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Introduction The ArcGIS® Survey Analyst/Cadastral Editor adjustment process is 
uniquely designed to test the integrity of a cadastral boundary network and 
to derive the most likely position for every point in the network. Part of 
that process uses a least-squares procedure with parcel dimensions treated 
as observations in a similar way to the adjustment of geodetic networks.  
 
This paper attempts to explain the least-squares adjustment process used by Cadastral 
Editor in mathematical detail. Equations used in computing the adjustment are given 
without derivation; however, references to the standard literature are provided. The 
primary purpose is to expose the background, theory, and application of the least-squares 
method to ArcGIS Survey Analyst/Cadastral Editor.  
 
Surveyors have shied away from least-squares adjustments in large part because of a lack 
of understanding. The method is even more nebulous to the average land records expert 
who may make extensive use of Cadastral Editor. But the least-squares adjustment forms 
the kernel of Cadastral Editor—a powerful tool for improving the accuracy of other GIS 
databases. For this reason, an explanatory supplement exposing the particular way 
Cadastral Editor implements the least-squares adjustment method is justified. 
 

Unique 
Characteristics of 

the Cadastral Editor 
Approach 

Cadastral networks can be large and very complex. An initial analysis attempts to detect 
and report on data problems that could distort the adjustment. Typical errors checked for 
prior to adjustment are listed below. 
 

 General data errors 
 

● No height data—The software assumes an elevation of zero. 
● From and To points of a line are the same. 
● There is a break in observational sequence of a line. 
● The coordinates of the From and To points are the same. 

 
 Bearing and distance measurement blunder check: Checks that the difference 

between the bearing and distance computed from the initial coordinates and the 
measured values is less than a specified tolerance.  

 
 Close points check: The close points check flags any points closer than a specified 

distance that do not have a dimension between them.  
 
Cadastral networks possess unique characteristics, and some of these are exploited in 
formulating observation equations. For example, a cadastral survey may have a particular 
basis of bearing or azimuth reference that differs from that of the lines bounding each 
parcel, and consequently, each parcel can be treated like a direction set with an unknown 
orientation.  
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Distances stated on cadastral plans typically reflect the measurements made by the 
surveyor in the field. Each distance can be considered a ground distance, being the 
horizontal projection of the measured slope distance at the mean height of the line. 
Because the adjustment is carried out on a projection plane, ground distances must be 
converted to grid distances during the formulation of the observation equations. Since 
height is a parameter in this conversion, the height adopted for each line is that of the 
nearest control point. 
 
Parcel joining (see Cadastral Editor documentation) generates initial coordinates for 
every point in the network, and these values may or may not be on the datum and 
projection of the control points. This process transforms the parcel point coordinates to 
the control system so that the magnitude of the corrections during the least-squares 
procedure is minimized. Observation equations are formed for each parcel bearing, 
distance, and line point. Weights can be assigned automatically to all bearings and 
distances according to the date of survey, or these values can be assigned by the user. The 
normal equations are solved using a Cholesky decomposition procedure. 
 
After completion of the least-squares adjustment, a few postprocessing procedures may 
be applied to enforce geometric constraints. These include enforcing line points and 
straight lines. When a line point is within the tolerance specified, it will be shifted back 
onto its corresponding boundary line. If it is outside the tolerance, a warning is written to 
the adjustment report. Enforcing straight lines retains the original subdivision structure. 
Often, a series of adjacent lots in a plan requires that front and/or back lot lines have the 
same bearing, meaning that the individual lot lines are intended to be collinear. Enforcing 
straight lines detects these plan structures and, if the boundary points are within the 
specified tolerance, will make these lines collinear. Unlike geodetic networks, cadastral 
networks may contain measurements that do not contribute to the adjustment results. 
These include isolated radiations or traverse lines connected to the network at only a 
single point. Such measurements are isolated from and recomputed after the adjustment 
process. 
 

1. Coordinate 
Transformation 

 

 
1.1 Background This section describes the technical procedure for transforming joined parcel fabric 

coordinates into the control coordinate system.  
 
Parcel joining is the process of connecting common points from an unjoined parcel to 
their equivalents in the cadastral fabric. Parcel joining generates the topology and 
connectivity of the fabric. Joining also uses a coordinate transformation between the 
unjoined parcel's local coordinate system and the projected coordinate system of the 
fabric. But because this transformation uses only the fabric coordinates and not control 
coordinates, inconsistencies can arise between fabric measurements and cadastral corner 
coordinates. To improve the consistency between control and fabric measurements, 
another transformation is applied just prior to performing a least-squares adjustment.  
 
Coordinates of designated control points, along with their coordinate values obtained 
after the parcel joining process, are used together to determine transformation parameters 
between the control coordinate system and that of the joined parcel fabric. 
Transformation parameters are estimated using a two-dimensional linear conformal 
transformation or Helmert transformation. Conformal transformations preserve shape 
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among the relative positions of the transformed points. This property makes them suitable 
for transforming surveys with point coordinates in two distinct coordinate systems into 
one or the other of those systems.[1]∗ This is precisely what needs to be done to put a  
newly joined fabric into the coordinate system defined by the control points. Residuals 
after transformation are reported at each control point, and if these are within some 
prespecified tolerance, the parcel fabric is transformed into the control coordinate system 
using the estimated parameters.[2] This process serves three purposes: 
 

 Allows verification of the quality of the fabric points to be used in the least-squares 
adjustment 

 
 Permits the transformation of the joined fabric into the control coordinate system 

 
 Provides approximate coordinates on all parcel points needed in the fabric least-

squares adjustment 
 

1.2 Basic Theory The Helmert transformation, also referred to as two-dimensional linear conformal 
transformation or four-parameter similarity transformation, does not allow for  
deformation of the space transformed. Shape is retained after transformation except for a 
possible uniform scaling.[3] Helmert transformations are characterized by[4] 
 

 Scale—to create equal dimensions in the two coordinate systems 
 Rotation—to make the reference axes of the two systems parallel 
 Translation—to create a common origin for the two coordinate systems 

 
Scale and rotation are each defined by one parameter, and translation involves one 
parameter for each coordinate direction—for a total of four parameters. Having a 
minimum of two points with coordinates in both coordinate systems—called common 
points—permits a unique solution of the four parameters of the transformation. Having 
more than two common points allows estimation of the parameters by least squares. Once 
the values of the transformation parameters have been determined, points in the fabric 
coordinate system may be transformed into the control coordinate system.  
 

