CASE Tools Tutorial

Creating custom features and geodatabase
schemas

This document will guide you through the creation of custom features using the CASE Tools
subsystem of Arcinfo 8™ software. A Unified Modeling Language (UML) object model will be
created. Based on it, code will be generated to create custom features and then a
geodatabase schema.

Table of Contents

TABLE OF CONTENTS ...t s a e s s an s ne s 2
GETTING STARTED ... s e ae s 3
WHAT YOU WILL DO ... sas s s s s s a e s an s m e s n s nn e 3
WHAT YOU WILL NEED........ooeiei i se s s s s s s s 3
DESIGNING THE OBJECT MODEL.......cocciiiiiiinimninnsnsnsnsss s sssss s s ssssssssssssssssnns 4
EXPORTING A MODEL TO THE REPOSITORY ..o ssseesns 20
GENERATING CODE.........oiiiiiiimniniiniiiis e s e a s s s n e s s 21
ADDING CUSTOM BEHAVIOR ..o ss s ssssssssssss s 28
CREATING THE SCHEMA ... s s 39
USING THE CUSTOM FEATURES IN ARCMARP..........cciiiririnnnnn s 47

Getting started

The CASE tools allow you to create custom features that extend the data model of Arcinfo 8.
Object-oriented design tools (OOA&D) can be used to create object models that represent the
design of your custom features. These tools make use of the UML to create designs. Based on
these models the CASE tools will help you create Component Object Model (COM) classes
that implement the behavior of the custom features and database schemas in which custom
feature properties are maintained.

The CASE tools consist of two major activities: code generation and schema generation. The
former is used to create the behavior, while the latter is used to create schemas in
geodatabases. In this tutorial you'll create an object model with custom features, create code
adding custom behavior, and create a geodatabase schema.

The tutorial focuses on code generation and object model creation to meet such an objective.
For a detailed discussion on how to create other geodatabase elements using UML (such as
subtypes, domains, connectivity and relationship rules) refer to Building a Geodatabase.

What you will do

In this tutorial you'll create two custom features commonly used in cadastral systems: a parcel
and a building. For parcel features you'll store the actual parcel value and the sum of the value
of all the buildings in the parcel. For building features you'll store the number of floors, height,
and building value.

You'll create a relationship class in the geodatabase to keep track of the buildings contained in
a parcel. This will permit the custom features to maintain their relationship automatically, for
example, when a new building is created or when an existing building is moved.

You'll also create a simple custom validation rule for buildings: the height must be at least the
number of floors times 10 feet.

The UML diagram in the following page depicts the object model that will be built during the
tutorial.

What you will need

To follow this tutorial you will need Arclnfo 8, a UML design tool such as Visio Enterprise, and
Developer Studio 6.0. You will need two to three hours of focused time to complete the tutorial.

Start by making a copy of the contents of the custom features directory to a working directory,
for example, to C:\Temp\Tutorial (the default installation directory is C:\arcgis\arcexe81\
ArcObjects Developer Kit\Samples\Geodatabase\Case Tools\Custom Features).

The tutorial directory contains the following:

m A Personal ArcSDE database with spatial data (SampleDB.mdb).
m An empty Microsoft Repository (Repository.mdb).

m A source directory where code will be generated. It already contains a couple files
with helper functions.

m A directory with the solution.

The tutorial assumes you are familiar with Arcinfo 8, in particular with the geodata access
objects, C++, Active Template Library (ATL) and COM. The figure below shows the object
model you will build during the tutorial.

ESRI Clazses:: Object

+OBJECTID : estiField TypeOID

A|§

ESRI Clazzes: : Feature

+Shape ; esrFieldTypeGeometry

Building
Parcel 1 __-propery
Contains FStaries : esriFieldTypelnteger
arefiness [Farcelvalue | esriFieldTypelnteger FHeight : esriFieldTypelrteger [srefiness
. HoombinedBuildingalue : esriFieldTypelnteger -parce + FBuildingvalue : esriFieldTypeinteger |
| | FParcell : esriFisldTypelnteger
winterfacss \I’
IParcal «interface:
TBuitding
FParcelvalue : long _
+pet_ CombinedBulidingVaived): kang Builcing'/siue : lang
+Taxlaluefin Ta=Rate ; dowbie): ool ESRI Claszes: : djectClassEdtension
ESFI Classes:: Feature CiassExtension
ParcelClassExtension ilding
arefines: | [arefines:
e it \lf,
zinterface: winterface: L
ESRI Interfaces:: fRejated Object GrassEveints e
Related Db riTeeted] e

The object model that will be created during the tutorial.

Designing the object model

You represent your object models by creating new UML diagrams in Visio Enterprise. This
tutorial uses version 5 of Visio Enterprise. However, the instructions can be followed if you are
using Visio Enterprise 2000. The following sections will guide you through the creation of the
object model.

Creating a new model

In Visio you create a new document by choosing a template. The Arcinfo UML Model template
diagram contains the information needed to create your object models.

To create the new document

1. Start Visio.

2. Double-click the Arcinfo UML Model (Ent) template file. The default installation
path is C:\arcgis\arcexe81\CaseTools\Uml Models (use Arcinfo UML Model (Visio
2000), if you are using Visio 2000).

Choose a Drawing Template
Lookjn: [=3 Ul Models =l gl
o ot Open |
E Arclnfo UML kodel [Visio 2000) wst Cancel
Help
Open
= Original
& Copy
" Bead Only
File name: IArcInfD UML Model [Ent).wst Frevien
Filez of type: ITemp\ate [* wat] j ﬁﬂ%{_
Description

Avrclnfo UML todel [Ent)

[¥ File Preview

Creating a new model based on the Arcinfo template diagrams.

The Arcinfo UML Model

The Arcinfo UML Model contains the relevant parts of the geodata access components
needed for the creation of custom features. The object model has four packages: Logical View,
ESRI Classes, ESRI Interfaces, and Workspace. These UML packages act as directories
where different parts of the entire object model are maintained. The Logical View package is
the root level and contains the other three packages.

B8 UL Navigator =1o x|
LML Systems
=-4% Arclnfo Uml Spstem
21427 Arelnfa Uml Maodel
=423 Logical Wiew
#-20 ESRI Clagzes
D ESRI Interfaces
E& ‘Workspace
. Bg Warkspace
E TemplateCaded aluel amain
E TemplateGeometricM etwark
---E TemplateRangel omain
B+ Autarmation Types
- ESRI Types

The UML navigator in Visio.

A package contains any number of UML elements, such as other packages, classes,
interfaces, and diagrams. Notice you are seeing the Workspace diagram, which belongs to the
Workspace package. This package represents the geodatabase. There is no limit on the

number of packages an object model may contain, but all must be created under the
Workspace package.

To open the ESRI Classes diagram:

1. Click the plus sign by the ESRI Classes package.
2. Double-click the ESRI Classes diagram.

28 UML Navigator I8 =] B30 Ei Drawing?:ESRI Classes Diagram [_ O] =]
=142 Arclnfo Ul Model =] |[BUML Activity
=423 Logical View BIUML Collabaration
143 ESFRl Classes B UML Companent
Rl P
BIUML Sequence

~H ClassExtension
B ComplesE dgeFeature B UML Statfél:hart
~H ComplexlunctionFeature B UML Static Structure

5 e EIERE

~B FeatueClassExtension Package Class Data Type
i- B JunctionFeature

- E MetworkFeature
-5 Dbject IZ E IT

~E DbjectClassExtension — [|Generalizatior Binary Composition
& Fow Association

B SimpleE dgeFeature RN Frry
~B SimplelunctionFeature D

|»

=2} D ESRI Interfaces DependencyRefinemert Mote
ﬂ =13 | lset Feahines . ; | =
E—— - || B1UML Use Case

The ESRI Classes diagram in the template diagram.

As mentioned before, the UML classes in this diagram represent COM classes that belong to
the geodata access components of Arcinfo. These COM classes provide services through
interfaces. For example, Feature implements the interface IFeatureDraw. ArcMap asks a
feature to draw itself using the method Draw in the interface IFeatureDraw. A UML refinement
is used to express the relationship between the class and the implemented interface (Tip: to
show the operations in an interface, right-click the interface and then click suppress
operations).

«Interface» «refines» Feature
ESRI Interfaces:IFeatureDrawy |

+Dravy()

+Shape : esriFieldTypeGeomelry

AN

A COM class implements interfaces.

Notice classes, such as Row, Object, and Feature, are defined inside the ESRI Classes
package. Interfaces such as IFeatureDraw are defined in the ESRI Interfaces package.
Diagrams also belong to specific packages; for example, the ESRI Classes Diagram belongs
to the ESRI Classes package.

Classes inherit from other classes. For example, Feature inherits from Object, meaning
Feature “is a kind of” Object. A UML generalization is used to express this relationship.

Ghject

FOBJECTIR: eatiField T ype D

L‘L

Feahme

HEhape estiFisldTy peGeometry —

L‘L

NebworkFogte

—+Engkiled : esriFiedTypesmallnte ger]—

Type inheritance of COM classes.

How can a child class be a kind of a parent class? By providing the same services the parent
class provides. Since COM classes provide services through interfaces, child classes agree to
implement the same interfaces their parent implements. In the sample, Feature implements all
the interfaces implemented by Object. This is known as type inheritance.

The generalization relationship is “daisy-chained”, so NetworkFeature implements all the
interfaces Feature does including those implemented by Object.

User-defined custom features are objects (non-spatial), simple features, or network features.
Parcel and building will inherit from Feature in the tutorial object model, and thus they will
agree to be simple features, implementing all the interfaces that Feature does.

Creating a custom feature

You will create a UML class that represents the parcel custom feature. The Schema Wizard
will use the information you enter to create a feature class in a geodatabase. It will also be
used to generate C++ stub code where custom behavior can be implemented.

As mentioned before, the Workspace package represents the whole geodatabase. Under it
you can create feature datasets, tables, and stand-alone feature classes. To hold the parcel
and building feature classes you will create a land base feature dataset:

1. In the UML Navigator, double-click the Workspace diagram.

2. From the UML Static Structure stencil, drag and drop a package onto the

diagram.

Double-click the package to open its properties.

4. Type Landbase in the name box.

5. Click the Stereotype dropdown and click FeatureDataset. Click OK.

2 UL vt e
UML Systems A | BIUML Activity
E-% Arcinio Ui System BIUML Callaboration
B8 Arcinfo Uml Model FUML Companent
249 Logical Yiew

- ESRI Classes EIUML Deployment ?L‘(—N—?
{:I ESRI Interfaces B LML Sequence : I

B2 Warkspace BIUML Statechart 1 |

~Bg Workspace EAUML Static Stucture 8 «FeatureDatasets T
=408 Landhase =1 = i Landbase

R Static Stuchure-1 @ : |

B TemplateCodedy alueD omain Fackage NS - S S—

B TemplateGeometricM etwork

=B TemplateRangeD omain b = N
[]--{;I Automation Types hd| J
. _

Irterface Interface Genaralization

Feature datasets are represented in UML as Packages.

