
ArcGIS® 9.1

ArcGIS® Server Administrator and Developer Guide

Copyright © 2004 ESRI
All Rights Reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of
ESRI. This work is protected under United States copyright law and
other international copyright treaties and conventions. No part of this
work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying and recording, or by any
information storage or retrieval system, except as expressly permitted in
writing by ESRI. All requests should be sent to Attention: Contracts
Manager, ESRI, 380 New York Street, Redlands, California 92373-8100,
USA.

The information contained in this document is subject to change without
notice.

ContrContrContrContrContribibibibibuting uting uting uting uting WrWrWrWrWriteriteriteriteritersssss
Eric Bader, Euan Cameron,Chris Davies, Shelly Gill, Sean Jones,
Shubha Koneru, Andy MacDonald, Glenn Meister, Mike Minami,
Dan O’Neill, Andy Potts, Anne Reuland, Rohit Singh, Steve Van
Esch, Zhiqian Yu, Mark Zollinger

U.S. GOVERNMENT RESTRICTED/LIMITED RIGHTSU.S. GOVERNMENT RESTRICTED/LIMITED RIGHTSU.S. GOVERNMENT RESTRICTED/LIMITED RIGHTSU.S. GOVERNMENT RESTRICTED/LIMITED RIGHTSU.S. GOVERNMENT RESTRICTED/LIMITED RIGHTS
Any software, documentation, and/or data delivered hereunder is
subject to the terms of the License Agreement. In no event shall
the U.S. Government acquire greater than RESTRICTED/LIMITED
RIGHTS. At a minimum, use, duplication, or disclosure by the
U.S. Government is subject to restrictions as set forth in FAR
§52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19
(JUN 1987) and/or FAR §12.211/12.212 (Commercial Technical
Data/Computer Software); and DFARS §252.227-7015
(NOV 1995) (Technical Data) and/or DFARS §227.7202
(Computer Software), as applicable. Contractor/Manufacturer is ESRI,
380 New York Street, Redlands, California 92373-8100, USA.

PUBLISHED BY

ESRI
380 New York Street

Redlands, California 92373-8100

ESRI, ArcView, ArcIMS, Spatial Database Engine, SDE, the ESRI globe
logo, ArcObjects, ArcGIS, ArcMap, ArcCatalog, ArcScene,
ArcInfo, ArcEditor, ArcReader, ArcToolbox, 3D Analyst, ArcSDE,
GIS by ESRI, the ArcGIS logo, www.esri.com, and @esri.com are
trademarks, registered trademarks, or service marks of ESRI in the
United States, the European Community, or certain other jurisdictions.

Other companies and products mentioned herein are trademarks or
registered trademarks of their respective trademark owners.

Attribution.pmd 1/25/2005, 6:16 PM1

Contents

CHAPTER 1: INTRODUCING ARCGIS SERVER .. 1

ArcGIS 9 developer overview .. 2
ArcGIS Server overview ... 4
ArcGIS Server users .. 7
ArcGIS Server capabilities ... 11
ArcGIS Server developer kits ... 14
Getting started .. 17
Using this book .. 19
ArcGIS developer resources .. 21

CHAPTER 2: THE ARCGIS SERVER ARCHITECTURE ... 27

ArcGIS software architecture ... 28
ArcGIS Server architecture .. 33
The ArcGIS Server system .. 35
Server objects ... 40
ArcGIS Server security, impersonation, and identity ... 46

CHAPTER 3: ADMINISTERING AN ARCGIS SERVER .. 49

Getting started .. 50
Setting up and connecting to a GIS server... 52
Adding and removing server objects ... 58
Managing server objects ... 62
Managing the server ... 65

CHAPTER 4: DEVELOPING ARCGIS SERVER APPLICATIONS 71

Programming ArcGIS Server applications .. 72
ArcGIS Server APIs ... 75
Connecting to the GIS server ... 84
Programming with server objects ... 87
Managing application session state .. 91
Working with server contexts .. 104
Web controls and the server API ... 111
Programming Web services ... 114
ArcGIS Server application performance tuning ... 121
Putting it all together: best practices .. 133

CHAPTER 5: DEVELOPING WEB APPLICATIONS WITH .NET 135

The ArcGIS Server Application Developer Framework .. 136
An overview of templates and Web controls ... 137
Building your first Web applications .. 143
Guidelines for creating your own Web applications .. 160
More about Web controls ... 172
Map control .. 174
Page layout control .. 184
Overview map control .. 194
Toc control ... 199
Toolbar control .. 207

TOC.pmd 1/25/2005, 6:50 PM3

iv • ArcGIS Server Administrator and Developer Guide

CHAPTER 5 (CONTINUED)

Impersonation control .. 215
North arrow control ... 218
Scale bar control ... 221
GeocodeConnection component ... 223

CHAPTER 6: DEVELOPING WEB APPLICATIONS WITH JAVA 227

The ArcGIS Server Application Developer Framework .. 228
An overview of the templates and Web controls ... 229
Building your first Web applications .. 236
Guidelines for creating your own Web applications .. 257
More about Web controls ... 262
Context control ... 265
Map control .. 274
Page layout control .. 288
Overview control .. 295
Toc control ... 298
North arrow control ... 304
Scale bar control ... 307
Geocode control ... 310
Identify results control .. 316

CHAPTER 7: DEVELOPER SCENARIOS .. 321

Extending a Web application template (.NET) ... 322
Extending a Web application template (Java) .. 344
Developing an application Web service (.NET) ... 368
Developing an application Web service (Java) ... 385
Developing an ArcGIS Server Web service client (.NET) .. 402
Developing an ArcGIS Server Web service client (Java) .. 435
Extending ArcGIS Server with server-side libraries ... 463

APPENDIX A: SERVER LIBRARY .. 483

GISServerConnection class .. 484
Server consumer objects .. 485
ServerObjectManager class .. 486
ServerContext class ... 488
ServerObject class .. 493
The Info classes ... 494
Server Administration Objects .. 497
ServerObjectAdmin class .. 498
ServerObjectConfiguration class ... 511
ServerMachine class ... 517
ServerObjectType class ... 518
ServerDirectory class ... 519

APPENDIX B: CONFIGURATION AND LOG FILES 521

ArcGIS Server log files .. 522
ArcGIS Server configuration files ... 528

TOC.pmd 1/25/2005, 6:50 PM4

Contents • v

APPENDIX C: DEVELOPING APPLICATIONS WITH EJBS 539

Enterprise JavaBeans and ArcGIS Server ... 540
EJBs and ArcGIS Server—a developer scenario ... 543

APPENDIX D: DEVELOPER ENVIRONMENTS ... 575

The Microsoft Component Object Model ... 576
Developing with ArcObjects .. 588
The Visual Basic 6 environment .. 597
The Visual Basic 6 development environment .. 610
Visual C++ ... 617
.NET application programming interface .. 659
Java application programming interface ... 700

APPENDIX E: READING THE OBJECT MODEL DIAGRAMS 715

Object model key .. 716
Classes and relationships .. 717
Interfaces and members .. 720
Putting it together—An example .. 723

APPENDIX F: CONVERTING PERSONAL GEODATABASES 725

Converting data for use with the GIS Server on UNIX... 726

APPENDIX G: GLOSSARY ... 731

INDEX ... 747

TOC.pmd 1/25/2005, 6:50 PM5

TOC.pmd 1/25/2005, 6:50 PM6

Introducing
ArcGIS Server

ESRI® ArcGIS® Server is a platform for building enterprise geographic information

system (GIS) applications that are centrally managed, support multiple users,

include advanced GIS functionality, and are built using industry standards. ArcGIS

Server manages geographic resources, such as maps, locators, and software

objects, for use by applications.

This chapter will introduce you to ArcGIS Server, how you use it, and its different

components. Topics covered in this chapter include:

• an overview of ArcGIS 9 development • the ArcGIS Server product • what you

can do with ArcGIS Server • the ArcGIS Server Developer Kits • a description of

this book

1

Chapter1.pmd 1/25/2005, 5:43 PM1

2 • ArcGIS Server Administrator and Developer Guide

WHO SHOULD READ THIS BOOK?

This book will be of greatest use to programmers who want to use ESRI®

ArcGIS Server to build server applications, such as Web services and Web appli-
cations, that do simple mapping or that include advanced GIS functionality.
However, this book provides a general explanation of the use of ArcGIS Server
and the possibilities when building and deploying custom applications and solu-
tions. Several scenarios will illustrate, with code examples, some of the different
types of applications that can be developed with the ArcGIS Server and the
Application Developer Framework (ADF) developer kits.

This book will also be of use to ArcGIS Server administrators who need to
administrate aspects of an ArcGIS Server, such as its set of server objects and its
output directories.

ARCGIS 9 OVERVIEW

ArcGIS 9 is an integrated family of GIS software products for building a com-
plete GIS. It is based on a common library of shared GIS software components
called ArcObjects™. ArcGIS 9 consists of four key parts:

• ArcGIS Desktop—an integrated suite of advanced GIS applications.

• ArcGIS Engine—embeddable GIS component libraries for building custom
applications using multiple application programming interfaces (APIs).

• ArcGIS Server—a platform for building server-side GIS applications in enter-
prise and Web computing frameworks. Used for building both Web services
and Web applications.

• ArcIMS®—GIS Web server to publish maps, data, and metadata through open
Internet protocols.

ARCGIS 9 DEVELOPER OVERVIEW

Chapter1.pmd 1/25/2005, 5:43 PM2

Chapter 1• Introducing ArcGIS Server • 3

Each of the GIS frameworks also includes the ArcSDE® gateway, an interface for
managing geodatabases in numerous relational database management systems
(RDBMSs).

ArcGIS 9 extends the system with major new capabilities in the areas of geopro-
cessing, 3D visualization, and developer tools. ArcGIS Engine and ArcGIS
Server, developer-centric products, make ArcGIS a complete system for applica-
tion and server development.

There is a wide range of possibilities when developing with ArcGIS. Developers
can:

• Configure/Customize ArcGIS applications such as ArcMap™ and ArcCatalog™

• Extend the ArcGIS architecture and data model

• Embed maps and GIS functionality in other applications with ArcGIS Engine

• Build and deploy custom desktop applications with ArcGIS Engine

• Build Web services and applications with ArcGIS Server

ArcGIS 9 has a common developer experience across all ArcGIS products
(Engine, Server, and Desktop). This book focuses on building and deploying
server applications using the ArcGIS Server. Developers wanting to customize
the ArcGIS Desktop applications or work with the ArcGIS Engine should refer
to the ArcGIS Desktop Developer Guide and ArcGIS Engine Developer Guide.

The ArcGIS system is built and extended
using software components called
ArcObjects. ArcObjects components are
software objects that have multiple devel-
oper APIs. These include Component
Object Model (COM), .NET, Java™, and
C++. Developers can use these APIs to
build applications that make use of
ArcObjects functionality. ArcObjects is at
the core of all the ArcGIS products:
ArcGIS Desktop, ArcGIS Engine, and
ArcGIS Server.

The ArcGIS Server provides a new set of
deployment options and resources for
developers as well as new and improved
tools for developers to work with. ArcGIS
Server is a set of the core ArcObjects and a
framework for running ArcObjects in a
server. The ArcGIS Server ADF is a set of
components and Web controls that allow
developers to build and deploy Web ser-
vices and Web applications that make use
of ArcObjects running within a server.