1.3 Implementation Figure 1 illustrates a two-dimensional Helmert transformation. 
 

                                                 
∗ Where bracketed numbers appear (e.g.,[1]), refer to complete citation in the Reference section of this 

document. 
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Figure 1 
Geometry of the Two-Dimensional Helmert Transformation 

 

 
 

The relationship between the control and parcel fabric coordinate systems is given by[3] 
 

(1.01)  
( ) ( )
( ) ( )

cos sin

sin cos

P p p X

P p p Y

X S x S y T

Y S x S y T

θ θ

θ θ

= − +

= + +
, 

 
where 
 

Xp = x-coordinate (easting) in the control coordinate system 
Yp = y-coordinate (northing) in the control coordinate system 
xp = x-coordinate (easting) in the joined fabric coordinate system  
yp = y-coordinate (northing) in the joined fabric coordinate system  
S = scale factor between the control and joined fabric coordinate 

systems 

θ  = rotation angle between the control and joined fabric coordinate 
systems. 
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Letting  
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, 

 
then (1.01) becomes 
 

(1.02)  
p p p

p p p

X ax by c

Y bx ay d

= − +

= + +
, 

 
where 
 

c = TX translation in x-direction between the control and joined fabric 
coordinate systems 

d = TY  translation in y-direction between the control and joined fabric 
coordinate systems. 

 
The unknown coefficients to be estimated are a, b, c, and d. These four unknowns are 
functions of the transformation parameters S, θ , XT , and YT , which can be deduced if 
desired. Since two equations can be written for every common point, two common points 
provide four equations and are sufficient for a unique solution. When more than two 
common points exist, a least-squares solution can be found. The observation equation 
form of (1.02) is[4] 
 

(1.03)  
.

p

p

p p p X

p p p Y
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− + = +

+ + = + +
 

 
For n common points (n > 2; i = 1, 2,…, n) there are 2n coordinates from which a least-
squares solution can be obtained according to the following algorithm:[5] 
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(1.04d)  ,ˆˆˆ,ˆˆˆ yaxbYdybxaXc −−=+−=  
 
where â , b̂ , ĉ , and d̂  are the least-squares estimates of the transformation parameters 

a , b , c , and d . Adjusted coordinates are computed by substituting â , – b̂ , – ĉ , and 

d̂  into (1.02), that is, 
 

(1.04e)  
.ˆˆˆˆ
ˆˆˆˆ

dyaxbY

cybxaX

iii

iii

++=

+−=
 

 
Residuals are obtained from 
 
(1.04f)  .ˆ,ˆ

iiYiiX YYvXXv
ii

−=−=  
 
After adjustment, each control point used in estimating the parameters is quantitatively 
assessed and, depending on the outcome, accepted or rejected from the set of control 
points used for estimating the parameters. The testing process is as follows:  
(1) transformation parameters are first computed using all the control points; (2) the 
residual at each common point is the difference between the computed values and the 
control values; (3) the point with the largest residual is excluded and the parameters are 
recomputed; (4) the standard error of the residuals of this new adjustment is computed; 
and (5) if the residuals of the excluded point are greater than three times this standard 
error, then the excluded point is rejected and the testing procedure applied again to the 
remaining control points.  
 
This process continues until an excluded point passes the residual test. It is then included 
back into the adjustment and final transformation parameters are computed. The 
schematic algorithm below shows the iterative process of assessing the quality of control 
points.[6] 
 

Control Point Quality Assessment Schematic Algorithm 
 

Step 1: Find the maximum residual after adjustment using 
iik YXiMAX vvvv ,max ∈= , 

where k is the adjustment run index. Exclude the control point with the largest residual 
and recompute the transformation parameters using (1.04). 
 
Step 2: Calculate the root-mean-square (RMS) of the residuals, 

( )
1

* 2

2 2 *

1
2

i i

n

v X Y
i

s v v n
=

⎡ ⎤
= +⎢ ⎥
⎣ ⎦
∑ . 

 
Step 3: If 3

kMAX vv s> , then reject the offending control point and repeat steps 1 to 3. 
 
Step 4: If 3

kMAX vv s< , then insert the excluded control point back into the set and 
recompute final transformation parameters. 

 
 



 
 
 ArcGIS Survey Analyst/Cadastral Editor: Least-Squares Adjustment of the Cadastral Fabric 
 

 
J-9625 

 
 

 
 

 

ESRI Technical Paper 7 

Having obtained the least-squares estimates for the transformation parameters, the control 
system coordinates for the parcel fabric points can be computed by applying (1.04e), 
where Xi and Yi are the control system coordinates for parcel points xi and yi. 
 

2. Least-Squares 
Adjustment 

Mathematical Model 

 

 
2.1 Preprocessing 

and Data 
Preparation 

Section 1 described the process of transforming the parcel fabric coordinates into the 
control coordinate system. Upon successful completion of this step, Cadastral Editor 
performs a number of data preparation processes prior to carrying out the least-squares 
adjustment on the parcel fabric measurements. These preparatory steps, briefly outlined 
in the introduction, are more fully described in Elfick (2005).[2] 
 

2.2 Motivation and 
Basic Theory 

Cadastral Editor uses a weighted least-squares adjustment to derive the most probable 
values of the coordinates of each parcel fabric point. The adjustment consists of two 
components: the functional model and the stochastic model. The functional model is  
a set of observation equations relating the measurements to the unknowns. Cadastral 
Editor's functional model is based on a conformal map projection, the unknowns to be 
estimated being grid northing and easting. The stochastic model describes the expected 
errors associated with the measurements and, based on these, assigns each measurement a 
weight for use in the adjustment.  
 
Least-squares theory, derivation of observation equations, matrix solution, and practical 
application are readily found in the literature as well as texts on surveying.[7,8,3,9,10,4] The 
reader is directed to these sources for theoretical background. 
 

2.3 Functional Model Cadastral Editor uses a two-dimensional functional model based on a plane rectangular 
coordinate system. Heights of points are not considered within this model, but heights are 
needed during the preprocessing of observations. The table below lists the measurements 
adjusted in Cadastral Editor and their general functional relationship to the unknowns.  
 

Measurement Functional Model Unknowns 
Distance ),,,( jjiiij YXYXfd =  =iX easting of point i 
Direction ),,,,( ijjjiiij OYXYXfb =  =iY northing of point i 
True Midbearing ),,,( jjiiij YXYXfa =  =iX easting of point j 
  =iY northing of point j 
  =ijO parcel orientation   

unknown 
 

2.3.1 Distance 
Reductions 

Distances are assumed to be horizontal and are measured at the mean elevation of the 
parcel fabric project. Since the least-squares adjustment takes place on the projection 
plane (grid surface) defined by the project spatial reference system, all distances must 
undergo a reduction to the projection plane. Reduction of measured horizontal distances 
to the grid projection plane is a two-step process. First, the horizontal distance is reduced 
to the reference ellipsoid using the computed elevation factor (also called sea level 
reduction), then this geodetic distance is further reduced to a grid distance using the point 
scale factors computed at the endpoints of the line. Grid distance is obtained from[11]  
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(2.01)  ,HleHG kdkkdd ==  
 
where 
 

=Gd  grid distance 

=Hd  measured horizontal distance 

=ek  elevation factor 

=lk  line scale factor  

== lekkk  combined scale factor. 
 
