COM developments. Whatever method you
use, the setup procedure must be as simple as possible and involve as few deci-
sions as possible to avoid user frustration.

Step 7

Step 8

Step 9

Step 10

PACKING AND DEPLOYING CUSTOMIZATIONS

93

Developer
scenarios

Throughout this book, you have been introduced to several programming concepts

and patterns, as well as some APIs. This chapter contains examples of developer

scenarios that build applications using ArcGIS Desktop that apply these concepts

and use these APIs. Each scenario is available, in a completed state, with the

ArcGIS developer samples installed as part of the ArcGIS Desktop Developer Kits.

5

94 • ArcGIS Desktop Developer Guide

PROJECT DESCRIPTION

This scenario is for ArcGIS Desktop developers who need to create and deploy a
simple toolbar containing a command, tool, and menu that can plug into the
ArcGIS Desktop application framework.

The scenario develops these controls and adds them in stages to a toolbar. If your
customization only requires one of these controls, for example—a command, you
can look for it under the appropriate heading.

The emphasis in this scenario is how you create the components that plug into the
framework rather than any particular ArcObjects solution.

CONCEPTS

There are some important concepts you should understand before following this
scenario. These are described below.

Commands
All the user interface controls in the ArcGIS Desktop applications are commands.
The simplest type of command is a button that generally appears as an icon on a
toolbar, but it may also be placed on menus by the user. In both cases an action
occurs when the button is clicked, running the code within the OnClick proce-
dure.

Commands are simply components within a Dynamic Link Library that imple-
ment the ICommand interface referenced from the esriSystemUI library. Com-
mands are registered in the component category for the application in which they
are designed to run. In ArcMap they run as ESRI Mx Commands, in ArcCatalog is
ESRI Gx Commands, in ArcScene is ESRI Sx Commands, and in ArcGlobe is
ESRI GMx Commands.

Tools
Tools are similar to button commands, but they are designed to interact with the
application’s display. The Zoom In command is a good example of a tool—you
click or drag a rectangle over a map before the display is redrawn to show the
map contents in more detail. Tools can react to a number of events, including
mouse up/down, key up/down, and a double click.

Tools are simply components within a Dynamic Link Library that implement the
ITool and ICommand interfaces referenced from the esriSystemUI library. Tools,
like commands, are registered in the component category for the application in
which they are designed to run. In ArcMap they run as ESRI Mx Commands, in
ArcCatalog as ESRI Gx Commands, in ArcScene as ESRI Sx Commands, and in
ArcGlobe as ESRI GMx Commands.

Menus
Menus are an alternative to commands for performing an action. As an interface,
they contain calls to existing commands that may be defined in the same or other
DLLs. Menus can be stacked, employing a pull-right feature, by calling a com-
mand item that is on another menu. The File, Edit, and View menus on the
ArcMap Standard toolbar are examples of menus.

CREATE A TOOLBAR: COMMAND, TOOL, AND MENU

Chapter 5 • Developer scenarios • 95

Menus are simply components within a Dynamic Link Library that implement the
IMenuDef interface referenced from the esriSystemUI library. Menus may also
implement the IRootLevelMenu interface to appear under the menu’s category in
the Customize dialog box. Menus are registered in the component category for the
application in which they are designed to run. In ArcMap this is ESRI Mx
CommandBars, ArcCatalog as ESRI Gx CommandBars, ArcScene as ESRI Sx
CommandBars, and ArcGlobe as ESRI GMx CommandBars.

Context menus are slightly different in that they implement the IShortCutMenu
interface to distinguish them from other menus. They are not discussed in this
scenario, however.

Toolbars
Toolbars are simply components within a Dynamic Link Library that implement
the IToolBarDef interface referenced from the esriSystemUI library. They simply
act as containers for other controls. You can programmatically or manually add
commands, tools, and menus to toolbars. Toolbars are registered in the compo-
nent category for the application in which they are designed to run. In ArcMap
they run as ESRI Mx CommandBars, in ArcCatalog as ESRI Gx CommandBars,
in ArcScene as ESRI Sx CommandBars, and in ArcGlobe as ESRI GMx
CommandBars.

You can also enable toolbars to display when the desktop application is first run,
so the user does not have to manually display it. For more information, see the
COM category registration functions step in this section and the ArcGIS Devel-
oper Help IToolBarDef interface.

REQUIREMENTS

The requirements for working through this scenario are that you have ArcGIS
Desktop installed and running.

The IDE used for this example is Visual Basic Studio .NET 2003, and all IDE-
specific steps will assume this is the IDE you are using.

It is also recommended that you read the .NET language section in Appendix A,
‘Developer environments’.

ADDITIONAL RESOURCES

The completed code for this scenario can be found in ArcGIS Developer Help
under ArcGIS Desktop > Developer Guide > Developer Scenarios and on disk in
the \DeveloperKit\samples\Developer_Guide_Scenarios\ArcGIS Desktop
directory.

CREATE A TOOLBAR: COMMAND, TOOL, AND MENU

96 • ArcGIS Desktop Developer Guide

CREATE A TOOLBAR: COMMAND

IMPLEMENTATION

In this example you will create a command for ArcMap that toggles the visibility
of the selected layer. Later, this command will be added to a toolbar. The code
for this example is written in Visual Basic .NET.

Creating a new project
1. Start Visual Studio .NET.

2. Click File, then New, and click Project.

3. In the New Project dialog box, click Visual Basic Projects in the
left pane.

4. Click Class Library in the right pane.

5. Type “MyToolbarVBNET” for the Name and browse to the
location to which you want to save the project.

6. Click OK, and the new project will be created for you.

The DLL you compile will have the same name as the project, so
choose a name representative of the application you are creating.
Remember, though, that you can have many commands as classes
within the project.

Creating a new COM class for the command
The new project will contain a default Visual Basic class, Class1.vb. You must,
however, create and work with a COM class to communicate with the
ArcObjects COM framework within ArcGIS Desktop.

1. In the Solution Explorer, right-click MyToolbarVBNET project,
click Add, then click Add New Item.

2. In the Add New Item dialog box, scroll down the right pane and
click COM Class. In the Name text box, type “ToggleButton”. Click
Open to add the new class to the project.

3. In the Solution Explorer, right-click the existing class
(Class1.vb), and click Delete.

The new COM class will have a new GUID and an empty subrou-
tine called New. The project will also be registered for COM
interop.

Chapter 5 • Developer scenarios • 97

CREATE A TOOLBAR: COMMAND

Referencing ESRI libraries in your project
To program using ArcObjects, you will need to add references to the ESRI librar-
ies.

1. In the Solution Explorer, right-click References and click Add
References.

2. In the Add Reference dialog box, click the .NET tab, then
double-click the following assemblies:

• ESRI.ArcGIS.ArcMapUI

• ESRI.ArcGIS.Carto

• ESRI.ArcGIS.Framework

• ESRI.ArcGIS.SystemUI

• ESRI.ArcGIS.Utility

• System.Drawing.dll

3. Click OK to close the dialog box and add the libraries to your
solution.

Adding Imports statements
1. In the Solution Explorer, double-click ToggleButton.vb to open its Code

window.

2. At the top of the Code window, before the beginning of the class declaration,
add the following lines of code:

 Option Strict On

Imports System.Runtime.InteropServices

Imports ESRI.ArcGIS.ArcMapUI

Imports ESRI.ArcGIS.Framework

Imports ESRI.ArcGIS.Utility.BaseClasses

Imports ESRI.ArcGIS.Utility.CATIDs

You will notice that the Imports statements work with IntelliSense.

Adding a bitmap
Add a bitmap file to your project to be used as the icon for the toggle button
command, which will be set in the next step.

1. In the Solution Explorer window, right-click the MyToolbarVBNET project,
click Add, then click Add Existing Item.

2. In the Add Existing Item dialog box, click the Files of Type pulldown menu
and click Image Files.

3. Browse to the \DeveloperKit\Samples\Developer Guide Scenarios\ArcGIS
Desktop\Toolbar under your ArcGIS install, click ToggleButton.bmp, then
click OK to copy it to your project directory.

4. In the Solution Explorer window, make sure you’ve selected the new bitmap,
and in the Properties window below the Solution Explorer, change the Build
Action property to Embedded Resource.

98 • ArcGIS Desktop Developer Guide

Inheriting the BaseCommand abstract class
The BaseCommand class provided by ESRI in the Utility library allows you to
create commands quicker and simpler than by directly implementing the
esriSystemUI.ICommand interface.

1. In the ToggleButton.vb Code window, specify that the ToggleButton class
inherits from the BaseCommand abstract class as shown below, then add the
NotInheritable class modifier.

This code replaces the existing public class definition.
 Public NotInheritable Class ToggleButton

 Inherits BaseCommand

The NotInheritable class modifier states that a class cannot be inherited from. As
you are not designing a class for this purpose, it is prudent to add this modifier to
prevent other classes from inheriting this class.

Overriding members of the BaseCommand ICommand
interface
1. In the Wizard bar at the top of the ToggleButton class Code
window, click the left pulldown menu, and click Overrides.

2. In the right pulldown menu, click OnCreate. A code stub for the
overridden OnCreate method is added to the Code window.

3. Repeat Steps 1 and 2, but this time click OnClick and Enabled.

4. Press Ctrl + Shift + S to save all the files in your project, or click
File > Save All.

Adding code to the overridden members of BaseCommand
You will now start adding VB .NET code to the methods you have overridden.

1. Add the following member variables to the class as shown.
 Public NotInheritable Class ToggleButton

 Inherits BaseCommand

 Private m_pApp As IApplication

 Private m_pMxDoc As IMxDocument

2. In the ToggleButton class Code window, scroll down to find the overridden
OnCreate method, and add the code shown below.
Public Overrides Sub OnCreate(ByVal hook As Object)

If Not (hook Is Nothing) Then

 If TypeOf (hook) Is IApplication Then

 m_pApp = CType(hook, IApplication)

 m_pMxDoc = CType(m_pApp.Document, IMxDocument)

 End If

 End If

 End Sub

CREATE A TOOLBAR: COMMAND

Chapter 5 • Developer scenarios • 99

3. Scroll down again to find the OnClick method, and add the following code:
 Public Overrides Sub OnClick()

 m_pMxDoc.SelectedLayer.Visible = Not (m_pMxDoc.SelectedLayer.Visible)

 m_pMxDoc.ActiveView.Refresh()

 m_pMxDoc.UpdateContents()

 End Sub

4. Scroll down to find the Enabled property, and add the following code.
 Public Overrides ReadOnly Property Enabled() As Boolean

 Get

 Return (Not (m_pMxDoc.SelectedLayer Is Nothing))

 End Get

 End Property

5. Scroll the Code window upward to find the constructor, sub New, for the
ToggleButton class as shown, and add the following code to the constructor:

 Public Sub New()

 MyBase.New()

 MyBase.m_caption = "Toggle Layer On/Off"

 MyBase.m_category = "Custom Controls"

 MyBase.m_message = "Toggles the visibility of the selected layer"

 MyBase.m_toolTip = "Layer On/Off"

 MyBase.m_name = "ToggleButton"

 MyBase.m_bitmap = New _

 System.Drawing.Bitmap(GetType(ToggleButton) _

 .Assembly.GetManifestResourceStream("MyCommandVBNET.globe_1.bmp"))

 End Sub

Adding COM category registration functions
The .NET framework allows you to place COM registry functions within the
class code. When the DLL is registered the class will be placed within the speci-
fied COM component category. ESRI provides an add-in to add this code.

1. Enable the add-in.
Click the Tools menu and click Add-in Manager.
Check ESRI ComponentCategoryRegistrar if it is not checked.
Click OK to close the dialog box.

2. Scroll the Code window to near the top of the class declaration, and put the
cursor just below the COM GUIDs region.

3. Click the Tools menu and click ESRI ComponentCategoryRegistrar.

4. Check the MxCommand box and click OK to add the code. If you have not
added a reference to the ESRI.ArcGIS.Utility assembly, the add-in will add
the reference. If you have not declared using the namespace of
System.Runtime.InteropServices or ESRI.ArcGIS.Utility.CATIDs, the add-in
will add the declaration.

CREATE A TOOLBAR: COMMAND

100 • ArcGIS Desktop Developer Guide

CREATE A TOOLBAR: TOOL

IMPLEMENTATION

In this example you will create a tool for ArcMap that displays the coordinates
where the mouse is clicked. The tool also responds to other events, such as right-
click and mouse click. Later, this tool will be added to a toolbar. The code for
this example is written in Visual Basic .NET.

Opening the toolbar project
If you previously created the MyToolbarVBNET project, open it now.

1. Start Visual Studio .NET.

2. Click File, click Open, and click Project.

3. In the Open Project dialog box, click MyToolbarVBNET.sln from the location
to which you saved it.

Creating a new COM class for the tool
1. In the Solution Explorer, right-click MyToolbarVBNET project,
click Add, then click Add New Item.

2. In the Add New Item dialog box, scroll down the right pane and
click COM Class. In the Name text box below, type “CoordTool”.
Click Open to add the new class to the project.

The new COM class will have a new GUID and an empty subrou-
tine called New. The project will also be registered for COM
interop.

Referencing ESRI libraries in your project
To program using ArcObjects, you will need to add references to the ESRI librar-
ies.

1. In the Solution Explorer, right-click References and click Add References.

2. In the Add Reference dialog box, click the .NET tab, and
double-click the following assemblies:

• ESRI.ArcGIS.ArcMapUI

• ESRI.ArcGIS.Display

• ESRI.ArcGIS.Framework

• ESRI.ArcGIS.Geometry

• ESRI.ArcGIS.System

• ESRI.ArcGIS.SystemUI

• ESRI.ArcGIS.Utility

• System.Drawing.dll

• System.Windows.Forms.dll

Chapter 5 • Developer scenarios • 101

3. Click OK to close the dialog box and add the libraries to your solution.

Adding Imports statement
1. In the Solution Explorer, double-click CoordTool.vb to open its Code win-

dow.

2. At the top of the Code window, before the beginning of the class declaration,
add the following lines of code:
Option Explicit On

Imports System.Runtime.InteropServices

Imports ESRI.ArcGIS.ArcMapUI

Imports ESRI.ArcGIS.Framework

Imports ESRI.ArcGIS.Geometry

Imports ESRI.ArcGIS.esriSystem

Imports ESRI.ArcGIS.SystemUI

Imports ESRI.ArcGIS.Utility.BaseClasses

Imports ESRI.ArcGIS.Utility.CATIDs

You will notice that the Imports statements work with IntelliSense.

Adding a bitmap and cursor
Add a bitmap file and a cursor to your project to be used as the icon and cursor
for the tool, which will be set in the next step.

1. In the Solution Explorer window, right-click the MyToolbarVBNET project,
click Add, then click Add Existing Item.

2. In the Add Existing Item dialog box, click the Files of Type pulldown menu
and choose Image Files.

3. Browse to the \DeveloperKit\Samples\Developer Guide Scenarios\ArcGIS
Desktop\Toolbar under your ArcGIS install, and click CoordTool.bmp, then
click OK to copy it to your project directory.

4. In the Solution Explorer window, make sure you’ve selected the new bitmap,
and in the Properties window below the Solution Explorer, change the Build
Action property to Embedded Resource.

5. Repeat Steps 3 and 4 for the 3dsmove.cur file.

Inheriting the BaseTool abstract class
The BaseTool class provided by ESRI in the Utilities library allows you to create
commands more quickly and simply than directly implementing the
esriSystemUI.ITool interface.

1. In the CoordTool.vb Code window, specify that the CoordTool class inherits
from the BaseCommand abstract class as shown below and add the
NotInheritable class modifier.
This code replaces the existing public class definition.

 Public NotInheritable Class CoordTool

 Inherits BaseTool

The NotInheritable class modifier states that a class cannot be inherited from. As
you are not designing a class for this purpose, it is prudent to add this modifier to
prevent other classes from inheriting this class.

CREATE A TOOLBAR: TOOL

102 • ArcGIS Desktop Developer Guide

Overriding members of the BaseTool ITool interface
1. In the Wizard bar at the top of the MyTool class Code window, click the left

pulldown menu, and click Overrides.

2. In the right pulldown menu, click Deactivate. A code stub for
the overridden Deactivate method is added to the Code window.

3. Repeat Steps 1 and 2, but this time for each of the following:
• Enabled
• OnClick
• OnContextMenu
• OnCreate
• OnDblClick
• OnMouseDown

4. Press Ctrl + Shift + S to save all the files in your project, or click
File > Save All.

Adding code to the overridden members of BaseCommand
You will now start adding VB .NET code to the methods you have overridden.

1. Add the following member variables to the class as shown:
 Public NotInheritable Class CoordTool

 Inherits BaseCommand

 Private m_pApp As IApplication

2. In the CoordTool class Code window, use the pulldown menus to find the
overridden Deactivate method, and add the code shown below.
Public Overrides Function Deactivate() As Boolean

 ' Deactivate the tool. If set to False (the default),

 ' you cannot interact with any other tools because this tool

 ' cannot be interrupted by another tool

 Return True

End Function

3. Find the overridden Enabled property, and add the code shown below.
Public Overrides ReadOnly Property Enabled() As Boolean

 ' Add some logic here to specify when the command should

 ' be enabled. In this example, the command is always enabled.

 Get

 Return True

 End Get

End Property

4. Find the overridden OnClick method, and add the code shown below.
Public Overrides Sub OnClick()

 ' Add some code to do some action when the command is clicked. In this

 ' example, a message box is displayed.

 MsgBox("Clicked on the Coordinate display tool.")

End Sub

CREATE A TOOLBAR: TOOL

Chapter 5 • Developer scenarios • 103

5. Find the overridden OnContextMenu method, and add the code shown below.
Public Overrides Function OnContextMenu(ByVal X As Integer, ByVal Y As

Integer) As Boolean

 ' Add some code to show a custom context menu when there is a right

 ' click. This example creates a new context menu with one macro item.

 Dim pShortCut As ICommandBar

 Dim pItem As ICommandItem

 ' Create a new context menu.

 pShortCut = m_pApp.Document.CommandBars.Create("MyShortCut",
esriCmdBarType.esriCmdBarTypeShortcutMenu)

 ' Add an item to it.

 pItem = pShortCut.CreateMacroItem("MyMacro", 4)

 ' Display the menu.

 pShortCut.Popup()

 ' Let the application know that you handled the OnContextMenu event.

 ' If you don’t do this, the standard context menu will be displayed

 ' after this custom context menu.

 Return True

End Function

6. Find the overridden OnCreate method, and add the code shown below.
Public Overrides Sub OnCreate(ByVal hook As Object)

 ' The hook argument is a pointer to Application object.

 ' Establish a hook to the application.

 m_pApp = hook

End Sub

7. Find the overridden OnDblClick method, and add the code shown below.
Public Overrides Sub OnDblClick()

 ' Add some code to do some action on double-click.

 ' This example makes the built-in Select Graphics Tool the active tool.

 Dim pSelectTool As ICommandItem

 Dim pCommandBars As ICommandBars

 ' The identifier for the Select Graphics Tool

 Dim u As New UID

 u.Value = "{C22579D1-BC17-11D0-8667-0000F8751720}"

 'Find the Select Graphics tool.

 pCommandBars = m_pApp.Document.CommandBars

 pSelectTool = pCommandBars.Find(u)

 'Set the current tool of the application to be the Select Graphics tool.

 m_pApp.CurrentTool = pSelectTool

End Sub

CREATE A TOOLBAR: TOOL

The OnContextMenu method allows you to
create context menus for your tools.

104 • ArcGIS Desktop Developer Guide

8. Find the overridden OnMouseDown method, and add the code shown below.
Public Overrides Sub OnMouseDown(ByVal Button As Integer, ByVal Shift As

Integer, ByVal X As Integer, ByVal Y As Integer)

 ' Add some code to do some action when the mouse button is pressed.

 ' This example displays the X and Y coordinates of the

 ' left mouse button click in the statusbar message in ArcMap.

 ' Button, X, and Y are passed in as arguments to this subprocedure.

 ' Check to see if left button is pressed

 If Button = 1 Then

 ' Convert x and y to map units. m_pApp is set in ICommand_OnCreate.

 Dim pPoint As IPoint

 Dim pMxApp As IMxApplication

 pMxApp = m_pApp

 pPoint = pMxApp.Display.DisplayTransformation.ToMapPoint(X, Y)

 ' Set the statusbar message.

 m_pApp.StatusBar.Message(0) = Str(pPoint.X) & "," & Str(pPoint.Y)

 End If

End Sub

9. Find the Sub New constructor and add the code shown below.
Public Sub New()

 MyBase.New()

 MyBase.m_caption = "Display Coordinates"

 MyBase.m_message = "Returns coordinates"

 MyBase.m_toolTip = "Display Coordinates"

 MyBase.m_name = "CoordTool"

 MyBase.m_category = "Custom Controls"

 MyBase.m_bitmap = New
System.Drawing.Bitmap((GetType(CoordTool).Assembly.GetManifestResourceStream("MyToolbarVBNETbmp")))

 MyBase.m_cursor = New
System.Windows.Forms.Cursor((GetType(CoordTool).Assembly.GetManifestResourceStream("MyToolbarVBNET.3dsmove.cur")))

End Sub

Adding COM category registration functions
The .NET framework allows you to place COM registry functions within the
class code. When the DLL is registered the class will be placed within the speci-
fied COM component category. ESRI provides an add-in to add this code.

1. Enable the add-in.
Click the Tools menu and click Add-in Manager.
Check the ESRI ComponentCategoryRegistrar box if it is not checked.
Click OK to close the dialog box.

2. Scroll the Code window to near the top of the class declaration, and put the
cursor just below the COM GUIDs region.

3. Click the Tools menu and click ESRI ComponentCategoryRegistrar.

4. Check the MxCommand box and click OK to add the code. If you have not
added a reference to the ESRI.ArcGIS.Utility assembly, the add-in will add
the reference.

CREATE A TOOLBAR: TOOL

Chapter 5 • Developer scenarios • 105

CREATE A TOOLBAR: MENU

IMPLEMENTATION

In this example you will create a menu for ArcMap that contains several existing
ArcMap commands. This menu will be later added to a toolbar. The code for this
example is written in Visual Basic .NET.

Opening the toolbar project
Open the previously created MyToolbarVBNET project.

1. Start Visual Studio .NET.

2. Click File, click Open, then click Project.

3. In the Open Project dialog box, click MyToolbarVBNET.sln from the location
in which you saved it.

Creating a new COM class for the menu
1. In the Solution Explorer, right-click the MyToolbarVBNET
project, click Add, then click Add New Item.

2. In the Add New Item dialog box, scroll down the right pane and
click COM Class. In the Name text box, type “CustMenu”. Click
Open to add the new class to the project.

The new COM class will have a new GUID and an empty subrou-
tine called New.

Referencing ESRI libraries in your project
To program using ArcObjects, you will need to add references to the ESRI librar-
ies.

1. In the Solution Explorer, right-click References and click Add
References.

2. In the Add Reference dialog box, click the .NET tab and
double-click the following assemblies:

• ESRI.ArcGIS.Framework

• ESRI.ArcGIS.SystemUI

• ESRI.ArcGIS.Utility

3. Click OK to close the dialog box and add the libraries to your
solution.

106 • ArcGIS Desktop Developer Guide

Adding Imports statements
1. In the Solution Explorer, double-click CustMenu.vb to open its Code win-

dow.

2. At the top of the Code window, before the beginning of the class declaration,
add the following lines of code:

 Option Strict On

 Imports System.Runtime.InteropServices

 Imports ESRI.ArcGIS.SystemUI

 Imports ESRI.ArcGIS.Framework

 Imports ESRI.ArcGIS.Utility.CATIDs

You will notice that the Imports statements work with IntelliSense.

Implementing the IMenuDef interface
1. In the CustMenu.vb Code window, specify that the CustMenu class implements

the IMenuDef and IRootLevelMenu interfaces as shown below. Implementing
IRootLevelMenu allows this menu to be added to the Menus category in the
Customize dialog box.

 Public Class CustMenu

 Implements IMenuDef

 Implements IRootLevelMenu

2. In the Wizard bar at the top of the CustMenu class Code window, click the
left pulldown menu and click IMenuDef.

3. In the right pulldown menu, click the first member of
IMenuDef, Caption. A code stub for the Caption property is added
to the Code window.

The interface implementer will fully reference the implemented
method types by default, as shown below, even though you have
added Imports statements.
 Public ReadOnly Property Caption() As String

 Implements ESRI.ArcGIS.SystemUI.IMenuDef.Caption

If you want, you can remove the unnecessary namespace details to make your
code more readable, as shown below, although you do not have to.

 Public ReadOnly Property Caption() As String

 Implements IMenuDef.Caption

4. Repeat Steps 2 and 3 until you have added code stubs for all the members of
the IMenuDef interface—Caption, GetItemInfo, ItemCount, and Name.

5. Press Ctrl + Shift + S to save all the files in your project.

Adding code to the members of IMenuDef
The menu items are defined within the GetItemInfo subroutine. Each item is a call
to an existing command that is referenced by program ID and the class name. For
example, to reference a command in this project, you would use
MyToolbarVBNET.MyCommand.

CREATE A TOOLBAR: MENU

Chapter 5 • Developer scenarios • 107

1. In the CustMenu class Code window, scroll down to find the GetItemInfo
method, and add the code shown below.

Public Sub GetItemInfo(ByVal pos As Integer, ByVal itemDef As
ESRI.ArcGIS.SystemUI.IItemDef)

 Implements ESRI.ArcGIS.SystemUI.IMenuDef.GetItemInfo

 Select Case pos

 Case 0

 itemDef.ID = "esriArcMapUI.AddDataCommand"

 itemDef.Group = False

 Case 1

 itemDef.ID = "esriArcMapUI.FullExtentCommand"

 itemDef.Group = True

 Case 2

 itemDef.ID = "esriArcMapUI.ZoomInFixedCommand"

 itemDef.Group = False

 End Select

End Sub

2. Edit the code stubs as shown to complete the Caption, ItemCount, and Name
methods as shown to return information about the menu.
Public ReadOnly Property Caption() As String Implements IMenuDef.Caption
 Get

 Return "CustMenu-VBNET"

 End Get

End Property

Public ReadOnly Property ItemCount() As IntegerImplements

ESRI.ArcGIS.SystemUI.IMenuDef.ItemCount
 Get

 Return 3

 End Get

End Property

Public ReadOnly Property Name() As String Implements
ESRI.ArcGIS.SystemUI.IMenuDef.Name

Get

 Return "CustMenu-VBNET"

End Get

End Property

CREATE A TOOLBAR: MENU

108 • ArcGIS Desktop Developer Guide

Adding COM category registration functions
The .NET Framework allows you to place COM registry functions within the
class code. When the DLL is registered the class will be placed within the speci-
fied COM component category. ESRI provides an add-in to add this code.

1. Enable the add-in.
Click the Tools menu and click Add-In Manager.
Check the ESRI ComponentCategoryRegistrar box if it is not checked.
Click OK to close the dialog box.

2. Scroll the Code window to near the top of the class declaration, and put the
cursor just below the COM GUIDs region.

3. Click the Tools menu and click ESRI ComponentCategoryRegistrar.

4. Check MxCommandBar and click OK to add the code. If you have not added
a reference to the ESRI.ArcGIS.Utility assembly, the add-in will add the
reference. If you have not declared using the namespace of
System.Runtime.InteropServices or ESRI.ArcGIS.Utility.CATIDs, the add-in
will add the declaration.

IMPLEMENTATION

In this example you will create a toolbar for ArcMap that contains some existing
ArcMap commands, in this case the previous three controls in the project. The
code for this example is written in Visual Basic .NET.

Opening the toolbar project
Open the previously created MyToolbarVBNET project.

1. Start Visual Studio .NET.

2. Click File, click Open, then click Project.

3. In the Open Project dialog box, click MyToolbarVBNET.sln from the location
to which you saved it.

Creating a new COM class for the toolbar
1. In the Solution Explorer, right-click MyToolBarVBNET project,
click Add, then click Add New Item.

2. In the Add New Item dialog box, scroll down the right pane and
click COM Class. In the Name text box, type “CustToolBar”. Click
Open to add the new class to the project.

The new COM class will have a new GUID and an empty subrou-
tine called New.

CREATE A TOOLBAR: MENU

Chapter 5 • Developer scenarios • 109

CREATE A TOOLBAR: TOOLBAR

Referencing ESRI libraries in your project
To program using ArcObjects, you will need to add references to the ESRI librar-
ies.

1. In the Solution Explorer, right-click References and click Add
References.

2. In the Add Reference dialog box, click the .NET tab and
double-click the following assemblies:

• ESRI.ArcGIS.SystemUI

• ESRI.ArcGIS.Utility

3. Click OK to close the dialog box and add the libraries to your
solution.

Adding Imports statements
1. In the Solution Explorer, double-click CustToolBar.vb to open its Code

window.

2. At the top of the Code window, before the beginning of the class declaration,
add the following lines of code:

 Option Strict On

Imports System.Runtime.InteropServices

Imports ESRI.ArcGIS.SystemUI

Imports ESRI.ArcGIS.Utility.CATIDs

You will notice that the Imports statements work with IntelliSense.

Implementing the IToolBardef interface
1. In the CustToolbar.vb Code window, specify that the CustToolbar class imple-

ments the IToolBarDef as shown below.
 Public Class CustToolbar

 Implements IToolBarDef

2. In the Wizard bar at the top of the CustToolbar class Code
window, click the left pulldown menu and click IToolBarDef.

3. In the right pulldown menu, click the first member of
IToolBarDef, Caption. A code stub for the Caption property is
added to the Code window.

The interface implementer will fully reference the implemented
method types by default, as shown below, even though you have
added Imports statements.
 Public ReadOnly Property Caption() As String

 Implements ESRI.ArcGIS.SystemUI.IToolBarDef.Caption

110 • ArcGIS Desktop Developer Guide

CREATE A TOOLBAR: TOOLBAR

If you want, you can remove the unnecessary namespace details to make your
code more readable, as shown below, although you do not have to.

 Public ReadOnly Property Caption() As String

 Implements IToolBarDef.Caption

4. Repeat Steps 2 and 3 until you have added code stubs for all the members of
the IToolBarDef interface: Caption, GetItemInfo, ItemCount, and Name.

5. Press Ctrl + Shift + S to save all the files in your project.

Adding code to the members of IToolBarDef
The Toolbar items are defined within the GetItemInfo subroutine. Each item is a
call to an existing command that is referenced by program ID and class name. For
example, to reference a command in this project, you would use
MyToolBarVBNET.MyCommand. In this example, you will add the three previ-
ous examples—a command, tool, and menu—as well as two existing ArcMap
commands.

1. In the CustToolbar class Code window, scroll down to find the GetItemInfo
method, and add the code shown below.

Public Sub GetItemInfo(ByVal pos As Integer, ByVal itemDef As
ESRI.ArcGIS.SystemUI.IItemDef) Implements
ESRI.ArcGIS.SystemUI.IToolBarDef.GetItemInfo

Select Case pos

Case 0

 itemDef.ID = "MyToolbarVBNET.CustMenu"

 itemDef.Group = False

Case 1

 itemDef.ID = "MyToolbarVBNET.ToggleButton"

 itemDef.Group = False

Case 2

 itemDef.ID = "MyToolbarVBNET.CoordTool"

 itemDef.Group = False

Case 3

 itemDef.ID = "esriArcMapUI.ZoomInTool"

 itemDef.Group = True

Case 4

 itemDef.ID = "esriArcMapUI.ZoomOutTool"

 itemDef.Group = False

 End Select

End Sub

2. Edit the code stubs as shown to complete the Caption, ItemCount, and Name
methods as shown to return information about the toolbar.
Public ReadOnly Property Caption() As String Implements

IToolBarDef.Caption

Get

 Return "CustToolbar-VBNET"

End Get

End Property

Public ReadOnly Property ItemCount() As Integer Implements
ESRI.ArcGIS.SystemUI.IToolBarDef.ItemCount

Chapter 5 • Developer scenarios • 111

CREATE A TOOLBAR: TOOLBAR

Get

 Return 5

End Get

End Property

Public ReadOnly Property Name() As String Implements
ESRI.ArcGIS.SystemUI.IToolBarDef.Name

Get

 Return "CustToolbar-VBNET"

End Get

End Property

Adding COM category registration functions
The .NET Framework allows you to place COM registry functions within the
class code. When the DLL is registered the class will be placed within the speci-
fied COM component category. ESRI provides an add-in to add this code.

1. Enable the add-in.
Click the Tools menu and click Add-in Manager.
Check the ESRI ComponentCategoryRegistrar box if it is not checked.
Click OK to close the dialog box.

2. Scroll the Code window to near the top of the class declaration, and put the
cursor just below the COM GUIDs region.

3. Click the Tools menu and click ESRI ComponentCategoryRegistrar.

4. Check the MxCommandBar box and click OK to add the code. If you have
not added a reference to the ESRI.ArcGIS.Utility assembly, the add-in will
add the reference. If you have not declared using the namespace of
System.Runtime.InteropServices or ESRI.ArcGIS.Utility.CATIDs, the add-in
will add the declaration.

If you want the toolbar to be displayed the first time the desktop application is
run after you have installed the toolbar, check the Registered as Premier Toolbar
check box. This creates a new registry key name under
HKEY_CURRENT_USER\Software\ESRI\ArcMap\Settings\PremierToolbars.
The key name is the ClassID of the toolbar class and there is no value.

Compiling the project
Now you are ready to build your project.

1. Click Build and click Build Solution.

2. Look at the Output window at the bottom of the Visual Studio .NET IDE.
If your project is compiled correctly, you should find a report stating Build
succeeded.

3. If your build operation did not succeed, click the Task List window to see
what errors are present, and correct the errors as indicated.

4. You can check the results of the Build operation by looking in the subdirecto-
ries of your project. By default, you will build a Debug version of your
project, and the DLL that results from the Build operation will be stored in
the \Bin directory. This directory should also contain debug information

112 • ArcGIS Desktop Developer Guide

CREATE A TOOLBAR: TOOLBAR

(.pdb) and a type library (.tlb) file, produced by the Assembly Registration
tool.

Examining the toolbar components in ArcMap
Before testing and using the toolbar and the controls it contains, it is worthwhile
examining where the controls can be found in ArcMap.

1. Start ArcMap.

2. Open the Customize dialog box by clicking Tools > Customize.

3. The Toolbars tab displays the toolbars in ArcMap. You should see CustToolbar-
VBNET, which you can turn on and off via the check box.

4. Click the Commands tab and open the Custom Controls category. You should
see the command and tool you created. These can be dragged onto other
toolbars as required.

5. Open the Menus category. You should see the CustMenu-VBNET menu in the
list of available menus. Like the controls above, the menu can be dragged
onto an existing toolbar as required.

Using the toolbar components in ArcMap
You can now test the toolbar and the controls it contains.

1. Start ArcMap.

2. Add some vector data.

3. Add the Custom toolbar by either going through the Customize dialog box as
described above or by right-clicking an empty area of the ArcMap frame and
clicking the CustToolbar-VBNET item.

4. Test the menu by clicking some items. These are standard ArcMap commands
called via the menu.

5. Click a layer in the Table of Contents. The toggle layer visibility command
(ToggleButton) should become enabled. Click the button to toggle the selected
layer’s visibility.

6. Click the Coord tool. A message box should be displayed, then be replaced by
a cursor when you click OK on the dialog box. If you click a location on the
map with the tool active, it should display the coordinates in the ArcMap
status bar. Right-click to display a context menu for the tool. Double-click to
enable the Select Graphics tool.

7. Test the other standard ArcMap tools on the toolbar.

You can remove all the components the DLL provides by simply unregistering it.

Deployment
The resulting DLL can easily be deployed to other machines using the methods
described in Chapter 4, ‘Licensing and deployment’.

Chapter 5 • Developer scenarios • 113

EXTENSIONS

PROJECT DESCRIPTION

This scenario is for ArcGIS Desktop developers who want to create an extension.
The example used in this scenario is a simple extension that enables some tools on
an existing toolbar.

The emphasis in this scenario is how you create the components that plug into the
framework rather than any particular ArcObjects solution.

CONCEPTS

Extensions provide the developer with a powerful mechanism for extending the
core functionality of the ArcGIS applications. An extension can provide a
toolbar with new tools, listen for and respond to events, perform feature valida-
tion, and so on.

Extensions act as a central point of reference for developers when they are
creating commands and tools for use within the applications. Often these com-
mands and tools must share data or access common UI components. An extension
is the logical place to store this data and develop the UI components. The main
reason for this is that there is only ever one instance of an extension per running
application and, given an IApplication interface, it is always possible to locate the
extension and work with it.

Any extension that is registered with an application is automatically loaded and
unloaded by the application; the end user does nothing to load or unload. For
example, an extension that has been added to the ESRI Mx Extensions compo-
nent category will be started when ArcMap is started and will be shut down
when ArcMap is shut down.

To create your own extension, implement the IExtension interface. This interface
allows you to set the name of the extension and specify what action takes place
when the extension is started or shut down.

If you want your extension to be exposed in the Extensions dialog box, you
should implement the IExtensionConfig interface. The Extensions dialog box
allows users to turn extensions on and off. The IExtensionConfig interface provides
the Extension dialog box with the name of the extension and a description of
the extension; it also specifies the state of the extension.

The IExtensionConfig interface is independent of ESRI’s licensing approach, so as
a developer, you can incorporate a custom licensing solution. Alternatively, if
your extension doesn’t work with a license manager, you don’t have to worry
about requesting and releasing a license. You can implement IExtensionConfig to
enable and disable the tools on your extension’s toolbar accordingly.

For additional information on extensions and their use in extending the desktop
applications, see ‘Extending ArcObjects, Extending the User Interface’, in the
ArcGIS Developer Help system.

114 • ArcGIS Desktop Developer Guide

REQUIREMENTS

The requirements for working through this scenario are that you have ArcGIS
Desktop installed and running.

The IDE used for this example is Visual Basic 6, and all IDE-specific steps will
assume this is the IDE you are using.

It is also recommended that you read the Visual Basic language section within
Appendix A, ‘Developer environments’.

ADDITIONAL RESOURCES

The completed code for this scenario can be found in ArcGIS Developer Help
under ArcGIS Desktop > Developer Guide > Developer Scenarios and on disk in
the \DeveloperKit\samples\Developer_Guide_Scenarios\ArcGIS Desktop
directory.

IMPLEMENTATION

In this example you will create an extension for ArcMap that enables controls on
a toolbar. The code for the toolbar, controls, and extension all reside in a single
project. The project for containing the toolbar has already been provided; this
scenario will add the extension code.

The code for this example is written in Visual Basic 6.

Opening the existing project
1. Start Visual Basic 6.

2. Open the CommandsExtension project in the
\DeveloperKit\samples\Developer_Guide_Scenarios\ArcGIS_Desktop
directory.

3. Take some time to examine the project and the classes that create the toolbar,
zoom in, and zoom out tools. Compare this with the VB .NET code from the
previous scenario.

Creating a new class for the extension
You need to create a new class for the extension code. All components that plug
into the desktop framework are required to be classes. The UI controls that you
see in ArcGIS Desktop are instances of these classes.

1. In the project window, right-click and click Add > Class Module. The Add
Class Module dialog box appears.

2. On the New tab in the Add Class Module dialog box, click Class Module and
click OK. A new empty class called class1 is created.

3. Display the project properties for this class by clicking it in the Project win-
dow and pressing F4.

4. Change the name of the class to Extension and make sure the instancing
property is set to 5—Multiuse.

5. Save the extension class by right-clicking the class in the Project window and
clicking Save.

EXTENSIONS

Chapter 5 • Developer scenarios • 115

EXTENSIONS

Implementing extension interfaces
You now need to implement the IExtension and IExtensionConfig interfaces in the
Extension class. The easiest way to do this is to use the ESRI Interface
Implementer add-in. For help with add-ins, see the Add-Ins folder under the
Contents tab within the ArcGIS Developer Help.

1. In VB6, click to display the empty Extension class Code window.

2. Click Add-Ins > ESRI Interface Implementer. The ESRI Interface
Implementer dialog box is displayed.

3. In the dialog box, click Options and uncheck the Generate Error Handlers
item.

4. Click IExtension from the Application pulldown menu.

5. Click IExtensionConfig from the lower window and click OK to close the
dialog box.

The ESRI Interface Implmenter adds the Implements statement and stubs out all
the members of those interfaces in the Code window. It will also add the appro-
priate library references to the project if they don’t exist.

If you don’t use the add-in, you will have to manually add the project references,
type in the Implements statement, and manually stub out each interface member
in the Code window.

Adding to the Extension class
Add the following code to the procedures in the Extension class.
Option Explicit

Implements IExtension

Implements IExtensionConfig

Private m_pApp As IApplication

Private m_ExtensionState As esriExtensionState

Private Property Get IExtension_Name() As String

 ' Internal name of the extension

 IExtension_Name = "CommandExtension"

End Property

Private Sub IExtension_Startup(ByRef initializationData As Variant)

 ' Set the ArcMap application interface

 If (TypeOf initializationData Is IMxApplication) Then

 Set m_pApp = initializationData ' Is ArcMap

 End If

End Sub

Private Sub IExtension_Shutdown()

 ' Release interface pointers

 Set m_pApp = Nothing

End Sub

116 • ArcGIS Desktop Developer Guide

EXTENSIONS

Private Property Get IExtensionConfig_ProductName() As String

 ' Name in Extension Manager Dialog

 If (m_pApp Is Nothing) Then Exit Property

 IExtensionConfig_ProductName = "ArcMap Command Extension"

End Property

Private Property Get IExtensionConfig_Description() As String

 ' Description in Extension Manager Dialog

 If (m_pApp Is Nothing) Then Exit Property

IExtensionConfig_Description = "ArcMap Command Extension Version 1.0 " &
vbCrLf & _

 "Copywrite/Company/Date" & vbCrLf & vbCrLf & "Controls the enabled property
of zoom in and out commands."

End Property

Private Property Get IExtensionConfig_State() As esriExtensionState

 ' Get the extension state

 If (m_pApp Is Nothing) Then Exit Property

 IExtensionConfig_State = m_ExtensionState

End Property

Private Property Let IExtensionConfig_State(ByVal ExtensionState As
esriExtensionState)

 ' Set the extension state according to the check box in the
ExtensionManager Dialog

 If (m_pApp Is Nothing) Then Exit Property

 m_ExtensionState = ExtensionState

End Property

Enabling the ZoomIn tool with the extension
The ZoomIn class needs to be modified to listen to the extension configuration
state. When the extension is turned on, the tool will be enabled.

1. In the ZoomIn class, declare a module-based variable to reference the exten-
sion state.
Private m_pCommandExtension As IExtensionConfig

2. Set the variable to Extension in the command’s OnCreate method.
Private Sub ICommand_OnCreate(ByVal hook As Object)

 If (TypeOf hook Is IMxApplication) Then ' ArcMap

 Set m_pApp = hook

 Set m_pCommandExtension =
m_pApp.FindExtensionByName("CommandExtension")

 End If

End Sub

3. Set the Enabled property based on the extension state.
Private Property Get ICommand_Enabled() As Boolean

 ' Check box in Extension Manager dialog box controls command enabled
property

 If (Not m_pCommandExtension Is Nothing) Then

 If (m_pCommandExtension.State = esriESEnabled) Then

 ICommand_Enabled = True

Chapter 5 • Developer scenarios • 117

EXTENSIONS

 Else

 ICommand_Enabled = False

 End If

 Else

 ICommand_Enabled = False

 End If

End Property

The same steps should be applied to the ZoomOut class to enable the ZoomOut
tool based on the extension state.

Compiling the project
You are now ready to compile your project.

1. In VB6, click File, then click Make CommandsExtensions.dll.

This creates a single DLL that you can deploy. The next step is to register the
DLL with the operating system, then use the Component Category Manager to
place the individual components within the DLL into the correct component
categories, for example, the ZoomIn and ZoomOut classes are registered with the
MxCommands component category, and so forth.

You can make this step semiautomatic, making deployment much easier for you
and users, by utilizing the ESRI Compile and Register add-in.

1. In VB6, click Add-Ins > ESRI Compile and Register. The ESRI Compile and
Register dialog box appears.

2. In the Classes pane, click Extension; in the Component Categories pane, click
ESRI Mx Extensions.

3. In the Classes pane, click Toolbar; in the Component Categories pane, click
ESRI Mx CommandBars.

4. In the Classes pane, click ZoomIn; in the Component Categories pane, click
ESRI Mx Commands.

5. In the Classes pane, click ZoomOut; in the Component Categories pane, click
ESRI Mx Commands.

6. Click Compile, click Read, and click OK on the dialog boxes that follow.

This add-in creates a Windows registry merge file, CommandsExtensions.reg, that
can register the components in the correct component categories.

To register the components using the merge file, first register the DLL with the
operating system if you have not done so already, then right-click the .reg file and
click Merge.

For help using the Component Category
Manager, see Appendix A, ‘Developer environ-

ments’.

118 • ArcGIS Desktop Developer Guide

EXTENSIONS

Using the extension in ArcMap
You are now ready to use the extension in ArcMap.

1. Start ArcMap.

2. Add the ArcMap Command Extension toolbar either through the Customize
dialog box or by right-clicking an empty area of the ArcMap frame and click-
ing the ArcMap Command Extension toolbar item. The toolbar will appear
with the two tools. These will be disabled.

3. Open the Extensions dialog box via Tools > Extensions. The Extensions
dialog box will be displayed.

4. Click the ArcMap Command Extension item and read the description in the
lower pane.

5. Check the item and close the dialog box.

You should now see the two tools enabled.

Deployment
The resulting DLL can easily be deployed to other machines using the methods
described in Chapter 4, ‘Licensing and deployment’.

Chapter 5 • Developer scenarios • 119

PROJECT DESCRIPTION

This scenario is for ArcGIS Desktop developers who want to create a dockable
window as a component that can plug into the ArcGIS Desktop application
framework.

For this scenario the dockable window will contain a MapControl to display an
overview of the layers in the current document. This functionality is similar to
the standard ArcMap Overview window, except the Overview window created
in this scenario will be dockable.

CONCEPTS

Dockable windows
A dockable window is a window that can exist in a floating state or be attached
to the main application window. The Table of Contents in ArcMap and the Tree
View in ArcCatalog are examples of dockable windows.

Dockable windows are created by implementing the IDockableWindowDef inter-
face within a class. You use the ChildHWND property on this interface to define
what the window will consist of by passing in an hWnd of a control, such as a
form or listbox.

The class you create is a definition for a dockable window; it is not actually a
dockable window object. Once your class is registered in one of the dockable
window component categories, the application uses the definition of the
dockable window in your class to create the actual dockable window. This win-
dow is then treated as a modeless child window of the application.

You can access a particular dockable window through IDockableWindowManager,
an interface implemented by the application. The GetDockableWindow method
finds a dockable window using the UID of the dockable window. The following
code illustrates this:
 Dim pDocWinMgr As IDockableWindowManager

 Set pDocWinMgr = Application 'QI

 Dim u As New UID

 u.Value = "OverviewDockWin.DockWin"

 Dim pDockWin as IDockableWindow

 Set pDockWin = pDockWinMgr.GetDockableWindow(u)

MapControl
The ESRI map control is a component that provides for the display of data
similar to the data view in ArcMap. The MapControl encapsulates the Map
CoClass and provides additional properties, methods, and events for managing the
general appearance, display properties, and map properties of the control; adding
and managing data layers within the control; loading map documents into the
control; dropping data onto the control from other applications; and tracking
shapes and drawing to the display.

DOCKABLE WINDOW

The dockable window component categories
include:

ArcMap—ESRI Mx Dockable Windows
ArcCatalog—ESRI Gx Dockable Windows

120 • ArcGIS Desktop Developer Guide

REQUIREMENTS

The requirements for working through this scenario are that you have ArcGIS
Desktop installed and running.

The IDE used for this example is Visual Basic 6, and all IDE-specific steps will
assume this is the IDE you are using.

It is also recommended that you read the Visual Basic language section within
Appendix A, ‘Developer environments’.

ADDITIONAL RESOURCES

The completed code for this scenario can be found in ArcGIS Developer Help
under ArcGIS Desktop > Developer Guide > Developer Scenarios and on disk in
the \DeveloperKit\samples\Developer_Guide_Scenarios\ArcGIS Desktop
directory.

IMPLEMENTATION

In this example you will create a dockable window for ArcMap. A dockable
window can contain a variety of data, such as a form or listbox. In this example
the window will contain a form with MapControl that behaves similar to the
ArcMap Overview window.

The project with which you will work will contain a form with MapControl to
display the overview data, a class for the dockable window, and a class for the
command to display the dockable window.

The code for this example is written in Visual Basic 6.

Creating a Visual Basic 6 project
You will create and work with a Visual Basic 6 project to create an ActiveX DLL
that will contain the components for the dockable window.

1. Start Visual Basic 6.

2. Click File > New Project. The New Project dialog box opens.

3. Click ActiveX DLL from the New Project dialog box and click OK.

This creates a project, Project1, with an empty class, Class1. For the moment
delete Class1 by right-clicking the class in the project window and clicking De-
lete. Do not save Class1 when prompted.

Change the name of the default project to OverviewDockWin.

1. Right-click the project name in the Project window and click Project1 Prop-
erties. The project properties dialog box is displayed.

2. In the Name text box, type “OverviewDockWin”. Click OK.

DOCKABLE WINDOW

Chapter 5 • Developer scenarios • 121

DOCKABLE WINDOW

Referencing ESRI libraries in your project
To program using ArcObjects, you will need to add references to the ESRI librar-
ies.

1. Click Project > References. The References dialog box appears.

2. In the References dialog box, click the following libraries:

• ESRI ArcMapUI Object Library

• ESRI Carto Object Library

• ESRI Display Object Library

• ESRI Framework Object Library

• ESRI Geometry Object Library

• ESRI System Object Library

• ESRI SystemUI Object Library

3. Click OK.

Adding the MapControl component to the project
The ESRI MapControl provides a window similar to the data view in ArcMap.
Although provided as a component with ArcGIS Desktop, it is mostly used in
ArcGIS Engine applications as the primary display.

The ESRI MapControl component will be used to display the overview informa-
tion on the form.

1. Click Project > Components. The Components dialog box is displayed.

2. In the Components dialog box, check the ESRI MapControl box and click
OK.

ESRI MapControl should be added to the VB toolbox (View > Toolbox).

Save the current project. In the Save dialog box, create a directory for the project
and save the project vbp file, for example,
c:\overviewdockwin\overviewdockwin.vbp.

Creating the dockable window form
Create a form to contain the MapControl display.

1. In the project window, right-click and add a new form.

2. Open the properties for the form, press F4, and change the name to
frmDockWin.

3. Change the border style to 0—None.

4. Change the height to 3270 and width to 3570.

5. Click ESRI MapControl from the VB toolbox and drag the control just inside
the form. A white box labeled ESRI MapControl should appear in the form.

Adding code to the dockable window form
Open the code view for the form by right-clicking the form in the project win-

122 • ArcGIS Desktop Developer Guide

DOCKABLE WINDOW

dow and click View Code. Enter the following code into the form:
Option Explicit

Private m_pArcMapAV As IActiveView 'Use this ActiveView to draw on

Dim m_pExtent As IEnvelope 'Extent rectangle

Dim m_pFillSym As IFillSymbol 'Rectangle draw symbol

Public Property Set ArcMapActiveView(ByVal pAV As IActiveView)

 'Property for handling the ActiveView of ArcMap locally

 If (Not pAV Is Nothing) Then

 Set m_pArcMapAV = pAV

 Else

 Set m_pArcMapAV = Nothing

 End If

End Property

Private Sub Form_Load()

 'Turn off scrollbars.

 MapControl1.ShowScrollbars = False

 'Set up the symbol for the envelope.

 Set m_pFillSym = New SimpleFillSymbol

 'Transparent color for fill

 Dim pColor As IColor

 Set pColor = New RgbColor

 pColor.Transparency = 0

 m_pFillSym.Color = pColor

 'Set up symbol for the outline.

 Dim pLineSym As ILineSymbol

 Set pLineSym = New SimpleLineSymbol

 'Color for outline

 Set pColor = New RgbColor

 pColor.RGB = vbRed

 pLineSym.Color = pColor

 pLineSym.Width = 1.5

 'Assign outline to fill symbol.

 m_pFillSym.Outline = pLineSym

End Sub

Private Sub Form_Unload(Cancel As Integer)

 'Free memory.

 Set m_pExtent = Nothing

 Set m_pFillSym = Nothing

 Set m_pArcMapAV = Nothing

End Sub

Private Sub MapControl1_OnAfterDraw(ByVal display As Variant, ByVal
viewDrawPhase As Long)

It is a good practice to remove your module
variables when terminating a class or unloading

a form.

Chapter 5 • Developer scenarios • 123

DOCKABLE WINDOW

 Dim phase As esriViewDrawPhase

 phase = viewDrawPhase

 'Draw a red rectangle indicating the current extent of the overview.

 If phase = esriViewForeground Then

 If (Not m_pExtent Is Nothing And Not m_pFillSym Is Nothing And
m_pArcMapAV.FocusMap.LayerCount > 0) Then

 MapControl1.DrawShape m_pExtent, m_pFillSym

 End If

 End If

End Sub

Private Sub MapControl1_OnMouseDown(ByVal button As Long, ByVal shift As
Long, ByVal X As Long, ByVal Y As Long, ByVal mapX As Double, ByVal mapY As
Double)

 If (m_pArcMapAV.FocusMap.LayerCount = 0) Then Exit Sub

 If (m_pExtent Is Nothing) Then Set m_pExtent = m_pArcMapAV.Extent

 'Track a rectangle representing the new extent of the ActiveView in
ArcMap.

 If (button = vbLeftButton) Then

 Set m_pExtent = MapControl1.TrackRectangle

 m_pArcMapAV.Extent = m_pExtent

 ElseIf (button = vbRightButton) Then

 'Zoom out to full extent.

 m_pArcMapAV.Extent = m_pArcMapAV.FullExtent

 Set m_pExtent = m_pArcMapAV.FullExtent

 End If

 'Redraw the new extent of the map in ArcMap and draw the red rectangle.

 m_pArcMapAV.Refresh

 MapControl1.Refresh esriViewForeground

End Sub

Save your project. Save the form inside the previous Save directory.

Add the dockable window class
A dockable window class defines the dockable window. This class implements
IDockableWindowDef.

Add a new class to the project.

1. Right-click in the project window and click Add > Class Module. A new
empty class is added to the project.

2. Open the properties for the new class, press F4, and rename the class as
DockWin.

Add the following code to the DockWin class:
Option Explicit

'Implementation of dockable window

Implements IDockableWindowDef

124 • ArcGIS Desktop Developer Guide

DOCKABLE WINDOW

Private Const EXPAND_FACTOR As Double = 1.2 ' Make the display a little
bigger to see the full extent.

Dim m_pApp As IApplication

Dim m_pMXDoc As IMxDocument

Dim WithEvents m_pDocEvent As MxDocument 'Listen for the MxDocument events.

Dim WithEvents m_pMapEvent As Map 'Listen for the Map events.

Dim WithEvents m_pLayoutEvent As PageLayout 'Listen for the PageLayout events.

Private m_pfrmDockWin As frmDockWin

Private Sub Class_Initialize()

 Set m_pfrmDockWin = New frmDockWin

End Sub

Private Sub Class_Terminate()

 Set m_pfrmDockWin = Nothing

End Sub

Private Property Get IDockableWindowDef_Caption() As String

 IDockableWindowDef_Caption = "Dockable Overview Window"

End Property

Private Property Get IDockableWindowDef_ChildHWND() As esriSystem.OLE_HANDLE

 'Pass back the hWnd of the picturebox that contains the MapControl.

 Load m_pfrmDockWin

 IDockableWindowDef_ChildHWND = m_pfrmDockWin.MapControl1.hWnd

End Property

Private Property Get IDockableWindowDef_Name() As String

 IDockableWindowDef_Name = "Overview Window"

End Property

Private Sub IDockableWindowDef_OnCreate(ByVal hook As Object)

 'The hook argument is a pointer to Application object.

 Set m_pApp = hook

 Set m_pMXDoc = m_pApp.Document

 'Set event handlers.

 Set m_pDocEvent = m_pApp.Document

 Set m_pMapEvent = m_pMXDoc.FocusMap

 'Let the mapcontrol know about the current ActiveView.

 Set m_pfrmDockWin.ArcMapActiveView = m_pMXDoc.FocusMap

 'Add overview layer to map control.

 AddOverviewLayer

End Sub

Private Sub IDockableWindowDef_OnDestroy()

The ChildHWND property defines the contents
of the dockable window by passing in the hWnd

of a control, such as a form or listbox.

Chapter 5 • Developer scenarios • 125

DOCKABLE WINDOW

 'Free memory

 Set m_pMapEvent = Nothing

 Set m_pDocEvent = Nothing

 Set m_pLayoutEvent = Nothing

 Set m_pMXDoc = Nothing

 Set m_pApp = Nothing

End Sub

Private Property Get IDockableWindowDef_UserData() As Variant

 'Not implemented

End Property

Private Function m_pDocEvent_BeforeCloseDocument() As Boolean

 Set m_pfrmDockWin.ArcMapActiveView = Nothing

End Function

Private Function m_pDocEvent_MapsChanged() As Boolean

 'Clear the mapcontrol and reset the reference to the map when a new
dataframe is added.

 Set m_pMapEvent = m_pMXDoc.FocusMap

 'Let the mapcontrol know about the current ActiveView.

 Set m_pfrmDockWin.ArcMapActiveView = m_pMXDoc.FocusMap

 'Add overview layer to map control.

 AddOverviewLayer

End Function

Private Function m_pDocEvent_NewDocument() As Boolean

 'Clear the mapcontrol and reset the reference to the Map and PageLayout.

 Set m_pMapEvent = m_pMXDoc.FocusMap

 Set m_pLayoutEvent = m_pMXDoc.PageLayout

 m_pfrmDockWin.MapControl1.ClearLayers

 m_pfrmDockWin.MapControl1.Refresh

 'Let the mapcontrol know about the current ActiveView.

 Set m_pfrmDockWin.ArcMapActiveView = m_pMXDoc.FocusMap

End Function

Private Function m_pDocEvent_OpenDocument() As Boolean

 'Set the event handlers for map and pagelayout

 Set m_pMapEvent = m_pMXDoc.FocusMap

 Set m_pLayoutEvent = m_pMXDoc.PageLayout

 'Let the mapcontrol know about the current ActiveView.

 Set m_pfrmDockWin.ArcMapActiveView = m_pMXDoc.FocusMap

126 • ArcGIS Desktop Developer Guide

DOCKABLE WINDOW

 'Add overview layer to map control.

 AddOverviewLayer

End Function

Private Sub m_pLayoutEvent_FocusMapChanged()

 'Handle a different map.

 Set m_pMapEvent = m_pMXDoc.FocusMap

 Set m_pfrmDockWin.ArcMapActiveView = m_pMXDoc.FocusMap

End Sub

Private Sub m_pMapEvent_ItemAdded(ByVal Item As Variant)

 'Add new overview layer to map control.

 AddOverviewLayer

End Sub

Private Sub m_pMapEvent_ItemDeleted(ByVal Item As Variant)

 'Add new overview layer to map control.

 AddOverviewLayer

End Sub

Private Sub m_pMapEvent_ItemReordered(ByVal Item As Variant, ByVal toIndex
As Long)

 'Add new overview layer to map control.

 AddOverviewLayer

End Sub

Private Function AddOverviewLayer()

 'Remove existing layer from map control.

 m_pfrmDockWin.MapControl1.Map.ClearLayers

 Set m_pfrmDockWin.MapControl1.SpatialReference =
m_pMXDoc.FocusMap.SpatialReference

 m_pfrmDockWin.MapControl1.Refresh

 'Get the best overview layer from the layers present in the focus map.

 If (m_pMXDoc.FocusMap.LayerCount > 0) Then

 Dim pLayer As ILayer

 Set pLayer = GetBestOverviewLayer(m_pMXDoc.FocusMap)

 'Add the layer to the map control and set the extent to see rectangle.

 If (Not pLayer Is Nothing) Then

 m_pfrmDockWin.MapControl1.AddLayer pLayer

 Dim pEnv As IEnvelope

 Set pEnv = pLayer.AreaOfInterest

 pEnv.Expand EXPAND_FACTOR, EXPAND_FACTOR, True

 m_pfrmDockWin.MapControl1.FullExtent = pEnv

 m_pfrmDockWin.MapControl1.Refresh

 End If

 End If

End Function

The AddOverviewLayer function finds the layer
with the largest extent in the map document

and uses that in the Overview window.

Chapter 5 • Developer scenarios • 127

DOCKABLE WINDOW

Private Function GetBestOverviewLayer(pMap As IMap) As ILayer

 'Get polygon layer with largest extent.

 Dim pLayer As ILayer

 Dim pFeatureLayer As IFeatureLayer

 Dim pBestLayer As ILayer

 Dim pEnumLayer As IEnumLayer

 Dim pMaxEnv As IEnvelope

 Dim pArea As IArea

 Dim pBigArea As IArea

 Set pMaxEnv = New Envelope

 Set pEnumLayer = pMap.Layers

 Set pLayer = pEnumLayer.Next

 Set pBestLayer = pLayer

 Set pBigArea = pLayer.AreaOfInterest

 Set pArea = pLayer.AreaOfInterest

 'Find the layer that is the greatest area.

 While (Not pLayer Is Nothing)

 If (pArea.Area > pBigArea.Area) Then

 Set pBestLayer = pLayer

 Set pBigArea = pArea

 End If

 Set pLayer = pEnumLayer.Next

 If (Not pLayer Is Nothing) Then Set pArea = pLayer.AreaOfInterest

 Wend

 pBestLayer.Visible = True

 Set GetBestOverviewLayer = pBestLayer

End Function

Save your project. Save the class inside the previous Save directory.

Adding the resource file
The resource file for the project contains a bitmap that will be used as the button
icon for the dockable Overview Window command.

1. Right-click in the project window and click Add > Resource File.

2. In the Open a Resource File dialog box, browse to the
\DeveloperKit\samples\Developer_Guide_Scenarios\ArcGIS_Desktop\OverviewDocWin
directory and click OverViewDockWin.res.

You may browse the resource file and examine the bitmap.

Adding the overview dockable window command class
The final module to be added is the class that creates the command button to
display the dockable window. This class implements ICommand.

Add a new class to the project.

128 • ArcGIS Desktop Developer Guide

DOCKABLE WINDOW

1. Right-click in the project window and click Add > Class Module. A new
empty class is added to the project.

2. Open the properties for the new class, press F4, and rename the class as
CmdDockWin.

Add the following code to the CmdDockWin class:
Option Explicit

'Implementation of ICommand

Implements ICommand

Dim m_pApp As IApplication

Dim m_pDockWinMgr As IDockableWindowManager

Dim m_pDockWin As IDockableWindow

Dim m_pBitmap As IPictureDisp

Private Sub Class_Initialize()

 Set m_pBitmap = LoadResPicture(101, 0)

End Sub

Private Sub Class_Terminate()

 Set m_pBitmap = Nothing

End Sub

Private Property Get ICommand_Bitmap() As esriSystem.OLE_HANDLE

 ICommand_Bitmap = m_pBitmap

End Property

Private Property Get ICommand_Caption() As String

 ICommand_Caption = "Overview Dockable Window"

End Property

Private Property Get ICommand_Category() As String

 ICommand_Category = "Developer Samples"

End Property

Private Property Get ICommand_Checked() As Boolean

 'If the dockable window is visible, check the command

 ICommand_Checked = m_pDockWin.IsVisible

End Property

Private Property Get ICommand_Enabled() As Boolean

 ICommand_Enabled = True

End Property

Private Property Get ICommand_HelpContextID() As Long

 'Not implemented

End Property

Private Property Get ICommand_HelpFile() As String

Chapter 5 • Developer scenarios • 129

DOCKABLE WINDOW

 'Not implemented

End Property

Private Property Get ICommand_Message() As String

 ICommand_Message = "Display the dockable overview window"

End Property

Private Property Get ICommand_Name() As String

 ICommand_Name = "DeveloperSamples_OverviewDockableWindow"

End Property

Private Sub ICommand_OnClick()

 'Toggle the visibility of the dockable window.

 Dim pMxdoc As IMxDocument

 Set pMxdoc = m_pApp.Document

 Set frmDockWin.ArcMapActiveView = pMxdoc.FocusMap

 m_pDockWin.Show Not m_pDockWin.IsVisible

End Sub

Private Sub ICommand_OnCreate(ByVal hook As Object)

 Set m_pApp = hook

 Set m_pDockWinMgr = m_pApp 'QI for IDockableWindowManager

 'Get a reference to the dockable window with map control.

 Dim u As New UID

 u.Value = "OverviewDockWin.DockWin"

 Set m_pDockWin = m_pDockWinMgr.GetDockableWindow(u)

End Sub

Private Property Get ICommand_Tooltip() As String

 ICommand_Tooltip = "Overview Window"

End Property

Save your project. Save the class inside the previous Save directory.

Compiling the project
You are now ready to compile your project.

1. In VB6, click File, then click Make OverviewDockWin.dll.

This creates a single DLL that you can deploy. The next step is to register the
DLL with the operating system, then use the Component Category Manager to
place the individual components within the DLL into the correct component
categories; for example, the DockWin class is registered with the Mx Dockable
Windows component category and the CmdDockWin Class with Mx Commands.

You can make this step semiautomatic, making deployment much easier for you
and users by using the ESRI Compile and Register add-in.

1. In VB6, click Add-Ins > ESRI Compile and Register. The ESRI Compile and
Register dialog box appears.

The GetDockableWindow method finds the
dockable window in the application.

130 • ArcGIS Desktop Developer Guide

DOCKABLE WINDOW

2. In the Classes pane click CmdDockWin; in the Component Categories pane,
click ESRI Mx Commands.

3. In the Classes pane click DockWin; in the Component Categories pane, click
ESRI Mx Dockable Windows.

Click Compile, click Read, and click OK in the dialog boxes that follow.

This add-in creates a Windows registry merge file, OverviewDockWin.reg, that
can register the components in the correct component category.

To register the components using the merge file, first register the DLL with the
operating system if you have not done so already, then right-click the .reg file and
click Merge.

Using the dockable window in ArcMap
You are now ready to use the dockable window in
ArcMap. You will first need to drag the Overview
Dockable Window command to a toolbar.

1. Start ArcMap.

2. Add two or more vector layers in the map docu-
ment.

3. Open the Customize dialog box (Tools > Cus-
tomize).

4. In the ‘Save in’ dropdown menu, click the cur-
rent project, unless you want to have a global
customization.

5. Click the Commands tab and click the Developer
Samples category. You should see the Overview Dockable Window command
in the Commands pane.

6. Drag the Overview Dockable Window command to an existing toolbar.

7. Close the Customize dialog box.

8. Zoom into the display window.

9. Click the Overview Dockable Window button. The Overview dockable
window should display.

The dockable window displays the layer with the largest extent. Spend some time
experimenting with the window by docking it to the ArcMap frame. You can also
drag a rectangle within the Overview window to change the extent in the
ArcMap display.

Deployment
The resulting DLL can easily be deployed to other machines using the methods
described in Chapter 4, ‘Licensing and deployment’.

To move any dockable window without docking
it, hold down the Ctrl key while dragging the

window frame.

131

Developer
environmentsA

ArcObjects is based on Microsoft’s Component Object Model. End users of ArcGIS

applications don’t necessarily have to understand COM, but if you’re a developer

intent on developing applications based on ArcObjects or extending the existing

ArcMap and ArcCatalog applications using ArcObjects, an understanding of COM

is a requirement. The level of understanding required depends on the depth of

customization or development you wish to undertake.

Although this appendix does not cover the entire COM environment, it provides

Visual Basic, Visual C++, and .NET developers with sufficient knowledge to be

effective in using ArcObjects. There are many coding tips and guidelines that

should make your work with ArcObjects more effective.