ARCGIS 9 DEVELOPER OVERVIEW

Chapter1.pmd 1/25/2005, 5:43 PM3

4 • ArcGIS Server Administrator and Developer Guide

ArcGIS Server is a platform for building enterprise GIS applications that are
centrally managed, support multiple users, include advanced GIS functionality
and are built using industry standards. ArcGIS Server manages geographic re-
sources, such as maps, locators, and software objects, for use by applications.

Developers can use ArcGIS Server to build Web applications, Web services, and
other enterprise applications, such as those based on Enterprise JavaBeans™

(EJBs). Developers can use ArcGIS Server to build desktop applications that
interact with the server in client/server mode. ArcGIS Server also supports out-
of-the-box use by ArcGIS Desktop applications for server administration, simple
mapping, and geocoding over a local area network (LAN) or over the Internet.

The ArcGIS Server consists of two components: a GIS server and an ADF for
.NET and Java. The GIS server hosts ArcObjects for use by Web and desktop
applications. It includes the core ArcObjects library and provides a scalable
environment for running ArcObjects in the server. The ADF allows you to build
and deploy .NET or Java desktop and Web applications that use ArcObjects
running within the GIS server.

The ADF includes a software developer kit (SDK) with software objects, Web
controls, Web application templates, developer help, and code samples. It also
includes a Web application runtime, which allows you to deploy Web applications
without having to install ArcObjects on your Web server.

ArcObjects library

Web
applications

Web
controls

Web services

Application Server (.Net/J2EE)

COM Java

.Net SOAP/XML

HTML UI XML API

ARCGIS SERVER OVERVIEW

Chapter1.pmd 1/25/2005, 5:43 PM4

Chapter 1• Introducing ArcGIS Server • 5

KEY FEATURES OF ARCGIS SERVER

Standard GIS framework
ArcGIS Server provides a standard framework for
developing GIS server applications. The world’s most
popular GIS software (ArcView®, ArcEditor™, and
ArcInfo®) is built from this same set of software
objects. ArcGIS Server is both robust and extensible,
and its rich functionality allows developers to concen-
trate on solving organizational problems, not building
GIS functionality from scratch.

Cost-effective deployment
ArcGIS Server supports enterprise applications, such
as Web applications, running on servers, and support-
ing many users. The ADF runtime is not licensed. This
allows multiple server applications to run on multiple
Web servers, incurring the cost of licensing the GIS
server to support the number of users of those appli-
cations.

Web controls
ArcGIS Server provides a set of Web controls. These Web controls simplify the
programming model for including mapping functionality in your Web application,
and allow developers to focus on more advanced GIS functionality aspects of
their applications.

Web application templates
ArcGIS Server provides a set of Web application templates as a starting point for
developers who want to build Web applications using the Web controls, and as an
example of how to use the Web controls to build Web applications.

Cross-platform functionality
The ArcGIS Server ADF for Java runs on a variety of UNIX® platforms and
supports numerous Web servers. Your Java Web applications and Web services
will fit within your standard Web server environments.

The GIS server itself is supported on Windows®, Sun Solaris, and Red Hat
Linux. The ADF for .NET is available on a number of Windows platforms. For
detailed information on the supported platforms, refer to the ESRI support site
at http://support.esri.com.

Cross-developer languages
ArcGIS Server supports a variety of developer languages for its use including
.NET and Java for building Web applications and Web services; COM and .NET
for extending the GIS server with custom components; and COM, .NET, Java,
and C++ for building desktop client applications. This allows the objects to be
programmed using a wide range of tools and should not require your program-
ming staff to learn a new or proprietary language.

`

`

`

ArcGIS
Desktops

ArcGIS
Engine

Applications

Web
Browsers

ArcGIS
Desktops

Web
Server

Internet

Java or .NET Web
Application
Developers

ArcGIS Server
Administrator
(ArcCatalog) GIS Server

Server Object
Manager

Server Object Containers

File-based data
ArcSDE

LAN

ARCGIS SERVER OVERVIEW

The ArcGIS Server is a distributed system that
provides ArcObjects functionality to both Web
applications and client/server desktop applica-

tions.

Chapter1.pmd 1/25/2005, 5:43 PM5

6 • ArcGIS Server Administrator and Developer Guide

ArcGIS Server extensions
The ArcGIS Server Developer Kits include the extended functionality of ArcGIS
3D Analyst™, ArcGIS Spatial Analyst, and ArcGIS Network Analyst.

Developer resources
The ArcGIS Server Developer Kits provide a help system along with object
model diagrams (OMDs), Web application templates, and sample code to help
developers get started.

WHY ARCGIS SERVER?

ArcGIS Server allows developers and system designers to implement a centrally
managed GIS. This gives the advantage of lower cost of ownership through
single GIS applications (such as a Web application) that can scale to support
multiple users and saves the cost of installing desktop applications on each user’s
machine. This, along with the ability of ArcGIS Server to leverage Web services,
makes it ideal for integration with other critical information technology (IT)
systems, such as relational databases, Web servers, and enterprise application
servers.

ArcGIS Server complements the ESRI family of server products: ArcIMS,
ArcSDE, and ArcGIS Server. ArcIMS provides high-performance Web
geopublishing of maps and metadata, ArcGIS Server is a centrally managed GIS
for advanced GIS applications, and ArcSDE manages data access for ArcGIS
Server and ArcIMS.

ARCGIS SERVER OVERVIEW

Chapter1.pmd 1/25/2005, 5:43 PM6

Chapter 1• Introducing ArcGIS Server • 7

There are a number of different roles that a user of ArcGIS Server may take:

WEB APPLICATION USERS

This is the largest group of users of ArcGIS Server. A Web application user uses
an Internet browser to connect to a Web application written and deployed by a
Web application developer. That user interacts with the Web application to make
use of the GIS and other functionality it presents. Web application users them-
selves may have little or no knowledge that they are using GIS functionality
provided by a GIS server.

ARCGIS SERVER USERS

Web application users will use their browsers to
connect to GIS Web applications built and

deployed by a developer.

Network analysis

Geodatabase editing

Linear referencing and map composition

Chapter1.pmd 1/25/2005, 5:43 PM7

8 • ArcGIS Server Administrator and Developer Guide

WEB APPLICATION AND WEB SERVICE DEVELOPERS

Web application and Web services developers will use the ADF to build and
deploy .NET and Java Web applications and Web services. These Web applica-
tions and Web services include advanced functionality by connecting to a GIS
server and make use of ArcObjects running within the server. Developers can
build Web services to expose maps and address locators for use by ArcGIS
Desktop users over the Internet. Developers can also build application Web
services that encapsulate GIS functionality and are consumable by other pro-
grams.

ARCGIS DESKTOP USERS

ArcGIS Desktop users can use ArcMap and ArcCatalog to connect to a GIS
server on their local network over the LAN or to a Web service catalog over the
Internet. In both cases, users can use the maps and address locators published as
map and geocode server objects to do basic mapping and geocoding.

ArcGIS Desktop is also the software that you use to create the data that is used
by ArcGIS Server applications. ArcGIS Desktop provides the tools to build the
databases, map documents, and address locators that are served by ArcGIS
Server.

ARCGIS SERVER USERS

Web application and Web service developers will
use standard development environments, such as

Microsoft Visual Studio .NET and JBuilder™, to
build ArcGIS Server applications.

Chapter1.pmd 1/25/2005, 5:43 PM8

Chapter 1• Introducing ArcGIS Server • 9

ARCGIS DESKTOP, ARCGIS ENGINE DEVELOPERS

ArcGIS Engine and ArcGIS Desktop developers can also develop applications
that connect to a GIS server and make use of ArcObjects running within the
server. This allows the integration of desktop functionality with server function-
ality.

ARCGIS SERVER USERS

ArcGIS Desktop users can connect to a GIS
server directly over a LAN or over the Internet
and make use of the map and geocode server

objects running in the GIS server.

Developers can also build desktop applications
that work with the GIS server in a client/server

mode. These desktop applications can be built
using the ArcGIS Server ADFs or with the ArcGIS

Engine Developer Kit.

Chapter1.pmd 1/25/2005, 5:43 PM9

10 • ArcGIS Server Administrator and Developer Guide

GIS SERVER ADMINISTRATORS

The GIS server administrator uses ArcCatalog to connect to a GIS server on the
local network and administer aspects of the server itself and the set of server
objects running in the server. The GIS server administrator will add machines to
and remove them from the system to perform the server’s GIS processing, manage
the server’s output directories, and monitor statistics and output logs to trouble-
shoot any errors or performance problems.

The GIS administrator will also use ArcCatalog to manage and configure the
server objects running in the server that are used by desktop and Web applica-
tions. In each case, the administrator will work with the application developer to
understand the nature of the application and the number of users it needs to
support to make decisions about its configuration.

The GIS administrator must make use of operating system tools to provide
appropriate privileges to the ArcGIS Server accounts on data and output directo-
ries needed to run server objects and support any applications. The GIS adminis-
trator must also make use of operating system tools to control user access to the
GIS server.

The GIS server administrator uses ArcCatalog to
connect to a GIS server on the local network and

administer aspects of the server itself and the
set of server objects running in the server.

ARCGIS SERVER USERS

Chapter1.pmd 1/25/2005, 5:43 PM10

Chapter 1• Introducing ArcGIS Server • 11

As an ArcGIS Desktop user, you can perform the following functions using
ArcGIS Server:

• Connect to a GIS server on your local network over the LAN.

• Connect to an ArcGIS Server Web services catalog.

Through your LAN or Internet connection you can:

• Use ArcCatalog to preview, pan, zoom throughout a map server, and identify
features on a map server.

• Use ArcCatalog to batch geocode addresses using a geocode server.

• Use ArcMap to add a map server as a layer to your local map document.

• Use ArcMap to pan and zoom throughout a map server.

• Use ArcMap to identify, search for, and find features on a map server.

• Use ArcMap to interactively toggle layers on and off.

• Use ArcMap to find addresses with a geocode server.

As a developer, you can implement these and many other functions in Web appli-
cations and Web services built with the ADF developer kit:

• Display a map with multiple map layers such as roads, streams, and bound-
aries.

• Pan and zoom throughout a map.

• Identify features on a map by pointing at them.

• Search for and find features on a map.

• Display labels with text from field values.

• Draw images from aerial photography or satellite imagery.

• Draw graphic features such as points, lines, circles, and polygons.

• Draw descriptive text.

• Select features along lines and inside boxes, areas, polygons, and circles.

• Select features within a specified distance of other features.

• Find and select features with a Structured Query Language (SQL) expression.

• Render features with thematic methods such as value map, class breaks, and
dot density.

• Dynamically display real-time or time series data.

• Find locations on a map from a street address or intersection you provide.

• Transform the coordinate system of your map data.

• Perform geometric operations on shapes to create buffers; calculate differ-
ences; or find intersections, unions, or inverse intersections of shapes.

• Perform advanced spatial and attribute queries.

• Perform network analysis.

• Manipulate the shape or rotation of a map.

ARCGIS SERVER CAPABILITIES

Chapter1.pmd 1/25/2005, 5:43 PM11

12 • ArcGIS Server Administrator and Developer Guide

• Create and update geographic features and their attributes.

• Perform geodatabase management tasks such as reconciling versions and
validating topology.