The elevation factor ek  is computed from 
 

(2.02)  ,
NHR

R
hR

Rke ++
=

+
=  

 
where 
 
=R  mean radius of the earth  
=h  height above the reference ellipsoid 
=H  orthometric height 
=N  geoid undulation. 

 
In (2.01), the line scale factor lk  is derived from the mean point scale factors at the 

terminal ends of the line, 
1pk , and 

2pk , that is, 
 

(2.03)  
2

21 pp
l

kk
k

+
= . 

 
Point scale factors depend on the reference ellipsoid and map projection used to define 
the spatial reference system. Cadastral Editor employs a different approach in computing 
the line scale factor because the calculation of pk  is difficult. Cadastral Editor makes use 
of the ESRI Projection Engine set of computational routines allowing any supported map 
projection to be used as the grid surface for the cadastral fabric adjustment. Given 
projection (grid) coordinates for the fabric points, the following schematic algorithm is 
implemented for computing elevation factor ek  and line scale factor lk . 
 

Scale Factor Schematic Algorithm 
 
Step 1: Transform the (X, Y) coordinates of the line endpoints into latitude and 
longitude using ESRI Projection Engine routines, (PCS)⇒ (GCS). 
 
Step 2: For each endpoint, compute mean radius of curvature Rϕ  at latitude ϕ  (e.g., 
equation (3.45) in Lauf [1983]).[13] 
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Scale Factor Schematic Algorithm (continued) 
 
Step 3: Compute elevation factor ek using (2.02) and Rϕ   from step 2. In (2.02), the 
height of the nearest control point to the line in question is substituted for h. 
 
Step 4: Compute ellipsoidal distance 12s  using Robbins' geodetic direct problem 
algorithm (e.g., page 64 in Lauf [1983]).[13] 
 

Step 5: Compute grid distance using ( ) ( )212
2

12
ooooo

G EENNd −+−= , where 
o
i

o
i EN ,  are approximate grid coordinates from the coordinate transformation 

described in section 1.3, taking o
i iX E= and o

i iY N= . 
 

Step 6: Compute line scale factor using
12s

d
k

o
G

l = .' 

 
Approximate grid coordinates for the terminal endpoints come from the coordinate 
transformation applied to the parcel fabric (see section 1.3) and are satisfactory as 
arguments for computing the line scale factor. Cadastral Editor also allows a single 
average combined scale factor for the project area to be defined by the user. In this case, 
ground distances are reduced to the grid directly using the user-defined combined scale 
factor. 
 
The elevation factor given by (2.02) depends on the spatial reference system since the 
mean radius of the earth, ellipsoidal height, and geoid undulation all depend on the 
reference ellipsoid chosen. If no user-defined combined scale factor is given, Cadastral 
Editor determines the approximate height for input in (2.02) from the height of the 
nearest control point to the measured line in question. The correct height to use in 
computing the elevation factor is an ellipsoidal height, not an orthometric height. Since 
ellipsoidal heights can differ from orthometric heights by up to 100 meters, using the 
orthometric height of a control point in (2.02) will yield an incorrect elevation factor. 
When distances are reduced using (2.02) with orthometric heights instead of ellipsoidal 
heights, the error in reduced distance is given by[12] 
 

(2.04)  .
2

21
GG d

R
NN

d
+

=Δ  

 
This equation quantifies the effect of neglecting geoid undulation in reducing distances to 
the projection plane. The error GdΔ  affects the scale of the cadastral fabric being 

adjusted. For example, taking 3021 == NN  m and 6,371R =  km, (2.04) gives a 
scale error of about 5 ppm (5 mm per km). If a scale factor is supplied to Cadastral Editor 
during data entry, then the software will use it as the combined scale factor k  to reduce 
all entered horizontal distances to grid distances. 
 

2.3.2 Distance 
Observation Equation 

Distance observation equations relate measured lengths and their inherent random errors 
to the most probable coordinates for their endpoints[7] (refer to figure 2).  
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Figure 2 
Distance Observation Equation 

 

 
 
The following observation equation may be written for any line IJ:[1,9] 
 

(2.05)  ,)ˆˆ()ˆˆ( 22
ijijdij YYXXvd

ij
−+−=+  

 
where ijd  is the measured grid distance of the line between points I and J, 

ijdv  the 

measurement residual, )ˆ,ˆ( ii YX  the adjusted grid coordinate values for parcel point I, 

and )ˆ,ˆ( jj YX  the adjusted grid coordinate values for parcel point J. The linearized 
distance observation equation is given by 
 

(2.06)  
ij ij

o o o o o o o o
i j i j j i j i

d i i j j do o o o
ij ij ij ij

X X Y Y X X Y Y
v X Y X Y f

d d d d
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − −

+ Δ + Δ + Δ + Δ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

 
In (2.06), o

j
o
j

o
i

o
i YXYX  and , , ,  are initial approximations of the unknowns 

, and , , , jjii YXYX  computed after application of the final transformation 
parameters in (1.04) (see section 1.3); 
 

22 )()( o
i

o
j

o
i

o
j

o
ij YYXXd −+−= ; 

 
(2.06a)  ij

o
ijd ddf

ij
−= ; 
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and jjii YXYX ΔΔΔΔ  and , , ,  are corrections to be applied to the initial 
approximations such that 
 

(2.06b)  

.ˆ

ˆ

ˆ

ˆ

j
o
jj

j
o
jj

i
o

ii

i
o
ii

YYY

XXX

YYY

XXX

Δ+=

Δ+=

Δ+=

Δ+=

 

 
2.3.3 Bearing 

Reductions 
A geodesic on the surface of the ellipsoid projects as a curved line on a conformal map 
projection, with its concave side facing the central meridian.[13] The difference between 
the azimuth of the tangent to the projected geodesic of a line and the grid azimuth of the 
same line is called the curvature correction,[14] also known as arc-to-chord, T-t, second-
term, or second-difference correction. The magnitude of T-t depends on the projection, 
direction, and length of the line and its location within a grid zone. Maximum T-t occurs 
for long lines located near the edge of zones and oriented parallel with the projection's 
standard lines.[11] Calculation of T-t also depends on the projection used. Currently, 
Cadastral Editor calculates T-t for Universal Transverse Mercator (UTM) and Lambert 
Conformal Conic (LCC) projections. Since Cadastral Editor assumes bearings to be grid 
bearings, the T-t correction is applied to all measured angles when converting them into 
grid bearings, and both T-t and convergence corrections are applied to measured 
azimuths when converting them into grid bearings. These concepts are illustrated in 
figure 3 below. 
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Figure 3 
Meridian Convergence and (T-t) Correction 