132 • ArcGIS Desktop Developer Guide

THE MICROSOFT COMPONENT OBJECT MODEL

Before discussing COM specifically, it is worth considering the wider use of soft-
ware components in general. There are a number of factors driving the motivation
behind software components, but the principal one is the fact that software devel-
opment is a costly and time-consuming venture.

In an ideal world, it should be possible to write a piece of code once and reuse it
again and again using a variety of development tools, even in circumstances that
the original developer did not foresee. Ideally, changes to the code’s functionality
made by the original developer could be deployed without requiring existing users
to change or recompile their code.

Early attempts at producing reusable chunks of code revolved around the creation
of class libraries, usually developed in C++. These early attempts suffered from
several limitations, notably difficulty of sharing parts of the system (it is difficult to
share binary C++ components—most attempts have only shared source code),
problems of persistence and updating C++ components without recompiling, lack
of good modeling languages and tools, and proprietary interfaces and customization
tools.

To counteract these and other problems, many software engineers have adopted
component-based approaches to system development. A software component is a
binary unit of reusable code.

Several different but overlapping standards have emerged for developing and
sharing components. For building interactive desktop applications, Microsoft’s
COM is the de facto standard. On the Internet, JavaBeans™ is viable technology.
At a coarser grain appropriate for application-level interoperability, the Object
Management Group (OMG) has specified the common object request broker
architecture (CORBA).

To understand COM—and therefore all COM-based technologies—it’s important
to realize that it isn’t an object-oriented language but a protocol or standard.
COM is more than just a technology; it is a methodology of software develop-
ment. COM defines a protocol that connects one software component, or mod-
ule, with another. By making use of this protocol, it’s possible to build reusable
software components that can be dynamically interchanged in a distributed
system.

COM also defines a programming model, known as interface-based programming.
Objects encapsulate the manipulation methods and the data that characterize each
instantiated object behind a well-defined interface. This promotes structured and
safe system development since the client of an object is protected from knowing any
of the details of how a particular method is implemented. COM doesn’t specify
how an application should be structured. As an application programmer working
with COM, language, structure, and implementation details are left up to you.

COM does specify an object model and programming requirements that enable
COM objects to interact with other COM objects. These objects can be within a
single process, in other processes, or even on remote machines. They can be
written in other languages and may have been developed in very different ways.
That is why COM is referred to as a binary specification or standard—it is a
standard that applies after a program has been translated to binary machine code.

ESRI chose COM as the component technology
for ArcGIS because it is a mature technology that

offers good performance, many of today’s
development tools support it, and there are a

multitude of third-party components that can be
used to extend the functionality of ArcObjects.

The key to the success of components is that
they implement, in a very practical way, many of

the object-oriented principles now commonly
accepted in software engineering. Components
facilitate software reuse because they are self-

contained building blocks that can easily be
assembled into larger systems.

Appendix A • Developer environments • 133

COM allows these objects to be reused at a binary level, meaning that third-party
developers do not require access to source code, header files, or object libraries to
extend the system even at the lowest level.

COMPONENTS, OBJECTS, CLIENTS, AND SERVERS

Different texts use the terms components, objects, clients, and servers to mean
different things (to add to the confusion, various texts refer to the same thing
using all of these terms). Therefore, it is worthwhile to define the terminology
that this book will use.

COM is a client/server architecture. The server (or object) provides some func-
tionality, and the client uses that functionality. COM facilitates the communica-
tion between the client and the object. An object can at the same time be a server
to a client and be a client of some other object’s services.

Client
VBApp.exe

Server / Client
ArcMap.exe

Server
Map.dll

The client and its servers can exist in the same process or in a different process
space. In-process servers are packaged in DLL form, and these DLLs are loaded
into the client’s address space when the client first accesses the server. Out-of-
process servers are packaged in executables (EXE) and run in their own address
space. COM makes the differences transparent to the client.

When creating COM objects, the developer must be aware of the type of server
that the objects will sit inside, but if the creator of the object has implemented
them correctly the packaging does not affect the use of the objects by the client.

There are pros and cons to each method of packaging that are symmetrically
opposite. DLLs are faster to load into memory, and calling a DLL function is
faster. EXEs, on the other hand, provide a more robust solution (if the server
fails, the client will not crash), and security is better handled since the server has
its own security context.

In a distributed system, EXEs are more flexible, and it does not matter if the
server has a different byte ordering than the client. The majority of ArcObjects
servers are packaged as in-process servers (DLLs). Later, you will see the perfor-
mance benefits associated with in-process servers.

In a COM system, the client, or user of functionality, is completely isolated from
the provider of that functionality, the object. All the client needs to know is that
the functionality is available; with this knowledge, the client can make method
calls to the object and expect the object to honor them. In this way, COM is said
to act as a contract between client and object. If the object breaks that contract,
the behavior of the system will be unspecified. In this way, COM development is
based on trust between the implementer and the user of functionality.

In the ArcGIS applications there are many objects that provide, via their inter-
faces, thousands of properties and methods. When you use the ESRI object
libraries you can assume that all these properties and interfaces have been fully
implemented, and if they are present on the object diagrams, they are there to
use.

Objects are instances of COM classes that
make services available for use by a client. Hence
it is normal to talk of clients and objects instead

of clients and servers. These objects are often
referred to as COM objects and component

objects. This book will refer to them simply as
objects.

Client and server

COM+ server

MyComputer

process space

YourComputer

process space

Objects inside an out-of-process server are
accessed by COM-supplied proxy objects which
make access transparent to the client. The COM

run-time handles the remoting layer

COM
objects

yourEXE

server

myEXE

client

Objects inside an out-of-process server are
accessed by COM-supplied proxy objects which

make access transparent to the client

MyComputer

process space process space

COM out-of-process server

COM
object

s

myEXE

client

proxy
object

yourEXE

server

proxy
object

MyComputer

process space

Objects inside an in-process server are accessed
directly by their clients.

COM in-process server

myDLL
COM

objects

client

yourDLL

server

THE MICROSOFT COMPONENT OBJECT MODEL

134 • ArcGIS Desktop Developer Guide

CLASS FACTORY

Within each server there is an object called a class factory that the COM run time
interacts with to instantiate objects of a particular class. For every corresponding
COM class there is a class factory. Normally, when a client requests an object
from a server, the appropriate class factory creates a new object and passes out
that object to the client.

SINGLETON OBJECTS

While this is the normal implementation, it is not the only implementation pos-
sible. The class factory can also create an instance of the object the first time and,
with subsequent calls, pass out the same object to clients. This type of implemen-
tation creates what is known as a singleton object since there is only one instance
of the object per process.

GLOBALLY UNIQUE IDENTIFIERS

A distributed system potentially has many thousands of interfaces, classes, and
servers, all of which must be referenced when locating and binding clients and
objects together at run time. Clearly, using human-readable names would lead to
the potential for clashes, hence COM uses GUIDs, 128-bit numbers that are
virtually guaranteed to be unique in the world . It is possible to generate 10
million GUIDs per second until the year 5770 A.D., and each one would be
unique.

The COM API defines a function that can be used to generate GUIDs; in addi-
tion, all COM-compliant development tools automatically assign GUIDs when
appropriate. GUIDs are the same as Universally Unique Identifiers (UUIDs),
defined by the Open Group’s Distributed Computing Environment (DCE) speci-
fication. Below is a sample GUID in registry format.
 {E6BDAA76-4D35-11D0-98BE-00805F7CED21}

COM CLASSES AND INTERFACES

Developing with COM means developing using interfaces, the so-called interface-
based programming model. All communication between objects is made via their
interfaces. COM interfaces are abstract, meaning there is no implementation
associated with an interface; the code associated with an interface comes from a
class implementation. The interface sets out what requests can be made of an
object that chooses to implement the interface.

How an interface is implemented differs between objects. Thus the objects
inherit the type of interface, not its implementation, which is called type inherit-
ance. Functionality is modeled abstractly with the interfaces and implemented
within a class implementation. Classes and interfaces are often referred to as the
“What” and “How” of COM. The interface defines what an object can do, and
the class defines how it is done.

COM classes provide the code associated with one or more interfaces, thus encap-
sulating the functionality entirely within the class. Two classes can both have the
same interface, but they may implement them quite differently. By implementing
these interfaces in this way, COM displays classic object-oriented polymorphic
behavior. COM does not support the concept of multiple inheritance; however,

THE MICROSOFT COMPONENT OBJECT MODEL

GUIDGEN.EXE is a utility that ships with
Microsoft’s Visual Studio and provides an easy-to-

use user interface for generating GUIDs. It can
be found in the directory <VS Install

Dir>\Common\Tools.

The acronym GUID is commonly pronounced
“gwid”.

Class
factory A

IClassFactory

IUnknown

COM
object A

InterfaceA

IUnknown

COM
object B

InterfaceB

IUnknown

COM
object B

InterfaceB

IUnknown

Class
factory B

IClassFactory

IUnknown

A server is a binary file that contains all the
code required by one or more COM classes. This
includes both the code that works with COM to
instantiate objects into memory and the code to

perform the methods supported by the objects
contained within the server.

Appendix A • Developer environments • 135

Access-
Workspace-

Factory

Workspace-
Factory

Workspace

This is a simplified portion of the geodatabase
object model showing type inheritance among

abstract classes and coclasses and instantiation of
classes.

this is not a shortcoming since individual classes can implement multiple inter-
faces. See the diagram to the left on polymorphic behavior.

Within ArcObjects are three types of classes that the developer must be aware of:
abstract classes, coclasses, and classes. An abstract class cannot be created; it is
solely a specification for instances of subclasses (through type inheritance).
ArcObjects Dataset or Geometry classes are examples of abstract classes. An
object of type Geometry cannot be created, but an object of type Polyline can.
This Polyline object in turn implements the interfaces defined within the Geom-
etry base class, hence any interfaces defined within object-based classes are acces-
sible from the coclass.

A coclass is a publicly creatable class. In other words, it is possible for COM to
create an instance of that class and give the resultant object to the client in order
for the client to use the services defined by the interfaces of that class. A class
cannot be publicly created, but objects of this class can be created by other
objects within ArcObjects and given to clients to use.

To the left is a diagram that illustrates the polymorphic behavior exhibited in
COM classes when implementing interfaces. Notice that both the Human and
Parrot classes implement the ITalk interface. The ITalk interface defines the
methods and properties, such as StartTalking, StopTalking, or Language, but clearly
the two classes implement these differently.

INSIDE INTERFACES

COM interfaces are how COM objects communicate with each other. When
working with COM objects, the developer never works with the COM object
directly but gains access to the object via one of its interfaces. COM interfaces
are designed to be a grouping of logically related functions. The virtual functions
are called by the client and implemented by the server; in this way an object’s
interfaces are the contract between the client and object. The client of an object
is holding an interface pointer onto that object. This interface pointer is referred
to as an opaque pointer since the client cannot gain any knowledge of the imple-
mentation details within an object or direct access to an object’s state data. The
client must communicate through the member functions of the interface. This
allows COM to provide a binary standard through which all objects can effec-
tively communicate.

Interfaces allow developers to model functionality abstractly. Visual C++ devel-
opers see interfaces as collections of pure virtual functions, while Visual Basic
developers see interfaces as collections of properties, functions, and sub routines.

The concept of the interface is fundamental in COM. The COM Specification
(Microsoft, 1995) emphasizes these four points when discussing COM interfaces:

1. An interface is not a class. An interface cannot be instantiated by itself since it
carries no implementation.

2. An interface is not an object. An interface is a related group of functions and
is the binary standard through which clients and objects communicate.

THE MICROSOFT COMPONENT OBJECT MODEL

This diagram shows how common behavior,
expressed as interfaces, can be shared among
multiple objects, animals in this example, to

support polymorphism.

Human
IBirth

ITalk

IWalk

IDeath

Parrot
IBirth

ITalk

IWalk

IFly

IDeath

Dog
IBirth

IWalk

IDeath

Classes

Interfaces

IBirth

ITalk

IWalk

IFly

IDeath

136 • ArcGIS Desktop Developer Guide

3. Interfaces are strongly typed. Every interface has its own interface identifier,
thereby eliminating the possibility of a collision between interfaces of the
same human-readable name.

4. Interfaces are immutable. Interfaces are never versioned. Once defined and
published, an interface cannot be changed.

Once an interface has been published, it is not possible to change the external
signature of that interface. It is possible at any time to change the implementa-
tion details of an object that exposes an interface. This change may be a minor
bug fix or a complete reworking of the underlying algorithm; the clients of the
interface do not care since the interface appears the same to them. This means
that when upgrades to the servers are deployed in the form of new DLLs and
EXEs, existing clients need not be recompiled to make use of the new function-
ality. If the external signature of the interface is no longer sufficient, a new
interface is created to expose the new functions. Old or deprecated interfaces are
not removed from a class to ensure all existing client applications can continue to
communicate with the newly upgraded server. Newer clients will have the choice
of using the old or new interfaces.

THE IUNKNOWN INTERFACE

All COM interfaces derive from the IUnknown interface, and all COM objects
must implement this interface. The IUnknown interface performs two tasks: it
controls object lifetime and provides run-time type support. It is through the
IUnknown interface that clients maintain a reference on an object while it is in
use—leaving the actual lifetime management to the object itself.

Object lifetime is controlled with two methods, AddRef and Release, and an
internal reference counter. Every object must have an implementation of
IUnknown to control its own lifetime. Anytime an interface pointer is created or
duplicated, the AddRef method is called, and when the client no longer requires
this pointer, the corresponding Release method is called. When the reference
count reaches zero, the object destroys itself.

Clients also use IUnknown to acquire other interfaces on an object. QueryInterface is
the method that a client calls when another interface on the object is required.
When a client calls QueryInterface, the object provides an interface and calls
AddRef. In fact, it is the responsibility of any COM method that returns an
interface to increment the reference count for the object on behalf of the caller.
The client must call the Release method when the interface is no longer needed.
The client calls AddRef explicitly only when an interface is duplicated.

When developing a COM object, the developer must obey the rules of
QueryInterface. These rules dictate that interfaces for an object are symmetric,
transitive, and reflexive and are always available for the lifetime of an object. For
the client this means that, given a valid interface to an object, it is always valid to
ask the object, via a call to QueryInterface, for any other interface on that object
including itself. It is not possible to support an interface and later deny access to
that interface, perhaps because of time or security constraints. Other mechanisms

THE MICROSOFT COMPONENT OBJECT MODEL

The name IUnknown came from a 1988
internal Microsoft paper called Object Archi-
tecture: Dealing with the Unknown – or –

Type Safety in a Dynamically Extensible Class
Library.

An interface’s permanence is not restricted to
simply its method signatures, but extends to its

semantic behavior as well. For example, an
interface defines two methods, A and B, with no

restrictions placed on their use. It breaks the
COM contract if at a subsequent release

Method A requires that Method B be executed
first. A change like this would force possible

recompilations of clients.

Appendix A • Developer environments • 137

Since IUnknown is fundamental to all COM
objects, in general there are no references to

IUnknown in any of the ArcObjects documenta-
tion and class diagrams.

Smart pointers are a class-based smart type and
are covered in detail later in this appendix.

The method QueryInterface is often referred
to by the abbreviation QI.

must be used to provide this level of functionality. Some classes support the
concept of optional interfaces. Depending on the coclass, they may optionally
implement an interface; this does not break this rule since the interface is either
always available or always not available on the class.

When requested for a particular interface, the QueryInterface method can return an
already assigned piece of memory for that requested interface, or it can allocate a
new piece of memory and return that. The only case when the same piece of
memory must be returned is when the IUnknown interface is requested. When
comparing two interface pointers to see if they point to the same object, it is
important that a simple comparison not be performed. To correctly compare two
interface pointers to see if they are for the same object, they both must be que-
ried for their IUnknown interface, and the comparison must be performed on the
IUnknown pointers. In this way, the IUnknown interface is said to define a COM
object’s identity.

It’s good practice in Visual Basic to call Release explicitly by assigning an interface
equal to Nothing to release any resources it’s holding. Even if you don’t call Re-
lease, Visual Basic will automatically call it when you no longer need the object—
that is, when it goes out of scope. With global variables, you must explicitly call
Release. In Visual Basic, the system performs all these reference-counting opera-
tions for you, making the use of COM objects relatively straightforward.

In C++, however, you must increment and decrement the reference count to
allow an object to correctly control its own lifetime. Likewise, the QueryInterface
method must be called when asking for another interface. In C++ the use of
smart pointers simplifies much of this. These smart pointers are class-based and
hence have appropriate constructors, destructors, and overloaded operators to
automate much of the reference counting and query interface operations.

INTERFACE DEFINITION LANGUAGE

Microsoft Interface Definition Language (MIDL) is used to describe COM objects
including their interfaces. This MIDL is an extension of the IDL defined by the
Distributed Computing Environment (DCE), where it used to define remote proce-
dure calls between clients and servers. The MIDL extensions include most of the
Object Definition Language (ODL) statements and attributes. ODL was used in the
early days of OLE automation for the creation of type libraries.

TYPE LIBRARY

A type library is best thought of as a binary version of an Interface Definition
Language (IDL) file. It contains a binary description of all coclasses, interfaces,
methods, and types contained within a server or servers.

There are several COM interfaces provided by Microsoft that work with type
libraries. Two of these interfaces are ITypeInfo and ITypeLib. By utilizing these
standard COM interfaces, various development tools and compilers can gain
information about the coclasses and interfaces supported by a particular library.

To support the concept of a language-independent development set of compo-
nents, all relevant data concerning the ArcObjects libraries is shipped inside type
libraries. There are no header files, source files, or object files supplied or needed
by external developers.

THE MICROSOFT COMPONENT OBJECT MODEL

The rules of QueryInterface dictate that
interfaces of an object are reflexive, symmetric,

and transitive. It is always possible, holding a
valid interface pointer on an object, to get any

other interface on that object.

MIDL is commonly referred to simply as IDL.

The IDL defines the public interface that
developers use when working with ArcObjects.

When compiled, the IDL creates a type library.

138 • ArcGIS Desktop Developer Guide

server
class

outbound interface
inbound interface

client
class

interfaceinterface
interface

In the diagrams in this book and the ArcObjects
object model diagrams, outbound interfaces are

depicted with a solid circle on the interface jack.

INBOUND AND OUTBOUND INTERFACES

Interfaces can be either inbound or outbound. An inbound interface is the most
common kind—the client makes calls to functions within the interface contained
on an object. An outbound interface is one where the object makes calls to the
client—a technique analogous to the traditional callback mechanism.

There are differences in the way these interfaces are implemented. The implementer
of an inbound interface must implement all functions of the interface; failure to do
so breaks the contract of COM. This is also true for outbound interfaces. If you use
Visual Basic, you don’t have to implement all functions present on the interface
since it provides stub methods for the methods you don’t implement. On the other
hand, if you use C++ you must implement all the pure virtual functions to compile
the class.

Connection points is a specific methodology for working with outbound COM
interfaces. The connection point architecture defines how the communication
between objects is set up and taken down. Connection points are not the most
efficient way of initializing bidirectional object communication, but they are in
common use because many development tools and environments support them.

Dispatch event interfaces
There are some objects with ArcObjects that support two outbound event inter-
faces that look similar to the methods they support. An example of two such
interfaces are the IDocumentEvents and the IDocumentEventsDisp. The “Disp” suffix
denotes a pure Dispatch interface. These dispatch interfaces are used by VBA when
dealing with certain application events, such as loading documents. A VBA program-
mer works with the dispatch interfaces, while a developer using another develop-
ment language uses the nonpure dispatch interface. Since these dispatch event
interfaces are application specific, the details are discussed in the application chap-
ters of the book, not the framework chapter.

Default interfaces
Every COM object has a default interface that is returned when the object is
created if no other interface is specified. All the objects within the ESRI object
libraries have IUnknown as their default interface, with a few exceptions.

The default interface of the Application object for both ArcCatalog and ArcMap is
the IApplication interface. These uses of nonIUnknown default interfaces are a
requirement of Visual Basic for Applications and are found on the ArcMap and
ArcCatalog application-level objects.

This means that variables that hold interface pointers must be declared in a
certain way. For more details, see the coding sections later in this appendix. When
COM objects are created, any of the supported interfaces can be requested at
creation time.

THE MICROSOFT COMPONENT OBJECT MODEL

The reason for making IUnknown the default
interface is because the VB object browser hides

information for the default interface. The fact
that it hides IUnknown is not important for VB

developers.

Appendix A • Developer environments • 139

IDispatch interface
COM supports three types of binding:
1. Late. This is where type discovery is left until run time. Method calls made by

the client but not implemented by the object will fail at execution time.
2. ID. Method IDs are stored at compile time, but execution of the method is

still performed through a higher-level function.
3. Custom vTable (early). Binding is performed at compile time. The client can

then make method calls directly into the object.
The IDispatch interface supports late- and ID-binding languages. The IDispatch
interface has methods that allow clients to ask the object what methods it sup-
ports.

Assuming the required method is supported, the client executes the method by
calling the IDispatch::Invoke method. This method, in turn, calls the required
method and returns the status and any parameters back to the client on comple-
tion of the method call.

Clearly, this is not the most efficient way to make calls on a COM object. Late
binding requires a call to the object to retrieve the list of method IDs; the client
must then construct the call to the Invoke method and call it. The Invoke method
must then unpack the method parameters and call the function.

All these steps add significant overhead to the time it takes to execute a method.
In addition, every object must have an implementation for IDispatch, which
makes all objects larger and adds to their development time.

ID binding offers a slight improvement over late binding in that the method IDs
are cached at compile time, which means the initial call to retrieve the IDs is not
required. However, there is still significant call overhead because the
IDispatch::Invoke method is still called execute the required method on the object.

Early binding, often referred to as custom vTable binding, does not use the
IDispatch interface. Instead, a type library provides the required information at
compile time to allow the client to know the layout of the server object. At run
time, the client makes method calls directly into the object. This is the fastest
method of calling object methods and also has the benefit of compile-time type
checking.

Objects that support both IDispatch and custom vTable are referred to as dual
interface objects. The object classes within the ESRI object libraries do not
implement the IDispatch interface; this means that these object libraries cannot be
used with late-binding scripting languages, such as JavaScript™ or VBScript,
since these languages require that all COM servers accessed support the IDispatch
interface.

Careful examination of the ArcGIS class diagrams indicates that the Application
objects support IDispatch because there is a requirement in VBA for the IDispatch
interface.

THE MICROSOFT COMPONENT OBJECT MODEL

Binding is the term given to the process of
matching the location of a function given a

pointer to an object.

Custom vTable binding 825,000 20,000

Late binding 22,250 5,000

Binding type
In process

DLL
Out of process

DLL

This table shows the number of function calls
that can be made per second on a typical

Pentium® III machine.

vTable

vTable

GetTypeInfoCount

GetTypeInfo

GetIDsOfNames

Invoke

Name

Document

StatusBar

QueryInterface

AddRef

Release

QueryInterface

AddRef

Release

Name

Description

AreaOfInterest

Custom - Map

Dual - Application

IUnknown

IMap

IUnknown

IDispatch

IApplication

These diagrams summarize the custom and
IDispatch interfaces for two classes in

ArcObjects. The layout of the vTable displays the
differences. It also illustrates the importance of
implementing all methods—if one method is

missing, the vTable will have the wrong layout,
and hence the wrong function pointer would be

returned to the client, resulting in a system
crash.

140 • ArcGIS Desktop Developer Guide

All ActiveX controls support IDispatch. This means it is possible to use the vari-
ous ActiveX controls shipped with ArcObjects to access functionality from
within scripting environments.

INTERFACE INHERITANCE

An interface consists of a group of methods and properties. If one interface
inherits from another, then all of the methods and properties in the parent are
directly available in the inheriting object.

The underlying principle here is interface inheritance, rather than the implementa-
tion inheritance you may have seen in languages such as SmallTalk and C++. In
implementation inheritance, an object inherits actual code from its parent; in
interface inheritance, it’s the definitions of the methods of the object that are
passed on. The coclass that implements the interfaces must provide the imple-
mentation for all inherited interfaces.

Implementation inheritance is not supported in a heterogeneous development
environment because of the need to access source and header files. For reuse of
code, COM uses the principles of aggregation and containment. Both of these are
binary-reuse techniques.

AGGREGATION AND CONTAINMENT

For a third-party developer to make use of existing objects, using either contain-
ment or aggregation, the only requirement is that the server housing the contained
or aggregated object is installed on both the developer and target release ma-
chines. Not all development languages support aggregation.

The simplest form of binary reuse is containment. Containment allows modifica-
tion of the original object’s method behavior but not the method’s signature.
With containment, the contained object (inner) has no knowledge that it is
contained within another object (outer). The outer object must implement all the
interfaces supported by the inner. When requests are made on these interfaces,
the outer object simply delegates them to the inner. To support new functionality,
the outer object can either implement one of the interfaces without passing the
calls on or implement an entirely new interface in addition to those interfaces
from the inner object.

COM aggregation involves an outer object that controls which interfaces it
chooses to expose from an inner object. Aggregation does not allow modification
of the original object’s method behavior. The inner object is aware that it is being
aggregated into another object and forwards any QueryInterface calls to the outer
(controlling) object so that the object as a whole obeys the laws of COM.

To the clients of an object using aggregation, there is no way to distinguish which
interfaces the outer object implements and which interfaces the inner object
implements.

Custom features make use of both containment and aggregation. The developer
aggregates the interfaces where no customizations are required and contains those
that are to be customized. The individual methods on the contained interfaces can
then either be implemented in the customized class, thus providing custom function-
ality, or the method call can be passed to the appropriate method on the contained
interface.

THE MICROSOFT COMPONENT OBJECT MODEL

Interfaces that directly inherit from an interface
other than IUnknown cannot be implemented

in VB.

COM
aggregation

class

interface1

method3
method4

interface2

IUnknown

IUnknown

class

method1
method2

COM
containment

feature

interface2

method7
method8

interface4

IUnknown

IUnknown

class

method1
method2

method5
method6

interface3

method3
method4

interface1

Custom
feature

class

interface1

method3
method4

interface2

IUnknown (inner)

IUnknown (controlling)

class

method1
method2

child class

parent class

Appendix A • Developer environments • 141

Aggregation is important in this case since there are some hidden interfaces defined
on a feature that cannot be contained.

Visual Basic 6 does not support aggregation, so it can’t be used to create custom
features.

THREADS, APARTMENTS, AND MARSHALLING

A thread is a process flow through an application. There are potentially many
threads within Windows applications. An apartment is a group of threads that
work with contexts within a process. With COM+, a context belongs to one
apartment. There are potentially many types of context; security is an example of
a type of context. Before successfully communicating with each other, objects
must have compatible contexts.

COM supports two types of apartments: single-threaded apartment and
multithreaded apartment (MTA). COM+ supports the additional thread-neutral
apartment (TNA). A process can have any number of STAs; each process creates
one STA called the main apartment. Threads that are created as apartments are
placed in an STA. All user interface code is placed in an STA to prevent deadlock
situations. A process can only have one MTA. A thread that is started as multi-
threaded is placed in the MTA. The TNA has no threads permanently associated
with it; rather, threads enter and leave the apartment when appropriate.

In-process objects have an entry in the registry, the ThreadingModel, that informs
the COM Service Control Manager (SCM) into which apartment to place the
object. If the object’s requested apartment is compatible with the creator’s apart-
ment, the object is placed in that apartment; otherwise, the SCM will find or
create the appropriate apartment. If no threading model is defined, the object
will be placed in the main apartment of the process. The ThreadingModel registry
entry can have the following values:

1. Apartment. Object must be executed within the STA. Normally used by UI
objects.

2. Free. Object must be executed within the MTA. Objects creating threads are
normally placed in the MTA.

3. Both. Object is compatible with all apartment types. The object will be created
in the same apartment as the creator.

4. Neutral. Objects must execute in the TNA. Used by objects to ensure there is
no thread switch when called from other apartments. This is only available
under COM+.

Marshalling enables a client to make interface-function calls to objects in other
apartments transparently. Marshalling can occur between COM apartments on
different machines, between COM apartments in different process spaces, and
between COM apartments in the same process space (STA to MTA, for example).
COM provides a standard marshaller that handles function calls that use automa-
tion-compliant data types (see table below). Nonautomation data types can be
handled by the standard marshaller as long as proxy stub code is generated; other-
wise, custom marshalling code is required.

THE MICROSOFT COMPONENT OBJECT MODEL

Although an understanding of apartments and
threading is not essential in the use of

ArcObjects, basic knowledge will help you
understand some of the implications with certain

development environments highlighted later in
this appendix.

Apartments

process space
Thread
neutral

apartment

Single threaded apartment
(main apartment)

Single threaded apartment

Single threaded apartment

Multi-threaded apartment

Think of the SCM (pronounced scum) as the
COM run-time environment. The SCM interacts
with objects, servers, and the operating system
and provides the transparency between clients

and the objects that they work with.

142 • ArcGIS Desktop Developer Guide

unsigned char

Boolean

Type

8-bit unsigned data item

Data item that can have the value True or False

Description

float

double

32-bit IEEE floating-point number

64-bit IEEE floating-point number

long

int

32-bit signed integer

Signed integer, whose size is system dependent

BSTR

short

Length-prefixed string

16-bit signed integer

DATE

CURRENCY

64-bit, floating-point fractional number of days since Dec 30, 1899

8-byte, fixed-point number

Typedef enum myenum

SCODE

Signed integer, whose size is system dependent

For 16-bit systems - Built-in error that corresponds to VT_ERROR

Interface IUnknown *

Interface IDispatch *

Pointer to an interface that does not derive from IDispatch

Pointer to the IDispatch interface

Coclass Typename *

dispinterface Typename *

Pointer to a coclass name (VT_UNKNOWN)

Pointer to an interface derived from IDispatch

SAFEARRAY(TypeName)

[oleautomation] interface Typename *

TypeName is any of the above types. Array of these types

Pointer to an interface that derives from IDispatch

Decimal

TypeName*

96-bit unsigned binary integer scaled by a variable power of 10. A decimal data
type that provides a size and scale for a number (as in coordinates)

TypeName is any of the above types. Pointer to a type

COMPONENT CATEGORY

Component categories are used by client applications to find all COM classes of a
particular type that are installed on the system efficiently. For example, a client
application may support a data export function in which you can specify the
output format—a component category could be used to find all the data export
classes for the various formats. If component categories are not used, the applica-
tion has to instantiate each object and interrogate it to see if it supports the
required functionality, which is not a practical approach. Component categories
support the extensibility of COM by allowing the developer of the client applica-
tion to create and work with classes that belong to a particular category. If at a
later date a new class is added to the category, the client application need not be
changed to take advantage of the new class; it will automatically pick up the new
class the next time the category is read.

COM AND THE REGISTRY

COM makes use of the Windows system registry to store information about the
various parts that compose a COM system. The classes, interfaces, DLLs, EXEs,
type libraries, and so forth, are all given unique identifiers (GUIDs) that the SCM

uses when referencing these components. To see an example of
this, run regedit, then open HKEY_CLASSES_ROOT. This
opens a list of all the classes registered on the system.

COM makes use of the registry for a number of housekeeping
tasks, but the most important and most easily understood is
the use of the registry when instantiating COM objects into

THE MICROSOFT COMPONENT OBJECT MODEL

ESRI keys in the Windows system registry

Appendix A • Developer environments • 143

memory. In the simplest case, that of an in-process server, the steps are as
follows:

1. Client requests the services of a COM object.

2. SCM looks for the requested objects registry entry by searching on the class ID
(a GUID).

3. DLL is located and loaded into memory. The SCM calls a function within the
DLL called DllGetClassObject, passing the desired class as the first argument.

4. The class object normally implements the interface IClassFactory. The SCM
calls the method CreateInstance on this interface to instantiate the appropriate
object into memory.

5. Finally, the SCM asks the newly created object for the interface that the client
requested and passes that interface back to the client. At this stage, the SCM
drops out of the equation, and the client and object communicate directly.

From the above sequence of steps, it is easy to imagine how changes in the
object’s packaging (DLL versus EXE) make little difference to the client of the
object. COM handles these differences.

AUTOMATION

Automation is the technology used by individual objects or entire applications to
provide access to their encapsulated functionality via a late-bound language.
Commonly, automation is thought of as writing macros, where these macros can
access many applications for a task to be done. ArcObjects, as already stated, does
not support the IDispatch interface; hence it cannot be used alone by an automa-
tion controller.

It is possible to instantiate an instance of ArcMap by cocreating the document
object and making calls into ArcMap via the document object or one of its
connected objects. There are, however, problems with this approach since the
automation controller instance and the ArcMap instance are running in separate
processes. Many of the objects contained within ArcObjects are process depen-
dent, and therefore simple Automation will not work.

THE MICROSOFT COMPONENT OBJECT MODEL

The function DllGetClassObject is the function
that makes a DLL a COM DLL. Other functions,

such as DllRegisterServer and
DllUnregisterServer, are nice to have but not
essential for a DLL to function as a COM DLL.

144 • ArcGIS Desktop Developer Guide

DEVELOPING WITH ARCOBJECTS

ArcGIS applications are built using ArcObjects and can be developed via several
APIs. These include COM (VB, VC++, Delphi, MainWin), .NET (VB .NET and
C#), Java, and C++. Some APIs are more suitable than others for developing
certain applications. This is briefly discussed later, but you should also read the
appropriate developer guide for the product you are working with for more
information and recommendations on which API to use.

The subsequent sections of this appendix cover some general guidelines and
considerations when developing with ArcObjects regardless of the API. Some of
the more common API languages each then have a section describing the develop-
ment environment, programming techniques, resources, and any other issues you
must consider when developing with ArcObjects.

CODING STANDARDS

Each of the language-specific sections begins with a section on coding standards
for that language. These standards are used internally at ESRI and are followed by
the samples that ship with the software.

To understand why standards and guidelines are important, consider that in any
large software development project, there are many backgrounds represented by
the team members. Each programmer has personal opinions concerning how code
should look and be built. If each programmer engineers code differently, it be-
comes increasingly difficult to share work and ideas. On a successful team, the
developers adapt their coding styles to the tone set by the group. Often, this
means adapting one’s code to match the style of existing code in the system.

Initially, this may seem burdensome, but adopting a uniform programming style
and set of techniques invariably increases software quality. When all the code in a
project conforms to a standard set of styles and conventions, less time is wasted
learning the particular syntactic quirks of individual programmers, and more time
can be spent reviewing, debugging, and extending the code. Even at a social level,
uniform style encourages team-oriented, rather than individualist, outlooks—
leading to greater team unity, productivity and, ultimately, better software.

GENERAL CODING TIPS AND RESOURCES

This section on general coding tips will benefit all developers working with
ArcObjects no matter what language they are using. Code examples are shown in
VBA, however.

Class diagrams
Getting help with the object model is fundamental to successfully working with
ArcObjects. Appendix B, ‘Reading the object model diagrams’, provides an intro-
duction to the class diagrams and shows many of the common routes through
objects. The class diagrams are most useful if viewed in the early learning process
in printed form. This allows developers to appreciate the overall structure of the
object model implemented by ArcObjects. When you are comfortable with the
overall structure, the PDF files included with the software distribution can be
more effective to work with. The PDF files are searchable; you can use the
Search dialog box in Adobe® Acrobat® Reader® to find classes and interfaces
quickly.

For simplicity, some samples will not follow the
coding standards. As an example, it is recom-
mended that when coding in Visual Basic, all

types defined within an ESRI object library are
prefixed with the library name, for example,

esriGeometry.IPolyline. This is only done in
samples in which a name clash will occur.

Omitting this text makes the code easier to
understand for developers new to ArcObjects.

Appendix A • Developer environments • 145

Object browsers
In addition to the class diagram PDF files, the type library information can be
viewed using a number of object browsers depending on your development
platform.

Visual Basic and .NET have built-in object browsers; OLEView (a free utility
from Microsoft) also displays type library information. The best object viewer to
use in this environment is the ESRI object viewer. This object viewer can be used
to view type information for any type library that you reference within it. Infor-
mation on the classes and interfaces can be displayed in Visual Basic, Visual C++,
or object diagram format. The object browsers can view coclasses and classes but
cannot be used to view abstract classes. Abstract classes are only viewable on the
object diagrams, where their use is solely to simplify the models.

Java and C++ developers should refer to the ArcObjects JavaDoc or ArcGIS
Developer Help.

Component help
All interfaces and coclasses are documented in the component help file. Ulti-
mately, this will be the help most commonly accessed when you get to know the
object models better.

For Visual Basic and .NET developers this is a compiled HTML file that can be
viewed by itself or when using an IDE. If the cursor is over an ESRI type when
the F1 key is pressed, the appropriate page in the ArcObjects Class Help in the
ArcGIS Developer Help system is displayed in the compiled HTML viewer.

For Java and C++ developers, refer to ArcObjects JavaDoc or ArcGIS Developer
Help.

Code wizards
There are a number of Code Generation Wizards available to help with the
creation of boilerplate code, both in Visual Basic, Visual C++, and .NET. While
these wizards are useful in removing the tediousness in common tasks, they do
not excuse you as the developer from understanding the underlying principles of
the generated code. The main objective should be to read the accompanying
documentation and understand the limitations of these tools.

Indexing of collections
All collection-like objects in ArcObjects are zero-based for their indexing. This is
not the case with all development environments; Visual Basic has both zero- and
one-based collections. As a general rule, if the collection base is not known,
assume that the collection base is zero. This ensures that a run-time error will be
raised when the collection is first accessed (assuming the access of the collection
does not start at zero). Assuming a base of one means the first element of a zero-
based collection would be missed and an error would only be raised if the end of
the collection were reached when the code is executed.

DEVELOPING WITH ARCOBJECTS

This graph shows the performance benefits of
accessing a collection using an enumerator

opposed to the elements index. As expected, the
graph shows a classic power trend line

(y=cxb).The client (VB) and Server (VC++) code
used to generate these metrics are included in

the book samples.

146 • ArcGIS Desktop Developer Guide

Accessing collection elements
When accessing elements of a collection sequentially, it is best to use an enumera-
tor interface. This provides the fastest method of walking through the collection.
The reason for this is that each time an element is requested by index, internally
an enumerator is used to locate the element. Hence, if the collection is looped
over getting each element in turn, the time taken increases by power (y=cxb).

Enumerator use
When requesting an enumerator interface from an object, the client has no idea
how the object has implemented this interface. The object may create a new
enumerator, or it may decide for efficiency to return a previously created enu-
merator. If a previous enumerator is passed to the client, the position of the
element pointer will be at the last accessed element. To ensure that the enumera-
tor is at the start of the collection, the client should reset the enumerator before
use.

Error handling
All methods of interfaces, in other words, methods callable from other objects,
should handle internal errors and signify success or failure via an appropriate
HRESULT. COM does not support passing exceptions out of interface method
calls. COM supports the notion of a COM exception. A COM exception utilizes
the COM error object by populating it with relevant information and returning an
appropriate HRESULT to signify failure. Clients, on receiving the HRESULT,
can then interrogate the COM Error object for contextual information about the
error. Languages such as Visual Basic implement their own form of exception
handling. For more information, see the API language with which you are devel-
oping.

Notification interfaces
There are a number of interfaces in ArcObjects that have no methods. These are
known as notification interfaces. Their purpose is to inform the application
framework that the class that implements them supports a particular set of
functionality. For instance, the Application Framework uses these interfaces to
determine if a menu object is a root-level menu (IRootLevelMenu) or a context
menu (IShortcutMenu).

Clientside storage
Some ArcObjects methods expect interface pointers to point to valid objects
prior to making the method call. This is known as client storage since the client
allocates the memory needed for the object before the method call. Suppose you
have a polygon and you want to get its bounding box. To do this, use the
QueryEnvelope method on IPolygon. If you write the following code:
 Dim pEnv As IEnvelope

 pPolygon.QueryEnvelope pEnv

you’ll get an error because the QueryEnvelope method expects you (the client) to
create the Envelope. The method will modify the envelope you pass in and return
the changed one back to you. The correct code is shown below.

DEVELOPING WITH ARCOBJECTS

Exception handling is language specific and, since
COM is language neutral, exceptions are not

supported.

Appendix A • Developer environments • 147

 Dim pEnv As IEnvelope

 Set pEnv = New Envelope

 pPolygon.QueryEnvelope pEnv

How do you know when to create and when not to create? In general, all meth-
ods that begin with “Query”, such as QueryEnvelope, expect you to create the
object. If the method name is GetEnvelope, then an object will be created for you.
The reason for this clientside storage is performance. Where it is anticipated that
the method on an object will be called in a tight loop, the parameters need only
be created once and simply populated. This is faster than creating new objects
inside the method each time.

Property by value and by reference
Occasionally, you will see a property that can be set by value or by reference,
meaning that it has both a put_XXX and a putref_XXX method. On first appear-
ance this may seem odd—why does a property need to support both? A Visual
C++ developer sees this as simply giving the client the opportunity to pass own-
ership of a resource over to the server (using the putref_XXX method). A Visual
Basic developer will see this as quite different; indeed, it is likely because of the
Visual Basic developer that both By Reference and By Value are supported on the
property.

To illustrate this, assume there are two text boxes on a form, Text1 and Text2.
With a propput, it is possible to do the following in Visual Basic:
 Text1.text = Text2.text

It is also possible to write this:
 Text1.text = Text2

or this:
 Text1 = Text2

All these cases make use of the propput method to assign the text string of text
box Text2 to the text string of text box Text1. The second and third cases work
because no specific property is stated, so Visual Basic looks for the property with
a DISPID of 0.

This all makes sense assuming that it is the text string property of the text box
that is manipulated. What happens if the actual object referenced by the variable
Text2 is to be assigned to the variable Text1? If there was only a propput method
it would not be possible; hence the need for a propputref method. With the
propputref method, the following code will achieve the setting of the object
reference.
 Set Text1 = Text2

Initializing Outbound interfaces
When initializing an Outbound interface, it is important to only initialize the
variable if the variable does not already listen to events from the server object.
Failure to follow this rule will result in an infinite loop.

DEVELOPING WITH ARCOBJECTS

DISPIDs are unique IDs given to properties and
methods for the IDispatch interface to effi-

ciently call the appropriate method using the
Invoke method.

Notice the use of the “Set”.

148 • ArcGIS Desktop Developer Guide

As an example, assume there is a variable ViewEvents that has been dimensioned
as:
 Private WithEvents ViewEvents As Map

To correctly sink this event handler, you can write code within the OnClick event
of a UI button control, like this:
Private Sub UIButtonControl1_Click()

 Dim pMxDoc As IMxDocument

 Set pMxDoc = ThisDocument

 ' Check to see that the map is different than what is currently connected

 If (Not ViewEvents Is pMxDoc.FocusMap) Then

 ' Sink the event since listener has not been initialized with this map

 Set ViewEvents = pMxDoc.FocusMap

 End If

End Sub

Notice in the above code the use of the Is keyword to check for object identity.

DATABASE CONSIDERATIONS

When programming against the database, there are a number of rules that must
be followed to ensure that the code will be optimal. These rules are detailed
below.

If you are going to edit data programmatically, that is, not use the editing tools in
ArcMap, you need to follow these rules to ensure that custom object behavior,
such as network topology maintenance or triggering of custom-feature-defined
methods, is correctly invoked in response to the changes your application makes
to the database. You must also follow these rules to ensure that your changes are
made within the multiuser editing (long transaction) framework.

Edit sessions
Make all changes to the geodatabase within an edit session, which is bracketed
between StartEditing and StopEditing method calls on the IWorkspaceEdit interface
found on theWorkspace object.

This behavior is required for any multiuser update of the database. Starting an
edit session gives the application a state of the database that is guaranteed not to
change, except for changes made by the editing application.

In addition, starting an edit session turns on behavior in the geodatabase such that
a query against the database is guaranteed to return a reference to an existing
object in memory if the object was previously retrieved and is still in use.

This behavior is required for correct application behavior when navigating be-
tween a cluster of related objects while making modifications to objects. In other
words, when you are not within an edit session, the database can create a new
instance of a COM object each time the application requests a particular object
from the database.

DEVELOPING WITH ARCOBJECTS

Appendix A • Developer environments • 149

Edit operations
Group your changes into edit operations, which are bracketed between the
StartEditOperation and StopEditOperation method calls on the IWorkspaceEdit inter-
face.

You may make all your changes within a single edit operation if so required. Edit
operations can be undone and redone. If you are working with data stored in
ArcSDE, creating at least one edit operation is a requirement. There is no addi-
tional overhead to creating an edit operation.

Recycling and nonrecycling cursors
Use nonrecycling search cursors to select objects or fetch objects that are to be
updated. Recycling cursors should only be used for read-only operations, such as
drawing and querying features.

Nonrecycling cursors within an edit session create new objects only if the object
to be returned does not already exist in memory.

Fetching properties using query filters
Always fetch all properties of the object; query filters should always use “*”. For
efficient database access, the number of properties of an object retrieved from
the database can be specified. As an example, drawing a feature requires only the
OID and the Shape of the feature, hence the simpler renderers only retrieve these
two columns from the database. This optimization speeds up drawing but is not
suitable when editing features.

If all properties are not fetched, then object-specific code that is triggered may
not find the properties that the method requires. For example, a custom feature
developer might write code to update attributes A and B whenever the geometry
of a feature changes. If only the geometry was retrieved, then attributes A and B
would be found to be missing within the OnChanged method. This would cause
the OnChanged method to return an error, which would cause the Store to return
an error and the edit operation to fail.

Marking changed objects
After changing an object, mark the object as changed (and guarantee that it is
updated in the database) by calling Store on the object. Delete an object by calling
the Delete method on the object. Set versions of these calls also exist and should
be used if the operation is being performed on a set of objects to ensure optimal
performance.

Calling these methods guarantees that all necessary polymorphic object behavior
built into the geodatabase is executed (for example, updating of network topol-
ogy or updating of specific columns in response to changes in other columns in
ESRI-supplied objects). It also guarantees that developer-supplied behavior is
correctly triggered.

Update and insert cursors
Never use update cursors or insert cursors to update or insert objects into object
and feature classes in an already loaded geodatabase that has active behavior.

DEVELOPING WITH ARCOBJECTS

150 • ArcGIS Desktop Developer Guide

Update and insert cursors are bulk cursor APIs for use during initial database
loading. If used on an object or feature class with active behavior, they will
bypass all object-specific behavior associated with object creation (such as topol-
ogy creation) and with attribute or geometry updating (such as automatic recalcu-
lation of other dependent columns).

Shape and ShapeCopy geometry property
Make use of a Feature object’s Shape and ShapeCopy properties to optimally re-
trieve the geometry of a feature. To better understand how these properties relate
to a feature’s geometry, refer to the diagram to the left to see how features com-
ing from a data source are instantiated into memory for use within an application.

Features are instantiated from the data source using the following sequence:

1. The application requests a Feature object from a data source by calling the
appropriate geodatabase API method calls.

2. The geodatabase makes a request to COM to create a vanilla COM object of
the desired COM class (normally this class is esriCore.Feature).

3. COM creates the Feature COM object.

4. The geodatabase gets attribute and geometry data from a data source.

5. The vanilla Feature object is populated with appropriate attributes.

6. The Geometry COM object is created, and a reference is set in the Feature
object.

7. The Feature object is passed to the application.

8. The Feature object exists in the application until it is no longer required.

USING A TYPE LIBRARY

Since objects from ArcObjects do not implement IDispatch, it is essential to make
use of a type library for the compiler to early-bind to the correct data types. This
applies to all development environments; although for both Visual Basic, Visual
C++, and .NET, there are wizards that help you set this reference.

The type libraries required by ArcObjects are located within the ArcGIS install
folder. For example the COM type libraries can be found in the COM folder
while the .NET Interop assemblies are within the DotNet folder. Many different
files can contain type library information, including EXEs, DLLs, OCXs, and
OLBs.

COM DATA TYPES

COM objects talk via their interfaces, and hence all data types used must be
supported by IDL. IDL supports a large number of data types; however, not all
languages that support COM support these data types. Because of this,
ArcObjects does not make use of all the data types available in IDL but limits the
majority of interfaces to the data type supported by Visual Basic. The following
table shows the data types supported by IDL and their corresponding types in a
variety of languages.

DEVELOPING WITH ARCOBJECTS

Application

DatabaseCOM

7

Geodatabase API

8

5

6

2 4

3

7

1

The diagram above clearly shows that the
Feature, which is a COM object, has another

COM object for its geometry. The Shape
property of the feature simply passes the

IGeometry interface pointer to this geometry
object out to the caller that requested the

shape. This means that if more than one client
requested the shape, all clients point to the

same geometry object. Hence, this geometry
object must be treated as read-only. No changes
should be performed on the geometry returned

from this property, even if the changes are
temporary. Anytime a change is to be made to a

feature’s shape, the change must be made on
the geometry returned by the ShapeCopy
property, and the updated geometry should

subsequently be assigned to the Shape property.

Appendix A • Developer environments • 151

charboolean unsigned char unsupported

charbyte unsigned char unsupported

charsmall char unsupported

shortshort short Integer

intlong long Long

longhyper __int64 unsupported

floatfloat float Single

doubledouble double Double

charchar unsigned char unsupported

shortwchar_t wchar_t Integer

intenum enum Enum

Interface Ref.Interface Pointer Interface Pointer Interface Ref.

ms.com.VariantVARIANT VARIANT Variant

java.lang.StringBSTR BSTR String

[true/false]VARIANT_BOOL short (-1/0) Boolean

IDL Microsoft C++ Visual Basic JavaLanguage

Base types

Extended
types

Note the extended data types at the bottom of the table: VARIANT, BSTR, and
VARIANT_BOOL. While it is possible to pass strings using data types such as
char and wchar_t, these are not supported in languages such as Visual Basic. Visual
Basic uses BSTRs as its text data type. A BSTR is a length-prefixed wide charac-
ter array, in which the pointer to the array points to the text contained within it
and not the length prefix. Visual C++ maps VARIANT_BOOL values onto 0
and –1 for the False and True values, respectively. This is different from the
normal mapping of 0 and 1. Hence, when writing C++ code, be sure to use the
correct macros—VARIANT_FALSE and VARIANT_TRUE—not False and
True.

USING COMPONENT CATEGORIES

Component categories are used extensively in ArcObjects so developers can
extend the system without requiring any changes to the ArcObjects code that will
work with the new functionality.

ArcObjects uses component categories in two ways. The first requires classes to
be registered in the respective component category at all times, for example,
ESRI Mx Extensions. Classes, if present in that component category, have an
object that implements the IExtension interface and is instantiated when the
ArcMap application is started. If the class is removed from the component cat-
egory, the extension will not load, even if the map document (MXD file) is
referencing that extension.

The second use is when the application framework uses the component category
to locate classes and display them to a user to allow some user customization to
occur. Unlike the first method, the application remembers (inside its map docu-
ment) the objects being used and will subsequently load them from the map
document. An example of this is the commands used within ArcMap. ArcMap
reads the ESRI Mx Commands category when the Customization dialog box is
displayed to the user. This is the only time the category is read. Once the user
selects a command and adds it to a toolbar, the map document is used to deter-
mine what commands should be instantiated. Later, when this appendix covers
debugging Visual Basic code, you’ll see the importance of this.

Now that you’ve seen two uses of component categories, you will see how to get
your classes registered into the correct component category. Development envi-

DEVELOPING WITH ARCOBJECTS

152 • ArcGIS Desktop Developer Guide

ronments have various levels of support for component categories; ESRI pro-
vides two ways of adding classes to a component category. The first can only be
used for commands and command bars that are added to either ArcMap or
ArcCatalog. Using the Add From File button on the Customize dialog box
(shown to the left), it is possible to select a server. All classes in that server are
then added to either the ESRI Gx Commands or the ESRI Mx Commands,
depending on the application being customized. While this utility is useful, it is
limited since it adds all the classes found in the server. It is not possible to remove
classes, and it only supports two of the many component categories implemented
within ArcObjects.

Distributed with ArcGIS applications is a utility application called the Compo-
nent Category Manager, shown to the left. This small application allows you to
add and remove classes from any of the component categories on your system,
not just ArcObjects categories. Expanding a category displays a list of classes in
the category. You can then use the Add Object button to display a checklist of all
the classes found in the server. You check the required classes, and these checked
classes are then added to the category.

Using these ESRI tools is not the only method to interact with component
categories. During the installation of the server on the target user’s machine, it is
possible to add the relevant information to the Registry using a registry script.
Below is one such script. The first line tells Windows for which version of
regedit this script is intended. The last line, starting with “[HKEY_LOCAL_”,
executes the registry command—all the other lines are comments in the file.
REGEDIT4

; This Registry Script enters coclasses into their appropriate Component
Category

; Use this script during installation of the components

; Coclass: Exporter.ExportingExtension

; CLSID: {E233797D-020B-4AD4-935C-F659EB237065}

; Component Category: ESRI Mx Extensions

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{E233797D-020B-4AD4-935C-
F659EB237065}\Implemented Categories\{B56A7C45-83D4-11D2-A2E9-080009B6F22B}]

The last line in the code above is one continuous line in the script.

The last method is for the self-registration code off the server to add the relevant
classes within the server to the appropriate categories. Not all development
environments allow this to be set up. Visual Basic has no support for component
categories, although there is an add-in that allows this functionality. See the
sections on Visual Basic developer add-ins and ATL later in this appendix.

DEVELOPING WITH ARCOBJECTS

The Customize dialog box in ArcMap and
ArcCatalog

The Component Category Manager

Appendix A • Developer environments • 153

The tables below summarize suggested naming
standards for the various elements of your Visual

Basic projects.

cls

frm

Prefix

Class

Form

Module Type

prj

bas

Project

Standard

Name your modules according to the overall
function they provide; do not leave any with

default names (such as “Form1”, “Class1”, or
“Module1”). Additionally, prefix the names of

forms, classes, and standard modules with three
letters that denote the type of module, as shown

in the table above.

cbo

chk

Prefix

Combo box

Check box

Control Type

cdl

cmd

Common dialog

Command button

fra

frm

Frame

Form

grd

gph

Grid

Graph

iml

img

Image list

Image

lst

lbl

List box

Label

map

lvw

Map control

List view

mnu

msk

Menu

Masked edit

opt

ole

Option button

OLE client

pbr

pic

Progress bar

Picture box

srl

rtf

Scroll bar

Rich text box

sbr

sld

Status bar

Slider

txt

tab

Text box

Tab strip

tbr

tmr

Tool bar

Timer

tvwTree view

As with modules, name your controls according
to the function they provide; do not leave them

with default names since this leads to decreased
maintainability. Use the three-letter prefixes

above to identify the type of the control.

This section is intended for both VB6 and VBA developers. Differences in the
development environments are clearly marked throughout the text.

USER INTERFACE STANDARDS

Consider preloading forms to increase the responsiveness of your application. Be
careful not to preload too many (preloading three or four forms is fine).

Use resource files (.res) instead of external files when working with bitmap files,
icons, and related files.

Make use of constructors and destructors to set variable references that are only
set when the class is loaded. These are the VB functions: Class_Initialize() and
Class_Terminate(), or Form_Load() and Form_Unload(). Set all variables to Nothing
when the object is destroyed.

Make sure the tab order is set correctly for the form. Do not add scroll bars to the
tabbing sequence; it is too confusing.

Add access keys to those labels that identify controls of special importance on the
form (use the TabIndex property).

Use system colors where possible instead of hard-coded colors.

Variable declaration
• Always use Option Explicit (or turn on Require Variable Declaration in the VB

Options dialog box). This forces all variables to be declared before use and
thereby prevents careless mistakes.

• Use Public and Private to declare variables at module scope and Dim in local
scope. (Dim and Private mean the same at Module scope; however, using Private
is more informative.) Do not use Global anymore; it is available only for
backward compatibility with VB 3.0 and earlier.

• Always provide an explicit type for variables, arguments, and functions.
Otherwise, they default to Variant, which is less efficient.

• Only declare one variable per line unless the type is specified for each variable.

This line causes count to be declared as a Variant, which is likely to be unintended.
 Dim count, max As Long

This line declares both count and max as Long, the intended type.
 Dim count As Long, max As Long

These lines also declare count and max as Long and are more readable.
 Dim count As Long

 Dim max As Long

Parentheses
Use parentheses to make operator precedence and logic comparison statements
easier to read.
 Result = ((x * 24) / (y / 12)) + 42

 If ((Not pFoo Is Nothing) And (Counter > 200)) Then

THE VISUAL BASIC 6 ENVIRONMENT

154 • ArcGIS Desktop Developer Guide

Use the following notation for naming variables
and constants:

[<libraryName.>][<scope_>]<type><name>

<name> describes how the variable is used or
what it contains. The <scope> and <type>

portions should always be lowercase, and the
<name> should use mixed case.

stdole

esriGeometry

Library Name

<empty>

Standard OLE COM Library

ESRI Object Library

Library

Simple variable data type

<libraryName>

g

c

Prefix

m

<empty>

public variable defined in a class form or
standard module

constant within a form or class

Variable scope

private variable defined in a class or form

local variable

<scope>

Boolean

Data Type

byte or unsigned char

function

handle

int (integer)

long

a pointer

string

b

Prefix

by

fn

h

i

l

p

s

doubled

<type>

Order of conditional determination
Visual Basic, unlike languages such as C and C++, performs conditional tests on
all parts of the condition, even if the first part of the condition is False. This
means you must not perform conditional tests on objects and interfaces that had
their validity tested in an earlier part of the conditional statement.
 ' The following line will raise a run-time error if pFoo is NULL.

 If ((Not pFoo Is Nothing) And (TypeOf pFoo.Thing Is IBar)) then

 End If

 ' The correct way to test this code is

 If (Not pFoo Is Nothing) Then

 If (TypeOf pFoo.Thing Is IBar) Then

 ' Perform action on IBar thing of Foo.

 End If

 End If

Indentation
Use two spaces or a tab width of two for indentation. Since there is only one
editor for VB code, formatting is not as critical an issue as it is for C++ code.

Default properties
Avoid using default properties except for the most common cases. They lead to
decreased legibility.

Intermodule referencing
When accessing intermodule data or functions, always qualify the reference with
the module name. This makes the code more readable and results in more effi-
cient run-time binding.

Multiple property operations
When performing multiple operations against different properties of the same
object, use a With … End With statement. It is more efficient than specifying the
object each time.
 With frmHello

 .Caption = "Hello world"

 .Font = "Playbill"

 .Left = (Screen.Width - .Width) / 2

 .Top = (Screen.Height - .Height) / 2

 End With

Arrays
For arrays, never change Option Base to anything other than zero (which is the
default). Use LBound and UBound to iterate over all items in an array.
 myArray = GetSomeArray

 For i = LBound(myArray) To UBound(myArray)

 MsgBox cstr(myArray(i))

 Next I

THE VISUAL BASIC 6 ENVIRONMENT

Appendix A • Developer environments • 155

Bitwise operators
Since And, Or, and Not are bitwise operators, ensure that all conditions using
them test only for Boolean values (unless, of course, bitwise semantics are what
is intended).
 If (Not pFoo Is Nothing) Then

 ' Valid Foo do something with it

 End If

Type suffixes
Refrain from using type suffixes on variables or function names (such as myString$
or Right$(myString)), unless they are needed to distinguish 16-bit from 32-bit
numbers.

Ambiguous type matching
For ambiguous type matching, use explicit conversion operators (such as CSng,
CDbl, and CStr), instead of relying on VB to pick which one will be used.

Simple image display
Use an ImageControl rather than a PictureBox for simple image display. It is much
more efficient.

Error handling
Always use On Error to ensure fault-tolerant code. For each function that does
error checking, use On Error to jump to a single error handler for the routine that
deals with all exceptional conditions that are likely to be encountered. After the
error handler processes the error—usually by displaying a message—it should
proceed by issuing one of the recovery statements shown on the table to the left.

Error handling in Visual Basic is not the same as general error handling in COM
(see the section ‘Working with HRESULTs’).

Event functions
Refrain from placing more than a few lines of code in event functions to prevent
highly fractured and unorganized code. Event functions should simply dispatch to
reusable functions elsewhere.

Memory management
To ensure efficient use of memory resources, the following points should be
considered:

• Unload forms regularly. Do not keep many forms loaded but invisible since
this consumes system resources.

• Be aware that referencing a form-scoped variable causes the form to be
loaded.

• Set unused objects to Nothing to free up their memory.

• Make use of Class_Initialize() and Class_Terminate() to allocate and destroy
resources.

Exit Sub

Recovery
Statement

Raise

Resume

Resume
Next

Frequency

usually

often

rarely

very rarely

Meaning

Function failed, pass control
back to caller

Raise a new error code in
the caller's scope

Error condition removed,
reattempt offending
statement

Ignore error and continue
with next statement

THE VISUAL BASIC 6 ENVIRONMENT

156 • ArcGIS Desktop Developer Guide

While Wend constructs
Avoid While … Wend constructs. Use the Do While … Loop or Do Until ... Loop
instead because you can conditionally branch out of this construct.
 pFoos.Reset

 Set pFoo = pFoos.Next

 Do While (Not pFoo Is Nothing)

 If (pFoo.Answer = "Done") Then Exit Loop

 Set pFoo = pFoos.Next

 Loop

The Visual Basic Virtual Machine
The Visual Basic Virtual Machine (VBVM) contains the intrinsic Visual Basic
controls and services, such as starting and ending a Visual Basic application,
required to successfully execute all Visual Basic developed code.

The VBVM is packaged as a DLL that must be installed on any machine wanting
to execute code written with Visual Basic, even if the code has been compiled to
native code. If the dependencies of any Visual Basic compiled file are viewed,
the file msvbvm60.dll is listed; this is the DLL housing the Virtual Machine.

For more information on the services provided by the VBVM, see the sections
‘Interacting with the IUnknown interface’ and ‘Working with HRESULTs’ in this
appendix.

Interacting with the IUnknown interface
The section on COM contains a lengthy section on the IUnknown interface and
how it forms the basis on which all of COM is built. Visual Basic hides this
interface from developers and performs the required interactions (QueryInterface,
AddRef, and Release function calls) on the developer’s behalf. It achieves this
because of functionality contained within the VBVM. This simplifies develop-
ment with COM for many developers, but to work successfully with ArcObjects,
you must understand what the VBVM is doing.

Visual Basic developers are used to dimensioning variables as follows:
 Dim pColn as New Collection 'Create a new collection object.

 PColn.Add "Foo", "Bar" 'Add element to collection.

It is worth considering what is happening at this point. From a quick inspection
of the code it looks like the first line creates a collection object and gives the
developer a handle on that object in the form of pColn. The developer then calls a
method on the object Add. Earlier in the appendix you learned that objects talk
via their interfaces, never through a direct handle on the object itself. Remember,
objects expose their services via their interfaces. If this is true, something isn’t
adding up.

What is actually happening is some “VB magic” performed by the VBVM and
some trickery by the Visual Basic Editor in the way that it presents objects and
interfaces. The first line of code instantiates an instance of the collection class,
then assigns the default interface for that object, _Collection, to the variable pColn.
It is this interface, _Collection, that has the methods defined on it. Visual Basic has
hidden the fact of interface-based programming to simplify the developer experi-

The VBVM was called the VB Runtime in earlier
versions of the software.

THE VISUAL BASIC 6 ENVIRONMENT

Appendix A • Developer environments • 157

ence. This is not an issue if all the functionality implemented by the object can be
accessed via one interface, but it is an issue when there are multiple interfaces on
an object that provides services.

The Visual Basic Editor backs this up by hiding default interfaces from the
IntelliSense completion list and the object browser. By default, any interfaces that
begin with an underscore, “_”, are not displayed in the object browser (to display
these interfaces turn Show Hidden Member on, although this will still not display
default interfaces).

You have already learned that the majority of ArcObjects have IUnknown as their
default interface and that Visual Basic does not expose any of IUnknown’s meth-
ods, namely, QueryInterface, AddRef, and Release. Assume you have a class Foo that
supports three interfaces, IUnknown (the default interface), IFoo, and IBar. This
means that if you were to dimension the variable pFoo as below, the variable pFoo
would point to the IUnknown interfaces.
 Dim pFoo As New Foo ' Create a new Foo object

 pFoo.??????

Since Visual Basic does not allow direct access to the methods of IUnknown, you
would immediately have to QI for an interface with methods on it that you can
call. Because of this, the correct way to dimension a variable that will hold
pointers to interfaces is as follows:
 Dim pFoo As IFoo ' Variable will hold pointer to IFoo interface.

 Set pFoo = New Foo ' Create Instance of Foo object and QI for IFoo.

Now that you have a pointer to one of the object’s interfaces, it is an easy matter
to request from the object any of its other interfaces.
 Dim pBar as IBar 'Dim variable to hold pointer to interface

 Set pBar = pFoo 'QI for IBar interface

By convention, most classes have an interface with the same name as the class
with an “I” prefix; this tends to be the interface most commonly used when
working with the object. You are not restricted to which interface you request
when instantiating an object; any supported interface can be requested, hence the
code below is valid.
 Dim pBar as IBar

 Set pBar = New Foo 'CoCreate Object

 Set pFoo = pBar 'QI for interface

Objects control their own lifetime, which requires clients to call AddRef anytime
an interface pointer is duplicated by assigning it to another variable and to call
Release anytime the interface pointer is no longer required. Ensuring that there are
a matching number of AddRefs and Releases is important and, fortunately, Visual
Basic performs these calls automatically. This ensures that objects do not “leak”.
Even when interface pointers are reused, Visual Basic will correctly call release on
the old interface before assigning the new interface to the variable. The following
code illustrates these concepts; note the reference count on the object at the
various stages of code execution.

THE VISUAL BASIC 6 ENVIRONMENT

158 • ArcGIS Desktop Developer Guide

Private Sub VBMagic()

 ' Dim a variable to the IUnknown interface on the simple object.

 Dim pUnk As IUnknown

 ' Co Create simpleobject asking for the IUnknown interface.

 Set pUnk = New SimpleObject 'refCount = 1

 ' QI for a useful interface.

 ' Define the interface.

 Dim pMagic As ISimpleObject

 ' Perform the QI operation

 Set pMagic = punk 'refCount = 2

 ' Dim another variable to hold another interface on the object.

 Dim pMagic2 As IAnotherInterface

 ' QI for that interface

 Set pMagic2 = pMagic 'refCount = 3

 ' Release the interface pointer.

 Set pMagic2 = Nothing 'refCount = 2

 ' Release the interface.

 Set pMagic = Nothing 'refCount = 1

 ' Now reuse the pUnk variable - what will VB do for this?

 Set pUnk = New SimpleObject 'refCount = 1, then 0, then 1

 ' Let the interface variable go out of scope and let VB tidy up.

End Sub 'refCount = 0

Often interfaces have properties that are actually pointers to other interfaces.
Visual Basic allows you to access these properties in a shorthand fashion by
chaining interfaces together. For instance, assume that you have a pointer to the
IFoo interface, and that interface has a property called Gak that is an IGak inter-
face with the method DoSomething(). You have a choice on how to access the
DoSomething method. The first method is the long-handed way.
 Dim pGak as IGak

 Set pGak = pFoo 'Assign IGak interface to local variable.

 pGak.DoSomething 'Call method on IGak interface.

Alternatively, you can chain the interfaces and accomplish the same thing on one
line of code.
 pFoo.Gak.DoSomething 'Call method on IGak interface.

When looking at the sample code, you will see both methods. Normally the
former method is used on the simpler samples, as it explicitly tells you what
interfaces are being worked with. More complex samples use the shorthand
method.

See the Visual Basic Magic sample on the disk
for this code. You are encouraged to run the

sample and use the code. This object also uses
an ATL C++ project to define the SimpleObject
and its interfaces; you are encouraged to look at
this code to learn a simple implementation of a

C++ ATL object.