You’ll find ArcGIS Server suitable for building basic mapping to advanced GIS
applications. In addition to the above core functionality, ArcGIS server can be
enhanced to include support for specialized extensions. The available extensions
for ArcGIS Server are:

SPATIAL EXTENSION

The ArcGIS Server Spatial extension provides a powerful set of functions that
allows you to create, query, and analyze cell-based raster data. Using the spatial
extension to the GIS server, your applications can derive information about your
data, identify spatial relationships, find suitable locations, and calculate the cost
of traveling from one point to another.

3D EXTENSION

The ArcGIS Server 3D extension provides a powerful set of functions that
allows your applications to create and analyze surfaces.

ARCGIS SERVER CAPABILITIES

The Spatial extension for ArcGIS Server provides
a powerful set of tools that allows you to create,

query, and analyze cell-based raster data.

The 3D extension for ArcGIS Server allows you
to create and analyze surfaces. These functions

include viewshed, slope, aspect, hillshade analysis,
and more.

Chapter1.pmd 1/25/2005, 5:43 PM12

Chapter 1• Introducing ArcGIS Server • 13

NETWORK ANALYST EXTENSION

The ArcGIS Server Network extension enables developers to build Web applica-
tions and Web services that solve a variety of problems on network datasets.
Tasks, such as finding the most efficient travel route, generating travel directions,
finding the closest facility, and defining service areas based on travel time, are
some examples of the capabilities of the Network Analyst extension.

ARCGIS SERVER CAPABILITIES

The Network Analyst extension for ArcGIS Server
enables you to find the most efficient travel

route, generate travel directions, find the closest
facility, and define service areas based on travel

time.

Chapter1.pmd 1/25/2005, 5:43 PM13

14 • ArcGIS Server Administrator and Developer Guide

ARCGIS SERVER DEVELOPER KITS

Each component of ArcGIS Server includes a developer kit: the GIS server
developer kit for developers who want to extend the GIS server, the Java ADF
developer kit for developers who want to build Java applications, and the .NET
ADF developer kit for developers who want to build .NET applications.

Each developer kit contains common developer resources to support your devel-
opment task. An integrated help system is provided for several APIs (COM, Java,
.NET, and C++) along with object model diagrams and samples for each part of
the core ArcObjects components. Each developer kit provides access to a large
collection of ArcObjects for you to exploit to include any range of GIS function-
ality in your application.

The GIS server developer kit lets you, the programmer, develop custom COM
components to extend the GIS server using COM development languages, such as
Visual Basic® (VB), C++, and .NET. To help facilitate this, the GIS server devel-
oper kit also contains a collection of integrated development environment (IDE)

Each developer kit contains an integrated help
system for several APIs.

Visual Basic, C++

Java

.NET

Chapter1.pmd 1/25/2005, 5:44 PM14

Chapter 1• Introducing ArcGIS Server • 15

plug-ins and utilities to make developing COM objects with ArcObjects easier.

The .NET and Java ADF developer kits are a set of Web controls and helper
objects that let you add dynamic mapping and GIS capabilities into new or exist-
ing Web applications. The ADFs include the following Web controls to assist
with Web application development:

• Map

• Overview map (.NET) or Overview (Java)

• Table of contents (Toc)

• Page layout

• North arrow

• Toolbar

• Scale bar

• GeocodeConnection (.NET) or Geocode (Java)

• Impersonation

These controls are available as .NET Web controls and Java Web controls ex-
posed as JavaServer Pages™ (JSP) tags. These controls can be combined with
other Web controls and components to create customized Web applications.

In addition, the ADF developer kits include a collection of Web application
templates that serve as both a starting point for your Web application and an

example of how to use the Web controls
and the ArcGIS Server API to build Web
applications. The Web application tem-
plates include:

• Map Viewer template, which provides
basic map display capabilities.

• Search template, which provides a
search-centric interface for finding
features on a map.

• Page Layout template, which displays
the entire page layout for a map.

• Thematic template, which adds thematic
mapping capabilities on top of the Map
Viewer template.

• Geocode template, which provides an
interface for finding map locations using
an address.

 • Buffer selection template, which allows
you to find features in one layer of the
map based on their location relative to
features in another layer.

The Java ADF also consists of a J2EE Connector Architecture (JCA) compliant
resource adapter that allows Enterprise JavaBeans (EJB) to call and work with

ARCGIS SERVER DEVELOPER KITS

Both the Java and .NET ADFs include a collec-
tion of Web application templates that develop-
ers can extend to include their own functionality.

Chapter1.pmd 1/25/2005, 5:44 PM15

16 • ArcGIS Server Administrator and Developer Guide

ARCGIS SERVER DEVELOPER KITS

ArcGIS Server objects. For more information on the JCA resource adapter and
EJBs, see Appendix C, ‘Developing applications with EJBs’.

Developers building Web services or desktop applications, rather than Web
applications, will also benefit from the ADF developer kits’ documentation and
code samples.

The ArcGIS Server Developer Kits are not for end users. They are for people
who are developing server applications or extending the server to support server
applications. As a developer, you can build applications based on ArcGIS Server
and deploy those applications either to end users or on application servers. An
important feature of ArcGIS Server is that the application you create can treat a
map as a central or incidental element of the application. In the case of some
applications (especially Web services) there may be no mapping component at all.

ADF RUNTIMES

To deploy a Web application or Web service on an application server or deploy a
server desktop application written with the ADF, you need the ADF runtime.
Because server applications use ArcObjects that are running within the server, the
application server or desktop machine running a server application does not need
ArcObjects installed on it. The ADF runtime includes only those components
necessary for applications to connect to the GIS server and make use of
ArcObjects running in the server.

The .NET ADF runtime installs a collection of .NET assemblies and correspond-
ing COM object libraries. The Java ADF runtime installs a set of Java Archive
(JAR) files for working with ArcObjects. These runtimes do not require a license;

`

`

ArcObjectsArcObjectsArcObjects

ArcObjects
Proxies

ArcObjects
Proxies

ArcObjects
Proxies

ArcObjects

ArcObjects
Proxies

ArcObjects

`

` `

GIS Server

Desktop applications
(single user)

.NET/Java ADF

ArcGIS Engine

ArcGIS Desktop

Server applications
(Multiuser)

.NET/Java ADF

Server Object
Manager

Server Object Containers

The ArcGIS Server is a distributed system that
supports both desktop and server (e.g., Web)

applications. The ADF runtimes provide the
necessary components for applications to connect

to the GIS server and make use of ArcObjects
running within the server.

Chapter1.pmd 1/25/2005, 5:44 PM16

Chapter 1• Introducing ArcGIS Server • 17

however, the applications deployed with the runtimes require a GIS server to
connect to, which must be licensed to run the ArcObjects components required
by the application.

Once you have installed the various components of ArcGIS Server and the server
is up and running, the next steps are to configure the GIS server, add server
objects, and start developing applications.

CONFIGURING THE GIS SERVER

Configuring the GIS server is the job of the GIS server administrator. The fol-
lowing administration tasks must be completed before you can start adding server
objects to your GIS server:

• Use operating system tools to grant access to the GIS server to users and
administrators.

• Use operating system tools to grant privileges on the
server’s output directories to the GIS server account.

• Use operating system tools to grant privileges on the
server’s data to the GIS server account.

• Use ArcCatalog to add server object container machines
to the GIS server.

• Use ArcCatalog to add server directories to the GIS
server.

ADDING SERVER OBJECTS

Once the GIS server is configured, you can use ArcCatalog
to add, configure, and start map and geocode server objects.
Once you have added server objects to your GIS server, you
can start using them with the ArcGIS Desktop applications.
You can use ArcMap and ArcCatalog to help you determine

whether your server object is configured properly by drawing your map servers
and finding addresses with your geocode servers.

GETTING STARTED

The ArcGIS Server administrator will use
operating system tools to manage access to the
GIS server and manage privileges on both data

and output directories.

The ArcGIS Server administrator will use
ArcCatalog to configure the server and manage

its server objects.

For more information on configuring and
administering your GIS server, see Chapter 3,

‘Administering an ArcGIS Server’.

Chapter1.pmd 1/25/2005, 5:44 PM17

18 • ArcGIS Server Administrator and Developer Guide

BUILDING APPLICATIONS

The real power of ArcGIS server can be exploited by developers building server-
based applications. Use the server objects running in the GIS server to build
applications with mapping and advanced GIS functionality. Developers can take
advantage of the software objects, Web controls, and template applications in the
ADF to get started building applications that make use of ArcObjects running in
the GIS server.

The best way to get started once your server is configured is to implement one of
the applications outlined in the developer scenarios in Chapter 7, ‘Developer
scenarios’. These scenarios are step-by-step walk-throughs of the entire process
from creating the necessary server objects to programming and deploying the
application.

The ArcGIS Server Administrator and Developer Guide is an introduction for anyone
who wants to configure ArcGIS Server and create desktop and Web applications
using COM, .NET, or Java.

GETTING STARTED

Chapter1.pmd 1/25/2005, 5:44 PM18

Chapter 1• Introducing ArcGIS Server • 19

This guide will help you become a server developer by stepping through numerous
code samples and developer scenarios. Although the samples documented in this
guide may not solve your immediate problem, they will serve as a framework or
template on which you can build a more specific or complex solution.

To serve the widest base of developers, most of the code samples in this guide
are written in VB. As necessary, some code samples are written in Microsoft® C#,
VB.NET, or Java.

The first three chapters of this book provide an overview of the ArcGIS Server
product and its capabilities and an overview of the ArcGIS Server architecture
and its administration. The remaining chapters focus on developing applications
that make use of objects running in the GIS server, including using ArcObjects in
the server, using the ADFs to build applications, developer scenarios, and meth-
ods for deploying those applications.

CHAPTER GUIDE

Chapter 1, ‘Introducing ArcGIS Server’, gives you an overview of the ArcGIS
Server product, its developer kits, and additional resources.

Chapter 2, ‘The ArcGIS Server architecture’, describes the various aspects of
ArcGIS Server and how they interact, including how the GIS server manages
ArcObjects, how applications interact with the objects in the GIS server, and
GIS server security.

Chapter 3, ‘Administering an ArcGIS Server’, describes the various responsibilities
of the GIS server administrator. It provides descriptions of how to use
ArcCatalog and various operating system tools to administer, monitor, and
troubleshoot your GIS server.

After reading this chapter you should have enough information to configure your
GIS server, add server objects, and troubleshoot any problems. Once this is
complete, developers can use the server objects in your GIS server to build GIS
functionality into their applications.

Chapter 4, ‘Developing ArcGIS Server applications’, describes how to use the
server API to access and work with ArcObjects in the GIS server. This chapter
includes important programming rules and best practices for developing applica-
tions with ArcGIS Server.

Chapter 5, ‘Developing Web applications with .NET’, describes how to use the
Web controls, application templates, and other objects in the .NET ADF to build
Web applications that use functionality available through ArcGIS Server.

Chapter 6, ‘Developing Web applications with Java’, describes how to use the
Web controls, application templates, and other objects in the Java ADF to build
Web applications that use functionality available through ArcGIS Server.

Chapter 7, ‘Developer scenarios’, guides you through the creation and deployment
of the several types of Web applications and Web services you can build with
both .NET and Java.