 

 
 
The bearing of a line differs at each point along the line, so for very long lines, true  
midbearings are often used in cadastral surveys. A true midbearing is the grid azimuth of 
a line plus the grid convergence at its midpoint. To obtain a true midbearing on a curved 
surface, half the meridian convergence of the line needs to be applied at one end. 
Cadastral Editor makes use of the ESRI Projection Engine set of computational routines 
allowing any supported map projection to be used as the grid surface for cadastral fabric 
adjustment. Given projection (grid) coordinates for the fabric points, the following 
schematic algorithm is implemented for handling true midbearings: 
 

Conversion of True Midbearing to Grid Bearing Schematic Algorithm 
 
Step 1: Compute meridian convergence 1γ  and 2γ  at each endpoint using ESRI 
Projection Engine routines, (PCS)⇒ (GCS).  
 

Step 2: Compute grid azimuth Gt  using 1 2

2G mt t γ γ+⎛ ⎞= − ⎜ ⎟
⎝ ⎠

, where mt  is the 

measured true midbearing between the endpoints of the line. 
 

 
2.3.4 Bearing 

Observation Equation 
Bearings are usually not observed directly but derived either from measured angles, GPS 
baselines, or some other combination of field survey measurements. Bearing observation 
equations relate measured (or derived) bearings and their inherent random errors to the 
most probable coordinates for their endpoints [7] (refer to figure 4). 
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Figure 4 
Bearing Observation Equation 

 

 
 

The following observation equation may be written for any bearing line IJ:[4] 
 

(2.07)  1
ˆ ˆ

tan ˆ ˆij

j i
ij b

j i

X X
b v

Y Y
−
⎛ ⎞−

+ = ⎜ ⎟⎜ ⎟−⎝ ⎠
, 

 

where ijb  is the measured bearing of the line between points I and J; 
ijbv  is the 

measurement residual; )ˆ,ˆ( ii YX  is the adjusted grid coordinate values for parcel point I; 

and )ˆ,ˆ( jj YX  is the adjusted grid coordinate values for parcel point J. The correct 

quadrant for the bearing ijb  is determined by the sign of the numerator and denominator 
in the tangent function argument.  
 
Cadastral Editor treats the bearings of each parcel similar to a direction set where an 
unknown orientation is included in the bearing observation equations for each parcel. In 
this context, a direction set is defined as a collection of observations defined by the 
bearings of the parcel lines. The parcel bearings are correct with respect to each other, but 
the collection of parcel lines as a whole may be rotated with respect to the grid. This 
rotation is the orientation unknown to be calculated for the parcel. The orientation 
unknown is the correction that should be applied to each bearing in the collection to align 
it with its grid bearing as closely as possible. The approximate orientation is computed 
from the transformation parameters estimated during parcel joining (see section 1.1). 
That is,  
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(2.08)  1
ˆ

tan
ˆ

o
ij

bO
a

− ⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
, 

 
where â  and b̂ are the estimated transformation parameters obtained when the parcel is 
joined into the existing fabric. The fabric least-squares adjustment estimates a correction 
to be applied to the initial orientation approximation such that 
 
(2.09)  ij

o
ijij OOO Δ−=ˆ . 

 
The linearized bearing observation equation is given by 
 

(2.10)  
( ) ( ) ( ) ( ) ,2222 ijij bijjo

ij

o
j

o
i

jo
ij

o
i

o
j

io
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o
i

o
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o
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o
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b fOY
d
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X

d

YY
Y

d

XX
X

d
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+Δ⎟
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⎜
⎜

⎝

⎛ −
+Δ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
+Δ⎟

⎟
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⎞

⎜
⎜

⎝

⎛ −
+  

 
where jjiijjii

o
j

o
j

o
i

o
i YXYXYXYXYXYX ΔΔΔΔ  and  , , ,, , , ,, , , ,  are 

defined as in equation (2.06)  
 

  ( ) 222 )()( o
i

o
j

o
i

o
j

o
ij YYXXd −+−= ,   

 
(2.10a)  ij

o
ijb bbf

ij
−= , and  

 

 1tan
o o
j io

ij o o
j i

X X
b

Y Y
−
⎛ ⎞−

= ⎜ ⎟⎜ ⎟−⎝ ⎠
. 

 
2.3.5 True 

Midbearing and 
Azimuth Observation 

Equations 

Since a true midbearing is really an azimuth, it does not contain an orientation term. 
Therefore, the linearized true midbearing or azimuth observation equation is given by 
 

(2.11)  ( ) ( ) ( ) ( ) ,2222 ijij ajo
ij

o
j

o
i

jo
ij
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j

io
ij
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X
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⎠
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⎜
⎜

⎝

⎛ −
+Δ⎟
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⎞

⎜
⎜

⎝
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+Δ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
+Δ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
+  

where ija  can be substituted for ijb  in equations (2.10a) and the remaining terms are 
defined as in equations (2.06).  
 

2.4 Stochastic Model The determination of variances, and subsequently the weights of measurements, is known 
as the stochastic model in a least-squares adjustment.[4] The stochastic model is as  
important as the functional model since failure to select the stochastic model correctly 
can affect the ability to isolate blunders in a set of observations and, if grossly incorrect, 
can bias the adjusted parameters. 
 
Cadastral Editor assumes all survey measurement errors to be random, normally 
distributed, and uncorrelated. For normally distributed measurement errors, the precision 
of the measurement is quantified by the variance 2σ  (or standard deviation σ) of the 
errors. In surveying, measurement variances are typically formulated based on extensive 
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analysis of instrumentation characteristics, operation, environmental conditions, and 
typical field measurement procedures. For a set of uncorrelated observations, a 
measurement with a high precision, as indicated by a small variance, implies a good 
observation and in the adjustment should receive a relatively small correction. The 
converse is also true.  
 