THE VISUAL BASIC 6 ENVIRONMENT

Appendix A • Developer environments • 159

This technique of chaining interfaces together can always be used to get the value
of a property, but it cannot always be used to set the value of a property. Inter-
face chaining can only be used to set a property if all the interfaces in the chain
are set by reference. For instance, the code below would execute successfully.
 Dim pMxDoc As ImxDocument

 Set pMxDoc = ThisDocument

 pMxDoc.FocusMap.Layers(0).Name = "Foo"

The above example works because both the Layer of the Map and the Map of the
document are returned by reference. The lines of code below would not work
since the Extent envelope is set by value on the active view.
 pMxDoc.ActiveView.Extent.Width = 32

The reason that this does not work is that the VBVM expands the interface chain
to get the end property. Because an interface in the chain is dealt with by value,
the VBVM has its own copy of the variable, not the one chained. To set the
Width property of the extent envelope in the above example, the VBVM must
write code similar to this:
 Dim pActiveView as IActiveView

 Set pActiveView = pMxDoc.ActiveView

 Dim pEnv as IEnvelope

 Set pEnv = pActiveView.Extent ' This is a get by value,

 PEnv.Width = 32 ' The VBVM has set its copy of the Extent and not

 ' the copy inside the ActiveView

For this to work the VBVM requires the extra line below.
 pActiveView.Extent = pEnv ' This is a set by value,

Accessing ArcObjects
You will now see some specific uses of the create instance and query interface
operations that involve ArcObjects. To use an ArcGIS object in Visual Basic or
VBA, you must first reference the ESRI library that contains that object. If you
are using VBA inside ArcMap or ArcCatalog, most of the common ESRI object
libraries are already referenced for you. In standalone Visual Basic applications or
components, you will have to manually reference the required libraries.

You will start by identifying a simple object and an interface that it supports. In
this case, you will use a Point object and the IPoint interface. One way to set the
coordinates of the point is to invoke the PutCoords method on the IPoint interface
and pass in the coordinate values.
 Dim pPt As IPoint

 Set pPt = New Point

 pPt.PutCoords 100, 100

The first line of this simple code fragment illustrates the use of a variable to hold
a reference to the interface that the object supports. The line reads the IID for
the IPoint interface from the ESRI object library. You may find it less ambiguous
(as per the coding guidelines), particularly if you reference other object libraries
in the same project, to precede the interface name with the library name, for
example:
 Dim pPt As esriCore.IPoint

THE VISUAL BASIC 6 ENVIRONMENT

To find out what library an ArcObjects compo-
nent is in, either review the object model
diagrams in the developer help or use the

LibraryLocator tool in your development kit tools
directory.

IID is short for Interface Identifier, a GUID.

160 • ArcGIS Desktop Developer Guide

That way, if there happens to be another IPoint referenced in your project, there
won’t be any ambiguity as to which one you are referring.

The second line of the fragment creates an instance of the object or coclass, then
performs a QI operation for the IPoint interface that it assigns to pPt.

With a name for the coclass as common as Point, you may want to precede the
coclass name with the library name, for example:
 Set pPt = New esriCore.Point

The last line of the code fragment invokes the PutCoords method. If a method
can’t be located on the interface, an error will be shown at compile time.

Working with HRESULTs
So far you have seen that all COM methods signify success or failure via an
HRESULT that is returned from the method; no exceptions are raised outside of
the interface. You have also learned that Visual Basic raises exceptions when
errors are encountered. In Visual Basic, HRESULTs are never returned from
method calls and, to confuse you further when errors do occur, Visual Basic
throws an exception. How can this be? The answer lies with the Visual Basic
Virtual Machine. It is the VBVM that receives the HRESULT; if this is anything
other than S_OK, the VBVM throws the exception. If it was able to retrieve any
worthwhile error information from the COM error object, it populates the Visual
Basic Err object with that information. In this way, the VBVM handles all
HRESULTs returned from the client.

When implementing interfaces in Visual Basic, it is good coding practice to raise
an HRESULT error to inform the caller that an error has occurred. Normally, this
is done when a method has not been implemented.
 ' Defined in module

 Const E_NOTIMPL = &H80004001 'Constant that represents HRESULT

 'Added to any method not implemented

 On Error GoTo 0

 Err.Raise E_NOTIMPL

You must also write code to handle the possibility that an HRESULT other than
S_OK is returned. When this happens, an error handler should be called and the
error dealt with. This may mean simply telling the user, or it may mean automati-
cally dealing with the error and continuing with the function. The choice depends
on the circumstances. Below is a simple error handler that will catch any error
that occurs within the function and report it to the user. Note the use of the Err
object to provide the user with some description of the error.
Private Sub Test()

 On Error GoTo ErrorHandler

 ' Do something here.

 Exit Sub ' Must exit sub here before error handler

ErrorHandler:

 Msgbox "Error In Application – Description " & Err.Description

End Sub

A QI is required since the default interface of
the object is IUnknown. Since the pPt variable

was declared as type IPoint, the default
IUnknown interface was QI’d for the IPoint

interface.

THE VISUAL BASIC 6 ENVIRONMENT

Coclass is an abbreviation of component object
class.

This is the compilation error message shown
when a method or property is not found on an

interface.

Appendix A • Developer environments • 161

Working with properties
Some properties refer to specific interfaces in the ESRI object library, and other
properties have values that are standard data types, such as strings, numeric
expressions, and Boolean values. For interface references, declare an interface
variable and use the Set statement to assign the interface reference to the prop-
erty. For other values, declare a variable with an explicit data type or use Visual
Basic’s Variant data type. Then, use a simple assignment statement to assign the
value to the variable.

Properties that are interfaces can be set either by reference or by value. Properties
that are set by value do not require the Set statement.
 Dim pEnv As IEnvelope

 Set pEnv = pActiveView.Extent 'Get extent property of view.

 pEnv.Expand 0.5, 0.5, True 'Shrink envelope.

 pActiveView.Extent = pEnv 'Set By Value extent back on IActiveView.

 Dim pFeatureLayer as IfeatureLayer

 Set pFeatureLayer = New FeatureLayer 'Create New Layer.

 Set pFeatureLayer.FeatureClass = pClass 'Set ByRef a class into layer.

As you might expect, some properties are read-only, others are write-only, and
still others are read–write. All the object browsers and the ArcObjects Class Help
(found in the ArcGIS Developer Help system) provide this information. If you
attempt to use a property and either forget or misuse the Set keyword, Visual
Basic will fail the compilation of the source code with a method or data member
not found error message. This error may seem strange since it may be given for
trying to assign a value to a read-only property. The reason for the message is that
Visual Basic is attempting to find a method in the type library that maps to the
property name. In the above examples, the underlying method calls in the type
library are put_Extent and putref_FeatureClass.

Working with methods
Methods perform some action and may or may not return a value. In some in-
stances, a method returns a value that’s an interface; for example, in the code
fragment below, EditSelection returns an enumerated feature interface:
 Dim pApp As IApplication

 Dim pEditor As IEditor

 Dim pEnumFeat As IEnumFeature 'Holds the selection

 Dim pID As New UID

 'Get a handle to the Editor extension

 pID = "esriEditor.Editor"

 Set pApp = Application

 Set pEditor = pApp.FindExtensionByCLSID(pID)

 'Get the selection

 Set pEnumFeat = pEditor.EditSelection

In other instances, a method returns a Boolean value that reflects the success of
an operation or writes data to a parameter; for example, the DoModalOpen
method of GxDialog returns a value of True if a selection occurs and writes the
selection to an IEnumGxObject parameter.

THE VISUAL BASIC 6 ENVIRONMENT

162 • ArcGIS Desktop Developer Guide

Be careful not to confuse the idea of a Visual Basic return value from a method
call with the idea that all COM methods must return an HRESULT. The VBVM
is able to read type library information and set up the return value of the VB
method call to be the appropriate parameter of the COM method.

Working with events
Events let you know when something has occurred. You can add code to respond
to an event. For example, a command button has a Click event. You add code to
perform some action when the user clicks the control. You can also add events
that certain objects generate. VBA and Visual Basic let you declare a variable with
the keyword WithEvents. WithEvents tells the development environment that the
object variable will be used to respond to the object’s events. This is sometimes
referred to as an “event sink”. The declaration must be made in a class module or
a form. Here’s how you declare a variable and expose the events of an object in
the Declarations section:
 Private WithEvents m_pViewEvents as Map

Visual Basic only supports one outbound interface (marked as the default out-
bound interface in the IDL) per coclass. To get around this limitation, the
coclasses that implement more than one outbound interface have an associated
dummy coclass that allows access to the secondary outbound interface. These
coclasses have the same name as the outbound interface they contain, minus the I.
 Private WithEvents m_pMapEvents as MapEvents

Once you’ve declared the variable, search for its name in the Object combo box
at the top left of the Code window. Then, inspect the list of events you can
attach code to in the Procedure/Events combo box at the top right of the Code
window.

Not all procedures of the outbound event interface need to be stubbed out, as
Visual Basic will stub out any unimplemented methods. This is different from
inbound interfaces, where all methods must be stubbed out for compilation to
occur.

Before the methods are called, the hookup between the event source and sink
must be made. This is done by setting the variable that represents the sink to the
event source.
 Set m_pMapEvents = pMxDoc.FocusMap

Pointers to valid objects as parameters
Some ArcGIS methods expect interfaces for some of their parameters. The
interface pointers passed can point to an instanced object before the method call
or after the method call is completed.

For example, if you have a polygon (pPolygon) whose center point you want to
find, you can write code as follows:
 Dim pArea As IArea

 Dim pPt As IPoint

 Set pArea = pPolygon ' QI for IArea on pPolygon

 Set pPt = pArea.Center

THE VISUAL BASIC 6 ENVIRONMENT

Appendix A • Developer environments • 163

You don’t need to create pPt because the Center method creates a Point object for
you and passes back a reference to the object via its IPoint interface. Only meth-
ods that use client-side storage require you to create the object prior to the
method call.

Passing data between modules
When passing data between modules it is best to use accessor and mutator func-
tions that manipulate some private member variable. This provides data encapsu-
lation, which is a fundamental technique in object-oriented programming. Public
variables should never be used.

For instance, you might have decided that a variable has a valid range of 1–100.
If you were to allow other developers direct access to that variable, they could
set the value to an illegal value. The only way of coping with these illegal values
is to check them before they get used. This is both error prone and tiresome to
program. The technique of declaring all variables private member variables of the
class and providing accessor and mutator functions for manipulating these vari-
ables will solve this problem.

In the example below, these properties are added to the default interface of the
class. Notice the technique used to raise an error to the client.
Private m_lPercentage As Long

Public Property Get Percentage() As Long

 Percentage = m_lPercentage

End Property

Public Property Let Percentage(ByVal lNewValue As Long)

 If (lNewValue >= 0) And (lNewValue <= 100) Then

 m_lPercentage = lNewValue

 Else

 Err.Raise vbObjectError + 29566, "MyProj.MyObject", _

 "Invalid Percentage Value. Valid values (0 -> 100)"

 End If

End Property

When you write code to pass an object reference from one form, class, or module
to another, for example:
 Private Property Set PointCoord(ByRef pPt As IPoint)

 Set m_pPoint = pPt

 End Property

your code passes a pointer to an instance of the IPoint interface. This means that
you are only passing the reference to the interface, not the interface itself; if you
add the ByVal keyword (as follows), the interface is passed by value.
 Private Property Let PointCoord(ByVal pPt As IPoint)

 Set m_pPoint = pPt

 End Property

In both of these cases the object pointed to by the interfaces is always passed by
reference. To pass the object by value, a clone of the object must be made, and
that is passed.

THE VISUAL BASIC 6 ENVIRONMENT

164 • ArcGIS Desktop Developer Guide

Using the TypeOf keyword
To check whether an object supports an interface, you can use Visual Basic’s
TypeOf keyword. For example, given an item selected in the ArcMap table of
contents, you can test whether it is a FeatureLayer using the following code:
 Dim pDoc As IMxDocument

 Dim pUnk As IUnknown

 Dim pFeatLyr As IGeoFeatureLayer

 Set pDoc = ThisDocument

 Set pUnk = pDoc.SelectedItem

 If TypeOf pUnk Is IGeoFeatureLayer Then ' can we QI for IGeoFeatureLayer?

 Set pFeatLyr = pUnk ' actually QI happens here

 ' Do something with pFeatLyr.

 End If

Using the Is operator
If your code requires you to compare two interface reference variables, you can
use the Is operator. Typically, you can use the Is operator in the following circum-
stances:

To check if you have a valid interface—for example, see the following code:
 Dim pPt As IPoint

 Set pPt = New Point

 If (Not pPt Is Nothing) Then 'a valid pointer?

 ... ' do something with pPt

 End If

To check if two interface variables refer to the same actual object—imagine that
you have two interface variables of type IPoint, pPt1, and pPt2. Are they pointing
to the same object? If they are, then pPt1 Is pPt2.

The Is keyword works with the COM identity of an object. Below is an example
that illustrates the use of the Is keyword when finding out if a certain method on
an interface returns a copy of or a reference to the same real object.

In the following example, the Extent property on a map (IMap) returns a copy,
while the ActiveView property on a document (IMxDocument) always returns a
reference to the real object.
 Dim pDoc As IMxDocument

 Dim pEnv1 As IEnvelope, pEnv2 as IEnvelope

 Dim pActView1 As IActiveView

 Dim pActView2 as IActiveView

 Set pDoc = ThisDocument

 Set pEnv1 = pDoc.ActiveView.Extent

 Set pEnv2 = pDoc.ActiveView.Extent

 Set pActView1 = pDoc.ActiveView

 Set pActView2 = pDoc.ActiveView

 ' Extent returns a copy,

 ' so pEnv1 Is pEnv2 returns False

 Debug.Print pEnv1 Is pEnv2

 ' ActiveView returns a reference,

 ' so pActView1 Is pActView2

 Debug.Print pActView1 Is pActView2

THE VISUAL BASIC 6 ENVIRONMENT

Appendix A • Developer environments • 165

Iterating through a collection
In your work with ArcMap and ArcCatalog, you’ll discover that in many cases
you’ll be working with collections. You can iterate through these collections with
an enumerator. An enumerator is an interface that provides methods for travers-
ing a list of elements. Enumerator interfaces typically begin with IEnum and have
two methods: Next and Reset. Next returns the next element in the set and ad-
vances the internal pointer, and Reset resets the internal pointer to the beginning.

Here is some VBA code that loops through the selected features (IEnumFeature) in
a map. To try the code, add the States sample layer to the map and use the Select
tool to select multiple features (drag a rectangle to do this). Add the code to a
VBA macro, then execute the macro. The name of each selected state will be
printed in the debug window.
 Dim pDoc As IMxDocument

 Dim pEnumFeat As IEnumFeature

 Dim pFeat As IFeature

 Set pDoc = ThisDocument

 Set pEnumFeat = pDoc.FocusMap.FeatureSelection

 Set pFeat = pEnumFeat.Next

 Do While (Not pFeat Is Nothing)

 Debug.Print pFeat.Value(pFeat.Fields.FindField("state_name"))

 Set pFeat = pEnumFeat.Next

 Loop

Some collection objects, the Visual Basic Collection being one, implement a
special interface called _NewEnum. This interface, because of the _ prefix, is
hidden, but Visual Basic developers can still use it to simplify iterating through a
collection. The Visual Basic For Each construct works with this interface to
perform the Reset and Next steps through a collection.
 Dim pColn as Collection

 Set pColn = GetCollection()' Collection returned from some function

 Dim thing as Variant ' VB uses methods on _NewEnum to step through

 For Each thing in pColn ' an enumerator.

 MsgBox Cstr(thing)

 Next

THE VISUAL BASIC 6 ENVIRONMENT

Enumerators can support other methods, but
these two methods are common among all

enumerators.

166 • ArcGIS Desktop Developer Guide

VISUAL BASIC FOR APPLICATIONS

This section of the appendix discusses how to program in the VBA environment
to control ArcGIS Desktop products—such as ArcMap, ArcCatalog, ArcScene, or
ArcGlobe—by accessing the objects they expose. Your code manipulates the
objects by getting and setting properties on their interfaces, such as setting the
MaximumScale and MinimumScale of a map’s FeatureLayer, invoking methods on
the interfaces, such as adding a vertex to a polyline, or setting a field’s value. The
code runs when an event occurs, for example, when a user opens a document,
clicks a button, or alters data by modifying an edit sketch.

First, though, you’ll see the aspects of the VBA development environment in
which you’ll do your work that are specific to the ESRI applications. Consult the
Visual Basic Reference, the online help file that displays when you click Microsoft
Visual Basic Help in the Help menu of the VBA Editor for generic help on the
user interface, conceptual topics, how-to topics, language reference topics, cus-
tomizing the Visual Basic Editor, and user forms and controls.

In the VBA development environment you can add modules, class modules, and
user forms to the default project contained in every ArcGIS application docu-
ment. A project can consist of as many modules, class modules, and user forms as
your work requires. A project is a collection of items to which you add code. A
module is a set of declarations followed by procedures—a list of instructions
that your code performs. A class module is a special type of module that contains
the definition of a class, including its property and method definitions. A user
form is a container for user interface controls, such as command buttons and text
boxes.

ArcMap has a default project associated with its document that’s listed in the
Project Explorer as Project followed by its filename. In addition, you’ll see
another project listed in the Project Explorer called Normal (Normal.mxt).

Normal is, in fact, a template for all documents. It’s always loaded into the docu-
ment. It contains all the user-interface elements that users see, as well as the class
module named ArcID, which contains all the UIDs for the application’s com-
mands.

Since any modifications made to Normal will be reflected every time you create
or open a document, you should be careful when making changes to Normal.

In ArcMap, users can start by opening a template other than the default template.
These templates are available to them in the New dialog box. From a developer’s
perspective this is a base template, a document that loads an additional project
into the document; it is listed in the Project Explorer as the TemplateProject fol-
lowed by its filename. This project can store code in modules, class modules,
forms, and any other customizations, such as maps with data or page layout
frames. Any modifications or changes made to this base template are reflected
only in documents that are derived from it.

In ArcCatalog, Normal (Normal.gxt) is the only project that appears in the
Project Explorer. There is no default Project in ArcCatalog, and you can’t load
any templates. You can, of course, add code to Normal.gxt inside modules, class
modules, or forms, but again, be careful when making changes.

Once you’ve invoked the Visual Basic Editor, you can insert a module, class
module, or user form. Then you insert a procedure or enter code for an existing

Appendix A • Developer environments • 167

VISUAL BASIC FOR APPLICATIONS

event procedure in the item’s Code window, where you can write, display, and
edit code. You can open as many Code windows as you have modules, class
modules, and user forms, so you can easily view the code and copy and paste
between Code windows. In addition to creating your own modules, you can
import other modules, class modules, or user forms from disk.

If your work requires it, you can add an external object library or type library
reference to your project. This makes another application’s objects available in
your code. Once a reference is set, the referenced objects are displayed in the
development environment’s object browser.

GETTING STARTED WITH VBA

To begin programming with VBA in ArcMap or ArcCatalog, you start the Visual
Basic Editor.

To start the Visual Basic Editor
1. Start ArcMap or ArcCatalog.

2. Click the Tools menu, point to Macros, then click Visual Basic Editor. You can
also use the shortcut keys Alt+F11 to display the Visual Basic Editor. To
navigate among the projects in the Visual Basic Editor, use the Project Ex-
plorer. It displays a list of the document’s modules, class modules, and user
forms.

To add a macro to a module
ArcMap and ArcCatalog both provide a shortcut for creating a simple macro in a
module.

1. Click the Tools menu, point to Macros, then click Macros.

2. Type the name of the macro you want to create in the Macro name text box.
If you don’t specify a module name, the application creates a module called
modulexx and stores the macro in that module. If no module is specified after
you specify a module, and a module is already active, the macro is placed in
that module. Preceding a macro’s name with a name and a dot stores it in a
module with the specified name. If the module doesn’t exist, the application
creates it.

3. Click the dropdown arrow of the Macros in the combo box and choose the
VBA project in which you want to create the macro.

4. Press the Enter key or click Create.

5. The stub for a Sub procedure for the macro appears in the Code window.

Adding modules and class modules
All ArcGIS application documents contain the class module ThisDocument, a
custom object that represents the specific document associated with a VBA
project. The document object is called MxDocument in ArcMap and GxDocument
in ArcCatalog. The IDocument interface provides access to the document’s title,
type, accelerator table, command bars collection, parent application, and Visual
Basic project.

Modules and class modules can contain more than one type of procedure: sub,

168 • ArcGIS Desktop Developer Guide

VISUAL BASIC FOR APPLICATIONS

function, or property. You can choose the procedure type and its scope when you
insert a procedure. Inserting a procedure is like creating a code template into
which you enter code.

Every procedure has either private or public scope. Procedures with private scope
are limited to the module that contains them—only a procedure within the same
module can call a private procedure. If you declare the procedure public, other
programs and modules can call it.

Variables in your procedures may either be local or global. Global variables exist
during the entire time the code executes, whereas local variables exist only while
the procedure in which they are declared is running. The next time you execute a
procedure, all local variables are reinitialized. However, you can preserve the
value of all local variables in a procedure for the code’s lifetime by declaring them
static, thereby fixing their value.

To add a procedure to an existing module
1. In the Project Explorer, double-click the ArcMap Objects, ArcCatalog Ob-

jects, or Modules folder, then choose the name of a module. Ensure that the
code view of the module is active by clicking the View Code button.

2. Click the Insert menu and click Procedure.

3. Type the name of the procedure in the Name text box.

4. Click the Type dropdown arrow and click the type of procedure: Sub, Func-
tion, or Property.

5. Click the Scope dropdown arrow and click Public or Private.

6. To declare all local variables static, check the All Local variables as Statics
check box.

7. Click OK. VBA stubs in a procedure into the item’s Code window into which
you can enter code. The stub contains the first and last lines of code for the
type of procedure you’ve added.

8. Enter code into the procedure.

For more information about procedures, see the Microsoft Visual Basic online
help reference.

Adding user forms
If you want your code to prompt the user for information, or you want to display
the result of some action performed when the user invokes an ArcGIS applica-
tion command or tool or in response to some other event, use VBA’s user forms.
User forms provide a context in which you can provide access to a rich set of
integrated controls. Some of these controls are similar to the UIControls that are
available as part of the Customize dialog box’s Commands tab. In addition to text
boxes or command buttons, you have access to a rich set of additional controls.
A user form is a container for user-interface controls, such as command buttons
and text boxes. A control is a Visual Basic object you place on a user form that
has its own properties, methods, and events. You use controls to receive user
input, display output, and trigger event procedures. You can set the form to be
either modal, in which case the user must respond before using any other part of

Appendix A • Developer environments • 169

VISUAL BASIC FOR APPLICATIONS

the application, or modeless, in which case subsequent code is executed as it’s
encountered.

To add and start coding in a user form
1. In the Project Explorer, select the Project to which you want to add a user

form.

2. Click the Insert menu and click UserForm.

3. VBA inserts a user form into your project and opens the Controls Toolbox.

4. Click the controls that you want to add to the user interface from the Controls
Toolbox.

5. Add code to the user form or to its controls.

For more information about adding controls, see the Microsoft Visual Basic
online help reference.

To display the Code window for a user form or control, double-click the user
form or control. Then, choose the event you want your code to trigger from the
dropdown list of events and procedures in the Code window and start typing
your code. Or, just as in a module or class module, insert a procedure and start
typing your code.

To display the form during an ArcMap or ArcCatalog session in response to some
action, invoke its Show method, as in this example:
 UserForm1.Show vbModeless 'show modeless

SOME VBA PROJECT MANAGEMENT TECHNIQUES

To work efficiently in the ArcGIS application’s VBA development environment
and reduce the amount of work you have to do every time you start a new task,
make use of several techniques that will streamline your work:

Reusing modules, class modules, and user forms
To add an existing module or form to the Normal template, the Project, or a
TemplateProject, click the name of the destination in the Project Explorer, then
choose Import File from the File menu. You can choose any VBA module, user
form, or class module to add a copy of the file to your project. To export an item
from your project so that it is available for importing into other projects, choose
the item you want to export in the Project Explorer, click Export File from the
File menu, then navigate to where you want to save the file. Exporting an item
does not remove it from your project.

Removing project items
When you remove an item, it is permanently deleted from the project list—you
can’t undo the Remove action; however, this action doesn’t delete a file if it
exists on disk. Before removing an item, make sure the remaining code in other
modules and user forms doesn’t refer to code in the removed item. To remove an
item, select it in the Project Explorer, then click Remove <Name> from the File
menu. Before you remove the item, you’ll be asked whether you want to export
it. If you click Yes in the message box, the Export File dialog box opens. If you
click No, VBA deletes the item.

170 • ArcGIS Desktop Developer Guide

VISUAL BASIC FOR APPLICATIONS

Protecting your code
To protect your code from alteration and viewing by users, you can lock a
Project, a TemplateProject, or even the Normal template. When you lock one of
these items, you set a password that must be entered before it can be viewed in
the Project Explorer. To lock one of these items, right-click Project,
TemplateProject, or Normal in the Project Explorer, then click the Properties
item in the context menu that appears. In the Properties dialog box, click the
Protection tab and click the option to Lock Project for Viewing. Enter a pass-
word and confirm it. Finally, save your ArcMap or ArcCatalog file and close it.
The next time you or anyone else opens the file, the project is locked. If anyone
wants to view or edit the project, they must enter the password.

Saving a VBA project
VBA projects are stored in a file that can be a base template (*.mxt), the Normal
template, or a document (*.mxd). When a user creates a new ArcMap document
from a base template, the new document references the base template’s VBA
project and its items. To save your ArcMap document and your VBA project,
click Save from the ArcMap File menu or Save <File Name> from the File menu
in the Visual Basic Editor. Both commands save your file with the project and
any items stored in it. After saving the file, its filename is displayed in the Project
Explorer in parentheses after the project name. To save the document as a tem-
plate, click Save As from the ArcMap File menu and specify ArcMap Templates
(*.mxt) as the File type.

Running VBA code
As you build and refine your code, you can run it within VBA to test and debug
it. This section discusses running your code in the Visual Basic Editor during
design time. For more information about running and debugging a VBA program,
such as adding break points, adding watch expressions, and stepping into and out
of execution, see Microsoft Visual Basic online help.

To run your code in the Visual Basic Editor or from the Macros dialog
box
1. Click the Tools menu and click Macros.

2. In the Macro list, click the macro you want and click Run.

If the macro you want is not listed, make sure you’ve chosen the appropriate
item: either Normal, Project, or TemplateProject in the Macros In box. Private
procedures do not appear in any menus or dialog boxes.

To run only one procedure in the Visual Basic Editor
1. In the Project Explorer, open the module that contains the procedure that you

want to run.

2. In the Code window, click an insertion point in the procedure code.

3. Click the Run menu and click Run Sub/UserForm.

Only the procedure in which your cursor is located runs.

Appendix A • Developer environments • 171

VISUAL BASIC FOR APPLICATIONS

After you’ve finished writing your code
After you have finished writing code, users can run it from ArcMap or
ArcCatalog. To do this, click Macros and click it again from the Tools menu. You
can also associate the code with a command or tool, or it can run in response to
events or in other ways that you design.

USING THE GLOBAL APPLICATION OBJECTS

Application and ThisDocument are examples of global system variables that can be
accessed by any module or class in the VBA environment while ArcMap is run-
ning. This variable is automatically set to reference the current document when
ArcMap opens the document. You can use ThisDocument as a shortcut when
programming in VBA to access the current document. Here is an example of how
to use both the Application and ThisDocument:
 Dim pMxDoc as IMxDocument

 Set pMxDoc = Application.Document

 'or

 Set pMxDoc = ThisDocument

Both methods illustrated above result in a reference being set to the local docu-
ment.

Since ArcCatalog does not support the use of
documents, the ThisDocument global variable is

not available to developers. However, the
Application variable is available if a developer

wishes to access IGxApplication or
IApplication.

172 • ArcGIS Desktop Developer Guide

THE VISUAL BASIC 6 DEVELOPMENT ENVIRONMENT

In the previous section of this appendix, the focus was primarily on how to write
code in the VBA development environment embedded within the ArcGIS
Desktop applications. This section focuses on particular issues related to creating
ActiveX DLLs that can be added to the applications and writing external
standalone applications using the Visual Basic development environment.

CREATING COM COMPONENTS

Most developers use Visual Basic to create a COM component that works with
ArcMap or ArcCatalog. Earlier in this appendix you learned that since the ESRI
applications are COM clients—their architecture supports the use of software
components that adhere to the COM specification—you can build components
with different languages, including Visual Basic. These components can then be
added to the applications easily. For information about packaging and deploying
COM components that you’ve built with Visual Basic, see the last section of this
appendix.

This section is not intended as a Visual Basic tutorial; rather, it highlights aspects
of Visual Basic that you should know to be effective when working with
ArcObjects.

In Visual Basic you can build a COM component that will work with ArcMap or
ArcCatalog by creating an ActiveX DLL. This section will review the rudimentary
steps involved. Note that these steps are not all-inclusive. Your project may
involve other requirements.

1. Start Visual Basic. In the New Project dialog box, create an ActiveX DLL
Project.

2. In the Properties window, make sure that the Instancing property for the
initial class module and any other class modules you add to the Project is set to
5—MultiUse.

3. Reference the ESRI Object Libraries that you will require.

4. Implement the required interfaces. When you implement an interface in a class
module, the class provides its own versions of all the public procedures speci-
fied in the type library of the interface. In addition to providing mapping
between the interface prototypes and your procedures, the Implements state-
ment causes the class to accept COM QueryInterface calls for the specified
interface ID. You must include all the public procedures involved. A missing
member in an implementation of an interface or class causes an error. If you
don’t put code in one of the procedures in a class you are implementing, you
can raise the appropriate error (Const E_NOTIMPL = &H80004001). That
way, if someone else uses the class, they’ll understand that a member is not
implemented.

5. Add any additional code that’s needed.

6. Establish the Project Name and other properties to identify the component. In
the Project Properties dialog box, the project name you specify will be used as
the name of the component’s type library. It can be combined with the name
of each class the component provides to produce unique class names (these
names are also called ProgIDs). These names appear in the Component Cat-
egory Manager. Save the project.

The ESRI VB Add-In interface implementer can
be used to automate Steps 3 and 4.

Appendix A • Developer environments • 173

7. Compile the DLL.

8. Set the component’s Version Compatibility to binary. As your code evolves, it’s
good practice to set the components to Binary Compatibility so, if you make
changes to a component, you’ll be warned that you’re breaking compatibility.
For additional information, see the ‘Binary compatibility mode’ help topic in
the Visual Basic online help.

9. Save the project.

10. Make the component available to the application. You can add a component
to a document or template by clicking the Add from file button in the Cus-
tomize dialog box’s Commands tab. In addition, you can register a component
in the Component Category Manager.

IMPLEMENTING INTERFACES

You implement interfaces differently in Visual Basic depending if they are in-
bound or outbound interfaces. An outbound interface is seen by Visual Basic as
an event source and is supported through the WithEvents keyword. To handle the
outbound interface, IActiveViewEvents, in Visual Basic (the default outbound
interface of the Map class), use the WithEvents keyword and provide appropriate
functions to handle the events.
 Private WithEvents ViewEvents As Map

 Private Sub ViewEvents_SelectionChanged()

 ' User changed feature selection update my feature list form

 UpdateMyFeatureForm

 End Sub

Inbound interfaces are supported with the Implements keyword. However, unlike
the outbound interface, all the methods defined on the interface must be stubbed
out. This ensures that the vTable is correctly formed when the object is instanti-
ated. Not all of the methods have to be fully coded, but the stub functions must
be there. If the implementation is blank, an appropriate return code should be
given to any client to inform them that the method is not implemented (see the
section ‘Working with HRESULTs’). To implement the IExtension interface, code
similar to that below is required. Note that all the methods are implemented.
Private m_pApp As IApplication

Implements IExtension

 Private Property Get IExtension_Name() As String

 IExtension_Name = "Sample Extension"

End Property

Private Sub IExtension_Startup(ByRef initializationData As Variant)

 Set m_pApp = initializationData

End Sub

Private Sub IExtension_Shutdown()

 Set m_pApp = Nothing

End Sub

THE VISUAL BASIC 6 DEVELOPMENT ENVIRONMENT

Visual Basic automatically generates the
necessary GUIDs for the classes, interfaces, and

libraries. Setting binary compatibility forces VB to
reuse the GUIDs from a previous compilation of

the DLL. This is essential since ArcMap stores
the GUIDs of commands in the document for

subsequent loading.

174 • ArcGIS Desktop Developer Guide

After the ESRI Object Library is referenced, all
the types contained within it are available to

Visual Basic. IntelliSense will also work with the
contents of the object library.

SETTING REFERENCES TO THE ESRI OBJECT LIBRARIES

The principal difference between working with the VBA development environ-
ment embedded in the applications and working with Visual Basic is that the
latter environment requires that you load the appropriate object libraries so that
any object variables that you declare can be found. If you don’t add the refer-
ence, you’ll get the error message to the left. In addition, the global variables
ThisDocument and Application are not available to you.

To add a reference to an object library
Depending on what you want your code to do, you may need to add several ESRI
core object and extension libraries. You can determine what library an object
belongs to by reviewing the object model diagrams in the developer help or by
using the LibraryLocator tool located in the tools directory of you developer kit.

To display the References dialog box in which you can set the references you
need, select References in the Visual Basic Project menu.

After you set a reference to an object library by selecting the check box next to its
name, you can find a specific object and its methods and properties in the object
browser.

If you are not using any objects in a referenced library, you should clear the check
box for that reference to minimize the number of object references Visual Basic
must resolve, thus reducing the time it takes your project to compile. You should
not remove a reference for an item that is used in your project.

You can’t remove the “Visual Basic for Applications” and “Visual Basic objects
and procedures” references because they are necessary for running Visual Basic.

REFERRING TO A DOCUMENT

Each VBA project (Normal, Project, TemplateProject) has a class called
ThisDocument, which represents the document object. Anywhere you write code
in VBA you can reference the document as ThisDocument. Further, if you are
writing your code in the ThisDocument Code window, you have direct access to all
the methods and properties on IDocument. This is not available in Visual Basic.
You must first get a reference to the Application, then the document. When adding
both extensions and commands to ArcGIS applications, a pointer to the
IApplication interface is provided.
Implements IExtension

Private m_pApp As IApplication

Private Sub IExtension_Startup(ByRef initializationData As Variant)

 Set m_pApp = initializationData ' Assign IApplication.

End Sub

Implements ICommand

Private m_pApp As IApplication

Private Sub ICommand_OnCreate(ByVal hook As Object)

 Set m_pApp = hook ' QI for IApplication

End Sub

THE VISUAL BASIC 6 DEVELOPMENT ENVIRONMENT

Appendix A • Developer environments • 175

Singletons are objects that only support one
instance of the object. These objects have a class

factory that ensures that anytime an object is
requested, a pointer to an already existing object

is returned.

Now that a reference to the application is in an IApplication pointer member
variable, the document and, hence, all other objects can be accessed from any
method within the class.
 Dim pDoc as IDocument

 Set pDoc = m_pApp.Document

 MsgBox pDoc.Name

GETTING TO AN OBJECT

In the previous example, navigating around the objects within ArcMap is a
straightforward process since a pointer to the Application object, the root object
of most of the ArcGIS application’s objects, is passed to the object via one of its
interfaces. This, however, is not the case with all interfaces that are implemented
within the ArcObjects application framework. There are cases when you may
implement an object that exists within the framework and there is no possibility
to traverse the object hierarchy from that object. This is because very few objects
support a reference to their parent object (the IDocument interface has a property
named Parent that references the IApplication interface). To give developers access
to the application object, there is a singleton object that provides a pointer to the
running application object. The code below illustrates its use.
 Dim pAppRef As New AppRef

 Dim pApp as IApplication

 Set pApp = pAppRef

You must be careful to ensure that this object is only used where the implementa-
tion will always run only within ArcMap and ArcCatalog. For instance, it would
not be a good idea to make use of this function from within a custom feature
since that would restrict what applications could be used to view the feature
class.

RUNNING ARCMAP WITH A COMMAND LINE ARGUMENT

You can start ArcMap from the command line and pass it an argument that is
either the pathname of a document (.mxd) or the pathname of a template
(.mxt). In the former case, ArcMap will open the document; in the latter case,
ArcMap will create a new document based on the template specified.

You can also pass an argument and create an instance of ArcMap by supplying
arguments to the Win32 API’s ShellExecute function or Visual Basic’s Shell func-
tion as follows:
 Dim ret As Variant

 ret = Shell("d:\arcgis\bin\arcmap.exe _

 d:\arcgis\bin\templates\LetterPortrait.mxt", vbNormalFocus)

By default, Shell runs other programs asynchronously. This means that ArcMap
might not finish executing before the statements following the Shell function are
executed.

To execute a program and wait until it is terminated, you must call three Win32
API functions. First, call the CreateProcessA function to load and execute
ArcMap. Next, call the WaitForSingleObject function, which forces the operating
system to wait until ArcMap has been terminated. Finally, when the user has
terminated the application, call the CloseHandle function to release the
application’s 32-bit identifier to the system pool.

THE VISUAL BASIC 6 DEVELOPMENT ENVIRONMENT

In Visual Basic, it is not possible to determine
the command line used to start the application.

There is a sample on disk that provides this
functionality. It can be found at <ArcGIS Devel-

oper Kit install>\samples\COM
Techniques\Command Line.

176 • ArcGIS Desktop Developer Guide

DEBUGGING VISUAL BASIC CODE

Visual Basic has a debugger integrated into its development environment. This is
in many cases a valuable tool when debugging Visual Basic code; however, in
some cases it is not possible to use the VB debugger. The use of the debugger and
these special cases are discussed below.

Running the code within an application
It is possible to use the Visual Basic debugger to debug your ArcObjectssoftware-
based source code even when ActiveX DLLs are the target server. The applica-
tion that will host your DLL must be set as the Debug application. To do this,
select the appropriate application, ArcMap.exe, for instance, and set it as the Start
Program in the Debugging Options of the Project Properties.

Using commands on the Debug toolbar, ArcMap can be started and the DLL
loaded and debugged. Break points can be set, lines stepped over, functions
stepped into, and variables checked. Moving the line pointer in the left margin
can also set the current execution line.

Visual Basic debugger issues
In many cases, the Visual Basic debugger will work without any problems; how-
ever, there are two problems when using the debugger that is supplied with
Visual Basic 6. Both of these problems exist because of the way that Visual Basic
implements its debugger.

Normally when running a tool within ArcMap, the DLL is loaded into ArcMap
address space, and calls are made directly into the DLL. When debugging, this is
not the case. Visual Basic makes changes to the registry so that the CLSID for
your DLL does not point to your DLL but, instead, it points to the Visual Basic
Debug DLL (VB6debug.dll). The Debug DLL must then support all the interfaces
implemented by your class on the fly. With the VB Debug DLL loaded into
ArcMap, any method calls that come into the DLL are forwarded on to Visual
Basic, where the code to be debugged is executed. The two problems with this
are caused by the changes made to the registry and the cross-process space method
calling. When these restrictions are first encountered, it can be confusing since the
object works outside the debugger or at least until it hits the area of problem
code.

Since the method calls made from ArcMap to the custom tool are across apart-
ments, there is a requirement for the interfaces to be marshalled. This marshalling
causes problems in certain circumstances. Most data types can be automatically
marshalled by the system, but there are a few that require custom code because
the standard marshaller does not support the data types. If one of these data
types is used by an interface within the custom tool and there is no custom mar-
shalling code, the debugger will fail with an “Interface not supported error”.

The registry manipulation also breaks the support for component categories. Any
time there is a request on a component category, the category manager within
COM will be unable to find your component because, rather than asking whether
your DLL belongs to the component category, COM is asking whether the VB

THE VISUAL BASIC 6 DEVELOPMENT ENVIRONMENT

Appendix A • Developer environments • 177

debugger DLL belongs to the component category, and it doesn’t. What this
means is that anytime a component category is used to automate the loading of a
DLL, the DLL cannot be debugged using the Visual Basic debugger.

This causes problems for many of the ways to extend the framework. The most
common way to extend the framework is to add a command or tool. Previously,
it was discussed how component categories were used in this instance. Remember
the component category was only used to build the list of commands in the
dialog box. This means that if the command to be debugged is already present on
a toolbar, the Visual Basic debugger can be used. Hence, the procedure for debug-
ging Visual Basic objects that implement the ICommand interface is to ensure that
the command is added to a toolbar when ArcMap is executed standalone and,
after saving the document, load ArcMap through the debugger.

In some cases, such as extensions and property pages, it is not possible to use the
Visual Basic debugger. If you have access to the Visual C++ debugger, you can
use one of the options outlined below. Fortunately, there are a number of ESRI
Visual Basic Add-ins that make it possible to track down the problem quickly and
effectively. The add-ins, described in the ArcGIS Developer Help in the section
‘Visual Basic Developer Add-Ins’, provide error log information including line
and module details. A sample output from an error log is given below; note the
call stack information along with line numbers.
Error Log saved on : 8/28/2000 - 10:39:04 AM

Record Call Stack Sequence - Bottom line is error line.

 chkVisible_MouseUp C:\Source\MapControl\Commands\frmLayer.frm Line : 196

 RefreshMap C:\Source\MapControl\Commands\frmLayer.frm Line : 20

Description

 Object variable or With block variable not set

Alternatives to the Visual Basic debugger
If the Visual Basic debugger and add-ins do not provide enough information, the
Visual C++ debugger can be used, either on its own or with C++ ATL wrapper
classes. The Visual C++ debugger does not run the object to be debugged out of
process from ArcMap, which means that none of the above issues apply. Common
debug commands are given in the Visual C++ section ‘Debugging tips in Devel-
oper Studio’. Both of the techniques below require the Visual Basic project to be
compiled with Debug Symbol information.

The Visual C++ debugger can work with this symbolic debug information and
the source files.

Visual C++ debugger
It is possible to use the Visual C++ debugger directly by attaching to a running
process that has the Visual Basic object to be debugged loaded and setting a break
point in the Visual Basic file. When the line of code is reached, the debugger will
halt execution and step into the source file at the correct line. The required steps
are as follows:

1. Start an appropriate application, such as ArcMap.exe.

THE VISUAL BASIC 6 DEVELOPMENT ENVIRONMENT

Create Debug Symbol information using the
Create Symbolic Debug info option on the

Compile tab of the Project Properties dialog box.

178 • ArcGIS Desktop Developer Guide

2. Start Microsoft Visual C++.

3. Attach to the ArcMap process using Menu option Build > Start Debug >
Attach to process.

4. Load the appropriate Visual Basic Source file into the Visual C++ debugger
and set the break point.

5. Call the method within ArcMap.

No changes can be made to the source code within the debugger, and variables
cannot be inspected, but code execution can be viewed and altered. This is often
sufficient to determine what is wrong, especially with logic-related problems.

ATL wrapper classes
Using the Active Template Library, you can create a class that implements the
same interfaces as the Visual Basic class. When you create the ATL object, you
create the Visual Basic object. All method calls are then passed to the Visual Basic
object for execution. You debug the contained object by setting a break point in
the appropriate C++ wrapper method, and when the code reaches the break
point, the debugger is stepped into the Visual Basic code. For more information
on this technique, look at the ATL Debugger sample in the Developer Samples of
the ArcGIS Developer Help system.

THE VISUAL BASIC 6 DEVELOPMENT ENVIRONMENT

Appendix A • Developer environments • 179

VISUAL C++

Developing in Visual C++ is a large and complex subject, as it provides a much
lower level of interaction with the underlying Windows APIs and COM APIs
when compared to other development environments.

While this can be a hindrance for rapid application development, it is the most
flexible approach. A number of design patterns, such as COM aggregation and
singletons, that are possible in Visual C++ are not possible in Visual Basic 6. By
using standard class libraries, such as Active Template Library, the complex COM
plumbing code can be hidden. However, it is still important to have a thorough
understanding of the underlying ATL COM implementation.

The documentation in this section is based on Microsoft Visual C++ version 6
and provides some guidance for ArcGIS development in this environment. With
the release of Visual Studio C++ .NET, (also referred to as VC7), many new
enhancements are available to the C++ developer. While VC7 can work with the
managed .NET environment, and it is possible to work with the ArcGIS .NET
API, this will only add overhead to access the underlying ArcGIS COM objects.
So for the purposes of ArcGIS development in VC7, it is recommended to work
the “traditional” way—that is, directly with the ArcGIS COM interfaces and
objects.

With the addition of the Visual C# .NET language, it is worth considering
porting Visual C++ code to this environment and using the ArcGIS .NET API.
The syntax of C# is not unlike C++, but the resulting code is generally simpler
and more consistent.

This section is intended to serve two main purposes:

1. To familiarize you with general Visual C++ coding style and debugging, begin-
ning with a discussion on ATL

2. To detail specific usage requirements and recommendations for working with
the ArcObjects programming platform in Visual C++

WORKING WITH ATL

This section cannot cover all the topics that a developer working with ATL
should know to be effective, but it will serve as an introduction to ATL. ATL
helps you implement COM objects and saves typing, but it does not excuse you
from knowing C++ and how to develop COM objects.

ATL is the recommended framework for implementing COM objects. The ATL
code can be combined with Microsoft Foundation Class Library (MFC) code,
which provides more support for writing applications. An alternative to MFC is
the Windows Template Library (WTL), which is based on the ATL template
methodology and provides many wrappers for window classes and other applica-
tion support for ATL. WTL is available for download from Microsoft; at the time
of writing, version 7.1 is the latest and can be used with Visual C++ version 6
and Visual C++ .NET.

ATL in brief
ATL is a set of C++ template classes designed to be small, fast, and extensible,
based loosely on the Standard Template Library (STL). STL provides generic
template classes for C++ objects, such as vectors, stacks, and queues. ATL also

There are many enhancements to ATL in VC7.
Some of the relevant changes are covered in the

section ‘ATL in Visual C++ .NET’, later in this
appendix.

180 • ArcGIS Desktop Developer Guide

VISUAL C++

provides a set of wizards that extend the Visual Studio development environ-
ment. These wizards automate some of the tedious plumbing code that all ATL
projects must have. The wizards include, but are not limited to, the following:

• Application—Used to initialize an ATL C++ project.

• Object—Used to create COM objects. Both C++ and IDL code is generated,
along with the appropriate code to support the creation of the objects at run
time.

• Property—Used to add properties to interfaces.

• Method—Used to add methods to interfaces; both the Property and Method
wizards require you to know some IDL syntax.

• Interface Implementation—Used to implement stub functions for existing
interfaces.

• Connection Point Implement—Used to implement outbound events’ inter-
faces.

Typically these are accessed by a right-click on a project, class, or interface in
Visual Studio Workspace/Class view.

ATL provides base classes for implementing COM objects as well as implementa-
tions for some of the common COM interfaces, including IUnknown, IDispatch,
and IClassFactory. There are also classes that provide support for ActiveX controls
and their containers.

ATL provides the required services for exposing ATL-based COM objects, includ-
ing registration, server lifetime, and class objects.

These template classes build a hierarchy that sandwiches your class. These inherit-
ances are shown to the left. The CComxxxThreadModel class supports thread-safe
access to global, instance, and static data. The CComObjectRootEx class provides
the behavior for the IUnknown methods. The interfaces at the second level repre-
sent the interfaces that the class will implement; these come in two varieties. The
IXxxImpl interface contains ATL-supplied interfaces that also include an imple-
mentation; the other interfaces have pure virtual functions that must be fully
implemented within your class. The CComObject class inherits your class; this class
provides the implementation of the IUnknown methods along with the object
instantiation and lifetime control.

ATL and DTC
Along with smart types, covered later in this appendix, Direct-To-COM (DTC)
provides some useful compiler extensions you can use when creating ATL-based
objects. The functions __declspec and __uuidof are two such functions, but the
most useful is the #import command.

COM interfaces are defined in IDL, then compiled by the Microsoft IDL com-
piler (MIDL.exe). This results in the creation of a type library and header files.
The project uses these files automatically when compiling software that refer-
ences these interfaces. This approach is limited in that, when working with
interfaces, you must have access to the IDL files. As a developer of ArcGIS, you
only have access to the ArcGIS type library information contained in .olb and

CComObject<CMyObject>

CMyObject

CComObjectRootEx<>

IMyInt2

IMyIntIXxxImpl

CComXxxThreadModel

The hierarchical layers of ATL

A more detailed discussion on Direct-To-COM,
follows in the section ‘Direct-To-COM smart

types’.

Appendix A • Developer environments • 181

VISUAL C++

.ocx files. While it is possible to engineer a header file from a type library, it is a
tedious process. The #import command automates the creation of the necessary
files required by the compiler. Since the command was developed to support
DTC, when using it to import ArcGIS type libraries, there are a number of
parameters that must be passed so that the correct import takes place. For further
information on this process, see the later section ‘Importing ArcGIS type
libraries’.

Handling errors in ATL
It is possible to just return an E_FAIL HRESULT code to indicate the failure
within a method; however, this does not give the caller any indication of the
nature of the failure. There are a number of standard Windows HRESULTs
available, for example, E_INVALIDARG (one or more arguments are invalid)
and E_POINTER (invalid pointer). These error codes are listed in the Windows
header file winerror.h. Not all development environments have comprehensive
support for HRESULT; Visual Basic clients often see error results as “Automation
Error – Unspecified Error”. ATL provides a simple mechanism for working with
the COM error information object that can provide an error string description, as
well as an error code.

When creating an ATL object, the Object wizard has an option to support
ISupportErrorInfo. If you toggle the option on, when the wizard completes, your
object will implement the interface ISupportErrorInfo, and a method will be added
that looks something like this:
STDMETHODIMP MyClass::InterfaceSupportsErrorInfo(REFIID riid)

{

static const IID* arr[] =

{

&IID_IMyClass,

};

for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++)

{

 if (InlineIsEqualGUID(*arr[i], riid))

return S_OK;

}

return S_FALSE;

}

It is now possible to return rich error messages by calling one of the ATL error
functions. These functions even work with resource files to ensure easy interna-
tionalization of the message strings.

// Return a simple string

AtlReportError(CLSID_MyClass, _T("No connection to Database."),
IID_IMyClass, E_FAIL);

// Get the Error Text from a resource string

AtlReportError(CLSID_MyClass, IDS_DBERROR, IID_IMyClass, E_FAIL,
_Module.m_hInstResource);

To extract an error string from a failed method, use the Windows function
GetErrorInfo. This is used to retrieve the last IErrorInfo object on the current
thread and clears the current error state.

Although Visual C++ does support an exception
mechanism (try ... catch), it is not recommended

to mix this with COM code. If an exception
unwinds out of a COM interface, there is no

guarantee the client will be able to catch this,
and the most likely result is a crash.

182 • ArcGIS Desktop Developer Guide

VISUAL C++

Linking ATL code
One of the primary purposes of ATL is to support the creation of small fast
objects. To support this, ATL gives the developer a number of choices when
compiling and linking the source code. Choices must be made about how to link
or dynamically access the C run-time (CRT) libraries, the registration code, and
the various ATL utility functions. If no CRT calls are made in the code, this can
be removed from the link. If CRT calls are made and the linker switch
_ATL_MIN_CRT is not removed from the link line, the following error will be
generated during the build:
LIBCMT.lib(crt0.obj) : error LNK2001: unresolved external symbol _main

ReleaseMinSize/History.dll : fatal error LNK1120: 1 unresolved externals

Error executing link.exe.

When compiling a debug build, there will probably not be a problem; however,
depending on the code written, there may be problems when compiling a release
build. If you receive this error either remove the CRT calls or change the linker
switches.

If the utilities code is dynamically loaded at run time, you must ensure that the
appropriate DLL (ATL.DLL) is installed and registered on the user’s system. The
ArcGIS 9 run-time installation will install ATL.dll. The table below shows the
various choices and the related linker switches.

Utilities Registrar

Debug static dynamic

RelMinSize
dynamic dynamic

RelMinDepend
static static

CRT

yes

no

no

Symbols

_ATL_MIN_CRT
_ATL_DLL

_ATL_MIN_CRT
_ATL_STATIC_REGISTRY

By default, there are build configurations for ANSI and Unicode builds. A com-
ponent that is built with ANSI compilation will run on Windows 9.x; however,
considering that ArcGIS is only supported on unicode operating systems (Win-
dows NT, Windows 2000, and Windows XP), these configurations are redun-
dant. To delete a configuration in Visual Studio, click Build / Configurations ...”.
Then delete Win32 Debug, Win32 Release MinSize, and Win32 Release
MinDependency.

Registration of a COM component
The ATL project wizard generates the standard Windows entry points for regis-
tration. This code will register the DLL’s type library and execute a registry script
file (.rgs) for each COM object within the DLL. Additional C++ code to perform
other registration tasks can be inserted into these functions.
STDAPI DllRegisterServer(void)

{

// registers object in .rgs, typelib and all interfaces in typelib

// TRUE instructs the type library to be registered

return _Module.RegisterServer(TRUE);

}

STDAPI DllUnregisterServer(void)

{

Appendix A • Developer environments • 183

VISUAL C++

return _Module.UnregisterServer(TRUE);

}

ATL provides a text file format, .rgs, that is parsed by the ATL’s registrar compo-
nent when a DLL is registered and unregistered. The .rgs file is built into a DLL
as a custom resource. The file can be edited to add additional registry entries and
contains ProgID, ClassID, and component category entries to place in the registry.
The syntax describes keys, values, names, and subkeys to be added or removed
from the registry. The format can be summarized as follows:
[NoRemove | ForceRemove | val] Name | [= s 'Value' | d 'Value' | b 'Value']

{

.. optional subkeys for the registry

}

NoRemove signifies that the registry key should not be removed on unregistration.
ForceRemove will ensure the key and subkeys are removed before registering the
new keys. The s, d, and b values indicate string (enclosed with apostrophes),
double word (32-bit integer value), and binary registry values. A typical registra-
tion script is shown below.
HKCR

{

SimpleObject.SimpleCOMObject.1 = s 'SimpleCOMObject Class'

{

CLSID = s '{2AFFC10E-ECFB-4697-8B3D-0405650B7CFB}'

}

SimpleObject.SimpleCOMObject = s 'SimpleCOMObject Class'

{

CLSID = s '{2AFFC10E-ECFB-4697-8B3D-0405650B7CFB}'

CurVer = s 'SimpleObject.SimpleCOMObject.1'

}

NoRemove CLSID

{

ForceRemove {2AFFC10E-ECFB-4697-8B3D-0405650B7CFB} = s 'SimpleCOMObject
Class'

{

ProgID = s 'SimpleObject.SimpleCOMObject.1'

VersionIndependentProgID = s 'SimpleObject.SimpleCOMObject'

InprocServer32 = s '%MODULE%'

{

val ThreadingModel = s 'Apartment'

}

'TypeLib' = s '{855DD226-5938-489D-986E-149600FEDD63}'

'Implemented Categories'

{

{7DD95801-9882-11CF-9FA9-00AA006C42C4}

}

}

}

}

NoRemove CLSID ensures the registry key CLSID is never removed. This is the
subkey below which all COM objects use to register their ProgIDs and GUIDs, so

184 • ArcGIS Desktop Developer Guide

VISUAL C++

its removal would result in a serious corruption of the registry. InprocServer32 is
the standard COM mechanism that relates a component GUID to a DLL file;
ATL will insert the correct module name using the %MODULE% variable.
Other entries under the GUID specify the ProgID, threading model, and type
library to use with this component.

To register a COM coclass into a component category, there are two approaches.
The recommended approach is illustrated above: place GUIDs for component
categories beneath an Implemented Categories key, which in turn is under the
GUID of the coclass. The second approach is to use ATL macros in an objects
header file: BEGIN_CATEGORY_MAP, IMPLEMENTED_CATEGORY, and
END_CATEGORY_MAP. However, these macros do not correctly remove
registry entries as explained in MSDN article Q279459 BUG: Component Category
Registry Entries Not Removed in ATL Component. A header file is supplied with the
GUIDs of all the component categories used by ArcGIS; this is available in
\Program Files\ArcGIS\include\CatIDs\ArcCATIDs.h.

Debugging ATL code
In addition to the standard Visual Studio facilities, ATL provides a number of
debugging options with specific support for debugging COM objects. The output
of these debugging options is displayed in the Visual C++ Output window. The
QueryInterface call can be debugged by setting the symbol _ATL_DEBUG_QI,
AddRef and Release calls with the symbol _ATL_DEBUG_INTERFACES, and
leaked objects can be traced by monitoring the list of leaked interfaces at termi-
nation time when the _ATL_DEBUG_INTERFACES symbol is defined. The
leaked interfaces list has entries like the following:
 INTERFACE LEAK: RefCount = 1, MaxRefCount = 3, {Allocation = 10}

On its own, this does not tell you much apart from the fact that one of your
objects is leaking because an interface pointer has not been released. However,
the Allocation number allows you to automatically break when that interface is
obtained by setting the m_nIndexBreakAt member of the CComModule at server
startup. This in turn calls the function DebugBreak() to force the execution of the
code to stop at the relevant place in the debugger. For this to work the program
flow must be the same.
extern "C"

BOOL WINAPI DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID /
lpReserved/)

{

if (dwReason == DLL_PROCESS_ATTACH)

{

_Module.Init(ObjectMap, hInstance, &LIBID_HISTORYLib);

DisableThreadLibraryCalls(hInstance);

_Module.m_nIndexBreakAt = 10;

}

else if (dwReason == DLL_PROCESS_DETACH)

{

_Module.Term();

}

return TRUE;

}

If the GUID of a component is changed during
development or the type library name is

changed, then it is important to keep the .rgs
content consistent with these changes; otherwise,
the registry will be incorrect and object creation

can fail.

Appendix A • Developer environments • 185

VISUAL C++

Boolean types
Historically, ANSI C did not have a Boolean data type and used int value instead,
where 0 represents false and nonzero represents true. However, the bool data-
type has now become part of ANSI C++. COM APIs are language independent
and define a different Boolean type, VARIANT_BOOL. In addition, Win32 API
uses a different bool type. It is important to use the correct type at the appropri-
ate time. The following table summarizes their usage:

BOOL (int)

VARIANT_BOOL
(16 bit short)

Type

bool

TRUE (1)

VARIANT_TRUE
(-1)

true (1)

FALSE (0)

VARIANT_FALSE
(0)

false (0)

Windows
Data
Type

(defined in
windef.h)

COM
Boolean
values

(wtypes.h)

Defined by
compiler

Used with windows API functions,
often as a return value to indicate
success or failure.

Used in COM APIs for boolean
values. Also used within VARIANT
types; if the VARIANT type is
VT_BOOL, then the VARIANT value
(boolVal) is populated with a
VARIANT_BOOL. Take care to
convert a bool class member variable
to the correct VARIANT_BOOL value.
Often the conditional test
"hook - colon" operator is used. For
example, where bRes is defined as a
bool, then set a result type:
*pVal = bRes ? VARIANT_TRUE :
VARIANT_FALSE;

This is an intrinsic compiler type so
there is more potential for the
compiler to optimize its use. This type
can also be promoted to an int value.
Expressions (e.g., i!=0) return a type
of bool. Typically used for class
member variables and local variables.

True value False value Where defined When to use

String types
Considering that strings (sequences of text characters) are a simple concept, they
have unfortunately become a complex and confusing topic in C++. The two main
reasons for this confusion are the lack of C++ support for variable length strings
combined with the requirement to support ANSI and Unicode character sets
within the same code. As ArcGIS is only available on Unicode platforms, it may
simplify development to remove the ANSI requirements.

The C++ convention for strings is an array of characters terminated with a 0.
This is not always good for performance when calculating lengths of large strings.
To support variable length strings, the character arrays can be dynamically allo-
cated and released on the heap, typically using malloc and free or new and delete.
Consequently, a number of wrapper classes provide this support; CString defined
in MFC and WTL is the most widely used. In addition, for COM usage the BSTR
type is defined and the ATL wrapper class CComBSTR is available.

To allow for international character sets, Microsoft Windows migrated from an
8-bit ANSI character string (8-bit character) representation (found on
Windows 95, Windows 98, and Windows Me platforms) to a 16-bit Unicode
character string (16-bit unsigned short). Unicode is synonymous with wide char-
acters (wchar_t). In COM APIs, OLECHAR is the type used and is defined to be
wchar_t on Windows. Windows operating systems, such as Windows NT, Win-
dows 2000, and Windows XP, natively support Unicode characters. To allow the
same C++ code to be compiled for ANSI and Unicode platforms, compiler
switches are used to change Windows API functions (for example,
SetWindowText) to resolve to an ANSI version (SetWindowTextA) or a Unicode
version (SetWindowTextW). In addition, character-independent types (TCHAR
defined in tchar.h) were introduced to represent a character; on an ANSI build
this is defined to be a char, and on a Unicode build this is a wchar_t, a typedef

186 • ArcGIS Desktop Developer Guide

VISUAL C++

defined as unsigned short. To perform standard C string manipulation, there are
typically three different definitions of the same function; for example, for a case-
insensitive comparison, strcmp provides the ANSI version, wcscmp provides the
Unicode version, and _tcscmp provides the TCHAR version. There is also a fourth
version, _mbscmp, which is a variation of the 8-bit ANSI version that will inter-
pret multibyte character sequences (MBCS) within the 8-bit string.
// Initialize some fixed length strings

char* pNameANSI = "Bill"; // 5 bytes (4 characters plus a terminator)

wchar_t* pNameUNICODE = L"Bill"; // 10 bytes (4 16-bit characters plus a
16-bit terminator)

TCHAR* pNameTCHAR = _T("Bill"); // either 5 or 10 depending on compiler
settings

COM APIs represent variable length strings with a BSTR type; this is a pointer to
a sequence of OLECHAR characters, which is defined as Unicode characters and
is the same as a wchar_t. A BSTR must be allocated and released with the
SysAllocString and SysFreeString windows functions. Unlike C strings, they can
contain embedded zero characters although this is unusual. The BSTR also has a
count value, which is stored four bytes before the BSTR pointer address. The
CComBSTR wrappers are often used to manage the lifetime of a string.

Do not pass a pointer to a C style array of Unicode characters (OLECHAR or
wchar_t) to a function expecting a BSTR. The compiler will not raise an error as
the types are identical. However, the function receiving the BSTR can behave
incorrectly or crash when accessing the string length, which will be random
memory values.
ipFoo->put_WindowTitle(L"Hello"); // This is bad!
ipFoo->put_WindowTitle(CComBSTR(L"Hello")); // This correctly initializes

 and passes a BSTR

ATL provides conversion macros to switch strings between ANSI (A), TCHAR
(T), Unicode (W), and OLECHAR (OLE). In addition, the types can have a
const modifier (C). These macros use the abbreviations shown in brackets with a
“2” between them. For example, to convert between OLECHAR (for example,
an input BSTR) to const TCHAR (for use in a Windows function), use the
OLE2CT conversion macro. To convert ANSI to Unicode, use A2W. These
macros require the USES_CONVERSION macro to be placed at the top of a
method; this will create some local variables that are used by the conversion
macros. When the source and destination character sets are different and the
destination type is not a BSTR, the macro allocates the destination string on the
call stack (using the _alloca run-time function). It’s important to realize this
especially when using these macros within a loop; otherwise, the stack may grow
large and run out of stack space.

STDMETHODIMP CFoo::put_WindowTitle(BSTR bstrTitle)

{

USES_CONVERSION;

if (::SysStringLen(bstrTitle) == 0)

return E_INVALIDARG;

::SetWindowText(m_hWnd, OLE2CT(bstrTitle));

return S_OK;

}

To check if two CComBSTR strings are different,
do not use the not equal (“!=”) operator. The

“==” operator performs a case-sensitive compari-
son of the string contents; however, “!=” will

compare pointer values and not the string
contents, typically returning false.

Appendix A • Developer environments • 187

VISUAL C++

Implementing noncreatable classes
Noncreatable classes are COM objects that cannot be created by CoCreateInstance.
Instead, the object is created within a method call of a different object, and an
interface pointer to the noncreatable class is returned. This type of object is
found in abundance in the geodatabase model. For example, FeatureClass is
noncreatable and can only be obtained by calling one of a number of methods;
one example is the IFeatureWorkspace::OpenFeatureClass method.

One advantage of a noncreatable class is that it can be initialized with private
data using method calls that are not exposed in a COM API. Below is a simplified
example of returning a noncreatable object:

// Foo is a cocreatable object.

IFooPtr ipFoo;

HRESULT hr = ipFoo.CreateInstance(CLSID_Foo);

// Bar is a noncreatable object,cannot use ipBar.CreateInstance(CLSID_Bar).

IBarPtr ipBar;

// Use a method on Foo to create a new Bar object.

hr = ipFoo->CreateBar(&ipBar);

ipBar->DoSomething();

The steps required to change a cocreatable ATL class into a noncreatable class are
shown below:

1. Add “noncreatable” to the .idl file’s coclass attributes.
[

uuid(DCB87952-0716-4873-852B-F56AE8F9BC42),

noncreatable

]

coclass Bar

{

[default] interface IUnknown;

interface IBar;

};

2. Change the class factory implementation to fail any cocreate instances of the
noncreatable class. This happens via ATL’s object map in the main DLL
module.

 BEGIN_OBJECT_MAP(ObjectMap)

 OBJECT_ENTRY(CLSID_Foo, CFoo) // Creatable object

 OBJECT_ENTRY_NON_CREATEABLE(CLSID_Bar, CBar) // Noncreatable object

 END_OBJECT_MAP()

3. Optionally, the registry entries can be removed. First, remove the registry
script for the object from the resources (Bar.rgs in this example). Then change
the class definition DECLARE_REGISTRY_RESOURCEID(IDR_BAR) to
DECLARE_NO_REGISTRY().

4. To create the noncreatable object inside a method, use the CComObject
template to supply the implementation of CreateInstance.

 // Get NonCreatable object Bar (implementing IBar) from COM object Foo

 STDMETHODIMP CFoo::CreateBar(IBar **pVal)

 {

188 • ArcGIS Desktop Developer Guide

VISUAL C++

 if (pVal==0) return E_POINTER;

// Smart pointer to noncreatable object Bar

IBarPtr ipBar = 0;

// C++ Pointer to Bar, with ATL template to supply CreateInstance
implementation

CComObject<CBar>* pBar = 0;

HRESULT hr = CComObject<CBar>::CreateInstance(&pBar);

if (SUCCEEDED(hr))

{

// Increment the ref count from 0 to 1 to protect the object

// from being released in any initialization code.

pBar->AddRef();

// Call C++ methods (not exposed to COM) to initialize the Bar object.

pBar->InitialiseBar(10);

// QI to IBar and hold a smart pointer reference to the object Bar.

hr = pBar->QueryInterface(IID_IBar, (void**)&ipBar);

pBar->Release();

}

// Return IBar pointer to the caller.

*pVal = ipBar.Detach();

return S_OK;

}

ATL in Visual C++ .NET
Visual C++ version 6 is used for the majority of this help. However, with the
release of Visual C++ .NET, there are enhancements and changes that are
relevent to the ArcGIS ATL developer. Some of these are summarized below:

Attribute-based programming—This is a major change introduced in VC7.
Attributes are inserted in the source code enclosed in square brackets—for ex-
ample, [coclass]. Attributes are designed to simplify COM programming and
.NET framework common language run-time development. When you include
attributes in your source files, the compiler works with provider DLLs to insert
code or modify the code in the generated object files. There are attributes that aid
in the creation of .idl files, interfaces, type libraries, and other COM elements. In
the IDE, attributes are supported by the wizards and by the Properties window.
The ATL wizards make extensive use of attributes to inject the ATL boilerplate
code into the class. Consequently, typical COM coclass header files in VC7 con-
tain much less ATL code than at VC6. As IDL is generated from attributes, there
is typically no .idl file present in COM projects as before, and the .idl file is gener-
ated at compile time.

Build configurations—There are only two default build configurations in VC7;
these are ANSI Debug- and Release-based builds. As ArcGIS is only available on

Appendix A • Developer environments • 189

VISUAL C++

Unicode platforms, it is recommended to change these by modifying the project
properties. The general project properties page has an option for “Character Set”.
Change this from “Use Multi-Byte Character Set” to “Use Unicode Character
Set”.

Character conversion macros—The character conversion macros
(USES_CONVERSION, W2A, W2CT, and so forth) have improved alternative
versions. These no longer allocate space on the stack, so they can be used in loops
without running out of stack space. The USES_CONVERSION macro is also no
longer required. These macros are now implemented as classes and begin with a
“C”—for example, CW2A, CW2CT.