This book also contains a number of appendixes that provide detailed informa-
tion about the GIS server API’s object model and information on how to use and
understand the GIS server’s log and configuration files. Additional appendixes

USING THIS BOOK

Chapter1.pmd 1/25/2005, 5:44 PM19

20 • ArcGIS Server Administrator and Developer Guide

provide background information for all ArcObjects developers, including lan-
guage-specific notes and a how-to guide to reading OMDs.

In addition, Appendix C, ‘Developing applications with EJBs’, describes how a
developer would build EJBs that consume services from the ArcGIS Server. EJBs
can call and work with ArcGIS Server objects through a connection to a Java
Connector Architecture (JCA)-compliant resource adapter, which is provided in
the Java ADF. Recommended usage and programming models for JCA and
ArcGIS Server are given in this section. Appendix F, ‘Converting personal
geodatabases’, explains how to convert a personal geodatabase to an ArcSDE
geodatabase or a supported file-based format so that data can be used to serve a
map on UNIX.

The following topics describe some of the additional resources available to you as
a developer. These include books, guides, and various help systems.

USING THIS BOOK

Chapter1.pmd 1/25/2005, 5:44 PM20

Chapter 1• Introducing ArcGIS Server • 21

ARCGIS SOFTWARE DEVELOPER KIT

The ArcGIS SDK is the collection of diagrams, utilities, add-ins, samples, and
documentation geared to help developers implement custom ArcGIS functional-
ity.

ArcGIS Developer Help system

The ArcGIS Developer Help system is the gateway to all the SDK documentation
including help for the add-ins, developer tools, and samples; in addition, it serves
as the complete syntactical reference for all object libraries.

Each supported API has a version of the help system that works in concert with
it. Regardless of the API you choose to use, you will see the appropriate library
reference syntax and have a help system that is integrated with your development
environment. For example, if you are a Visual Basic 6 developer, you will use
ArcGISDevHelp.chm, which has the VB6 syntax and integrates with the VB6
IDE, thereby providing F1 help support in the code window.

The help systems reside in the DeveloperKit\Help folder but are typically
launched from the start menu or F1 help in Visual Basic 6 and Visual Studio®

.NET 2003. The graphic below shows the start menu options for opening the
help systems.

Samples
The ArcGIS developer kit contains more than 600 samples, many of which are
written in several languages. The samples are described in the help system and the
source code and project files are installed in the DeveloperKit\samples folder.
The help system’s table of contents for the samples section mirrors the samples
directory structure.

The help system organizes samples by functionality. For example, all the Geodata-
base samples are grouped under Samples\Geodatabase. Most first-tier groupings
are further subdivided. You can also find samples in the SDK using the ‘Query
the Samples’ topic in the help system, which lists all the samples alphabetically; in
addition, you can sort the list by language. For example, you can elect to only list
the available Java samples.

ARCGIS DEVELOPER RESOURCES

A typical SDK installation

Chapter1.pmd 1/25/2005, 5:44 PM21

22 • ArcGIS Server Administrator and Developer Guide

Installing the samples source code and project files is an option in the install. The
samples are installed under the ArcGIS\DeveloperKit\samples folder. If you
don’t have this folder on your computer, you can rerun the install program and
check Samples under Developer Kit.

Developer tools

The ArcGIS developer tools are executables that ESRI has provided to facilitate
your ArcObjects development. You may find some of these tools essential. For
example, if you are a Visual Basic 6 desktop developer, you will likely use the
Categories.exe tool to register components in component categories.

The following developer tools are available with each product. Please refer to the
help system for more developer tool details and instructions.

• Component Categories Manager—Registers components within a specific compo-
nent category.

• Fix Registry Utility—Fixes corruptions in the Component Categories section of
the registry.

• GUID Tool—Generates globally unique identifiers (GUIDs), in registry format
for use within source code.

• Library Locator—Identifies an object library containing a specified interface,
coclass, enumeration, or structure.

The developer tools are installed under the DeveloperKit\tools folder. There is
one exception—the Component Category Manager is located in the ArcGIS\bin
folder.

ARCGIS DEVELOPER RESOURCES

You can use the ‘Query the Samples’ topic in the
help system to find specific samples you are

interested in.

Chapter1.pmd 1/25/2005, 5:44 PM22

Chapter 1• Introducing ArcGIS Server • 23

Add-ins
The ESRI add-ins automate some of the tasks performed by the software engi-
neer when developing with ArcObjects, as well as provide tools that make debug-
ging code easier. ESRI provides add-ins for the Visual Basic 6 IDE and the Visual
Studio .NET IDE. The table below lists the add-ins available for these develop-
ment environments.

Visual Basic 6
• ESRI Align Controls with Tab Index—Ensures control creation order matches

tab index.

• ESRI Automatic References—Automatically adds ArcGIS library references.

• ESRI Code Converter—Converts projects from ArcGIS 8.x to ArcGIS 9.x.

• ESRI Command Creation Wizard—Facilitates the creation of commands and
tools.

• ESRI Compile and Register—Aids in compiling components and registering
these in desired component categories.

• ESRI ErrorHandler Generator—Automates the generation of error handling
code.

• ESRI ErrorHandler Remover—Removes the error handlers from the source
files.

• ESRI Interface Implementer—Automatically stubs out implemented interfaces.

• ESRI Line Number Generator—Adds line numbers to the appropriate lines
within source files.

• ESRI Line Number Remover—Removes the line numbers from source files.

• ESRI License Initializer—Automatically generates and adds license initializa-
tion code to an ArcObjects project.

Visual Studio .NET
• ESRI Component Category Registrar—Stubs out registration functions to enable

self component category registration.

• ESRI GUID Generator—Inserts a GUID attribute.

• ESRI Automatic References—Automatically adds ArcGIS library references.

• ESRI License Initializer—Automatically generates and adds license initializa-
tion code to an ArcObjects project.

The .NET add-ins are automatically installed during setup if a version of Visual
Studio .NET 2003 is detected; the Visual Basic 6 add-ins are only installed if you
select them on the install.

THE ARCGIS DEVELOPER SERIES

This book is one in a series of books for ArcGIS developers.

The ArcGIS Engine Developer Guide provides information for developers who
want to create applications based on ArcGIS Engine. ArcGIS Engine allows you
to embed GIS functionality within other applications and create desktop-like

ARCGIS DEVELOPER RESOURCES

Visual Basic 6 add-ins are only installed if you
select them on the install.

Chapter1.pmd 1/25/2005, 5:44 PM23

24 • ArcGIS Server Administrator and Developer Guide

applications using the supplied ArcGIS controls, such as the Map, Toolbar, and
PageLayout controls. ArcGIS Engine is also based on ArcObjects components
and may be programmed through a number of APIs.

The ArcGIS Desktop Developer Guide is for developers who want to customize or
extend the ArcGIS Desktop applications, such as ArcMap and ArcCatalog, using
Visual Basic for Applications (VBA) and extend the applications using Visual
Basic, .NET, or C++.

ESRI DEVELOPER NETWORK ONLINE

ESRI Developer Network (EDN) online is the place to find the most up-to-date
ArcGIS 9 developer information including sample code, technical documents,
object model diagrams, and the complete object library reference.

The Web site is a reflection of the ArcGIS Developer Help system except it is
online and, therefore, more current. The Web site has some additional features
including an advanced search utility that enables you to control the scope of your
searches. For example, you can create a search that only scans the library refer-
ence portion of the help system.

Visit the site today (http://edn.esri.com).

ARCGIS DEVELOPER RESOURCES

Chapter1.pmd 1/25/2005, 5:44 PM24

Chapter 1• Introducing ArcGIS Server • 25

The ESRI Support Center at http://
support.esri.com

ARCGIS DEVELOPER RESOURCES

ESRI SUPPORT CENTER

The ESRI Support Center at http://support.esri.com contains software information,
technical documents, samples, forums, and a knowledge base for all ArcGIS
products.

ArcGIS developers can take advantage of the forums, knowledge base, and
samples sections to aid in development of their ArcGIS applications.

TRAINING

ESRI offers a number of instructor-led and Web-based training courses for the
ArcGIS Desktop developer. These courses range from the introductory level for
VBA to the more advanced courses in component development with specific
APIs.

For more information, visit http://www.esri.com and select the Training and Events
tab.

The ESRI Virtual Campus can also be found directly at http://campus.esri.com.

Chapter1.pmd 1/25/2005, 5:44 PM25

Chapter1.pmd 1/25/2005, 5:44 PM26

The ArcGIS Server
architecture

ArcGIS Server is an object server for ArcObjects. The ArcGIS Server software

system is distributed across multiple machines. Each aspect of ArcGIS Server plays

a role in managing GIS functionality and data and making that functionality useful

to end users.

This chapter provides an overview of the ArcGIS software architecture and details

of the ArcGIS Server architecture, specifically the various aspects of the server and

how they interact, including:

• the role of the GIS server • the server object manager • server object

containers • GIS server objects • the Web application server

2

Chapter2.pmd 1/25/2005, 5:47 PM27

28 • ArcGIS Server Administrator and Developer Guide

ARCGIS SOFTWARE ARCHITECTURE

For a detailed explanation of COM see the
Microsoft COM section of Appendix D,

‘Developer environments’.

Developer
Components

Map
Presentation

Map
Analysis

Data
Access

Base
Services

ArcGIS Engine

Before discussing the details of the ArcGIS Server architecture, it’s important to
discuss the ArcGIS system architecture as a whole. The ArcGIS architecture has
evolved over several releases of the technology to be a modular, scalable, cross-
platform architecture implemented by a set of software components called
ArcObjects. This section focuses on the main themes of this evolution at
ArcGIS 9 and introduces the reader to the libraries that compose the ArcGIS
system.

The ArcGIS software architecture supports a number of products, each with its
unique set of requirements. ArcObjects components, which make up ArcGIS, are
designed and built to support this. This chapter introduces ArcObjects.

ArcObjects is a set of platform-independent software components, written in
C++, that provides services to support GIS applications on the desktop in the
form of thick and thin clients and on the server.

As stated, the language chosen to develop ArcObjects was C++; in addition to
this language, ArcObjects makes use of the Microsoft Component Object Model.
COM is often thought of as simply specifying how objects are implemented and
built in memory and how these objects communicate with one another. While
this is true, COM also provides a solid infrastructure at the operating system level
to support any system built using COM. On Microsoft Windows operating sys-
tems, the COM infrastructure is built directly into the operating system. For
operating systems other than Microsoft Windows, this infrastructure must be
provided for the ArcObjects system to function.

Not all ArcObjects components are created equally. The requirements of a par-
ticular object, in addition to its basic functionality, vary depending on the final
end use of the object. This end use broadly falls into one of the three ArcGIS
product families:

• ArcGIS Engine—Use of the object is within a custom application. Objects
within the Engine must support a variety of uses; simple map dialog boxes,
multithreaded servers, and complex Windows desktop applications are all
possible uses of Engine objects. The dependencies of the objects within the
Engine must be well understood. The impact of adding dependencies external
to ArcObjects must be carefully reviewed, since new dependencies may intro-
duce undesirable complexity to the installation of the application built on the
Engine.

• ArcGIS Server—The object is used within the server framework, where
clients of the object are most often remote. The remoteness of the client can
vary from local, possibly on the same machine or network, to distant, where
clients can be on the Internet. Objects running within the server must be
scalable and thread safe to allow execution in a multithreaded environment.