In the UML Navigator, notice Visio has created a new diagram for the feature dataset object
model. A model may contain many diagrams including more than one per package.

User-defined features should not be defined inside the ESRI Classes or ESRI Interfaces
packages. The Workspace package should be used instead (or any other package created
under it). To create the parcel custom feature, do the following:

1. In the UML Navigator, double-click on the diagram under the Landbase feature
dataset.

2. From the ESRI Classes package, drag and drop the Object class onto the
diagram.

3. From the ESRI Classes package, drag and drop the Feature class onto the
diagram.

Notice Visio automatically adds a generalization relationship between Object and Feature, as
defined in the ESRI Classes diagram. It is easier to think of the model as maintained inside the
UML Navigator and displayed through static structure diagrams.

This is why the same object or relationship can be shown in several different diagrams, even if
the object and the diagram don’t belong to the same package. Notice the classes just added
belong to the ESRI Classes package—hence the name ESRI Classes::Object, but the
diagram belongs to the User Features package.

4. From the UML Static Structure stencil, drag and drop a new class onto the
diagram.

5. Drag and drop a generalization onto the diagram and connect the new class to
Feature.

B8 UML Navigator (=] B3} | Ei Drawingl:Static Structure-1

F1-43 Logical View =] [B UL Activity
E14=3 ESRI Classes A UKL Collaboration
Bg ESRI Classes Diagram AUML Component ESRI Classes:Object

-1 ESRI Network
B ClassExtension
B ComplesEdgeFeature 21 UML Sequence
B ComplesurctionFeature AUML Statechat
B EdgeFeature) LML Static Stiucture

w-B Feature = =i
-B FesatureClassExtersion E

55 JunctionFeature Package EEE Ooms Type

#-E NetworkFeature ESRI Classes: Feature

-5 Object

B ObijectClassE stension

B Raow

B SimpleEdgeFeature

B SimpleunctionFeature
#-{ ESRI Interfaces T g I

" Binary CompositionAssociation
& a warkspace Pssociation lass
iR Workspacs

203 Landbass s A Class1

~Bg Static Structure-1
H Dependency Lhili Subsyistem
B Class1 g [R R

o5 TemplateLadedVaueDomain =
0 B TemplateGeameticHetwork Bl == =2
=] LI

T emnlateR AnaeNiamsain Bindna Bound

3 UML Deployment

HOBJECTID : esriFieldTypeCiD

+Shape : esrFieldTypeGeometry

UML classes are used to represent custom features. They ultimately inherit
from a class defined under the ESRI Classes package.

You can set the properties of the newly created class.

1. Double-click the class to open its properties.
2. Type Parcel in the name box.

3. Click the Attributes tab.
4

Click New to create a new attribute.

UML Property Editor

Attribute | Constraintsl Tagged Valuesl

Harme: IF'arceIVaIue Stereatype: - I

Type Expression

Prefis: I Tvpe: IesnFieIdT_l,lpeInleger

esiFieldT ypedingle

esFieldTypeSmallnteger

Wizibility: I private - l
esnl opoDirection
A lﬁ Feature
et | = FeatureClassE stension hd l
Initial/alue: I TargetScope: Iinstance ‘l

Documentation:

[
akK I Cancel | Help |

UML attributes are used to represent fields.

Type ParcelValue in the Name box.
Click the Type dropdown and click esriFieldTypelnteger to set the field type.
Click OK.

Repeat steps 9 through 12 to add a second attribute, CombinedBuildingValue.
Set its type to be esriFieldTypelnteger.

®©® N o o

9. Click the Tagged Values tab for the class (you will have to scroll right through the
available tabs).

A tagged value is a keyword—value pair that may be attached to any model element. The
keyword is called a tag and represents a property applicable to one or many elements. Both
the keyword and value are strings, allowing you to attach arbitrary information to models.
Click New to create a new tagged value.

Type GeometryType in the tag box.

Type esriGeometryPolygon in the value box.

Click OK.

Click OK.

Right-click the class and click Show Properties.

o ok~ DN -

UKL Property Editor []

Template Palamatarsl Enmpmnantsl Constraints Tagged Yalues | b I 'I

Tagged Values:

documentation
lacation
SR = | IML Property Editor
rezponzibility

semantics Taoged Value |

Tag: IG eametiyType

Walue:

esrilGeometryPolygon d

[
akK I Cancel | Help |

Tagged values are used to specify geodatabase characteristics of the
elements in the model, the geometry type of a feature class, for example.

You have created a class that represents the parcel custom feature. The schema wizard will
create a feature class based on the information you just entered. The feature class will store
polygons as specified by the geometry type tagged value, and the UML attributes (ParcelValue
and CombinedBuildingValue) will be used to create two fields in the feature class table.

Notice OBJECTID and Shape are inherited UML attributes (from object and feature,
respectively). The feature class will have these two fields as well.

Follow the same procedure (including the steps to make its geometry polygon) to create a
second class. Name the class Building and add the following attributes:

10

Name Type
Stories EsriFieldTypelnteger
Height EsriFieldTypelnteger
BuildingValue EsriFieldTypelnteger
ParcellD EsriFieldTypelnteger

The ParcellD attribute will be used to store foreign keys for a relationship class. You'll work
with a relationship class in a subsequent section of the tutorial. This is how your model should
look.

ESRI Claszes:: Object

FOBJECTID : estiField TypeOID

L'l

ESRI Classes:: Feature

[FShape : estFieldTypeGeometry

pAN
Building
Parcel
Fetories © esriFieldTypelnteger
FParcelvalue © estiFieldTypelnteger FHeight : esriFiedTypeintecer
FCombinedBuilding'slus : esriFisldTypelnteger FBUildingalue : esriFieldTypelrteger)
FRarcell : estiFieldTypelrteger

The land base object model.

Creating an interface

As mentioned before, Parcel and Building will behave like features because they will
implement all the interfaces implemented by Feature. Clients for such interfaces include
ArcMap, ArcCatalog, and the geodata access components themselves.

But what if an application requires calculation of the parcel’s tax value based on the buildings it
contains, its own value, and a given tax rate? Such calculation could be done by an application
querying for the values from the database. But what if the same calculation is needed for
several applications? In that case it would be more efficient to perform the calculation inside
the Parcel custom feature and provide the service through a user-defined interface.

In this step you'll create IParcel, a user-defined interface for the parcel feature. The interface
will provide a convenient way to retrieve or write the parcel’s value, a read-only property to
retrieve the value of all the buildings in the parcel, and a method to calculate the parcel’s tax
value.

winterfacss

Parcel
Parcaf «refiness

FRarcelyslue : long T FPRarcelMalue : estiFieldTypelnteger

[+ged CambinedBuildinglialnel) bong tCombinedBuildingvalue : esriFieldTypelnteger

efinamer

+ Taxliale(in TaxRate | dowble): g

IParcel, an interface through which the Parcel feature will provide custom
services.

11

To create the IParcel interface

1. Drag and drop a new class onto the diagram.
2. Double-click the new class to open its properties.
3. Type IParcel in the name box.
4. Click the Stereotype dropdown and click interface.
5. Click the IsAbstract check box.
UML Property Editor
Class |Attributes| Dperat\onsl Heceptionsl Template F‘arametersl Compone 4 I L4
Mame: [IParcel
Full Path: IArcInfo Ul Systern::arcinfo Uml Model:Logical View: workspace:L
Stereotype: |interface j ™ IsRioot ™ IsLeaf
Wisibility: | CodedalueDomain = ¥ lstbstract [lstclive
Enum
. | GeometricM etwork,
Documentatig ;o\ ormentation class fo
| metaclass bt ﬂ
Interfaces are stereotyped abstract classes.
6. Click the Attributes tab.
7. Click New to add a new attribute.
8. Type ParcelValue in the name box.
9. Click the Type dropdown and click long to set the attribute type.
10. Click OK.

UML Property Editor

Attribute | Constraintsl Tagged Valuesl

Harme: IF'arceIVaIue Stereatype: - I

Type Expression

Prefis: I Tvpe: Ilong

Suffi: I E=pression: Ne!wolkFeature
Obiject

ObijectClassE stenzion
Parcel

Wizibility: Iprivate 'l | ParcelClassE stension

Fiow

A SimpleE dgeFeature
Bulliplicity: I‘I :lv 0 Simplelunctionfeature
Initialalue: I TargetScaope: Iinstance 'l

UML Attributes in interfaces are used to create read/write properties.
An operation is a service that an instance of a class may be requested to perform. The
behavior of a class is represented by a set of operations. Each operation has a name and a list
of arguments. In the next few steps, you'll add a new operation.

1. Click the Operations tab.

2. Click New to add a new operation.

12

3. Type get CombinedBuildingValue in the name box (more on the get_ prefix in a

subsequent section).

4. Click the Return Type dropdown and click long to set the operation’s returned
type.

5. Click OK.

UML Property Editor [%]

Operation | Detailsl Paramelersl Exceptionsl Constraints' Tagged Valuesl

Name: |gel_CumbinedBuiIdingVaIue Stereotype: |<no sterentypess j

Return Type Expression

Prefis: I Return type: I\ong j
Suffie Erpressior [MetworkFeature
I i

Object
ObjectClassE xtension

e - Parcel
Wigibility: | public: 'l ParcelClassE stenzion
R
OwnerScope: |instance 'I

UML Operations can be used to create read-only or write-only properties.

6. Click New to add a second operation.

7. Type TaxValue in the name box (Note: the name is case sensitive, so type it as
shown).

8. Click the Return Type dropdown and click long to set the operation’s returned

type.

UML Property Editor

Operation | Detailsl F‘aramelelsl Exceptionsl Constraintsl Tagged Valuesl

Name: ITaxVaIue Sterectype: |<no stereotypess 'l

Return Type Exprezsion

Prefix I Beturn type: I
Suffize: I Enxpressior: | MetworkFeature

Object
ObjectClazsExtension

o - Parcel
igibility: | puiblic: 'l ParcelClassE stenzion
Row
OwnerScope: [instance 'I

SimpleEdgeFeature

UML QOperations can be used to create methods.

A parameter is an unbound variable that can be changed, passed, or returned. A parameter
may include a name, type, and direction of communication. Parameters are used to specify

operations, messages, events, templates, and more. In this section of the tutorial, you'll create

a new parameter.

Click the Parameters tab.

Click New to create a new parameter.

Type TaxRate in the name box (case sensitive).

Click the Type dropdown and click to set the parameter type to double.
Click OK.

o A~ w0 Dd =

13

UML Property Editor [%]

Parameter I Constra\ntsl Tagged Values'

Narme: lTaxHate— Stereatype: |<m:| stereolypesy 'l
Type Expression
Prefis: I Type: Idouble ﬂ
Suffix: I Expression; IdUUHB

UML Operations may have parameters (or arguments).