Safe array support—This is available with CComSafeArray and
CComSafeArrayBound classes.

Module level global—The module level global CComModule _module has
been split into a number of related classes, for example, CAtlComModule and
CAtlWinModule. To retrieve the resource module instance, use the following
code: _AtlBaseModule.GetResourceInstance();

String support—General variable length string support is now available through
CString in ATL. This is defined in the header files atlstr.h and cstringt.h. If ATL
is combined with MFC, this defaults to MFC’s CString implementation.

Filepath handling—A collection of related functions for processing the com-
ponents of filepaths is available through the CPath class defined in atlpath.h.

ATLServer—This is a new selection of ATL classes designed for writing Web
applications, XML Web services, and other server applications.

#import issues—When using #import, a few modifications are required. For
example, the #import of esriSystem requires an exclude or rename of GetObject,
and the #import of esriGeometry requires an exclude or rename of ISegment.

ATL REFERENCES

The Microsoft Developer Network (MSDN) provides a wealth of documenta-
tion, articles, and samples that are installed with Visual Studio products. ATL
reference documentation for Visual Studio version 6 is under:

MSDN Library - October 2001 / Visual Tools and Languages / Visual Studio 6.0
Documentation / Visual C++ Documentation / Reference / Active Template Library

Additional documentation is also available on the MSDN Web site at
http://www.msdn.microsoft.com.

You may also find the following books to be useful:

Grimes, Richard. ATL COM Programmer’s Reference. Chicago: Wrox Press Inc.,
1988.

Grimes, Richard. Professional ATL COM Programming. Chicago: Wrox Press Inc.,
1988.

Grimes, Richard, Reilly Stockton, Alex Stockton, and Julian Templeman. Begin-
ning ATL 3 COM Programming. Chicago: Wrox Press Inc. 1999.

King, Brad and George Shepherd. Inside ATL. Redmond, WA: Microsoft Press,
1999.

190 • ArcGIS Desktop Developer Guide

VISUAL C++

Rector, Brent, Chris Sells, and Jim Springfield. ATL Internals. Reading, MA:
Addison–Wesley, 1999.

SMART TYPES

Smart types are objects that behave as types. They are C++ class implementations
that encapsulate a data type, wrapping it with operators and functions that make
working with the underlying type easier and less error prone. When these smart
types encapsulate an interface pointer, they are referred to as smart pointers. Smart
pointers work with the IUnknown interface to ensure that resource allocation and
deallocation is correctly managed. They accomplish this by various functions,
construct and destruct methods, and overloaded operators. There are numerous
smart types available to the C++ programmer. The two main smart types covered
here are Direct-To-COM and Active Template Library.

Smart types can make the task of working with COM interfaces and data types
easier, since many of the API calls are moved into a class implementation; how-
ever, they must be used with caution and never without a clear understanding of
how they are interacting with the encapsulated data type.

Direct-To-COM smart types
The smart type classes supplied with DTC are known as the Compiler COM
Support Classes and consist of:

• _com_error—This class represents an exception condition in one of the COM
support classes. This object encapsulates the HRESULT and the IErrorInfo
COM exception objects.

• _com_ptr_t—This class encapsulates a COM interface pointer. See below for
common uses.

• _bstr_t—This class encapsulates the BSTR data type. The functions and opera-
tors on this class are not as rich as the ATL CComBSTR smart type; hence, this
is not normally used.

• _variant_t—This class encapsulates the VARIANT data type. The functions
and operators on this class are not as rich as the ATL CComVariant smart type;
hence, this is not normally used.

To define a smart pointer for an interface, you can use the macro
_COM_SMARTPTR_TYPEDEF like this:

_COM_SMARTPTR_TYPEDEF(IFoo, __uuidof(IFoo));

The compiler expands this as follows:
typedef _com_ptr_t< _com_IIID<IFoo, __uuidof(IFoo)> > IFooPtr;

Once declared, it is simply a matter of declaring a variable as the type of the
interface and appending Ptr to the end of the interface. Below are some common
uses of this smart pointer that you will see in the numerous C++ samples.
// Get a CLSID GUID constant.

extern "C" const GUID __declspec(selectany) CLSID_Foo = \

 {0x2f3b470c,0xb01f,0x11d3,{0x83,0x8e,0x00,0x00,0x00,0x00,0x00,0x00}};

Appendix A • Developer environments • 191

VISUAL C++

// Declare Smart Pointers for IFoo, IBar, and IGak interfaces.

_COM_SMARTPTR_TYPEDEF(IFoo, __uuidof(IFoo));

_COM_SMARTPTR_TYPEDEF(IBar, __uuidof(IBar));

_COM_SMARTPTR_TYPEDEF(IGak, __uuidof(IGak));

STDMETHODIMP SomeClass::Do()

{

 // Create Instance of Foo class and QueryInterface (QI) for IFoo
interface.

 IFooPtr ipFoo;

 HRESULT hr = ipFoo.CreateInstance(CLSID_Foo);

 if (FAILED(hr)) return hr;

 // Call method on IFoo to get IBar.

 IBarPtr ipBar;

 hr = ipFoo->get_Bar(&ipBar);

 if (FAILED(hr)) return hr;

 // QI IBar interface for IGak interface.

 IGakPtr ipGak(ipBar);

 // Call method on IGak.

 hr = ipGak->DoSomething();

 if (FAILED(hr)) return hr;

 // Explicitly call Release().

 ipGak = 0;

 ipBar = 0;

 // Let destructor call IFoo's Release.

 return S_OK;

}

One of the main advantages of using the DTC smart pointers is that they are
automatically generated from the #import compiler statement for all interface and
coclass definitions in a type library. For more details on this functionality, see the
later section ‘Importing ArcGIS type libraries’.

It is possible to create an object implicitly in a DTC smart pointer’s constructor,
for example:
IFooPtr ipFoo(CLSID_Foo)

However, this will raise a C++ exception if there is an error during object cre-
ation—for example, if the DLL file containing the object implementation was
accidentally deleted. This exception will typically be unhandled and cause a crash.
A more robust approach is to avoid exceptions in COM, call CreateInstance
explicitly, and handle the failure code, for example:
IFooPtr ipFoo;
HRESULT hr = ipFoo.CreateInstance(CLSID_Foo);
if (FAILED(hr))

return hr; // Return object creation failure code to caller.

192 • ArcGIS Desktop Developer Guide

VISUAL C++

Active Template Library smart types
ATL defines various smart types, as seen in the list below. You are free to com-
bine both the ATL and DTC smart types in your code. However, it is typical to
use the DTC for smart pointers, as they are easily generated by importing type
libraries. For BSTR and VARIANT types, the ATL versions for CComBSTR,
CComVariant are typically used.

ATL smart types include:

• CComPtr—encapsulates a COM interface pointer by wrapping the AddRef and
Release methods of the IUnknown interface

• CComQIPtr—encapsulates a COM interface and supports all three methods of
the IUnknown interface: QueryInterface, AddRef, and Release

• CComBSTR—encapsulates the BSTR data type

• CComVariant—encapsulates the VARIANT data type

• CRegKey—provides methods for manipulating Windows registry entries

• CComDispatchDriver—provides methods for getting and setting properties and
calling methods through an object’s IDispatch interface

• CSecurityDescriptor—provides methods for setting up and working with the
Discretionary Access Control List (DACL)

This section examines the first four smart types and their uses. The example code
below, written with ATL smart pointers, looks like the following:
// Get a CLSID GUID constant.

extern "C" const GUID __declspec(selectany) CLSID_Foo = \

 {0x2f3b470c,0xb01f,0x11d3,{0x83,0x8e,0x00,0x00,0x00,0x00,0x00,0x00}};

STDMETHODIMP SomeClass::Do ()

{

 // Create Instance of Foo class and QI for IFoo interface.

 CComPtr<IFoo> ipFoo;

 HRESULT hr = CoCreateInstance(CLSID_Foo, NULL, CLSCTX_INPROC_SERVER,
IID_IFoo, (void **)&ipFoo);

 if (FAILED(hr)) return hr;

 // Call method on IFoo to get IBar.

 CComPtr<IBar> ipBar;

 HRESULT hr = ipFoo->get_Bar(&ipBar);

 if (FAILED(hr)) return hr;

 // IBar interface for IGak interface

 CComQIPtr<IGak> ipGak(ipBar);

 // Call method on IGak.

 hr = ipGak->DoSomething();

 if (FAILED(hr)) return hr;

 // Explicitly call Release().

 ipGak = 0;

The equality operator (“== ”) may have
different implementations when used during

smart pointer comparisons. The COM specifica-
tion states object identification is performed by

comparing the pointer values of IUnknown. The
DTC smart pointers will perform necessary QI
and comparison when using the “==” operator.

However, the ATL smart pointers will not do
this, so you must use the ATL IsEqualObject()

method.

Appendix A • Developer environments • 193

VISUAL C++

 ipBar = 0;

 // Let destructor call Foo's Release.

 return S_OK;

}

The most common smart pointer seen in the Visual C++ samples is the DTC type.
In the examples below, which illustrate the BSTR and VARIANT data types, the
DTC pointers are used. When working with CComBSTR, use the text mapping
L“” to declare constant OLECHAR strings. CComVariant derives directly from
the VARIANT data type, meaning that there is no overloading with its implemen-
tation, which in turn simplifies its use. It has a rich set of constructors and func-
tions that make working with VARIANTs straightforward; there are even meth-
ods for reading and writing from streams. Be sure to call the Clear method before
reusing the variable.
 ipFoo->put_Name(CComBSTR(L"NewName"));

 if FAILED(hr)) return hr;

 // Create a VT_I4 variant (signed long).

 CComVariant vValue(12);

 // Change its data type to a string.

 hr = vValue.ChangeType(VT_BSTR);

 if (FAILED(hr)) return hr;

Some method calls in IDL are marked as being optional and take a variant param-
eter. However in Visual C++, these parameters still have to be supplied. To
signify that a parameter value is not supplied, a variant is passed specifying an
error code or type DISP_E_PARAMNOTFOUND:
 CComBSTR documentFilename(L"World.mxd");

 CComVariant noPassword;

 noPassword.vt = VT_ERROR;

 noPassword.scode = DISP_E_PARAMNOTFOUND;

 HRESULT hr = ipMapControl->LoadMxFile(documentFilename, noPassword);

When working with CComBSTR and CComVariant, the Detach() function releases
the underlying data type from the smart type so it can be used when passing a
result as an [out] parameter of a method. The use of the Detach method with
CComBSTR is shown below:
STDMETHODIMP CFoo::get_Name(BSTR* name)

{

 if (name==0) return E_POINTER;

 CComBSTR bsName(L"FooBar");

 *name = bsName.Detach();

}

CComVariant myVar(ipSmartPointer) will result in a variant type of Boolean
(VT_BOOL) and not a variant with an object reference (VT_UNKNOWN) as
expected. It is better to pass unambiguous types to constructors, that is, types
that are not themselves smart types with overloaded cast operators.

CComVariant(VARIANT_TRUE) will create a
short integer variant (type VT_I2) and not a

Boolean variant (type VT_BOOL) as expected.
You can use CComVariant(true) to create a

Boolean variant.

194 • ArcGIS Desktop Developer Guide

VISUAL C++

// Perform QI if IUnknown.
IUnknownPtr ipUnk = ipSmartPointer;
// Ensure IUnknown* constructor of CComVariant is used.
CComVariant myVar2(ipUnk.GetInterfacePtr());

A common practice with smart pointers is to use Detach() to return an object from
a method call. When returning an interface pointer, the COM standard is to
increment reference count of the [out] parameter inside the method implementa-
tion. It is the caller’s responsibility to call Release when the pointer is no longer
required. Consequently, care must be taken to avoid calling Detach() directly on a
member variable. A typical pattern is shown below:
STDMETHODIMP CFoo::get_Bar(IBar **pVal)

{

 if (pVal==0) return E_POINTER;

 // Constructing a local smart pointer using another smart pointer

 // results in an AddRef (if pointer is not 0).

 IBarPtr ipBar(m_ipBar);

 // Detach will clear the local smart pointer, and the

 // interface is written into the output parameter.

 *pVal = ipBar.Detach();

 // This can be combined into one line

 // *pVal = IBarPtr(m_ipBar).Detach();

 return S_OK;

}

The above pattern has the same result as the following code; note that a condi-
tional test for a zero pointer is required before AddRef can be called. Calling
AddRef (or any method) on a zero pointer will result in an access violation
exception and typically crash the application:
STDMETHODIMP CFoo::get_Bar(IBar **pVal)

{

 if (pVal==0) return E_POINTER;

 // Copy the interface pointer (no AddRef) into the output parameter.

 *pVal = m_ipBar;

 // Make sure interface pointer is nonzero before calling AddRef.

 if (*pVal)

 *pVal->AddRef();

 return S_OK;

}

When using a smart pointer to receive an object from an [out] parameter on a
method, use the smart pointer “&” dereference operator. This will cause the
previous interface pointer in the smart pointer to be released. The smart pointer is
then populated with the new [out] value. The implementation of the method will

Appendix A • Developer environments • 195

VISUAL C++

have already incremented the object reference count. This will be released when
the smart pointer goes out of scope:
 {

 IFooPtr ipFoo1, ipFoo2;

 ipFoo1.CreateInstance(CLSID_Foo);

 ipFoo2.CreateInstance(CLSID_Foo);

 // Initalize ipBar Smart pointer from Foo1.

 IBarPtr ipBar;

 ipFoo1->get_Bar(&ipBar);

 // The "&" dereference will call Release on ipBar.

 // ipBar is then repopulated with a new instance of IBar.

 ipFoo2->get_Bar(&ipBar);

 }

 // ipBar goes out of scope, and the smart pointer destructor calls
Release.

Naming conventions

Type names
All type names (class, struct, enum, and typedef) begin with an uppercase letter and
use mixed case for the rest of the name:
 class Foo : public CObject { . . .};

 struct Bar { . . .};

 enum ShapeType { . . . };

 typedef int* FooInt;

Typedefs for function pointers (callbacks) append Proc to the end of their names.
 typedef void (*FooProgressProc)(int step);

Enumeration values all begin with a lowercase string that identifies the project; in
the case of ArcObjects this is esri, and each string occurs on a separate line:
 typedef enum esriQuuxness

 {

 esriQLow,

 esriQMedium,

 esriQHigh

 } esriQuuxness;

Function names
Name functions using the following conventions:

• For simple accessor and mutator functions, use Get<Property> and
Set<Property>:

 int GetSize();

 void SetSize(int size);

• If the client is providing storage for the result, use Query<Property>:
 void QuerySize(int& size);

196 • ArcGIS Desktop Developer Guide

VISUAL C++

• For state functions, use Set<State> and Is<State> or Can<State>:
 bool IsFileDirty();

 void SetFileDirty(bool dirty);

 bool CanConnect();

• Where the semantics of an operation are obvious from the types of argu-
ments, leave type names out of the function names.

Instead of:
 AddDatabase(Database& db);

consider using:
 Add(Database& db);

Instead of:
 ConvertFoo2Bar(Foo* foo, Bar* bar);

consider using:
 Convert(Foo* foo, Bar* bar)

• If a client relinquishes ownership of some data to an object, use
Give<Property>. If an object relinquishes ownership of some data to a
client, use Take<Property>:

 void GiveGraphic(Graphic* graphic);

 Graphic* TakeGraphic(int itemNum);

• Use function overloading when a particular operation works with different
argument types:

 void Append(const CString& text);

 void Append(int number);

Argument names
Use descriptive argument names in function declarations. The argument name
should clearly indicate what purpose the argument serves:
 bool Send(int messageID, const char* address, const char* message);

DEBUGGING TIPS IN DEVELOPER STUDIO

Visual C++ comes with a feature-rich debugger. These tips will help you get the
most from your debugging session.

Backing up after failure
When a function call has failed and you’d like to know why (by stepping into
it), you don’t have to restart the application. Use the Set Next Statement
command to reposition the program cursor back to the statement that failed
(right-click on the statement to bring up the debugging context menu). Then
step into the function.

Edit and Continue
Visual Studio 6 allows changes to source code to be made during a debugging
session. The changes can be recompiled and incorporated into the executing code
without stopping the debugger. There are some limitations to the type of changes
that can be made; in this case, the debug session must be restarted. This feature is
enabled by default; the settings are available in the Settings command of the

Here are some suggestions for a naming
convention. These help identify the variables’

usage and type and so reduce coding errors. This
is an abridged Hungarian notation:

[<scope>_]<type><name>

c

m

Prefix

g

<empty>

Static class member (including constants)

Instance class members

Variable scope

Globally static variable

local variable or struct or public class
member

<type>

Boolean

Data Type

byte or unsigned char

short used as size

DWORD, double word or unsigned long

int (integer)

long

a pointer

string

function

handle

ASCIIZ null-terminated string

WORD unsigned int

short used as coordinates

b

Prefix

by

cx / cy

dw

i

l

p

s

fn

h

sz

w

x, y

doubled

floatf

smart pointerip

<name> describes how the variable is used or
what it contains. The <scope> and <type>

portions should always be lowercase, and the
<name> should use mixed case:

m_hWnd

Variable Name

ipEnvelope

m_pUnkOuter

c_isLoaded

g_pWindowList

a handle to a HWND

Description

a smart pointer to a COM interface

a pointer to an object

a static class member

a global pointer to an object

Appendix A • Developer environments • 197

VISUAL C++

project menu. Click the C/C++ tab, then choose General from the Category
dropdown list. In the Debug info dropdown list, click Program Database for Edit
and Continue.

Unicode string display
To set your debugger options to display Unicode strings, click the Tools menu,
click Options, click Debug, then check the Display Unicode Strings check box.

Variable value display
Pause the cursor over a variable name in the source code to see its current
value. If it is a structure, click it and bring up the QuickWatch dialog box (the
Eyeglasses icon or Shift+F9) or drag and drop it into the Watch window.

Undocking windows
If the Output window (or any docked window, for that matter) seems too
small to you, try undocking it to make it a real window by right-clicking it and
toggling the Docking View item.

Conditional break points
Use conditional break points when you need to stop at a break point only once
some condition is reached—for instance, when a for loop reaches a particular
counter value. To do so, set the break point normally, then bring up the
Breakpoints window (Ctrl+B or Alt+F9). Select the specific break point you just
set and click the Condition button to display a dialog box in which you specify
the break point condition.

Preloading DLLs
You can preload DLLs that you want to debug before executing the program.
This allows you to set break points up front rather than wait until the DLL has
been loaded during program execution. To do this, click Project, click Settings,
click Debug, click Category, then click Additional DLLs. Then, click in the list
area to add any DLLs you want to preload.

Changing display formats
You can change the display format of variables in the QuickWatch dialog box or
in the Watch window using the formatting symbols in the following table.

d, i

Symbol

signed decimal integer

Format

0xF000F065

Value

-268373915

Displays

u unsigned decimal integer 0x0065 101

o unsigned octal integer 0xF065 0170145

x, X hexadecimal integer 61541 0x0000F065

l, h long or short prefix for d, I, u, o, x, X 00406042, hx 0x0C22

f signed floating-point 3./2. 1.500000

e signed scientific notation 3./2. 1.500000e+00

g e or f, whichever is shorter 3./2. 1.5

c single character 0x0065 'e'

s string 0x0012FDE8 "Hello"

su Unicode string "Hello"

hr string 0 S_OK

198 • ArcGIS Desktop Developer Guide

VISUAL C++

To use a formatting symbol, type the variable name followed by a comma and the
appropriate symbol. For example, if var has a value of 0x0065, and you want to
see the value in character form, type “var,c” in the Name column on the tab of
the Watch window. When you press Enter, the character format value appears:
var,c = ‘e’. Likewise, assuming that hr is a variable holding HRESULTs, view a
human-readable form of the HRESULT by typing “hr,hr” in the Name column.

You can use the formatting symbols shown in the following table to format the
contents of memory locations.

ma

Symbol

mw

mu

64 ASCII characters

Format

8 words

2-byte characters (Unicode)

0x0012ffac
.4...0...".0W&..
.....1W&.0.:W..1
...."..1.JO&.1.2
.."..1...0y....1

Value

0x0012ffac
34B3 00CB 3084 8094
22FF 308A 2657 0000

0x0012fc60
8478 77f4 ffff ffff
0000 0000 0000 0000

m
16 bytes in hex, followed by 16 ASCII
characters

0x0012ffac
B3 34 CB 00 84 30 94 80
FF 22 8A 30 57 26 00 00 .4...0....".0W&..

mb
16 bytes in hex, followed by 16 ASCII
characters

0x0012ffac
B3 34 CB 00 84 30 94 80
FF 22 8A 30 57 26 00 00 .4...0...".0W&..

md 4 double-words
0x0012ffac
00CB34B3 80943084 308A22FF 00002657

With the memory location formatting symbols, you can type any value or expres-
sion that evaluates a location. To display the value of a character array as a string,
precede the array name with an ampersand, &yourname. A formatting character
can also follow an expression:
• rep+1,x
• alps[0],mb
• xloc,g
• count,d
To watch the value at an address or the value to which a register points, use the
BY, WO, or DW operators:
• BY returns the contents of the byte pointed at.
• WO returns the contents of the word pointed at.
• DW returns the contents of the doubleword pointed at.
Follow the operator with a variable, register, or constant. If the BY, WO, or DW
operator is followed by a variable, then the environment watches the byte, word,
or doubleword at the address contained in the variable.

Appendix A • Developer environments • 199

VISUAL C++

You can also use the context operator { } to display the contents of any location.

To display a Unicode string in the Watch window or the QuickWatch dialog box,
use the su format specifier. To display data bytes with Unicode characters in the
Watch window or the QuickWatch dialog box, use the mu format specifier.

Keyboard shortcuts
There are numerous keyboard shortcuts that make working with the Visual
Studio Editor faster. Some of the more useful keyboard shortcuts follow.

The text editor uses many of the standard shortcut keys used by Windows
applications, such as Word. Some specific source code editing shortcuts are
listed below.

Correctly indent selected code based on surrounding lines.

Action

Find the matching brace.

Display list of members.

Complete the word, once the number of letters entered allows the editor to recognize it. Use full when
completing function and variable names.

Indents selection one tab stop to the right.

Indents selection one tab to the left.

Alt+F8

Shortcut

Ctrl+]

Ctrl+J

Ctrl+Spacebar

Tab

Shift+Tab

Below is a table of common keyboard shortcuts used in the debugger.

Add or remove breakpoint from current line.

Action

Remove all breakpoints.

Disable breakpoints.

Display auto window and move cursor into it.

Display call stack window and move cursor into it.

Display locals window and move cursor into it.

Display auto window and move cursor into it.

End debugging session.

Execute code one statement at a time, stepping into functions.

Execute code one statement at a time, stepping over functions.

Restart a debugging session.

Resume execution from current statement to selected statement.

Run the application.

Run the application without the debugger.

Set the next statement.

Stop execution.

F9

Shortcut

Ctrl+Shift+F9

Ctrl+F9

Ctrl+Alt+A

Ctrl+Alt+C

Ctrl+Alt+L

Ctrl+Alt+A

Shift+F5

F11

F10

Ctrl+Shift+F5

Ctrl+F10

F5

Ctrl+F5

Ctrl+Shift+F10

Ctrl+Break

200 • ArcGIS Desktop Developer Guide

VISUAL C++

Loading the following shortcuts can greatly increase your productivity with the
Visual Studio development environment.

Close a menu or dialog box, cancel an operation in progress, or place focus in the current document window.

Action

Create a new file.

Create a new project.

Cycle through the MDI child windows one window at a time.

Display the auto window and move the cursor into it.

Display the call stack window and move the cursor into it.

Display the document outline window and move the cursor into it.

Display the find window.

Display the find window. If there is no current Find criteria, put the word under your cursor in the find box.

Display the immediate window and move the cursor into it. Not available if you are in the text editor window.

Display the locals window and move the cursor into it.

Display the output window and move the cursor into it

Display the project explorer window and move the cursor into it.

Display the properties window and move the cursor into it.

Open a file.

Open a project.

Print all or part of the document.

Save all of the files, projects, or documents.

Select all.

Save the current document or selected item or items.

ESC

Shortcut

CTRL+SHIFT+N

CTRL+N

CTRL+F6 or
CTRL+TAB

CTRL+ALT+A

CTRL+ALT+C

CTRL+ALT+T

CTRL+H

CTRL+F

CTRL+ALT+I

CTRL+ALT+L

CTRL+ALT+O

CTRL+ALT+J

CTRL+ALT+P

CTRL+SHIFT+O

CTRL+O

CTRL+P

CTRL+SHIFT+S

CTRL+S

CTRL+A

Navigating through online help topics
Right-click a blank area of a toolbar to display a list of all the available
toolbars. The Infoviewer toolbar contains up and down arrows that allow you
to cycle through help topics in the order in which they appear in the table of
contents. The left and right arrows cycle through help topics in the order that
you visited them.

IMPORTING ARCGIS TYPE LIBRARIES

To reference ArcGIS interfaces, types, and objects, you will need to import the
definitions into Visual C++ types. The #import command automates the creation
of the necessary files required by the compiler. The #import was developed to
support Direct-To-Com. When importing ArcGIS library types, there are a num-
ber of parameters that must be passed.
#pragma warning(push)

#pragma warning(disable : 4192) /* Ignore warnings for types that are
 duplicated in win32 header files.

*/

#pragma warning(disable : 4146) /* Ignore warnings for use of minus on
 unsigned types. */

#import "\Program Files\ArcGIS\com\esriSystem.olb"

/* Type library to generate C++ wrappers.*/ \

 raw_interfaces_only, /* Don't add raw_ to method names. */ \

 raw_native_types, /* Don't map to DTC smart types. */ \

 no_namespace, /* Don't wrap with C++ name space. */ \

 named_guids, /* Named guids and declspecs. */ \

 exclude("OLE_COLOR", "OLE_HANDLE", "VARTYPE")

/* Exclude conflicting types. */

#pragma warning(pop)

Appendix A • Developer environments • 201

VISUAL C++

The main use of #import is to create C++ code for interface definitions and
GUID constants (LIBID, CLSID, and IID) and to define smart pointers. The
exclude (“OLE_COLOR”, “OLE_HANDLE”, “VARTYPE”) is required because
Windows defines these to be unsigned longs, which conflicts with the ArcGIS
definition of long—this was required to support Visual Basic as a client of
ArcObjects, since Visual Basic has no support for unsigned types. There are no
issues with excluding these.

You can view the code generated by #import in the type library header (.tlh) files,
which are similar in format to a .h file. You may also find a type library imple-
mentation (.tli) file, which corresponds to a .cpp file. These files can be large but
are only regenerated when the type libraries change.

There are many type libraries at ArcGIS 9 for different functional areas. You can
start by importing those that contain the definitions that you require. However,
#import does not automatically include all other definitions that the imported
type library requires. For example, when importing the type library esriGeometry,
it will contain references to types that are defined in esriSystem, so esriSystem
must be imported before esriGeometry.

A complete list of library dependencies can be found in the Overview topic for
each library.

Choosing the minimum set of type libraries helps reduce compilation time, al-
though this is not always significant. Here are some steps to help determine the
minimum number of type libraries required:

1. Do a compilation and look at the “missing type definition” errors generated
from code (for example, ICommand not found).

2. Place a #import statement for the library you need a reference for into your
stdafx.h file. Use the LibraryLocator utility or component help to assist in this
task.

3. Compile the project a second time.

4. The compiler will issue errors for types it cannot resolve in the imported type
libraries; these are typically type definitions, such as WKSPoint or interfaces
that are inherited into other interfaces. For example, if working with geom-
etry objects, such as points, start by importing esriGeometry. The compiler will
issue various error messages, such as:

c:\temp\sample\debug\esrigeometry.tlh(869) : error C2061: syntax error :

identifier WKSPoint

Looking up the definition of WKSPoint, you see it is defined in esriSystem.
Therefore, importing esriSystem before esriGeometry will resolve all these
issues.

Below is a typical list of imports for working with the ActiveX controls.
#pragma warning(push)

#pragma warning(disable : 4192) /* Ignore warnings for types that are
duplicated in win32 header files. */

#pragma warning(disable : 4146) /* Ignore warnings for use of minus on
unsigned types. */

202 • ArcGIS Desktop Developer Guide

VISUAL C++

#import "\Program Files\ArcGIS\com\esriSystem.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids, exclude("OLE_COLOR",
"OLE_HANDLE", "VARTYPE")

#import "\Program Files\ArcGIS\com\esriSystemUI.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "\Program Files\ArcGIS\com\esriGeometry.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "\Program Files\ArcGIS\com\esriDisplay.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "\Program Files\ArcGIS\com\esriOutput.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "\Program Files\ArcGIS\com\esriGeoDatabase.olb"
raw_interfaces_only, raw_native_types, no_namespace, named_guids

#import "\Program Files\ArcGIS\com\esriCarto.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

// Some of the Engine controls

#import "\Program Files\ArcGIS\bin\TOCControl.ocx" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "\Program Files\ArcGIS\bin\ToolbarControl.ocx"
raw_interfaces_only, raw_native_types, no_namespace, named_guids

#import "\Program Files\ArcGIS\bin\MapControl.ocx" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "\Program Files\ArcGIS\bin\PageLayoutControl.ocx"
raw_interfaces_only, raw_native_types, no_namespace, named_guids

// additionally for 3D controls

#import "\Program Files\ArcGIS\com\esri3DAnalyst.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "\Program Files\ArcGIS\com\esriGlobeCore.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "\Program Files\ArcGIS\bin\SceneControl.ocx" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "\Program Files\ArcGIS\bin\GlobeControl.ocx" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

A similar issue arises when writing IDL that contains definitions from other type
libraries. In this situation, use importlib just after the library definition. For
example, writing an external command for ArcMap would require you to create a
COM object implementing ICommand. This definition is in esriSystemUI and is
imported into the IDL as follows:
 library WALKTHROUGH1CPPLib

 {

 importlib("stdole32.tlb");

 importlib("stdole2.tlb");

 importlib("\Program Files\ArcGIS\com\esriSystemUI.olb");

 coclass ZoomIn

 {

 [default] interface IUnknown;

 interface ICommand;

 }

 };

Appendix A • Developer environments • 203

VISUAL C++

ATL AND THE ACTIVEX CONTROLS

This section covers how to use ATL to add controls to a dialog box. Although
ATL is focused on providing COM support, it also supplies some useful Windows
programming wrapper classes. One of the most useful is CWindow, a wrapper
around a window handle (HWND). The method names on CWindow correspond
to the Win32 API functions. For example:
HWND buttonHWnd = GetDlgItem(IDC_BUTTON1); // Get window handle of button.

CWindow myButtonWindow(buttonHWnd); // Attach window handle to CWindow class.

myButtonWindow.SetWindowText(_T("Button Title")); // Win32 function to
 change button caption.

CWindow is a generic wrapper for all window handles, so for specific Windows
messages to common windows controls, such as buttons, tree views, or edit
boxes, one approach is to send window messages directly to the window, for
example:
// Set button to be checked (pushed in or checkmarked, depending on button
style)

myButtonWindow.SendMessage(BM_SETCHECK, BST_CHECKED);

However, there are some wrapper classes for these standard window common
controls in a header file atlcontrols.h. This is available as part of an ATL sample
ATLCON supplied in MSDN. See the article “HOWTO: Using Class Wrappers to
Access Windows Common Controls in ATL”. This header file is an early version of
Windows Template Libraries (WTL), available for download from Microsoft.

The Visual Studio Resource Editor can be used to design and position common
windows and ActiveX controls on a dialog box. To create and manipulate the
dialog box, a C++ class is typically created that inherits from CAxDialogImpl.
This class provides the plumbing to create and manage the ActiveX control on a
window. The ATL wizard can be used to supply the majority of the boilerplate
code. The steps to create a dialog box and add an ActiveX control in an ATL
project are discussed below.

1. Click the menu command Insert/New ATL Object.

2. Click the Miscellaneous category, then click the Dialog object.

3. A dialog box resource and a class inheriting from CAxDialogImpl will be
added to your project.

4. Right-click the dialog box in resource view and click Insert ActiveX Control.
This will display a list of available ActiveX controls.

5. Double-click a control in the list to add that control to the dialog box.

For a general discussion of ATL, see the earlier
section ‘ATL in brief ’.

204 • ArcGIS Desktop Developer Guide

VISUAL C++

6. Right-click the control and click Properties to set the control’s design-time
properties.

Accessing a control on a dialog box through a COM interface
To retrieve a handle to the control that is hosted on a form, use the GetDlgControl
ATL method that is inherited from CAxDialogImpl to take a resource ID and
return the underlying control pointer:
ITOCControlPtr ipTOCControl;

GetDlgControl(IDC_TOCCONTROL1, IID_ITOCControl, (void**) &ipTOCControl);

ipTOCControl->AboutBox();

Listening to events from a control
The simplest way to add events is to use the class wizard. Simply right-click the
control and choose Events. Next, click the resource ID of the control, then click
the event (for example, OnMouseDown). Next click Add Handler. Finally, ensure
the dialog box begins listening to events by adding
AtlAdviseSinkMap(this,TRUE) to the OnInitDialog. To finish listening to events,
add a message handler for OnDestroy and add a call to AtlAdviseSinkMap(this,
FALSE).

Creating a control at run time
The CAxWindow class provides a mechanism to create and host ActiveX controls
in a similar manner to any other window class. This may be desirable if the parent
window of the control is also created at run time.
AtlAxWinInit();

CAxWindow wnd;

//m_hWnd is the parent window handle.

//rect is the size of ActiveX control in client coordinates.

//IDC_MYCTL is a unique ID to identify the controls window.

RECT rect = {10,10,400,300};

wnd.Create(m_hWnd, rect, _T("esriReaderControl.ReaderControl"),
WS_CHILD|WS_VISIBLE, 0, IDC_MYCTL);

Make sure dialog boxes that host ActiveX
controls inherit from CAxDialogImpl and not

CDialogImpl. If this mistake is made, the
DoModal method of the dialog box simply exits

with no obvious cause.

Make sure applications that use common
window controls, such as treeview, correctly call
InitCommonControlsEx to load the window

class. Otherwise, the class will not function
correctly.

Make sure applications using COM objects call
CoInitialize. This initializes COM in the

application. Without this call, any CoCreate calls
will fail.

For a detailed discussion on handling events in
ATL, see the later section ‘Handling COM events

in ATL’.

Appendix A • Developer environments • 205

VISUAL C++

Setting the buddy control property
The ToolbarControl and TOCControl need to be associated with a “buddy” control
on the dialog box. This is typically performed in the OnInitDialog windows mes-
sage handler of a dialog box.
LRESULT CEngineControlsDlg::OnInitDialog(UINT uMsg, WPARAM wParam, LPARAM
lParam, BOOL& bHandled)

{

 // Get the Control's interfaces into class member variables.

 GetDlgControl(IDC_TOOLBARCONTROL, IID_IToolbarControl, (void **)
&m_ipToolbarControl);

 GetDlgControl(IDC_TOCCONTROL, IID_ITOCControl, (void **) &m_ipTOCControl);

 GetDlgControl(IDC_PAGELAYOUTCONTROL, IID_IPageLayoutControl, (void **)
&m_ipPageLayoutControl);

 // Connect to the controls.

 AtlAdviseSinkMap(this, TRUE);

 // Set buddy controls.

 m_ipTOCControl->SetBuddyControl(m_ipPageLayoutControl);

 m_ipToolbarControl->SetBuddyControl(m_ipPageLayoutControl);

 return TRUE;

}

Known limitations of Visual Studio C++ Resource Editor and ArcGIS
ActiveX controls

Disabled buddy property on property page
In Visual Studio C++ you cannot set the ‘Buddy’ property of the TOCControl and
the ToolbarControl through the General property page. Visual C++ does not sup-
port controls finding other controls at design time. However, this step can be
performed in code in the OnInitDialog method.

ToolbarControl not resized to the height of one button
In other environments (Visual Basic 6, .NET) the ToolbarControl will automati-
cally resize to be one button high. However, in Visual Studio C++ 6 it can be any
size. In MFC and ATL the ActiveX host classes do not allow controls to deter-
mine their own size.

Design-time property pages disappearing when displaying context-sensitive
help
When viewing the controls property page at design time, right-clicking and click-
ing “What’s This?” will cause the help tip to display; however, the property pages
will then close. This is a limitation of the Visual Studio floating windows com-
bined with the floating tip window from HTML help. Clicking the Help button
provides the same text for the whole property page.

MFC AND THE ACTIVEX CONTROLS

There are many choices for how to work with ArcGIS ActiveX Controls in Visual

206 • ArcGIS Desktop Developer Guide

VISUAL C++

C++, the first of which is what framework to use to host the controls (for
example, ATL or MFC). A second decision is where the control will be hosted
(Dialog, MDI app, and so forth). This section discusses MFC and hosting the
control on a dialog box.

Creating an MFC dialog box-based application
If you do not have a dialog box in your application or component, here are the
steps to create an MFC dialog box application.

1. Launch Visual Studio C++ 6 and click New.

2. Click the Projects tab and choose MFC AppWizard (exe). Enter the project
name and location and click OK.

3. For Step 1 of the wizard: From the radio buttons, change the application type
to Dialog Based. Click Next.

4. For Step 2 of the wizard: The default project features are fine, although you
can uncheck AboutBox to simplify the application. Ensure that the option to
support ActiveX Controls is checked. Click Next.

5. For Step 3 of the wizard: The default settings on this page are fine. The MFC
DLL is shared. Click Next.

6. For Step 4 of the wizard: This shows you what the wizard will generate. Click
Finish.

You should now have a simple dialog box-based application. In the resource view,
you will see “TODO: Place Dialog Controls Here”. You can place buttons, list
boxes, and so forth in this dialog box. The dialog box can also host ActiveX
controls; there are two approaches to doing this, as discussed below. You can also
compile and run this application.

Hosting controls on an MFC dialog box and accessing them using
IDispatch
1. Right-click the MFC dialog box and click Insert ActiveX control.

2. Double-click a control from the list box. The control
appears on the dialog box with a default size.

3. Size and position the control as required.

4. Repeat Steps 1 through 3 for each control.

5. You can right-click the control and choose Properties to
set the control’s design-time properties.

6. To access the control in code, you will need ArcGIS
interface definitions for IMapControl, for example. To do
this, use the #import command in your stdafx.h file. See the
section ‘Importing ArcGIS type libraries’ on how to do this.

Inserting ActiveX controls on a dialog box in
Visual Studio C++ design time. The

TOCControl and MapControl have been
added to the dialog box. The ToolbarControl is

next.

Appendix A • Developer environments • 207

VISUAL C++

7. MFC provides control hosting on a dialog box; this will translate Windows
messages, such as WM_SIZE, into appropriate control method calls. How-
ever, to be able to make calls on a control, there are a few steps you must
perform to go from a resource ID to a controls interface. The following code
illustrates setting the TOCControl’s Buddy to be the MapControl:
// Code to set the Buddy property of the TOCControl to be the MapControl

// Get a pointer to the PageLayoutControl and TOCControl.

IPageLayoutControlPtr ipPageLayoutControl;

GetDlgControl(IDC_PAGELAYOUTCONTROL1, IID_IPageLayoutControl, (void**)
&ipPageLayoutControl);

ITOCControlPtr ipTOCControl;

GetDlgControl(IDC_TOCCONTROL1, IID_ITOCControl, (void**) &ipTOCControl);

// Get the IDispatch of the PageLayoutControl.

IDispatchPtr ipBuddyDisp = ipPageLayoutControl;

// Set the TOCControls Buddy to the map control.

ipTOCControl->putref_Buddy(ipBuddyDisp);

8. To catch events from the controls, double-click the control on the form and
supply the name of a method to be called. By default, the wizard will add an
extra word “On” to the beginning of the event handler. Remove this to avoid
the event handler’s name from becoming “OnOnMouseDownMapcontrol1”.
The wizard will then automatically generate the necessary MFC sink map
macros to listen to events.

Adding controls to an MFC dialog box using
IDispatch wrappers
As all ActiveX controls support IDispatch, this is the typical
approach to add an ActiveX control to an MFC project:

1. Click Project, click Add, then click Components and
Controls.

2. Click Registered ActiveX Controls.

3. Double-click to select a control (for example, ESRI
TOCControl), then click OK to insert a component. Click
OK to generate wrappers. This will add an icon for the
control to the Controls toolbar in Visual Studio.

4. Additional source files are added to your project (for
example, toccontrol.cpp and toccontol.h). These files
contain a wrapper class (for example, CTOCControl) to
provide methods and properties to access the control.
This class will invoke the control through the IDispatch
calling mechanism. Note that IDispatch does incur some
performance overhead to package parameters when
making method and property calls. The wrapper class
inherits from a MFC CWnd class that hosts an ActiveX
control.

5. Repeat Steps 1 through 4 to add each control to the project’s Controls toolbar.

The design environment showing the
TOCControl, MapControl, and

ToolbarControl has been added to the
Controls toolbar and to the dialog box.

208 • ArcGIS Desktop Developer Guide

VISUAL C++

6. Select a control from the Controls toolbar and drag it onto the dialog box.

7. Right-click the control and click Properties. This will allow design-time
properties to be set on the control. NOTE: in Visual Studio C++, you cannot
set the Buddy property of the TOCControl and the ToolbarControl.

This environment does not support controls finding other controls at design
time. However, this step can be performed in code using the OnInitDialog
method.
// Note no addref performed with GetControlUnknown, so no need to release
// this pointer.

LPUNKNOWN pUnk = m_mapcontrol.GetControlUnknown();

LPDISPATCH pDisp =

0;pUnk->QueryInterface(IID_IDispatch, (void **) &pDisp);

// Set TOCControls buddy to be MapControl.

m_toccontrol.SetRefBuddy(pDisp);

pDisp->Release();

8. Right-click the control and choose Class Wizard to launch the class wizard.
Click the Member Variables tab and click the resource ID corresponding to the
control to give the control member variable name. The dialog box class mem-
ber variable can now be used to invoke methods and properties on the con-
trol.

9. To catch control events, click the Message Maps tab of the class wizard and
choose the resource ID of the control. In the list of messages click the event
to catch—for example, OnBeginLabelEdit. Double-click this event and a
handler for it will be added to your dialog box class. By default, the wizard
will add an extra word “On” to the beginning of the event handler. Remove
this to avoid the event handler name becoming OnOnBeginLabelEditToccontrol1.

Do not use the method GetIDispatch (inher-
ited from MFC’s CCmdTarget) on the wrapper

classes; it is intended for objects implementing
IDispatch and not the wrapper classes that are

calling IDispatch. Instead, to get a control’s
IDispatch use

m_mapcontrol.GetControlUnknown() and
QueryInterface to IDispatch. See the above

example of setting the Buddy property.

Visual Studio C++ Class Wizard. Adding member
variables to the dialog box for the ActiveX

controls.

Appendix A • Developer environments • 209

VISUAL C++

HANDLING COM EVENTS IN ATL

Here is a summary of terminology used here when discussing COM events in
Visual C++ and ATL.

Inbound interface—This is the normal case where a COM object implements a
predefined interface.

Outbound interface—This is an interface of methods that a COM object will
fire at various times. For example, the MapCoClass will fire an event on the
IActiveViewEvents in response to changes in the map.

Event source—The source COM object will fire events to an outbound inter-
face when certain actions occur. For example, the MapCoClass is a source of
IActiveViewEvents and will fire the IActiveViewEvents::ItemAdded event when a
new layer is added to the map. The source object can have any number of clients,
or event sink objects, listening to events. Also, a source object may have more than
one outbound interface; for example, the MapCoClass also fires events on an
IMapEvents interface. An event source will typically declare its outbound inter-
faces in IDL with the [source] tag.

Event sink—A COM object that listens to events is said to be a “sink” for
events. The sink object implements the outbound interface; this is not always
advertised in the type libraries because the sink may listen to events internally. An
event sink typically uses the connection point mechanism to register its interest in
the events of a source object.

Connection point—COM objects that are the source of events typically use the
connection point mechanism to allow sinks to hook up to a source. The connec-
tion point interfaces are the standard COM interfaces IConnectionPointContainer and
IConnectionPoint.

Fire event—When a source object needs to inform all the sinks of a particular
action, the source is said to “fire” an event. This results in the source iterating all
the sinks and making the same method call on each. For example, when a layer is
added to a map, The Map coclass is said to fire the ItemAdded event. So all the
objects listening to the Map’s outbound IActiveViewEvents interface will be called
on their implementation of the ItemAdded method.

Advise and unadvise events—To begin receiving events a sink object is said to
“advise” a source object that it needs to receive events. When events are no
longer required, the sink will “unadvise” the source.

The ConnectionPoint mechanism
The source object implements the IConnectionPointContainer interface to allow sinks
to query a source for a specific outbound interface. The following steps are
performed to begin listening to an event. ATL implements this with the AtlAdvise
method.

1. The sink will QI the source object’s IConnectionPointContainer and call
FindConnectionPoint to supply an interface ID for outbound interfaces. To be
able to receive events, the sink object must implement this interface.

2. The source may implement many outbound interfaces and will return a pointer
to a specific connection point object implementing IConnectionPoint to repre-
sent one outbound interface.

210 • ArcGIS Desktop Developer Guide

VISUAL C++

3.The sink calls IConnectionPoint::Advise,
passing a pointer to its own IUnknown
implementation. The source will store this
with any other sinks that may be listening
to events. If the call to Advise was suc-
cessful, the sink will be given an identi-
fier—a simple unsigned long value, called
a cookie—to give back to the source at a
later point when it no longer needs to
listen to events.

The connection is now complete; methods will be called on any listening sinks by
the source. The sink will typically hold onto an interface pointer to the source, so
when a sink has finished listening it can be released from the source object by
calling IConnectionPoint::Unadvise. This is implemented with AtlUnadvise.

IDispatch events versus pure COM events
An outbound interface can be a pure dispatch interface. This means instead of
the source calling directly onto a method in a sink, the call is made via the

IDispatch::Invoke mechanism. The IDispatch mechanism has a
performance overhead to package parameters compared to a
pure vtable COM call. However, there are some situations
where this must be used. ActiveX controls must implement
their default outbound interface as a pure IDispatch interface;
for example, IMapControlEvents2 is a pure dispatch interface.
Second, Microsoft Visual Basic 6 can only be a source of pure
IDispatch events. The connection point mechanism is the same
as for pure COM mechanisms, the main difference being in how
the events are fired.

ATL provides some macros to assist with listening to IDispatch
events; this is discussed on MSDN under ‘Event Handling and
ATL’. There are two templates available, IDispEventImpl and
IDispEventSimpleImpl, that are discussed in the following sec-
tions.

Using IDispEventImpl to listen to events
The ATL template IDispEventImpl will use a type library to
“crack” the IDispatch calls and process the arguments into C++
method calls. The Visual Studio Class wizard can provide this
mechanism automatically when adding an ActiveX control to a

dialog box. Right-click the Control and click Events. In the Class wizard choose
the resource ID of the control, choose the event, then click Add Handler.

The following code illustrates the event handling code added by the wizard, with
some modifications to ensure advise and unadvise are performed.

Connection point mechanism for hooking source
to sink objects

There is a bug in the wizard: it does not add
the advise and unadvise code to the dialog box.

To fix this issue, add a message handler for
OnDestroy. Then in the OnInitDialog handler,

call AtlAdviseSinkMap with a TRUE second
parameter to begin listening to events. Place a
corresponding call to AtlAdviseSinkMap (with

FALSE as the Second parameter) in the
OnDestroy handler. This is discussed further in

the MSDN article “BUG: ActiveX Control
Events Are Not Fired in ATL Dialog

(Q190530)”.

Visual Studio C++ Class Wizard. Adding event
handler to an ActiveX control on a dialog box

Appendix A • Developer environments • 211

VISUAL C++

#pragma once

#include "resource.h" // Main symbols

#include <atlhost.h>

//

// CMyDialog

class CMyDialog :

 public CAxDialogImpl<CMyDialog>,

 public IDispEventImpl<IDC_MAPCONTROL1, CMyDialog>

{

public:

 enum { IDD = IDD_MYDIALOG };

BEGIN_MSG_MAP(CMyDialog)

 MESSAGE_HANDLER(WM_INITDIALOG, OnInitDialog)

 // Add a handler to ensure event unadvise occurs.

 MESSAGE_HANDLER(WM_DESTROY, OnDestroy)

 COMMAND_ID_HANDLER(IDOK, OnOK)

 COMMAND_ID_HANDLER(IDCANCEL, OnCancel)

END_MSG_MAP()

 LRESULT OnInitDialog(UINT uMsg, WPARAM wParam, LPARAM lParam, BOOL&
bHandled)

 {

 // Calls IConnectionPoint::Advise() for each control on the dialog box
with sink map entry

 AtlAdviseSinkMap(this, TRUE);

 return 1; // Let the system set the focus.

 }

 LRESULT OnDestroy(UINT uMsg, WPARAM wParam, LPARAM lParam, BOOL& bHandled)

 {

 // Calls IConnectionPoint::Unadvise() for each control on the dialog box
with sink map entry

 AtlAdviseSinkMap(this, FALSE);

 return 0;

 }

 LRESULT OnOK(WORD wNotifyCode, WORD wID, HWND hWndCtl, BOOL& bHandled)

 {

 EndDialog(wID);

 return 0;

 }

 LRESULT OnCancel(WORD wNotifyCode, WORD wID, HWND hWndCtl, BOOL& bHandled)

 {

 EndDialog(wID);

212 • ArcGIS Desktop Developer Guide

VISUAL C++

 return 0;

 }

 // ATL callback from SinkMap entry

 VOID __stdcall OnMouseDownMapcontrol1(LONG button, LONG shift, LONG x,
LONG y, DOUBLE mapX, DOUBLE mapY)

 {

 MessageBox(_T("MouseDown!"));

 }

BEGIN_SINK_MAP(CMyDialog)

 // Make sure the Event Handlers have __stdcall calling convention.

 // The 0x1 is the Dispatch ID of the OnMouseDown method.

 SINK_ENTRY(IDC_MAPCONTROL1, 0x1, OnMouseDownMapcontrol1)

END_SINK_MAP()

};

Using IDispEventSimpleImpl to listen to events
As the name of this template suggests, it is a simpler version of IDispEventImpl.
The type library is no longer used to turn the IDispatch arguments into a C++
method call. While this may be a simpler implementation, it now requires the
developer to supply a pointer to a structure describing the format of the event
parameters. This structure is typically placed in the .cpp file. For example, here is
the structure describing the parameters of an OnMouseDown event for the
MapControl:
_ATL_FUNC_INFO g_ParamInfo_MapControl_OnMouseDown =

{

 CC_STDCALL, // Calling convention

 VT_EMPTY, // Return type

 6, // Number of arguments

 {VT_I4, VT_I4, VT_I4, VT_I4, VT_R8, VT_R8} // VariantArgument types

};

The header file now inherits from IDispEventSimpleImpl and uses a different
macro, SINK_ENTRY_INFO, in the SINK_MAP. Also, the events interface ID is
required; #import can be used to define this symbol. Note that a dispatch interface
is normally prefixed with DIID instead of IID.
#pragma once

#include "resource.h" // Main symbols

#include <atlhost.h>

// reference to structure defining event parameters

extern _ATL_FUNC_INFO g_ParamInfo_MapControl_OnMouseDown;

//

// CMyDialog2

class CMyDialog2 :

 public CAxDialogImpl<CMyDialog2>,

 public IDispEventSimpleImpl<IDC_MAPCONTROL1, CMyDialog2,
&DIID_IMapControlEvents2>

The following issues with events are documented
on the MSDN Knowledge Base when using

IDispEventImpl. Fixes to ATL code are shown in
MSDN for these issues; however, it is not always

desirable to modify or copy ATL header files. In
this case, the IDispEventSimpleImpl can be

used instead.
BUG: Events Fail in ATL Containers when

Enum Used as Event Parameter (Q237771)
BUG: IDispEventImpl Event Handlers May

Give Strange Values for Parameters
(Q241810)

See the ‘Importing ArcGIS type libraries’ section
earlier in this appendix for an explanation of

#import.

Appendix A • Developer environments • 213

VISUAL C++

{

public:

// Message handler code removed, it is the same as CMyDialog using
IDispEventSimple

BEGIN_SINK_MAP(CMyDialog2)

 // Make sure the Event Handlers have __stdcall calling convention.

 // The 0x1 is the Dispatch ID of the OnMouseDown method.

 SINK_ENTRY_INFO(IDC_MAPCONTROL1, // ID of event source

DIID_IMapControlEvents2, // interface to listen to

0x1, // dispatch ID of MouseDown

OnMapControlMouseDown, // method to call when event arrives

&g_ParamInfo_MapControl_OnMouseDown) // parameter info for method
call

END_SINK_MAP()

};

Listening to more than one IDispatch event interface on a COM
object
If a single COM object needs to receive events from more than one IDispatch
source, then this can cause compiler issues with ambiguous definitions of the
DispEventAdvise method. This is not normally a problem in a dialog box, as
AtlAdviseSinkMap will handle all the connections. The ambiguity can be avoided
by introducing different typedefs each time IDispEventSimpleImpl is inherited. The
following example illustrates a COM object called CListen, which is a sink for
dispatch events from a MapControl and a PageLayoutControl.
#pragma once

#include "resource.h" // Main symbols

// This is the parameter information

extern _ATL_FUNC_INFO g_ParamInfo_MapControl_OnMouseDown;

extern _ATL_FUNC_INFO g_ParamInfo_PageLayoutControl_OnMouseDown;

//

// Define some typedefs of the dispatch template.

//

class CListen; // Forward definition

typedef IDispEventSimpleImpl<0, CListen, &DIID_IMapControlEvents2>

 IDispEventSimpleImpl_MapControl;

typedef IDispEventSimpleImpl<1, CListen, &DIID_IPageLayoutControlEvents>

 IDispEventSimpleImpl_PageLayoutControl;

//

// CListen

class ATL_NO_VTABLE CListen :

214 • ArcGIS Desktop Developer Guide

VISUAL C++

 public CComObjectRootEx<CComSingleThreadModel>,

 public CComCoClass<CListen,&CLSID_Listen>,

 public IDispEventSimpleImpl_MapControl,

 public IDispEventSimpleImpl_PageLayoutControl,

 public IListen

{

public:

 CListen()

 {

 }

DECLARE_REGISTRY_RESOURCEID(IDR_LISTEN)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CListen)

 COM_INTERFACE_ENTRY(IListen)

END_COM_MAP()

// Associated source and dispatchID to a method call

BEGIN_SINK_MAP(CListen)

 SINK_ENTRY_INFO(0, // ID of event source

DIID_IMapControlEvents2, // Interface to listen to

 0x1, // Dispatch ID to receive

 OnMapControlMouseDown, // Method to call when event arrives
 &g_ParamInfo_MapControl_OnMouseDown) // Parameter info for

 // method call

 SINK_ENTRY_INFO(1,

 DIID_IPageLayoutControlEvents,

 0x1,

 OnPageLayoutControlMouseDown,

 &g_ParamInfo_PageLayoutControl_OnMouseDown)

END_SINK_MAP()

// IListen

public:

 STDMETHOD(SetControls)(IUnknown* pMapControl, IUnknown*
pPageLayoutControl);

 STDMETHOD(Clear)();

private:

 void __stdcall OnMapControlMouseDown(long button, long shift, long x, long
y, double mapX, double mapY);

 void __stdcall OnPageLayoutControlMouseDown(long button, long shift, long
x, long y, double pageX, double pageY);

 IUnknownPtr m_ipUnkMapControl;

 IUnknownPtr m_ipUnkPageLayoutControl;

};

Appendix A • Developer environments • 215

VISUAL C++

The implementation of CListen contains the following code to start listening to
the controls; the typdef avoids the ambiguity of the DispEventAdvise implementa-
tion.
 // Start listening to the MapControl.

 IUnknownPtr ipUnk = pMapControl;

 HRESULT hr = IDispEventSimpleImpl_MapControl::DispEventAdvise(ipUnk);

 if (SUCCEEDED(hr))

 m_ipUnkMapControl = ipUnk; // Store pointer to MapControl for Unadvise.

 // Start listening to the PageLayoutControl.

 ipUnk = pPageLayoutControl;

 hr = IDispEventSimpleImpl_PageLayoutControl::DispEventAdvise(ipUnk);

 if (SUCCEEDED(hr))

 m_ipUnkPageLayoutControl = ipUnk; // Store pointer to PageLayoutControl
// for Unadvise.

The implementation of CListen also contains the following code to UnAdvise
and stop listening to the controls.
 // Stop listening to the MapControl.

 if (m_ipUnkMapControl!=0)

 IDispEventSimpleImpl_MapControl::DispEventUnadvise(m_ipUnkMapControl);

 m_ipUnkMapControl = 0;

 if (m_ipUnkPageLayoutControl!=0)

 IDispEventSimpleImpl_PageLayoutControl::DispEventUnadvise(m_ipUnkPageLayoutControl);

 m_ipUnkPageLayoutControl= 0;

Creating a COM events source
For an object to be a source of events, it will need to provide an implementation
of IConnectionPointContainer and a mechanism to track which sinks are listening to
which IConnectionPoint interfaces. ATL provides this through the
IConnectionPointContainerImpl template. In addition, ATL provides a wizard to
generate code to fire IDispatch events for all members of a given dispatch events
interface. Below are the steps to modify an ATL COM coclass to support a con-
nection point:

1. First ensure that your ATL coclass has been compiled at least once. This will
allow the wizard to find an initial type library.

2. In Class view, right-click the COM object and click Implement Connection
Point.

3. Either use a definition of events from the IDL in the project or click Add
Type Lib to browse for another definition.

4. Check the outbound interface to be implemented in the coclass.

216 • ArcGIS Desktop Developer Guide

VISUAL C++

5. Clicking OK will modify your ATL class and generate the proxy classes in a
header file, with a name ending in CP, for firing events.

If the wizard fails to run, use the following example, which illustrates a
coclass that is a source of ITOCControlEvents, a pure dispatch interface.
#pragma once

#include "resource.h" // Main symbols

#include "TOCControlCP.h" // Include generated connection point class
 // for firing events.

//

// CMyEventSource

class ATL_NO_VTABLE CMyEventSource :

public CComObjectRootEx<CComSingleThreadModel>,

public CComCoClass<CMyEventSource,&CLSID_MyEventSource>,

public IMyEventSource,

public CProxyITOCControlEvents< CMyEventSource >, // Generated
 // ConnectionPoint class

public IConnectionPointContainerImpl< CMyEventSource > // Implementation
 // of Connection point Container

{

public:

CMyEventSource()

{

}

DECLARE_REGISTRY_RESOURCEID(IDR_MYEVENTSOURCE)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CMyEventSource)

COM_INTERFACE_ENTRY(IMyEventSource)

COM_INTERFACE_ENTRY(IConnectionPointContainer) // Allow QI to this
 // interface.

END_COM_MAP()

Appendix A • Developer environments • 217

VISUAL C++

// List of available connection points

BEGIN_CONNECTION_POINT_MAP(CMyEventSource)

CONNECTION_POINT_ENTRY(DIID_ITOCControlEvents)

END_CONNECTION_POINT_MAP()

};

The connection point class (TOCControlEventsCP.h in the above example) contains
code to fire an event to all sink objects on a connection point.

There is one method in the class for each event beginning “Fire_”. Each method
will build a parameter list of variants to pass as an argument to the dispatch
Invoke method. Each sink is iterated, and a pointer to the sink is stored in a
vector m_vec member variable inherited from IConnectionPointContainerImpl. Note
that m_vec can contain pointers to zero; this must be checked before firing the
event.
template <class T>

class CProxyITOCControlEvents : public IConnectionPointImpl<T,
&DIID_ITOCControlEvents, CComDynamicUnkArray>

{

public:

 VOID Fire_OnMouseDown(LONG button, LONG shift, LONG x, LONG y)

 {

 // Package each of the parameters into an IDispatch argument list.

 T* pT = static_cast<T*>(this);

 int nConnectionIndex;

 CComVariant* pvars = new CComVariant[4];

 int nConnections = m_vec.GetSize();

 // Iterate each sink object.

 for (nConnectionIndex = 0; nConnectionIndex < nConnections;
nConnectionIndex++)

 {

 pT->Lock();

 CComPtr<IUnknown> sp = m_vec.GetAt(nConnectionIndex);

 pT->Unlock();

 IDispatch* pDispatch = reinterpret_cast<IDispatch*>(sp.p);

 // Note m_vec can contain 0 entries so it is important to check for this.

 if (pDispatch != NULL)

 {

 // Build up the argument list.

 pvars[3] = button;

 pvars[2] = shift;

 pvars[1] = x;

 pvars[0] = y;

 DISPPARAMS disp = { pvars, NULL, 4, 0 };

 // Fire the dispatch method, 0x1 is the DispatchId for MouseDown.

 pDispatch->Invoke(0x1, IID_NULL, LOCALE_USER_DEFAULT,
DISPATCH_METHOD, &disp, NULL, NULL, NULL);

218 • ArcGIS Desktop Developer Guide

VISUAL C++

 }

 }

 delete[] pvars; // Clean up the parameter list.

 }

 VOID Fire_OnMouseUp(LONG button, LONG shift, LONG x, LONG y)

 {

 // ... Other events

To fire an event from the source, simply call the Fire_OnMouseDown when re-
quired.

A similar approach can be used for firing events to a pure COM (non IDispatch)
interface. The wizard will not generate the connection point class, so this must be
written by hand; the following example illustrates a class that will fire an
ITOCBuddyEvents::ActiveViewReplaced event; ITOCBuddyEvents is a pure COM,
non-IDispatch interface. The key difference is that there is no need to package
the parameters. A direct method call can be made.
template < class T >

class CProxyTOCBuddyEvents : public IConnectionPointImpl< T,
&IID_ITOCBuddyEvents, CComDynamicUnkArray >

{

 // This class based on the ATL-generated connection point class

public:

 void Fire_ActiveViewReplaced(IActiveView* pNewActiveView)

 {

 T* pT = static_cast< T* >(this);

 int nConnectionIndex;

 int nConnections = this->m_vec.GetSize();

 for (nConnectionIndex = 0; nConnectionIndex < nConnections;
nConnectionIndex++)

 {

 pT->Lock();

 CComPtr< IUnknown > sp=this->m_vec.GetAt(nConnectionIndex);

 pT->Unlock();

 ITOCBuddyEvents* pTOCBuddyEvents = reinterpret_cast< ITOCBuddyEvents*
>(sp.p);

 if (pTOCBuddyEvents)

 pTOCBuddyEvents->ActiveViewReplaced(pNewActiveView);

 }

 }

};

IDL declarations for an object that supports events
When an object is exported to a type library, the event interfaces are declared by
using the [source] tag against the interface name. For example, an object that fires
ITOCBuddyEvents declares
[source] interface ITOCBuddyEvents;

If the outbound interface is a dispatch events interface, dispinterface is used in-
stead of interface. Additionally, a coclass can have a default outbound interface;

Appendix A • Developer environments • 219

VISUAL C++

this is specified with the [default] tag. Default interfaces are identified by some
design environments (for example, Visual Basic 6). Following is the declaration
for the default outbound events interface:
[default, source] dispinterface IMyEvents2;

Event circular reference issues
After a sink has performed an advise on the source, there is typically a COM
circular reference. This occurs because the source has an interface pointer to a
sink to fire events, and this keeps the sink alive. Similarly, a sink object has a
pointer back to the source so it can perform the unadvise at a later point. This
keeps the source alive. Therefore, these two objects will never be released and
may cause substantial memory leaks. There are a number of ways to tackle this
issue:

1. Ensure the advise and unadvise are made on a method or windows message
that is guaranteed to happen in pairs and is independent of an object’s life
cycle. For example, in a coclass that is also receiving windows messages, use
the Windows messages OnCreate (WM_CREATE) and OnDestroy
(WM_DESTROY) to advise and unadvise.

2. If an ATL dialog box class needs to listen to events, one approach is to make
the dialog box a private COM class and implement the events interface di-
rectly on the dialog box. ATL allows this without much extra coding. This
approach is illustrated below. The dialog box class creates a CustomizeDialog
coclass and listens to ICustomizeDialogEvents. The OnInitDialog and OnDestroy
methods (corresponding to window messages) are used to advise and unadvise
on the CustomizeDialog.
class CEngineControlsDlg :

public CAxDialogImpl<CEngineControlsDlg>,

public CComObjectRoot, // Make Dialog Class a COM Object as well.

public ICustomizeDialogEvents // Implement this interface directly on
this object.

CEngineControlsDlg() : m_dwCustDlgCookie(0) {} // initialize cookie for
event listening

 // ... Event handlers and other standard dialog code has been removed ...

BEGIN_COM_MAP(CEngineControlsDlg)

COM_INTERFACE_ENTRY(ICustomizeDialogEvents) // Make sure QI works for
 // this event interface.

END_COM_MAP()

// ICustomizeDialogEvents implementation to receive events on this
// dialog box.

STDMETHOD(OnStartDialog)();

STDMETHOD(OnCloseDialog)();

ICustomizeDialogPtr m_ipCustomizeDialog; // The source of events

DWORD m_dwCustDlgCookie; // Cookie for
 // CustomizeDialogEvents

}

220 • ArcGIS Desktop Developer Guide

The dialog box needs to be created like a noncreatable COM object, rather
than on the stack as a local variable. This allocates the object on the heap and
allows it to be released through the COM reference counting mechanism.
// Create dialog class on the heap using ATL CComObject template.

CComObject<CEngineControlsDlg> *myDlg;

CComObject<CEngineControlsDlg>::CreateInstance(&myDlg);

myDlg->AddRef(); // Keep dialog box alive until you're done with it.

myDlg->DoModal(); // Launch the dialog box; when method returns, dialog box
 // has exited.

myDlg->Release(); // Typically, the refcount now goes to 0 and frees the
 // dialog object.

3. Implement an intermediate COM object for use by the sink; this is sometimes
called a listener or event helper object. This object typically contains no imple-
mentation but simply uses C++ method calls to forward events to the sink
object. The listener has its reference count incremented by the source, but the
sink’s reference count is unaffected. This breaks the cycle, allowing the sink’s
reference count to reach 0 when all other references are released. As the sink
executes its destuctor code, it instructs the listener to unadvise and release the
source.

An alternative to using C++ pointers to communicate between listener and sink
is to use an interface pointer that is a weak reference. That is, the listener con-
tains a COM pointer to the sink but does not increment the sink’s reference
count. It is the responsibility of the sink to ensure that this pointer is not ac-
cessed after the sink object has been released.

VISUAL C++

Appendix A • Developer environments • 221

.NET APPLICATION PROGRAMMING INTERFACE

WHAT IS THE .NET FRAMEWORK?

The .NET Framework is an integral Windows component that supports building
and running the next generation of applications and XML Web services. The
.NET Framework is designed to fulfill the following objectives:

• Provide a consistent object-oriented programming environment whether
object code is stored and executed locally, executed locally but Internet-
distributed, or executed remotely.

• Provide a code execution environment that minimizes software deployment
and versioning conflicts.

• Provide a code execution environment that guarantees safe execution of code,
including code created by an unknown or semitrusted third party.

• Provide a code execution environment that eliminates the performance prob-
lems of scripted or interpreted environments.

• Make the developer experience consistent across widely varying types of
applications, such as Windows-based applications and Web-based applications.

• Build all communication on industry standards to ensure that code based on
the .NET Framework can integrate with any other code.

The .NET Framework has two main components: the common language run time
and the .NET Framework class library. The common language run time is the
foundation of the .NET Framework. You can think of the run time as an agent
that manages code at execution time, providing core services such as memory
management, thread management, and remoting, while also enforcing strict type
safety and other forms of code accuracy that ensure security and robustness. In
fact, the concept of code management is a fundamental principle of the run time.
Code that targets the run time is known as managed code, while code that does
not target the run time is known as unmanaged code. The class library, the other
main component of the .NET Framework, is a comprehensive, object-oriented
collection of reusable types that you can use to develop applications ranging from
traditional command-line or graphical user interface applications to applications
based on the latest innovations provided by ASP.NET, such as Web Forms and
XML Web services.