The weight of an observation is a measure of its relative worth compared to other 
measurements. Weights control the sizes of corrections applied to measurements in an 
adjustment; specifically, correction size is inversely proportional to the weight. The more 
precise an observation is, the higher its weight, or equivalently, the smaller the variance, 
the higher the weight. In other words, weights are inversely proportional to variances.[4]  
 
Cadastral Editor provides a default weighting scheme whereby measurement weights are 
automatically assigned according to the date of survey. Weight factors have been 
determined after examination of the survey practice regulations in force at various times 
and from experience with a wide variety of cadastral data in Australia. The survey 
practice regulations generally reflect the measurement technology available at each 
period in time and so provide a means of assessing the relative accuracy of surveys of 
differing vintage. The situation in Australia serves to illustrate this weighting strategy. 
 
Prior to 1880, most boundaries were measured with Günter's chain and circumferentor, a 
compass with sighting vanes mounted on a tripod. In 1880, it became mandatory in 
Australia to use a theodolite (or transit) with a vernier reading to about 20 seconds of arc. 
At the same time, the long steel band came into use. This was a flat wire approximately 

8
1 " wide and 64

1 " thick with scribed brass ferrules every 10 links and a reader at one end. 
If used carefully, these steel measuring bands could provide measurement accuracy to 
better than 1/10,000. Between 1880 and 1900, it seemed that standards gradually 
improved as surveyors became familiar with this technology. By 1970, electromagnetic 
distance measurement (EDM) started to make its effect in the cadastral surveying 
community, along with the replacement of vernier theodolites with optical micrometers 
and glass circles. Modern survey practice now makes use of total stations with combined 
EDM and electronic horizontal and vertical circles and the ubiquitous global positioning 
system (GPS). 
 
A system of automatic weighting based on survey date provides a relatively trouble-free 
adjustment with no operator intervention necessary. If required, the automatic weighting 
can be overridden for individual parcels and lines. Here the user can manually set the 
weights so that individual lines in a parcel have different weights, or a uniform weighting 
scheme can be defined for an entire plan. The default automatic weighting values are 
listed in the table below.[2] 
 

Automatic Measurement Weighting Based on Survey Vintage 
 Bearings, b   
Category Std. Dev., bσ  

(seconds) 

Constant, a 
(meters) 

Distances, d 
PPM, b 

1—Highest 5 0.001 5 
2—After 1980 30 0.01 25 
3—1908–1980 60 0.02 50 
4—1881–1907 120 0.05 125 
5—Before 1881 300 0.20 125 
6—1800 3600 1.0 1000 
7—Lowest 6000 10.0 5000 
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Based on the values tabulated, measurement weights are computed as follows: 
 

(2.12a)  ( )[ ] ,m 10 2262
Gd dba −⋅+=σ  

 

(2.12b)  2-
2 m 1

d
dw

σ
= , 

 

(2.12c)  2-
2 sec 1

b
bw

σ
= , 

 
where 2

dσ  is the variance of the measured distance; dw  is its corresponding weight; and 

bw  is the weight of the measured bearing or azimuth. Weights must match the 
measurement units of their corresponding measurements in the observation equations. 
 

3. Least-Squares 
Adjustment 

 

 
3.1 The Least-

Squares Principle 
Owing to the stochastic nature of measurements, redundant observations are not 
compatible with the functional model. Any subset of measurements sufficient to 
determine the unknown parameters will yield different parametric estimates from any  
other subset.[3] Stated another way, when the linearized functional model has more 
observation equations than unknown parameters, the solution is overdetermined. 
Overdetermined systems contain more observations than necessary for the determination 
of the unknowns. This results in the inability to obtain a unique set of unknown 
parameters that will satisfy all the observation equations.[14] The problem is solved by 
replacing the original set of measurements L with an estimated set vLL +=ˆ , where v 
is a set of corrections or residuals to the original observations.  
 
The presence of redundant measurements suggests an infinite number of estimates for v 
or L̂  that would satisfy the functional model. Among all the possibilities, there exists 
one set of estimates that, in addition to being consistent with the functional model, 
satisfies the fundamental least-squares criterion. The least-squares criterion states that the 
sum of the squares of the weighted residuals must be a minimum, that is 
 
(3.01)  minimum, →= Wvv tφ  
 
where W is the weight matrix of the observations and v is a vector of residuals.[3] This 
criterion ensures that the new observational estimates L̂ are as close as possible to their 
measured values, taking their stochastic properties also into account.  
 

3.2 Formulation and 
Solution of the Least-

Squares Problem 

 

 
3.2.1 Linearization 

and Iteration 
Least-squares treatments are generally performed with linear functional models. 
Consequently, whenever the equations in the model are nonlinear, some means of 
linearization must be employed to obtain linear equations. The functional models applied  
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in Cadastral Editor are nonlinear (cf. equations [2.05] and [2.07]). These nonlinear 
models have been approximated with the linear part of a Taylor series expansion 
resulting in[14] 
 

(3.02)  ( ) 0X
X
FLXFLXXFLXF

oXX

≅Δ⎥⎦
⎤

⎢⎣
⎡
∂
∂

+≅Δ+=
=

),(),(),( oo , 

 
where oXXX −=Δ  is the matrix of updates to the estimated parameter vector X  
(cf. [2.06b]). The partial derivatives in (3.02) yield the coefficients in the linearized 
observation equations (2.06), (2.10), and (2.11). The points of expansion oX  in (3.02), 
and therefore in equations (2.06), (2.10), and (2.11), are the parcel corner coordinates 
obtained from the Helmert transformation described in section 1.3. In matrix form, (3.02) 
can be written as follows: 
 
(3.03)  0fXA =+Δ . 
 
This equation is simply the differential form of the original nonlinear functional model 
and describes the relation of the quantities in the neighborhood of LX  ,o , and f  ( f  is 
called the constant or misclosure vector). After least-squares adjustment, the solution 
vector XΔ  is obtained, yielding updated unknown parameters XXX Δ+= o . Often, 
however, oX  is not a close enough approximation and XX Δ+o  yields only an 
improved approximation of the unknowns. The updated vector of unknowns must now be 
used again in (3.03) and the least-squares solution iterated again to obtain a new vector 

XΔ , the elements of which should be smaller than those of the previous one. This 
process is repeated until the last value of XΔ  is insignificantly small and the iterative 
procedure terminates. The final estimate of the unknown parameters X̂  will be the sum 
of the original approximation oX  and all the correction vectors XΔ . 
 