6. Click OK.
7. Click OK.

8. Drag and drop a Refinement onto the diagram and connect Parcel to its interface.

sinterfaces

iP. f Parcel

arefines:

FParcely'slue : long

+get CombinedBuiidingliaiel). ong
+ TaxlVale(in TaxRate | donble): lorg|

T tParcelvalue : esriFieldTypelnteger
FCombinedBuildingalue : esriFieldTypelnteger

A UML refinement is used to associate a custom feature with the interfaces it
implements.

Notice the types used in custom features (esriFieldTypelnteger and the like) are different than
the types used in interfaces (long, double, etc.). The types in custom features are used to
create fields in feature classes, whereas the types in the interfaces will be used for code
generation and therefore are restricted to C++/Automation types (esriFieldTypelnteger is a
long integer).

A UML attribute in an interface will be code generated into a mutator/accessor pair (or property
put/property get pair). For example, this is the Interface Definition Language (IDL) code
generated for ParcelValue:

[propget] HRESULT ParcelValue([out, retval] long* ParcelValue);

[propput] HRESULT ParcelValue([in] long ParcelValue);

The get_ CombinedBuildingValue UML operation is a read-only property for the CASE tools.
The code generation wizard will recognize the ‘get_’ prefix of the operation and will generate a
COM property of the form (IDL):

[propget] HRESULT CombinedBuildingValue([out, retval] long * value);

It becomes a read-only property because there is no propput being generated. Similarly, the
prefix ‘put_’ can be used to create write-only properties.

The TaxValue UML operation is a standard COM method. Its IDL signature looks like:

HRESULT TaxValue([in] double TaxRate, [out, retval] TaxValue);

The building class will also have a user-defined interface. This interface will provide a
convenience accessor/mutator pair to the BuildingValue property.

14

To create the IBuilding interface

1. Repeat steps 1 through 5 to create the interface, use IBuilding as the name.

2. Repeat steps 6 through 10 to add a new attribute, use BuildingValue as the name

and long as the type.
Click OK.

4. Drag and drop a Refinement onto the diagram and connect Building to its
interface 1Building.

ESRI Claszes:: Object

FOBJECTID : estiField Ty peCID

Lll

ESRI Clazses:: Feature

+Shape © esriFieldTypeGeometry

Parcel Building
| —[Parcelalue - esriFieldTypelrteger ratories : esriFieldTypelnteger |
arefiness FCombinedBuildingyalue | esriFieldTypeinteger rHeight : esriFisldTypelnteger arefines:
| FBuildingalue : estiFieldTypelnteger |
FParcell esriFieldTypeirteger
sl o
«interfacs: sinterface:
1Pancal 1Building
rParcely'slue : long Buildingv/alue : long
gt CombinedBulidingliaive): rg
+Taxlaluerin TaxRate | dowble): fang)

The land base object model with custom interfaces.

Creating a RelationshipClass

In order to maintain the appropriate relationship between features, you must create the
relationship class Contains, which associates parcels to buildings.

To create the relationship class

Building
Parcel 1 -Encl4
FStories : estiFigidTypenteger ’L
THParcelvalue ;| estiFieldTypelnteger "—“Height : estiFieldTypelnteger

FCombinedBuildingalue : ssriFieldTypeinteger | gros 4 rBuildingalue : estiFieldT ypeinteger Composition
FParcell : esriFieldTypelnteger

Geodatabase relationship classes are represented with UML associations.

1. Drag and drop a new composite association onto the diagram.

2. Connect the left-hand side of the association to the Parcel class and the right-
hand side to the building class.

Double-click the association to open its properties.

4. Type Contains in the name box.

15

UML Property Editor [x|

Asgociation | Constraints | Tagged Yalues I

Hame: IEIunlainsl Stereotype: |<no sterentypess 'I

Full Path: IArcInfD Urnl System::Arcinfo Uml Modet:Lagical Yiew:User Features::Co

Name Reading Directior: |<none specified:> j

Agzociation Ends:

_ git. |

End|Eaumt: |2 vl

Relationship classes are named.

Double-click the End3.

Click OK.
Double-click the End4.

= © ® N o o

0. Click OK.

UML Property Editor

Aszociation End |Duahf|erAttr|hutes| Smamhc:at\on' EDnstralnts' Tagged Valuesl

Mame: |Darcel

Stereatype: lﬁ LChangeable: lm
Aogregation: lm Target5cope: lm
Visibility: Ipnvale w| [IsMavigable
Multiplicity: lﬁ [1sOrdered

Type parcel in the name box (notice the multiplicity is 1).

Type property in the name box. Click the multiplicity dropdown, then click *.

UML Property Editor [<]

Agsociation End | Qualifier Attnbutesl Specmcatlonl Eonstla\ntsl TaggedVaIuesl

Name: |property

Stereatype: lﬁ LChangeable: lh
Agaregation: lm TargetScope: lm
Wisitilite: | private v[™ IsMavigable
utiplicity: m I IsOrdered

UML Association ends are used to define properties of the relationship class,
such as cardinality and forward and backward label names.

11. Click the Tagged Values tab.

12. Click New to add a new tagged value.

13. Type OriginPrimaryKey in the tag box.
14. Type OBJECTID in the value box.

15. Click OK.

UML Property Editor

Tagged Yalue I

Tag IDriginF‘rimaryKey

Walue:

COBJECTID

=

Tagged Values of the UML Association are used to define the primary and
foreign keys of relationship classes.

16

16. Repeat steps 12 through 15 to create a second tagged value. Use
OriginForeignKey as the tag and ParcellD as the value.

17. Repeat steps 12 through 15 once again to create a third tagged value. Use
Notification as the tag and esriRelNotificationBoth as the value.

18. Click OK.

19. Right-click the association, then click Show Name.

ESRI Clagses:: Object

FOBJECTID : esriFieldTypeOIDy

L|§

ESRI Classes: . Feature

+Shape © estiFieldTypeGeometry

Zs
Building
Parcel 1 . -fropetty

Contsing FStories : esriFieldTypeinteger
ParcelValue ; estiFieldTypelnteger R e iDL oot er
CambinedBuilding/slue : esrifieldTypelnteger | _parce Views... pelntecer

¥
[ieplap Semantic Ermars =

Display characteristics of UML elements are available as context menu
options in Visio.

The schema creation wizard will use the information in the UML association to create a
relationship class in the geodatabase named Contains. The relationship class type will be
composite (in contrast to simple), its cardinality will be one to many (1-M), and both objects will
be notified when a peer object is changed (notification).

In a composite relationship, one of the objects controls the lifetime of the associated objects. In
the tutorial case the parcel controls the lifetime of the buildings, so when a parcel is deleted,
the buildings inside will be deleted as well. This behavior is not present in peer-to-peer or
simple relationship classes.

Relationship classes are implemented in the underlying geodatabase using primary and
foreign key fields in the feature classes’ tables. The primary key for the relationship is the
parcel's OBJECTID field (inherited from Object in the model), and the foreign key is the
building’s ParcellD field.

Creating a ClassExtension

A class extension is a COM class that implements behavior that pertains to the whole set of
features in a feature class, in contrast to behavior that belongs to a singular feature. For
example, the property inspector of a feature class is implemented by the class extension. The
same property inspector is used for all features in the feature class.

CASE tools will find class extensions by naming convention. A valid class extension name is

made up of the class name followed by the string ‘ClassExtension’ (for example,
BuildingClassExtension).

17

Class extensions are created in the same way custom features are created, by defining new
UML classes that inherit from classes in the ESRI Classes diagram. The building class
extension will contain the code for a custom validation rule. To create it, do the following:

1.

®©® N o o

From the ESRI Classes package, drag and drop ObjectClassExtension onto the
diagram.

From the ESRI Classes package, drag and drop FeatureClassExtension onto the
diagram.

From the UML Static Structure stencil, drag and drop a new class onto the
diagram.

Drag and drop a generalization onto the diagram and connect the new class to
FeatureClassExtension.

Double-click the class to open its properties.
Type BuildingClassExtension in the name box.
Click OK.

From ESRI Interfaces package, drag and drop /ObjectClassValidation onto the
diagram.

Drag and drop a new refinement onto the diagram and connect the new class
extension to the interface (notice the direction of the relationship).

ESFI Classes: . ObjectCiassExtension

L'L

ESRI Classes:: FeatareClassExtension

7~

ParcelClassExtension ildil

arefines: | arefiness

ANT
sinterfaces

sinterfaces o = .
ESRI Interfaces: IRefated Object ClassErts =Rl Interfaces:: f0Afect Class\ikidtion

+/aliclate Fiekd)

+Refated Dhject Created) + 1z lidate Row)

Class extensions for Parcel and Building in the UML model.

The geodata access components allow for the specification of rules features must comply with.
There are different types of rules, for example, a range domain specifies the minimum and
maximum values a field can have. Other types of rules include coded value domains,
connectivity rules, and relationship rules. All these rules are defined through parameters.

However, there are rules that can’t be defined through parameters easily, for example, a rule
that includes some sort of spatial constraint (no industry on residential zones) or a rule that
involves the value of several feature properties (height >= stories * 10ft). These custom
validation rules can be created in the class extension of a feature class as the implementation
of I0bjectClassValidation.

18

When validation is requested, Arclnfo first verifies the rules defined through parameters
(domains, connectivity, etc.), then it looks for a class extension. If the class extension is found,
and it implements 10bjectClassValidation, the methods in the interface are called.

Follow the same procedure to create the parcel class extension. This time grab the
IRelatedObjectClassEvents interface from the ESRI Interfaces package. The
RelatedObjectCreated method will be used to set the relationship between a new building and
its parent parcel. It is the parcel class extension that is going to be ‘watching’ for new buildings.

You can also create custom interfaces for class extensions whose clients are user
applications. Such interfaces are created in the CASE tools in exactly the same way you
create an interface for a custom feature.

Take a couple of minutes now to make sure your model is correct (check attribute names and
types, for example). Use the model at the beginning of the tutorial as a guide. Save your UML
diagram at this time.

UML modeling summary
You are finished with the modeling of the custom features. Notice the following in your
diagram:
m New Arcinfo UML models are created based on a template.
m Custom features are defined using UML classes.
m User-defined features inherit from classes in the template.

m Feature datasets are represented as UML packages stereotyped as
<<FeatureDataset>>.

m User-defined features should be created in the Workspace package or under a
feature dataset package.

m Custom features implement interfaces. The relationship is expressed through a
UML refinement.

m Interfaces are UML classes stereotyped as <<interface>>.

m Types in UML classes representing custom features are of the form
esriFieldTypeXXX.

m Types in UML classes representing interfaces are restricted to COM/Automation
types.

m The Schema Wizard uses attributes in a class to create fields in the feature class.

m The Code Generation Wizard uses attributes in interfaces to generate
propput/propget pairs.

m Relationship classes require primary and foreign keys.

m Tagged values are used to fully specify model elements (for example,
GeometryType, OriginPrimaryKey).

19

Exporting a model to the Repository
The Microsoft Repository supports the storage of a great deal of information related to the
development of software including object models created using the UML. The CASE Tools
take advantage of this feature to support any modeling tool that writes to the repository.