• ArcGIS Desktop—Use of the object is within one of the ArcGIS Desktop
applications. ArcGIS Desktop applications have a rich user experience, with
applications containing many dialog boxes and property pages that allow end
users to work effectively with the functionality of the object. Objects that
contain properties that are to be modified by users of these applications
should have property pages created for these properties. Not all objects
require property pages.

Chapter2.pmd 1/25/2005, 5:47 PM28

Chapter 2 • The ArcGIS Server architecture • 29

User
Interface

Map
Presentation

Map
Analysis

Data
Access

Applications

Extensions

Base Services

ArcGIS Desktop

ArcGIS Server

Web
Development
Framework

Map
Presentation

Map
Analysis

Data
Access

Base
Services

ARCGIS SOFTWARE ARCHITECTURE

Many of the ArcObjects components that make up ArcGIS are used within all
three of the ArcGIS products. The product diagrams on these pages show that
the objects within the broad categories of base services, data access, map analysis,
and map presentation are contained in all three products. These four categories
contain the majority of the GIS functionality exposed to developers and users in
ArcGIS.

This commonality of function among all the products is important for developers
to understand, since it means that when working in a particular category, much
of the development effort can be transferred between the ArcGIS products with
little change to the software. After all, this is exactly how the ArcGIS architec-
ture is developed. Code reuse is a major benefit of building a modular architec-
ture, but code reuse does not simply come from creating components in a modu-
lar fashion.

The ArcGIS architecture provides rich functionality to the developer, but it is not
a closed system. The ArcGIS architecture is extendable by developers external to
ESRI. Developers have been extending the architecture for a number of years,
and the ArcGIS 9 architecture is no different; it, too, can be extended. However,
ArcGIS 9 introduces many new possibilities for the use of objects created by
ESRI and you. To realize these possibilities, components must meet additional
requirements to ensure that they will operate successfully within this new and
significantly enhanced ArcGIS system. Some of the changes from ArcGIS 8 to
ArcGIS 9 appear superficial, an example being the breakup of the type libraries
into smaller libraries. That, along with the fact that the objects with their meth-
ods and properties that were present at 8.3 are still available at 9.0, masks the
fact that internally ArcObjects has undergone some significant work.

The main focus of the changes made to the ArcGIS architecture at 9.0 revolves
around four key concepts:

• Modularity—A modular system where the dependencies between components
are well-defined in a flexible system.

• Scalability—ArcObjects must perform well in all intended operating environ-
ments, from single user desktop applications to multiuser/multithreaded
server applications.

• Multiple Platform Support—ArcObjects for the Engine and Server should be
capable of running on multiple computing platforms.

• Compatibility—ArcObjects 9 should remain equivalent, both functionally and
programmatically, to ArcObjects 8.3.

MODULARITY
The esriCore object library, shipped as part of ArcGIS 8.3, effectively packaged
all of ArcObjects into one large block of GIS functionality; there was no distinc-
tion between components. The ArcObjects components were divided into smaller
groups of components, these groups being packaged in Dynamic Link Libraries
(DLLs). The one large library, while simplifying the task of development for
external developers, prevented the software from being modular. Adding the type
information to all the DLLs, while possible, would have greatly increased the
burden on external developers and, hence, was not an option. In addition, the
DLL structure did not always reflect the best modular breakup of software
components based on functionality and dependency.

Chapter2.pmd 1/25/2005, 5:47 PM29

30 • ArcGIS Server Administrator and Developer Guide

ESRI has developed a modular architecture for
ArcGIS 9 by a process of analyzing features and

functions and matching those with end user
requirements and deployment options based on

the three ArcGIS product families. Developers
who have extended the ArcGIS 8 architecture

with custom components are encouraged to go
through the same process to restructure their

source code into similar modular structures.

An obvious functionality split to make is user
interface and nonuser interface code. UI libraries

tend to be included only with the ArcGIS
Desktop products.

Thread safety refers to concurrent object access
from multiple threads.

ARCGIS SOFTWARE ARCHITECTURE

There is always a trade-off in performance and manageability when considering
architecture modularity. For each criterion, thought is given to the end use and
the modularity required for support. For example, the system could be divided
into many small DLLs with only a few objects in each. Although this provides a
flexible system for deployment options, at minimum memory requirements, it
would affect performance due to the large number of DLLs being loaded and
unloaded. Conversely, one large DLL containing all objects is not a suitable
solution either. Knowing the requirements of the components allows them to be
effectively packaged into DLLs.

The ArcGIS 9 architecture is divided into a number of libraries. It is possible for
a library to have any number of DLLs and executables (EXEs) within it. The
requirements that components must meet to be within a library are well-defined.
For instance, a library, such as Geometry (from the base services set of modules),
has the requirements of being thread safe, scalable, without user interface (UI)
components, and deployable on a number of computing platforms. These require-
ments are different from libraries, such as ArcMap (from the applications cat-
egory), which does have user interface components and is a Windows-only library.

All the components in the library will share the same set of requirements placed
on the library. It is not possible to subdivide a library into smaller pieces for
distribution. The library defines the namespace for all components within it and is
seen in a form suitable for your chosen ArcObjects API.

• Type Library—COM

• .NET Interop Assembly—.NET

• Java Package—Java

• Header File—C++

SCALABILITY

The ArcObjects components within ArcGIS Engine and ArcGIS Server must be
scalable. Engine objects are scalable because they can be used in many different
types of applications; some require scalability, while others do not. Server objects
are required to be scalable to ensure that the server can handle many users con-
necting to it, and as the configuration of the server grows, so does the perfor-
mance of the ArcObjects components running on the server.

The scalability of a system is achieved using a number of variables involving the
hardware and software of the system. In this regard, ArcObjects supports
scalability with the effective use of memory within the objects and the ability to
execute the objects within multithreaded processes.

There are two considerations when multithreaded applications are discussed:
thread safety and scalability. It is important for all objects to be thread safe, but
simply having thread-safe objects does not automatically mean that creating
multithreaded applications is straightforward or that the resulting application
will provide vastly improved performance.

The ArcObjects components contained in the base services, data access, map
analysis, and map presentation categories are all thread safe. This means that
application developers can use them in multithreaded applications; however,

Chapter2.pmd 1/25/2005, 5:47 PM30

Chapter 2 • The ArcGIS Server architecture • 31

The classic singleton per process model means
that all threads of an application will still access

the main thread hosting the singleton objects.
This effectively reduces the application to a

single-threaded application.

Microsoft Windows is a little endian platform,
while Sun Solaris is a big endian platform.

While the aim of ArcGIS releases is to limit the
change in the APIs, developers should still test
their software thoroughly with later releases.

ARCGIS SOFTWARE ARCHITECTURE

programmers must still write multithreaded code in such a way as to avoid appli-
cation failures due to deadlock situations and so forth.

In addition to the ArcObjects components being thread safe for ArcGIS 9, the
apartment threading model used by ArcObjects was analyzed to ensure that
ArcObjects could be run efficiently in a multithreaded process. A model referred
to as “Threads in Isolation” was used to ensure that the ArcObjects architecture is
used efficiently.

This model works by reducing cross-thread communication to an absolute mini-
mum or, better still, removing it entirely. For this to work, the singleton objects
at ArcGIS 9 were changed to be singletons per thread and not singletons per
process. The resource overhead of hosting multiple singletons in a process was
outweighed by the performance gain of stopping cross-thread communication
where the singleton object is created in one thread, normally the Main single-
threaded apartment (STA), and the accessing object is in another thread.

ArcGIS is an extensible system, and for the Threads in Isolation model to work,
all singleton objects must adhere to this rule. If you are creating singleton objects
as part of your development, you must ensure that these objects adhere to the
rule.

MULTIPLE PLATFORM SUPPORT

As stated earlier, ArcObjects components are C++ objects, meaning that any
computing platform with a C++ compiler can potentially be a platform for
ArcObjects. In addition to the C++ compiler, the platform must also support
some basic services required by ArcObjects.

Although many of the platform differences do not affect the way in which
ArcObjects components are developed, there are areas where differences do
affect the way code is developed. The byte order of different computing architec-
tures varies between little endian and big endian. This is most readily seen when
objects read and write data to disk. Data written using one computing platform
will not be compatible if read using another platform, unless some decoding
work is performed. All the ArcGIS Engine and ArcGIS Server objects support
this multiple platform persistence model. ArcObjects components always persist
themselves using the little endian model; when the objects read persisted data, it
is converted to the appropriate native byte order. In addition to the byte order
differences, there are other areas of functionality that differ between platforms;
the directory structure, for example, uses different separators for Windows and
UNIX—‘\’ and ‘/’, respectively. Another example is the platform-specific areas
of functionality, such as Object Linking and Embedding Database (OLE DB).

COMPATIBILITY

Maintaining compatibility of the ArcGIS system between releases is important to
ensure that external developers are not burdened with changing their code to
work with the latest release of the technology. Maintaining compatibility at the
object level was a primary goal of the ArcGIS 9 development effort. Although
this object-level compatibility has been maintained, there are some changes
between the ArcGIS 8 and ArcGIS 9 architectures that will affect developers,
mainly related to the compilation of the software.

Chapter2.pmd 1/25/2005, 5:47 PM31

32 • ArcGIS Server Administrator and Developer Guide

ARCGIS SOFTWARE ARCHITECTURE

Although the changes required for software created for use with ArcGIS 8 to
work with ArcGIS 9 are minimal, it is important to understand that to realize any
existing investment in the ArcObjects architecture at ArcGIS 9, you must review
your developments with respect to ArcGIS Engine, ArcGIS Server, and ArcGIS
Desktop.

ESRI understands the importance of a unified software architecture and has
made numerous changes for ArcGIS 9 so the investment in ArcObjects can be
realized on multiple products. If you have been involved in creating extensions to
the ArcGIS architecture for ArcGIS 8, you should think about how the new
ArcGIS 9 architecture affects the way your components are implemented.

The remainder of this chapter focuses on the components of ArcGIS Server that
make it possible to run ArcObjects in a server environment. For more informa-
tion about developing with ArcGIS Engine and ArcGIS Desktop, refer to
ArcGIS Engine Developer Guide and ArcGIS Desktop Developer Guide, respectively.

Chapter2.pmd 1/25/2005, 5:47 PM32

Chapter 2 • The ArcGIS Server architecture • 33

ARCGIS SERVER ARCHITECTURE

ArcGIS Server is fundamentally an object server that manages a set of GIS server
objects. These server objects are software objects that serve a GIS resource such
as a map or a locator. Developers make use of server objects in their custom
applications. Server objects are ArcObjects. ArcObjects is a collection of soft-
ware objects that make up the foundation of ArcGIS.

ArcObjects components have multiple developer application programming inter-
faces. These include COM, .NET, Java, and C++. Developers can use these APIs
to build applications that make use of ArcObjects functionality.

ArcObjects is at the core of all the ArcGIS products: ArcGIS Desktop, ArcGIS
Engine, and ArcGIS Server. ArcGIS Server adds the framework for running

ArcObjects in a server. ArcGIS Server also provides
a framework for developers to build advanced GIS
Web services and Web applications using ArcObjects
in standard application server frameworks such as
.NET and J2EE.

As described above, at the core of ArcGIS Server is
a rich ArcObjects library that can be exploited in
Web applications and Web services to deliver ad-
vanced GIS functionality to a wide range of users
who interact with the server through Web browsers
and other thin client applications. Web applications
that run in the Web server use distributed object
technology to communicate with ArcObjects compo-
nents, which are themselves COM objects, running in
the GIS server over a local area network or wide
area network (WAN).