3.2.2 Least-Squares 
Solution 

For a parcel fabric comprising n measurements, m coordinates, and orientation 
unknowns, the weighted observation equations in matrix form are given by 
 
(3.04)  WdWAΔWVWL =++   or ,)( WfLdWWAΔWV =−=+  
 
where ),( LXFd o=  are the observation equations evaluated using approximate values 
of the unknown parameters and XΔ Δ≡ . The matrices in (3.04) have the following 
form:[9] 
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(3.04a)  
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with weight matrix 
 

(3.04b)  
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, 

 
and where 
 

nvvv ...,,, 21  are the residuals for the n measurements; 
 

nmaaa ...,,, 1211  are the numerical coefficients of the unknown parameters (from [2.06], 
[ 2.10], and [2.11]); 
 

mΔΔΔ ...,,, 21  are the m unknown parameters or updates to them (cf. [2.06b]); 
 

nddd ...,,, 21  are numerical constants obtained by evaluating the observation equations  
at the expansion points, that is, the approximate coordinates of the parcel corners  
(cf. [2.14] and [2.06a], [2.10a], and [2.11]); 
 

nlll ...,,, 21  are the numerical values of the n measurements; 
 

nfff ...,,, 21  are numerical constants on the right-hand side of the observation 

equations, that is, ii ld −  (cf. [2.14] and [2.06a], [2.10a], and [2.11]); and 
 

nnwww ...,,, 2211  are the uncorrelated weights of the n measurements. Imposing the 
least-squares condition of (3.01) on (3.04), it can be shown that the least-squares solution 
is given by[3,8] 
 
(3.05)  WfAWAAΔ 1 tt −= )( , 
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letting 
 

WAAN t=  and WfAt t= ,   
 
(3.05)  becomes 
 
(3.06)  tNΔ 1−= . 
 
In (3.06), N is the m × m matrix of normal equations, t is the m × 1 vector of constants, 
and Δ is the m × 1 solution vector of corrections to the approximate coordinates and 
unknown orientations. Having obtained Δ, the adjusted observations and residuals are 
obtained directly from 
 
(3.07)  AΔfLL −+=ˆ   
 
and 
 
(3.08)  AΔfLLv −=−= ˆˆ . 
 
If observation weights have been chosen correctly, then the precision of the estimated 
parameters is obtained from the postadjustment covariance matrix, that is,  
 
(3.09)  1

XΔ NCC −== ˆ . 
 
An unbiased estimate of the a posteriori reference variance after adjustment is obtained 
from 
 

(3.10)  
r

t

o
Wvv

=2σ̂ , 

 
where mnr −=  is the number of degrees of freedom (or redundancy) in the network, 
defined as the number of observations n minus the number of unknown parameters m.  
 
It is often the case in adjustments that actual observation weights are replaced by relative 
weights, or the weights chosen are biased by some unknown factor. In these cases, the 
weight coefficient is taken as the reference variance given by (3.10) and the actual weight 
of an observation is obtained from 2 2ˆi o iw σ σ= . When weights are chosen correctly, 

2ˆoσ  should equal unity. If this is not the case, then the covariance matrix in (3.09) should 

be scaled by the reference variance 2ˆoσ  to obtain the correct precision of the estimated 
parameters. 
 

3.2.3 Iteration 
Termination for 

Linearized Least-
Squares 

The following discussion is crucial for Cadastral Editor users because the software 
provides no numerical indicator(s) of when and if a satisfactory least-squares solution has 
been attained. The decision to repeat the adjustment and how many iterations are needed 
is left entirely to the user's discretion. 

As mentioned in section 3.2.1 and implied in section 2.3, the functional models of this 
adjustment are nonlinear and must be linearized using the Taylor series expansion given 
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by (3.02). This means that the least-squares equation in (3.06) must undergo repeated 
recomputation of the nonlinear observation equations until some satisfactory solution is 
reached. To terminate this iterative process, a criterion, or criteria, must be defined by 
which to ascertain that a solution has converged sufficiently close to the theoretical 
nonlinear solution. The chosen criterion should be a representative indicator of 
convergence and possess high discriminative power to signalize the attainment of 
convergence. Several methods present themselves.[3,4] 
 

 Maximum increment method: This method involves monitoring the absolute 
magnitude of the increments to the coordinate parameters (Δ) or functions of such 
increments. Once the stated condition is satisfied, convergence has occurred and 
iteration is stopped. There are several ways to accomplish this.  

 
(a) After sufficient iterations of (3.06), the value of each increment (Δ) should 

approach zero. A negligibly small threshold ε may be used as a criterion for 
iteration termination: 

 
(3.11a)  ε<Δ . 

 
(b) Instead of requiring that each increment approach zero, it may be sufficient to 

check the maximum increment: 
 

(3.11b)  ε<maxΔ . 
 

(c) Another criterion may involve testing a function of the coordinate increments 
instead of individual increments such as 

 
(3.11c)  222 ˆˆ ε<+ YΔXΔ . 

 
This test is particularly interesting as it resembles a type of spatial convergence. 
Convergence is attained when the radial increment to each point is such that it lies 
within a negligibly small circle of radius ε. A maximum radial increment 
implementation similar to (3.11b) is also a possibility.  

 
 Maximum residual method: When all residuals achieve their maximum value, or 

equivalently, when the absolute change in each residual between iterations becomes 
negligibly small, then convergence has occurred, that is, 

 
(3.11d)  jjkk ε<−− vv 1 . 

 
Here k is the iteration number and j the observation type, suggesting different 
thresholds for different kinds of observations (e.g., distances vs. bearings). This 
criterion suits Cadastral Editor particularly well since residuals form the singular 
indicator of the quality and success of the adjustment. The test itself, however, may 
not be sensitive to gross errors since the residuals of even the bad observations may 
have already reached their maximum value and condition (3.11d) will be satisfied. 
Of course, examination of the actual values of the residuals should indicate the 
presence of the blunder and, for well-conditioned networks, the culprit observation. 
Conversely, where multiple blunders exist because of a flawed functional model or 
an unrealistic stochastic model, the adjustment may fail to converge based on criteria 
(3.11d) even after many iterations.  
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 Monitoring the reference variance: Since the least-squares method converges 
quadratically, the iterative process should definitely be stopped if the reference 
variance of (3.10) increases. An increasing reference variance suggests a diverging 
solution. By monitoring the change in reference variance from one iteration to the 
next, convergence or divergence can be detected. It is assumed convergence has 
occurred when the change in reference variance falls below some threshold value 
and may be tested by[3] 

 

(3.11e)  δ
σ
σ

σ
σσ

<−=
−

−−

−

11

1

ˆ
ˆ

1
ˆ
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k
o

k
o

k
o

k
o

k
o , 

 
where k is the iteration number. According to Mikhail (1976),[3] a suitable value for  
δ is 1 percent between iterations. If the reference variance increases, the solution is 
diverging and the iteration process should be terminated. Divergence can happen in 
one of two ways: (1) a gross error exists in the data, or (2) the maximum residual 
size is less than the precision of the measurements. In the second case, the solution 
has already converged, and when another iteration is attempted, the solution will 
converge only to diverge on the next iteration. This apparent oscillation between 
convergence and divergence in successive solutions is caused either by round-off 
errors or by convergence limits that are too stringent for the quality of the data. 
Nevertheless, monitoring changes in the reference variance will always indicate 
convergence or divergence in the least-squares solution[4]. On the other hand, 
Mikhail (1976)[3] asserts that testing convergence based on reference variance criteria 
can be unreliable in cases of adjustments with low numerical stability such as 
severely ill-conditioned survey networks. Since parcel fabric networks tend to be 
fairly well conditioned, (3.11e) may serve as a useful convergence criterion, ideally 
in conjunction with the maximum residual method of (3.11d). 