To export the model to a Repository

1. Click the UML menu, then click Export.

%1 Visio Enterprise

File Edit “iew Insert Fomat Tools §hapewindnw Help

Dﬁn|§&ﬁ:}r|%ﬁg|, Hide M avigator _A[j—?d
Text: |Connect0r LI I_':&' Arial Moadels... y u ‘ §|
| Stereotypes. .
Line: I Conrect VI F-=-=-F — |[Conrect.. |
Undo
|1¢|T‘:| [4] IUsel Featuies j Redo
l:"l'_-_.n‘;‘ UML Havigatar ;IEIEI E First Errar M
ML Spstems E Mext Emaor
AR Arclnfo Uml Spstem E Previous Errar
E a Arclnfo Urnl Model E LastEnor
Ea Logical Yiew E
(2 ESRI Classes i Impuort...
-0 ESRI Interfaces i —
1423 User Features £ |—
- Opt
~Bg User Features FREE

Exporting the UML model to the Repository in Visio makes available the
model to Arclnfo.

2. Type the name of an existing or new access database or click browse to navigate
to it (for example, C:\Temp\Tutorial\Repository.mdb).
Type the name of the model as it will be stored in the repository.

4. Click OK to export the UML model.

UML Export E2
—Repositary Detall o I
Bepositary: IE'\Temp\TutnnaI\Hepnsltnr_u mdb Browse... |
Cancel |
User Name: I
Help |
Pazsward: I
—Model Detail
Model: | Tutarial Madel List Modss...

The export dialog in Visio.

The whole model, including the objects and interfaces in the ESRI packages, is exported to the
Repository. Both code and schema will be created using that version of the model.

20

Generating code

You use the code generation wizard to create stub code for the custom features in your object
models. The wizard is an add-in to Developer Studio that will create a C++ project for you. The
code generated is based on the ATL, a framework designed by Microsoft to facilitate COM
programming in C++.

Upon compilation of the project, a dynamic link library (DLL) with COM classes will be created.
Custom features in the model selected for code generation will become COM classes in the
DLL, along with a COM class for the associated class extension, if one exists.

TutorialServer ol
. 1OhjectClass
Buiding ¢— Walidation -
IFceny o— i
" BuildingClasz s
IClassExtension
. Building O Extension
IFeature o— P
P | IRelatedOhie ot
arcel o— ClagsEvents O
IFceny o—
ParcelClass
IClassExtension o—
Patcel Extension
IFeature ;— _

Custom features and class extensions will be COM classes inside a DLL.

Adding the code generation wizard to Developer Studio

To load the code generation wizard add-in

1. Start Developer Studio.

2. Click tools, then click customize.

3. Click the Add-ins and Macro Files tab.

4. Click browse to search for the add-in (the default installation directory is
C:\arcgis\arcexe81\bin).

**. Microsoft Visual C++

File Edit “iew Insett Project Build | Tools “window Help Custonize [7]x]
_:1% | = | ﬁ | & 2 | o A4 Visual Companent Manager Commands I Toolbars I Taools I Keyboard Addins and Macro Files |
A% Register Contral Add-ins and macro files: Description:
| A Enor Lock
I I3 : LT seMPLE SEMPLEDSM sa - |
A Activert Contral Test Container DW collection of
A% OLE/COM Object Viewer sample editar
Macros.
A Spper
),- MFLC Tracer
A Visual Component bManager
Dptions... Hint: Click on a check box to enable or disable an add-in
ﬂ m or macro file. Browze... |
Macra...
Record Quick Macro Ctl+Shift+R
Play Quick Macra Chil+Shift+P

Adding the Code Generation Wizard to Developer Studio.

5. Click CodeGenWiz.dll (make sure the file type is *.dIlI).

6. Click Close.
The ESRI code generation add-in should be loaded now.

. Microsoft Visual C++

File Edit “iew Inzert Project Build Tool: Window Help

S E N R e =

I I
[=]
e

The Code Generation Wizard in Developer Studio.

Overview of the code generation
The wizard will guide you through the following steps:

m Connect to the Repository.

m Select the Object Model.

m Select the custom features to generate code for.
m Define properties for each custom feature.

m Specify the output C++ project.

Once finished, you will have a C++ project ready to compile where all custom features behave
just like a standard geodata access feature. You can then modify each custom feature to

include specific behavior.

Connecting to the repository

Launch the wizard in Developer Studio. Click Next to skip the introduction step and then click
Browse to select the repository database (for example, C:\Temp\Tutorial\Repository.mdb).

Click Next to continue.

ESRI Code Generation

Connect to the Repository database.

Repositaries are stored in DEMS databases {Microsoft
Access or SOL Server).

Flease provide the Repository.

IC:'I,Temp\,Tutorial\,RepositDry.mdb Browse. ..

User Name: I

Password: I

Helm | < Back. | Mext = | Cancel

Specifying the repository.

Selecting the object model

A repository database can contain several object models. Select the tutorial model and click
Next. At this point the wizard reads the object model from the repository.

ESRI Code Generation

Select the object madel.

A Repositary can contain several object models. For
example, ¥ou may have one model Far electric utilties
and another model for land base,

Tuborial Model: :arcInfo Ul Model

Cancel

Helm | < Back.

Selecting the object model.

Defining the custom features to create

The wizard will display your object hierarchy in a tree view. Here’s where you'll select the
custom features you want to create code for. For this example you'll generate code for all the
custom features in the model.

23

ESRI Code Generation

Select the Features For Code Generation

[:l Rooks
EII:| Row
. &[] object
: B [:I Feature
Building
&[] MebworkFesture
&-[2] ClassExtension
&[] ObjectClassExtension
=] D FeaturetlassExtension
H BuildingClassExtension
‘ ParcelClassExtension

Parcel Properties : ... |

HelE | < Back | Mext = I Cancel I

The Code Generation Wizard shows the object model hierarchy.

Defining custom feature properties

The behavior of a custom feature is the code behind the properties and methods of the
interfaces it supports. The code generation properties of a custom feature allow you to define
where the custom behavior will be placed.

1. Double-click Parcel to open its properties.

The Local Interfaces tab shows the definition of IParcel, the only local interface of
parcel in the model. The lower portion provides the IDL definition of the interface
members. All the information needed for code generation regarding local interfaces is
defined in the model. This tab is designed to let you verify that information.

i, Parcel Properties

Local Interfaces | Inherited Inlerfacesl

~ Interface Members: |Parcel

Paicel/alue _ I Okermite embes
get_CombinedBuilding alue
T alue

HRESULT Parcelalus([out. retval] long® pParcelalue):
HRESULT Parcelfalue(fin] lang Parcehyalue);

] Cancel

The local interfaces tab for the Parcel custom feature.

2. Click the Inherited Interfaces tab.

24

This tab displays the interfaces the parcel custom feature must implement because it
inherits from feature. By clicking the name of the interface in the upper grid, the
appropriate member information is displayed in the bottom part of the form.

i, Parcel Properties

Local Interfaces Inherited Interfaces |

Mame |Aggregated| Contained
|IFeatureChanges O
IFeatureDraw O
IFeatureE vents O
IR elatedObjectE verts O
1=100 s il]

 Interface Members: IR elatedD bjectE vent:

FielatedObjectChanged
RelatedObjecttdaved
RelatedObjectRotated
RelatedObjectSettoved
FelatedObjectSetRotated

HRESULT RelatedObjectChanged([in] IR elationshipClass*
PR elationshipClass, [in] 10bject” pobjectThatChanged);

] Cancel

The inherited interfaces tab for Parcel.

The code generation wizard will include the parent of Parcel (Feature), inside the Parcel COM
class, in such a way that each time a new instance of Parcel is created a new instance of the
inner feature will be created as well.

Parcel
Local IParcel o

R oo | Feature
Agoregated IRowEvents o—monwa———

Inherite d

IRelsted
OhbjectEvents o &

Contained {

COM containment and aggregation can be used to reuse the implementation
present in an existing COM class.

This technique allows the developer to reuse the implementation of all the interfaces Feature
implements by either exposing the inner object’s implementation directly (aggregation) or by
forwarding calls to the inner instance (containment). The client of the COM class has no
knowledge about this architecture, and to it all interfaces look as though the Parcel COM class
has implemented them.

When an interface is contained, each property or method of the interface can either be

forwarded to the inner object or entirely overwritten by the outer object. In the case of the
parcel, the only interface we want to contain is IRelatedObjectEvents. In methods such as

25

RelatedObjectChanged we will write custom behavior. All other interfaces will be exposed
directly from the inner feature COM class.

To contain the interface and override methods

Click the contained check box for IRelatedObjectEvents.

Click the RelatedObjectChanged method.

Click Override member check box.

Repeat steps 2 and 3 for the RelatedObjectSetMoved method.
Click OK.

a ~ 0D =

The same considerations apply for Building. However, this custom feature can reuse Feature’s
implementation of all the interfaces, so all the inherited interfaces will be aggregated.

Class extensions are a special case in one aspect: they inherit from abstract classes. Notice in
your UML model that ClassExtension, ObjectClassExtension, and FeatureClassExtension are

abstract classes (the UML convention is to present the class name in italics). In this case, there
is no concrete COM class we can embed inside the user-defined class, that is, inside the class
extensions for building and parcel.

1. Double-click the building class extension.

Notice all the interfaces will be implemented locally, so all of them are shown in the
Local Interfaces tab. No interfaces are going to be aggregated or contained, so the
Inherited Interfaces tab is disabled.

Notice also the optional interface |ObjectClassValidation you added to the UML model
is shown as a local interface. The method ValidateRow will be used to create the
custom validation rule for buildings.

. BuildingClassE xtenszion Properties

Local Interfaces | Inherited Interfaces

|10bjectClaszsExtension
IClassExtension

i~ Interface Members: [ObjectClazsV alidation

/glidateField 7| Diverride Rembes
YalidateRow

HRESULT Y alidateField([in] IR ow* pRow, [in] BSTR Fieldame, [out. retval]
ESTR* palidateField);

ok Cancel

The local interfaces tab for the Building class extension.

26

Click OK to close the dialog.
Double-click ParcelClassExtension to open its properties.

Notice it will implement the optional interface IRelatedObjectClassEvents, just as
you specified it in the UML model. The RelatedObjectCreated method will be
used to handle the creation of a new building.

Click OK to close the dialog.

Click Next to continue with the code generation process.

Defining the output Developer Studio project

As the last step of the code generation process, the wizard prompts you to define the output
Developer Studio/C++ project. Several files will be created along the project file, so you are
better off using a separate folder.

1.

2
3
4.
5

6.

Click Define Output Project.

ESRI Code Generation

Flease define the C++ Praject's full file name. The directory specified will be
used as target for all generated files ¢*.h, *.cpp, *.idl, etc.).

Since several Files are created you might find it useful to create a directory First,
and then specify the new project name under it

i\ Temp!Tutorialisource! TutorialServer, dsp

Helm | < Back. | Mext = | Cancel

Defining the output C++ project.

Move to the output directory (for example C:\Temp\Tutorial\source).
Type TutorialServer in the File Name box.

Click Save.

Click Next.