The .NET Framework can be hosted by unmanaged components that load the
common language run time into their processes and initiate the execution of
managed code, thereby creating a software environment that can exploit both
managed and unmanaged features. The .NET Framework not only provides
several run-time hosts but also supports the development of third-party run-time
hosts.

For example, ASP.NET hosts the run time to provide a scalable, server-side
environment for managed code. ASP.NET works directly with the run time to
enable ASP.NET applications and XML Web services, both of which are dis-
cussed later in this topic.

Internet Explorer is an example of an unmanaged application that hosts the run
time (in the form of a MIME type extension). Using Internet Explorer to host
the run time enables you to embed managed components or Windows Forms
controls in HTML documents. Hosting the run time in this way makes managed

222 • ArcGIS Desktop Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

mobile code (similar to Microsoft ActiveX controls) possible, but with significant
improvements that only managed code can offer, such as semitrusted execution
and secure isolated file storage.

The following sections describe the main components and features of the .NET
Framework in greater detail.

Features of the common language run time
The common language run time manages memory, thread execution, code execu-
tion, code safety verification, compilation, and other system services. These

features are intrinsic to the managed code that runs on
the common language run time.

Regarding security, managed components are awarded
varying degrees of trust, depending on a number of
factors that includes their origin, such as the Internet,
enterprise network, or local computer. This means that
a managed component might or might not be able to
perform file access operations, registry access opera-
tions, or other sensitive functions, even if it is being
used in the same active application.

The run time enforces code access security. For ex-
ample, users can trust that an executable embedded in a
Web page can play an animation onscreen or sing a song
but cannot access their personal data, file system, or
network. The security features of the run time thus
enable legitimate Internet-deployed software to be
exceptionally feature rich.

The run time also enforces code robustness by imple-
menting a strict type-and-code-verification infrastruc-
ture called the common type system (CTS). The CTS
ensures that all managed code is self-describing. The

various Microsoft and third-party language compilers generate managed code that
conforms to the CTS. This means that managed code can consume other managed
types and instances, while strictly enforcing type fidelity and type safety.

In addition, the managed environment of the run time eliminates many common
software issues. For example, the run time automatically handles object layout
and manages references to objects, releasing them when they are no longer being
used. This automatic memory management resolves the two most common appli-
cation errors: memory leaks and invalid memory references.

The run time also accelerates developer productivity. For example, programmers
can write applications in their development language of choice, yet take full
advantage of the run time, the class library, and components written in other
languages by other developers. Any compiler vendor who chooses to target the
run time can do so. Language compilers that target the .NET Framework make
the features of the .NET Framework available to existing code written in that
language, greatly easing the migration process for existing applications.

This diagram shows the relationship of the
common language run time and the class library
to your applications and to the overall system. It

also illustrates how managed code operates
within a larger architecture.

Appendix A • Developer environments • 223

.NET APPLICATION PROGRAMMING INTERFACE

While the run time is designed for the software of the future, it also supports
software of today and yesterday. Interoperability between managed and
unmanaged code enables developers to continue to use necessary COM compo-
nents and DLLs.

The run time is designed to enhance performance. Although the common lan-
guage run time provides many standard run-time services, managed code is never
interpreted. A feature called just-in-time (JIT) compiling enables all managed
code to run in the native machine language of the system on which it is execut-
ing. Meanwhile, the memory manager removes the possibilities of fragmented
memory and increases memory locality-of-reference to further increase perfor-
mance.

Finally, the run time can be hosted by high-performance, server-side applications,
such as Microsoft SQL Server™ and Internet Information Services (IIS). This
infrastructure enables you to use managed code to write your business logic, while
still enjoying the superior performance of the industry’s best enterprise servers
that support run-time hosting.

.NET Framework class library
The .NET Framework class library is a collection of reusable types that tightly
integrate with the common language run time. The class library is object-oriented,
providing types from which your own managed code can derive functionality.
This not only makes the .NET Framework types easy to use, but also reduces the
time associated with learning new features of the .NET Framework. In addition,
third-party components can integrate seamlessly with classes in the .NET Frame-
work.

For example, the .NET Framework collection classes implement a set of inter-
faces that you can use to develop your own collection classes. Your collection
classes will blend seamlessly with the classes in the .NET Framework.

As you would expect from an object-oriented class library, the .NET Framework
types enable you to accomplish a range of common programming tasks, including
string management, data collection, database connectivity, and file access. In
addition to these common tasks, the class library includes types that support a
variety of specialized development scenarios. For example, you can use the .NET
Framework to develop the following types of applications and services:

• Console applications

• Windows GUI applications (Windows Forms)

• ASP.NET applications

• XML Web services

• Windows services

For example, the Windows Forms classes are a comprehensive set of reusable
types that vastly simplify Windows GUI development. If you write an ASP.NET
Web Form application, you can use the Windows Forms classes.

224 • ArcGIS Desktop Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

Client application development
Client applications are the closest to a traditional style of application in Win-
dows-based programming. These are the types of applications that display win-
dows or forms on the desktop, enabling a user to perform a task. Client applica-
tions include applications such as word processors and spreadsheets, as well as
custom business applications such as data entry and reporting tools. Client appli-
cations usually employ windows, menus, buttons, and other GUI elements, and
they likely access local resources, such as the file system, and peripherals such as
printers.

Another kind of client application is the traditional ActiveX control (now re-
placed by the managed Windows Forms control) deployed over the Internet as a
Web page. This application is much like other client applications: it is executed
natively, has access to local resources, and includes graphical elements.

In the past, developers created such applications using C or C++ in conjunction
with the Microsoft Foundation Classes or with a rapid application development
(RAD) environment such as Microsoft Visual Basic. The .NET Framework
incorporates aspects of these existing products into a single, consistent develop-
ment environment that drastically simplifies the development of client applica-
tions.

The Windows Forms classes contained in the .NET Framework are designed to
be used for GUI development. You can easily create command windows, buttons,
menus, toolbars, and other screen elements with the flexibility necessary to
accommodate shifting business needs.

For example, the .NET Framework provides simple properties to adjust visual
attributes associated with forms. In some cases the underlying operating system
does not support changing these attributes directly, and in these cases the .NET
Framework automatically re-creates the forms. This is one of many ways in
which the .NET Framework integrates the developer interface, making coding
simpler and more consistent.

Unlike ActiveX controls, Windows Forms controls have semitrusted access to a
user’s computer. This means that binary or natively executing code can access
some of the resources on the user’s system, such as GUI elements and limited file
access, without being able to access or compromise other resources. Because of
code access security, many applications that once needed to be installed on a user’s
system can now be safely deployed through the Web. Your applications can imple-
ment the features of a local application while being deployed like a Web page.

Server application development
Server-side applications in the managed world are implemented through run-time
hosts. Unmanaged applications host the common language run time, which allows
your custom managed code to control the behavior of the server. This model
provides you with all the features of the common language run time and class
library while gaining the performance and scalability of the host server.

Appendix A • Developer environments • 225

.NET APPLICATION PROGRAMMING INTERFACE

Server-side managed code
ASP.NET is the hosting environment that enables developers to use the .NET
Framework to target Web-based applications. However, ASP.NET is more than a
run-time host; it is a complete architecture for developing Web sites and Internet-
distributed objects using managed code. Both Web Forms and XML Web services
use IIS and ASP.NET as the publishing mechanism for applications, and both
have a collection of supporting classes in the .NET Framework.

XML Web services, an important evolution in Web-based technology, are distrib-
uted, server-side application components similar to common Web sites. However,
unlike Web-based applications, XML Web services components have no UI and
are not targeted for browsers, such as Internet Explorer and Netscape Navigator.

Instead, XML Web services consist of reusable
software components designed to be consumed
by other applications, such as traditional client
applications, Web-based applications, or even
other XML Web services. As a result, XML Web
services technology is rapidly moving application
development and deployment into the highly
distributed environment of the Internet.

If you have used earlier versions of ASP technology, you will immediately notice
the improvements that ASP.NET and Web Forms offer. For example, you can
develop Web Forms pages in any language that supports the .NET Framework. In
addition, your code no longer needs to share the same file with your HTTP text
(although it can continue to do so if you prefer). Web Forms pages execute in
native machine language because, like any other managed application, they take
full advantage of the run time. In contrast, unmanaged ASP pages are always
scripted and interpreted. ASP.NET pages are faster, more functional, and easier to
develop than unmanaged ASP pages because they interact with the run time like
any managed application.

The .NET Framework also provides a collection of classes and tools to aid in
development and consumption of XML Web services applications. XML Web
services are built on standards such as SOAP, a remote procedure-call protocol;
XML, an extensible data format; and WSDL, the Web Services Description
Language. The .NET Framework is built on these standards to promote
interoperability with non-Microsoft solutions.

For example, the Web Services Description Language tool included with the
.NET Framework SDK can query an XML Web service published on the Web,
parse its WSDL description, and produce C# or Visual Basic source code that
your application can use to become a client of the XML Web service. The source
code can create classes derived from classes in the class library that handle all the
underlying communication using SOAP and XML parsing. Although you can use
the class library to consume XML Web services directly, the Web Services De-
scription Language tool and the other tools contained in the SDK facilitate your
development efforts with the .NET Framework.

If you develop and publish your own XML Web service, the .NET Framework
provides a set of classes that conform to all the underlying communication stan-

This diagram illustrates a basic network schema
with managed code running in different server

environments. Servers, such as IIS and SQL
Server, can perform standard operations while

your application logic executes the managed
code.

226 • ArcGIS Desktop Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

dards, such as SOAP, WSDL, and XML. Using those classes enables you to focus
on the logic of your service, without concerning yourself with the communica-
tions infrastructure required by distributed software development.

Finally, like Web Forms pages in the managed environment, your XML Web
service will run with the speed of native machine language using the scalable
communication of IIS.

INTEROPERATING WITH COM

Code running under the .NET Framework’s control is called managed code;
conversely, code executing outside the .NET Framework is termed unmanaged
code. COM is one example of unmanaged code. The .NET framework interacts
with COM via a technology known as COM Interop.

For COM Interop to work, the CLR requires metadata for all the COM types.
This means that the COM type definitions normally stored in the type libraries
need to be converted to .NET metadata. This is easily accomplished with the
Type Library Importer utility (tlbimp.exe), which ships with the .NET Frame-
work SDK. This utility generates interop assemblies containing the metadata for
all the COM definitions in a type library. Once metadata is available, .NET clients
can seamlessly create instances of COM types and call its methods as though they
were native .NET instances.

Primary interop assemblies
Primary interop assemblies (PIAs) are the official, vendor-supplied, .NET type
definitions for interoperating with underlying COM types. Primary interop assem-
blies are strongly named by the COM library publisher to guarantee uniqueness.

ESRI provides primary interop assemblies for all the ArcObjects type libraries
that are implemented with COM. ArcGIS .NET developers should only use these
primary interop assemblies that are installed in the Global Assembly Cache (GAC)
during install if version 1.1 of the .NET Framework is detected. ESRI only
supports the interop assemblies that ship with ArcGIS. You can identify a valid
ESRI assembly by its public key (8FC3CC631E44AD86).

COM wrappers
The .NET run time provides wrapper classes to make both managed and

unmanaged clients believe
they are communicating
with objects within their
respective environment.
When managed clients call
a method on a COM
object, the run time creates
a run-time callable wrapper
(RCW) that handles the
marshalling between the
two environments. Simi-
larly, the .NET run time
creates COM callable
wrappers for the reverse

case, COM clients communicating with .NET components. The illustration above
outlines this process.

Appendix A • Developer environments • 227

.NET APPLICATION PROGRAMMING INTERFACE

Exposing .NET components to COM
When creating .NET components that COM clients will make use of, follow the
guidelines listed below to ensure interoperability.

• Avoid using parameterized constructors.

• Avoid using static methods.

• Define event source interfaces in managed code.

• Include HRESULTs in user-defined exceptions.

• Supply GUIDs for types that require them.

• Expect inheritance differences.

For more information, review ‘Interoperating with Unmanaged Code’ in the
MSDN help collection.

Performance considerations
COM Interop clearly adds a new layer of overhead to applications, but the over-
all cost of interoperating between COM and .NET is small and often unnotice-
able. However, the cost of creating wrappers and having them marshall between
environments does add up; if you suspect COM Interop is the bottleneck in your
application’s performance, try creating a COM worker class that wraps all the
chatty COM calls into one function that managed code can invoke. This improves
performance by limiting the marshalling between the two environments.

COM to .NET type conversion
Generally speaking, the type library importer imports types with the same name
they originally had in COM. All imported types are additionally added to a
namespace that has the following naming convention: ESRI.ArcGIS plus the
name of the library. For example, the namespace for the Geometry library is
ESRI.ArcGIS.Geometry. All types are identified by their complete namespace and
type name.

Classes, Interfaces, and Members
All COM coclasses are converted to managed classes; the managed classes have
the same name as the original with ‘Class’ appended. For example, the Point
coclass is PointClass.

All classes additionally have an interface with the same name as the coclass that
corresponds to the default interface for the coclass. For example, the PointClass
has a Point interface. The type library importer adds this interface so clients can
register event sinks.

The .NET classes additionally have class members that .NET supports but COM
does not. Each member of each interface the class implements is added as a class
member. Any property or method a class implants can be accessed directly from
the class rather than having to cast to a specific interface. Since interface member
names are not unique, name conflicts are resolved by prefixing the interface name
and an underscore to the name of each conflicting member. When member names
conflict, the first interface listed with the coclass remains unchanged.

228 • ArcGIS Desktop Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

Properties in C# that have by-reference or multiple parameters are not supported
with the regular property syntax. In these cases, it is necessary to use the accessor
methods instead. The following code excerpt shows an example.
 ILayer layer = mapControl.get_Layer(0);

 MessageBox.Show(layer.Name);

Events
The type library importer creates several types that enable managed applications
to sink to events fired by COM classes. The first type is a delegate that is named
after the event interface plus an underscore followed by the event name, then the
word EventHandler. For example, the SelectionChanged event defined on the
IActiveViewEvents interface has the following delegate defined:
IActiveViewEvents_SelectionChangedEventHandler. The importer additionally creates
an event interface with a ‘_Event’ suffix added to the end of the original inter-
face name. For example, IActiveViewEvents generates IActiveViewEvents_Event.
Use the event interfaces to set up event sinks.

Non-OLE Automation Compliant Types
COM types that are not OLE automation compliant generally do not work in
.NET. ArcGIS contains a few noncompliant methods and these cannot be used in
.NET. However, in most cases, supplemental interfaces have been added that
have the offending members rewritten compliantly. For example, when defining
an envelope via a point array, you can’t use IEnvelope::DefineFromPoints; instead,
you must use IEnvelopeGEN::DefineFromPoints.
[VB.NET]

Dim pointArray(1) As IPoint

pointArray(0) = New PointClass

pointArray(1) = New PointClass

pointArray(0).PutCoords(0, 0)

pointArray(1).PutCoords(100, 100)

Dim env As IEnvelope

Dim envGEN As IEnvelopeGEN

env = New EnvelopeClass

envGEN = New EnvelopeClass

'Won't compile

'env.DefineFromPoints(2, pointArray)

'Doesn't work

env.DefineFromPoints(2, pointArray(0))

'Works

envGEN.DefineFromPoints(pointArray)

[C#]

IPoint[] pointArray = new IPoint[2];

pointArray[0] = new PointClass();

pointArray[1] = new PointClass();

pointArray[0].PutCoords(0,0);

Appendix A • Developer environments • 229

.NET APPLICATION PROGRAMMING INTERFACE

pointArray[1].PutCoords(100,100);

IEnvelope env = new EnvelopeClass();

IEnvelopeGEN envGEN = new EnvelopeClass();

// Won't compile

env.DefineFromPoints(3, ref pointArray);

// Doesn't work

env.DefineFromPoints(3, ref pointArray[0]);

// Works

envGEN.DefineFromPoints(ref pointArray);

.NET PROGRAMMING TECHNIQUES AND CONSIDERATIONS

This section contains several programming tips and techniques to help developers
who are moving to .NET.

Casting between interfaces (QueryInterface)
.NET uses casting to jump from one interface to another interface on the same
class. In COM this is called QueryInterface. VB .NET and C# cast differently.

VB .NET
There are two types of casts, implicit and explicit. Implicit casts require no
additional syntax, whereas explicit casts require cast operators.

geometry = point 'Implicit cast

geometry = CType(point, IGeometry) 'Explicit cast

When casting between interfaces, it perfectly acceptable to use implicit casts
because there is no chance of data loss as there is when casting between numeric
types. However, when casts fail, an exception (System.InvalidCastException) is
thrown; to avoid handling unnecessary exceptions, it’s best to test if the object
implements both interfaces beforehand. The recommended technique is to use the
TypeOf keyword, which is a comparison clause that tests whether an object is
derived from or implements a particular type, such as an interface. The example
below performs an implicit conversion from an IPoint to an IGeometry only if at
run time it is determined that the Point class implements IGeometry.

Dim point As New PointClass

Dim geometry As IGeometry

If (TypeOf point Is IGeometry) Then

geometry = point

End If

If you prefer using the Option Strict On statement to restrict implicit conver-
sions, use the CType function to make the cast explicit. The example below adds
an explicit cast to the code sample above.

Dim point As New PointClass

Dim geometry As IGeometry

If (TypeOf point Is IGeometry) Then

geometry = CType(point, IGeometry)

End If

230 • ArcGIS Desktop Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

C#
In C#, the best method for casting between interfaces is to use the as operator.
Using the as operator is a better coding strategy than a straight cast because it
yields a null on a conversion failure rather than raising an exception.

The first line of code below is a straight cast. This is acceptable practice if you
are absolutely certain the object in question implements both interfaces; if the
object does not implement the interface you are attempting to get a handle to,
.NET will throw an exception. A safer model is to use the as operator that re-
turns a null if the object cannot return a reference to the desired interface.

IGeometry geometry = point; // Straight cast

IGeometry geometry = point as IGeometry; // As operator

The example below shows how to handle the possibility of a returned null inter-
face handle.

IPoint point = new PointClass();

IGeometry geometry = point;

IGeometry geometry = point as IGeometry;

if (geometry != null)

{

Console.WriteLine(geometry.GeometryType.ToString());

}

Binary compatibility
Most existing ArcGIS Visual Basic 6 developers are familiar with the notion of
binary compatibility. This compiler flag in Visual Basic ensures that components
maintain the same GUID each time they are compiled. When this flag is not set, a
new GUID is generated for each class every time the project is compiled. This has
the adverse side effect of having to then re-register the components in their
appropriate component categories.

To keep from having the same problem in .NET, you can use the GUIDAttribute
class to manually specify a GUID for a class. Explicitly specifying a GUID guar-
antees that it will never change. If you do not specify a GUID, the type library
exporter will automatically generate one when you first export your components
to COM and, although the exporter is meant to keep using the same GUIDs on
subsequent exports, it’s not guaranteed to do so.

The example below shows a GUID attribute being applied to a class.
[VB.NET]

<GuidAttribute("9ED54F84-A89D-4fcd-A854-44251E925F09")> _

Public Class SampleClass

'

End Class

[C#]

[GuidAttribute("9ED54F84-A89D-4fcd-A854-44251E925F09")]

Public class SampleClass

{

//

}

Appendix A • Developer environments • 231

.NET APPLICATION PROGRAMMING INTERFACE

Events
An event is a message sent by an object to signal the occurrence of an action. The
action could be caused by user interaction, such as a mouse click, or it could be
triggered by some other program logic. The object that raises (triggers) the event
is called the event sender. The object that captures the event and responds to it is
called the event receiver.

In event communication, the event sender class does not know which object or
method will receive (handle) the events it raises. What is needed is an intermedi-
ary (or pointer-like mechanism) between the source and the receiver. The .NET
Framework defines a special type (<Delegate>) that provides the functionality
of a function pointer.

A delegate is a class that can hold a reference to a method. Unlike other classes, a
delegate class has a signature, and it can hold references only to methods that
match its signature. A delegate is thus equivalent to a type-safe function pointer
or a callback.

To consume an event in an application, you must provide an event handler (an
event-handling method) that executes program logic in response to the event and
register the event handler with the event source. The event handler must have the
same signature as the event delegate. This process is referred to as event wiring.

The ArcObjects code excerpt below shows a custom ArcMap command wiring up
to the Map object’s selection changed event. For simplicity, the event is wired up
in the OnClick event.
[VB.NET]

'Can't use WithEvents because the outbound interface is not the

'default interface

'IActiveViewEvents is the sink event interface.

'SelectionChanged is the name of the event.

'IActiveViewEvents_SelectionChangedEventHandler is the delegate name.

'Declare the delegate.

Private SelectionChanged As IActiveViewEvents_SelectionChangedEventHandler

Private m_mxDoc As IMxDocument

Public Overloads Overrides Sub OnCreate(ByVal hook As Object)

Dim app As IApplication

app = hook

m_mxDoc = app.Document

End Sub

Public Overrides Sub OnClick()

Dim map As Map

map = m_mxDoc.FocusMap

'Create an instance of the delegate, add it to SelectionChanged event.

SelectionChanged = New
IActiveViewEvents_SelectionChangedEventHandler(AddressOf OnSelectionChanged)

232 • ArcGIS Desktop Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

AddHandler map.SelectionChanged, SelectionChanged

End Sub

'Event handler

Private Sub OnSelectionChanged()

MessageBox.Show("Selection Changed")

End Sub

[C#]

// IActiveViewEvents is the sink event interface.

// SelectionChanged is the name of the event.

// IActiveViewEvents_SelectionChangedEventHandler is the delegate name.

IActiveViewEvents_SelectionChangedEventHandler m_selectionChanged;

private ESRI.ArcGIS.ArcMapUI.IMxDocument m_mxDoc;

public override void OnCreate(object hook)

{

IApplication app = hook as IApplication;

m_mxDoc = app.Document as IMxDocument;

}

public override void OnClick()

{

IMap map = m_mxDoc.FocusMap;

// Create a delegate instance and add it to SelectionChanged event.

m_selectionChanged = new
IActiveViewEvents_SelectionChangedEventHandler(SelectionChanged);

((IActiveViewEvents_Event)map).SelectionChanged += m_selectionChanged;

}

// Event handler

private void SelectionChanged()

{

MessageBox.Show("Selection changed");

}

Error handling
The error handling construct in Visual Studio .NET is known as structured
exception handling. The constructs used may be new to Visual Basic users but
should be familiar to users of C++ or Java.

Structured exception handling is straightforward to implement, and the same
concepts are applicable to either VB .NET or C#. VB .NET allows backward
compatibility by also providing unstructured exception handling, via the familiar
On Error GoTo statement and Err object, although this model is not discussed in
this section.

Exceptions
Exceptions are used to handle error conditions in Visual Studio .NET. They
provide information about the error condition.

Appendix A • Developer environments • 233

.NET APPLICATION PROGRAMMING INTERFACE

An exception is an instance of a class that inherits from the System.Exception
base class. Many different types of exception classes are provided by the .NET
Framework, and it is also possible to create your own exception classes. Each
type extends the basic functionality of the System.Exception class by allowing
further access to information about the specific type of error that has occurred.

An instance of an Exception class is created and thrown when the .NET Frame-
work encounters an error condition. You can deal with exceptions by using the
Try, Catch, Finally construct.

Try, Catch, Finally
This construct allows you to catch errors that are thrown within your code. An
example of this construct is shown below. An attempt is made to rotate an
envelope, which throws an error.
[VB.NET]

Dim env As IEnvelope = New EnvelopeClass()

env.PutCoords(0D, 0D, 10D, 10D)

Dim trans As ITransform2D = env

trans.Rotate(env.LowerLeft, 1D)

Catch ex As System.Exception

MessageBox.Show("Error: " + ex.Message)

' Perform any tidy up code.

End Try

[C#]

{

IEnvelope env = new EnvelopeClass();

env.PutCoords(0D, 0D, 10D, 10D);

ITransform2D trans = (ITransform2D) env;

trans.Rotate(env.LowerLeft, 1D);

}

catch (System.Exception ex)

{

MessageBox.Show("Error: " + ex.Message);

}

{

// Perform any tidy up code.

}

You place a try block around code that may fail. If the application throws an
error within the Try block, the point of execution will switch to the first Catch
block.

The Catch block handles a thrown error. The application executes the Catch
block when the Type of a thrown error matches the Type of error specified by
the Catch block. You can have more than one Catch block to handle different
kinds of errors. The code shown below checks first if the exception thrown is a
DivideByZeroException.

234 • ArcGIS Desktop Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

[VB.NET]

...

Catch divEx As DivideByZeroException

' Perform divide by zero error handling.

Catch ex As System.Exception

' Perform general error handling.

...

[C#]

...

catch (DivideByZeroException divEx)

{

// Perform divide by zero error handling.

}

catch (System.Exception ex)

{

// Perform general error handling.

}

...

If you do have more than one Catch block, note that the more specific exception,
Types, should precede the general System.Exception, which will always succeed
the type check.

The application always executes the Finally block, either after the Try block
completes, or after a Catch block, if an error was thrown. The Finally block
should, therefore, contain code that must always be executed, for example, to
clean up resources such as file handles or database connections.

If you do not have any cleanup code, you do not need to include a Finally block.

Code without exception handling
If a line of code not contained in a Try block throws an error, the .NET run time
searches for a Catch block in the calling function, continuing up the call stack
until a Catch block is found.

If no Catch block is specified in the call stack at all, the exact outcome may
depend on the location of the executed code and the configuration of the .NET
run time. Therefore, it is advisable to include at least a Try, Catch, Finally con-
struct for all entry points to a program.

Errors from COM components
The structured exception handling model differs from the HRESULT model used
by COM. C++ developers can easily ignore an error condition in an HRESULT if
they want; in Visual Basic 6, however, an error condition in an HRESULT popu-
lates the Err object and raises an error.

The .NET run time’s handling of errors from COM components is somewhat
similar to the way COM errors were handled at VB6. If a .NET program calls a

Appendix A • Developer environments • 235

.NET APPLICATION PROGRAMMING INTERFACE

function in a COM component (through the COM interop services) and returns
an error condition as the HRESULT, the HRESULT is used to populate an
instance of the COMException class. This is then thrown by the .NET run time,
where you can handle it in the usual way, by using a Try, Catch, Finally block.

Therefore, it is advisable to enclose all code that may raise an error in a COM
component within a Try block with a corresponding Catch block to catch a
COMException. Below is the first example rewritten to check for an error from a
COM component.
[VB.NET]

Dim env As IEnvelope = New EnvelopeClass()

env.PutCoords(0D, 0D, 10D, 10D)

Dim trans As ITransform2D = env

trans.Rotate(env.LowerLeft, 1D)

Catch COMex As COMException

If (COMex.ErrorCode = -2147220984) Then

MessageBox.Show("You cannot rotate an Envelope")

MessageBox.Show _

("Error " + COMex.ErrorCode.ToString() + ": " + COMex.Message)

End If

Catch ex As System.Exception

MessageBox.Show("Error: " + ex.Message)

...

[C#]

{

IEnvelope env = new EnvelopeClass();

env.PutCoords(0D, 0D, 10D, 10D);

ITransform2D trans = (ITransform2D) env;

trans.Rotate(env.LowerLeft, 1D);

}

catch (COMException COMex)

{

if (COMex.ErrorCode == -2147220984)

MessageBox.Show("You cannot rotate an Envelope");

MessageBox.Show ("Error " + COMex.ErrorCode.ToString() + ": " +
COMex.Message);

}

catch (System.Exception ex)

{

MessageBox.Show("Error: " + ex.Message);

}

...

The COMException class belongs to the System.Runtime.InteropServices
namespace. It provides access to the value of the original HRESULT via the
ErrorCode property, which you can test to find out which error condition
occurred.

236 • ArcGIS Desktop Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

Throwing errors and the exception hierarchy
If you are coding a user interface, you may want to attempt to correct the error
condition in code and try the call again. Alternatively, you may want to report the
error to the user to let them decide which course of action to take; here you can
make use of the Message property of the Exception class to identify the problem.

However, if you are writing a function that is only called from other code, you
may want to deal with an error by creating a specific error condition and propa-
gating this error to the caller. You can do this using the Throw keyword.

To throw the existing error to the caller function, write your error handler using
the Throw keyword, as shown below.
[VB.NET]

Catch ex As System.Exception

...

[C#]

catch (System.Exception ex)

{

 throw;

}

...

If you wish to propagate a different or more specific error back to the caller, you
should create a new instance of an Exception class, populate it appropriately, and
throw this exception back to the caller. The example shown below uses the
ApplicationException constructor to set the Message property.
[VB.NET]

Catch ex As System.Exception

 Throw New ApplicationException _

 ("You had an error in your application")

...

[C#]

catch (System.Exception ex)

{

 throw new ApplicationException("You had an error in your application");

}

...

If you do this, however, the original exception is lost. To allow complete error
information to be propagated, the Exception class includes the InnerException
property. This property should be set to equal the caught exception, before the
new exception is thrown. This creates an error hierarchy. Again, the example
shown below uses the ApplicationException constructor to set the
InnerException and Message properties.
[VB.NET]

Catch ex As System.Exception

Dim appEx As System.ApplicationException = _

New ApplicationException("You had an error in your application", ex)

Appendix A • Developer environments • 237

.NET APPLICATION PROGRAMMING INTERFACE

Throw appEx

...

[C#]

catch (System.Exception ex)

{

System.ApplicationException appEx =

new ApplicationException("You had an error in your application", ex);

throw appEx;

}

...

In this way, the function that eventually deals with the error condition can access
all the information about the cause of the condition and its context.

If you throw an error, the application will execute the current function’s Finally
clause before control is returned to the calling function.

Working with resources

Using strings and embedded images directly (no localization)
If your customization does not support localization now, and you do not intend
for it to support localization later, you can use strings and images directly without
the need for resource files. For example, strings can be specified and used directly
in your code:
[VB.NET]

Me.TextBox1.Text = "My String"

[C#]

this.textBox1.Text = "My String";

Image files (BMPs, JPEGs, PNGs, and so forth) can be embedded in your assem-
bly as follows:

1. Right-click the Project in the Solution Explorer, click Add, then click Add
Existing Item.

2. In the Add Existing Item dialog box, browse to your image file and click
Open.

3. In the Solution Explorer, select the image file you just added, then press F4 to
display its properties.

4. Set the Build Action property to Embedded Resource.

238 • ArcGIS Desktop Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

Now you can reference the image in your code. For example, the following
code creates a bitmap object from the first embedded resource in the assembly:

[VB.NET]

Dim res() As String = GetType(Form1).Assembly.GetManifestResourceNames()

If (res.GetLength(0) > 0)

Dim bmp As System.Drawing.Bitmap = New System.Drawing.Bitmap(_

GetType(Form1).Assembly.GetManifestResourceStream(res(0)))

...

[C#]

string[] res = GetType().Assembly.GetManifestResourceNames();

if (res.GetLength(0) > 0)

{

System.Drawing.Bitmap bmp = new System.Drawing.Bitmap(

GetType().Assembly.GetManifestResourceStream(res[0]));

 ...

Creating resource files
Before attempting to provide localized resources, you should ensure you are
familiar with the process of creating resource files for your .NET projects. Even
if you do not intend to localize your resources, you can still use resource files
instead of using images and strings directly, as described above.

Visual Studio .NET projects use an XML-based file format to contain managed
resources. These XML files have the extension .resx and can contain any kind of
data (images, cursors, and so forth) so long as the data is converted to ASCII
format. RESX files are compiled to .resources files, which are binary representa-
tions of the resource data. Binary .resources files can be embedded by the com-
piler into either the main project assembly or a separate satellite assembly that
contains only resources.

The following options are available to create your resource files. Each is discussed
below.

Appendix A • Developer environments • 239

.NET APPLICATION PROGRAMMING INTERFACE

• Creating a .resx file for string resources

• Creating resource files for image resources

• Compiling a .resx file into a .resources file

Creating a .resx file for string resources
If all you need to localize is strings—not images or cursors—you can use Visual
Studio.NET to create a new .resx file that will be compiled automatically into a
.resources module embedded in the main assembly.

1. Right-click the Project name in the Solution Explorer, click Add, then click
Add New Item.

2. In the Add New Item dialog box, click Assembly Resource File.

3. Open the new .resx file in Visual Studio, and add name–value pairs for the
culture-specific strings in your application.

4. When you compile your project, the .resx file will be compiled into a .re-
sources module inside your main assembly.

Creating resource files for image resources
The process of adding images, icons, or cursors to a resources file in .NET is more
complex than creating a file containing only string values, because the tools
currently available in the Visual Studio .NET IDE can only be used to add string
resources.

However, a number of sample projects are available with the Visual Studio .NET
Framework SDK that can help you work with resource files. One such sample is
the Resource Editor (ResEditor).

A list of tools useful for working with resources
can be found in the Microsoft .NET Framework

documentation.

240 • ArcGIS Desktop Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

The ResEditor sample can be used to add images, icons, imagelists, and strings to
a resource file. The tool cannot be used to add cursor resources. Files can be
saved as either .resx or .resource files.

Creating resource files programmatically
You can create XML .resx files containing resources programmatically by using
the ResXResourceWriter class (part of the .NET framework). You can create
binary .resources files programmatically by using the ResourceWriter class (also part
of the .NET framework). These classes will allow more flexibility to add the
kind of resources you require.

These classes may be particularly useful if you want to add resources that cannot
be handled by the .NET Framework SDK samples and tools, for example, cur-
sors. The basic usage of the two classes is similar: first, create a new resource
writer class specifying the filename, then add resources individually by using the
AddResource method.

The code below demonstrates how you could create a new .resx file using the
ResXResourceWriter class and add a bitmap and cursor to the file.
[VB.NET]

Dim img As System.Drawing.Image = CType(New
System.Drawing.Bitmap("ABitmap.bmp"), System.Drawing.Image)

Dim cur As New System.Windows.Forms.Cursor("Pencil.cur")

Dim rsxw As New System.Resources.ResXResourceWriter("en-AU.resx")

rsxw.AddResource("MyBmp_jpg", img)

rsxw.AddResource("Mycursor_cur", cur)

rsxw.Close()

Additional information on the ResEditor sample
can be found in the Microsoft .NET Framework

documentation.

The ResEditor sample is provided by Microsoft
as source code. You must build the sample first if
you want to create resource files using this tool.

You can find information on building the SDK
samples under the SDK subdirectory of your

Visual Studio .NET installation.

Appendix A • Developer environments • 241

.NET APPLICATION PROGRAMMING INTERFACE

[C#]

System.Drawing.Image img = (System.Drawing.Bitmap) new
System.Drawing.Bitmap("ABitmap.bmp");

System.Windows.Forms.Cursor cur = new
System.Windows.Forms.Cursor("Pencil.cur");

System.Resources.ResXResourceWriter rsxw = new
System.Resources.ResXResourceWriter("en-GB.resx");

rsxw.AddResource("MyBmp_jpg", img);

rsxw.AddResource("Mycursor_cur", cur);

rsxw.Close();

The PanTool developer sample (Samples\Map Analysis\Tools) includes a script—
MakeResources—that shows you how to use the ResXResourceWriter class to
write bitmap, cursor files, and strings into a .resx file. It also shows you how to
read from a .resx file using the ResXResourceReader class. The sample includes a
.resx file that holds a bitmap, two cursors, and three strings.

Compiling a .resx file into a .resources file
XML-based .resx files can be compiled to binary .resources files either by using
the Visual Studio IDE or the ResX Generator (ResXGen) sample in the tutorial.

• Any .resx file included in a Visual Studio project will be compiled to a
.resources module when the project is built. See the ‘Using resources with
localization’ section below for more information on how multiple resource
files are used for localization.

• You can convert a .resx file into a .resources file independently of the build
process using the .NET Framework SDK command resgen, for example:
resgen PanToolCS.resx PanToolCS.resources

Using resources with localization
This section explains how you can localize resources for your customizations.

How to use resources with localization
In .NET, a combination of a specific Language and Country/Region is called a
culture. For example, the American dialect of English is indicated by the string
“en-US”, and the Swiss dialect of French is indicated by “fr-CH”.

If you want your project to support various cultures (languages and dialects), you
should construct a separate .resources file containing culture-specific strings and
images for each culture.

When you build a .NET project that uses resources, .NET embeds the default
.resources file in the main assembly. Culture-specific .resources files are compiled
into satellite assemblies (using the naming convention <Main Assembly
Name>.resources.dll) and placed in subdirectories of the main build directory.
The subdirectories are named after the culture of the satellite assembly they
contain. For example, Swiss–French resources would be contained in a fr-CH
subdirectory.

More information on the ResXGen can be found
in the Microsoft .NET Framework documenta-

tion.

242 • ArcGIS Desktop Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

When an application runs, it automatically uses the resources contained in the
satellite assembly with the appropriate culture. The appropriate culture is deter-
mined from the Windows settings. If a satellite assembly for the appropriate
culture cannot be found, the default resources (those embedded in the main
assembly) will be used instead.

The following sections give more information on creating your own .resx and
.resources files.

Embedding a default .Resources file in your project
1. Right-click the Project name in the Solution Explorer, click Add, then click

Add Existing Item to navigate to your .resx or .resources file.

2. In the Solution Explorer, choose the file you just added and click F4 to dis-
play its properties.

3. Set the Build Action property to Embedded Resource.

This will ensure that your application always has a set of resources to fall back
on if there isn’t a resource DLL for the culture your application runs in.

Creating .Resources.dll files for cultures supported by your project
1. First, ensure you have a default .resx or .resources file in your project.

2. Take the default .resx or .resources file and create a separate localized file for
each culture you want to support.

• Each file should contain resources with the same Names; the Value of each
resource in the file should contain the localized value.

• Localized resource files should be named according to their culture, for
example, <BaseName>.<Culture>.resx or
<BaseName>.<Culture>.resources.

3. Add the new resource files to the project, ensuring each one has its Build
Action set to Embedded Resource.

4. Build the project.

The compiler and linker will create a separate satellite assembly for each
culture. The satellite assemblies will be placed in subdirectories under the
directory holding your main assembly. The subdirectories will be named by
culture, allowing the .NET run time to locate the resources appropriate to the
culture in which the application runs.

The main (default) resources file will be embedded in the main assembly.

Assembly versioning and redirection
Applications that are built using a specific version of a strongly named assembly
require the same assembly at run time. For example, if you create an application
that uses ESRI.ArcGIS.System version 9.0.452, you will not be able to run this
application on a system that has a newer version of ESRI.ArcGIS.System (for
example, 9.0.0.692) installed. This may be the case if someone has installed a
newer version of ArcGIS; however, using configuration files you can redirect an
application to use a newer version of an assembly.

The Visual Basic .NET and C# flavors of the Pan
Tool developer sample illustrate how to localize

resources for German language environments.
The sample can be found in the Developer

Samples\ArcMap\Commands and Tools\Pan Tool
folder. Strictly speaking, the sample only requires

localized strings, but the images have been
changed for the “de” culture as well, to serve as

illustration.

A batch file named buildResources.bat has been
provided in the Pan Tool sample to create the
default .resources files and the culture-specific

satellite assemblies.

Appendix A • Developer environments • 243

.NET APPLICATION PROGRAMMING INTERFACE

 You have two choices for redirecting assemblies:

• Application configuration files

• Machine configuration files

Application configuration files
Application configuration files contain settings specific to an application. This file
contains configuration settings that the common language run time reads, such as
assembly binding policy or remoting objects, and settings that the application can
read.

The name and location of the application configuration file depend on the
application’s host, which can be one of the following:

• Executable-hosted application—The configuration file for an application
hosted by the executable host is in the same directory as the application. The
name of the configuration file is the name of the application with a .config
extension. For example, an application called myApp.exe can be associated
with a configuration file called myApp.exe.config.

• ASP.NET-hosted application—ASP.NET configuration files are called
Web.config. Configuration files in ASP.NET applications inherit the settings of
configuration files in the URL path. For example, given the URL
www.esri.com/aaa/bbb, where www.esri.com/aaa is the Web application, the
configuration file associated with the application is located at www.esri.com/
aaa. ASP.NET pages that are in the subdirectory /bbb use both the settings
that are in the configuration file at the application level and the settings in the
configuration file that are in /bbb.

• Internet Explorer-hosted application—If an application hosted in Internet
Explorer has a configuration file, the location of this file is specified in a
<link> tag with the following syntax:
<link rel="ConfigurationFileName" href="location">

In this tag, location is a URL to the configuration file. This sets the application
base. The configuration file must be located on the same Web site as the
application.

Machine configuration files
The machine configuration file, Machine.config, contains settings that apply to an
entire computer. This file is located in the %runtime install path%\Config direc-
tory. Machine.config contains configuration settings for machinewide assembly
binding, built-in remoting channels, and ASP.NET.

The configuration system first looks in the machine configuration file for the
<appSettings> element and other configuration sections that a developer might
define. It then looks in the application configuration file. To keep the machine
configuration file manageable, it is best to put these settings in the application
configuration file. However, putting the settings in the machine configuration file
can make your system more maintainable. For example, if you have a third-party
component that both your client and server application use, it is easier to put the
settings for that component in one place. In this case, the machine configuration
file is the appropriate place for the settings, so you don’t have the same settings in
two different files.

244 • ArcGIS Desktop Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

The configuration file below shows how to bind to an assembly and redirect it to
a newer version.
<configuration>

<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<dependentAssembly>

<assemblyIdentity name="ESRI.ArcGIS.System"

publicKeyToken=”8fc3cc631e44ad86"

culture="neutral" />

<!— Assembly versions can be redirected in application,
publisher policy, or machine configuration files. —>

<bindingRedirect oldVersion="9.0.0.452"
newVersion="9.0.0.692"/>

</dependentAssembly>

</assemblyBinding>

</runtime>

</configuration>

ARCGIS DEVELOPMENT USING .NET

Using .NET, you can customize the ArcGIS applications, create standalone
applications that use ESRI’s types, and extend ESRI’s types. For example, you
can create a custom tool for ArcMap, create a standalone application that uses the
MapControl, or create a custom layer. This section discusses several key issues
related to developing with ArcGIS and .NET.

Registering .NET components with COM
Extending ArcGIS applications with custom .NET components requires register-
ing the components in the COM registry and exporting the .NET assemblies to a
type library (TLB). When developing a component, there are two ways to per-
form this task: you can use the RegAsm utility that ships with the .NET Frame-
work SDK or Visual Studio.NET, which has a Register for COM Interop com-
piler flag.

The example below shows an EditTools assembly being registered with COM.
The /tlb parameter specifies that a type library should additionally be generated
and the /codebase option indicates that the path to the assembly should be
included in the registry settings. Both of these parameters are required when
extending the ArcGIS applications with .NET components.
regasm EditTools.dll /tlb:EditTools.tlb /codebase

Visual Studio.NET performs this same operation automatically if you set the
Register for COM Interop compiler flag; this is the simplest way to perform the
registration on a development machine. To check a project’s settings, click Project
Properties from the Project menu, then look at the Build property under Configu-
ration Properties. The last item, Register for COM Interop, should be set to True.

Registering .NET classes in COM component categories
Much of the extensibility of ArcGIS relies on COM component categories. In
fact, most custom ArcGIS components must be registered in component catego-
ries appropriate to their intended context and function for the host application to

Deploying an application using XCOPY will not
copy the settings in the machine configuration

file.

Appendix A • Developer environments • 245

.NET APPLICATION PROGRAMMING INTERFACE

make use of their functionality. For example, all ArcMap commands and tools
must be registered in the ESRI Mx Commands component category. There are a
few different ways you can register a .NET component in a particular category
but before doing so, the .NET components must be registered with COM. See the
‘Registering .NET components with COM’ section above for details.

Customize dialog box
Custom .NET ArcGIS commands and tools can quickly be added to toolbars via
the Add From File button on the Customize dialog box. In this case, you simply
have to browse for the TLB and open it. The ArcGIS framework will automati-
cally add the classes you select in the type library to the appropriate component
category.

Categories utility
Another option is to use the Component Categories Manager (Categories.exe). In
this case, you select the desired component category in the utility, browse for your
type library, and choose the appropriate class.

COM Register Function
The final and recommended solution is to add code to your .NET classes that will
automatically register them in a particular component category whenever the
component is registered with COM. The .NET Framework contains two at-
tribute classes (ComRegisterFunctionAttribute and ComUnregisterFunctionAttribute)
that allow you to specify methods that will be called whenever your component
is being registered or unregistered. Both methods are passed the CLSID of the
class currently being registered. With this information you can write code inside
the methods to make the appropriate registry entries or deletions. Registering a
component in a component category requires that you also know the component
category’s unique ID (CATID).

The code excerpt below shows a custom ArcMap command that automatically
registers itself in the MxCommands component category whenever the .NET
assembly in which it resides is registered with COM.

public sealed class AngleAngleTool: BaseTool

{

[ComRegisterFunction()]

static void Reg(String regKey)

{

Microsoft.Win32.Registry.ClassesRoot.CreateSubKey(regKey.
Substring(18)+ "\\Implemented Categories\\" + "{B56A7C42-83D4-11D2-A2E9-
080009B6F22B}");

 }

 [ComUnregisterFunction()]

 static void Unreg(String regKey)

 {

 Microsoft.Win32.Registry.ClassesRoot.DeleteSubKey(regKey.Substring(18)+
"\\Implemented Categories\\" + "{B56A7C42-83D4-11D2-A2E9-080009B6F22B}");

 }

246 • ArcGIS Desktop Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

To simplify this process, ESRI provides classes for each component category
ArcGIS exposes with static functions to register and unregister components. Each
class knows the GUID of the component category it represents, so registering
custom components is greatly simplified. For more details on using these classes,
see the ‘Working with the ESRI .NET component category classes’ section below.

Simplifying your code using the ESRI.ArcGIS.Utility assembly
Part of the ArcGIS Developer Kit includes a number of .NET utility classes that
facilitate .NET development by taking advantage of a few .NET capabilities
including object inheritance and static functions.

Working with the ESRI .NET Base Classes
ESRI provides two abstract base classes (BaseCommand and BaseTool) to help
you create new custom commands and tools for ArcGIS. The classes are abstract
classes (marked as MustInherit in Visual Basic .NET), which means that although
the class may contain some implementation code, it cannot itself be instantiated
directly and can only be used by being inherited by another class. Both base classes
are defined in the ESRI.ArcGIS.Utility assembly and belong to the
ESRI.ArcGIS.Utility.BaseClasses namespace.

These base classes simplify the creation of custom commands and tools by pro-
viding a default implementation for each of the members of ICommand and
ITool. Instead of stubbing out each member and providing implementation code,
you only have to override the members that your custom command or tool re-
quires. The exception is ICommand::OnCreate; this member must be overridden in
your derived class.

Using these base classes is the recommended way to create commands and tools
for ArcGIS applications in .NET languages. You can create similar COM classes
from first principles; however, you should find the base class technique to be a
quicker, simpler, less error-prone method of creating commands and tools.

Syntax
Both base classes have an overloaded constructor, allowing you to quickly set
many of the properties of a command or tool, such as Name and Category, via
constructor parameters.

The overloaded BaseCommand constructor has the following signature:
[VB.NET]

Public Sub New(_

ByVal bitmap As System.Drawing.Bitmap _

ByVal caption As String _

ByVal category As String _

ByVal helpContextId As Integer _

ByVal helpFile As String _

ByVal message As String _

ByVal name As String _

ByVal tooltip As String)

Appendix A • Developer environments • 247

.NET APPLICATION PROGRAMMING INTERFACE

[C#]

public BaseCommand(

System.Drawing.Bitmap bitmap,

string caption,

string category,

int helpContextId,

string helpFile,

string message,

string name,

string toolTip,

);

The overloaded BaseTool constructor has the following signature:
[VB.NET]

Public Sub New(_

ByVal bitmap As System.Drawing.Bitmap _

ByVal caption As String _

ByVal category As String _

ByVal cursor As System.Windows.Forms.Cursor _

ByVal helpContextId As Integer _

ByVal helpFile As String _

ByVal message As String _

ByVal name As String _

ByVal tooltip As String _

)

[C#]

public BaseTool(

System.Drawing.Bitmap bitmap,

string caption,

string category,

System.Windows.Forms.Cursor cursor,

int helpContextId,

string helpFile,

string message,

string name,

string toolTip,

);

Inheriting the base classes
You can use these parameterized constructors when you write your new classes,
for example, as shown below for a new class called PanTool that inherits the
BaseTool class.
[VB.NET]

Public Sub New()

MyBase.New(Nothing, "Pan", "My Custom Tools", _

System.Windows.Forms.Cursors.Cross, 0, "", "Pans the map.",
"PanTool", "Pan")
End Sub

[C#]

248 • ArcGIS Desktop Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

public PanTool() : base (null,"Pan", "My Custom Tools",

System.Windows.Forms.Cursors.Cross, 0, "","Pans the map.", "PanTool",
"Pan")

{

 ...

}

Setting base class members directly
As an alternative to using the parameterized constructors, you can set the mem-
bers of the base class directly.

The base classes expose their internal member variables to the inheritor class, one
per property, so you can directly access them in your derived class. For example,
instead of using the constructor to set the Caption or overriding the Caption
function, you can set the m_caption class member variable declared in the base
class.
[VB.NET]

Public Sub New()

MyBase.New()

MyBase..m_bitmap = New
System.Drawing.Bitmap([GetType]().Assembly.GetManifestResourceStream("Namespace.Pan.bmp"))

MyBase..m_cursor = System.Windows.Forms.Cursors.Cross

MyBase..m_category = "My Custom Tools"

MyBase..m_caption = "Pan"

MyBase..m_message = "Pans the map."

MyBase..m_name = "PanTool"

MyBase..m_toolTip = "Pan"

End Sub

[C#]

public PanTool()

{

base.m_bitmap = new
System.Drawing.Bitmap(GetType().Assembly.GetManifestResourceStream("Namespace.Pan.bmp"));

base.m_cursor = System.Windows.Forms.Cursors.Cross;

base.m_category = "My Custom Tools";

base.m_caption = "Pan";

base.m_message = "Pans the map.";

base.m_name = "PanTool";

base.m_toolTip = "Pan";

}

Overriding members
When you create custom commands and tools that inherit a base class, you will
more than likely need to override a few members. When you override a member
in your class, the implementation code that you provide for that member will be
executed instead of the default member implementation inherited from the base
class. For example, the OnClick method in the BaseCommand has no implementa-
tion code at all, as OnClick will not do anything by default. This may be suitable
for a tool, but is probably not for a command.

To override any member, you can right-click the member of the base class in the
Solution Explorer Window, click Add, then click Override to stub out the mem-

Appendix A • Developer environments • 249

.NET APPLICATION PROGRAMMING INTERFACE

ber as overridden. Note that if you right-click the member of the underlying
interface (ICommand or ITool) instead of the base class member, the overridden
member will not include the overrides keyword, and the method will instead be
shadowed.
[VB.NET]

Public Overrides Sub OnClick()

' Your OnClick

End Sub

[C#]

public override void OnClick()

{

// Your OnClick

}

Alternatively, to override a member of the base class, click Overrides from the
dropdown list on the right on the Code Window Wizard bar, then choose the
member you want to override from the left dropdown list. This will stub out the
member as overridden.

What do the base classes do by default?
The table below shows the base class members that have a significant base class
implementation, along with a description of that implementation. Override these
members when the base class behavior is not consistent with your customization.
For example, Enabled is set to True by default; if you want your custom com-
mand enabled only when a specific set of criteria has been met, you must over-
ride this property in your derived class.

Working with the ESRI .NET component category classes
To help register .NET components in COM component categories, ESRI provides
the ESRI.ArcGIS.Utility.CATIDs namespace, which has classes that represent
each of the ArcGIS component categories. Each class knows its CATID and
exposes static methods (Register and Unregister) for adding and removing com-
ponents. Registering your component becomes as easy as adding COM registration
methods with the appropriate attributes and passing the received CLSID to the
appropriate static method.

The example below shows a custom Pan tool that registers itself in the ESRI Mx

250 • ArcGIS Desktop Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

Commands component category. Notice in this example MxCommands.Register
and MxCommands.Unregister are used instead of
Microsoft.Win32.Registry.ClassesRoot.CreateSubKey and
Microsoft.Win32.Registry.ClassesRoot.DeleteSubKey.
[VB.NET]

Public NotInheritable Class PanTool

Inherits BaseTool

<ComRegisterFunction()> _

Public Shared Sub Reg(ByVal regKey As [String])

MxCommands.Register(regKey)

End

<ComUnregisterFunction()> _

Public Shared Sub Unreg(ByVal regKey As [String])

MxCommands.Unregister(regKey)

End Sub

[C#]

public sealed class PanTool : BaseTool

{

[ComRegisterFunction()]

static void Reg(string regKey)

{

MxCommands.Register(regKey);

}

[ComUnregisterFunction()]

static void Unreg(string regKey)

{

MxCommands.Unregister(regKey);

}

Extending the server
When using .NET to create a COM object for use in the GIS server, there are
some specific guidelines you need to follow to ensure that you can use your object
in a server context and that it will perform well in that environment. The guide-
lines below apply specifically to COM objects you create to run within the server.

• You must explicitly create an interface that your COM class implements.
Unlike Visual Basic 6, .NET will not create an implicit interface for your
COM class that you can use when creating the object in a server context.

• Your COM class should be marshalled using the Automation marshaller. You
specify this by adding AutomationProxyAttribute to your class with a value of
true.

• Your COM class should generate a dual class interface. You specify this by
adding ClassInterfaceAttribute to your class with a value of
ClassInterfaceType.AutoDual.

Appendix A • Developer environments • 251

.NET APPLICATION PROGRAMMING INTERFACE

• To ensure that your COM object performs well in the server, it must inherit
from ServicedComponent, which is in the System.EnterpriseServices assembly.
This is necessary due to the current COM interop implementation of the
.NET Framework.

For more details and an example of a custom Server COM object written in
.NET, see Chapter 4, ‘Developing ArcGIS Server applications’ in the ArcGIS
Server Administrator and Developer Guide.

Releasing COM references

ArcGIS Engine and ArcGIS Desktop applications
An unexpected crash may occur when a standalone application attempts to shut
down. For example, an application hosting a MapControl with a loaded map
document will crash on exit. The crashes result from COM objects hanging
around longer than expected. To avoid crashes, all COM references must be
unloaded prior to shutdown. To help unload COM references, a special static
Shutdown function has been added to the ESRI.ArcGIS.Utility assembly. The
following code excerpt shows the function in use.
[VB.NET]

Private Sub Form1_Closing(ByVal sender As Object, ByVal e As
System.ComponentModel.CancelEventArgs) Handles MyBase.Closing

 ESRI.ArcGIS.Utility.COMSupport.AOUninitialize.Shutdown()

End Sub

[C#]

private void Form1_Closing(object sender, CancelEventArgs e)

{

ESRI.ArcGIS.Utility.COMSupport.AOUninitialize.Shutdown();

}

The AOUninitialize.Shutdown function handles most of the shutdown problems in
standalone applications, but you may still experience problems as there are COM
objects that require explicit releasing; in these cases, call
System.Runtime.InteropServices.Marshal.ReleaseComObject() to decrement the refer-
ence count, allowing the application to terminate cleanly. The StyleGallery is one
such object, and the following example documents how to handle references to
this class.
[VB.NET]

Dim styleGallery As IStyleGallery

styleGallery = New StyleGalleryClass

MessageBox.Show(styleGallery.ClassCount)

Marshal.ReleaseComObject(styleGallery)

[C#]

IStyleGallery sg = new StyleGalleryClass() as IStyleGallery;

MessageBox.Show(sg.ClassCount.ToString());

Marshal.ReleaseComObject(sg);

Working with cursors in ArcGIS Server
Some objects that you can create in a server context may lock or use resources

252 • ArcGIS Desktop Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

that the object frees only in its destructor. For example, a geodatabase cursor may
acquire a shared schema lock on a file-based feature class or table on which it is
based or may hold onto an SDE stream.

While the shared schema lock is in place, other applications can continue to query
or update the rows in the table, but they cannot delete the feature class or modify
its schema. In the case of file-based data sources, such as shapefiles, update
cursors acquire an exclusive write lock on the file, which will prevent other
applications from accessing the file for read or write. The effect of these locks is
that the data may be unavailable to other applications until all of the references
on the cursor object are released.

In the case of SDE data sources, the cursor holds onto an SDE stream, and if the
application has multiple clients, each may get and hold onto an SDE stream,
eventually exhausting the maximum allowable streams. The effect of the number
of SDE streams exceeding the maximum is that other clients will fail to open
their own cursors to query the database.

Because of the above reasons, it’s important to ensure that your reference to any
cursor your application opens is released in a timely manner. In .NET, your refer-
ence on the cursor (or any other COM object) will not be released until garbage
collection kicks in. In a Web application or Web service servicing multiple con-
current sessions and requests, relying on garbage collection to release references
on objects will result in cursors and their resources not being released in a timely
manner.

To ensure a COM object is released when it goes out of scope, the WebControls
assembly contains a helper object called WebObject. Use the ManageLifetime
method to add your COM object to the set of objects that will be explicitly
released when the WebObject is disposed. You must scope the use of WebObject
within a Using block. When you scope the use of WebObject within a using block,
any object (including your cursor) that you have added to the WebObject using the
ManageLifetime method will be explicitly released at the end of the using block.

The following example demonstrates this coding pattern:
[VB.NET]

Private Sub doSomething_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles doSomething.Click

Dim webobj As WebObject = New WebObject

Dim ctx As IServerContext = Nothing

Try

Dim serverConn As ServerConnection = New ServerConnection("doug", True)

Dim som As IServerObjectManager = serverConn.ServerObjectManager

ctx = som.CreateServerContext("Yellowstone", "MapServer")

Dim mapsrv As IMapServer = ctx.ServerObject

Dim mapo As IMapServerObjects = mapsrv

Dim map As IMap = mapo.Map(mapsrv.DefaultMapName)

Dim flayer As IFeatureLayer = map.Layer(0)

Dim fClass As IFeatureClass = flayer.FeatureClass

Dim fcursor As IFeatureCursor = fClass.Search(Nothing, True)

Appendix A • Developer environments • 253

.NET APPLICATION PROGRAMMING INTERFACE

webobj.ManageLifetime(fcursor)

Dim f As IFeature = fcursor.NextFeature()

Do Until f Is Nothing

' Do something with the feature.

f = fcursor.NextFeature()

Loop

Finally

ctx.ReleaseContext()

webobj.Dispose()

End Try

End Sub

[C#]

private void doSomthing_Click(object sender, System.EventArgs e)

{

using (WebObject webobj = new WebObject())

{

ServerConnection serverConn = new ServerConnection("doug",true);

IServerObjectManager som = serverConn.ServerObjectManager;

IServerContext ctx =
som.CreateServerContext("Yellowstone","MapServer");

IMapServer mapsrv = ctx.ServerObject as IMapServer;

IMapServerObjects mapo = mapsrv as IMapServerObjects;

IMap map = mapo.get_Map(mapsrv.DefaultMapName);

IFeatureLayer flayer = map.get_Layer(0) as IFeatureLayer;

IFeatureClass fclass = flayer.FeatureClass;

IFeatureCursor fcursor = fclass.Search(null, true);

webobj.ManageLifetime(fcursor);

IFeature f = null;

while ((f = fcursor.NextFeature()) != null)

{

// Do something with the feature.

}

ctx.ReleaseContext();

}

}

The WebMap, WebGeocode, and WebPageLayout objects also have a ManageLifetime
method. If you are using, for example, a WebMap and scope your code in a using
block, you can rely on these objects to explicitly release objects you add with
ManageLifetime at the end of the using block.

254 • ArcGIS Desktop Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

Deploying .NET ArcGIS customizations
All ArcGIS Engine and Desktop customizations require an ArcGIS installation on
all client machines. The ArcGIS installation must include the ESRI primary
interop assemblies, which the setup program installs in the global assembly cache.
For example, deploying a standalone GIS application that only requires an
ArcGIS Engine license requires an ArcGIS Engine installation on all target ma-
chines.

Standalone applications
Deploying standalone applications to either ArcGIS Engine or Desktop clients
involves copying over the executable to the client machine. Copying over the
executable can be as simple as using xcopy or more involved, such as creating a
custom install or setup program. Note that aside from the ArcGIS primary
interop assemblies and the .NET Framework assemblies, all dependencies must
additionally be packaged and deployed.

ArcGIS components
Components that extend the ArcGIS applications are trickier to deploy than
standalone applications because they must be registered with COM and in specific
component categories. As discussed earlier, implementing COMRegisterFunction
and COMUnregisterFunctions facilitates deployment by providing self category
registration, but this only occurs when the components are registered.

There are two techniques for registering components with COM. One option is to
run the register assembly utility (RegAsm.exe) that ships with the .NET Frame-
work SDK. This is typically not a viable solution as client machines may or may
not have this utility and it’s difficult to automate. The second and recommended
approach is to add an automatic registration step to a custom setup or install
program.

The key to creating a custom install program that both deploys and registers
components is the System.Runtime.InteropServices.RegistrationServices class. This class
has the members RegisterAssembly and UnregisterAssembly, which register and
unregister managed classes with COM. These are the same functions the RegAsm
utility uses. Using these functions inside a custom installer class along with a
setup program is the complete solution.

The basic steps below outline the creation of a deployable solution. NOTE: the
steps assume you are starting with a solution that already contains a project with
at least one COM-enabled class.

1. In Visual Studio.NET, add a new Installer Class and name it accordingly.

Appendix A • Developer environments • 255

.NET APPLICATION PROGRAMMING INTERFACE

Override the Install and Uninstall functions that are implemented in the
Installer base class and use the RegistrationServices class’s RegisterAssembly and
UnregisterAssembly methods to register the components. Make sure you use the
SetCodeBase flag; this indicates that the code base key for the assembly should
be set in the registry.
[VB.NET]

Public Overrides Sub Install(ByVal stateSaver As
System.Collections.IDictionary)

 MyBase.Install(stateSaver)

 Dim regsrv As New RegistrationServices

 regsrv.RegisterAssembly(MyBase.GetType().Assembly,
AssemblyRegistrationFlags.SetCodeBase)

End Sub

Public Overrides Sub Uninstall(ByVal savedState As
System.Collections.IDictionary)

 MyBase.Uninstall(savedState)

 Dim regsrv As New RegistrationServices

 regsrv.UnregisterAssembly(MyBase.GetType().Assembly)

 End Sub

End Class

[C#]

public override void Install(IDictionary stateSaver)

{

 base.Install (stateSaver);

 RegistrationServices regSrv = new RegistrationServices();

 regSrv.RegisterAssembly(base.GetType().Assembly,
AssemblyRegistrationFlags.SetCodeBase);

}

public override void Uninstall(IDictionary savedState)

{

 base.Uninstall (savedState);

256 • ArcGIS Desktop Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

 RegistrationServices regSrv = new RegistrationServices();

 regSrv.UnregisterAssembly(base.GetType().Assembly);

}

2. Add a setup program to your solution.

a. In the Solution Explorer, right-click the new project and click Add >
Project Output. Choose the project you want to deploy and choose Primary
output.

b. From the list of detected dependencies that is regenerated, remove all
references to ESRI primary interop assemblies (for example,
ESRI.ArcGIS.System) and stdole.dll. The only items typically left in the list
are your TLB and Primary output from <AssemblyName><Version>,
which represent the DLL or EXE you are compiling.

c. The final steps involve associating the custom installation steps configured
in the new installer class with the setup project. To do this, right-click the
setup project in the Solution Explorer and click View Custom Actions.

d. In the resulting view, right-click the Install folder and click Add Custom
Action. Double-click the Application folder, then double-click the Primary
output from the <AssemblyName><Version> item. This step associates the
custom install function created earlier with the setup’s custom install ac-
tion.

e. Repeat the last step for the setup’s uninstall.

Appendix A • Developer environments • 257

3. Finally, rebuild the entire solution to generate the setup executable file. Run-
ning the executable on a target machine installs the components and registers
them with COM. The COMRegisterFunction routines then register the compo-
nents in the appropriate component categories.

ArcGIS Server deployments
To deploy Web applications developed on a development server to product
production servers, use the built-in Visual Studio.NET tools.

1. In the Solution Explorer, click your project.

2. Click the Project menu, then click Copy Project.

3. In the Copy Project dialog box, specify the deployment location.

4. Click OK.

In addition to copying the project, you must copy and register any related DLLs
containing custom COM objects onto your Web server and all the GIS server’s
server object container machines.

.NET APPLICATION PROGRAMMING INTERFACE

259

Reading the
object model

diagrams
B

The ArcObjects object model diagrams are an important supplement to the

information you receive in object browsers. This chapter describes the

diagram notation used throughout this book and in the object model

diagrams that are accessed through ArcGIS Developer Help.

260 • ArcGIS Desktop Developer Guide

INTERPRETING THE OBJECT MODEL DIAGRAMS

Types of Classes

An abstract class cannot be used to create new objects, it is a
specification for instances of subclasses (through type
inheritance.)

A coclass can directly create objects by declaring a new object.

A class cannot directly create objects, but objects of a class can
be created as a property of another class or instantiated by
objects from another class.

Types of Relationships

Associations represent relationships between classes. They
have defined multiplicities at both ends.

Type inheritance defines specialized classes of objects that
share properties and methods with the superclass and have
additional properties and methods. Note that interfaces in
superclasses are not duplicated in subclasses.

Instantiation specifies that one object from one class has a
method with which it creates an object from another class.

Composition is a relationship in which objects from the "whole"
class control the lifetime of objects from the "part" class.

An N-ary association specifies that more than two classes are
associated. A diamond is placed at the intersection of the
association branches.

A Multiplicity is a constraint on the number of objects that can
be associated with another object. Association and composition
relationships have multiplicities on both sides. This is the notation
for multiplicities:

 1 - One and only one (if none shown, one is implied)

 0..1 - Zero or one

 M..N - From M to N (positive integers)

 * or 0..* - From zero to any positive integer

 1..* - From one to any positive integer

Object model key

Interface key

Property Get
Property Put
Property Get/Put
Property Put by Reference

Function
Event function

AbstractClass

Type inheritance

Instantiation

Association

Composition

1..*
Multiplicity

Class

Inbound interface

Outbound interface

Interface:Inherited interface

Properties

Methods

Inbound interface

Outbound interface

Interface:Inherited interface

Properties

Methods

CoClass
Inbound interface

Outbound interface

Interface:Inherited interface

Properties

Methods

Special Interfaces

(Optional) represents interfaces that are inherited by some subclasses
but not all. The subclasses list the optional interfaces they implement.

(Instance) represents interfaces that are only on specific instances of
the class.

(<classname>) indicates the name of the helper class required to
support this event interface in Visual Basic.

The diagram notation used in this book and the ArcObjects component model
diagrams are based on the Unified Modeling Language (UML) notation, an indus-
try diagramming standard for object-oriented analysis and design, with some
modifications for documenting COM-specific constructs.

The object model diagrams are an important supplement to the information you
receive in object browsers. The development environment, Visual Basic or other,
lists all the classes and members but does not show the structure or relationships
of those classes. These diagrams complement your understanding of the
ArcObjects components.

Object model diagram key showing the types of
ArcObjects and the relationships between them

Appendix B • Reading the object model diagrams • 261

CLASSES AND OBJECTS

There are three types of classes shown in the UML diagrams: abstract classes,
coclasses, and classes.

abstract
class

class

Type
inheritance

Instantiation

Association

Composition

1..*

Multiplicity

coclass

A coclass represents objects that you can directly create using the object declara-
tion syntax in your development environment. In Visual Basic, this is written
with the Dim pFoo As New FooObject syntax.

A class cannot directly create new objects, but objects of a class can be created as
a property of another class or by functions from another class.

An abstract class cannot be used to create new objects; it is a specification for
subclasses. An example is that a “line” could be an abstract class for “primary
line” and “secondary line” classes. Abstract classes are important for developers
who wish to create a subclass of their own since it shows which interfaces are
required and which are optional for the type of class they are implementing.
Required interfaces must be implemented on any subclass of the abstract class to
ensure the new class behaves correctly in the ArcObjects system.