 
 Limited iteration method:  One very simple method of iteration termination 

involves limiting the number of iterations to a predefined maximum. The drawback 
of this method is that if this maximum is too low, convergence may not be attained at 
the termination of the process, and if it is too high, time is wasted on unnecessary 
iterations. Moreover, gross data errors can significantly affect both convergence and 
the iterations such that, in the presence of gross errors, it is possible to never reach 
convergence regardless of the number of iterations.  

 
After every manually executed iteration, Cadastral Editor outputs the following 
convergence indicators:  

 
● The increment iΔ  estimated for each coordinate 

● The maximum increment maxΔ applied 

● The average increment 
m
Δ
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3.2.4 Postadjustment 
Quality Indicators 

Cadastral Editor does not calculate the postadjustment covariance matrix in (3.09) or the 
a posteriori reference variance in (3.10). Instead, the software reports metrics to indicate 
the geometric distortion of each parcel with respect to its measured values. The results of 
the Cadastral Editor least-squares adjustment of a fabric comprise an adjustment 
summary, the results of preprocessing tolerance tests, adjusted cadastral corner 
coordinates, residual statistics, and statistics indicating the agreement between the 
adjusted values and the parcel measurements. For each parcel, linear and angular 
misclosure is given along with estimates of scale and rotation between the adjusted and 
measured parcel lines. 
 

3.3 Computational 
Methods and 
Optimization 

 

 
3.3.1 Generating the 

Normal Equations 
Adjustment of a large parcel fabric can lead to a very large system of normal equations, 
so any means to reduce computer storage space aids computational efficiency. Taking 
advantage of the structured form of a parcel fabric system of equations, Cadastral Editor  
uses a well-known systematic procedure to formulate the normal equations directly, one 
observation at a time. If the observations are independent and uncorrelated, then the 
weight matrix W will be diagonal and the intermediate stage involving formation of the 
A, W, AtW, and f matrices in (3.05) is unnecessary. It can be shown that the structure of 
the normal equations has the form[4] 
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where 
 

iii nba ...,,,  are numerical coefficients of the unknown parameters; 
 

mΔΔΔ ...,,, 21  are the m unknown parameters, or updates to them; 
 

nlll ...,,, 21  are the numerical values of the n measurements; and 
 

nwww ...,,, 21  are the uncorrelated weights of the n measurements. 
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In (3.12), the coefficients of the Δs are the elements of the normal equation matrix N of 
(3.06), and the terms on the right-hand side are the elements of the constant vector t. As 
each observation is added to the fabric network, first its coefficient is computed from 
(2.06), (2.10), or (2.11), then its contribution to the corresponding coefficient of the 
normal equations is computed individually from (3.12) and subsequently added. The 
constant vector is built up in similar fashion and the process is repeated until all 
observations have been considered. The schematic algorithm is developed as follows: 
 

Normal Equations Generation Schematic Algorithm 
 
Step 1: Zero the normal equation and constant vector arrays. 
 
Step 2: Zero a single row of the observation equation coefficient array and  constant 
vector array. 
 
Step 3: Compute the values of a single row of the observation equation and  constant 
matrices using (2.06), (2.10), and (2.11), then add the values to the appropriate normal 
and constant array elements in (3.12). 
 
Step 4: Repeat steps 3 and 4 for all observations. 

 
3.3.2 Cholesky 
Decomposition 

From (3.12), the normal equation matrix is symmetric and has the form 
 

(3.13)  
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N ,  .for  jiaa jiij ≠=  

 
Symmetric matrices afford significant computational advantages when solving a system 
of linear equations. An advantage is that one only needs to store the upper (or lower) 
triangular portion of the normal equation matrix; another is that the solution of the system 
does not require inverting the normal equation matrix N, a computationally demanding 
process. Cadastral Editor solves the system (3.12) for the unknown parameters using the 
method of Cholesky decomposition, a special case of a broader class of triangular 
decomposition methods for the direct solution of linear systems of equations. Cholesky 
decomposition takes advantage of the fact that N is always positive definite∗. For any 
positive-definite matrix A, there is a unique lower triangular matrix L with positive 
diagonal elements such that tLLA = .[15] Hence, the normal equation matrix (3.13) can 
be written as[4] 
 
(3.14)  UULLLUN tt === , 
 
where L is a lower triangular matrix of the form 
 

                                                 

∗ A matrix A is said to be positive definite if 0>Axxt
 for every 0>x . 
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(3.14a)  
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The Cholesky decomposition formulas for determining the lij in the Lt matrix are[16] 
 

(3.15a)  
11

1
11111111       ;

l
a

laala j
jj =←=← , 

 
 
(3.15b) 
 
(3.15c)  jila ijij >=←    ,0 . 
 
The schematic algorithm for Cholesky decomposition using (3.15a–c) is as follows: 
 

Cholesky Decomposition Schematic Algorithm 
 
Step 1: Compute row 1 of L using (3.15a) and replace 11a  with 11l  in the normal 

equation array (i.e., 1111 la ← ). 
 

Step 2: Compute the diagonal term lii of the next row of L (i.e., row 2) using the 
first equation of (3.15b) and replace iiii la ← . 
 
Step 3: Compute the remaining terms of the row using the second equation of 
(3.15b) and replace ijij la ← . 

 
Step 4: Repeat steps 2 and 3 until all m rows are computed. 

 
Factoring the normal equation matrix into triangular matrices L and Lt has the advantage 
that the least-squares solution of (3.06) can be obtained without inverting the N matrix. 
Rewriting (3.06) in the form 
 
(3.16)  tΔLLNΔ == t , 
 
which can be written as 
 
(3.17)  yΔLtLy == t  where, ; then  
 

(3.18)  1−=y L t  and ( ) 1t −
=Δ L y . 
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Taking advantage of the triangular form of L, the solution for the elements of the vector y 
is obtained directly by forward substitution as follows:[15,16] 
 

(3.19)  mi
l

ylt
yt

l
tyt

ii

i

k
kiki

ii ,...,3 ,2   ,     ,

1

1

11

1
11 =

−
=←=←

∑
−

= . 