Distributed object technology allows applications
running in one process to use COM objects that are
running in another process seamlessly using local
interprocess communication. Distributed object
technology also allows applications to use COM

objects running on other machines by using network protocols to provide the
communication between the client and COM server. This allows the Web applica-
tion or Web service developer to make use of remote ArcObjects running in the
server using the same programming interfaces a developer writing a desktop
application with ArcObjects would use.

ArcObjects include APIs for both .NET and Java. These APIs allow developers
to write Web applications using both .NET and Java and to host those Web
applications in standard server frameworks such as .NET and J2EE. To facilitate
the development of such applications, the ArcGIS Server ADF includes a set of
Web controls and ArcObjects proxies for both .NET and Java around which to
build GIS Web applications. These Web applications can deliver advanced GIS
functionality to the end user through browsers.

ArcGIS Server also includes a Simple Object Access Protocol (SOAP) toolkit that
contains ArcObjects components that support SOAP request handling via an
extensible markup language (XML) API. Once an ArcObjects component is

ArcObjects library

Web
applications

Web
controls

Web services

Application Server (.Net/J2EE)

COM Java

.Net SOAP/XML

HTML UI XML API

A proxy object is a local representation of a
remote object. The proxy object controls access
to the remote object by forcing all interaction

with the remote object to be via the proxy
object. The supported interfaces and methods on
a proxy object are the same as those supported

by the remote object. You can make method calls
on and get and set properties of a proxy object

as if you were working directly with the remote
object.

Chapter2.pmd 1/25/2005, 5:47 PM33

34 • ArcGIS Server Administrator and Developer Guide

exposed as a Web service, this XML API allows applications to remotely use that
object running in the server over standard Internet protocols.

The remainder of this chapter explores how the different pieces of the ArcGIS
Server work together to make the use of ArcObjects in server applications pos-
sible. Detail is given to the ArcGIS Server programming model in Chapter 4,
‘Developing ArcGIS Server applications’, and the application developer frame-
works are discussed in detail in Chapters 5, ‘Developing Web applications with
.NET’, and 6, ‘Developing Web applications with Java’.

ARCGIS SERVER ARCHITECTURE

Chapter2.pmd 1/25/2005, 5:47 PM34

Chapter 2 • The ArcGIS Server architecture • 35

THE ARCGIS SERVER SYSTEM

The ArcGIS Server is a distributed system that
consists of a server object manager, server

containers, and clients to the server, such as
desktop and Web applications.

ArcGIS Server is a distributed system consisting of several components that can
be distributed across multiple machines. Each component in the ArcGIS Server
system plays a specific role in the process of managing, activating, deactivating,
and load balancing the resources that are allocated to a given server object or set
of server objects.

The components of ArcGIS Server can be summarized as:

• GIS server—Hosts and runs server objects. The GIS server consists of a server
object manager (SOM) and one or more server object containers (SOCs).

• Web server—Hosts Web applications and Web services that use the objects
running in the GIS server.

• Web browsers—Used to connect to Web applications running in the Web
server.

• Desktop applications—Connect over HyperText Transfer Protocol (HTTP) to
ArcGIS Web services running in the Web server or connect directly to GIS
servers over a LAN or WAN.

THE GIS SERVER

The GIS server, responsible for hosting and managing server objects, is the set of
objects, applications, and services that makes it possible to run ArcObjects com-
ponents on a server. Before describing the various aspects of the GIS server,
server objects and the role of ArcObjects in ArcGIS Server will be defined.

When running the GIS server on UNIX, Visual
Mainwin’s Remote Security Authority

(RemoteSA), a Windows service, needs to be set
up on a Windows machine to provide authentica-
tion services for the GIS Server and all machines

connecting to it. This service and related
documentation are available on the ArcGIS

Server CD in the support\remotesa directory.

When running the GIS server on UNIX, Visual
Mainwin in Enterprise mode provides

Distributed Component Object Model (DCOM)
support for the server on UNIX.

Chapter2.pmd 1/25/2005, 5:47 PM35

36 • ArcGIS Server Administrator and Developer Guide

THE ARCGIS SERVER SYSTEM

A server object is a software object that manages and serves a GIS resource such
as a map or a locator. For example, a server object named RedlandsMap may
serve a map document of data for the city of Redlands, while the server object
RedlandsGeocode may serve an address locator for geocoding addresses. ArcGIS
Server objects are themselves ArcObject components.

Server objects are managed and run within the GIS server. A server object may be
preconfigured and preloaded in the server and can be shared between applica-
tions. Server applications make use of server objects and may also use other
ArcObjects that are installed on the GIS server.

The server object manager
The GIS server is composed of a SOM, which is a Windows service or UNIX
daemon running on a single machine, and SOCs, which run on one or more
machines (container machines). The SOM manages the set of server objects that
are distributed across one or more container machines. When an application
makes a direct connection to a GIS server over a LAN or WAN, it is making a
connection to the SOM, so the parameter that is provided for the connection to
be made is the name or Internet Protocol (IP) address of the SOM machine.

The server object containers
The container machine or machines actually host the server objects that are
managed by the SOM. Each container machine is capable of hosting multiple
container processes. A container process is a process in which one or more server
objects is running. Container processes are started and shut down by the SOM.
The objects hosted within the container processes are ArcObjects components
that are installed on the container machine as part of the installation of ArcGIS
Server.

All server objects run on all container machines and are balanced equally across all
container machines. So, it’s important that all container machines have access to
the resources and data necessary to run each server object. It’s also important to
note that the GIS server assumes that all container machines are configured
equally, such that they are all capable of hosting the same number of server
objects. Server object resources and data are discussed in more detail in the next
section.

The server directories
A server directory is a location on a file system. The GIS server is configured to
clean up any files it writes to a server directory. By definition, a server directory
can be written to by all container machines.

The GIS server hosts and manages server objects and other ArcObjects compo-
nents for use in applications. In many cases, the use of those objects requires
writing output to files. For example, when a map server object draws a map, it
writes images to disk on the server machine. Other applications may write their
own data; for example, an application that checks out data from a geodatabase
may write the checkout personal geodatabase to disk on the server.

Typically, these files are transient and need only be available to the application for
a short time—for example, the time for the application to draw the map or the

Chapter2.pmd 1/25/2005, 5:47 PM36

Chapter 2 • The ArcGIS Server architecture • 37

THE ARCGIS SERVER SYSTEM

time required to download the checkout database. As applications do their work
and write out data, these files can accumulate quickly. The GIS server will auto-
matically clean up its output if that output is written to a server directory.

A server directory can be configured such that files created by the GIS server in it
are cleaned based on either file age or time since they were last accessed. The
maximum file age is a property of a server directory. All files created by the GIS
server that are older than or have not been accessed for the time defined by the
maximum age are automatically cleaned up by the GIS server.

The Remote Security Authority (GIS Server on UNIX only)
A Windows machine is required to act as Primary Domain Controller (PDC) to
authenticate users of a GIS Server on UNIX.

Visual Mainwin’s Remote Security Authority, a Windows service, needs to be set
up on a Windows machine to provide authentication services for the GIS Server
and all machines connecting to it. This service and related documentation are
available on the ArcGIS Server CD in the support\remotesa directory.

Visual Mainwin in Enterprise mode (GIS Server on UNIX only)
Visual Mainwin in Enterprise mode provides DCOM support for the GIS Server
on UNIX. This download and related documentation are available on the ArcGIS
Server CD in the support\msc directory.

THE WEB SERVER (UNIX-SPECIFIC INFORMATION)

The Web server hosts server applications and Web services written using the
ArcGIS Server API. These server applications use the ArcGIS Server API to
connect to a SOM, make use of server objects, and create other ArcObjects for
use in their applications.

These Web services and Web applications can be written using the ArcGIS Server
Application Developer Framework, which is available for both .NET and Java
developers. Examples of Web applications include mapping applications, discon-
nected editing applications, and any other application that makes use of
ArcObjects and is appropriate for Web browsers.

Chapter2.pmd 1/25/2005, 5:47 PM37

38 • ArcGIS Server Administrator and Developer Guide

Examples of Web services include Web services for exposing map and geocode
server objects that desktop GIS users can connect to and consume over the
Internet. It is possible to create your own native .NET or Java Web services
whose parameters are not ArcObjects types, but do perform a specific GIS func-
tion. For example, it is possible to write a Web service called
FindNearestHospital that accepts x,y coordinates as input and returns an applica-
tion-defined Hospital object that has properties such as the address, name, and
number of beds.

A more detailed description of the application developer’s framework and how it
is used to create Web services and Web applications is given later in this book.

Web applications connect to GIS servers within their organization over the LAN.
In this sense, the Web application or Web service is a client of the GIS server.
Users connect to Web applications and Web services over the Internet or
Intranet, but all of the Web application’s logic runs in the Web server and sends
hypertext markup language (HTML) to the browser client. The Web application
itself makes use of objects and functionality running within the GIS server. This
allows the development of Web applications to make use of ArcObjects in the
server as would a desktop application connecting to the GIS server in client/
server mode over the LAN or WAN.

As users interact with their browser, it makes requests to the Web application,
which in turn makes requests on the SOM. The SOM hands back a proxy to a
server object or server objects that are running within the GIS server. The Web
application uses the proxy to work with the object as if it existed in the Web
application’s process, but all execution happens on the GIS server.

Web and desktop server application development will be discussed in greater
detail in later chapters of this book.

THE ARCGIS SERVER SYSTEM

Web applications running in the Web server
connect to the SOM and work with proxies to

objects running within containers in the GIS
server.

GIS Server

Server
object

manager

Server object
container

ArcObjects

ArcObjects

Server object
container

ArcObjects

ArcObjects

Web application server

Web application server

Web Application

Web Application

ArcObject
proxies

ArcObject
proxies

.NET/
Java

objects

.NET/
Java

objects

Browser

Browser

Browser

Internet

Chapter2.pmd 1/25/2005, 5:47 PM38

Chapter 2 • The ArcGIS Server architecture • 39

ARCGIS DESKTOP APPLICATIONS

Users can connect to ArcGIS Server using ArcGIS Desktop applications to make
use of map and geocode server objects running in the server. Users can use
ArcCatalog to connect to a GIS server directly on the LAN or WAN. They can
also specify the URL of a Web service catalog to indirectly connect to a GIS
server over the Internet to make use of map and geocode server objects exposed
by that Web service catalog.

Additionally, the set of server objects and their properties are managed by the
GIS server administrator using ArcCatalog. Administrators can connect to the
GIS server over the LAN/WAN and use ArcCatalog to add and remove map and
geocode server objects as well as configure how server objects should be run,
including the set of container machines that are available for the server and the
directories on the server they can use to write any output.

Users can connect to ArcGIS Server using ArcGIS
Desktop applications to consume and administer

server objects.

THE ARCGIS SERVER SYSTEM

Chapter2.pmd 1/25/2005, 5:47 PM39

40 • ArcGIS Server Administrator and Developer Guide

As described earlier in this chapter, a server object is a software object that
manages and serves a GIS resource such as a map or a locator. Server objects are
managed by the GIS server and run within processes on container machines.

A server object is simply a coarse-grained ArcObjects component, that is, a high-
level object that simplifies the programming model for doing certain operations
and hides the fine-grained ArcObjects that do the work. These coarse-grained
objects allow clients to perform large units of work, such as drawing a map or
geocoding a table of addresses, using a single method call. These coarse-grained
objects use the finer-grained ArcObjects components on the server to draw the
map and geocode the addresses.