RELATIONSHIPS

Among abstract classes, coclasses, and classes, there are several types of class
relationships possible.

1..*

1..*Owner Land parcel

In this diagram, an owner can own one or many land parcels, and a land parcel
can be owned by one or many owners.

Associations represent relationships between classes. They have defined multiplici-
ties at both ends.

A multiplicity is a constraint on the number of objects that can be associated with
another object. This is the notation for multiplicities:

1—One and only one. Showing this multiplicity is optional; if none is shown, “1”
is implied.

0..1—Zero or one

M..N—From M to N (positive integers)

* or 0..*—From zero to any positive integer

1..*—From one to any positive integer

INTERPRETING THE OBJECT MODEL DIAGRAMS

262 • ArcGIS Desktop Developer Guide

TYPE INHERITANCE

Type inheritance defines specialized classes that share properties and methods with the
superclass and have additional properties and methods.

Line

Primary
line

Secondary
line

This diagram shows that a primary line (creatable class) and secondary line
(creatable class) are types of a line (abstract class).

INSTANTIATION

Instantiation specifies that one object from one class has a method with which it
creates an object from another class.

TransformerPole

A pole object might have a method to create a transformer object.

COMPOSITION

Composition is a stronger form of aggregation in which objects from the “whole”
class control the lifetime of objects from the “part” class.

CrossarmPole
1..*

A pole contains one or many crossarms. In this design, a crossarm cannot be
recycled when the pole is removed. The pole object controls the lifetime of the
crossarm object.

INTERPRETING THE OBJECT MODEL DIAGRAMS

263

Illustrated
code samplesC

The illustrated code samples in this appendix show the fundamentals of

programming with ArcObjects. Each sample is accompanied by illustrations of

the associated objects and their relationships. The code can be typed or

copied into VBA, after which you can follow through with the VBA debugger.

264 • ArcGIS Desktop Developer’s Guide

ITransform2D

IBoundsProperties
IClone

IElement
IElementProperties

IPersist
IPersistStream

IPropertySupport

IElementProperties2

The object model diagrams reveal a
structure not evident in standard object
browsers. Shown here is an abstract
class, Element, with nine interfaces. The
IElement interface is shown because a
code sample made a call to it.

Reading the illustrated code samples

The illustrated code samples in this section show you the fundamentals of programming with COM
components in ArcObjects. Start by entering the VBA environment in ArcMap or ArcCatalog and type in
the code. Step through the code in the VBA debugger. Look at these pages and study the relationships
between coclasses and interfaces. A careful reading of the samples in this section gives you all the important
concepts you need for developing with ArcObjects, as well as an introduction to the most important
ArcObjects components.

The interface

Type inheritance

Interface inheritance

An interface is a speci f icat ion of
properties and methods. Many coclasses
can implement the same interface.
Interfaces a l low a h igh degree of
interoperability and shared behavior
among a set of objects.

AreaField is a return property of type
IField. FeatureClassID is of type long.

The CreateFeature method creates an
object of type IFeature. FeatureCount
takes in a query filter and returns a long.

 IFeatureClass : IObjectClass

AreaField: IField
FeatureClassID: Long
FeatureDataset: IFeatureDataset
FeatureType: esriFeatureType
LengthField: IField
ShapeFieldName: String

CreateFeature: IFeature
CreateFeatureBuffer: IFeatureBuffer
FeatureCount (in QueryFilter:

IQueryFilter) : Long
GetFeature (in ID: Long) : IFeature
GetFeatures (in fids: Variant, in

Recycling: Boolean) : IFeatureCursor
Insert (in useBuffering: Boolean) :

IFeatureCursor
Search (in Filter: IQueryFilter, in

Recycling: Boolean) : IFeatureCursor
Select (in QueryFilter: IQueryFilter, in

selType: esriSelectionType, in
selOption: esriSelectionOption, in
selectionContainer: IWorkspace) :
ISelectionSet

Update (in Filter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

ShapeType: tagesriGeometryType

A GraphicElement is an abstract class that specifies
the one interface shown here as well as the nine
interfaces on the Element abstract class.

T e x t E l e m e n t i s a c o c l a s s t h a t
implements five interfaces in addition
to the one from GraphicElement and
nine from Element.

IGraphicElement Graphic-
Element

IElementEditVertices
IGroupSymbolElement

ITextElement
ITransformEvents

TextElementIElementEditCallout

 ITextElement : IUnknown

ScaleText: Boolean
Symbol: ITextSymbol
Text: String

Element
 IElement : IUnknown

Locked: Boolean
SelectionTracker:ISelectionTracker

Activate (in Display: IDisplay)
Deactivate
Draw (in Display: IDisplay, in

trackCancel: ITrackCancel)
HitTest (in X: Double, in Y: Double,

in Tolerance: Double) : Boolean
QueryBounds (in Display: IDisplay,

in Bounds: IEnvelope)
QueryOutline (in Display: IDisplay,

in Outline: IPolygon)

Geometry: IGeometry

IMapFrame and IMapSurroundFrame
inherit from IF rameElement . All
p r o p e r t i e s a n d m e t h o d s o f
IFrameElement are accessible to the
developer who accesses IMapFrame
or IMapSurroundFrame.

IFrameElement:IUnknown

Background: IBackground
Border: IBorder
DraftMode: Boolean
Object: Variant
Thumbnail: Long

 IMapFrame : IFrameElement

Container: IGraphicsContainer
ExtentType: esriExtentTypeEnum
LocatorRectangleCount: Long
Map: IMap
MapBounds: IEnvelope
MapScale: Double

RemoveAllLocatorRectangles
RemoveLocatorRectangle (in Locator:

ILocatorRectangle)

AddLocatorRectangle (in Locator:
ILocatorRectangle)

CreateSurroundFrame (in CLSID: IUID,
in optionalStyle: IMapSurround) :
IMapSurroundFrame

LocatorRectangle (in Index: Long) :
ILocatorRectangle

IMapSurroundFrame:IFrameElement

MapSurround: IMapSurround
MapFrame: IMapFrame

QueryInterface

QueryInterface is a method in the IUnknown
interface, which all COM objects inherit
from. This method lets you query for and
navigate to methods in other interfaces
implemented by an object.

class
interface1 method1

method2

method3
method4

interface2

QueryInterface

Appendix C • Illustrated code samples • 265

LOCATE AND EXECUTE COMMAND ON TOOLBAR

Locate and Execute Command on Toolbar

This sample illustrates how to
programmatically execute existing

commands on command bars
within ArcMap.

 ICommandItem : IUnknown

Action: String
BuiltIn: Boolean
Caption: String
Category: String
Command: ICommand
FaceID: Variant
Group: Boolean
HelpContextID: Long
HelpFile: String
ID: IUID
Index: Long
Message: String
Name: String
Parent: ICommandBar
Style: esriCommandStyles
Tag: String
Tooltip: String
Type: esriCommandTypes

Delete
Execute
Refresh
Reset

Dim pCommandItem As ICommandItem

Set pCommandItem = ThisDocument.CommandBars.Find(ArcID.Query_ZoomToSelected)
If (pCommandItem Is Nothing) Then Exit Sub
pCommandItem.Execute

Set pCommandItem = ThisDocument.CommandBars.Find(ArcID.ReportObject_CreateReport)
If (pCommandItem Is Nothing) Then Exit Sub
pCommandItem.Execute

1

2

3

Add this code to the Click event of a command in ArcMap.

Framework

ArcMapUI

To find the command to execute, you can use the CommandBars collection. The
command bars collection is a property on the IDocument interface
(ThisDocument). Using the Find method, search using the ArcID module to
provide the command's identifier. The ArcID module has members that can be
identified using the Name property of a command. The convention for naming
commands is: <command category> "_" <caption>.

1

Assuming a valid command
item is returned from the find,
the command is executed by
calling the Execute method.

2

The process is repeated for another
command. In this way, several existing
ArcMap commands can be executed
with only one click of a button.

3

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty

IDocumentDatasets
IDocumentDefaultSymbols

IDocumentEvents
IDocumentEventsDisp

IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

MxDocument

IDocumentDirty2

 ICommandBars : IUnknown

LargeIcons: Boolean
ShowToolTips: Boolean

Create (in Name: String, barType:
esriCmdBarType) : ICommandBar

HideAllToolbars

Find (in identifier: Variant, noRecurse:
Boolean, noCreate: Boolean) :
ICommandItem

 IDocument : IDispatch

Accelerators: IAcceleratorTable
CommandBars: ICommandBars
ID: IUID
Parent: IApplication
Title: String
Type: esriDocumentType
VBProject: Object

266 • ArcGIS Desktop Developer Guide

DRAW DIGITIZED LINE ONSCREEN

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty

IDocumentDatasets
IDocumentDefaultSymbols

IDocumentEvents
IDocumentEventsDisp

IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

IDocumentDirty2

This sample uses a rubber banding line to
obtain a digitized line geometry. With the

geometry created, a symbol is created. The
symbol is set as the current display symbol
and the line is drawn. The color thickness
and the style of the line symbol are set.

 IPolyline : IPolycurve

Reshape (reshapeSource: IPath) :
Boolean

SimplifyNetwork

RubberLine

RubberBandIRubberBand

 IRubberBand : IUnknown

TrackExisting (in ScreenDisplay:
IScreenDisplay, in Symbol: ISymbol,
in Geometry: IGeometry) : Boolean

TrackNew (in ScreenDisplay:
IScreenDisplay, in Symbol: ISymbol)
: IGeometry

3
A RubberLine object is used to capture a
digitized line geometry from the user. The
TrackNew method takes the screen to draw
to and the symbol to draw with and returns
the created geometry.

5

Finally, the geometry is drawn on the
screen. Notice the call to start
drawing followed by the setting of
the symbol, and then the actual
drawing of the geometry.
FinishDrawing ensures the
synchronization of the drawing
events.MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize
DelayUpdateContents: Boolean
FocusMap: IMap
Maps: IMaps
OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

 IActiveView : IUnknown

ExportFrame: tagRECT
Extent: IEnvelope
ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean

ScreenDisplay: IScreenDisplay
Selection: ISelection
ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String

Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean
OnMessage (in msg: Unsigned Long, in

wParam: Unsigned Machine Int, in
lParam: Long)

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

PrinterChanged (in Printer: IPrinter)
Refresh

ScreenCacheID (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer Since the IScreenDisplay interface

of the active view is to be used
frequently within the function, a
local variable is used.

2

The IMxDocument interface is used
to retrieve the currently active view,
which can be a Map or a PageLayout.

1

 IDisplay : IUnknown

ClipEnvelope: IEnvelope
ClipEnvelopes: ISet
ClipGeometry: IGeometry
DisplayTransformation:

IDisplayTransformation
Filter: IDisplayFilter
hDC: Long
hPalette: Long
IlluminationProps: IIlluminationProps
SuppressEvents: Boolean

DrawMultipoint (in Multipoint:
IGeometry)

DrawPoint (in Point: IGeometry)

StartDrawing (in hDC: Long, in
cacheID: Integer)

SetSymbol (in sym: ISymbol)

DrawText (in Shape: IGeometry, in
Text: String)

FinishDrawing
Progress (in VertexCount: Long)

DrawPolygon (in Polygon: IGeometry)
DrawPolyline (in Polyline: IGeometry)
DrawRectangle (in rectangle:

IEnvelope)

 IScreenDisplay : IDisplay

ActiveCache: Integer
CacheCount: Integer
CacheMemDC (in Index: Integer) : Long
CancelTracker: ITrackCancel
hWnd: Long
IsFirstCacheTransparent: Boolean
IsFramed: Boolean
ScaleContents: Boolean
SuppressResize: Boolean
UseScrollbars: Boolean
WindowDC: Long

AddCache: Integer
DoScroll (in xDelta: Long, in yDelta:

Long, in updateScreen: Boolean)
DrawCache (in hDC: Long, in Index:

Integer, in deviceRect: tagRECT, in
cacheRect: tagRECT)

Invalidate (in rect: IEnvelope, in erase:
Boolean, in cacheIndex: Integer)

IsCacheDirty (in cacheIndex: Integer) :
Boolean

PanMoveTo (in mouseLocation: IPoint)
PanStart (in mouseLocation: IPoint)
PanStop: IEnvelope
RemoveAllCaches
RemoveCache (in cacheID: Integer)
RotateMoveTo (in pPoint: IPoint)
RotateStart (in mousePt: IPoint, in

centerPt: IPoint)
RotateStop: Double
RotateTimer
SetScrollbarHandles (in

hWndHorzScrollbar: Long, in
hWndVertScrollbar: Long)

StartRecording
StopRecording
TrackPan
TrackRotate
UpdateWindow

ArcMapUI

Appendix C • Illustrated code samples • 267

4
To draw a geometry on the screen, an appropriate symbol is required.
This symbol instructs the screen how to draw the geometry. This step
creates a SimpleLineSymbol object and sets its properties. The Color
of the Line is defined by creating an RGBColor object and setting its
Red, Green, and Blue properties.

Color
IClone
IColor

IPersist
IPersistStream

 IColor : IUnknown

CMYK: Long
NullColor: Boolean
RGB: Long
Transparency: Unsigned Char
UseWindowsDithering: Boolean

GetCIELAB (out l: Double, out a:
Double, out b: Double)

SetCIELAB (in l: Double, in a:
Double, in b: Double)

RGBColor
IRGBColor IRgbColor : IColor

Blue: Long
Green: Long
Red: Long

SimpleLineSymbolISimpleLineSymbol

LineSymbolILineSymbol
IMapLevel

IPropertySupport ILineSymbol : IUnknown

Color: IColor
Width: Double

 ISimpleLineSymbol : ILineSymbol

Style: tagesriSimpleLineStyle

Display

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pScreen As IScreenDisplay
Set pScreen = pMxDoc.ActiveView.ScreenDisplay

Dim pPolyline As IPolyline
Dim pRubber As IRubberBand
Set pRubber = New RubberLine
Set pPolyline = pRubber.TrackNew(pScreen, Nothing)

Dim pLineSymbol As ISimpleLineSymbol
Set pLineSymbol = New SimpleLineSymbol

Dim pRGBColor As IRgbColor
Set pRGBColor = New RgbColor
With pRGBColor
 .Red = 255
 .Green = 128
 .Blue = 128
End With

With pLineSymbol
 .Width = 2
 .Color = pRGBColor
 .Style = esriSLSSolid
End With

With pScreen
 .StartDrawing pScreen.hDC, esriNoScreenCache
 .SetSymbol pLineSymbol
 .DrawPolyline pPolyline
 .FinishDrawing
End With

1

2

3

4

5

Add this to the MouseDown event of a tool in ArcMap.

268 • ArcGIS Desktop Developer Guide

ADD FEATURE CLASS TO ARCMAP

Geodatabase

This sample opens a shapefile on the user's
local disk and adds the contents to the map
as a feature layer. The default symbology is
used. This sample could easily be changed

to support different data sources.

Shapefile-
Workspace-

Factory

WorkspaceFactory
IWorkspaceFactory IWorkspaceFactory : IUnknown

WorkspaceDescription (in plural:
Boolean) : String

WorkspaceType: esriWorkspaceType

ContainsWorkspace (in
parentDirectory: String, in fileNames:
IFileNames) : Boolean

Copy (in WorkspaceName:
IWorkspaceName, in destinationFolder:
String, out workspaceNameCopy:
IWorkspaceName) : Boolean

Create (in parentDirectory: String, in
Name: String, in ConnectionProperties:
IPropertySet, in hWnd: Long) :
IWorkspaceName

GetClassID: IUID
GetWorkspaceName (in

parentDirectory: String, in fileNames:
IFileNames) : IWorkspaceName

IsWorkspace (in FileName: String) :
Boolean

Move (in WorkspaceName:
IWorkspaceName, in
destinationFolder: String) : Boolean

Open (in ConnectionProperties:
IPropertySet, in hWnd: Long) :
IWorkspace

OpenFromFile (in FileName: String, in
hWnd: Long) : IWorkspace

ReadConnectionPropertiesFromFile (in
FileName: String) : IPropertySet

The OpenFromFile method returns
a reference to a workspace.2

The ShapefileWorkspaceFactory
coclass creates a shapefile
workspace factory object.

1

FeatureClass
IFeatureClass

IFeatureClassLoad (optional)
IFeatureClassWrite

IGeoDataset
INetworkClass

 IFeatureClass : IObjectClass

AreaField: IField
FeatureClassID: Long
FeatureDataset: IFeatureDataset
FeatureType: esriFeatureType
LengthField: IField
ShapeFieldName: String
ShapeType: tagesriGeometryType

CreateFeature: IFeature
CreateFeatureBuffer: IFeatureBuffer
FeatureCount (in QueryFilter:

IQueryFilter) : Long
GetFeature (in ID: Long) : IFeature
GetFeatures (in fids: Variant, in

Recycling: Boolean) : IFeatureCursor
Insert (in useBuffering: Boolean) :

IFeatureCursor
Search (in Filter: IQueryFilter, in

Recycling: Boolean) : IFeatureCursor
Select (in QueryFilter: IQueryFilter, in

selType: esriSelectionType, in
selOption: esriSelectionOption, in
selectionContainer: IWorkspace) :
ISelectionSet

Update (in Filter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

Table
IClass
ITable

ITableCapabilities

Dataset

IDataset
IDatasetAnalyze

(optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock

(optional)

ObjectClass
 IObjectClass : IClass

AliasName: String
ObjectClassID: Long
RelationshipClasses (in

role: esriRelRole) :
IEnumRelationshipClass

Workspace

 IFeatureWorkspace : IUnknown

CreateFeatureClass (in Name: String, in
Fields: IFields, in CLSID: IUID, in
EXTCLSID: IUID, in FeatureType:
esriFeatureType, in ShapeFieldName:
String, in ConfigKeyword: String) :
IFeatureClass

CreateFeatureDataset (in Name:
String, in SpatialReference:
ISpatialReference) : IFeatureDataset

CreateQueryDef: IQueryDef
CreateRelationshipClass (in

relClassName: String, in OriginClass:
IObjectClass, in DestinationClass:
IObjectClass, in forwardLabel: String,
in backwardLabel: String, in
Cardinality: esriRelCardinality, in
Notification: esriRelNotification, in
IsComposite: Boolean, in IsAttributed:
Boolean, in relAttrFields: IFields, in
OriginPrimaryKey: String, in
destPrimaryKey: String, in
OriginForeignKey: String, in
destForeignKey: String) :
IRelationshipClass

CreateTable (in Name: String, in Fields:
IFields, in CLSID: IUID, in EXTCLSID:
IUID, in ConfigKeyword: String) : ITable

OpenFeatureClass (in Name: String) :
IFeatureClass

OpenFeatureDataset (in Name: String)
: IFeatureDataset

OpenFeatureQuery (in queryName:
String, in pQueryDef: IQueryDef) :
IFeatureDataset

OpenRelationshipClass (in Name:
String) : IRelationshipClass

OpenRelationshipQuery (in pRelClass:
IRelationshipClass, in joinForward:
Boolean, in pSrcQueryFilter:
IQueryFilter, in pSrcSelectionSet:
ISelectionSet, in TargetColumns:
String, in DoNotPushJoinToDB:
Boolean) : ITable

OpenTable (in Name: String) : ITable

A Workspace object contains an
IFeatureWorkspace interface. This
has an OpenFeatureClass method

that returns a FeatureClass.

3

IWorkspaceFactory2 (optional)

ISetDefaultConnectionInfo2 (optional)

ILocalDatabaseCompact (optional)
RemoteDatabaseWorkspaceFactory (optional)

ISetDefaultConnectionInfo (optional)

IObjectClass

ISubtypes (optional)
IValidation (optional)

IClassSchemaEdit (optional)

IModelInfo (optional)

IObjectClassInfo (optional)
IObjectClassEvents

IObjectClassSchemaEvents

IClassSchemaEdit2 (optional)

IValidation2 (optional)

IObjectClassInfo2 (optional)

IWorkspaceEditEvents

IWorkspace

IDataset

IFeatureWorkspace

ITransactions (optional)

IWorkspaceDomains (optional)

IWorkspaceEdit

ISpatialCacheManager

IFeatureWorkspaceAnno (optional)

IWorkspaceDomains2 (optional)

IDatasetContainer

IFeatureWorkspaceManage

IFeatureWorkspaceSchemaEdit

ITransactionsOptions (optional)

IWorkspaceExtensionManager (optional)

ISQLSyntax

IGeodatabaseRelease (optional)

IWorkspaceSpatialReferenceInfo

IWorkspaceConfiguration (optional)

IDatabaseCompact (optional)
IDatabaseConnectionInfo (optional)

ISpatialCacheManager2

IFeatureWorkspaceManage2

IWorkspace2

IWorkspaceProperties (optional)

Appendix C • Illustrated code samples • 269

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty

IDocumentDatasets
IDocumentDefaultSymbols

IDocumentEvents
IDocumentEventsDisp

IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

IDocumentDirty2

Layer

IGeoDataset
ILayer

IPersist
IPersistStream

 ILayer : IUnknown

Draw (in drawPhase:
tagesriDrawPhase, in Display:
IDisplay, in trackCancel:
ITrackCancel)

AreaOfInterest: IEnvelope
Cached: Boolean
MaximumScale: Double
MinimumScale: Double

ShowTips: Boolean
SpatialReference: ISpatialReference
SupportedDrawPhases: Long
TipText (in X: Double, in Y: Double,

in Tolerance: Double) : String
Valid: Boolean
Visible: Boolean

Name: String

FeatureLayerIAttributeTable
IClass

IDataLayer
IDataLayer2

IDataset
IDisplayAdmin

IDisplayFilterManager
IDisplayRelationshipClass

IDisplayTable
IFeatureLayer

IFeatureLayer2
IFeatureLayerDefinition

IFeatureLayerSelectionEvents
IFeatureSelection

IFind
IGeoFeatureLayer
IHotlinkContainer

IHotlinkMacro
IHyperlinkContainer

IIdentify
IIdentify2

ILayer2
ILayerDrawingProperties

ILayerEffects
ILayerEvents

ILayerExtensions
ILayerFields

ILayerInfo
ILayerPosition

ILegendInfo
IMapLevel

IObjectClassSchemaEvents
IPropertySupport

IRelationshipClassCollection
IRelationshipClassCollectionEdit

ITable
ITableFields

ITableSelection

 IFeatureLayer : ILayer

Search (in QueryFilter:
IQueryFilter, in Recycling:
Boolean) : IFeatureCursor

DataSourceType: String
DisplayField: String
FeatureClass: IFeatureClass
ScaleSymbols: Boolean
Selectable: Boolean

In order to add data to the map,
create a FeatureLayer and
associate the FeatureClass with it.

4

The IMxDocument interface is obtained
from the ThisDocument global variable.

6

The Name property is set
to display the layer name in
the ArcMap table of
contents. Notice that
although the Name
property is on the ILayer
interface, it is accessed
directly via the
IFeatureLayer interface
due to interface inheritance.

5

The AddLayer method on the
IMxDocument interface adds the
FeatureLayer object to ArcMap.

7

ArcMapUI

MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize
DelayUpdateContents: Boolean
FocusMap: IMap
Maps: IMaps
OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

AddLayer (in Layer: ILayer)

Finally, the newly added layer is drawn on the
screen. Notice the use of the PartialRefresh
method instead of the Refresh method; this
ensures optimal drawing of all the map layers.

8

 IActiveView : IUnknown

ExportFrame: tagRECT
Extent: IEnvelope
ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean
ScreenCacheID (in phase:

tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer

ScreenDisplay: IScreenDisplay
Selection: ISelection
ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String

Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean
OnMessage (in msg: Unsigned Long,

in wParam: Unsigned Machine Int, in
lParam: Long)

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

PrinterChanged (in Printer: IPrinter)
Refresh

Dim pWorkspaceFactory As IWorkspaceFactory
Set pWorkspaceFactory = New ShapefileWorkspaceFactory

Dim pWorkSpace As IFeatureWorkspace
Set pWorkSpace = pWorkspaceFactory.OpenFromFile("C:\Source\", 0)

Dim pClass As IFeatureClass
Set pClass = pWorkSpace.OpenFeatureClass("USStates")

Dim pLayer As IFeatureLayer
Set pLayer = New FeatureLayer
Set pLayer.FeatureClass = pClass
pLayer.Name = pClass.AliasName

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

pMxDoc.AddLayer pLayer
pMxDoc.ActiveView.PartialRefresh esriViewGeography, pLayer, _
 Nothing

1

2

4

5

6

7

Add this code to the Click event of a UIButtonControl in ArcMap.

8

3

270 • ArcGIS Desktop Developer Guide

ADD LAYER TO ARCMAP USING GXDIALOG

ArcMapUI

CatalogUI

The GxDialog coclass provides the user
interface used by all ArcGIS applications
when selecting data sources.

3
To limit the data sources available for selection
within the dialog box, a GxObjectFilter is
used. For this example, the filter only allows
feature classes to be selected. Using filters
simplifies the code after the selection is made.

4
The DoModalOpen method on
the IGxDialog interface is called
to display the GxDialog. Once the
user has finished, the selected
feature classes can be accessed via
the GxObject enumerator that is
passed out of the method call.

5
If the enumerator is nothing, no selections

were made and the sub is exited.
Otherwise, the enumerator is reset in

preparation for its iteration.

This example allows the user to select a
feature dataset or feature class to be added

to ArcMap using the GxDialog.

MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize
DelayUpdateContents: Boolean
FocusMap: IMap
Maps: IMaps
OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

 IMap : IUnknown

ActiveGraphicsLayer: ILayer
AnnotationEngine: IAnnotateMap
AreaOfInterest: IEnvelope
Barriers (pExtent: IEnvelope) :

IBarrierCollection
BasicGraphicsLayer: IGraphicsLayer
ClipBorder: IBorder
ClipGeometry: IGeometry
Description: String
DistanceUnits: esriUnits
Expanded: Boolean
FeatureSelection: ISelection
IsFramed: Boolean

MapSurround (in Index: Long) :
IMapSurround

MapSurroundCount: Long
MapUnits: esriUnits
Name: String
ReferenceScale: Double
SelectionCount: Long
SpatialReference: ISpatialReference
SpatialReferenceLocked: Boolean
UseSymbolLevels: Boolean

AddMapSurround (in MapSurround:
IMapSurround)

ClearLayers
ClearMapSurrounds
ClearSelection
ComputeDistance (in p1: IPoint, in p2:

IPoint) : Double
CreateMapSurround (in CLSID: IUID, in

optionalStyle: IMapSurround) :
IMapSurround

DelayDrawing (in delay: Boolean)
DelayEvents (in delay: Boolean)
DeleteLayer (in Layer: ILayer)
DeleteMapSurround (in MapSurround:

IMapSurround)
GetPageSize (out widthInches: Double,

out heightInches: Double)
MoveLayer (in Layer: ILayer, in toIndex:

Long)
RecalcFullExtent
SelectByShape (in Shape: IGeometry,

in env: ISelectionEnvironment, in
justOne: Boolean)

SelectFeature (in Layer: ILayer, in
Feature: IFeature)

SetPageSize (in widthInches: Double, in
heightInches: Double)

Layers (UID: IUID, recursive: Boolean)
: IEnumLayer

MapScale: Double

LayerCount: Long
Layer (in Index: Long) : ILayer

AddLayers (in Layers: IEnumLayer, in
autoArrange: Boolean)

AddLayer (in Layer: ILayer)

 IActiveView : IUnknown

ExportFrame: tagRECT

ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean
ScreenCacheID (in phase:

tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer

ScreenDisplay: IScreenDisplay
Selection: ISelection
ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String
Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean
OnMessage (in msg: Unsigned Long, in

wParam: Unsigned Machine Int, in
lParam: Long)

PrinterChanged (in Printer: IPrinter)
Refresh

Extent: IEnvelope

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

IGxObjectFilter

GxFilterFeatureClasses
 IGxObjectFilter : IUnknown

Description: String
Name: String

CanChooseObject (in Object:
IGxObject, result:
tagesriDoubleClickResult) : Boolean

CanDisplayObject (in Object:
IGxObject) : Boolean

CanSaveObject (in Location:
IGxObject, in newObjectName:
String, objectAlreadyExists:
Boolean) : Boolean

 IEnumGxObject : IUnknown

Reset
Next: IGxObject

GxDialog
IGxDialog

IGxObjectFilterCollection
IGxSelectionEvents

 IGxDialog : IUnknown

DoModalSave (in
parentWindow: Long) :
Boolean

DoModalOpen (in
parentWindow: Long, out
Selection: IEnumGxObject)
: Boolean

AllowMultiSelect: Boolean
ButtonCaption: String
FinalLocation: IGxObject
InternalCatalog: IGxCatalog
Name: String

RememberLocation: Boolean
ReplacingObject: Boolean
StartingLocation: Variant
Title: String

ObjectFilter: IGxObjectFilter

2

To obtain the active map, use the FocusMap
property of the IMxDocument interface.

Finally, the newly added layer is drawn on the
screen. Notice the use of the PartialRefresh
method instead of the Refresh method; this
ensures optimal drawing of all the map layers.

1

8

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty

IDocumentDatasets
IDocumentDefaultSymbols

IDocumentEvents
IDocumentEventsDisp

IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

IDocumentDirty2

Appendix C • Illustrated code samples • 271

Geodatabase

6
Since an appropriate GxObjectFilter
object was used, the GxObjects returned
from the enumerator will support the
IGxDataset interface.

7
The enumerator is iterated over
and for each GxObject
accessed, a FeatureLayer object
is created that is associated with
the FeatureClass. Notice that
the Dataset property of the
GxDataset is assigned to the
FeatureClass property of the
Layer.

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pGxDialog As IGxDialog
Set pGxDialog = New GxDialog
pGxDialog.AllowMultiSelect = True
pGxDialog.Title = "Select Feature Classes to Add to Map"

Dim pGxFilter As IGxObjectFilter
Set pGxFilter = New GxFilterFeatureClasses
Set pGxDialog.ObjectFilter = pGxFilter

Dim pGxObjects As IEnumGxObject
pGxDialog.DoModalOpen ThisDocument.Parent.hWnd, pGxObjects

If (pGxObjects Is Nothing) Then Exit Sub
pGxObjects.Reset

Dim pLayer As IFeatureLayer
Dim pGxDataset As IGxDataset
Set pGxDataset = pGxObjects.Next
Do Until (pGxDataset Is Nothing)
 Set pLayer = New FeatureLayer
 Set pLayer.FeatureClass = pGxDataset.Dataset
 pLayer.Name = pLayer.FeatureClass.AliasName
 pMxDoc.FocusMap.AddLayer pLayer
 Set pGxDataset = pGxObjects.Next
Loop
pMxDoc.ActiveView.PartialRefresh esriViewGeography, _
 Nothing, Nothing

2

3

4

5

6

Add this to the Click event of a UIButtonControl in ArcMap.

7

1

8

FeatureLayerIAttributeTable
IClass

IDataLayer
IDataLayer2

IDataset
IDisplayAdmin

IDisplayFilterManager
IDisplayRelationshipClass

IDisplayTable
IFeatureLayer

IFeatureLayer2
IFeatureLayerDefinition

IFeatureLayerSelectionEvents
IFeatureSelection

IFind
IGeoFeatureLayer
IHotlinkContainer

IHotlinkMacro
IHyperlinkContainer

IIdentify
IIdentify2

ILayer2
ILayerDrawingProperties

ILayerEffects
ILayerEvents

ILayerExtensions
ILayerFields

ILayerInfo
ILayerPosition

ILegendInfo
IMapLevel

IObjectClassSchemaEvents
IPropertySupport

IRelationshipClassCollection
IRelationshipClassCollectionEdit

ITable
ITableFields

ITableSelection

 IFeatureLayer : ILayer

Search (in QueryFilter:
IQueryFilter, in Recycling:
Boolean) : IFeatureCursor

DataSourceType: String
DisplayField: String
FeatureClass: IFeatureClass
ScaleSymbols: Boolean
Selectable: Boolean

Layer
IGeoDataset

ILayer
IPersist

IPersistStream

 ILayer : IUnknown

Draw (in drawPhase:
tagesriDrawPhase, in Display:
IDisplay, in trackCancel:
ITrackCancel)

AreaOfInterest: IEnvelope
Cached: Boolean
MaximumScale: Double
MinimumScale: Double

ShowTips: Boolean
SpatialReference: ISpatialReference
SupportedDrawPhases: Long
TipText (in X: Double, in Y: Double, in

Tolerance: Double) : String
Valid: Boolean
Visible: Boolean

Name: String

 IGxDataset : IUnknown

Dataset: IDataset
DatasetName: IDatasetName
Type: esriDatasetType

 IFeatureClass : IObjectClass

AreaField: IField
FeatureClassID: Long
FeatureDataset: IFeatureDataset
FeatureType: esriFeatureType
LengthField: IField
ShapeFieldName: String
ShapeType: tagesriGeometryType

CreateFeature: IFeature
CreateFeatureBuffer: IFeatureBuffer
FeatureCount (in QueryFilter:

IQueryFilter) : Long
GetFeature (in ID: Long) : IFeature
GetFeatures (in fids: Variant, in

Recycling: Boolean) : IFeatureCursor
Insert (in useBuffering: Boolean) :

IFeatureCursor
Search (in Filter: IQueryFilter, in

Recycling: Boolean) : IFeatureCursor
Select (in QueryFilter: IQueryFilter, in

selType: esriSelectionType, in
selOption: esriSelectionOption, in
selectionContainer: IWorkspace) :
ISelectionSet

Update (in Filter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

 IObjectClass : IClass

ObjectClassID: Long
RelationshipClasses (in

role: esriRelRole) :
IEnumRelationshipClass

AliasName: String

Carto

IPublishLayer

272 • ArcGIS Desktop Developer Guide

STYLE GALLERY AUTO SYMBOL SELECTION

This sample goes through all polygon layers in the
map and attempts to match the symbology from
the standard style set to the layer name. ArcMap

does this by default. Therefore, to see a real
difference before testing the tool, layer names

should be changed to reflect suitable styles. For
example, try changing a layer name to "Glacier" and

executing this command.

MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize
DelayUpdateContents: Boolean

Maps: IMaps
OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

FocusMap: IMap

An enumerator is obtained from the style gallery for the style
gallery's FillSymbol entries that, when accessed, will loop over
all the FillSymbols.

2

To begin, you must gain access to
the current document.1

3
Using the IMap layer properties,
loop over all the layers in the
map.

ArcMapUI
 IMap : IUnknown

ActiveGraphicsLayer: ILayer
AnnotationEngine: IAnnotateMap
AreaOfInterest: IEnvelope
Barriers (pExtent: IEnvelope) :

IBarrierCollection
BasicGraphicsLayer: IGraphicsLayer
ClipBorder: IBorder
ClipGeometry: IGeometry
Description: String
DistanceUnits: esriUnits
Expanded: Boolean
FeatureSelection: ISelection
IsFramed: Boolean

MapSurround (in Index: Long) :
IMapSurround

MapSurroundCount: Long
MapUnits: esriUnits
Name: String
ReferenceScale: Double
SelectionCount: Long
SpatialReference: ISpatialReference
SpatialReferenceLocked: Boolean
UseSymbolLevels: Boolean

AddLayer (in Layer: ILayer)
AddLayers (in Layers: IEnumLayer, in

autoArrange: Boolean)
AddMapSurround (in MapSurround:

IMapSurround)
ClearLayers
ClearMapSurrounds
ClearSelection
ComputeDistance (in p1: IPoint, in p2:

IPoint) : Double
CreateMapSurround (in CLSID: IUID, in

optionalStyle: IMapSurround) :
IMapSurround

DelayDrawing (in delay: Boolean)
DelayEvents (in delay: Boolean)
DeleteLayer (in Layer: ILayer)
DeleteMapSurround (in MapSurround:

IMapSurround)
GetPageSize (out widthInches: Double,

out heightInches: Double)
MoveLayer (in Layer: ILayer, in toIndex:

Long)
RecalcFullExtent
SelectByShape (in Shape: IGeometry,

in env: ISelectionEnvironment, in
justOne: Boolean)

SelectFeature (in Layer: ILayer, in
Feature: IFeature)

SetPageSize (in widthInches: Double, in
heightInches: Double)

Layers (UID: IUID, recursive: Boolean)
: IEnumLayer

MapScale: Double

LayerCount: Long
Layer (in Index: Long) : ILayer

 IStyleGallery : IUnknown

Categories (in ClassName: String) :
IEnumBSTR

Class (in Index: Long) :
IStyleGalleryClass

ClassCount: Long

AddItem (in Item: IStyleGalleryItem)
Clear
ImportStyle (in FileName: String)
LoadStyle (in FileName: String, in

ClassName: String)
RemoveItem (in Item:

IStyleGalleryItem)
SaveStyle (in FileName: String, in

styleSet: String, in ClassName: String)
UpdateItem (in Item: IStyleGalleryItem)

Items (in ClassName: String, in
styleSet: String, in Category: String) :
IEnumStyleGalleryItem

 IActiveView : IUnknown

ExportFrame: tagRECT

ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean
ScreenCacheID (in phase:

tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer

ScreenDisplay: IScreenDisplay
Selection: ISelection
ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String
Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean
OnMessage (in msg: Unsigned Long, in

wParam: Unsigned Machine Int, in
lParam: Long)

PrinterChanged (in Printer: IPrinter)
Refresh

Extent: IEnvelope

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

8
Finally, all the geographic layers are
refreshed to update the map display.

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty

IDocumentDatasets
IDocumentDefaultSymbols

IDocumentEvents
IDocumentEventsDisp

IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

IDocumentDirty2

Appendix C • Illustrated code samples • 273

4
If the type of layer is not an
IGeoFeatureLayer, continue to
the next layer.

5
Using the FeatureClass property,
check the shape type of the layer.
If it is not Polygon, skip to the next
layer.

6
The style gallery enumerator is reset and
then iterated over to look for a match
between the style item name and the layer
name.

7
If a match in name is found, the
symbol obtained from the style
gallery is set into the renderer.

Geodatabase

Carto

 IFeatureClass : IObjectClass

AreaField: IField
FeatureClassID: Long
FeatureDataset: IFeatureDataset
FeatureType: esriFeatureType
LengthField: IField
ShapeFieldName: String

CreateFeature: IFeature
CreateFeatureBuffer: IFeatureBuffer
FeatureCount (in QueryFilter:

IQueryFilter) : Long
GetFeature (in ID: Long) : IFeature
GetFeatures (in fids: Variant, in

Recycling: Boolean) : IFeatureCursor
Insert (in useBuffering: Boolean) :

IFeatureCursor
Search (in Filter: IQueryFilter, in

Recycling: Boolean) : IFeatureCursor
Select (in QueryFilter: IQueryFilter, in

selType: esriSelectionType, in
selOption: esriSelectionOption, in
selectionContainer: IWorkspace) :
ISelectionSet

Update (in Filter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

ShapeType: tagesriGeometryType

 IStyleGalleryItem : IUnknown

Category: String

Name: String
Item: IUnknown Pointer
ID: Long

IEnumStyleGalleryItem:IUnknown

Next: IStyleGalleryItem
Reset

ISimpleRenderer:IUnknown

Description: String
Label: String
Symbol: ISymbol

 ILayer : IUnknown

Draw (in drawPhase:
tagesriDrawPhase, in Display:
IDisplay, in trackCancel:
ITrackCancel)

AreaOfInterest: IEnvelope
Cached: Boolean
MaximumScale: Double
MinimumScale: Double

ShowTips: Boolean
SpatialReference: ISpatialReference
SupportedDrawPhases: Long
TipText (in X: Double, in Y: Double,

in Tolerance: Double) : String
Valid: Boolean
Visible: Boolean

Name: String

IFeatureLayer : ILayer

Search (in QueryFilter:
IQueryFilter, in Recycling:
Boolean) : IFeatureCursor

DataSourceType: String
DisplayField: String
FeatureClass: IFeatureClass
ScaleSymbols: Boolean
Selectable: Boolean

 IGeoFeatureLayer : IFeatureLayer

AnnotationProperties:
IAnnotateLayerPropertiesCollection

AnnotationPropertiesID: IUID
CurrentMapLevel: Long
DisplayAnnotation: Boolean
DisplayFeatureClass: IFeatureClass
ExclusionSet: IFeatureIDSet
Renderer: IFeatureRenderer
RendererPropertyPageClassID: IUID

SearchDisplayFeatures (in QueryFilter:
IQueryFilter, in Recycling: Boolean) :
IFeatureCursor

Carto

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pStyleItems As IEnumStyleGalleryItem
Set pStyleItems = pMxDoc.StyleGallery.Items("Fill Symbols", _
 "ESRI.style", "Default")
Dim pGalleryItem As IStyleGalleryItem

Dim pRenderer As ISimpleRenderer
Dim pGeoFeatureLayer As IGeoFeatureLayer
Dim i As Long
For i = 0 To pMxDoc.FocusMap.LayerCount - 1
 If (TypeOf pMxDoc.FocusMap.Layer(i) Is IGeoFeatureLayer) Then
 Set pGeoFeatureLayer = pMxDoc.FocusMap.Layer(i)
 If (pGeoFeatureLayer.FeatureClass.ShapeType = _
 esriGeometryPolygon) Then
 pStyleItems.Reset
 Set pGalleryItem = pStyleItems.Next
 Do While (Not pGalleryItem Is Nothing)
 If (pGeoFeatureLayer.Name = pGalleryItem.Name) Then
 Set pRenderer = pGeoFeatureLayer.Renderer
 Set pRenderer.Symbol = pGalleryItem.Item
 Exit Do
 End If
 Set pGalleryItem = pStyleItems.Next
 Loop
 End If
 End If
 Next i
 pMxDoc.ActivatedView.PartialRefresh esriViewGeography, _
 Nothing, Nothing

1

2

3

4

5

6

Add this to the Click event of a UIButtonControl in ArcMap.

7

8

Display

274 • ArcGIS Desktop Developer Guide

LOOP THROUGH SELECTED AREA FEATURES

This sample loops through the selected
features of the focus map. It loops using the

IEnumFeature interface, which is reached
through a QueryInterface from the

FeatureSelection property of the map. For
each feature it checks the geometry type
and if Polygon, it performs a QueryInterface

for the IArea interface. Using the Area
property of the interface, it adds the area

to a running total. At the end, it reports the
total area via a message box.

 IFeatureSelection : IUnknown

BufferDistance: Double
CombinationMethod:

esriSelectionResultEnum
SelectionColor: IColor
SelectionSet: ISelectionSet
SelectionSymbol: ISymbol
SetSelectionSymbol: Boolean

Add (in Feature: IFeature)
Clear
SelectFeatures (in Filter: IQueryFilter,

in Method: esriSelectionResultEnum,
in justOne: Boolean)

SelectionChanged

The UID helper object is used
to represent the GUID for the
IGeoFeatureLayer interface.

2
3

The UID object created previously is used
to obtain an enumerator for all layers that
support the IGeoFeatureLayer interface.
Notice the resetting of the enumerator
before its use.

MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize
DelayUpdateContents: Boolean

Maps: IMaps
OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

FocusMap: IMap

 IMap : IUnknown

ActiveGraphicsLayer: ILayer
AnnotationEngine: IAnnotateMap
AreaOfInterest: IEnvelope
Barriers (pExtent: IEnvelope) :

IBarrierCollection
BasicGraphicsLayer: IGraphicsLayer
ClipBorder: IBorder
ClipGeometry: IGeometry
Description: String
DistanceUnits: esriUnits
Expanded: Boolean
FeatureSelection: ISelection
IsFramed: Boolean
Layer (in Index: Long) : ILayer

MapSurround (in Index: Long) :
IMapSurround

MapSurroundCount: Long
MapUnits: esriUnits
Name: String
ReferenceScale: Double
SelectionCount: Long
SpatialReference: ISpatialReference
SpatialReferenceLocked: Boolean
UseSymbolLevels: Boolean

AddLayer (in Layer: ILayer)
AddLayers (in Layers: IEnumLayer, in

autoArrange: Boolean)
AddMapSurround (in MapSurround:

IMapSurround)
ClearLayers
ClearMapSurrounds
ClearSelection
ComputeDistance (in p1: IPoint, in p2:

IPoint) : Double
CreateMapSurround (in CLSID: IUID, in

optionalStyle: IMapSurround) :
IMapSurround

DelayDrawing (in delay: Boolean)
DelayEvents (in delay: Boolean)
DeleteLayer (in Layer: ILayer)
DeleteMapSurround (in MapSurround:

IMapSurround)
GetPageSize (out widthInches: Double,

out heightInches: Double)
MoveLayer (in Layer: ILayer, in toIndex:

Long)
RecalcFullExtent
SelectByShape (in Shape: IGeometry,

in env: ISelectionEnvironment, in
justOne: Boolean)

SelectFeature (in Layer: ILayer, in
Feature: IFeature)

SetPageSize (in widthInches: Double, in
heightInches: Double)

LayerCount: Long
Layers (UID: IUID, recursive: Boolean)

: IEnumLayer
MapScale: Double

UID

IXMLSerialize
IPersistStream

IUID IUID : IDispatch

SubType: Long
Value: Variant

Compare (in otherID:
IUID) : Boolean

Generate

4
The layers enumerator is iterated
over using the standard enumerator
method, Next.

 IFeatureClass : IObjectClass

AreaField: IField
FeatureClassID: Long
FeatureDataset: IFeatureDataset
FeatureType: esriFeatureType
LengthField: IField
ShapeFieldName: String
ShapeType: tagesriGeometryType

CreateFeature: IFeature
CreateFeatureBuffer: IFeatureBuffer
FeatureCount (in QueryFilter:

IQueryFilter) : Long
GetFeature (in ID: Long) : IFeature
GetFeatures (in fids: Variant, in

Recycling: Boolean) : IFeatureCursor
Insert (in useBuffering: Boolean) :

IFeatureCursor
Search (in Filter: IQueryFilter, in

Recycling: Boolean) : IFeatureCursor
Select (in QueryFilter: IQueryFilter, in

selType: esriSelectionType, in
selOption: esriSelectionOption, in
selectionContainer: IWorkspace) :
ISelectionSet

Update (in Filter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

 IFeatureLayer : ILayer

DataSourceType: String
DisplayField: String
FeatureClass: IFeatureClass
ScaleSymbols: Boolean
Selectable: Boolean

Search (in QueryFilter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

 IFeatureLayer : ILayer

DataSourceType: String

FeatureClass: IFeatureClass
ScaleSymbols: Boolean
Selectable: Boolean

Search (in QueryFilter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

DisplayField: String

5
If the shape type of
the feature class is
not a Polygon, the

layer is skipped.

System

ArcMapUI

Carto

 IEnumLayer : IUnknown

Reset
Next: ILayer

To obtain the layers of the map, you must first get
access to the currently active map. Do this through the
FocusMap property of the IMxDocument interface.

1

6 Obtain the IFeatureSelection interface by performing
a QueryInterface to the IFeatureLayer interface.

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty

IDocumentDatasets
IDocumentDefaultSymbols

IDocumentEvents
IDocumentEventsDisp

IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

IDocumentDirty2

Carto

Appendix C • Illustrated code samples • 275

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pUID As New UID
pUID = "{E156D7E5-22AF-11D3-9F99-00C04F6BC78E}" 'IGeoFeatureLayer IID

Dim pEnumLayer As IEnumLayer
Set pEnumLayer = pMxDoc.FocusMap.Layers(pUID, True)
pEnumLayer.Reset

Dim pFeatureLayer As IFeatureLayer
Dim pFeatureSelection As IFeatureSelection
Dim pFeatureCursor As IFeatureCursor
Dim pFeature As IFeature
Dim pArea As IArea
Dim dTotalArea As Double

Set pFeatureLayer = pEnumLayer.Next
Do Until (pFeatureLayer Is Nothing)
 If (pFeatureLayer.FeatureClass.ShapeType = esriGeometryPolygon) Then
 Set pFeatureSelection = pFeatureLayer

 If (pFeatureSelection.SelectionSet.Count <> 0) Then
 pFeatureSelection.SelectionSet.Search Nothing, True, pFeatureCursor
 Set pFeature = pFeatureCursor.NextFeature

 Do Until (pFeature Is Nothing)
 Set pArea = pFeature.Shape
 dTotalArea = dTotalArea + pArea.Area
 Set pFeature = pFeatureCursor.NextFeature
 Loop
 End If
 End If
 Set pFeatureLayer = pEnumLayer.Next
Loop

MsgBox "Total Area for selected polygon features = " & CStr(dTotalArea)

2

3

4

5

7

9

Add this code to the Click event of a UIButtonControl in ArcMap.

8

1

6

10

 IArea : IUnknown

Area: Double
Centroid: IPoint
LabelPoint: IPoint

QueryCentroid (Center: IPoint)
QueryLabelPoint (LabelPoint: IPoint)

 IArea : IUnknown

Area: Double
Centroid: IPoint
LabelPoint: IPoint

QueryCentroid (Center: IPoint)
QueryLabelPoint (LabelPoint: IPoint)

9
For each feature returned by the cursor,
the Area of the feature's shape is
obtained and totalled. The area is obtained
by performing a QueryInterface on the
feature's shape for the IArea interface and
getting the Area property from it.

 ISelectionSet : IUnknown

FullName: IName
IDs: IEnumIDs
Target: ITable

Add (in OID: Long)
AddList (in Count: Long, in OIDList:

Long)
Combine (in otherSet: ISelectionSet, in

setOp: esriSetOperation, out
resultSet: ISelectionSet)

MakePermanent
Refresh
RemoveList (in Count: Long, in

OIDList: Long)

Select (in QueryFilter: IQueryFilter, in
selType: esriSelectionType, in
selOption: esriSelectionOption, in
selectionContainer: IWorkspace) :
ISelectionSet

Count: Long

Search (in pQueryFilter: IQueryFilter, in
Recycling: Boolean, out ppCursor:
ICursor)

 IFeature : IObject

Extent: IEnvelope
FeatureType: esriFeatureType

ShapeCopy: IGeometry
Shape: IGeometry

 IFeatureCursor : IUnknown

Fields: IFields

DeleteFeature
FindField (in Name: String) : Long
Flush

NextFeature: IFeature
UpdateFeature (in Object: IFeature)

InsertFeature (in Buffer:
IFeatureBuffer) : Variant

8
If there are selected features, a
cursor onto these features is
obtained from the layers
selection set.

Geodatabase

Geometry

7
Before attempting to loop through selected
features, a check is performed to ensure
that there are selected features for the
current layer. If there are no selected
features, the layer is skipped.

10

10
Finally, the totalled area is displayed
to the user in a standard Visual Basic
Message Box.

276 • ArcGIS Desktop Developer Guide

SPATIAL QUERY

This sample builds a spatial query filter,
gets a feature cursor based on the filter

and then loops over all the features,
totalling the number of points, lines, and

areas, and reports these to the user.

MxDocument

IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize

OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

DelayUpdateContents: Boolean
FocusMap: IMap
Maps: IMaps

Display

Carto

The IMxDocument
interface is obtained from
the ThisDocument
global variable.

1

A user-defined envelope defining the
extent of the spatial query is required.
The rubber envelope object is used.

2

The active view associated with the focus
map is acquired in order for the rubber
banding geometry to have the correct
spatial reference.

3

The TrackNew method is called.
This allows the user to drag the
mouse to define the envelope.

4

Each layer in the map is looped over; if the
layer is not of type IGeoFeatureLayer,
the layer is skipped.

6

RubberBandIRubberBand

 IRubberBand : IUnknown

TrackExisting (in ScreenDisplay:
IScreenDisplay, in Symbol: ISymbol,
in Geometry: IGeometry) : Boolean

TrackNew (in ScreenDisplay:
IScreenDisplay, in Symbol: ISymbol)
: IGeometry

Rubber-
Envelope

 IActiveView : IUnknown

ExportFrame: tagRECT
Extent: IEnvelope
ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean
ScreenCacheID (in phase:

tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer

ScreenDisplay: IScreenDisplay
Selection: ISelection
ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String

Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean
OnMessage (in msg: Unsigned Long, in

wParam: Unsigned Machine Int, in
lParam: Long)

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

PrinterChanged (in Printer: IPrinter)
Refresh

 IMap : IUnknown

ActiveGraphicsLayer: ILayer
AnnotationEngine: IAnnotateMap
AreaOfInterest: IEnvelope
Barriers (pExtent: IEnvelope) :

IBarrierCollection
BasicGraphicsLayer: IGraphicsLayer
ClipBorder: IBorder
ClipGeometry: IGeometry
Description: String
DistanceUnits: esriUnits
Expanded: Boolean
FeatureSelection: ISelection

MapSurround (in Index: Long) :
IMapSurround

MapSurroundCount: Long
MapUnits: esriUnits
Name: String
ReferenceScale: Double
SelectionCount: Long
SpatialReference: ISpatialReference
SpatialReferenceLocked: Boolean
UseSymbolLevels: Boolean

AddLayer (in Layer: ILayer)
AddLayers (in Layers: IEnumLayer, in

autoArrange: Boolean)
AddMapSurround (in MapSurround:

IMapSurround)
ClearLayers
ClearMapSurrounds
ClearSelection
ComputeDistance (in p1: IPoint, in p2:

IPoint) : Double
CreateMapSurround (in CLSID: IUID, in

optionalStyle: IMapSurround) :
IMapSurround

DelayDrawing (in delay: Boolean)
DelayEvents (in delay: Boolean)
DeleteLayer (in Layer: ILayer)
DeleteMapSurround (in MapSurround:

IMapSurround)
GetPageSize (out widthInches: Double,

out heightInches: Double)
MoveLayer (in Layer: ILayer, in toIndex:

Long)
RecalcFullExtent
SelectByShape (in Shape: IGeometry,

in env: ISelectionEnvironment, in
justOne: Boolean)

SelectFeature (in Layer: ILayer, in
Feature: IFeature)

SetPageSize (in widthInches: Double, in
heightInches: Double)

LayerCount: Long
Layers (UID: IUID, recursive: Boolean)

: IEnumLayer
MapScale: Double

IsFramed: Boolean
Layer (in Index: Long) : ILayer

 IFeatureLayer : ILayer

Search (in QueryFilter:
IQueryFilter, in Recycling:
Boolean) : IFeatureCursor

DataSourceType: String
DisplayField: String
FeatureClass: IFeatureClass
ScaleSymbols: Boolean
Selectable: Boolean

 IFeatureClass : IObjectClass

AreaField: IField
FeatureClassID: Long
FeatureDataset: IFeatureDataset
FeatureType: esriFeatureType

CreateFeature: IFeature
CreateFeatureBuffer: IFeatureBuffer
FeatureCount (in QueryFilter:

IQueryFilter) : Long
GetFeature (in ID: Long) : IFeature
GetFeatures (in fids: Variant, in

Recycling: Boolean) : IFeatureCursor

Update (in Filter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

LengthField: IField
ShapeFieldName: String
ShapeType: tagesriGeometryType

Insert (in useBuffering: Boolean) :
IFeatureCursor

Search (in Filter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

Select (in QueryFilter: IQueryFilter, in
selType: esriSelectionType, in
selOption: esriSelectionOption, in
selectionContainer: IWorkspace) :
ISelectionSet

 IEnvelope : IGeometry

Depth: Double
Height: Double
LowerLeft: IPoint
LowerRight: IPoint
MMax: Double
MMin: Double
UpperLeft: IPoint
UpperRight: IPoint
Width: Double
XMax: Double
XMin: Double
YMax: Double
YMin: Double
ZMax: Double
ZMin: Double

CenterAt (p: IPoint)
DefineFromPoints (Count: Long, in

Points: IPoint)
Expand (dx: Double, dy: Double,

asRatio: Boolean)
ExpandM (dm: Double, asRatio:Boolean)
ExpandZ (dz: Double, asRatio: Boolean)
Intersect (inEnvelope: IEnvelope)
Offset (X: Double, Y: Double)
OffsetM (M: Double)
OffsetZ (Z: Double)
PutCoords (XMin: Double, YMin: Double,

XMax: Double, YMax: Double)
QueryCoords (out XMin: Double, out

YMin: Double, out XMax: Double, out
YMax: Double)

Union (inEnvelope: IEnvelope)

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty

IDocumentDatasets
IDocumentDefaultSymbols

IDocumentEvents
IDocumentEventsDisp

IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

IDocumentDirty2

Appendix C • Illustrated code samples • 277

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pEnv As IEnvelope
Dim pRubber As IRubberBand
Set pRubber = New RubberEnvelope

Dim pActiveView As IActiveView
Set pActiveView = pMxDoc.FocusMap
Set pEnv = pRubber.TrackNew(pActiveView.ScreenDisplay, Nothing)

Dim pSpatialFilter As ISpatialFilter
Set pSpatialFilter = New SpatialFilter
Set pSpatialFilter.Geometry = pEnv
pSpatialFilter.SpatialRel = esriSpatialRelIntersects

Dim lPoints As Long, lPolygons As Long, lPolylines As Long
Dim pLayer As IFeatureLayer
Dim pFeatureCursor As IFeatureCursor
Dim pFeature As IFeature
Dim i As Long
For i = 0 To pMxDoc.FocusMap.LayerCount - 1
 If (TypeOf pMxDoc.FocusMap.Layer(i) Is IGeoFeatureLayer) Then
 Set pLayer = pMxDoc.FocusMap.Layer(i)
 pSpatialFilter.GeometryField = pLayer.FeatureClass.ShapeFieldName

 Set pFeatureCursor = pLayer.Search(pSpatialFilter, True)
 Set pFeature = pFeatureCursor.NextFeature
 Do Until (pFeature Is Nothing)
 Select Case pFeature.Shape.GeometryType
 Case esriGeometryPoint
 lPoints = lPoints + 1
 Case esriGeometryPolyline
 lPolylines = lPolylines + 1
 Case esriGeometryPolygon
 lPolygons = lPolygons + 1
 End Select
 Set pFeature = pFeatureCursor.NextFeature
 Loop
 End If
Next i

MsgBox "Features Found:" & vbCrLf & lPoints & " Points " & vbCrLf & _
 lPolylines & " Polylines " & vbCrLf & lPolygons & " Polygons "

1

2

3

4

5

6

Add this to the MouseDown event of a UIToolControl in ArcMap.

7

9

8

10

 IFeatureCursor : IUnknown

Fields: IFields

DeleteFeature
FindField (in Name: String) : Long
Flush
InsertFeature (in Buffer:

IFeatureBuffer) : Variant
NextFeature: IFeature
UpdateFeature (in Object: IFeature)

Enumeration esriSpatialRelEnum

0 - esriSpatialRelUndefined
1 - esriSpatialRelIntersects
2 - esriSpatialRelEnvelopeIntersects
3 - esriSpatialRelIndexIntersects
4 - esriSpatialRelTouches
5 - esriSpatialRelOverlaps
6 - esriSpatialRelCrosses
7 - esriSpatialRelWithin
8 - esriSpatialRelContains
9 - esriSpatialRelRelation

Geodatabase

Geometry
A new spatial filter object is created.
The shape and spatial reference is set.

5

The spatial filter must be told what
column in the database table holds the
feature shape. This information is
retrieved from the feature class.

7

A feature cursor is obtained
from the layer by calling the
Search method passing in
the SpatialFilter.

8

This cursor is looped over and the features returned by
the cursor are inspected. Based on their geometry type,
the totals are updated accordingly.

9
QueryFilter

IClone
IPersistStream

IQueryFilter
IQueryFilter2

IXMLSerialize

SpatialFilterISpatialFilter

 ISpatialFilter : IQueryFilter

GeometryEx (in Geometry:
IGeometry) : Boolean

GeometryField: String

Geometry: IGeometry
FilterOwnsGeometry: Boolean

SearchOrder: tagesriSearchOrder
SpatialRel: esriSpatialRelEnum
SpatialRelDescription: String

 IGeometry : IUnknown

Dimension: tagesriGeometryDimension

SpatialReference: ISpatialReference

GeoNormalize
GeoNormalizeFromLongitude

(Longitude: Double)
Project (newReferenceSystem:

ISpatialReference)
QueryEnvelope (outEnvelope: IEnvelope)
SetEmpty
SnapToSpatialReference

Envelope: IEnvelope
GeometryType: tagesriGeometryType
IsEmpty: Boolean

 IFeature : IObject

Extent: IEnvelope
FeatureType: esriFeatureType
Shape: IGeometry
ShapeCopy: IGeometry

Enumeration esriGeometryTypeConstants

 0 - esriGeometryNull
 1 - esriGeometryPoint
 2 - esriGeometryMultipoint
 3 - esriGeometryPolyline
 4 - esriGeometryPolygon
 5 - esriGeometryEnvelope
 6 - esriGeometryPath
 7 - esriGeometryAny
 9 - esriGeometryMultiPatch
11 - esriGeometryRing
13 - esriGeometryLine
14 - esriGeometryCircularArc
15 - esriGeometryBezier3Curve
16 - esriGeometryEllipticArc
17 - esriGeometryBag
18 - esriGeometryTriangleStrip
19 - esriGeometryTriangleFan
20 - esriGeometryRay
21 - esriGeometrySphere

Finally, the results of the selection are
displayed in a Visual Basic message box.10

278 • ArcGIS Desktop Developer Guide

ADD MAP SURROUND TO PAGE LAYOUT

This example adds legend map surround to
a page layout and fills the legend with the

layers of the map. Map surrounds are
dynamically linked to their associated map;

therefore, any changes to the map are
reflected in the map surround.

You must ensure that the active
view associated with the
PageLayout is used. Hence, you
cannot use the ActiveView
property of the IMxDocument
interface since that may be
associated with the FocusMap.
You must perform a
QueryInterface on PageLayout
for its IActiveView interface.

2

The graphic container
associated with the
PageLayout is obtained.

3

The FindFrame method on the
IGraphicsContainer is used to
find the map frame associated
with the focus map.

4

The legend map surround
frame is created and its
name is set.

6

MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize
DelayUpdateContents: Boolean
FocusMap: IMap
Maps: IMaps
OperationStack: IOperationStack

SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

PageLayout: IPageLayout
RelativePaths: Boolean

 IActiveView : IUnknown

ExportFrame: tagRECT

ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean
ScreenCacheID (in phase:

tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer

ScreenDisplay: IScreenDisplay
Selection: ISelection
ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String
Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean
OnMessage (in msg: Unsigned Long, in

wParam: Unsigned Machine Int, in
lParam: Long)

PrinterChanged (in Printer: IPrinter)
Refresh

Extent: IEnvelope

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

 IGraphicsContainer : IUnknown

BringForward (in Elements:
IEnumElement)

BringToFront (in Elements:
IEnumElement)

DeleteAllElements

FindFrame (in frameObject: Variant) :
IFrameElement

GetElementOrder (in Elements:
IEnumElement) : Variant

LocateElements (in Point: IPoint, in
Tolerance: Double) : IEnumElement

LocateElementsByEnvelope (in
Envelope: IEnvelope) : IEnumElement

MoveElementFromGroup (in Group:
IGroupElement, in Element: IElement,
in zorder: Long)

MoveElementToGroup (in Element:
IElement, in Group: IGroupElement)

Next: IElement
PutElementOrder (in order: Variant)
Reset
SendBackward (in Elements:

IEnumElement)
SendToBack (in Elements:

IEnumElement)
UpdateElement (in Element: IElement)

DeleteElement (in Element: IElement)

AddElements (in Elements:
IElementCollection, in zorder: Long)

AddElement (in Element: IElement, in
zorder: Long)

The legend is added to the
graphics container of the
PageLayout. This ensures
that the legend element is
saved in the map
document.

10

Finally, the graphics layer
of the screen is refreshed.

11

IFrameElement:IUnknown

Background: IBackground
Border: IBorder
DraftMode: Boolean
Object: Variant
Thumbnail: Long

 IMapSurround : IUnknown

Draw (in Display: IDisplay, in
trackCancel: ITrackCancel, in
Bounds: IEnvelope)

FitToBounds (in Display: IDisplay,
in Bounds: IEnvelope, out
Changed: Boolean)

QueryBounds (in Display: IDisplay,
in oldBounds: IEnvelope,
newBounds: IEnvelope)

Refresh

Icon: Long
Map: IMap
Name: String

DelayEvents (in delay: Boolean)

IMapSurroundFrame:IFrameElement

MapSurround: IMapSurround
MapFrame: IMapFrame

Carto

 IMapFrame : IFrameElement

Container: IGraphicsContainer
ExtentType: esriExtentTypeEnum
LocatorRectangleCount: Long
Map: IMap
MapBounds: IEnvelope
MapScale: Double

RemoveAllLocatorRectangles
RemoveLocatorRectangle (in Locator:

ILocatorRectangle)

AddLocatorRectangle (in Locator:
ILocatorRectangle)

CreateSurroundFrame (in CLSID: IUID,
in optionalStyle: IMapSurround) :
IMapSurroundFrame

LocatorRectangle (in Index: Long) :
ILocatorRectangle

1
The IMxDocument
interface is obtained from
the ThisDocument
global variable.

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty

IDocumentDatasets
IDocumentDefaultSymbols

IDocumentEvents
IDocumentEventsDisp

IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

IDocumentDirty2

Appendix C • Illustrated code samples • 279

IXMLSerialize
IPersistStream

The CreateSurroundFrame method requires
the GUID of the surround element type. A UID
object is created and its value is set to the ID of
the legend class.

5

The IElement interface is accessed by a QueryInterface
from IMapSurroundFrame. This interface is required to
set the geometry of the frame. The geometry controls the
location of the legend on the paper.

7

The geometry associated
with the focus map's
MapFrame is obtained.

8

A new envelope geometry
for the legend is created and
positioned relative to the
focus map's map frame.

9

 IElement : IUnknown

Draw (in Display: IDisplay, in
trackCancel: ITrackCancel)

HitTest (in X: Double, in Y: Double, in
Tolerance: Double) : Boolean

QueryBounds (in Display: IDisplay, in
Bounds: IEnvelope)

QueryOutline (in Display: IDisplay, in
Outline: IPolygon)

Geometry: IGeometry
Locked: Boolean
SelectionTracker: ISelectionTracker

Activate (in Display: IDisplay)
Deactivate

UID
IUID IUID : IDispatch

SubType: Long
Value: Variant

Compare (in otherID:
IUID) : Boolean

Generate

System

Geometry

Carto

Envelope
IArea

IEnvelope

ITransform2D

IGeometry2
IHitTest

IMAware
IPersist

IPersistStream
IProximityOperator

IRelationalOperator

IZAware

 IEnvelope : IGeometry

Depth: Double
Height: Double
LowerLeft: IPoint
LowerRight: IPoint
MMax: Double
MMin: Double
UpperLeft: IPoint
UpperRight: IPoint
Width: Double
XMax: Double
XMin: Double
YMax: Double
YMin: Double
ZMax: Double
ZMin: Double

CenterAt (p: IPoint)
DefineFromPoints (Count: Long, in

Points: IPoint)
Expand (dx: Double, dy: Double,

asRatio: Boolean)
ExpandM (dm: Double, asRatio:Boolean)
ExpandZ (dz: Double, asRatio: Boolean)
Intersect (inEnvelope: IEnvelope)
Offset (X: Double, Y: Double)

Union (inEnvelope: IEnvelope)

OffsetM (M: Double)
OffsetZ (Z: Double)
PutCoords (XMin: Double, YMin: Double,

XMax: Double, YMax: Double)
QueryCoords (out XMin: Double, out

YMin: Double, out XMax: Double, out
YMax: Double)

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pActiveView As IActiveView
Set pActiveView = pMxDoc.PageLayout

Dim pGraphicsContainer As IGraphicsContainer
Dim pMapFrame As IMapFrame
Set pGraphicsContainer = pMxDoc.PageLayout
Set pMapFrame = pGraphicsContainer.FindFrame(pMxDoc.FocusMap)

Dim pMapSurroundFrame As IMapSurroundFrame
Dim pUID As New UID
Dim pElement As IElement
pUID.Value = "esriCarto.Legend"
Set pMapSurroundFrame = pMapFrame.CreateSurroundFrame(pUID, Nothing)
pMapSurroundFrame.MapSurround.Name = "Legend"

Set pElement = pMapSurroundFrame

Dim pMainMapElement As IElement
Dim pMainEnv As IEnvelope
Set pMainMapElement = pMapFrame
Set pMainEnv = pMainMapElement.Geometry.Envelope

Dim pEnv As IEnvelope
Set pEnv = New Envelope
pEnv.PutCoords pMainEnv.XMax + 1.5, pMainEnv.YMin + 1.5, _
 pMainEnv.XMax - 1.5, pMainEnv.YMax - 1.5
pElement.Geometry = pEnv
pElement.Activate pActiveView.ScreenDisplay
pGraphicsContainer.AddElement pElement, 0
pActiveView.PartialRefresh esriViewGraphics, Nothing, Nothing

2

3

4

5

6

7

Add this to the Click event of a UIButtonControl in ArcMap, and execute the
command when in Page View.