Click Finish.

At this point the wizard will generate a Developer Studio project and workspace you can open.
The compilation of the project will generate a COM DLL that contains COM classes for the
classes in the model: Parcel, Parcel class extension, Building, and Building class extension.
The name of the DLL will be TutorialServer, the name of the C++ project.

27

Adding custom behavior

The following pages will help you add C++ code to implement the behavior for parcels,
buildings, and their class extensions. Comments and lengthy lines may appear differently in
the book than in the files on disk due to restrictions imposed by the book format.

Generated code

Let’s start by browsing through the code just generated. In Developer Studio click the FileView
tab and expand the tree so all files are visible. Here is a small description of them (for further
details on the project outline, refer to the ATL documentation or any of the books available on
ATL).

. TutorialServer - Microzoft Wizual C++ - [TutorialServer.idl]

JJ File Edit Miew Inzert Project Build Tools Window Help
[acm@ me o o DR
J] [Glabals] [= 0] 120 global mernbers) =l ¢
ﬂ Workspace TutarialServer’ 1 project(z]
E--- TutonalServer files
EI@ Source Files
Building.cpp
BuildingClaszE stenzion.cpp
Parcel cpp
ParcelClassE stension.cpp
Stddfe cpp
TutorialServer. cpp
Tutorial3 erver. def
Tutorial3 erver.idl
TutorialS erver.ic
[E1-423 Header Files
--[E] Building h
BuidingClazsEstension.h
Paizelh
ParzelClassE stension b
Resourceh
- [E] Stdfh
----- (L] Resource Files
----- Building.rgs
----- BuildingClassE xtension.rgs
----- Parcel.rgs
----- ParcelClassE stension.rgz

L EIassVlewI Flesnurce\u"lawl Fl\e\)’lewl

The code generated is a Developer Studio C++ workspace and project.

A number of support files are created such as TutorialServer.cpp, TutorialServer.rc, and
TutorialServer.def. These files provide services such as registration and unregistration of the
COM classes in your DLL.

The file StdAfx.h contains a #import statement that incorporates information from the esriCore
type library. The content of the type library is converted into C++ classes that ease the use of
ESRI COM classes and interfaces when writing the behavior.

It is through these wrapper classes that we use the COM classes of the geodata access
components. For example, we can write the following code to create an instance of a field
object:

IFieldPtr ipField(CLSID_Field); /I IFieldPtr wrapper class

Another interesting file in your project is TutorialServer.idl. This file has metadata of the
contents of your project. Notice the interfaces are defined, and then, inside a type library, all

28

the COM classes are defined too, along with the interfaces they implement. Notice also the
custom features all the interfaces implemented by feature, although you can't tell the difference
between aggregated and contained interfaces. This is how a client will see your custom
features.

For each COM class a registration file is created, for example, Parcel.rgs. This script creates
the registry keys and values so the COM class is correctly registered in the system’s registry. It
includes registering the parcel COM class in a component category: the custom features’
component category. Class extensions COM classes (for example, the parcel class extension)
are registered in the class extensions component category in the same way.

You also get the header and source files for the classes in the UML model, for example, the
header file Parcel.h and the source file Parcel.cpp. In the header file you can recognize a
number of ATL macros being used, among them the ones defining the COM_MAP. Itis
apparent the parcel COM class implements IParcel and IRelatedObjectEvents locally and
aggregates any other interface implemented by the inner object (Feature).

BEGIN_COM_MAP(Parcel)
COM_INTERFACE_ENTRY((IParcel)
COM_INTERFACE_ENTRY(IRelatedObjectEvents)
COM_INTERFACE_ENTRY_AGGREGATE_BLIND(m_plnnerUnk)
END_COM_MAP()

Open the source code for the parcel (Parcel.cpp). The method FinalConstruct is called by ATL
as the final step of the COM class creation procedure. An instance of the feature COM class
will be created in this method. Parcel holds a reference to the inner feature through the
member variable m_plnnerUnk, a pointer to Feature’s IlUnknown interface.

Also, a query interface is done to get a pointer to the only contained interface,
IRelatedObjectEvents.

HRESULT Parcel::FinalConstruct()
IUnknown * pOuter = GetControllingUnknown();

if (FAILED (CoCreatelnstance(__uuidof(Feature), /* create inner feature */
pOuter,
CLSCTX_INPROC_SERVER,
1ID_IUnknown,
(void**) &m_plnnerUnk))) /* hold it */
return E_FAIL;

/I QI for IRelatedObjectEvents
if (FAILED(m_plInnerUnk->Queryinterface(lID_IRelatedObjectEvents,
(void**)&m_plRelatedObjectEvents)))
return E_FAIL;
pOuter->Release();

return S_OK;
}

Then stub code is created for methods of the local interface IParcel. All of them return
E_NOTIMPL, as the developer has to provide the implementation. An example is the accessor
for ParcelValue:

STDMETHODIMP Parcel::get_ParcelValue(long* pParcelValue)

return E_NOTIMPL;
}

29

And lastly, methods of the only contained interface, IRelatedObjectEvents, are created. An
example is:

STDMETHODIMP Parcel::RelatedObjectChanged(IRelationshipClass* pRelationshipClass,
I0Object* pobjectThatChanged)

return E_NOTIMPL;
}

Notice the methods you decided to override return E_ NOTIMPL, while the others are just
forwarding the call to the same interface implemented by the inner COM class.

Itis in the implementation of these local and contained interfaces where the behavior of
custom features is placed.

Although it might look a little intimidating at this point, the good news is all that stuff is already
there! The CASE tools allow you to design your objects using a graphical language and then
generate a lot of boilerplate code that takes care of a lot of details needed for the creation of
custom features using C++. You can (almost) forget entirely about those details and
concentrate on what you really want: writing the behavior of your custom features.

Inserting helper files
A couple of files containing helper functions were already in the source directory. To add the
files to the project:
1. Right-click the TutorialServer project, then click Add Files to Project.
2. Select the file databaseTools.h.

3. Repeat steps 1 and 2 to add the source file databaseTools.cpp.

Wworkspace 'Tutorial3erver’ 1 project{s)
EREE TutorialServer files

- 5o g
-

Build [zelection only]

LClean [selection only)
[jé Mew Faolder
Add Files o Project.

Set az Active Project

Unload Project

Settings...
[# Setiing
oYM —
v Docking View
Hide

Praperties
Adding utility files to the C++ project.

4. Double-click Building.cpp and add #include “databaseTools.h” after the last
#include in the file.

/I Building.cpp : Implementation of Building
/I Generated 9/22/99 11:28:15 AM

1

#include "stdafx.h"

#include "TutorialServer.h"

#include "Building.h"

#include "databaseTools.h"

30

5. Repeat step 4 for Parcel.cpp, ParcelClassExtension.cpp, and
BuildingClassExtension.cpp.

Double-click databaseTools.cpp to open the source code. Two of the functions in
databaseTools.cpp help you read and write values to and from fields in feature classes
(GetFieldValue and PutFieldValue). The third function tells if a relationship class has a specific
name (IsRelationshipClass).

Adding behavior for building

We will start implementing the functionality of the Building feature. Open Building.cpp at this
point. Only two methods require implementation, the accessor and mutator for the FieldValue
property. This is the implementation of the methods:

Building
winterfaces

[Slories : esriFieldTypelnteger «Enas_» 1Buiiding

[Height : e=riFieldTypelnteger [FEuilding™alue long
FBuilding*alue : estiFieldTypelnteger|
FParcell : esriFisldTypelnteger

The Building COM class will implement the IBuilding interface.

STDMETHODIMP Building::get_BuildingValue(long* pBuildingValue)

{
HRESULT hr;
CComBSTR fieldName = L"BuildingValue";
CComVariant value;

IRowPtr ipRow(GetControllingUnknown());
if (ipRow == 0)
return E_FAIL;

if (FAILED(hr = GetFieldValue(fieldName, ipRow, &value)))
return hr;

*pBuildingValue = value.lVal;

return hr;

STDMETHODIMP Building::put_BuildingValue(long BuildingValue)

{
CComBSTR fieldName = L"BuildingValue";

CComVariant value(BuildingValue);

IRowPtr ipRow(GetControllingUnknown());
if (ipRow == 0)
return E_FAIL;

return PutFieldValue(fieldName, ipRow, value);

}

That completes the code for the building COM class. Now we also want to create a custom
validation rule that verifies the height is at least the number of floors times 10 feet. The code for
the validation rule will be implemented inside the class extension for the building. Open
BuildingClassExtension.cpp and insert code for the ValidateRow method:

31

wrefings:
BuildingClassExtension —_

The BuildingClassExtension will implement the methods in the optional
interface 10bjectClassValidation.

STDMETHODIMP BuildingClassExtension::ValidateRow(IRow* pRow, BSTR* pValidateRow)
{

CComVariant height, stories;
CComBSTR bstrFieldName(L"Height");

if (FAILED(GetFieldValue(bstrFieldName, pRow, &height)))
return E_FAIL;

bstrFieldName = L"Stories";

if (FAILED(GetFieldValue(bstrFieldName, pRow, &stories)))
return E_FAIL;

CComBSTR bstrErrMsg;
bstrErrMsg = L"The number of stories x 10ft exceeds the building height";

if (height.IVal < (stories.IVal * 10))
*pValidateRow = bstrErrMsg.Copy();

return S_OK;
}

When the user triggers the validation for a building, this code will be executed and a message
will be shown for those buildings that are invalid.

Adding behavior for parcel

Now let’s go to the parcel. First, look at the code that keeps an eye on new buildings and
creates relationships between the new building and the parcel containing it. This behavior is
implemented in the Parcel class extension, which receives a notification each time a new
related object is created. Open ParcelClassExtension.cpp and insert the following code as the
implementation of the RelatedObjectCreated method.

wrefiness
— ParcelClassExtension

The ParcelClassExtension will implement the method RelatedObjectCreated,
in the optional interface IRelatedObjectClassEvents.

STDMETHODIMP ParcelClassExtension::RelatedObjectCreated(

IRelationshipClass* pRelationshipClass,
|I0bject* pobjectThatWasCreated)

/I first verify the relationship is "Contains"

if (!IsRelationshipClass(pRelationshipClass,CComBSTR(L"Contains")))

return S_OK;
/I the relationship is "Contains", thus the created object must be a building.
IGeometryPtr ipBuildingGeometry;

((IFeaturePtr) pobjectThatWasCreated)->get_Shape(&ipBuildingGeometry);

32

if (ipBuildingGeometry == 0)
return E_FAIL;

/I Search for any parcel whose geometry contains that
/I of the newly created building.

|IFeatureClassPtr ipParcelFeatureClass(m_pClass);
|IFeatureDatasetPtr ipFeatureDataset;
ISpatialReferencePtr ipSpatialReference;

ipParcelFeatureClass->get_FeatureDataset(&ipFeatureDataset);
((IGeoDatasetPtr) ipFeatureDataset)->get_SpatialReference(&ipSpatialReference);

/I Prepare the spatial filter
ISpatialFilterPtr ipSpatialFilter(CLSID_SpatialFilter);
ipSpatialFilter->putref_Geometry(ipBuildingGeometry);

ipSpatialFilter->put_SpatialRel(esriSpatialRellntersects);
CComBSTR shapeField(L"Shape");

ipSpatialFilter->put_GeometryField(shapeField);
ipSpatialFilter->putref_OutputSpatialReference(shapeField, ipSpatialReference);

/I Do the query

HRESULT hr;
CComQlPtr<IParcel> ipParcel;
|IFeatureCursorPtr ipParcels;

if (FAILED(hr = ipParcelFeatureClass->Search(ipSpatialFilter, VARIANT_FALSE, &ipParcels)))
return hr;

/I check a parcel was found
|IFeaturePtr ipFeature;

if (ipParcels->NextFeature(&ipFeature) = S_OK)
return S_OK;

ipParcel = ipFeature;
/I Create an instance of the relationship.