 
Having determined y, the solution for Δ is obtained from the second equation of (3.18) in 
similar manner to that above. However, this time the solution begins in the lower right 
corner and proceeds up the matrix Lt. This is called back substitution and proceeds as 
follows:[15,9] 
 

(3.20)  .1,...,2 ,1   ,    , 1 −−=
Δ−
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+= mmk
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Solution of Normal Equations Schematic Algorithm 

 
Step 1: Compute 1y  using the first equation of (3.19) and replace in the t vector, 

11 yt ← . 
 
Step 2: Compute each successive iy  using the second equation of (3.19) and 

replace, ii yt ← . 
 
Step 3: Compute mΔ  using the first equation of (3.20) and replace in the y vector, 

mmy Δ← . 
 
Step 4: Compute each successive kΔ  using the second equation of (3.20) and 

kky Δ← . 
 

3.3.3 Optimization of 
Sparse Matrices 

A sparse matrix is a matrix populated primarily with zeros. When storing and 
manipulating sparse matrices on the computer, it is often necessary to modify the 
standard algorithms and take advantage of the sparse structure of the matrix. Sparse data  
is by its nature easily compressed, which can yield enormous savings in memory usage. 
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Once the normal equations are generated using (3.12), the elements of the normal 
equation and constant matrices, N and t, are available. Generally, the normal equation 
matrix will contain more zero elements than nonzero ones. This sparse N matrix needs its 
elements reordered to reduce its bandwidth∗ for computational efficiency. Cadastral 
Editor uses the following process.  
 
The first step involves sorting the parcels according to their centroid coordinates. This 
brings the parcels into spatial juxtaposition so that, in most cases, input measurements 
from any given parcel are selected for processing soon after those from a nearby parcel. 
As each parcel is selected and the measurements are processed into normal equations, 
index numbers are allocated to the unknowns yielding a first attempt at bandwidth 
minimization. After forming all the equations, the algorithm finds and selects the 
equation with the largest separation between coefficients. Renumbering one or both 
parcel points in that equation, it is then examined to see if the renumbering has reduced 
the separation. If it has, the process is repeated for the equation with the next largest 
coefficient separation until renumbering is no longer possible.[6]  
 
During generation of the normal equations, only the upper triangular part of the normal 
equation matrix of (3.13) is stored, and each row is limited in length to the bandwidth. 
This two-dimensional matrix is stored as a single one-dimensional vector. This storage 
scheme requires a mathematical mapping between the original matrix element indices 
and their corresponding indices in the vector. Any element Uij of the upper triangular 
matrix corresponds to the vector element Vi  at index[4] 
 

(3.21)  
( ) [ ]iVijjVU ij =⎥⎦

⎤
⎢⎣
⎡ −

−
≡

2
1

. 

 
3.4 Least-Squares 

Adjustment 
Implementation in 

Cadastral Editor 

To create a meaningful cadastral dataset, it is important to understand parcel fabric 
topology and build the adjustment solution according to processes unique to this type of 
survey data. Cadastral Editor implements a parcel-based analysis and adjustment model 
and simulates a cadastral surveying paradigm in its sequence and implementation of 
computational processes. Some of these unique implementations will now be described. 
 

 Observation equations: For each parcel, a bearing (or azimuth) and a distance 
observation equation are written for each line of the parcel. This implies that 
common lines between parcels receive multiple observation equations in the 
adjustment. For the bearing equations, each parcel is treated as a single unit, and an 
orientation term for the parcel is included in the bearing observation equations.  

 
 Line points:[6] Line points are defined as points that lie on a parcel boundary line but 

do not form a boundary corner for the parcel. Linear dimensions may or may not 
exist between the line point and the parcel corners on either side of the line point. 
The following example illustrates the concept of a line point. Consider figure 5 
below. 

 

                                                 
∗ The bandwidth of a matrix is computed as the maximum of the set of bandwidths of each row of 

the matrix. The bandwidth of a row of the matrix is essentially the number of matrix elements 
between the first and last nonzero elements in the row, with the proviso that the diagonal entry is 
always treated as though it were nonzero. Given a sparse n×m matrix A, the bandwidth for the 
matrix is defined as 0max)( ≠−= ijajiB A .[17] 
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Figure 5 
Line Points 

 

 
 

Suppose that parcel A (defined by points 1, 2, 3, and 4) and B (defined by points 3, 
4, 7, and 8) were created prior to parcel C. Later, parcel C, comprising lot lines 4–5, 
5–6, 6–7, and 7–4, is surveyed to subdivide parcel B. Further suppose the measured 
length of line 7–4 of parcel C is less than the length of the same line for parcel B. 
The effect is for point 5 to be pulled off line 3–4. Now, it is known that point 5 lies 
on line 3–4, but is that line straight? If point 3 was not visible from 4, the surveyor 
may have simply turned off the original angle at 4 to place 5. The surrounding 
parcels will also have an effect on the final position of all corners. To establish the 
condition that point 5 lies on line 3–4, two bearing equations will be included, in 
addition to the bearing equation for line 3–4, to force the line point 5 onto the 
existing parcel line. The table below shows the bearing observation equations used 
for parcels A, B, and C and for line point 5. 

 
Parcel Bearing Equations       Line Point 5 

Parcel A Parcel B Parcel C Bearing Equations Source 
a12 B43 c45 l54 Bearing of a34 
a23 B38 c56   
a34 B87 c67 l53 Bearing of a43 
a41 B74 c74   

 
After the adjustment, point 5 may or may not be exactly on line 3–4. If it has been 
decided that the line should be straight, an option in Cadastral Editor, when invoked, 
will move the line point back onto the line after the adjustment. Since the least-
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squares adjustment yields the most likely position of the parcel corners, this option is 
often used for those line points that are only a small distance off the line. The 
particular mathematical approach described here is adapted to get a practical and 
reasonable solution when the user may not have full control or full understanding of 
the data. 

 
 Iteration termination: Currently, Cadastral Editor does not implement an automatic 

convergence criterion. The user is expected to assess the quality of an adjustment 
using the reported indicators (see section 3.2.3) and decide when satisfactory results 
have been achieved. If necessary, the user can perform additional adjustment 
iterations, assessing the results after each one. Adjustment iterations are then 
manually implemented and terminated. 

 
Conclusion The mathematical models used in the ArcGIS Survey Analyst/Cadastral Editor least-

squares adjustment module have been described. The algorithms used are rigorous and  
should yield adjusted coordinates similar to those of other survey data adjustment 
software.  
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