8

9

10

11

1

280 • ArcGIS Desktop Developer Guide

ADD TEXT CALLOUT TO ACTIVE VIEW

This sample adds one of the more
complicated types of graphic elements to a

map or page layout, depending on the
current view. The callout is added to the

center of the view.

A TextElement object is created and its Text
property is set. This is the object that will be
added to the graphics container.

2

3
The IElement interface is used to set the geometry
of the element. The IElement interface is obtained
by performing a QueryInterface on the
ITextElement interface.

IGraphicElement Graphic-
Element

IElementEditCallout
IElementEditVertices

IGroupSymbolElement
ITextElement

ITransformEvents

TextElement

 ITextElement : IUnknown

ScaleText: Boolean
Symbol: ITextSymbol
Text: String

IClone

IElement
IElementProperties

IPersist
IPersistStream

IPropertySupport

Element
 IElement : IUnknown

Locked: Boolean
SelectionTracker:ISelectionTracker

Activate (in Display: IDisplay)
Deactivate
Draw (in Display: IDisplay, in

trackCancel: ITrackCancel)
HitTest (in X: Double, in Y: Double,

in Tolerance: Double) : Boolean
QueryBounds (in Display: IDisplay,

in Bounds: IEnvelope)
QueryOutline (in Display: IDisplay,

in Outline: IPolygon)

Geometry: IGeometry

4
The center of the active view is
calculated. This will be used to
place the text element.

5
The geometry of the text element is
a point. A new Point object is
created and the coordinates are set,
then the Geometry property of the
TextElement is assigned this newly
created point.

MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize
DelayUpdateContents: Boolean
FocusMap: IMap
Maps: IMaps
OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

 IActiveView : IUnknown

ExportFrame: tagRECT

ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean
ScreenCacheID (in phase:

tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer

ScreenDisplay: IScreenDisplay
Selection: ISelection
ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String
Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean
OnMessage (in msg: Unsigned Long, in

wParam: Unsigned Machine Int, in
lParam: Long)

PrinterChanged (in Printer: IPrinter)
Refresh

Extent: IEnvelope

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

 IEnvelope : IGeometry

Depth: Double
Height: Double
LowerLeft: IPoint
LowerRight: IPoint
MMax: Double
MMin: Double
UpperLeft: IPoint
UpperRight: IPoint
Width: Double
XMax: Double
XMin: Double
YMax: Double
YMin: Double
ZMax: Double
ZMin: Double

CenterAt (p: IPoint)
DefineFromPoints (Count: Long, in

Points: IPoint)
Expand (dx: Double, dy: Double,

asRatio: Boolean)
ExpandM (dm: Double, asRatio:Boolean)
ExpandZ (dz: Double, asRatio: Boolean)
Intersect (inEnvelope: IEnvelope)
Offset (X: Double, Y: Double)
OffsetM (M: Double)
OffsetZ (Z: Double)
PutCoords (XMin: Double, YMin: Double,

XMax: Double, YMax: Double)
QueryCoords (out XMin: Double, out

YMin: Double, out XMax: Double, out
YMax: Double)

Union (inEnvelope: IEnvelope)

PointIConstructPoint
IConstructPoint2

IGeometry2

IHitTest
IMAware
IPersist

IPersistStream
IPoint

IPointIDAware
IProximityOperator

IRelationalOperator
ITopologicalOperator

ITransform3D
IZAware

ITransform2D

Geometry
IClone

IGeometry
ISupportErrorInfo

 IPoint : IGeometry

ID: Long
M: Double
X: Double
Y: Double
Z: Double

Compare (pOtherPoint: IPoint)
: Long

ConstrainAngle
(constraintAngle: Double,
Anchor: IPoint,
allowOpposite: Boolean)

ConstrainDistance
(constraintRadius: Double,
Anchor: IPoint)

QueryCoords (out X: Double,
out Y: Double)

PutCoords (X: Double, Y:
Double)

10
The graphics layer is redrawn to
display the newly added text element.
Once again, notice the use of the
PartialRefresh method.

Geometry

ArcMapUI
The IMxDocument interface is
obtained from the ThisDocument
global variable.

1

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty

IDocumentDatasets
IDocumentDefaultSymbols

IDocumentEvents
IDocumentEventsDisp

IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

IDocumentDirty2

IElementProperties2

IBoundsProperties

ITransform2D

IGeometry3
IGeometry4

Carto

Appendix C • Illustrated code samples • 281

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pTextElement As ITextElement
Set pTextElement = New TextElement

Dim pElement As IElement
Set pElement = pTextElement
pTextElement.Text = "Text in a callout" & vbCrLf & "In middle of screen"

Dim dMidX As Double, dMidY As Double, pPoint As IPoint
dMidX = (pMxDoc.ActiveView.Extent.XMax + pMxDoc.ActiveView.Extent.XMin) / 2
dMidY = (pMxDoc.ActiveView.Extent.YMax + pMxDoc.ActiveView.Extent.YMin) / 2
Set pPoint = New Point
pPoint.PutCoords dMidX, dMidY
pElement.Geometry = pPoint

Dim pTextSymbol As IFormattedTextSymbol
Set pTextSymbol = New TextSymbol
Dim pCallout As ICallout
Set pCallout = New BalloonCallout
Set pTextSymbol.Background = pCallout
pPoint.PutCoords dMidX - pMxDoc.ActiveView.Extent.Width / 4, _
 dMidY + pMxDoc.ActiveView.Extent.Width / 20
pCallout.AnchorPoint = pPoint

pTextElement.Symbol = pTextSymbol
Dim pGraphicsContainer As IGraphicsContainer
Set pGraphicsContainer = pMxDoc.ActiveView
pGraphicsContainer.AddElement pElement, 0
pElement.Activate pMxDoc.ActiveView.ScreenDisplay
pMxDoc.ActiveView.PartialRefresh esriViewGraphics, Nothing, Nothing

2

3

4

5

6

8

7

Add this code to the Click event of a UIButtonControl in ArcMap.

9

10

1

Text-
Background

IClone
ITextBackground

IPersist
IPersistStream

CalloutICallout
IQueryGeometry

Balloon-
Callout

IBalloonCallout

 ICallout : IUnknown

AnchorPoint: IPoint
LeaderTolerance: Double

TextSymbol
IFormattedTextSymbol

IMapLevel
IMask

IPropertySupport
ISimpleTextSymbol

ISymbolRotation

ITextSymbol

IQueryGeometry

ITextParserSupport

IFormattedTextSymbol:ITextSymbol

Background: ITextBackground
Case: tagesriTextCase
CharacterSpacing: Double
CharacterWidth: Double
Direction: tagesriTextDirection
FillSymbol: IFillSymbol
FlipAngle: Double
Kerning: Boolean
Leading: Double
Position: tagesriTextPosition
ShadowColor: IColor
ShadowXOffset: Double
ShadowYOffset: Double
TypeSetting: Boolean
WordSpacing: Double

6
To display the text element as a callout, an appropriate
text symbol must be used with the background set to be
the Callout. The TextSymbol and BalloonCallout
objects are created and associated with each other.

7
A Point is used to set the
AnchorPoint of the Callout.

 IGraphicsContainer : IUnknown

AddElements (in Elements:
IElementCollection, in zorder: Long)

BringForward (in Elements:
IEnumElement)

BringToFront (in Elements:
IEnumElement)

DeleteAllElements
DeleteElement (in Element: IElement)
FindFrame (in frameObject: Variant) :

IFrameElement
GetElementOrder (in Elements:

IEnumElement) : Variant
LocateElements (in Point: IPoint, in

Tolerance: Double) : IEnumElement
LocateElementsByEnvelope (in

Envelope: IEnvelope) : IEnumElement
MoveElementFromGroup (in Group:

IGroupElement, in Element: IElement,
in zorder: Long)

MoveElementToGroup (in Element:
IElement, in Group: IGroupElement)

Next: IElement
PutElementOrder (in order: Variant)
Reset
SendBackward (in Elements:

IEnumElement)
SendToBack (in Elements:

IEnumElement)
UpdateElement (in Element: IElement)

AddElement (in Element: IElement, in
zorder: Long)

8
The text symbol is set into the
TextElement. This ensures the text
element draws itself using the callout.

9
The graphics container associated with the
active view of the document is obtained by
performing a QueryInterface on the
IActiveView interface. The TextElement is
then added to the container. This ensures that
the element is saved within the map document.

Display

ITextMargins
ITextBackground2

282 • ArcGIS Desktop Developer Guide

GEOMETRY PROJECTION

This sample takes the current cursor
coordinates and converts them from

pixels to map units. It then projects these
map coordinates to a projected and
geographic spatial reference system,

displaying the results in the Status Bar.

The IMxDocument
interface is obtained from
the ThisDocument
global variable.

1

The active view of the focus map is obtained
by performing a QueryInterface on the
FocusMap property of the IMxDocument
interface.

4

The cursor location
in pixels (x,y) is
converted to map
units using a method
on the IDisplay-
Transformation
interface, then stored
in a Point object.
This point object will
have the same
spatial reference as
the map.

5

The cursor point is projected from the map coordinates
into the Cassini coordinate system and the projected
coordinates are written to a string.

6

 IActiveView : IUnknown

ExportFrame: tagRECT

ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean

ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String
Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean

PrinterChanged (in Printer: IPrinter)
Refresh

Extent: IEnvelope

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

ScreenCacheID (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer

ScreenDisplay: IScreenDisplay
Selection: ISelection

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

OnMessage (in msg: Unsigned Long, in
wParam: Unsigned Machine Int, in
lParam: Long)

 IPoint : IGeometry

ID: Long
M: Double
X: Double
Y: Double
Z: Double

Compare (pOtherPoint: IPoint) : Long
ConstrainAngle (constraintAngle:

Double, Anchor: IPoint,
allowOpposite: Boolean)

ConstrainDistance (constraintRadius:
Double, Anchor: IPoint)

PutCoords (X: Double, Y: Double)
QueryCoords (out X: Double, out Y:

Double)

IDisplayTransformation:ITransformation

Bounds: IEnvelope
ConstrainedBounds: IEnvelope

FittedBounds: IEnvelope
ReferenceScale: Double
Resolution: Double
Rotation: Double
ScaleRatio: Double
SpatialReference: ISpatialReference
SuppressEvents: Boolean
Units: esriUnits
VisibleBounds: IEnvelope
ZoomResolution: Boolean

FromMapPoint (in mapPoint: IPoint, out
X: Long, out Y: Long)

FromPoints (in pointDistance: Double) :
Double

ToMapPoint (in X: Long, in Y: Long) :
IPoint

ToPoints (in mapDistance: Double) :
Double

TransformCoords (in mapPoints:
_WKSPoint, in devPoints: tagPOINT,
in numPoints: Long, in options: Long)

TransformRect (in mapRect: IEnvelope,
in devRect: tagRECT, in options:
Long)

DeviceFrame: tagRECT

 IDisplay : IUnknown

ClipEnvelope: IEnvelope
ClipEnvelopes: ISet
ClipGeometry: IGeometry
DisplayTransformation:

IDisplayTransformation
Filter: IDisplayFilter
hDC: Long
hPalette: Long
IlluminationProps: IIlluminationProps
SuppressEvents: Boolean

DrawMultipoint (in Multipoint: IGeometry)
DrawPoint (in Point: IGeometry)
DrawPolygon (in Polygon: IGeometry)
DrawPolyline (in Polyline: IGeometry)
DrawRectangle (in rectangle: IEnvelope)
DrawText (in Shape: IGeometry, in

Text: String)
FinishDrawing
Progress (in VertexCount: Long)
SetSymbol (in sym: ISymbol)
StartDrawing (in hDC: Long, in cacheID:

Integer)

 IGeometry : IUnknown

Dimension: tagesriGeometryDimension

SpatialReference: ISpatialReference

GeoNormalize
GeoNormalizeFromLongitude

(Longitude: Double)
Project (newReferenceSystem:

ISpatialReference)
QueryEnvelope (outEnvelope: IEnvelope)
SetEmpty
SnapToSpatialReference

Envelope: IEnvelope
GeometryType: tagesriGeometryType
IsEmpty: Boolean

Geometry

The cursor point is projected from the Cassini
coordinate system into the WGS 84 reference system
and the coordinates are appended to a string.

8

MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize

OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

DelayUpdateContents: Boolean
FocusMap: IMap
Maps: IMaps

 IDocument : IDispatch

Accelerators: IAcceleratorTable
CommandBars: ICommandBars
ID: IUID

Title: String
Type: esriDocumentType
VBProject: Object

Parent: IApplication

 IApplication : IDispatch

FindExtensionByCLSID (in
extensionCLSID:IUID) : IExtension

FindExtensionByName (in
extensionName: String):IExtension

IsDialogVisible (in dialogID: Long) :
Boolean

LockCustomization (in Password :
String, custFilter :
ICustomizationFilter)

NewDocument (selectTemplate:
Boolean, templatePath: String)

OpenDocument (Path: String)
PrintDocument
PrintPreview
RefreshWindow
SaveAsDocument (saveAsPath:

String, saveAsCopy: Boolean)
SaveDocument (saveAsPath: String)
ShowDialog (in dialogID: Long,

bShow: Variant) : Variant
Shutdown
UnlockCustomization (in Password:

String)

Caption: String
CurrentTool: ICommandItem
Document: IDocument
hWnd: Long

Templates: ITemplates
VBE: Object
Visible: Boolean

Name: String
StatusBar: IStatusBar

 IStatusBar : IUnknown

ProgressAnimation :
IAnimationProgressor

ProgressBar: IStepProgressor
Visible: Boolean

HideProgressAnimation
HideProgressBar
PlayProgressAnimation (in

playAnim: Boolean)
ShowProgressAnimation (in

Message: String, in
animationPath: String)

ShowProgressBar (in Message:
String, in min: Long, in max:
Long, in Step: Long, in
onePanel: Boolean)

StepProgressBar

Message (in pane: Long) : String
Panes: Long

Display

The string is
displayed in the
status bar of the
ArcMap application.

9

Framework

 IScreenDisplay : IDisplay

ActiveCache: Integer
CacheCount: Integer
CacheMemDC (in Index: Integer) : Long
CancelTracker: ITrackCancel
hWnd: Long
IsFirstCacheTransparent: Boolean
IsFramed: Boolean
ScaleContents: Boolean
SuppressResize: Boolean
UseScrollbars: Boolean
WindowDC: Long

AddCache: Integer
DoScroll (in xDelta: Long, in yDelta:

Long, in updateScreen: Boolean)
DrawCache (in hDC: Long, in Index:

Integer, in deviceRect: tagRECT, in
cacheRect: tagRECT)

Invalidate (in rect: IEnvelope, in erase:
Boolean, in cacheIndex: Integer)

IsCacheDirty (in cacheIndex: Integer) :
Boolean

PanMoveTo (in mouseLocation: IPoint)
PanStart (in mouseLocation: IPoint)
PanStop: IEnvelope
RemoveAllCaches
RemoveCache (in cacheID: Integer)
RotateMoveTo (in pPoint: IPoint)
RotateStart (in mousePt: IPoint, in

centerPt: IPoint)
RotateStop: Double
RotateTimer
SetScrollbarHandles (in

hWndHorzScrollbar: Long, in
hWndVertScrollbar: Long)

StartRecording
StopRecording
TrackPan
TrackRotate
UpdateWindow

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty

IDocumentDatasets
IDocumentDefaultSymbols

IDocumentEvents
IDocumentEventsDisp

IDocumentInfo

IMxDocument
IPersist

IPropertySupport
IReportUnitFormat

IDocumentDirty2

System

Appendix C • Illustrated code samples • 283

Geometry

A new SpatialReferenceEnvironment
object is created. This object will be
used to create coordinate system
objects for the required reference
systems.

2

Using the object
created in the previous
step, a projected
coordinate system
based on the world
Cassini projection is
created.

3

Using the object created in step 2, a geographic
coordinate system based on the WGS 84 reference
system is created.

7

SpatialReferenceEnvironment
IClassFactory

ISpatialReferenceFactory
ISpatialReferenceFactory2

 ISpatialReferenceFactory : IUnknown

CreateDatum (datumType: Long) :
IDatum

CreateESRISpatialReference
(spatRefInfo: String, out
SpatialReference: ISpatialReference,
out cBytesRead: Long)

CreateESRISpatialReferenceFromPRJ
(prj: String) : ISpatialReference

CreateGeoTransformation
(gTransformationType: Long) :
ITransformation

CreateParameter (parameterType:
Long) : IParameter

CreatePredefinedAngularUnits: ISet
CreatePredefinedDatums: ISet
CreatePredefinedLinearUnits: ISet
CreatePredefinedPrimeMeridians: ISet
CreatePredefinedProjections: ISet
CreatePredefinedSpheroids: ISet

CreateProjection (projectionType:
Long) : IProjection

CreateSpheroid (spheroidType: Long) :
ISpheroid

CreateUnit (unitType: Long) : IUnit
ExportESRISpatialReferenceToPRJFile

(prjFile: String, SpatialReference:
ISpatialReference)

CreateESRISpatialReferenceFromPRJFile
(prjFile: String) : ISpatialReference

CreateGeographicCoordinateSystem
(gcsType: Long) :
IGeographicCoordinateSystem

CreateProjectedCoordinateSystem
(pcsType: Long) :
IProjectedCoordinateSystem

CreatePrimeMeridian (primeMeridianType:
Long) : IPrimeMeridian

IProjectedCoordinateSystem :
ISpatialReference

Azimuth: Double
CentralMeridian (in inDegrees:

Boolean) : Double
CentralParallel: Double
CoordinateUnit: ILinearUnit
FalseEasting: Double
FalseNorthing: Double
GeographicCoordinateSystem:

IGeographicCoordinateSystem
Horizon (in horizonIndex: Long) :

esriSRHorizon
HorizonCount: Long
LatitudeOf1st: Double
LatitudeOf2nd: Double
LatitudeOfOrigin: Double
LongitudeOf1st: Double
LongitudeOf2nd: Double
LongitudeOfOrigin: Double
Projection: IProjection
ScaleFactor: Double
StandardParallel1: Double
StandardParallel2: Double
Usage: String

Forward (in Count: Long, Points:
_WKSPoint)

GetParameters (out parameters:
IParameter)

Inverse (in Count: Long, Points:
_WKSPoint)

IGeographicCoordinateSystem :
ISpatialReference

CoordinateUnit: IAngularUnit
Datum: IDatum
PrimeMeridian: IPrimeMeridian
Usage: String

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pSpatialRefFactory As ISpatialReferenceFactory
Set pSpatialRefFactory = New SpatialReferenceEnvironment

Dim pProjectedCoodinateSystem As IProjectedCoordinateSystem
Set pProjectedCoodinateSystem =
pSpatialRefFactory.CreateProjectedCoordinateSystem(esriSRProjCS_World_Cassini)

Dim pActiveView As IActiveView
Set pActiveView = pMxDoc.FocusMap

Dim pPoint As IPoint
Set pPoint = pActiveView.ScreenDisplay.DisplayTransformation.ToMapPoint(x, y)

pPoint.Project pProjectedCoodinateSystem
Dim sMessage As String
sMessage = "Cassini : " & CStr(Round(pPoint.x, 2)) & ", " & _
 CStr(Round(pPoint.y, 2))

Dim pGeographicCoordinateSystem As IGeographicCoordinateSystem
Set pGeographicCoordinateSystem = _
 pSpatialRefFactory.CreateGeographicCoordinateSystem(esriSRGeoCS_WGS1984)

pPoint.Project pGeographicCoordinateSystem
sMessage = sMessage & " and WGS84 : " & CStr(Round(pPoint.x, 2)) & ", " &
CStr(Round(pPoint.y, 2))
ThisDocument.Parent.StatusBar.Message(0) = sMessage

1

2

3

4

5

6

7

Add this code to the MouseMove event of a UIToolControl in ArcMap.

8

9

284 • ArcGIS Desktop Developer Guide

DISPLAY RASTER CELL VALUE IN STATUS BAR

This sample displays the pixel value
of the first raster layer in the map.
This sample will display multiplane
data in the form "(value 1, value 2,

value 3)" for three planes.

Display

ArcMapUI
 IActiveView : IUnknown

ExportFrame: tagRECT

ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean

ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String
Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean

PrinterChanged (in Printer: IPrinter)
Refresh

Extent: IEnvelope

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

ScreenCacheID (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer

ScreenDisplay: IScreenDisplay
Selection: ISelection

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

OnMessage (in msg: Unsigned Long, in
wParam: Unsigned Machine Int, in
lParam: Long)

The IMxDocument
interface is obtained from
the ThisDocument global
variable.

1

The layers of the map are looped through.
The first raster layer is processed and then the
function is exited.

5

 IMap : IUnknown

ActiveGraphicsLayer: ILayer
AnnotationEngine: IAnnotateMap
AreaOfInterest: IEnvelope
Barriers (pExtent: IEnvelope) :

IBarrierCollection
BasicGraphicsLayer: IGraphicsLayer
ClipBorder: IBorder
ClipGeometry: IGeometry
Description: String
DistanceUnits: esriUnits
Expanded: Boolean
FeatureSelection: ISelection
IsFramed: Boolean

MapSurround (in Index: Long) :
IMapSurround

MapSurroundCount: Long
MapUnits: esriUnits
Name: String
ReferenceScale: Double
SelectionCount: Long
SpatialReference: ISpatialReference
SpatialReferenceLocked: Boolean
UseSymbolLevels: Boolean

AddLayer (in Layer: ILayer)
AddLayers (in Layers: IEnumLayer, in

autoArrange: Boolean)
AddMapSurround (in MapSurround:

IMapSurround)
ClearLayers
ClearMapSurrounds
ClearSelection
ComputeDistance (in p1: IPoint, in p2:

IPoint) : Double
CreateMapSurround (in CLSID: IUID, in

optionalStyle: IMapSurround) :
IMapSurround

DelayDrawing (in delay: Boolean)
DelayEvents (in delay: Boolean)
DeleteLayer (in Layer: ILayer)
DeleteMapSurround (in MapSurround:

IMapSurround)
GetPageSize (out widthInches: Double,

out heightInches: Double)
MoveLayer (in Layer: ILayer, in toIndex:

Long)
RecalcFullExtent
SelectByShape (in Shape: IGeometry,

in env: ISelectionEnvironment, in
justOne: Boolean)

SelectFeature (in Layer: ILayer, in
Feature: IFeature)

SetPageSize (in widthInches: Double, in
heightInches: Double)

MapScale: Double

Layer (in Index: Long) : ILayer
LayerCount: Long
Layers (UID: IUID, recursive: Boolean)

: IEnumLayer

IDisplayTransformation:ITransformation

Bounds: IEnvelope
ConstrainedBounds: IEnvelope

FittedBounds: IEnvelope
ReferenceScale: Double
Resolution: Double
Rotation: Double
ScaleRatio: Double
SpatialReference: ISpatialReference
SuppressEvents: Boolean
Units: esriUnits
VisibleBounds: IEnvelope
ZoomResolution: Boolean

FromMapPoint (in mapPoint: IPoint, out
X: Long, out Y: Long)

TransformCoords (in mapPoints:
_WKSPoint, in devPoints: tagPOINT,
in numPoints: Long, in options: Long)

TransformRect (in mapRect: IEnvelope,
in devRect: tagRECT, in options:
Long)

DeviceFrame: tagRECT

FromPoints (in pointDistance: Double) :
Double

ToMapPoint (in X: Long, in Y: Long) :
IPoint

ToPoints (in mapDistance: Double) :
Double

 IScreenDisplay : IDisplay

ActiveCache: Integer
CacheCount: Integer
CacheMemDC (in Index: Integer) : Long
CancelTracker: ITrackCancel
hWnd: Long
IsFirstCacheTransparent: Boolean
IsFramed: Boolean
ScaleContents: Boolean
SuppressResize: Boolean
UseScrollbars: Boolean
WindowDC: Long

AddCache: Integer
DoScroll (in xDelta: Long, in yDelta:

Long, in updateScreen: Boolean)
DrawCache (in hDC: Long, in Index:

Integer, in deviceRect: tagRECT, in
cacheRect: tagRECT)

Invalidate (in rect: IEnvelope, in erase:
Boolean, in cacheIndex: Integer)

IsCacheDirty (in cacheIndex: Integer) :
Boolean

PanMoveTo (in mouseLocation: IPoint)
PanStart (in mouseLocation: IPoint)
PanStop: IEnvelope
RemoveAllCaches
RemoveCache (in cacheID: Integer)
RotateMoveTo (in pPoint: IPoint)
RotateStart (in mousePt: IPoint, in

centerPt: IPoint)
RotateStop: Double
RotateTimer
SetScrollbarHandles (in

hWndHorzScrollbar: Long, in
hWndVertScrollbar: Long)

StartRecording
StopRecording
TrackPan
TrackRotate
UpdateWindow

The active view for the
focus map is obtained.

2

MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize

OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

DelayUpdateContents: Boolean
FocusMap: IMap
Maps: IMaps

 IDocument : IDispatch

Accelerators: IAcceleratorTable
CommandBars: ICommandBars
ID: IUID

Title: String
Type: esriDocumentType
VBProject: Object

Parent: IApplication

 IApplication : IDispatch

FindExtensionByCLSID (in
extensionCLSID:IUID) : IExtension

FindExtensionByName (in
extensionName: String):IExtension

IsDialogVisible (in dialogID: Long) :
Boolean

LockCustomization (in Password :
String, custFilter :
ICustomizationFilter)

NewDocument (selectTemplate:
Boolean, templatePath: String)

OpenDocument (Path: String)
PrintDocument
PrintPreview
RefreshWindow
SaveAsDocument (saveAsPath:

String, saveAsCopy: Boolean)
SaveDocument (saveAsPath: String)
ShowDialog (in dialogID: Long,

bShow: Variant) : Variant
Shutdown
UnlockCustomization (in Password:

String)

Caption: String
CurrentTool: ICommandItem
Document: IDocument
hWnd: Long

Templates: ITemplates
VBE: Object
Visible: Boolean

Name: String
StatusBar: IStatusBar

 IStatusBar : IUnknown

Message (in pane: Long) : String
Panes: Long
ProgressAnimation :

IAnimationProgressor
ProgressBar: IStepProgressor
Visible: Boolean

HideProgressAnimation
HideProgressBar
PlayProgressAnimation (in

playAnim: Boolean)
ShowProgressAnimation (in

Message: String, in
animationPath: String)

ShowProgressBar (in Message:
String, in min: Long, in max:
Long, in Step: Long, in
onePanel: Boolean)

StepProgressBar

 IDisplay : IUnknown

ClipEnvelope: IEnvelope
ClipEnvelopes: ISet
ClipGeometry: IGeometry

hDC: Long
hPalette: Long
IlluminationProps: IIlluminationProps
SuppressEvents: Boolean

DrawMultipoint (in Multipoint: IGeometry)
DrawPoint (in Point: IGeometry)
DrawPolygon (in Polygon: IGeometry)
DrawPolyline (in Polyline: IGeometry)
DrawRectangle (in rectangle: IEnvelope)
DrawText (in Shape: IGeometry, in

Text: String)
FinishDrawing
Progress (in VertexCount: Long)
SetSymbol (in sym: ISymbol)
StartDrawing (in hDC: Long, in cacheID:

Integer)

DisplayTransformation:
IDisplayTransformation

Filter: IDisplayFilter

The raster values
are displayed in
the status bar.

13

System

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty

IDocumentDatasets
IDocumentDefaultSymbols

IDocumentEvents
IDocumentEventsDisp

IDocumentInfo

IMxDocument
IPersist

IPropertySupport
IReportUnitFormat

IDocumentDirty2

Appendix C • Illustrated code samples • 285

 IRasterProps : IUnknown

IsInteger: Boolean
NoDataValue: Variant
PixelType: rstPixelType
SpatialReference: ISpatialReference
Width: Long

MeanCellSize: IPnt

Extent: IEnvelope
Height: Long

DataSources-
Raster

The ILayer interface is accessed through
a QueryInterface for the IRasterLayer
interface. This interface gives access to
raster-specific properties of the layer.

A pixel block the size of
one pixel is created.7

The IRasterProps interface is obtained. This
provides information about the extent of the
raster in both real-world units and pixels.

8

The coordinates of the
cursor are calculated in
raster pixel units.

9

The planes or the raster
are looped over, extracting
the pixel values.

11

Checks are made to ensure that there are
raster values present at the location. If
there are, they are appended to the value
string.

12

IPnt

DblPnt
 IPnt : IUnknown

X: Double
Y: Double

Convert2Point (in env: IPoint)
Set2Point (in env: IPoint)
SetCoords (in X: Double, in Y: Double)

The cursor coordinates, in pixels,
must be converted to map units.
The ToMapPoint method on the
IDisplayTransformation interface
does this.

3

A dblPoint object is created and the coordinates are
set to 1.0, 1.0. This will be used to define the size of
the pixel block used to interrogate the raster.

 IPoint : IGeometry

ID: Long
M: Double
X: Double
Y: Double
Z: Double

Compare (pOtherPoint: IPoint) : Long
ConstrainAngle (constraintAngle:

Double, Anchor: IPoint,
allowOpposite: Boolean)

ConstrainDistance (constraintRadius:
Double, Anchor: IPoint)

PutCoords (X: Double, Y: Double)
QueryCoords (out X: Double, out Y:

Double)

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pActiveView As IActiveView
Set pActiveView = pMxDoc.FocusMap
Dim pPoint As IPoint
Set pPoint = pActiveView.ScreenDisplay.DisplayTransformation.ToMapPoint(x, y)

Dim pBlockSize As IPnt
Set pBlockSize = New DblPnt
pBlockSize.SetCoords 1#, 1#

Dim pLayer As IRasterLayer
Dim pPixelBlock As IPixelBlock
Dim vValue As Variant
Dim i As Long, j As Long
Dim sPixelVals As String
sPixelVals = "No Raster"
Dim pRasterProps As IRasterProps
Dim dXSize As Double, dYSize As Double
Dim pPixel As IPnt
Set pPixel = New DblPnt
For i = 0 To pMxDoc.FocusMap.LayerCount - 1
 If (TypeOf pMxDoc.FocusMap.Layer(i) Is IRasterLayer) Then
 Set pLayer = pMxDoc.FocusMap.Layer(i)
 Set pPixelBlock = pLayer.Raster.CreatePixelBlock(pBlockSize)

 Set pRasterProps = pLayer.Raster
 dXSize = pRasterProps.Extent.XMax - pRasterProps.Extent.XMin
 dYSize = pRasterProps.Extent.YMax - pRasterProps.Extent.YMin
 dXSize = dXSize / pRasterProps.Width
 dYSize = dYSize / pRasterProps.Height

 pPixel.x = (pPoint.x - pRasterProps.Extent.XMin) / dXSize
 pPixel.y = (pRasterProps.Extent.YMax - pPoint.y) / dYSize

 pLayer.Raster.Read pPixel, pPixelBlock
 For j = 0 To pPixelBlock.Planes - 1
 If (sPixelVals = "No Raster") Then
 sPixelVals = "("
 Else
 sPixelVals = sPixelVals & ", "
 End If
 vValue = pPixelBlock.GetVal(j, 0, 0)
 sPixelVals = sPixelVals & CStr(vValue)
 Next j
 If (sPixelVals <> "No Raster") Then sPixelVals = sPixelVals & ")"
 ThisDocument.Parent.StatusBar.Message(0) = "Raster value = " & sPixelVals
 Exit For
 End If
Next I

2

3

4

5

6
7

8

Add this code to the MouseMove event of a UIToolControl in ArcMap.

9

10
11

1

12

13

 IRasterLayer : ILayer

BandCount: Long
ColumnCount: Long
DataFrameExtent: IEnvelope
DisplayResolutionFactor: Long
FilePath: String
PrimaryField: Long
PyramidPresent: Boolean
Raster: IRaster
Renderer: IRasterRenderer
RowCount: Long
ShowResolution: Boolean
VisibleExtent: IEnvelope

CreateFromDataset (in RasterDataset:
IRasterDataset)

CreateFromFilePath (in FilePath: String)
CreateFromRaster (in Raster: IRaster)

 IPixelBlock : IUnknown

BytesPerPixel: Long
Height: Long

Width: Long

GetVal (in plane: Long, in X: Long, in
Y: Long) : Variant

PixelType (in plane: Long) : rstPixelType
Planes: Long
SafeArray (in plane: Long) : Variant

 IRaster : IUnknown

ResampleMethod: rstResamplingTypes

CreateCursor: IRasterCursor
CreatePixelBlock (in Size: IPnt) :

IPixelBlock
Read (in tlc: IPnt, in block: IPixelBlock)

4

6

The pixel block for the raster
location is populated.10

286 • ArcGIS Desktop Developer Guide

EXPORT CURRENT VIEW

Export
IExport : IUnknown

ExportFileName: String
Filter: String
Name: String
PixelBounds: IEnvelope
Priority: Long
Resolution: Double
StepProgressor: IStepProgressor
TrackCancel: ITrackCancel

Cleanup
FinishExporting
StartExporting: OLE_HANDLE

IExport

Export current view

This sample takes the current active view
and exports it to a JPEG file. This code is

similar to the next sample, which prints the
active view to a PostScript printer.

MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize
DelayUpdateContents: Boolean
FocusMap: IMap
Maps: IMaps
OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

IJpegExporter
ExportJPEG

ArcMapUI

Output

For convenience, the
resolution of the screen
is set to a local variable.

2

A new ExportJPEG object is
created and the IExporter
interface is obtained. The
filename and resolution are set.

3

The device rectangle is
stored as a local variable.4

The driver bounds envelope is populated
with the coordinates from the device
rectangle. This envelope is used to set
the IExporter PixelBounds property.

6

A call to the active view's Output method writes the current view to
the exporter. Notice the hDC required by the Output method is
obtained by calling StartExporting on the Exporter.

8

Finally, the FinishExporting
method is called. This call ensures
that the drawing is completed and
the export file is closed.

9

IDisplayTransformation:ITransformation

Bounds: IEnvelope
ConstrainedBounds: IEnvelope

FittedBounds: IEnvelope
ReferenceScale: Double
Resolution: Double
Rotation: Double
ScaleRatio: Double
SpatialReference: ISpatialReference
SuppressEvents: Boolean
Units: esriUnits
VisibleBounds: IEnvelope
ZoomResolution: Boolean

FromMapPoint (in mapPoint: IPoint, out
X: Long, out Y: Long)

FromPoints (in pointDistance: Double) :
Double

ToMapPoint (in X: Long, in Y: Long) :
IPoint

ToPoints (in mapDistance: Double) :
Double

TransformCoords (in mapPoints:
_WKSPoint, in devPoints: tagPOINT,
in numPoints: Long, in options: Long)

TransformRect (in mapRect:
IEnvelope, in devRect: tagRECT, in
options: Long)

DeviceFrame: tagRECT

 IActiveView : IUnknown

ExportFrame: tagRECT

ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean

ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String
Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean

PrinterChanged (in Printer: IPrinter)
Refresh

Extent: IEnvelope

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

ScreenCacheID (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer

ScreenDisplay: IScreenDisplay
Selection: ISelection

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

OnMessage (in msg: Unsigned Long, in
wParam: Unsigned Machine Int, in
lParam: Long)

tagRECT

bottom: Long
Left: Long
Right: Long
Top: Long

The IMxDocument interface is
obtained from the ThisDocument
global variable.

1

 IDisplay : IUnknown

ClipEnvelope: IEnvelope
ClipEnvelopes: ISet
ClipGeometry: IGeometry

hDC: Long
hPalette: Long
IlluminationProps: IIlluminationProps
SuppressEvents: Boolean

DrawMultipoint (in Multipoint: IGeometry)
DrawPoint (in Point: IGeometry)
DrawPolygon (in Polygon: IGeometry)
DrawPolyline (in Polyline: IGeometry)
DrawRectangle (in rectangle: IEnvelope)
DrawText (in Shape: IGeometry, in

Text: String)
FinishDrawing
Progress (in VertexCount: Long)
SetSymbol (in sym: ISymbol)
StartDrawing (in hDC: Long, in cacheID:

Integer)

Filter: IDisplayFilter

DisplayTransformation:
IDisplayTransformation

 IScreenDisplay : IDisplay

ActiveCache: Integer
CacheCount: Integer
CacheMemDC (in Index: Integer) : Long
CancelTracker: ITrackCancel
hWnd: Long
IsFirstCacheTransparent: Boolean
IsFramed: Boolean
ScaleContents: Boolean
SuppressResize: Boolean
UseScrollbars: Boolean
WindowDC: Long

AddCache: Integer
DoScroll (in xDelta: Long, in yDelta:

Long, in updateScreen: Boolean)
DrawCache (in hDC: Long, in Index:

Integer, in deviceRect: tagRECT, in
cacheRect: tagRECT)

Invalidate (in rect: IEnvelope, in erase:
Boolean, in cacheIndex: Integer)

IsCacheDirty (in cacheIndex: Integer) :
Boolean

PanMoveTo (in mouseLocation: IPoint)
PanStart (in mouseLocation: IPoint)
PanStop: IEnvelope
RemoveAllCaches
RemoveCache (in cacheID: Integer)
RotateMoveTo (in pPoint: IPoint)
RotateStart (in mousePt: IPoint, in

centerPt: IPoint)
RotateStop: Double
RotateTimer
SetScrollbarHandles (in

hWndHorzScrollbar: Long, in
hWndVertScrollbar: Long)

StartRecording
StopRecording
TrackPan
TrackRotate
UpdateWindow

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty

IDocumentDatasets
IDocumentDefaultSymbols

IDocumentEvents
IDocumentEventsDisp

IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

IDocumentDirty2

Appendix C • Illustrated code samples • 287

CancelTracker
ITrackCancel ITrackCancel : IUnknown

CancelOnClick: Boolean
CancelOnKeyPress: Boolean
CheckTime: Long
ProcessMessages: Boolean
Progressor: IProgressor
TimerFired: Boolean

Cancel
Continue: Boolean
Reset
StartTimer (in hWnd: Long, in

milliseconds: Long)
StopTimer

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim lScrRes As Long
lScrRes = 96

Dim pExport As IExport
Set pExport = New ExportJPEG
pExport.ExportFileName = "C:\Export.jpg"
pExport.Resolution = lScrRes

Dim deviceRECT As tagRECT
deviceRECT = pMxDoc.ActiveView.ScreenDisplay.DisplayTransformation.DeviceFrame

Dim pDriverBounds As IEnvelope
Set pDriverBounds = New Envelope

pPixelBounds.PutCoords deviceRECT.Left, deviceRECT.bottom, deviceRECT.Right, _
 deviceRECT.Top
pExporter.PixelBounds = pDriverBounds

Dim pCancel As ITrackCancel
Set pCancel = New CancelTracker

pMxDoc.ActiveView.Output pExport.StartExporting, lScrRes, deviceRECT, _
 nothing, pCancel

pExport.FinishExporting

2

3

4

5

6

7

8

Add this code to the Click event of a UIButtonControl in ArcMap.

9

1

Geometry

Display

A new envelope object
is created. This object
will represent the driver
bounds envelope.

5

A new CancelTracker object is
created. This object will allow the
export process to be aborted.

7

Envelope

Geometry
IClone

IGeometry
ITransform2D

ISupportErrorInfo

 IEnvelope : IGeometry

Depth: Double
Height: Double
LowerLeft: IPoint
LowerRight: IPoint
MMax: Double
MMin: Double
UpperLeft: IPoint
UpperRight: IPoint
Width: Double
XMax: Double
XMin: Double
YMax: Double
YMin: Double
ZMax: Double
ZMin: Double

CenterAt (p: IPoint)
DefineFromPoints (Count: Long, in

Points: IPoint)
Expand (dx: Double, dy: Double,

asRatio: Boolean)
ExpandM (dm: Double, asRatio:Boolean)
ExpandZ (dz: Double, asRatio: Boolean)
Intersect (inEnvelope: IEnvelope)
Offset (X: Double, Y: Double)
OffsetM (M: Double)

PutCoords (XMin: Double, YMin: Double,
XMax: Double, YMax: Double)

QueryCoords (out XMin: Double, out
YMin: Double, out XMax: Double, out
YMax: Double)

Union (inEnvelope: IEnvelope)

OffsetZ (Z: Double)

IArea
IEnvelope

ITransform2D

IGeometry2
IHitTest

IMAware
IPersist

IPersistStream
IProximityOperator

IRelationalOperator

IZAware

288 • ArcGIS Desktop Developer Guide

PRINT CURRENT VIEW

This sample takes the currently active view
and prints the file to a PostScript printer.

This code is similar to the previous sample,
which exports the active view to a JPEG file.

MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize
DelayUpdateContents: Boolean
FocusMap: IMap
Maps: IMaps
OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

ArcMapUI

Output

For convenience,
the resolution of
the screen is set to
a local variable.

2

A new PsPrinter object is
created and the IPrinter
interface is obtained.

3

The resolution of the
screen is then passed to
the printer.

6

For convenience, the
device rectangle is stored
as a local variable.

7
IDisplayTransformation:ITransformation

Bounds: IEnvelope
ConstrainedBounds: IEnvelope

FittedBounds: IEnvelope
ReferenceScale: Double
Resolution: Double
Rotation: Double
ScaleRatio: Double
SpatialReference: ISpatialReference
SuppressEvents: Boolean
Units: esriUnits
VisibleBounds: IEnvelope
ZoomResolution: Boolean

FromMapPoint (in mapPoint: IPoint, out
X: Long, out Y: Long)

FromPoints (in pointDistance: Double) :
Double

ToMapPoint (in X: Long, in Y: Long) :
IPoint

ToPoints (in mapDistance: Double) :
Double

TransformCoords (in mapPoints:
_WKSPoint, in devPoints: tagPOINT,
in numPoints: Long, in options: Long)

TransformRect (in mapRect:
IEnvelope, in devRect: tagRECT, in
options: Long)

DeviceFrame: tagRECT

 IActiveView : IUnknown

ExportFrame: tagRECT

ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean

ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String
Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean

PrinterChanged (in Printer: IPrinter)
Refresh

Extent: IEnvelope

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

ScreenCacheID (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer

ScreenDisplay: IScreenDisplay
Selection: ISelection

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

OnMessage (in msg: Unsigned Long, in
wParam: Unsigned Machine Int, in
lParam: Long)

tagRECT

bottom: Long
Left: Long
Right: Long
Top: Long

A call to the active view's Output method exports the current view to
the printer. Notice the hDC required by the Output method is obtained
by calling the StartPrinting method of the Printer.

10

Finally, the FinishPrinting method
is called. This call ensures that the
drawing is completed and the
printer receives the plot.

11

The IMxDocument interface is
used to access the active view.1

 IDisplay : IUnknown

ClipEnvelope: IEnvelope
ClipEnvelopes: ISet
ClipGeometry: IGeometry

hDC: Long
hPalette: Long
IlluminationProps: IIlluminationProps
SuppressEvents: Boolean

DrawMultipoint (in Multipoint: IGeometry)
DrawPoint (in Point: IGeometry)
DrawPolygon (in Polygon: IGeometry)
DrawPolyline (in Polyline: IGeometry)
DrawRectangle (in rectangle: IEnvelope)
DrawText (in Shape: IGeometry, in

Text: String)
FinishDrawing
Progress (in VertexCount: Long)
SetSymbol (in sym: ISymbol)
StartDrawing (in hDC: Long, in cacheID:

Integer)

Filter: IDisplayFilter

DisplayTransformation:
IDisplayTransformation

 IScreenDisplay : IDisplay

ActiveCache: Integer
CacheCount: Integer
CacheMemDC (in Index: Integer) : Long
CancelTracker: ITrackCancel
hWnd: Long
IsFirstCacheTransparent: Boolean
IsFramed: Boolean
ScaleContents: Boolean
SuppressResize: Boolean
UseScrollbars: Boolean
WindowDC: Long

AddCache: Integer
DoScroll (in xDelta: Long, in yDelta:

Long, in updateScreen: Boolean)
DrawCache (in hDC: Long, in Index:

Integer, in deviceRect: tagRECT, in
cacheRect: tagRECT)

Invalidate (in rect: IEnvelope, in erase:
Boolean, in cacheIndex: Integer)

IsCacheDirty (in cacheIndex: Integer) :
Boolean

PanMoveTo (in mouseLocation: IPoint)
PanStart (in mouseLocation: IPoint)
PanStop: IEnvelope
RemoveAllCaches
RemoveCache (in cacheID: Integer)
RotateMoveTo (in pPoint: IPoint)
RotateStart (in mousePt: IPoint, in

centerPt: IPoint)
RotateStop: Double
RotateTimer
SetScrollbarHandles (in

hWndHorzScrollbar: Long, in
hWndVertScrollbar: Long)

StartRecording
StopRecording
TrackPan
TrackRotate
UpdateWindow

PrinterIClone
IPersist
IPrinter

ISupportErrorInfo
IOutputCleanup

IPersistStream

PsPrinter

IColorCorrection
IFontMapEnvironment

IPsDriver
IPsDriver2
IPsPrinter

ISpotPlateCollection

 IPrinter : IUnknown

DriverName: String
FileExtension: String
Filter: String

PrintToFile: String

SpoolFileName: String
StepProgressor: IStepProgressor
Units: esriUnits

VerifyDriverSettings: Boolean

Name: String
Paper: IPaper
PrintableBounds: IEnvelope

Resolution: Integer

DoesDriverSupportPrinter (in
PrinterName: String) : Boolean

FinishPrinting

StartPrinting (in PixelBounds:
IEnvelope, in hDcPrinter: Long) : Long

QueryPaperSize (out Width: Double,
out Height: Double)

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty

IDocumentDatasets
IDocumentDefaultSymbols

IDocumentEvents
IDocumentEventsDisp

IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

IDocumentDirty2

Appendix C • Illustrated code samples • 289

 IMxApplication : IUnknown

Display: IAppDisplay
Paper: IPaper
Printer: IPrinter
SelectionEnvironment:

ISelectionEnvironment

CopyToClipboard
Export

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim lScrRes As Long
lScrRes = pMxDoc.ActiveView.ScreenDisplay.DisplayTransformation.Resolution

Dim pPrinter As IPrinter
Set pPrinter = New PsPrinter

Dim pMxApp As IMxApplication
Set pMxApp = ThisDocument.Parent

Set pPrinter.Paper = pMxApp.Paper
pPrinter.Resolution = lScrRes

Dim deviceRECT As tagRECT
deviceRECT = pMxDoc.ActiveView.ScreenDisplay.DisplayTransformation.DeviceFrame

Dim pDriverBounds As IEnvelope
Set pDriverBounds = New Envelope
pDriverBounds.PutCoords deviceRECT.Left, deviceRECT.bottom, deviceRECT.Right, _
 deviceRECT.Top

Dim pCancel As ITrackCancel
Set pCancel = New CancelTracker

pMxDoc.ActiveView.Output pPrinter.StartPrinting(pDriverBounds, 0), lScrRes, _
 deviceRECT, pMxDoc.ActiveView.Extent, pCancel
pPrinter.FinishPrinting

2

3

4

5
6

7

8

Add this code to the Click event of a UIButtonControl in ArcMap.

9

10

11

1

Geometry

Display

The IMxApplication interface on the
application object is required in order to get the
page details. This interface is obtained by
performing a QueryInterface on the Parent
property of the ThisDocument variable.

4

The paper object used
by the application is set
into the printer object.

5

A new envelope object is created.
This object will represent the driver
bounds. The driver bounds envelope
is populated with the coordinates
from the device rectangle. This
envelope is used to set the IPrinter
PixelBounds property.

8A new CancelTracker object is
created. This object allows the
printing process to be aborted.

9

Envelope

Geometry
IClone

IGeometry
ITransform2D

ISupportErrorInfo

 IEnvelope : IGeometry

Depth: Double
Height: Double
LowerLeft: IPoint
LowerRight: IPoint
MMax: Double
MMin: Double
UpperLeft: IPoint
UpperRight: IPoint
Width: Double
XMax: Double
XMin: Double
YMax: Double
YMin: Double
ZMax: Double
ZMin: Double

CenterAt (p: IPoint)
DefineFromPoints (Count: Long, in

Points: IPoint)
Expand (dx: Double, dy: Double,

asRatio: Boolean)
ExpandM (dm: Double, asRatio:Boolean)
ExpandZ (dz: Double, asRatio: Boolean)
Intersect (inEnvelope: IEnvelope)
Offset (X: Double, Y: Double)
OffsetM (M: Double)

PutCoords (XMin: Double, YMin: Double,
XMax: Double, YMax: Double)

QueryCoords (out XMin: Double, out
YMin: Double, out XMax: Double, out
YMax: Double)

Union (inEnvelope: IEnvelope)

OffsetZ (Z: Double)

CancelTracker
ITrackCancel ITrackCancel : IUnknown

CancelOnClick: Boolean
CancelOnKeyPress: Boolean
CheckTime: Long
ProcessMessages: Boolean
Progressor: IProgressor
TimerFired: Boolean

Cancel
Continue: Boolean
Reset
StartTimer (in hWnd: Long, in

milliseconds: Long)
StopTimer

IArea
IEnvelope

ITransform2D

IGeometry2
IHitTest

IMAware
IPersist

IPersistStream
IProximityOperator

IRelationalOperator

IZAware

290 • ArcGIS Desktop Developer Guide

DISPLAY MAP EXTENT IN GXVIEW AS ENVELOPE

This command takes the current displayed
data layer and draws the data extent in a

thick red line in the preview.

 IEnvelope : IGeometry

Depth: Double
Height: Double
LowerLeft: IPoint
LowerRight: IPoint
MinMaxAttributes: _esriPointAttributes
MMax: Double
MMin: Double
UpperLeft: IPoint
UpperRight: IPoint
Width: Double
XMax: Double
XMin: Double
YMax: Double
YMin: Double
ZMax: Double
ZMin: Double

CenterAt (p: IPoint)
DefineFromPoints (Count: Long, in

Points: IPoint)
DefineFromWKSPoints (Count: Long,

in Points: _WKSPoint)
Expand (dx: Double, dy: Double,

asRatio: Boolean)
ExpandM (dm: Double, asRatio:Boolean)
ExpandZ (dz: Double, asRatio: Boolean)
Intersect (inEnvelope: IEnvelope)
Offset (X: Double, Y: Double)
OffsetM (M: Double)
OffsetZ (Z: Double)
PutCoords (XMin: Double, YMin: Double,

XMax: Double, YMax: Double)
PutWKSCoords (e: _WKSEnvelope)
QueryCoords (out XMin: Double, out

YMin: Double, out XMax: Double, out
YMax: Double)

QueryWKSCoords (out e:
_WKSEnvelope)

Union (inEnvelope: IEnvelope)

 IGxPreview : IUnknown

SupportedViewClassIDs: ISet
View: IGxView
ViewClassID: IUID

 IGxView : IUnknown

ClassID: IUID
DefaultToolbarCLSID: IUID
hWnd: Long
Name: String
SupportsTools: Boolean

Activate (in Application: IGxApplication,
in Catalog: IGxCatalog)

Applies (in Selection:IGxObject):Boolean
Deactivate
Refresh
SystemSettingChanged (in Flag: Long,

in section: String)

Geometry

ArcMap

Carto

CatalogUI

The IGxApplication interface
is obtained by accessing the
Application global variable.

1

If the current view is not a
Preview, the procedure is exited.2

To access the preview-specific
properties, the IGxPreview
interface is accessed through a
QueryInterface call on the
IGxView interface.

3

There are potentially many types of
previews. If it is not a geographic preview,
the procedure is exited.

4

The extent of the currently
displayed layer is assigned
to an envelope variable.

5

Application

IApplication
IDockableWindowManager

IExtensionManager
IMultiThreadedApplication

IVBAApplication
IWindowPosition

GxApplicationIGxApplication
IGxCatalogEvents

IGxCatalogEventsDisp
IGxViewContainer

 IGxApplication : IUnknown

AreaOfInterest: IEnvelope
CanDeleteSelection: Boolean
CanRenameSelection: Boolean
Catalog: IGxCatalog
Location: String
SelectedObject: IGxObject
Selection: IGxSelection
TreeView: IGxTreeView
View: IGxView
ViewClassID: IUID

DeleteSelection
ExpandSelection
Refresh (in startingPath: String)
RenameSelection
ShowContextMenu (in X: Long,

in Y: Long)

IGxGeographicView : IUnknown

Map: IMap
MapDisplay: IScreenDisplay

DisplayedLayer: ILayer

 ILayer : IUnknown

Draw (in drawPhase:
tagesriDrawPhase, in Display:
IDisplay, in trackCancel:
ITrackCancel)

Cached: Boolean
MaximumScale: Double
MinimumScale: Double

ShowTips: Boolean
SpatialReference: ISpatialReference
SupportedDrawPhases: Long
TipText (in X: Double, in Y: Double,

in Tolerance: Double) : String
Valid: Boolean
Visible: Boolean

Name: String

AreaOfInterest: IEnvelope

 IScreenDisplay : IDisplay

ActiveCache: Integer
CacheCount: Integer
CacheMemDC (in Index: Integer) : Long
CancelTracker: ITrackCancel
hWnd: Long
IsFirstCacheTransparent: Boolean
IsFramed: Boolean
ScaleContents: Boolean
SuppressResize: Boolean
UseScrollbars: Boolean
WindowDC: Long

AddCache: Integer
DoScroll (in xDelta: Long, in yDelta:

Long, in updateScreen: Boolean)
DrawCache (in hDC: Long, in Index:

Integer, in deviceRect: tagRECT, in
cacheRect: tagRECT)

Invalidate (in rect: IEnvelope, in erase:
Boolean, in cacheIndex: Integer)

IsCacheDirty (in cacheIndex: Integer) :
Boolean

PanMoveTo (in mouseLocation: IPoint)
PanStart (in mouseLocation: IPoint)
PanStop: IEnvelope
RemoveAllCaches
RemoveCache (in cacheID: Integer)
RotateMoveTo (in pPoint: IPoint)
RotateStart (in mousePt: IPoint, in

centerPt: IPoint)
RotateStop: Double
RotateTimer
SetScrollbarHandles (in

hWndHorzScrollbar: Long, in
hWndVertScrollbar: Long)

StartRecording
StopRecording
TrackPan
TrackRotate
UpdateWindow

 IDisplay : IUnknown

ClipEnvelope: IEnvelope
ClipEnvelopes: ISet
ClipGeometry: IGeometry
DisplayTransformation:

IDisplayTransformation
Filter: IDisplayFilter
hDC: Long
hPalette: Long
IlluminationProps: IIlluminationProps
SuppressEvents: Boolean

DrawMultipoint (in Multipoint: IGeometry)
DrawPoint (in Point: IGeometry)
DrawPolygon (in Polygon: IGeometry)
DrawPolyline (in Polyline: IGeometry)
DrawRectangle (in rectangle: IEnvelope)
DrawText (in Shape: IGeometry, in

Text: String)
FinishDrawing
Progress (in VertexCount: Long)
SetSymbol (in sym: ISymbol)
StartDrawing (in hDC: Long, in cacheID:

Integer)

Finally, with the symbol and
geometry of the extent obtained,
the extent is drawn on the screen.

11

Appendix C • Illustrated code samples • 291

IPersistStream

Color
IClone
IColor

IPersist
 IColor : IUnknown

CMYK: Long
NullColor: Boolean
RGB: Long
Transparency: Unsigned Char
UseWindowsDithering: Boolean

GetCIELAB (out l: Double, out
a: Double, out b: Double)

SetCIELAB (in l: Double, in a:
Double, in b: Double)

RGBColor
IRGBColor

Dim pGxApp As IGxApplication
Set pGxApp = Application

Dim pGxView As IGxView
Set pGxView = pGxApp.View
If (TypeOf pGxView Is IGxPreview) Then
 Dim pGxPreview As IGxPreview
 Set pGxPreview = pGxView

 If (TypeOf pGxPreview.View Is IGxGeographicView) Then
 Dim pGxGeoView As IGxGeographicView
 Set pGxGeoView = pGxPreview.View

 Dim pEnv As IEnvelope
 Set pEnv = pGxGeoView.DisplayedLayer.AreaOfInterest

 Dim pLineSymbol As ISimpleLineSymbol
 Set pLineSymbol = New SimpleLineSymbol

 Dim pColor As IColor
 Set pColor = New RgbColor

 pColor.RGB = vbRed
 With pLineSymbol
 .Color = pColor
 .Width = 2
 End With

 Dim pFillSymbol As ISimpleFillSymbol
 Set pFillSymbol = New SimpleFillSymbol

 With pFillSymbol
 .Style = esriSFSHollow
 .Outline = pLineSymbol
 End With

 With pGxGeoView.MapDisplay
 .StartDrawing 0, esriNoScreenCache
 .SetSymbol pFillSymbol
 .DrawRectangle pEnv
 .FinishDrawing
 End With
 End If
End If

1

2

3

4

5

6

7

Add this to the Click event of a UIButtonControl in ArcCatalog.

8

9

10

11

Display

A line symbol is created for later
use as the fill symbol's outline.6

An RGB color object is created and
its color set to red.7

This color object is
assigned to the line
symbol, along with
a width of 2.

8

The fill symbol is
created.9

Symbol
IClone

IPersist
IPersistStream

ISymbol

LineSymbol
ILineSymbol

IMapLevel
IPropertySupport

ILineSymbol: IUnknown

Color: IColor
Width: Double

FillSymbol
IFillSymbol
IMapLevel

IPropertySupport

 IFillSymbol : IUnknown

Color: IColor
Outline: ILineSymbol

SimpleFillSymbol
ISimpleFillSymbol ISimpleFillSymbol : IFillSymbol

Style: tagesriSimpleFillStyle

SimpleLineSymbol
ISimpleLineSymbol ISimpleLineSymbol : ILineSymbol

Style: tagesriSimpleLineStyle

The line symbol created
in step 6 is assigned to
the fill symbol's outline,
and the style of the fill
symbol is set to hollow.

10

292 • ArcGIS Desktop Developer Guide

EDIT FEATURE CLASS SCHEMA

This code sample inspects the selected
objects in the ArcCatalog browser and if
they are feature classes in a geodatabase,

makes an edit to their alias name.

 IGxObject : IUnknown

BaseName: String
Category: String
ClassID: IUID
FullName: String
InternalObjectName: IName
IsValid: Boolean
Name: String
Parent: IGxObject

Attach (in Parent: IGxObject, in
pCatalog: IGxCatalog)

Detach
Refresh

 IGxCatalog : IUnknown

FileFilter: IGxFileFilter

Close
ConnectFolder (in folderPath: String) :

IGxFolder
ConstructFullName (in Object:

IGxObject) : String
DisconnectFolder (in folderPath: String)
GetObjectFromFullName (in FullName:

String, out numFound: Long) : Variant
ObjectAdded (in Object: IGxObject)
ObjectChanged (in Object: IGxObject)
ObjectDeleted (in Object: IGxObject)
ObjectRefreshed (in Object: IGxObject)

Location: String
SelectedObject: IGxObject
Selection: IGxSelection

 IGxSelection : IUnknown

Count: Long
DelayEvents: Boolean
FirstObject: IGxObject
Location: IGxObject
SelectedObjects: IEnumGxObject

Clear (in initiator: IUnknown Pointer)
IsSelected (in Object: IGxObject) :

Boolean
Select (in Object: IGxObject, in

appendToExistingSelection: Boolean,
in initiator: IUnknown Pointer)

SetLocation (in Location: IGxObject,
pInitiator: IUnknown Pointer)

Unselect (in Object: IGxObject, in
initiator: IUnknown Pointer)

ArcMap

For convenience, the
IGxCatalog interface is
stored as a local variable.

2

The selection of
GxObjects is obtained
from the Catalog.

3

The SelectedObjects property is accessed
through a QueryInterface for an enumerator.
This will allow you to iterate over all the
selected objects within the Catalog.

4

Start iterating by asking the
enumerator for its next object.
This is repeated until the
enumerator returns nothing.

5

Check for Null. If it is Null, use
the selected object from the
Catalog and not the enumerator.

6
The type of the GxObject is
checked. If it supports the
IGxDataset interface, its type is a
feature class, and the workspace
type is not filesystem, it is processed.
Otherwise it is skipped.

7

ArcCatalog

The IGxApplication interface
is obtained by accessing the
Application global variable.

1

Application

IApplication
IDockableWindowManager

IExtensionManager
IMultiThreadedApplication

IVBAApplication
IWindowPosition

GxApplicationIGxApplication
IGxCatalogEvents

IGxCatalogEventsDisp
IGxViewContainer

 IGxApplication : IUnknown

AreaOfInterest: IEnvelope
CanDeleteSelection: Boolean
CanRenameSelection: Boolean
Catalog: IGxCatalog
Location: String
SelectedObject: IGxObject
Selection: IGxSelection
TreeView: IGxTreeView
View: IGxView
ViewClassID: IUID

DeleteSelection
ExpandSelection
Refresh (in startingPath: String)
RenameSelection
ShowContextMenu (in X: Long,

in Y: Long)

 IEnumGxObject : IUnknown

Reset
Next: IGxObject

Notice the error handling
code that checks for a
specific error return value.

13

Appendix C • Illustrated code samples • 293

Dim pGxApp As IGxApplication
Set pGxApp = Application

Dim pGxCatalog As IGxCatalog
Set pGxCatalog = pGxApp.Catalog

Dim pGxSelection As IGxSelection
Set pGxSelection = pGxCatalog.Selection

Dim pGxObjects As IEnumGxObject
Set pGxObjects = pGxSelection.SelectedObjects
pGxObjects.Reset

Dim pGxObject As IGxObject
Set pGxObject = pGxObjects.Next

If (pGxObject Is Nothing) Then Set pGxObject =
pGxCatalog.SelectedObject

Dim pGxDataset As IGxDataset
Dim pObjectClass As IObjectClass
Dim pClassSchemaEdit As IClassSchemaEdit
Dim pSchemaLock As ISchemaLock
Do Until (pGxObject Is Nothing)
 If (TypeOf pGxObject Is IGxDataset) Then
 Set pGxDataset = pGxObject
 If ((pGxDataset.Type = esriDTFeatureClass) And _
 (pGxDataset.Dataset.Workspace.Type <> _
 esriFileSystemWorkspace)) Then
 Set pObjectClass = pGxDataset.Dataset
 Set pSchemaLock = pObjectClass
 Set pSchemaLock = pObjectClass

 On Error GoTo lockDB

 pSchemaLock.ChangeSchemaLock esriSharedSchemaLock
 End If
 End If
 Set pGxObject = pGxObjects.Next
Loop

Exit Sub

lockDB:

If (Err.Number = FDO_E_SCHEMA_LOCK_CONFLICT) Then
 MsgBox "Unable to obtain exclusive database lock",
vbExclamation + vbOKOnly, "Database Lock Error"
Else
 MsgBox "Unknown error getting schema lock", vbExclamation +
vbOKOnly, "Database Error"
End If
Err.Clear

1

2

3

4

5

6

7

Add this to the Click event of a command in ArcCatalog.

8

9

10

 pSchemaLock.ChangeSchemaLock esriExclusiveSchemaLock
 On Error GoTo 0
 pClassSchemaEdit.AlterAliasName "ArcObjects Updated Alias"

11

12

13

Geodatabase

To make the schema
change, you must have a
schema lock. The schema
lock interface is accessed
through a
QueryInterface from the
IObjectClass interface.

The method to edit the schema is
on the IClassSchemaEdit
interface. This is accessed through
a QueryInterface from the
IObjectClass interface.

9

It is possible that when you ask the database
for an exclusive lock it will fail because another
user is editing, hence you must prepare for this
with a specialized error handler.

10

 IGxDataset : IUnknown

Dataset: IDataset
DatasetName: IDatasetName
Type: esriDatasetType

 IClassSchemaEdit : IUnknown

AlterClassExtensionCLSID (in
ClassExtensionCLSID: IUID, in
classExtensionProperties:IPropertySet)

AlterDefaultValue (in FieldName: String,
in Value: Variant)

AlterDomain (in FieldName: String, in
Domain: IDomain)

AlterFieldAliasName (in FieldName:
String, in AliasName: String)

AlterFieldModelName (in FieldName:
String, in ModelName: String)

AlterInstanceCLSID (in InstanceCLSID:
IUID)

AlterModelName (in Name: String)
RegisterAsObjectClass (in

suggestedOIDFieldName: String, in
ConfigKeyword: String) : Long

AlterAliasName (in Name: String)

 IDataset : IUnknown

BrowseName: String
Category: String
FullName: IName
Name: String
PropertySet: IPropertySet
Subsets: IEnumDataset
Type: esriDatasetType

CanCopy: Boolean
CanDelete: Boolean
CanRename: Boolean
Copy (in copyName:String,in

copyWorkspace:IWorkspace):IDataset
Delete
Rename (in Name: String)

Workspace: IWorkspace

 IWorkspace : IUnknown

ConnectionProperties: IPropertySet
DatasetNames (in DatasetType:

esriDatasetType) : IEnumDatasetName
Datasets (in DatasetType:

esriDatasetType) : IEnumDataset

ExecuteSQL (in sqlStmt: String)
Exists: Boolean
IsDirectory: Boolean

PathName: String
Type: esriWorkspaceType
WorkspaceFactory: IWorkspaceFactory

Enumeration esriDatasetType

 1 - esriDTAny
 2 - esriDTContainer
 3 - esriDTGeo
 4 - esriDTFeatureDataset
 5 - esriDTFeatureClass
 6 - esriDTPlanarGraph
 7 - esriDTGeometricNetwork
 9 - esriDTText
10 - esriDTTable
11 - esriDTRelationshipClass
12 - esriDTRasterDataset
13 - esriDTRasterBand
14 - esriDTTin
15 - esriDTCadDrawing
16 - esriDTRasterCatalog
17 - esriDTToolbox
18 - esriDTTool

Enumeration esriWorkspaceType

0 - esriFileSystemWorkspace
1 - esriLocalDatabaseWorkspace
2 - esriRemoteDatabaseWorkspace

 ISchemaLock : IUnknown

ChangeSchemaLock (in schemaLock:
esriSchemaLock)

GetCurrentSchemaLocks (out
schemaLockInfo:
IEnumSchemaLockInfo)

The schema edit is made.

11

The exclusive lock is
released.12

 IObjectClass : IClass

AliasName: String
ObjectClassID: Long
RelationshipClasses (in role: esriRelRole)

: IEnumRelationshipClass

8

295

ArcObjects
problem-solving

guide
DDDDD

The ArcObjects problem-solving guide presents a methodology to help you

solve real-world ArcObjects programming tasks that customize or extend the

ArcGIS Desktop applications.

The guide helps you describe and categorize your task and documents how

to use the help resources and tools to solve the problem programmatically.

In the end, the guide will not only help solve individual problems but will also

help you understand and navigate the structure of ArcObjects.

296 • ArcGIS Desktop Developer Guide

The ArcObjects library is a comprehensive set of COM components designed to
provide developers with the ability to extend and customize ArcGIS applications,
such as ArcMap and ArcCatalog. The ArcObjects library consists of more than
1,000 classes and 2,000 interfaces that are visually documented in several dozen
object model diagrams.

With this extensive set of classes, you can create a wide variety of
customizations and custom applications to extend existing ArcGIS applications.
However, as you begin developing with ArcObjects, you may find the extent of
the ArcObjects library overwhelming, and it may be difficult to know where to
begin. The goal of this problem-solving guide is to present a methodology to help
you solve real-world ArcObjects programming tasks that customize or extend the
ArcGIS Desktop applications.