Server objects also have SOAP interfaces for handling SOAP requests to execute
methods and returning results as SOAP responses. This support for SOAP request
handling makes it possible to expose server objects as Web services that can be
consumed by clients across the Internet.

ArcGIS Server for 9.0 includes two coarse-grained server objects: the Geocode-
Server and the MapServer.

Note that a server object also has other associated objects that a developer can
get to and make use of; for example, a developer working with a MapServer

object can get to the Map and Layer objects associated with that map.
These are the same Map and Layer objects that a desktop or engine
developer would work with, except they live in the server. This is
discussed in much greater detail in Chapter 4, ‘Developing ArcGIS
Server applications’. For now, the concentration will be on how the
MapServer and GeocodeServer objects are managed.

A server object, unlike other ArcObjects components, can be
preconfigured by a GIS server administrator. Once these server objects
are preconfigured, they can be used by developers and end users who can
connect to the server through ArcGIS Desktop applications.

When a server object is configured by the server administrator to run in
a GIS server, the following configuration aspects of the server object
need to be specified:

• Name of the server object

• Type of server object

• The initialization data and parameters for the server object

• Whether or not the object is pooled and the minimum and maximum
number of instances that can be running

• How long a client can wait for and use a server object

• The isolation level of the server object

• Whether the object is recycled

Each of these aspects of server objects will be described in more detail.

SERVER OBJECTS

A server object is a coarse-grained ArcObjects
component that has other ArcObjects compo-

nents associated with it.

MapServer

Map

Layer

Renderer

Feature
Class

Spatial
Reference

Datum

Chapter2.pmd 1/25/2005, 5:47 PM40

Chapter 2 • The ArcGIS Server architecture • 41

SERVER OBJECTS

SERVER OBJECT TYPE

All server objects have a type, which dictates what its initialization parameters
are and what methods and properties it exposes to developers. At ArcGIS 9,
there are two server object types: the MapServer, which is in the Carto library,
and the GeocodeServer, which is in the Location library.

INITIALIZATION DATA AND PARAMETERS

As already stated, a GIS server object manages and serves a GIS resource. When a
server object is configured, this resource and other required parameters associated
with the server object must be specified such that when a server object is initial-
ized, it knows what resource to bind to.

The MapServer server object’s initialization data is the map document (.mxd) or
published map document (.pmf) that it’s going to serve. When instances of a
particular MapServer object are initialized on the server, the map document is
loaded.

The GeocodeServer server object’s initialization data is the address locator that it
will use to perform address matching against. The address locator may be a loca-
tor file (.loc), an ArcView 3 address locator (.mxs), or an ArcSDE address loca-
tor. In addition to the address locator, the GeocodeServer also has a batch size
parameter that indicates the number of records it will process at a time when
doing batch geocoding.

Note that when configuring the initialization data for a server object, both the
resource (that is, map document or locator) and the data that the resource refer-
ences are accessible by the GIS server’s container machines. This becomes an
especially important consideration when the GIS server has multiple container
machines. In these cases, the location of both the resource and the data it uses
must be on a shared file system (in the case of file-based information) or on an
ArcSDE server that all the container machines can connect to.

For example, a map document that acts as a resource to a MapServer object
hosted on multiple container machines must be located on a shared network
drive. All of the data for the various layers in the map that reference file-based
data must also be on a shared network drive, and any layers that reference data in
an ArcSDE geodatabase must be able to connect to that database.

Note that server objects can run on any of the container machines configured in
the GIS server. All container machines must have access to the data and resources
needed for a particular server object.

SERVER OBJECT POOLING

A server object that is running on the GIS server is available for use by users who
connect to the server through ArcGIS Desktop or by developers who create
applications that connect to and make use of the server. Any server object may
be used by a number of different users. For example, a MapServer object con-
taining features from a land records database may be used in an application that
users query for information about their land parcel. The same MapServer may also
be used by editors who update the database in a disconnected editing application.

The GIS server includes the MapServer and
GeocodeServer server object types.

Chapter2.pmd 1/25/2005, 5:47 PM41

42 • ArcGIS Server Administrator and Developer Guide

SERVER OBJECTS

A server object may be configured to be pooled or non-pooled. Non-pooled
server objects are created new for each application use and destroyed when
released by the application to the server. The creation of the object includes
creating the object and loading up any initialization data, such as the map docu-
ment associated with a MapServer server object. Each user of a server applica-
tion that makes use of a non-pooled server object requires an instance of that
object dedicated to the user’s application.

The number of users on the system at any one time has a 1:1 correlation with the
number of running server object instances, so the number of concurrent users the
GIS server can support is equal to the number of server objects that it can sup-
port effectively at any one time. When configuring a server object to be non-

pooled, the maximum number of instances can be limited by
specifying it as a property of the configuration. Once the maxi-
mum number of instances has been reached (that is, the maxi-
mum number of concurrent users of that server object), addi-
tional users will be queued until the number of users drops
below the maximum.

ArcGIS Server allows you to pool instances of server objects so
they can be shared between multiple application sessions at the
per request level. This allows you to support more users with
fewer resources allocated to a particular server object. When a
server object is configured to be pooled, the minimum and
maximum number of instances must be specified as properties
of the server object configuration. When the server object is

started, the GIS server will precreate and initialize the minimum number of
server objects. When an application asks the server object manager for an instance
of that server object, it will get a reference to one of the preloaded server objects
in the pool.

The advantages of pooling server objects include:

• Separate the potentially expensive initialization of a server object from the
actual work that the object performs for each client.

• Share the cost of expensive initialization and acquisition of resources, such as
database connections and so on, across all clients.

• Precreate objects at server object manager startup, before any client requests
come in.

• Administratively configure pooling to take best advantage of available hard-
ware resources.

Applications that use pooled server objects keep their reference on that object for
the duration of their request (for example, draw map, identify feature, geocode
address), then return the object to the server. When the object is returned to the
server, it’s available for use by another user’s request. Users of such an application
may be working with a number of different instances of a server object in the
pool as they interact with the application, all of which is transparent to the users.

If there are more simultaneous requests on a pooled server object than the mini-
mum, new instances of the server object will be created until the maximum

The number of non-pooled server objects running
in the GIS server is 1:1 with the number of
application users making use of that server

object.

GIS Server

Application users

Server objects

Chapter2.pmd 1/25/2005, 5:47 PM42

Chapter 2 • The ArcGIS Server architecture • 43

SERVER OBJECTS

number of instances is reached, at which point the user is queued until objects in
the pool become free.

Pooling server objects allows the GIS server to support more users.
Because applications can share a pool of server objects, the number of
concurrent users on the system is greater than the number of server
objects that the GIS server can effectively support at one time.

Non-pooled and pooled server objects support different types of server
applications. Applications are expected to make stateless use of pooled
server objects, meaning they do not make changes to the server object
when they are using it, and they are released back to the pool in a
timely manner when the request has been processed.

For example, a stateless mapping application that wants to draw a
certain extent of a MapServer’s map will get a reference to an instance
of a MapServer server object from the pool, execute a method on the
MapServer to draw the map, then release it back to the pool. The next
time the application needs to draw the map, this is repeated. Each
draw of the map may use a different instance of the pooled server

object; therefore, each pooled object must be the same (have the same set of
layers, the same renderer for each layer, and so on). If the state of one of the
pooled objects is changed (for example, a new layer is added, a layer’s renderer is
changed), then as a user pans and zooms around the map, inconsistent results will
be seen.

Non-pooled server objects are created for each application session that uses it.
Since server objects can take time to initialize, the application that makes use of
a non-pooled object typically holds a reference to the server object for the dura-
tion of the application’s session. Since the server object is destroyed when it’s
returned to the server, the application is free to change any aspect of the server
object’s state.

Stateful versus stateless use of server objects, as well as the use of application
session state in ArcGIS Server applications, will be discussed in greater detail in
Chapter 4, ‘Developing ArcGIS Server applications’.

CREATION TIME, WAIT TIME, AND USAGE TIME

When server objects are created in the GIS server, either as a result of the server
starting or in response to a request for a server by a client, the time it takes to
initialize the server object is referred to as its creation time. The GIS server
maintains a maximum creation time-out that dictates the amount of time a server
object has to start before the GIS server will assume its startup is hanging and
cancel the creation of the server object.

When the maximum number of instances of a pooled or non-pooled server
object is in use, a client requesting a server object will be queued until another
client releases one of the server objects. The amount of time it takes between a
client requesting a server object and getting a server object is called the wait time.
A server object can be configured to have a maximum wait time. If a client’s wait
time exceeds the maximum wait time for a server object, then the request will
time out.

Pooled server objects can support more users
because application sessions share a collection of

objects in the pool.

GIS Server

Application users

Server object pool

Chapter2.pmd 1/25/2005, 5:47 PM43

44 • ArcGIS Server Administrator and Developer Guide

SERVER OBJECTS

Once a client gets a reference to a server object, it can hold onto that server
object for as long as it wants before releasing it. The amount of time between
when a client gets a reference to a server object and when it releases it is called
the usage time. To ensure that clients don’t hold references to server objects for
too long (that is, they don’t correctly release server objects), each server object
can also be configured with a maximum usage time. If a client holds on to a
server object for longer than the maximum usage time, then the server object is
automatically released and the client will lose its reference to the server object.

Maximum usage time also protects server objects from being used to do larger
volumes of work than the administrator intended. For example, a server object
that is used by an application to perform geodatabase checkouts may have a
maximum usage time of 10 minutes. In contrast, a server object that is used by
applications that only draw maps may have a maximum usage time of one minute.

The GIS server maintains statistics both in memory and in its log files about wait
time, usage time, and other events that occur within the server. The server ad-
ministrator can use these statistics to determine if, for example, the wait time for
a server object is high, which may indicate a need to increase the maximum
number of instances for that server object.

For more information about how to view these statistics, see Chapter 3, ‘Admin-
istering an ArcGIS Server’, and Appendix B, ‘Configuration and log files’.

Server object isolation
Server objects run within processes on the container machines. Server objects can

be configured such that they run in a dedicated process on the server,
or they can be configured to run in processes they share with other
server objects. How they share processes is referred to as their isola-
tion level.

Server objects with high isolation do not share a process with other
server objects. Each instance of a server object with high isolation
has its own dedicated process on the server. Server objects with low
isolation can share processes with other server objects of the same
type.

Up to four server objects can share the same process. When more than four server
objects of a particular type (for example, four RedlandsMap server objects) are
created, an additional process is started for the next four server objects, and so

on. As server objects are created and destroyed, they will vacate and
fill spaces in these running processes.

Instances of server objects whose isolation level is high require more
resources on the server to run, as they require dedicated processes.
Since instances of server objects with low isolation can share pro-
cesses, they make more efficient use of server resources. However,
isolation does have its benefits: since server objects with high isola-
tion do not share processes, if an error occurs on the object, causing
its process to shut down or crash, it will not affect other server

objects. If a server object is sharing its process with other server objects, how-
ever, and the process is shut down or crashes, all the server objects in that process
will be destroyed.

Server objects with high isolation run in dedi-
cated processes on the GIS server.

Server objects with low isolation can share
processes with other server objects of the same

type.