10bjectClassPtr ipBuildingObjectClass;
IRelationshipPtr ipRelationship;

pobjectThatWasCreated->get_Class(&ipBuildingObjectClass);

return pRelationshipClass->CreateRelationship((IObjectPtr) ipParcel,
pobjectThatWasCreated,
&ipRelationship);

The code first verifies the relationship class is “Contains” because parcels could have
relationships with other feature classes. Then it grabs the geometry of the object that was
created (building) and searches for the parcel underneath it. If a parcel is found, a new
contains relationship is created between the new building and the parcel.

Now let’s go to the parcel object itself. Open Parcel.cpp at this point. We have two interfaces to
implement: IParcel and IRelatedObjectEvents (the latter because we decided to contain it
during code generation). The code behind the ParcelValue property and the read-only property
CombinedBuildingValue is pretty much the same as the one used for the building value
property.

33

winterfacs: Parcel

IParcel arefiness:

FParcealue © long FRarcelYalus | esriFisldTypeirteger W
g6t CombinedBaiidingvaluel). ong FCombinedBuilding'Yalue : estiFieldTypelrteger
+ TaxcValue(in TaxRate : double): g

The Parcel feature will implement the IParcel interface.

STDMETHODIMP Parcel::get_ParcelValue(long* pParcelValue)

{
HRESULT hr;

CComBSTR fieldName = L"ParcelValue";
CComVariant value;

IRowPtr ipRow(GetControllingUnknown());
if (ipRow == 0)
return E_FAIL;

if (FAILED(hr = GetFieldValue(fieldName, ipRow, &value)))
return hr;

*pParcelValue = value.lVal;

return hr;

!

STDMETHODIMP Parcel::put_ParcelValue(long ParcelValue)

{
CComBSTR fieldName = L"ParcelValue";

CComVariant value(ParcelValue);

IRowPtr ipRow(GetControllingUnknown());
if (ipRow == 0)
return E_FAIL;

return PutFieldValue(fieldName, ipRow, value);

}

STDMETHODIMP Parcel::get_CombinedBuildingValue(long* pCombinedBuildingValue)
{

HRESULT hr;

CComBSTR fieldName = "CombinedBuildingValue";

CComVariant value;

IRowPtr ipRow(GetControllingUnknown());

if (ipRow == 0)

return E_FAIL;

if (FAILED(hr = GetFieldValue(fieldName, ipRow, &value)))
return hr;

*pCombinedBuildingValue = value.lVal;

return hr;

!

The code for the last method of IParcel calculates the tax value of a parcel, based on a given
tax rate, the parcel’s value, and the combined value of the buildings in the parcel.

STDMETHODIMP Parcel::TaxValue(double TaxRate, long* pTaxValue)
/I Dynamically calculate the tax value

if (TaxRate < 0)
return E_FAIL;

long parcelValue, buildingValue;

34

get_ParcelValue(&parcelValue);
get_CombinedBuildingValue(&buildingValue);

*pTaxValue = static_cast<long>((buildingValue + parcelValue) * TaxRate);

return S_OK;
}

We want to keep the parcel’s field CombinedBuildingValue updated if the value of a building
changes or if a building is moved outside of a parcel. To implement this functionality, we will
first create a couple of helper functions. The first function calculates the combined value of the
buildings in a parcel. The second verifies a building is still contained in a parcel.

Open Parcel.h and insert the following prototypes in the private section of the class:

private:
/I helper functions
HRESULT RecalculateCombinedBuildingValue(IRelationshipClass* pRelClass);
HRESULT CheckBuildingContainment(IRelationshipClass* pRelClass, I0Object* pBuildingObject);

Now open Parcel.cpp. The following routine maintains the combined building value updated. It
loops through the related buildings calculating the total value. Then it writes the value to the
database. Insert the code in your file.

HRESULT Parcel::RecalculateCombinedBuildingValue(IRelationshipClass* pRelClass)
IRowPtr ipRow(GetControllingUnknown());
if (ipRow == 0)
return E_FAIL;

HRESULT hr;
I1SetPtr ipRelatedBuildings;

if (FAILED(hr = pRelClass->GetObjectsRelatedToObject((IObjectPtr) ipRow, &ipRelatedBuildings)))

return hr;
IUnknownPtr ipunk;
IRowPtr ipBuildingRow;
CComQIPtr<IBuilding> ipBuilding;
long combinedBuildingValue = 0;

while (ipRelatedBuildings->Next(&ipUnk) == S_OK)
long value;
ipBuildingRow = ipUnk;

ipBuilding = ipBuildingRow;
ipBuilding->get_BuildingValue(&value);

combinedBuildingValue += value;

}

/I Persist the new combined building value.

CComBSTR fieldName = "CombinedBuildingValue";
CComVariant value(combinedBuildingValue);

if (FAILED(hr = PutFieldValue(fieldName, ipRow, value)))
return hr;

return ipRow->Store();

35

The second routine breaks the relationship between a building and a parcel if the building is
moved and is no longer contained in the parcel. Notice that besides removing the relationship
it also recalculates the combined building value.

HRESULT Parcel::CheckBuildingContainment(IRelationshipClass* pRelClass, I0bject* pBuildingObject)
{

/I'If the building is no longer contained within the parcel,
/I break the relationship and recalculate the combined building value.
|IFeaturePtr ipFeature(GetControllingUnknown());
if (ipFeature == 0)
return E_FAIL;
IGeometryPtr ipBuildingGeometry, ipParcelGeometry;

((IFeaturePtr) pBuildingObject)->get_Shape(&ipBuildingGeometry);
ipFeature->get_Shape(&ipParcelGeometry);

VARIANT_BOOL contains;
((IRelationalOperatorPtr) ipParcelGeometry)->Contains(ipBuildingGeometry, &contains);

if (contains == VARIANT_TRUE)
return S_OK;

/I INVARIANT: The parcel no longer contains the building.
HRESULT hr;

if (FAILED(hr = pRelClass->DeleteRelationship((IObjectPtr) ipFeature, pBuildingObject)))
return hr;

return RecalculateCombinedBuildingValue(pRelClass);

!

Now let's work on the actual events received by the parcel through IRelatedObjectEvents. The
first event is triggered when a single related object is changed. Either the shape or the value of
one of its properties could have changed.

If the shape has changed, we test if the building is still contained within the parcel. If it is not
contained we break the relationship and calculate the combined building value.

If the shape did not change, then perhaps the value of a building might have. In this case, we
calculate the combined building value of the parcel.

Insert the following code as the implementation of the method RelatedObjectChanged.

STDMETHODIMP Parcel::RelatedObjectChanged(IRelationshipClass* pRelationshipClass,
I0bject* pobjectThatChanged)
{

if (!pRelationshipClass || !pobjectThatChanged)
return E_POINTER;

if (!IsRelationshipClass(pRelationshipClass, CComBSTR(L"Contains")))

return S_OK;
HRESULT hr;
VARIANT_BOOL shapeChanged;
|IFeaturePtr ipFeature(pobjectThatChanged);

if (ipFeature == 0)
return S_OK;

IFeatureChangesPtr ipFeatureChanges(ipFeature);

36

ipFeatureChanges->get_ShapeChanged(&shapeChanged);
if (shapeChanged)

if (FAILED(hr = CheckBuildingContainment(pRelationshipClass, pobjectThatChanged)))
return hr;
}

else

if (FAILED(hr = RecalculateCombinedBuildingValue(pRelationshipClass)))
return hr;
}

return m_plRelatedObjectEvents->RelatedObjectChanged(pRelationshipClass,
pobjectThatChanged);
}

The second event we will handle is triggered when a set of buildings is moved. This case is a
bit more complex because the geodata access components send this message only once to a
parcel in the set of parcels whose buildings were moved. The parcel must handle the
movement of its own buildings, remove itself from the set of affected parcels, and send the
message to the next parcel in the set. Eventually, all parcels will handle the movement of their
buildings.

In this implementation the parcel doesn't really remove itself from the affected parcels set.
Instead, it creates a clone of the set and doesn't include itself in it. It is not fair to assume the
routine can change the set passed in because the caller routine may use the set later on and
would be really surprised to find an empty set.

Insert the following code as the implementation of the method RelatedObjectSetMoved.

STDMETHODIMP Parcel::RelatedObjectSetMoved(IRelationshipClass* pRelationshipClass,
ISet* pobjectsThatNeedToChange,
ISet* pobjectsThatChanged,
ILine* pMoveVector)
/I check it is the Contains relationship
if (lsRelationshipClass(pRelationshipClass,CComBSTR(L"Contains")))
return S_OK;
10bjectPtr ipObject(GetControllingUnknown());
if (ipObject == 0)
return E_FAIL;
/I find the buildings related to the parcel
I1SetPtr ipRelatedBuildingObjects;
pRelationshipClass->GetObjectsRelated ToObject(ipObject, &ipRelatedBuildingObjects);
pobjectsThatChanged->Reset();
HRESULT hr;
I1SetPtr ipPrunedRelatedSet(CLSID_Set);
IRowPtr ipRelatedBuildingRow;
IUnknownPtr ipUnknown, ipUnkRelatedBuilding;
I0bjectPtr ipRelatedBuildingObject;
/I match buildings that changed to those really related to this parcel
while (pobjectsThatChanged->Next(&ipUnknown) == S_OK)

bool matchFound = false;

while (!matchFound && ipRelatedBuildingObjects->Next(&ipUnkRelatedBuilding) == S_OK)
{

37

if (ipUnknown == ipUnkRelatedBuilding)
{

// building that changed found in the related buildings
/I stop looking for it in the related buildings
matchFound = true;

/I check changed building is still contained by parcel
ipRelatedBuildingObject = ipUnknown;

if (FAILED(hr = CheckBuildingContainment(pRelationshipClass, ipRelatedBuildingObject)))
return hr;

/I Clone the parcel set, removing self.

bool remainingParcels = false;
1SetPtr ipPrunedParcelSet(CLSID_Set);
IUnknownPtr ipUnkParcel, ipUnkSelf(ipObject);

IRelatedObjectEventsPtr ipNextParcel;

pobjectsThatNeedToChange->Reset();

while (pobjectsThatNeedToChange->Next(&ipUnkParcel) == S_OK)
i{f (ipUnkParcel != ipUnkSelf)

remainingParcels = true;
ipNextParcel = ipUnkParcel;
ipPrunedParcelSet->Add(ipUnkParcel);
}
}

if ('remainingParcels)
return S_OK;

/I Recursively call this method on one item in the cloned parcel set.
/I'If there are no remaining parcels, simply return.

return ipNextParcel->RelatedObjectSetMoved(pRelationshipClass,
ipPrunedParcelSet,
ipPrunedRelatedSet,
pMoveVector);

}

We will leave other methods in the IRelatedObjectEvents untouched. They will be forwarded to
the inner feature. However, some functionality is still to be developed for a fully functional
model. For example, when a building is moved from one parcel to a different parcel, the
relationship with the original parcel is broken, but the relationship with the new parcel is never
created. As always, there is room for more development.