The guide helps you describe and categorize your task and documents how to use
the help resources and tools to solve the problem programmatically. In the end,
the guide will not only help solve individual problems but will also help you
understand and navigate the structure of ArcObjects.

The guide is broken into three parts. Part One is designed to help you define the
ArcObjects programming task as clearly as possible. Part Two illustrates how to
use the help resources to locate the correct object model diagram you should start
with. Part Three provides an example of how to navigate the object model
diagrams to assemble the code required to solve the task.

The following steps outline each part of the problem-solving guide:

PART ONE: DEFINE THE ARCOBJECTS PROGRAMMING TASK

1. Describe the problem in ArcObjects terms.

2. Identify subtasks.

3. Decide where to write the code.

4. Search for a related sample or recommended methodology.

PART TWO: LOCATE THE CORRECT OBJECT MODEL

1. Identify a subtask.

2. Extract keywords.

3. Search for the correct object model diagrams.

4. Review all related documentation.

PART THREE: NAVIGATE THE OBJECT MODEL DIAGRAM

1. Review the structure of the object model diagram.

2. Trace the flow between classes and assemble code.

Although there are three parts, this type of problem solving is really one continu-
ous process. You may find it necessary to revisit some steps as you gain knowledge
about a particular topic by reading the pages in this book and exploring the wide
variety of code samples available.

ARCOBJECTS PROBLEM-SOLVING GUIDE

ArcObjects programming task

Describe problem
in ArcObjects terms

Decide where to
write code

Divide task
into subtasks

Search for a
related sample

Part I: Define the ArcObjects
programming task

Part II: Find the
correct object
model diagram

Subtask 1 ...

Subtask 2 ...

Subtask 3 ...

Extract keywords

Search for the
correct object

model diagrams

Review all related
documentation

Review the
structure of the

object model
diagram

Trace the flow
between classes and

write code

Part III: Navigate the
object model diagram

Steps of the ArcObjects
problem solving guide

Appendix D • ArcObjects problem-solving guide • 297

ARE YOU READY?

Before getting started with this problem-solving guide, you should be familiar
with the basic terminology behind COM and ArcObjects, and you should know
how to use the available help resources and tools. Here is a checklist of some
topics discussed earlier in this developer guide that should be familiar to you:

• How to program with COM interfaces and classes in Visual Basic
(Appendix A, ‘Developer environments’)

• How to use the ArcGIS Developer Help system

• How to read and interpret the ArcObjects object model diagrams with
Acrobat Reader

• How to use ESRI’s object browser, EOBrowser, to inspect the structure of
ArcObjects not visible with other object browsers

• How to access continually updated information at ESRI’s technical resource
Web site, http://arcgisdeveloperonline.esri.com

It is particularly important to understand the previous appendixes in this guide
along with the illustrated code samples before starting with this problem-solving
guide.

USING THE ARCOBJECTS PROBLEM-SOLVING GUIDE

This problem-solving guide uses a real-world ArcObjects programming problem
to explain the details of each step. To learn the methodology behind this guide,
first follow the instructions and complete the real-world programming task
defined below, then define your own problem and use these steps to solve your
own development task.

This problem-solving guide will solve this example task: Add a dataset called
States to ArcMap.

PART ONE: DEFINE THE ARCOBJECTS PROGRAMMING TASK

The most important aspect of successfully using the problem-solving guide is
being able to define the task itself. A task may originate from a real-world GIS
problem at your workplace or may be the result of an enhancement you would
like to make to the existing ArcGIS system. A task may be as simple as adding a
UIToolControl to the user interface of ArcMap to zoom in on the map or as de-
tailed as creating a custom feature for the geodatabase. In either case, to define
the task as completely as possible, you should consider the following steps:

1. Describe the problem using ArcGIS terminology.

2. Divide the task into smaller subtasks.

3. Decide where to compile the source code.

4. Find an existing sample or recommended methodology.

The best way to learn ArcObjects is to first
become familiar with the fundamental ArcGIS

and COM terminology and concepts, then learn
how to effectively use all the help resources,

tools, documentation, and samples that are at
your disposal. Chapter 2, ‘ArcGIS software

architecture,’ and Appendix A, ‘Developer environ-
ments’, of this book provide a good foundation

for the basic terms and concepts, while this
section focuses specifically on how to use the

help resources to solve programming tasks
related to ArcObjects.

For detailed information on Visual Basic and
COM programming techniques, reference

Appendix A, ‘Developer environments’, in this
book.

This guide does not attempt to provide an all-
encompassing method for every ArcObjects

programming task. It simply provides a method-
ology that can help you clearly define your initial

objective and make effective use of the many
resources and tools available.

ARCOBJECTS PROBLEM-SOLVING GUIDE

298 • ArcGIS Desktop Developer Guide

Describe the problem in ArcGIS terms

When defining the problem, it is useful to frame the task with ArcGIS terminol-
ogy and describe the actions as completely as possible. This will help you find
topics in the help system and the relevant components in ArcObjects.

In many cases, this step will also force you to go back and review important
background topics and reading materials related to the task at hand. From this
research, you will gain further insight about how a particular task can be solved.

For this example, the original task description is Add a dataset called States to
ArcMap.

Using ArcGIS terminology, this statement could be expanded like this: Access the
States feature class from a personal geodatabase and add it to ArcMap.

The most noticeable change to the description is that it has been expanded by
identifying the datasets involved and using the proper ArcObjects terminology.
For example, the dataset named States has been more accurately defined as a
feature class that resides in an existing personal geodatabase (stored in a Microsoft
Access database).

Another important change is that the actions in the description have also been
more completely defined. It now reveals the fact that it will be necessary to open
the database first, then add a feature class in it to ArcMap. As you will see in the
next step, it is important to identify these actions, since they can be treated as
two separate programming tasks when building the final code.

Define subtasks

This step forces you to revisit the original task description and determine if it can
be broken down into smaller, more manageable subtasks. This process allows you
to focus on smaller parts of the original problem at one time and, therefore,
smaller sections of the ArcObjects object model diagrams when it comes time to
write code. The easiest way to identify subtasks is to look for verbs or action
words that are hidden in the description. From the original task description, two
subtasks can be easily identified.

From your expanded statement—Access the States feature class from a personal
geodatabase and add it to ArcMap—you can identify two subtasks:

• Access the States feature class.

• Add the new layer to the map.

Each subtask will be solved individually as you traverse through Parts Two and
Three of this guide. This is important because it enables you to focus on small
parts of the problem and smaller sections of the object model diagrams.

Decide where to write the code

With the problem description and subtasks defined, you need to decide where to
write the code and how to provide the functionality to end users.

Remember that where you test code and where you write the final code are two
different issues. During the testing and initial design phase, it is always recom-
mended to start writing code as a VBA macro in either ArcMap or ArcCatalog.

To become familiar with basic ArcGIS terminol-
ogy, refer to these ESRI books: Getting Started

with ArcGIS, Building a Geodatabase, and
Modeling Our World, as well as the other

resources mentioned earlier.

You should always begin by trying to write
ArcObjects code in the VBA environment in

ArcMap or ArcCatalog. If necessary, this code can
be moved to a different development environ-

ment before final compilation and distribution.

ARCOBJECTS PROBLEM-SOLVING GUIDE

Appendix D • ArcObjects problem-solving guide • 299

There, you can easily assemble, test, and debug the source and experiment with
any number of classes or interfaces. After completing the testing phase, you can
decide to leave the code as a VBA macro or move it to another format.

Deciding where to write the final application code can be a complicated matter,
and as you gain experience developing with ArcObjects, your decision making
will improve. In general, the answer is governed by the type of application you
are developing and how you want to deliver the functionality to end users.

In general, there are three ways to write ArcObjects code for ArcGIS Desktop
applications:

• As a VBA macro in an ArcGIS Desktop application

• As an ActiveX COM component, such as a DLL or OCX

• As a standalone EXE

You should also note that browsing the samples and associated documentation
might help you determine where to locate your code. This is covered in detail in
the next step.

Writing VBA macros in ArcGIS applications

As mentioned, you should start development by using the VBA environment in
one of the existing ArcGIS applications. VBA is a simple programming language
with many utilities, such as design-time code completion and the object browser,
that will help you assemble code quickly.

Here are some more reasons to choose the VBA environment:

• It’s fast and easy to create, test, and debug macros inside ArcMap and
ArcCatalog.

• The standard ESRI type libraries are already referenced for you.

• Important global variables, such as the Application and Document, are available.

• It’s simple to assemble UI forms using VBA and ActiveX components.

• It’s straightforward to integrate VBA code with new ArcObjects UIControls.

• It’s relatively easy to migrate VBA code to VB ActiveX DLL projects.

• Many code samples available in the help system are macros that can be cut,
pasted, and run within the VBA environment.

After the testing phase, you can easily save the VBA code into a Normal.mxt,
Project.mxd, or custom Project.mxt file. Projects, documents, and templates can
then be delivered to end users so they can take advantage of the new functional-
ity your application provides. (See the topic on storing customizations in
Chapter 3, ‘Developing for ArcGIS Desktop applications’.)

Writing ActiveX COM components

If you want to use a programming language other than VBA or if you want to
package ArcObjects functionality into a COM DLL, EXE, or OCX, you will have
to work outside the VBA development environment. This approach generally
requires creating a project, referencing ArcObject type libraries, adding code, then
compiling the source into a binary file.

For information about how to get started with
the VBA environment, see the VBA topic in

Appendix A, ‘Developer environments’, as well as
related topics in the ArcGIS Developer Help

system.

This approach of writing ActiveX COM compo-
nents must be taken if you want to extend the

existing ArcObjects architecture. Custom
components can reside at the application or

geodatabase level.

ARCOBJECTS PROBLEM-SOLVING GUIDE

300 • ArcGIS Desktop Developer Guide

Writing ActiveX COM components should be done when you want to extend the
existing ArcObjects architecture by adding new custom components. The process
requires implementing one or more ArcObjects interfaces in the new object.

Unlike working in the VBA environment, all new components require Compo-
nent Category registration to work correctly.

Both these topics are discussed in Chapter 3, ‘Developing for ArcGIS Desktop
applications’.

These are some advantages of building custom components:

• They can be easily delivered to end users via custom setup programs.

• You can hide ArcObjects code in a binary file and deliver the functionality to
end users with a setup program.

• You can extend and customize virtually every aspect of the ArcGIS technol-
ogy.

Components can be broadly categorized into two areas of customization: those
that reside at the application level, such as custom buttons, toolbars, windows,
and extensions, and those that reside at the geodatabase level, such as custom
feature class extensions and custom features. Some of these more advanced
customizations cannot be accomplished through the VBA environment.

The main disadvantage of working outside the VBA environment is that you will
have to acquire and use another COM-compliant development tool. Another
consideration is the fact that you do not have direct access to the Application and
ThisDocument global variables.

The development tool you choose must support the creation of new components
as well as the implementation of COM interfaces to acquire a hook back into the
ArcGIS applications. For more details, see Chapter 3, ‘Developing for ArcGIS
Desktop applications’. Interfaces that provide this functionality will allow you to
acquire references to the Application and ThisDocument global variables, just as if
you were working in the VBA environment. Another disadvantage is that it is
often more difficult to debug the code. See the topic on Visual Basic in
Appendix A, ‘Developer environments’.

Standalone applications

ArcObjects can be used to write standalone applications. This generally requires
creating a project, referencing ArcObject type libraries, then assembling the
required code to support the functionality of the application.

There are several ESRI controls that can help you embed ArcObjects functional-
ity in your application. However, as an ArcGIS Desktop developer you can only
work with the ESRI Map and PageLayout controls. The ArcGIS Engine Developer
Kit provides more controls and functionality and is the recommended solution
for creating complex standalone applications.

ARCOBJECTS PROBLEM-SOLVING GUIDE

More information on ArcGIS Engine can be found
in the What is ArcGIS? book.

For information on building standalone applica-
tions with ArcGIS Engine, refer to the ArcGIS

Engine Developer Guide.

Appendix D • ArcObjects problem-solving guide • 301

Following are some advantages of building standalone applications with either
ArcGIS Desktop or ArcGIS Engine:

• You can use the ESRI Map control to simplify the embedding of ArcObjects
functionality in your application.

• You can design a highly customized user interface specific to your application.

• You can quickly create small, lightweight applications.

These are the disadvantages of building standalone applications:

• You cannot take advantage of the extensive functionality that ESRI has built
into the existing ArcGIS applications, such as ArcMap or ArcCatalog.

• If you are not using the Map control, you will have to provide your own map
display for visual applications.

• You will have to design your own data loading and layer management tools.

• You cannot use ArcMap documents or templates to their fullest capacity.

• You cannot take advantage of the components that give you the ability to
extend the existing ArcMap and ArcCatalog framework.

• None of the extensions, including the Editor, can be used.

Although it is possible, it is not recommended to create standalone applications if
the functionality you desire can be realized by extending existing ArcGIS applica-
tions, such as ArcMap and ArcCatalog. All ArcGIS applications share the same
application framework, designed to be extended by third-party developers.

If you create a standalone application, you have a significantly higher develop-
ment effort. The Map control mitigates but does not eliminate this additional
effort. Standalone applications are appropriate only for highly specialized imple-
mentations.

Of the three options for writing code—as VBA macros in ArcMap or ArcCatalog,
as ActiveX COM components, or as standalone applications—the example used
in this problem-solving guide, adding a dataset called States to ArcMap, will
simply be run as a VBA macro stored in a map document (.mxd file).

Find a related sample or recommended methodology

The last step is to search all the available resources for a code
sample and look for any documentation that may be related to the
task at hand. To accomplish this, you will need to make use of the
help resources and tools. As you may already know, there is often
more than one way to accomplish a programming task. The rec-
ommendation here is to search the available resources for
similar implementations to help you decide how to go about
solving the problem.

The easiest way to locate a sample is to search using the ArcGIS
Developer Help system.

1. Start the ArcGIS Developer Help system.

2. Click the Search tab and type “Add”.

ARCOBJECTS PROBLEM-SOLVING GUIDE

302 • ArcGIS Desktop Developer Guide

3. Sort by clicking the Title field. You can sort by location as well.

4. Browse down until you find “samples” and locate the “Add a shapefile pro-
grammatically” sample. Open the page and study the sample.

5. Click the Contents tab. This reveals the location of the sample. Browse the
other samples in this folder structure. Make note of the location of the
sample.

6. Click the Favorites tab, give the current topic a title, and add the sample to
your Favorites list.

Unfortunately, in this case it was not possible to find a sample that solves the
exact problem, but a sample was found that relates to the problem. The sample
found illustrates how to open and load a shapefile into ArcMap. Since you are not
ready to write code at this point, the sample was simply stored in the Favorites
list so it can be referenced later. This will still prove to be a valuable step later
when writing code.

Whether a sample was located or not, it is a good idea to look for
background information related to the current task. The ArcGIS
Developer Help system contains some topics that you might find
valuable in the development environments section. These pages
provide some useful information, such as the basic principles
related to working with ArcObjects in VB and VBA. Although
the documentation doesn’t relate to the problem description, it
still relates to the overall task since this example will be written as
a VBA macro. Therefore, it is a good idea to review this documen-
tation.

1. Open the Development Environments section in the ArcGIS
Developer Help system.

2. Open the COM and Visual Basic 6 subsections, then review
the documentation related to the VBA development environment.

If nothing is found that directly relates to the task at hand, it is a good idea to
visit the other documentation available. You can check some other resources,
such as the ArcGIS Desktop Help, and ESRI books, such as What is ArcGIS?,
Building a Geodatabase, and Modeling Our World.

Summary of Part One

Now that you have more clearly defined the various components of the task and
have done some research on the topic, it is possible to move on to the next step,
which will help identify which object model diagram to start with.

Here is all the task-related information found in Part One of the problem-solving
guide for the current example:

Task defined in ArcGIS terminology: Access the States feature class from an
existing Access personal geodatabase and add it to ArcMap.

Subtask 1: Access the States feature class.

Subtask 2: Add the new layer to the map.

The samples in the ArcGIS Developer Help
system fall into two categories: tips and tools.
Tips are smaller examples of ArcObjects code

that you can generally cut and paste, then run as
a VBA script in ArcMap or ArcCatalog. Tools are

more complete examples of applications that
often require compilation and component

category registration. Many of the tools are
COM components themselves. If you find a tip or

tool that may be useful, be sure to store it in
the Favorites tab for future reference.

ARCOBJECTS PROBLEM-SOLVING GUIDE

Appendix D • ArcObjects problem-solving guide • 303

Where to write the code: As a VBA macro in ArcMap.

Located sample: Add a shapefile to ArcMap programmatically.

PART TWO: FIND THE CORRECT OBJECT MODEL DIAGRAM

This section explains how to use the help resources and tools to locate the correct
object model diagram required to solve a task. As a reminder, the remaining steps
in Parts Two and Three are designed to work through one subtask at a time.
Therefore, you will need to proceed through all the remaining steps with
Subtask 1, then come back here to solve Subtask 2.

Identify a subtask

Start with the first subtask defined in Part One.

Original task: Access the States feature class from an existing Access personal
geodatabase and add it to ArcMap.

Subtask 1: Access the States feature class.

Subtask 2: Add the new layer to ArcMap.

Extract keywords

This step requires that you extract keywords from the subtask description. This is
not an exact science, but the more ArcObjects terms used in the original descrip-
tion, the more success you will have here. Therefore, it should be evident that it
is critical to define the initial task correctly in the first step of Part One.

Two terms can be extracted from the previously defined subtask: “access” and
“feature class”.

Search for the correct object model diagram

The objective of this step is to use the keywords defined above to identify the
correct object model diagram. One way to find the object model diagram is to use

Adobe Acrobat Reader to search the ArcGIS object model PDF
file. Searching the entire ArcGIS object model should lead you to
one or more words or classes that are directly associated with an
object model diagram.

The ArcGIS object model is a simplified version of the entire
ArcObjects library. This object model contains subsystems that are
composed of one or more object model diagrams.

The methodology here is to search the object model with the key-
words defined in the last step, identify the appropriate subsystem or
object model diagram, then go directly to the associated chapter in

the book to learn more about the related classes. The chapters of the book pro-
vide both a detailed description of the classes and a number of helpful code
samples.

Another method to find the object model diagram is to search the AllOMDs.pdf
file. This diagram contains all the object model diagrams with expanded inter-

It is important to use the correct ArcObjects
terminology when describing the original task to
extract meaningful keywords from each subtask.
These keywords are important because they can

be used later to search for topics in the help
system and for classes in the object model

diagrams.

The ArcGIS Object Model.pdf file contains
subsystems that contain one or more object

model diagrams. This diagram only shows those
classes that are documented in the ArcObjects
book. To search against the entire ArcObjects
library, you can also use the AllOMDs.pdf file.

ARCOBJECTS PROBLEM-SOLVING GUIDE

304 • ArcGIS Desktop Developer Guide

faces, members, and enumerations. It can be searched using Acrobat Reader just
like the ArcGIS object model diagram, but since it contains considerably more
detail, expect the search to point to many more hits. The advantage of using this
object model diagram is that it will cover virtually every class and interface in the
entire ArcObjects library at one time.

The remaining method involves searching the ArcGIS Developer Help system.
Here you can enter the keywords into the Index or Search tabs and look for
results that return an ArcObjects class, leading you to the object model diagram
documenting that class.

Use the Index tab to search for keywords in the ArcGIS Developer Help.

1. Open the ArcGIS Developer Help.

2. Click the Index tab and type in the keyword “access”.
You will find the only ArcObject class listed is the
AccessWorkspaceFactory coclass.

3. Click AccessWorkspaceFactory coClass in the list and read the
description in the right pane. The library that contains this class is in
parentheses next to the class name at the top. In this case it is the
esriDataSourcesGDB library. The corresponding object model dia-
gram is DataSourcesGDBObjectModel. Each library is usually
associated with an object model with a similar name.

4. Next type the “featureclass” keyword into the index.
The list will display the FeatureClass class.

5. Click the FeatureClass class and read the description in the right pane. This
class is located in the esriGeodatabase library. The corresponding object model
diagram is GeoDatabaseObjectModel.

In this example, the search results point to two geodatabase libraries and object
model diagrams. Therefore, this clearly indicates that you should start with these
diagrams to solve the subtask.

Review the documentation

With the object model diagrams identified, the last step in Part Two is to review
the available ArcObjects documentation. The best place to start is with the

Object Model Overviews section of the ArcGIS Developer Help
system. The Object Model Overviews Start page provides a brief
description of each subsystem that composes the ArcObjects
library. At a minimum, you will find an overview of each sub-
system that provides a description of the main classes associated
with each subsystem.

Review the appropriate Object Model Overview page in the
ArcGIS Developer Help system.

1. Go to the ArcGIS Developer Help system and click Object
Model Overviews.

2. From the Object Model Overviews Start page, click the de-
sired object model. For this example, click Geodatabase.

ARCOBJECTS PROBLEM-SOLVING GUIDE

Appendix D • ArcObjects problem-solving guide • 305

3. Read the overview information available to learn about the classes that belong
to the selected object model diagram.

The object model diagram overviews provide some background information for
the most important classes in each object model diagram. From this, you should
be able to identify new keywords that you may have missed or even class names
that are directly related to the current subtask. Add these keywords to the exist-
ing keyword list to improve your ability to navigate through the object model
diagram.

From the Geodatabase Overview page, you should have been able to identify the
following keywords: Access, Feature class, Workspace, and Factory.

Reviewing this chapter should provide you with a solid understanding of what
the main classes and interfaces are for as well as some good code samples. This
last step is one of the most important parts of the entire problem-solving guide.

PART THREE: NAVIGATE THE OBJECT MODEL DIAGRAM

The last part of the guide involves navigating the object model diagrams and
assembling the required code to solve each subtask. This is generally the most
difficult step because it involves the use of many of the help resources and tools
and is generally not a linear process. As you become more familiar with the help
tools and the object model diagrams, this process will become easier.

Review the structure of the object model diagrams

It is a good idea to familiarize yourself with the general structure of the object
model diagrams before proceeding. The easiest way to accomplish this is to use
Acrobat Reader to zoom in and pan around each model.

1. Open the DataSourcesGDBObjectModel object model diagram with
Acrobat Reader.

2. Zoom in and pan around the diagram to view the overall structure.
You will notice that the workspace factories all inherit from the
WorkSpace Factory class in the geodatabase object model.

3. Repeat the steps with the GeoDatabaseObjectModel.

Another way to become familiar with the object model diagram is to
examine the relationship between classes and interfaces of an existing
sample. It is recommended that you physically trace the flow between
the classes and interfaces to understand how the classes relate to one
another. This knowledge will be useful since it will help you assemble
your own code in the next step.

In Part One, step 4, the “Add a shapefile to ArcMap programmatically” sample
was located. Use this to start exploring the geodatabase object model diagram.

1. Click the Favorites tab where you saved the link to this sample in the ArcGIS
Developer Help system. Make note of the classes used in this sample.

When searching the object model diagrams, it is
important to pay attention to the UML symbols

that identify relationships between classes. If
there is no obvious relationship joining two
classes, or if they are located in completely

different parts of the model, you should keep in
mind that they are still likely associated with

each other in some way. It’s also important to
inspect all the interfaces associated with the

classes since they may contain members that are
references to other classes.

ARCOBJECTS PROBLEM-SOLVING GUIDE

306 • ArcGIS Desktop Developer Guide

2. Open the geodatabase object model diagram and search for the
main classes used in the sample.

3. Follow the inheritance symbols all the way to the feature class.

4. Pay special attention to any inheritance relationships that may
exist.

Trace the flow between the classes and assemble code

In this step you will search for classes in the object model diagrams
based on the keywords identified for the current subtask. After
locating some potential classes, you will go to the ArcObjects
Developer Help system and look for any help topics that may be
available. The last step is to start writing the code based on the
knowledge you have gained from these steps.

Start with the first subtask by searching for the keywords in the
DataSourcesGDBObjectModel object model diagram.

Subtask 1: Access the States feature class.

Keyword List: Access, Feature Class, Workspace, Factory

1. Using Acrobat Reader, zoom in to about 75 percent, and search
the DataSourcesGDBObjectModel object model diagram for the
first keyword in the list: Access.

You should easily find the AccessWorkspaceFactory class.

2. Once you find the class, go back to the ArcObjects Developer
Help system and use the Index tab to search for all instances of
AccessWorkspaceFactory. Once a help topic is located, browse the
available information along with any examples. To determine what
interfaces the class supports, expand the Interfaces hyperlink on the
page. Identify these below.

AccessWorkspaceFactory supports the following interfaces:
IWorkspaceFactory, IWorkspaceFactory2, and ILocalDatabaseCompact.

If no help topic is available, use the Search tab to find all related
help documents in the system, such as samples, you might have
missed in the initial steps.

3. Now, return to the object model diagram and follow the inherit-
ance symbols that connect the AccessWorkspaceFactory class to the
wormhole that says WorkspaceFactory in esriGeodatabase. A
wormhole is a link to another part of the ArcGIS Object model.

4. Open the Geodatabase object model diagram and locate the
WorkspaceFactory abstract class. Note that the abstract class supports
the IWorkspaceFactory interface. This information is valuable because
it indicates that AccessWorkspaceFactory also must implement

IWorkspaceFactory. It is important to note that this inheritance information can
only be derived from the object model diagram itself or from the discussions in
the associated chapters in this book.

ARCOBJECTS PROBLEM-SOLVING GUIDE

Appendix D • ArcObjects problem-solving guide • 307

At this point, you might also be interested in discovering what other coclasses
implement IWorkspaceFactory. The easiest way is to look at the coclasses that
inherit from Workspace on the object model diagram, but this can also be discov-

ered two other ways. The first is to use the ArcObjects Developer
Help system and click the Index tab to search for IWorkspace-
Factory. Expand the CoClasses that implement the
IWorkspaceFactory hyperlink to list the classes that support the
interface.

This will list all the coclasses for you. The second way is to use the
ESRI EOBrowser application to search for all the coclasses that
implement the same interface.

5. With the information you have gathered from the object
model diagram, the sample, the help system, and the EOBrowser,
you should be able to write some basic code to cocreate an in-
stance of the AccessWorkspaceFactory class. At this point, you
could also go back to the ArcGIS Help system and look for an

example on the same page that was located for the AccessWorkspaceFactory search.
With this information and from browsing the object model diagram, the code
could be assembled like this:

' Subtask 1. Access the States feature class.

Dim pWSF as IWorkspaceFactory

Set pWSF = New AccessWorkspaceFactory

6. Now, inspect the members of the IWorkspaceFactory interface and try to iden-
tify which one can be used to open the database. Again, this information can be

acquired using multiple tools. You can:

• Read and interpret the members on the object model diagram.

• Search for the interface in the ArcGIS Developer Help system
by expanding the Members hyperlink.

• Display the members in VB/VBA using IntelliSense or by
pressing F2 to view the object browser.

• Search for the interface using the ESRI EOBrowser and ex-
pand it to inspect all its members.

Although there are many avenues to take, it is generally recom-
mended to use the ArcGIS Developer Help system since it pro-
vides a description of each member, the required parameters, and
often a code sample.

7. After inspecting the members of IWorkspaceFactory, it should be obvious that
there are multiple members that can be used to open a geodatabase. In this case,
since the filepath of the database is known to be C:\data\US.mdb, the
IWorkspaceFactory::OpenFromFile member can be used. Since the
IWorkspaceFactory::OpenFromFile member returns a reference to an IWorkspace
interface, it will be necessary to store this return value.

ARCOBJECTS PROBLEM-SOLVING GUIDE

308 • ArcGIS Desktop Developer Guide

The code so far might look like this:
' Subtask 1. Access the States feature class.

Dim pWSF as IWorkspaceFactory

Dim pWS as IWorkspace

Set pWSF = New AccessWorkspaceFactory

Set pWS = pWSF.OpenFromFile("c:\data\US.mdb", 0)

8. If you inspect the IWorkspace interface, you will see that it will take several
calls to search and open the States feature class if IWorkspace::Datasets or
IWorkspace::DatasetNames are used. In this case it will be necessary to loop
through all the feature classes available just to identify the States feature class
in the enumeration. Since you already know the name of the feature class to
open, you should look for a way to optimize this process. The best resource at
this point would be the esriGeodatabase library overview in ArcGIS Devel-
oper Help, but if you inspect the class carefully, you might find it immediately.

9. If you look at the Workspace class on the object model diagram
or if you review the esriGeodatabase library overview, you will
notice that this class also supports the IFeatureWorkspace interface.
This interface is designed to provide feature class-level access to a
workspace. It supports an IFeatureWorkspace::OpenFeatureClass
member, which takes a string name directly and returns an
IFeatureClass reference. Since you can provide the name as a string
and directly return a reference, you should use this interface to
return a reference to the States feature class. To access the inter-
face, it will be necessary to use QueryInterface against the
IWorkspace reference. It should also be noted that the return value
must be stored as an IFeatureClass reference.

You should recognize that there is often more than one way to
solve a problem using the numerous classes and interfaces avail-
able in the ArcObjects library. When this is the case, you should

research the documentation and test to find out which set of classes and inter-
faces work best to solve your particular programming task.

After assembling the code it might look like this:
' Subtask 1. Access the States feature class.

Dim pWSF as IWorkspaceFactory

Dim pWS as IWorkspace

Dim pFWS as IFeatureWorkspace

Dim pFC as IFeatureClass

Set pWSF = New AccessWorkspaceFactory

Set pWS = pWSF.OpenFromFile("c:\data\US.mdb", 0)

Set pFWS = pWS ' QI

Set pFC = pFWS.OpenFeatureClass("States")

ARCOBJECTS PROBLEM-SOLVING GUIDE

Appendix D • ArcObjects problem-solving guide • 309

To optimize the code even further, rewrite it as follows:
' Subtask 1. Access the States feature class.

Dim pWSF as IWorkspaceFactory

Dim pFWS as IFeatureWorkspace

Dim pFC as IFeatureClass

Set pWSF = New AccessWorkspaceFactory

Set pFWS = pWSF.OpenFromFile("c:\data\US.mdb", 0)

Set pFC = pFWS.OpenFeatureClass("States")

Now that the code for the first subtask has been completed, you must return to
Part Two of the problem-solving guide to assemble the code for the last subtask.

If you return to the sample that was identified in Part One, step 4, you will
notice that there are classes and interfaces that have not yet been located on an
object model diagram. Take this time to look for these classes in the ArcGIS
object model diagrams, step 1 of Part Two.

New keyword list: Application, MxDocument, Map, FeatureLayer, Add

1. Using the ArcGIS Developer Help system, click the Favorites
tab where you saved the link to this sample. View the sample.

2. Click the Index tab and search for the keywords. Remember,
you are looking for items that lead to object classes and, ulti-
mately, library and object model names.

This step reveals matches in the following libraries and object
models:

Application coClass in esriArcMap; MxDocument coClass in
esriArcMapUI; Map and FeatureLayer coClasses in esriCarto.

Go to step 2, trace the flow between the classes, and assemble
code. Start this process by searching for the keywords for the
current subtask.

Subtask 2: Add the layer to ArcMap.

Keyword List: Application, MxDocument, Map, FeatureLayer,
Add

1. Using Acrobat Reader, search the relevant object model dia-
gram for each keyword. For Application, you should find the
Application class in the ArcMap object model diagram.

Inspect the interfaces that the class supports.

2. Once you find the class, go back to the ArcGIS Developer
Help system and use the index to search for that class. For this

ARCOBJECTS PROBLEM-SOLVING GUIDE

310 • ArcGIS Desktop Developer Guide

first keyword, click Application coClass, then the esriArcMap reference in the
popup. Read the information available. The help documentation reveals that
Application is the primary object for ArcMap and the other desktop applications
that appeared in the popup. Click the Interfaces hyperlink and view the interfaces
associated with the Application class. Click IApplication (esriFramework) to view
the information available. Look for an example and write code to access the
application.

' Subtask 2. Add the new layer to the map.

Dim pApp as IApplication

Set pApp = Application

Now expand the members of IApplication with the Members
hyperlink. This information reveals that it is possible to access the
current document with the IApplication::Document member. The
code could be updated as follows:
' Subtask 2. Add the new layer to the map.

Dim pApp as IApplication

Dim pDoc as IDocument

Set pApp = Application

Set pDoc = pApp.Document

3. Now open the ArcMapUI object model diagram and find the
MxDocument class. Notice the wormhole link from this class to
Application and Map. Inspect the interfaces associated with this
class. Notice that IDocument does not provide a member to access
the Map class, but the IMxDocument interface does. Navigate the
diagram to find the Map class.

4. Go back to the ArcGIS Developer Help system and use the
index to search for MxDocument. Read the information available.
Click the Interfaces hyperlink. Click IMxDocument and expand the
members. Notice that the IMxDocument interface supports the
FocusMap member and returns a reference to IMap. Use this mem-
ber to access the Map class.

Update the code to get a reference to the document’s map.
' Subtask 2. Add the new layer to the map.

Dim pApp as IApplication

Dim pDoc as IDocument

Dim pMxDoc as IMxDocument

Dim pMap as IMap

Set pApp = Application

Set pDoc = pApp.Document

ARCOBJECTS PROBLEM-SOLVING GUIDE

Appendix D • ArcObjects problem-solving guide • 311

Set pMxDoc = pDoc 'QI

Set pMap = pMxDoc.FocusMap

5. Go back to the ArcGIS Developer Help system and use the
index to search for the Map coclass. Click the Interfaces hyperlink
and the IMap interface. Expand the members and locate the
AddLayer member. This member will be used later to add a layer to
the map, but first you need to create the new layer and associate it
with the “States” data.

6. Locate the wormhole in the Carto object model diagram that
connects the Map class (page 1 of the Carto OMD) to the map layer
object model diagram (page 3 of the Carto OMD). Open the map
layer object model diagram and browse the contents. Search for the
FeatureLayer keyword until you find the class. Inspect the inheritance
relationship between FeatureLayer and Layer. Also, identify the
interface inheritance between IFeatureLayer and ILayer.

The interface inheritance information can also be acquired if you go
back to the ArcGIS Developer Help system and use the index to
search for the FeatureLayer coclass. Expand the Interfaces hyperlink
and notice that it supports the ILayer interface.

7. Now, inspect the members of IFeatureLayer more closely by using
the ArcObjects Developer Help system or the object model diagram.
Notice it supports an IFeatureLayer::FeatureClass member property.
From the documentation and the information in the esriCarto
library overview, it should be obvious that you need to use this
property to connect the FeatureClass class to the FeatureLayer class.
The feature class contains a reference to the “States” dataset that
was acquired in Subtask 1. Also, set the name of the layer to
IFeatureClass::AliasName.

The last step is to add the new layer to the Map.

' Subtask 2. Add the new layer to the map.

Dim pApp as IApplication

Dim pDoc as IDocument

Dim pMxDoc as IMxDocument

Dim pMap as IMap

Dim pFL as IFeatureLayer

Set pApp = Application

Set pDoc = pApp.Document

Set pMxDoc = pDoc ' QI

ARCOBJECTS PROBLEM-SOLVING GUIDE

312 • ArcGIS Desktop Developer Guide

Set pMap = pMxDoc.FocusMap

Set pFL = New FeatureLayer

Set pFL.FeatureClass = pFC ' pFC From Subtask 1.

pFL.Name = pFC.AliasName

pMap.AddLayer pFL

8. Now that you understand the relationship between the classes and interfaces,
the code can be optimized. Rewrite the code as follows:
' Subtask 2. Add the new layer to the map.

Dim pApp as IApplication

Dim pDoc as IMxDocument

Dim pFL as IFeatureLayer

Set pApp = Application

Set pMxDoc = pApp.Document

Set pFL = New FeatureLayer

Set pFL.FeatureClass = pFC ' pFC From Subtask 1.

pFL.Name = pFC.AliasName

pMxDoc.FocusMap.AddLayer pFL

9. Now, assemble all the code from Subtasks 1 and 2. It will look like this:
' Subtask 1. Access the states feature class.

Dim pWSF as IWorkspaceFactory

Dim pFWS as IFeatureWorkspace

Dim pFC as IFeatureClass

Set pWSF = New AccessWorkspaceFactory

Set pFWS = pWSF.OpenFromFile("c:\data\US.mdb", 0)

Set pFC = pFWS.OpenFeatureClass("States")

' Subtask 2. Add the new layer to the map.

Dim pApp as IApplication

Dim pMxDoc as IMxDocument

Dim pFL as IFeatureLayer

Set pApp = Application

Set pMxDoc = pApp.Document

Set pFL = New FeatureLayer

Set pFL.FeatureClass = pFC ' pFC from Subtask 1.

pFL.Name = pFC.AliasName

pMxDoc.FocusMap.AddLayer pFL

SUMMARY

It should be clear now that there are several ways to solve ArcObjects program-
ming problems. The similarities between all of them, however, are being able to
use the help documents and resources effectively and being able to read the object
model diagrams. Hopefully, this guide has provided you with an opportunity to
visit the main resources that are available and exercise their use to solve this real-
world problem.

ARCOBJECTS PROBLEM-SOLVING GUIDE

313

UIControlsEEEEE
UIControls are VBA-based commands whose

interfaces are only available in VBA. This

appendix shows class and interface diagrams

for these controls.

314 • ArcGIS Desktop Developer Guide

UICONTROL CLASSES

UIControls are VBA-based commands. This means that VBA code stored in a
document or template defines and determines the behavior of this type of com-
mand. If a UIControl was created in a document, it can only be accessed in that
document. If a UIControl was created in a template, it can be accessed in the
template and any document that uses the template. If a UIControl was created in
the Normal template, it can be accessed at all levels. There are four different
types of UIControl: UIButtonControl, UIComboBoxControl, UIEditBoxControl, and
UIToolControl.

To create a new UIControl, use the New UIControl button on the Customize dialog
box in the ArcGIS applications; this creates a UIControl stub. While the Custom-
ize dialog box is still open, you can drag the new UIControl to any toolbar. You
can then write the code that defines and determines the behavior of the
UIControl. This code is written in the Visual Basic Editor in the ThisDocument
Code window for the document or template in which you created the UIControl.

The new UIControl is listed in the Object box on the Code window; select the
UIControl in this list. Then, click one of the functions listed in the Procedures/
Events box on the Code window. This will stub out the function in the Code
window. You can now write your code. When the Visual Basic Editor is open,
your UIButtonControl is in design mode. To fully test your button in ArcMap or
ArcCatalog, you need to close the Visual Basic Editor.

The interfaces for UIControls are usable only in Visual Basic for Applications.

ICommandItem

UIControl

Command-
Item

UIControls represent buttons, combo
boxes, edit boxes, or tools in a custom

dialog box.

Button Combo box Edit box Tool

Appendix E • UIControls • 315

A UIButtonControl acts as a button or menu item that performs a simple task when
clicked.

 IUIButtonControlEvents : UIButtonControl Events interface

Checked: Boolean Requests whether the specified item is checked.

Click The specified item was clicked.
Enabled: Boolean Requests whether the specified item is enabled.

Message: String Requests the current message text for the specified item.
ToolTip: String Requests the current Tooltip text for the specified item.

The IUIButtonControlEvents interface defines the properties of a UIButtonControl,
such as the enabled state, checked state, ToolTip, and status bar message. This
interface also has a Click method that defines what action occurs when the
button is clicked.

The following VBA code is a full implementation of a UIButtonControl that re-
ports the number of selected features in all the layers. This control is enabled only
when there are layers in the map.
 Private Function UIButtonControl1_Checked() As Boolean

 UIButtonControl1_Checked = False

 End Function

 Private Sub UIButtonControl1_Click()

 Dim pMxDoc As IMxDocument

 Dim SelCount As Long

 Set pMxDoc = Application.Document

 SelCount = pMxDoc.FocusMap.SelectionCount

 MsgBox SelCount

 End Sub

 Private Function UIButtonControl1_Enabled() As Boolean

 Dim pMxDoc As IMxDocument

 Dim LayerCount As Long

 Set pMxDoc = Application.Document

 LayerCount = pMxDoc.FocusMap.LayerCount

 If LayerCount > 0 Then

 UIButtonControl1_Enabled = True

 Else

 UIButtonControl1_Enabled = False

 End If

 End Function

 Private Function UIButtonControl1_Message() As String

 UIButtonControl1_Message = "Return selection count for all layers"

 End Function

 Private Function UIButtonControl1_ToolTip() As String

 UIButtonControl1_ToolTip = "Selection Count"

 End Function

IUIButton-
ControlEvents UIButton-

Control

A UIButtonControl acts as a button or
menu item that performs a simple task

when clicked. You can set properties such
as status bar message, ToolTip, enabled

state, and checked state.

UIBUTTONCONTROL CLASS

316 • ArcGIS Desktop Developer Guide

IUIComboBoxControl
IUIComboBox-
ControlEvents

UICombo-
BoxControl

A UIComboBoxControl is a dropdown
list box control that can be added to a

toolbar.

A UIComboBoxControl has properties and methods that allow you to change, add,
and remove items in the combo box list. The EditChange, SelectionChange, and
Keydown events allow you to control what happens when a user changes the text
or selection in the combo box.

 IUIComboBoxControlEvents : UIComboBoxControl Events interface

EditChange Occurs when the user types within the edit portion of the combobox.

Enabled: Boolean Requests whether the specified item is enabled.
GotFocus Occurs when UIComboBoxControl gets focus.

KeyDown (in keyCode: Long, in shift:
Long)

Occurs when the user presses a key.

LostFocus Occurs when UIComboBoxControl loses focus.

Message: String Requests the current message text for the specified item.
SelectionChange (in newIndex: Long) Occurs when the user selects an item in the combobox.

ToolTip: String Requests the current Tooltip text for the specified item.

The IUIComboBoxControlEvents interface defines the properties of a
UIComboBoxControl, such as the enabled state, ToolTip, and status bar message.
This interface also has EditChange, KeyDown, and SelectionChange methods that
allow you to control what happens when a user changes the text or selection in
the combo box.

The following VBA code displays a message box that reports the currently se-
lected item when the selection changes in the combo box.
Private Sub UIComboBoxControl1_SelectionChange(ByVal newIndex As Long)

 MsgBox UIComboBoxControl1.Item(newIndex)

End Sub

 IUIComboBoxControl : IDispatch UIComboBox Control interface

EditText: String Returns or sets the edit text within the combobox.
Item (in index: Long) : String Returns the text at the specified index.

ItemCount: Long Returns the number of items currently inside of the combobox.
ListIndex: Long Returns or sets the selected index within the combobox.

AddItem (in itemText: String, index:
Variant)

Adds an item to the combobox, optionally at the specified index.

DeleteItem (in index: Long) Deletes an item from the combobox at the specified index.
RemoveAll Removes all items from the combobox.

The IUIComboBoxControl interface has properties and methods that allow you to
change, edit, and remove items in the combo box list.

The following VBA macro adds items to UIComboBoxControl1 and selects the first
item in the list.
 Public Sub PopulateComboBox()

 UIComboBoxControl1.AddItem "Red"

 UIComboBoxControl1.AddItem "Green"

 UIComboBoxControl1.AddItem "Blue"

 UIComboBoxControl1.AddItem "Yellow"

 UIComboBoxControl1.ListIndex = 0

 End Sub

UICOMBOBOXCONTROL CLASS

Appendix E • UIControls • 317

A UIEditBox has a property to set the text that appears in the Edit box. The
Change and Keydown events allow you to control what happens when a user
changes the text in the Edit box.

 IUIEditBoxControlEvents : UIEditBoxControl Events interface

Change Occurs when the user types within the editbox.

Enabled: Boolean Requests whether the specified item is enabled.
GotFocus Occurs when UIEditBoxControl gets focus.

KeyDown (in keyCode: Long, in shift:
Long)

Occurs when the user presses a key.

LostFocus Occurs when UIEditBoxControl loses focus.

Message: String Requests the current message text for the specified item.
ToolTip: String Requests the current Tooltip text for the specified item.

The IUIEditBoxControlEvents interface defines the properties of a
UIEditBoxControl, such as the enabled state, ToolTip, and status bar message.

This interface also has Change and KeyDown methods that allow you to control
what happens when a user changes the text in the Edit box.

The following VBA code uses the KeyDown method to report the current text in
the Edit box if Return is pressed.
Private Sub UIEditBoxControl1_KeyDown(ByVal keyCode As Long, ByVal shift As
Long)

 If keyCode = vbKeyReturn Then

 MsgBox UIEditBoxControl1.Text

 End If

End Sub

 IUIEditBoxControl : IDispatch UIEditBoxControl interface

Text: String Returns or sets the editbox text.

Clear Clears the contents of the editbox.

The IUIEditBoxControl interface has a Text property for getting and setting the
text in the UIEditBox control and a Clear method for deleting the text.

The following VBA macro sets the text in a UIEditBoxControl called
UIEditBoxControl1.
Public Sub SetText()

 UIEditBoxControl1.Text = "Hello"

End Sub

UIEDITBOXCONTROL CLASS

IUIEditBoxControl
IUIEditBox-

ControlEvents
UIEditBox-

Control

A UIEditBoxControl is an editable text
box control that can be added to a

toolbar.

318 • ArcGIS Desktop Developer Guide

A UIToolControl is similar to a COM command that implements the ITool inter-
face. This type of control can interact with the application’s display. You can set
all the properties that UIButtonControls have and define what occurs on events,
including mouse move, mouse button press and release, keyboard key press and
release, double-click, and right-click.

 IUIToolControlEvents : UIToolControl Events interface

ContextMenu (in x: Long, in y: Long) :
Boolean

Occurs when the user clicks the right mouse button.

CursorID: Variant Requests the cursor ID of the specified item.
DblClick Occurs when the user double clicks the mouse.

Deactivate: Boolean Occurs when the tool is deactivated.
Enabled: Boolean Requests whether the specified item is enabled.

KeyDown (in keyCode: Long, in shift:
Long)

Occurs when the user presses a key.

KeyUp (in keyCode: Long, in shift: Long) Occurs when the user releases a key.

Message: String Requests the current message text for the specified item.
MouseDown (in button: Long, in shift:

Long, in x: Long, in y: Long)
Occurs when the user presses a mouse button.

MouseMove (in button: Long, in shift:
Long, in x: Long, in y: Long)

Occurs when the user moves the mouse.

MouseUp (in button: Long, in shift: Long,
in x: Long, in y: Long)

Occurs when the user releases a mouse button.

Refresh (in hDC: Long) Occurs when the map is refreshed.
Select Occurs when the tool is selected.

ToolTip: String Requests the current Tooltip text for the specified item.

The IUIToolControlEvents interface defines the properties of a UIToolControl, such
as the enabled state, cursor, ToolTip, and status bar message. This interface also
has methods that allow you to control what happens on events, including mouse
move, mouse button press and release, keyboard key press and release, double-
click, and right-click.

The following VBA code displays the x,y coordinates of the left mouse button
click in the ArcMap status bar message.
Private Sub UIToolControl1_MouseDown(ByVal button As Long, _

 ByVal shift As Long, ByVal x As Long, ByVal y As Long)

 ' Check for left button press

 If button = 1 Then

 ' Convert x and y to map units.

 Dim pPoint As IPoint

 Dim pMxApp As IMxApplication

 Set pMxApp = Application

 Set pPoint = pMxApp.Display.DisplayTransformation.ToMapPoint(x, y)

 ' Set the statusbar message

 Application.StatusBar.Message(0) = Str(pPoint.x) & "," & Str(pPoint.y)

 End If

End Sub

UITOOLCONTROL CLASS

IUIToolControlEvents
UITool-
Control

A UIToolControl interacts with the
application’s display.

319

BibliographyFFFFF
This bibliography represents some of the books developers at ESRI

reference when developing ArcGIS applications.

320 • ArcGIS Desktop Developer Guide

BIBLIOGRAPHY

This bibliography is not intended as a complete resource, but it does contain many
of the everyday references that ESRI developers use when developing Visual
Basic, Visual C++, Visual Studio .NET code, and ArcObjects.

It is not necessary to buy all these books before programming in COM; rather,
look at these books and others that are available, and perhaps buy the one most
suitable to your development track. The books listed are from various companies;
however, there are many other companies producing books for developers of
COM components. You are encouraged to look at these other books, too.

ATL

Grimes, Richard. ATL COM Programmer’s Reference. Chicago: Wrox Press Inc., 1998.

Grimes, Richard. Professional ATL COM Programming. Chicago: Wrox Press Inc., 1998.

Grimes, Richard, et al. Beginning ATL 3 COM Programming. Chicago: Wrox Press
Inc., 1999.

King, Brad, and George Shepherd. Inside ATL. Redmond, WA: Microsoft Press, 1999.

Rector, Brent, Chris Sells, and Jim Springfield. ATL Internals. Reading, MA:
Addison–Wesley, 1999.

C++

Lippman, Stanley. C++ Primer: Second Edition. Reading, MA: Addison–Wesley, 1991.

Lippman, Stanley. Inside the C++ Object Model. Reading, MA: Addison–Wesley, 1996.

Meyers, Scott. Effective C++: 50 Specific Ways to Improve Your Programs and Designs.
Reading, MA: Addison–Wesley, 1992.

Meyers, Scott. More Effective C++: 35 New Ways to Improve Your Programs and
Designs. Reading, MA: Addison–Wesley, 1996.

Shepard, George, and David Kruglinski. Inside Visual C++: Fifth Edition.
Redmond, WA: Microsoft Press, 1998.

Stroustrup, Bjarne. The C++ Programming Language: Third Edition. Reading, MA:
Addison–Wesley, 1997.

COM

Box, Don. Essential COM. Reading, MA: Addison–Wesley, 1998.

Chappell, David. Understanding ActiveX and OLE: A Guide for Developers and
Managers. Redmond, WA: Microsoft Press, 1996.

Effective COM: 50 Ways to Improve Your COM and MTS-Based Applications. Edited
by Don Box, Keith Brown, Tim Ewald, and Chris Sells. Reading, MA:
Addison–Wesley, 1998.

Major, Al. COM IDL and Interface Design. Chicago: Wrox Press Inc., 1999.

Platt, David S. Understanding COM+. Redmond, WA: Microsoft Press, 1999.

Rogerson, Dale. Inside COM: Microsoft’s Component Object Model. Redmond, WA:
Microsoft Press, 1997.

Appendix F • Bibliography • 321

Software Engineering

Gamma, Erich, et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison–Wesley, 1995.

The New Hacker’s Dictionary: Second Edition. Edited by Eric Raymond. Cambridge,
MA: MIT Press, 1993.

VBA

Cummings, Steve. VBA For Dummies. New York: IDG Books Worldwide, 1999.

Getz, Ken, and Mike Gilbert. VBA Developer’s Handbook. San Francisco: Sybex, 1997.

Lomax, Paul. VB and VBA in a Nutshell: The Language. Sebastopol, CA: O’Reilly
& Associates, 1998.

Visual Basic 6

Lewis, Thomas. VB COM. Chicago: Wrox Press Inc., 1999.

Microsoft Visual Basic 6.0 Programmer’s Guide. Redmond, WA: Microsoft Press, 1998.

Pattison, Ted. Programming Distributed Applications With COM and Microsoft Visual
Basic 6.0. Redmond, WA: Microsoft Press, 1998.

Wright, Peter. Beginning Visual Basic 6 Objects. Chicago: Wrox Press Inc., 1998.

Visual Studio .NET

Blair, Richard, et al. Beginning VB .NET. Birmingham, UK: Wrox Press Inc.,
2002.

Box, Don, and Chris Sells. Essential .NET, The Common Language Runtime.
Volume 1. Boston: Addison–Wesley, 2002.

Chappell, David. Understanding .NET, A Tutorial and Analysis. Boston: Addison–
Wesley, 2002.

Nathan, A. .NET and COM: The Complete Interoperability Guide. Indianapolis, IN:
Sams Publishing, 2002.

Reynolds–Haertle, Robin A. OOP With Microsoft Visual Basic .NET and Microsoft
Visual C# Step by Step. Redmond, WA: Microsoft Press, 2002.

Templeman, Julian, and John Paul Mueller. COM Programming With Microsoft
.NET. Redmond, WA: Microsoft Press, 2003.

BIBLIOGRAPHY

Index • 323

Index

A

Abstract class 135
Active Template Library. See ATL
ActiveX DLL 8, 172–173
Addref method. See IUnknown interface
Aggregation. See COM: aggregation
AOInitialize coclass 75
Apartment 141–142
API 12
Application object 171, 174
ArcCatalog

customizing 52
described 7

ArcGIS
development

possibilities 3
ArcGIS 9 Developer overview 2
ArcGIS architecture

ArcObjects libraries 20
developed 19
extendable 19
key concepts 19
modular

benefits 19
requirements 19

compatibility 19
modularity 19
multiple platform support 19
scalability 19

ArcGIS Desktop
common application framework 46
customization options 47

custom objects 48
extensions 48
framework components 48
user interface customization 47
VBA macros 47
VBA UI controls 47

deployments
ArcEditor 74
ArcInfo 74
ArcView 74
object models 74
using one code base 74

graphical user interface 46
supported APIs

COM 23
NET 23

ArcGIS Desktop application libraries 33
3DAnalystUI 40
ArcCatalog 35
ArcCatalogUI 35
ArcGlobe 40
ArcMap 36
ArcMapUI 36
ArcReaderControl 41
ArcScan 41
ArcScene 40
CartoUI 35
Catalog 34
CatalogUI 35
DataSourcesRasterUI 35
DisplayUI 34
Editor 36
EditorExt 38
Framework 34
GeoDatabaseDistributedUI 38
GeoDatabaseUI 34
Geoprocessing 38
GeoprocessingUI 38
GeoStatisticalAnalyst 41
GeoStatisticalAnalystUI 41
GlobeCoreUI 40
LocationUI 36
Maplex 42
OutputExtensions 38
OutputExtensionsUI 40
OutputUI 34
Publisher 41
PublisherUI 42
SpatialAnalystUI 40
SurveyDataEx 43
SurveyExt 42
SurveyPkgs 42
TrackingAnalyst 42
TrackingAnalystUI 42

ArcGIS Desktop applications 4
ArcCatalog 6
ArcMap 6
ArcToolbox 6

ArcGIS Desktop components
building 68

basic steps 68
ArcGIS Desktop Developer Kit

described 4
ArcGIS Desktop extensions 6
ArcGIS Desktop license checking 74
ArcGIS Desktop software products 6

ArcEditor 6
ArcInfo 6
ArcView 6

ArcGIS Developer resources 12
add-ins 14

324 • ArcGIS Desktop Developer Guide

ArcGIS Developer Documentation Series 14
ArcGIS Developer Online Web site 15
Developer Tools 13
ESRI Support Center 16
Samples 12
Training 16
Visual Basic 6 14

ESRI Align Controls with Tab Index 14
ESRI Automatic References 14
ESRI Code Converter 14
ESRI Command Creation Wizard 14
ESRI Compile and Register 14
ESRI ErrorHandler Generator 14
ESRI ErrorHandler Remover 14
ESRI Interface Implementer 14

Visual Studio .NET 14
ESRI .NET Code Converter 14
ESRI Component Category Registrar 14
ESRI GUID Generator 14

ArcGIS developer tools
Component Categories Manager 13
ESRI Object Browser 13
install directory 13

exceptions 13
Library Locator 13

ArcGIS Engine
developer components

shown 18
ArcGIS Engine Developer Guide

described 14
ArcGIS Engine Developer Kit

described 4
ArcGIS Engine libraries 25, 26–27

3DAnalyst 31
Carto 28
Controls 31
DataSourcesFile 28
DataSourcesGDB 28
DataSourcesOleDB 28
DataSourcesRaster 28
Display 27
GeoAnalyst 31
GeoDatabase 27
GeoDatabaseDistributed 28
Geometry 26
GISClient 27
GlobeCore 31
Location 30
NetworkAnalysis 30
Output 27
Server 27
SpatialAnalyst 32
System 26
SystemUI 26

ArcGIS objects
library

subdividing 20
ArcGIS Server Developer Guide

described 15
ArcGIS Software Developer Kit. See SDK
ArcGlobe

customizing 51
document extension (.3dd) 52
Normal.3dt 52

ArcMap
customizing 50

global customization with project templates 51
map documents 50
map templates 50
selective customization with project templates 50

described 6
document extension (.mxd) 50
starting programmatically 175
template 166, 170

ArcObjects 3
accessing APIs 23
apartment threading model 20
categories 18
coarse-grained objects 3
consuming the API 23
described 18
developing with 4
end use of objects 18

ArcGIS Desktop 18
ArcGIS Engine 18
ArcGIS Server 18

extending the API 23
COM 23
NET 24

fine-grained objects 3
illustrated code samples 263

add feature class to ArcMap 268
add layer to ArcMap using GxDialog 270
add map surround to page layout 278
add text callout to active view 280
display map extent in GxView as envelope 290
display raster cell value in status bar 284
draw digitized line onscreen 266
edit feature class schema 292
export current view 286
geometry projection 282
locate and execute command on toolbar 265
loop through selected area features 274
print current view 288
spatial query 276
style gallery auto symbol selection 272

license checking
application 75
extension 75

Index • 325

functional 77, 78
types of 74

problem-solving guide 295
Part 1: Define the ArcObjects Programming Task 297
Part 2: Find the correct object model diagram 303
Part 3: Navigate the object model diagram 305

requirements 18
Threads in Isolation model 21

ArcObjects library
C++

header file 20
COM

type library 20
components

requirements 20
Java

Java package 20
NET

.NET Interop Assembly 20
ArcScene

customizing 51
document extension (.sxd) 52
Normal.sxt 52

ArcToolbox 6
ATL 178

B

Bibliography 319
Binding 139
BSTR 151

C

C++. See Visual C++
Callback mechanism 138
Class factory. See COM: class factory
Classes 134
Coclass 135
Coding standards 144. See also Visual Basic: coding

guidelines; Visual C++: coding guidelines
COM

Active Template Library. See ATL
aggregation 140–141
background 132–133
class factory 134
client 133
client storage 146
containment 140–141
described 132–143
Direct-To-COM (DTC). See also Direct-To-COM
DLL 133
EXE 133
instantiating objects 142
instantiation of features 150

interface. See also Interface
described 135

marshalling 141
review 64
server 133

COM API 23
limitations

Visual Basic language 23
supported platform 24

Com DLLs
packing and deploying

methods 89
Commands with VBA

custom
creating 8

Compatibility 19, 21
maintaining between releases 21

Component category 65, 142, 151–152, 173
Component Category Manager 152
Component development 64

languages
C++ Builder 67
Delphi 67
Visual Basic 6 67
Visual C++ 67
Visual Studio 6 67
Visual Studio NET 67

performance differences 67
Component development environment

choosing 67
factors 67

Component Object Model. See COM
Components

application level 9
custom 9

advantages of building 9
writing 8

domain-specific 6
functionality

described 66
geodatabase level 9
plugging into ArcGIS Desktop 65

Containment. See COM: containment
CORBA 132
Cross-thread communication

reducing 21
Cursor

insert 149–150
recycling 149
update 149–150

Custom feature 140
Custom objects

creating 8
Customizations

storing

326 • ArcGIS Desktop Developer Guide

documents and templates 49
Customizing ArcGIS Desktop applications

introduced 7

D

Data types 150–151
DCE 134, 137
Debugging. See Visual Basic: debugging; Visual C++:

debugging
Desktop GIS 2
Developer help

Start menu options
shown 12

Direct-To-COM 180
Dispatch event

interface 138
DLL 136, 143, 172–173

customizations
packing and deploying 86

developments
packing and deploying 87

DTC. See Direct-To-COM
Dynamic Link Library (DLL). See DLL

E

Edit operations 149
Editing

rules for geodatabase integrity 148–150
Editor coclass 148
EditSelection coclass 161
Embedded GI 2
Enumerator interfaces 146, 165
Envelope coclass 146
Error handling 146, 155, 160
ESRI Object Browser

displayed 13
Event handling 147–148, 162
Exception handling. See Error handling

F

Feature
COM instantiation of 150
editing shape of 150

Feature CoClass 150
FeatureLayer CoClass 164, 166

G

Geodatabase
editing rules 148–150

Globally unique identifier. See GUID
GUID 65, 134, 142

GxDocument CoClass 167

H

HRESULT 80, 81, 146, 160
license-related 83

I

IActiveViewEvents interface 173
IAOInitialize interface 75
IApplication interface 138, 174, 175
ICommand interface 65, 177
Identifies interface 146
IDispatch interface 139–140, 147
IDL 137, 150–152
IDocument interface 167, 174, 175
IDocumentEvents interface 138
IDocumentEventsDisp interface 138
IEnumFeature interface 165
IEnumGxObject interface 161
IExtension interface 151, 173
IMap interface 164
IMxDocument interface 164
Inheritance

interface 140
type. See Type inheritance

Interface
and Visual Basic 156–159
default 138, 157
deprecated 136
described 134–136
notification interface 146
optional 136
outbound 138, 147–148, 162, 173

Interface Definition Language (IDL). See IDL
IPoint interface 159, 160, 163, 164
IPolygon interface 146
IRootLevelMenu interface 146
Is keyword 148, 164
IShortcutMenu interface 146
IUnknown interface 136–137, 138, 156–159
IWorkspaceEdit interface 148, 149

J

Java 132
JavaScript 139

M

Main STA 21
Map template

described 50
Marshalling. See COM: marshalling

Index • 327

Method calls
license-related HRESULTs

returned 84
Microsoft Component Object Model (COM)

8, 18, 132. See also COM
Microsoft Interface Definition Language. See IDL
Mobile GIS 2
Modularity 19
Multithreaded applications

considerations 20
scalability 20
thread safety 20

MxDocument CoClass 167

N

NET 46
NET API

exceptions 24
supported platform 24

NET Framework DLLs
packing and deploying

methods 87
Normal template 51

Normal.3dt 52
Normal.gxt 52
Normal.mxt 51
Normal.sxt 52
Windows 2000 and XP 51

Notification interface 146

O

Object browser utility 145
Object Definition Language. See IDL
Object library. See Type library
Object model diagrams

classes and objects
abstract class 261
class 261
coclass 261
described 261

composition
described 262

instantiation
described 262

interpreting 260
relationships

abstract class 261
multiplicity 261
types of 261

type inheritance
described 262

OLE automation 24
Open Group's Distributed Computing Environment. See

DCE
Outbound interface. See Interface: outbound

P

Platform support
multiple 19

described 21
Point CoClass 159, 160, 163
Polymorphism 135
ProgID 172, 183
Programmable identifier. See Prog ID
Property by reference 147, 159, 161
Property by value 147, 161

Q

QI. See Query interface
Query

performance 149
Query interface 136–137

R

Regedit 152
Registry 142–143, 152

script 152
Release method. See IUnknown interface

S

Scalability 19, 20
achieving 20
ArcEngine

ArcObjects components 20
ArcServer

ArcObjects components 20
memory within the objects 20
multithreaded applications 20

SCM 141, 142
SDK 225, 226, 239, 240, 241, 244, 254
Server GIS 2
Set 161
Singleton objects 134, 175
SRI Library Locator

displayed 13

T

TabIndex property 153
Table 139, 173
ThisDocument object 167, 171, 174
Thread 141
Type inheritance 134
Type library 137, 150, 159, 174

328 • ArcGIS Desktop Developer Guide

VB reference 174
TypeOf keyword 164

U

UML diagrams
types of classes shown 261

Unicode 197, 199
Unified Modeling Language (UML) 260
Universally Unique Identifier (UUID). See GUID
Using this guide 10

chapter guide 10

V

VB. See Visual Basic
VBA. See Visual Basic; Visual Basic for Applications
VBA customizations 53

adding a menu to a toolbar
tutorial 55

adding buttons to a toolbar
tutorial 54

creating a new toolbar
tutorial 53

removing buttons from a toolbar
tutorial 54

renaming a toolbar
tutorial 54

saving changes to a template
tutorial 55

showing and hiding toolbars
tutorial 53

tutorials 53
user interface

tutorial 53
VBA development environment 46
VBA developments

packing and deploying
methods 86

VBA environment
reasons to choose 8

VBA macros 55
adding a macro to a toolbar

tutorial 58
adding code for the UIButtonControl

tutorial 60
adding code for the UIToolControl

tutorial 61
ArcID module 56
calling built-in commands

tutorial 59
changing button properties 63
creating a command in VBA

tutorial 60
creating a macro

tutorial 57
creating a tool in VBA

tutorial 61
getting help in the Code window

tutorial 59
invoking the Visual Basic Editor directly

tutorial 58
preset ArcObjects variables 55

Application variable 56
ThisDocument 56

VBA project organization 56
VBA macros in ArcGIS applications

writing 8
VBScript 139
VBVM. See Visual Basic: Virtual Machine (VBVM)
Visual Basic

arrays 154
coding guidelines 153–165
coding standards

ambiguous type matching 155
arrays 154
bitwise operators 155
default properties 154
indentation 154
intermodule referencing 154
multiple property operations 154
order of conditional determination 154
parentheses 153
type suffixes 155
variable declaration 153
While Wend constructs 156

collection object 165
collections 165
creating COM components 172
data types 151
debugging 176–178

with ATL helper object 178
with Visual C++ 177

error handling 155
event handling 162
getting handle to application 174–176
implementing interfaces 173
interfaces 156–159
Is keyword 164
Magic example 158
memory management 155
methods 161
parameters 162
passing data between modules 163
PictureBox 155
starting ArcMap 175
TypeOf keyword 164
variables

Option Explicit 153
Private 153

Index • 329

Public 153
Virtual Machine (VBVM) 156, 159, 160

Visual Basic 6 46
add-ins

displayed 14
limitations 67

Visual Basic for Applications 138
and ArcGIS 166–171
customizations

packing and deploying 86
developing

disadvantages 64
getting started 167
locking code 170
UIControls

described 313
UIButtonControl class 315
UIComboBoxControl class 316
UIControl classes 314
UIEditBoxControl class 317
UIToolControl class 318

Visual C++
Active Template Library. See ATL
coding guidelines 195–220
coding standards

argument names 196
function names 195
type names 195

data types 151
debugging 196–220
naming conventions 195

W

Windows NT
profiles location 51

Workspace CoClass 148

	Contents
	1: Introducing ArcGIS Desktop development
	ArcGIS 9 developer overview
	ArcGIS Desktop developer overview
	Using this guide
	ArcGIS developer resources

	2: ArcGIS software architecture
	ArcGIS software architecture
	ArcGIS application programming interfaces
	ArcGIS Engine libraries
	ArcGIS Desktop application libraries

	3: Developing for ArcGIS Desktop applications
	Customizing ArcGIS Desktop
	Storing customizations
	Customizing ArcGIS Desktop applications with VBA
	Component development
	Choosing a component development environment
	Building an ArcGIS Desktop component

	4: Licensing and deployment
	ArcGIS Desktop license checking
	Packing and deploying customizations

	5: Developer scenarios
	Create a toolbar: Command, Tool, and Menu
	Create a toolbar: command
	Create a toolbar: tool
	Create a toolbar: menu
	Create a toolbar: toolbar

	Extensions
	Dockable window

	Appendix A: Developer environments
	The Microsoft Component Object Model
	Developing with ArcObjects
	The Visual Basic 6 environment
	Visual Basic for Applications
	The Visual Basic 6 development environment
	.NET Application Programming Interface

	Appendix B: Reading the object model diagrams
	Interpreting the object model diagrams

	Appendix C: Illustrated code samples
	Reading the illustrated code samples
	Locate and execute command on toolbar
	Draw digitized line onscreen
	Add feature class to ArcMap
	Add layer to ArcMap using GxDialog
	Style gallery auto symbol selection
	Loop through selected area features
	Spatial query
	Add map surround to page layout
	Add text callout to active view
	Geometry projection
	Display raster cell value in status bar
	Export current view
	Print current view
	Display map extent in GxView as envelope
	Edit feature class schema

	Appendix D: ArcObjects problem solving guide
	Appendix E: UIControls
	UIControl classes
	UIButtonControl class
	UIComboBoxControl class
	UIEditBoxControl class
	UIToolControl class

	Appendix F: Bibliography
	Index