In Developer Studio, click the Build menu and then click Build TutorialServer.dll to compile the
project. The library TutorialServer.dll will be created and registered in your system upon
compilation.

38

Creating the schema

The second wizard of the CASE tools will help you create a schema for your UML models in a
geodatabase. For each UML class in the model, a table will be created. For each UML
attribute in the class, a field in the table will be created.

Depending on the parent class, an object class or a feature class is created. Object classes will
be created for custom features that inherit from the Object class. Feature classes will be
created for custom features inheriting from any other concrete class in the ESRI Classes
Package. Feature classes can be further divided into simple feature classes—those inheriting
from Feature, and network feature classes —those inheriting from junction or edge features. In
the latter case a geometric network will be created as well.

[Fawe | [Pan | I Obiechs
‘ MetworkFeatre ‘ Building | :> FeataraClass
‘ DmetionFeatre ‘ FEdeaFeanre |
Simple lanction SimpleEdge
Featire Feature
‘ Valwa | ‘ Canal |
t J FeatreClass
eimen ool Lo Geometric Metarod:

WatexTTtils

UML object models can be used to create geodatabase schemas. The
feature type of the feature classes is determined based on the ESRI class
they inherit from.

The wizard is a command in ArcCatalog. You can launch the wizard when a geodatabase has
been selected on the left-hand side panel of ArcCatalog. This implies the feature datasets,
feature classes, and other model elements will be created within the target geodatabase.

To add the wizard command to ArcCatalog

Start ArcCatalog.

Click Tools, then click Customize.

Click the Commands tab.

Click CASE Tools in the categories list.

Drag the Schema Wizard command onto a toolbar.
Click Close.

o o M 0 N =

39

=3 ArcCatalog - C:ATEMPATutorial\SampleDB.mdb [_ (O]
J File Edit “iew Go Tools Help |

|o|om BE X s ej@sv [ea oo

J Logation: [CATEMPAT utorialS ampleDE. mdb |

| stveshee: [EEFI A E s =

Contents | Freview I Meladatal Case Schema Creation
Sampledddin -
@ : _I MHame | Type |
{21 SampleServer
E‘@ Tutorial EF Foads Personal Geodatabasze Feature D ataset
{:I FOUICE
g Fiepositary
EB SampleDB

EHE? Roads

] Streets
£ WBE
H-(] WisioB.0

&
i
- ~wis0000
B
B
E

D
b

e

#-(] ~wis0001
o5 21

]g sz k|

Create Schema based an Uml Design &

The Schema Wizard command in ArcCatalog.

Overview of the schema creation

You will create a schema for the tutorial model. Under a selected geodatabase, the wizard will
create a feature dataset (Landbase), two feature classes (building and parcel), and a
composite relationship class (contains). The wizard will guide you through the following steps:

m Connect to the Repository.

m Select the object model.

m Define schema properties for each feature class.
m Create the schema.

To start the wizard, select the geodatabase you want to use as a target for the creation of the
schema (for example, C:\Tutoria\SampleDB).

Creating the schema

The first three steps are exactly the same as those of the Code Generation Wizard, described
previously. Start the wizard, connect to the repository, and select the tutorial model now.

40

% 6 chema Wizard

Select the Feature datasets to create,

_5 ‘Workspace

=] @Landbase
Building
Parcel

T Contains

Properties... |

Cancel |

The Schema Wizard interprets UML elements as geodatabase elements,
such as feature datasets, feature classes, and relationship classes.

The hierarchy of the model shown by the schema wizard is similar to that shown by
ArcCatalog. You can identify the workspace (the geodatabase), the land base feature dataset,
the feature classes, and the relationship class.

For each element you can open a properties dialog. Select the Landbase feature dataset, then
click Properties. The feature dataset’s only property is its spatial reference. To set it:

1. Inthe feature dataset properties dialog, click Edit.

2. In the spatial reference properties dialog, click Import.

3. Browse to the existing feature dataset under SampleDB
(C:\Temp\Tutoria\SampleDB\SampleDS).

4. Click Add.
5. Click OK to accept the changes to the spatial reference.
6. Click OK to accept the changes to the feature dataset in the model.

The Landbase feature dataset will have the same spatial reference as the existing Roads
feature dataset.

41

" 5chema Wizard 2 x|

Select the feature datasets bo create.

_5 ‘workspace
- T Landbase Feature Dataset Properties 21xl

Building

Parcel

2, Contain

Mame: |Landbase =

Spatial Reference Properties 1[

Coordinate System |>(.-"Y Dnmainl z Dnmainl t Domain

Marme: |Unkn0wn

Details:

Browse for Dataset

Laak in: |§ SampleD8 mdb

Select...
Impart... |
Mew = |
Narne: ISampIeDS
Fadify.. |
Show of type: Iﬁeographic datasets j Cancel |
LClear |

Save ... | Save the coordinate system to a file.
0k | Cancel | Apply |

Setting then spatial reference for a feature dataset while running the Schema
Wizard.

Double-click Parcel to open its properties. This dialog shows the properties of the feature class
that will be created including geometry type, fields, relationships, and behavior COM classes.
Notice Polygon is selected in the geometry type dropdown menu because it was specified as a
tagged value of the corresponding parcel UML class in the model. Change the grid size to be
1.

42

Parcel Properties (feature class) HE

Genera|| Fieldsl Behavinrl Subtypesl Flelalionshipsl Existsl 1] z’ZI

— Feature class general information =
Mame: Parcel
Feature Type: Simple feature
Geometry Type: =
Spatial Refersnce: NAD_1983 StatePlane_California_\W_| _I

— Geometric Metwork,

Enabled Field: [Mat & network feature]

Ancilary Role Field: [Mot a junction feature]
Lincillary Fole: I -

— Spatial index grid sizes:

Giridd lewed 1: |1 0o,

Additional grid level: are optional. Each level must be at least
three times the previous one.

Girid level 2 |[|
Girid level 2 ID

— Configuration Keyword

Canfiguration Kepword I

oK | Cancel

Properties of a feature class in the Schema Wizard.

Click the Behavior tab and notice the parcel custom feature and the associated class
extension have been selected automatically. The schema wizard looks for the Behavior COM
classes in the system’s registry, and therefore it is necessary to register the dynamic link library
beforehand (compiling in Developer Studio registered the TutorialServer.dll). Click OK to
dismiss the dialog.

Parcel Properties [feature class) [2]x]

Genela\l Fieldz Sublypesl Helaliunshipsl Exislsl M.-’ZI

Object Behavior
&
Select/Specify the name of the COM clazs that implements the
methods for the custom feature
Behavior Clags: ITutoriaISewer.ParceI j
ClazsE stenzion Class: ITutoriaIServer.ParceICIassEHtension j

Behavior classes that will be assigned to the feature class upon creation.

Use the same procedure to verify the definition of the building feature class. Change the grid
size to 1 and check the geometry type and behavior classes have been correctly read from the
model.

Double-click contains to open the properties dialog. Notice all the information is read from the

association in the UML model including notification and primary and foreign keys. Click OK to
dismiss the dialog and then click Next to continue with the wizard.

43

Contains Properties [2] =]

Fules | Fislds |
Mame: Cantaing =
Type: Composite
Cardinality: 1-N
Notification Bath [~

— Origin feature cla

Name: Pacel

Prirnany Key: IDBJEETlD j'
Fareign Key: I hi

— Destination feature cla:

Marme: Building

Frimary Key % I
Foreign Key: ParcellD i

—Label
Fonward Label: property
Backward Label: parcel

oK | Cancel |

Propetrties of a relationship class in the Schema Wizard.

Before creating the schema, the wizard will display a summary of the custom features and
options you selected. Click Finish to create the schema.

Verifying the schema

In ArcCatalog, click the Landbase feature dataset. Notice the two polygon feature classes
have been added along with the Contains relationship class.

,:l ArcCatalog - C:ATEMPATutorial\5 ampleDB.mdb\Landbase [_ (O]
J File Edit “iew Go Tools Help |
[cosmex|usFEmajlasv/eaaneo[s]
JLocation: [CATEMPAT utorialhS ampleDE. mdbiLandbase |
| stveshee: [EEFI A E s =
2 j Cantents IPreviewI Meladalal
Sampledddin -
: Harme | Tupe |
- SampleServer
E‘% Tulu‘;a\ Building Personal Geodatabase Feature Class
B0 source 2 Containg Personal Geadatabaze Relationship C...
. 3 Repository Parcel Personal Geodatabase Feature Class
EB SampleDB
JEF Landbaze:
-k Roads
-1 ¥BE
-0 WisioB.0
-0 ~vis0000
- ~wis0001
- ma21
-5 me2a =
Personal Geodatabase Feature Dataset selected 5

The Schema Wizard has created the feature dataset, two feature classes,
and a relationship class.

44

Double-click the parcel feature class to open the properties dialog. Click the Fields tab and
notice the fields correspond to those defined in the UML model for the parcel class. The
shape_length and shape_area fields are automatically added and maintained by the
geodatabase for any polygon feature class. Click OK to close the dialog.

[CBJECTIC Ohiect 10
Shape Geometry
Parcelvalus Long Integer
CombinedBuildingy'alus Long Integer
Shape_Length Double
Shape_Area Double
Alias CBJECTID

Fields of the Parcel feature class in ArcCatalog.

Double-click the Contains relationship class and verify the properties, as seen by ArcCatalog.
When done, click OK to dismiss the dialog.

Relationship Class Properties

Properties of the Contains relationship class in ArcCatalog.

46

Using the custom features in ArcMap

In this step of the tutorial, you will create a few parcels and buildings to test the schema and
the functionality implemented in the behavior COM classes.

Start ArcMap and drag and drop both feature datasets in SampleDB from ArcCatalog onto
ArcMap. Make sure the editor toolbar is available. Save the map as TutorialMap under the

tutorial directory.

% TutonalM ap_mxd - ArcMap M= E3
J File Edit ‘iew Inset Selection Toolz ‘Window Help |
[DeWa te@dx|w - |&|fvm 5 -||Q|‘§j|\?|
J Editar "T|ﬁj | Task: IEreate Mew Feature ﬂ | Target: IP#Editannnlhal E | ey |
x [
B £ Layers
=] Building e f
B i LM E Y rr:tj'j
59 Parce I SiEi= S R
= T =T ‘Tﬂ]r]
B b Steets JLH& e =T |:|I
— JE_E 7
. |
m
1])
_.|
g
.
-
Display NN | _’I_I
JDrawmg' k®|D'A'E|IATia| j|9-75j B I H|i' &~ S~
Shiow the Editor toolbar so pou can edit the map's data T|EB1311E 07 185050836 Fest | &

Preparing ArcMap for editing features in the created schema.

Testing the custom feature behavior
You will create a couple of parcels and buildings in this step. Zoom in to a single block in the
map and create the parcels:
1. In the editor toolbar click Editor, then click StartEditing.

2. Verify the current Task is Create New Feature, click the Target dropdown, and
click Parcel.

3. Click the Create New Feature tool and use the mouse to digitize two parcels.

47

% TutonalM ap_mxd - ArcMap

O x]

J File Edit ‘iew Inset Selection Toolz ‘Window Help |
[DZES & 2@ |0 |25 o2 & w2 |
J Editar = ‘ - |’7j| Task: IEreate Mew Feature ﬂ | T arget: |ParceI:FalceI E |/ (= |
| Create New Feature| = ;I
B £ Layers
= Building
O
=] Parcel
=
=] Streets x
Lol
-
Display N 1 _'I_I
JDrawmg' k®|D'A'E||AriaI j|8.75j31g|i'&'ﬁv
Adds poirts to the edit sketch T|EBDT4?EI 85 1843042 44 Fest | &
Adding parcel features.

Now you'll create the buildings. Click the Target dropdown arrow and click Building. Digitize
two buildings inside a parcel. With a building selected, click the Attributes tool to open the
Property Inspector. Click the plus sign by the building ID and notice it has a related parcel. The
relationship was created by the Parcel class extension in response to the creation of a related

object, the building.

% TutorialMap.mud - ArcMap |_ (O] x|
J File Edit View Insert Selection Toolz ‘window Help |
DEE&E & B@X|a | & v[||§|@\k‘?|
J Editer ”T| & j ‘ Task: IEreate New Feature | | Target: [Building : Building =] | (=) | > |
1
= £ Layers Adtribt
= Building
|
= Parcel
=
E Streets
— X /\
Attributes x|
= B_uilding Property Walue i
= OBJECTID 1
- parcel Stories <Null>
: Height <Null>
3 ol
Buildingvalus <Mull»
Parcell]
Shape_Length 386.716203497132
Shape_drea 7225 26684955633
Dizplay N »
J Drawing k ®| O~ A~ ﬂ“l'lfeatules <| | >l;'
Shiows the featire property edior @ [FE0S2E376 1843091 52 Feet | .

Adding buildings and setting attributes.

In the Property Inspector click the building ID again and fill in values for the fields as indicated

in the following table:

48

Field Value
Stories 1
Height 12
BuildingValue 50,000

Select the second building in the parcel and specify the following attributes:

Field Value
Stories 1
Height 8
BuildingValue 10,000

The parcel custom feature recalculates the combined building value each time a related

building field value changes. In the map, select the parcel to display its attributes. Notice how
the current combined building value is 60,000, the sum of the value of the two buildings. The

parcel itself does not have a value yet, so change the parcel value to 45,000.

% _TutorialMap.mxd - ArcMap [_ O] =]
J File Edit Yiew Insert Selection Tool: Window Help |
I DEESE & BEX o |15 v[|@|@|k‘?‘
J Editar |’T|ﬁj | Task: ICreate New Feature j | Target: IBuiId\ng: Buiding E | (= | X ||
E [
B £F Layers
= Building
[
B M Pacel
= X
= Strests @
Abtributes H
[=]- Parcel Froperty Walue i
- 45000 ORJECTID 3
Parcel/alue 45000
CombinedBuidingalue 0000
Shape_Length 956.699007953195
Shape_Area 5EIE3 968301212
|
Disphay LA % b
J Drrawing ~ k =y | O~ A~ (2 |”1 features 1| I d;' ‘
-_— =
0 [B807520.37 1542532 45 Feet | v

Parcel attributes, showing the combined building value calculated by the
Parcel custom feature.

Close the Attributes dialog and select the two buildings in the parcel. Click the Editor menu and
then click Validate Selection to verify the selected buildings. For one of the buildings the
number of stories is 1 and the height is 8, which violates the custom validation rule
implemented in the building class extension. Click OK to dismiss the message.

49

‘= TutorialMap.mxd - ArcMap

J Eile Edit iew Insert Selection Took ‘window Help |

I DEESE & BEX o |15 v[|@|@|k‘?‘

J [|’T|ﬁj | Task: ICreate Mew Feature j | Target: |Bui||:hng. Euiding Izl | (= | > ||
= [
B £F Layers
=] Building *
[
= Parcel
=
= Shieets
Validate
The number of stories » 10ft exceeds the building height i
|
Displap ’? o eﬂ J »
J Drawing = M ®| O~ A~ ﬂ“AriaI j|9-75j B I U |i' S Fr o~ ‘
Humber of features selected: 1 @ [FBOVEEA T4 184300021 Feot | s

Testing the custom validation implemented by the building class extension.

The last step is to use the services of the IParcel interface programmatically, specifically the
calculation of the tax value given a tax rate. We will create a Visual Basic for Applications
(VBA) macro that loops through the selected features, asks for the IParcel interface, and uses
the method.

To create the VBA macro:

1. Inthe Tools menu, click Macros, then click Visual Basic Editor.
2. Inthe Visual Basic Editor, click Tools, then click References.

3. Scroll down and select the TutorialServerLib Library as a reference.

References - Project

Available References: ol

Visual Basic For Applications ﬂ Cancel

ESRI Object Library

OLE Automation

Normal Browse. .,

ESRI ArcMap Object Library

Microsoft Yisual Basic for App
Lboriz erlib Library

Active DS Type Library Priority

Active Setup Control Library

ActiveBar Control ﬂ

ActiveMovie contral type library

ActiveReparts Designtime objects

ActiveReparts PDF Export Filter

flctiveRennrts RTF Exnort Filker I _lj
4 3

i~ TutorialServerLib Library

lications Extensibility 5.2 + |

il

Help

I] e R R R R))

Location: A\ TEMPY Tutoriallsource ReleaselIMinDependency TutorialSer
Language: Standard

Adding a reference in VBA to the DLL where custom features and class
extensions are hosted.

50

The tutorial server library provides Visual Basic with the types inside the TutorialServer.dll
created with ATL/C++. Types such as |IParcel or Parcel are defined there.

4
5.
6.
7
8

Click OK to accept changes to the references.

In the Project Explorer, click the plus sign by the “Project(TutorialMap.mxd)”.

Click the plus sign by ArcMap Objects.
Double-click ThisDocument.

Copy the following code:

Public Sub Parcellnformation()

Dim pDoc As IMxDocument
Dim pMap As IMap

Dim pLayer As ILayer

Dim pFeatLayer As IFeatureLayer

Dim pFeatSelection As IFeatureSelection
Dim pSelectionSet As ISelectionSet
Dim pRow As IRow

Dim pCursor As ICursor

Dim pParcel As IParcel

Dim sMsg As String

Dim nTotal As Long

Set pDoc = ThisDocument
Set pMap = pDoc.FocusMap
Set pLayer = pDoc.SelectedLayer

If pLayer Is Nothing Then
MsgBox "Please select the parcel layer", vbInformation

Exit Sub
End If

Set pFeatlLayer = pLayer
Set pFeatSelection = pFeatLayer
Set pSelectionSet = pFeatSelection.SelectionSet

pSelectionSet.Search Nothing, True, pCursor
Set pRow = pCursor.NextRow
If pRow Is Nothing Then MsgBox "Please select a parcel”, vbinformation

Do While Not pRow Is Nothing

sMsg =
If TypeOf

pRow Is IParcel Then

Set pParcel = pRow

nTotal = pParcel.CombinedBuildingValue + pParcel.ParcelValue

sMsg = "Buildings plus parcel : " & nTotal & vbNewLine

sMsg = sMsg & "Tax Value (rate = 0.025) : " & pParcel.TaxValue(0.025)
MsgBox sMsg, vbinformation, "Parcel Information”

End If

Set pRow = pCursor.NextRow

Loop
End Sub

The macro first finds the selected layer. Then it loops through the selected features and tries to
get the IParcel interface. If successful, it uses the interface on the current parcel to get the tax
value and report it to the user.

To run the macro:

1.
2.

Close the Visual Basic Editor.

Select the parcel layer in the TOC.

51

3. Select the parcel that contains the buildings.

4. Inthe Tools menu, click Macros, then click Macros.

5. Select the Parcellnformation macro, then click Run.

= Tutoriald ap.mxd - ArcMap

J File Edit Yiew Insert Selection Tools “Window Help |
|[DEE& s m@x| (&[5 2|awe
J Editer ~ |’T|ﬁj | Task: ICreate Mew Feature j | Target: IBuiId\ng: Building E | (= | > ||
= [
= £F Lapers
= Building
[
| EJE Face
= e
=] Strests @
Parcel Inf i
arcel Information E e
@ Buildingz plus parcel : 105000
TaxValue [rate = 0.025) : 2625
-
Display - R 1 _.l_l
JDrawing' k®||:|' AT E“Arial jIS.FSj B 7 g|$v Sy - iv LR ‘
Create, edit or sxecute a VBA macro @ [RE0TEIT 02 1843052 25 Fest | w

Using the method TaxValue in the IParcel interface.

To see the results of the rest of your work, try the following:

1. In ArcMap, start editing again, select the parcel with buildings, and move it. The
buildings move with the parcel.

2. Select a building and move it outside the parcel. Select the parcel and open the
Property Inspector. Notice that the combined building value has changed for the
parcel.

3. In the Editor menu, select Stop Editing and then answer Yes to save your edits.

52

	Table of Contents
	TABLE OF CONTENTS	2
	What you will do
	What you will need
	Designing the object model
	Creating a new model
	To create the new document

	The ArcInfo UML Model
	To open the ESRI Classes diagram:

	Creating a custom feature
	Creating an interface
	To create the IParcel interface
	To create the IBuilding interface

	Creating a RelationshipClass
	To create the relationship class

	Creating a ClassExtension
	UML modeling summary

	Exporting a model to the Repository
	
	To export the model to a Repository

	Generating code
	Adding the code generation wizard to Developer Studio
	To load the code generation wizard add-in

	Overview of the code generation
	Connecting to the repository
	Selecting the object model
	Defining the custom features to create
	Defining custom feature properties
	To contain the interface and override methods

	Defining the output Developer Studio project

	Adding custom behavior
	Generated code
	Inserting helper files
	Adding behavior for building
	Adding behavior for parcel

	Creating the schema
	
	To add the wizard command to ArcCatalog

	Overview of the schema creation
	Creating the schema
	Verifying the schema

	Using the custom features in ArcMap
	Testing the custom feature behavior