Process Process Process

Server objects

GIS Server

Process Process

Server objects

GIS Server

Chapter2.pmd 1/25/2005, 5:47 PM44

Chapter 2 • The ArcGIS Server architecture • 45

Server object recycling
Recycling allows server objects that have become unusable to be destroyed and
replaced with fresh server objects; recycling also reclaims resources taken up by
stale server objects. This process allows you to keep the pool of server objects
fresh and cycle out stale or unusable server objects.

Pooled server objects are typically shared between multiple applications and users
of those applications. Through reuse, a number of things can happen to a server
object to make it unavailable for use by applications. For example, an application
may incorrectly modify a server object’s state, or an application may incorrectly
hold a reference to a server object, making it unavailable to other applications or
sessions. In some cases, server objects may become corrupted and unusable.

Non-pooled server objects whose isolation level is low can also be recycled. This
recycling will shut down and restart the processes in which non-pooled objects
are started and run.

In each case, recycling occurs as a background process on the server. The time
between recycling events is called the recycling interval. A server object’s recy-
cling interval can be configured by the administrator. During recycling, instances
of server objects in use by clients are not recycled until released, so recycling
occurs without interrupting the user of a server object.

SERVER OBJECTS

Chapter2.pmd 1/25/2005, 5:47 PM45

46 • ArcGIS Server Administrator and Developer Guide

ARCGIS SERVER SECURITY, IMPERSONATION, AND IDENTITY

The ArcGIS Server is a secure server and grants connections only to those users
who are authorized to connect by the GIS server administrator. There are two
levels at which security can be configured for an ArcGIS Server: at the GIS server
level itself and at the level of a Web application or Web service that runs in the
Web server. Each of these will be discussed separately.

GIS SERVER SECURITY

ArcGIS Server security is based on authenticating operating system user accounts.
Connections will be granted to the server for those users who are members of the
ArcGIS Server users group (agsusers). The agsusers group is an operating system

group, created by the ArcGIS Server install on the SOM
machine and all container machines. When a user runs an
application that connects to the server, that user’s login is
authenticated against the users group. If the user is a member
of that group, then access is granted to the server; if not, the
connection is rejected.

Once connected to the server, the user or application can
make use of the server objects running in the server and
create new objects in the server for the application’s use.

Members of the users group have consumer-level privileges
on the GIS server. Consumers may not perform administra-
tive tasks, such as add, remove, or modify preconfigured
server objects, or modify properties of the server itself, such
as adding and removing machines and so on.

Users may also connect to the server if they are a member of
the ArcGIS Server administrators group (agsadmin). These
users are granted administrator privileges on the GIS server.
Once connected to the server as an administrator, the user or
application can administer aspects of the server, such as:

• Add or remove container machines.

• Add, remove, or modify server directories.

• Add, delete, or modify server objects.

• Start, stop, or pause server objects.

• View statistical information.

The users (agsusers) and administrators (agsadmin) groups are created as local user
groups by the ArcGIS Server install on both the SOM machine and container
machines. When adding a user account to one of these groups, it’s important to
make sure that the account is added to the group on each machine (the SOM
machine and all container machines). One strategy for doing this is to create a
domain user group for server users and another for server administrators, then
add those domain groups to the users and administrators groups, respectively, on
all machines. Then your task of adding and removing users privileges to the
ArcGIS Server can be managed by adding and removing them from those domain
user groups.

When applications make connections to the GIS
server, they are authenticated against the

agsusers and agsadmin users groups on the GIS
server.

` `

GIS Server

agsusers

Cal

Liz

agsadmin

Amelie

Application running as Amelie
can connect with access to
ServerObjectManager and

ServerObjectAdmin.

Application running as Fred;
connection is refused.

Application running as Cal
can connect with access
to ServerObjectManager.

Internet

Chapter2.pmd 1/25/2005, 5:48 PM46

Chapter 2 • The ArcGIS Server architecture • 47

ARCGIS SERVER SECURITY, IMPERSONATION, AND IDENTITY

A desktop client application to ArcGIS Server will run as the user account that
started the application. For example, if you are logged into a desktop computer
as the domain user ANDY on the domain AVWORLD, and you are running an
application such as ArcCatalog, the identity of the application is
AVWORLD\ANDY. When you connect to an ArcGIS Server in that ArcCatalog
session, you are connecting as AVWORLD\ANDY. As long as
AVWORLD\ANDY is a member of the users group (agsusers) on the SOM, you
will be able to connect. If AVWORLD\ANDY is a member of the administra-
tors group (agsadmin), you will have administrator privileges on the server
through that connection.

When you connect to ArcGIS Server with ArcCatalog, you will have more com-
mands when connected as an administrator than you would as a consumer—that
is, the commands necessary for administering the GIS server. For more details on
how to use ArcCatalog to administer ArcGIS Server, see Chapter 3, ‘Administer-
ing an ArcGIS Server’.

IMPERSONATION

Web applications running in the Web server must connect to the ArcGIS Server
as a valid GIS server user (that is, a member of the users group). The Web appli-
cation must use impersonation to connect to the server as a user account in the
users group. For more information on impersonation in Java and .NET, see Chap-
ters 5, ‘Developing Web applications with .NET’, and 6, ‘Developing Web appli-
cations with Java’.

At the application level, Web applications and Web services define their own
security model based on ASP.NET, the .NET implementation of Active Server
Pages, and Java 2 Platform Enterprise Edition (J2EE). Based on this standard
security infrastructure, you can build anonymous applications and Web services
that are open to all who know the URL. You can also build secure applications
with their own users, authentication, and authorization independent of the GIS
server. Using these security infrastructures, you can limit the accessibility of your
Web application or Web service and deny unauthorized users from having access
to your GIS server through the Internet.

These technologies are beyond the scope of this book. For more information on
securing ASP.NET and J2EE Web applications, consult the literature on those
technologies.

IDENTITY

The GIS server itself runs as two distinct operating system accounts: the server
account and the container account. These accounts can have any name and can be
assigned to any account already existing in your organization. However, it is
important to understand why these accounts are necessary before deciding
whether existing accounts in your domain should be used or if you should let the
ArcGIS Server installation create these accounts for you.

The server account is the account that runs the Server Object Manager Windows
service or UNIX daemon and process. This process manages the container pro-
cesses on the container machines as well as the GIS server’s configuration infor-
mation and log files. So, the server account has privileges to write to the locations

If your login user is not a member of the users
or administrators groups, you can use the “runas”

command to run ArcCatalog as another user
who is in the appropriate group.

Chapter2.pmd 1/25/2005, 5:48 PM47

48 • ArcGIS Server Administrator and Developer Guide

ARCGIS SERVER SECURITY, IMPERSONATION, AND IDENTITY

where the server configuration information and log files are stored. It also has
privileges to start container processes on the container machines.

The container process actually hosts the server objects and does the work. Con-
tainer processes are started by the server object manager but run as the container
account. Therefore, the container account must have read access to any GIS
resources (maps, locators, data) that preconfigured and application-specific server
objects require to do their work. In addition, the container account must have
write access to the server directories of the GIS server so that server objects
running in container processes can write their output. These aspects of the con-
tainer account are important for administering your site, especially when consid-
ering privileges on shared network drives and so on.

One important aspect of the container account is that, since the container pro-
cesses runs as that account, a user who connects to the GIS server can do any-
thing that the container account can do. Because developers are free to create
their own objects on the server, they have access to a wide range of functionality,
including the ability to read data that the container account has read privileges
on. More important, developers can edit, delete, and otherwise affect files that
the container account has write privileges to.

It can be dangerous to use a domain account with many privileges as the con-
tainer account for your GIS server. The container account should only have
enough privileges to access necessary data and perform the task of running server
objects. The ArcGIS Server installation can create the server container account
with the following minimum privileges on each container machine:

• Ability to launch container processes

• Write access to the system temp directory

It is up to the GIS server administrator to grant this account access to any neces-
sary data and write privileges to the server’s output directories.

The GIS server postinstallation application allows
you to specify the server and container accounts.

Chapter2.pmd 1/25/2005, 5:48 PM48

Administering an
ArcGIS Server

Administering a GIS server means managing the server itself and the server

objects running on it. These server objects are, for example, the maps and

locators you need to support client applications that require GIS functionality

embedded in them. Just create the map or locator you want to host on your GIS

server, then use the administration tools in ArcCatalog to add the server object to

your server. Once added to the GIS server, your client applications can remotely

access the server objects.

Administration is not a one-time event; it’s an ongoing process during which you’ll

create, delete, and monitor the server objects that run on your server. You’ll also

manage the machines and server directories that comprise your server, making

sure the system is performing optimally.

This chapter describes how to manage the server using ArcCatalog. Topics covered

in this chapter include:

• connecting to a GIS server • adding and removing GIS server objects

• managing the server and its server objects

3

Ch03.pmd 1/25/2005, 5:49 PM49

50 • ArcGIS Server Administrator and Developer Guide

GETTING STARTED

You can think of ArcCatalog as the user interface to a GIS server. ArcCatalog lets
you view and, if you’re an administrator, manage the set of server objects run-
ning on the server. ArcCatalog provides two distinct views of your GIS server,
one for administrators and one for those with consumer privileges.

When you connect to a GIS server without administrative privileges, ArcCatalog
simply displays the list of server objects available to you. You can use these server
objects—for example, display a map hosted on the server in ArcMap—but you
can’t manage them in any way—for example, delete them. When you connect to
a GIS server as an administrator, you’ll see some extra tools that allow you to
manage the server objects as well.

As an administrator, ArcCatalog lets you manage the set of server objects running
on your server and the set of machines that comprise the server. You can monitor
how client applications consume individual server objects and whether there are
enough resources to satisfy demand. At times, you may need to increase the
amount of computer resources allocated to a particular server object; other times
you may need to add new computers to handle the load.

If you’ve just installed ArcGIS Server, there are a few things you need to do
before you can start creating server objects and allowing client applications to
access these objects. The steps below provide a summary of the things you need
to think about and do to get started. The remaining sections of the chapter
provide the details for these steps.

• Identify who can access your GIS server.
This doesn’t have to be an exhaustive process at this point. At a minimum,
you will need to grant yourself administrative access to your GIS server. This
way, you’ll be able to add server objects to the server and configure other
aspects of the server itself—such as add container machines. Optionally, you
can identify those people who should have administrative access and others
who should have consumer-level access to the server objects.

• Set up access to the GIS server.
The ArcGIS Server security model utilizes the operating system’s security
model to determine who can connect to and administer the server. You will
need to add the list of people you identified above to the ArcGIS Server
administrators group (agsadmin) and ArcGIS Server users group (agsusers) on
the GIS server. You’ll add members to these groups using the operating
system’s computer management tools.

• Connect to your GIS server.
To administer your server, you connect to it as a Local Server in ArcCatalog.

• Add container machines to host server objects.
During installation, you should have installed software on one or more ma-
chines to function as SOCs, or container machines. The container machines
host the server objects and are the workhorses of your GIS server. The first
time you connect to your GIS server in ArcCatalog, you’ll need to link these
container machines to the server object manager.

Ch03.pmd 1/25/2005, 5:49 PM50

Chapter 3 • Administering an ArcGIS Server • 51

• Organize your GIS data and set the appropriate directory permis-
sions.
The server objects you run on your GIS server are created from the same
resources that you work with in ArcGIS Desktop. These are resources such as
ArcMap maps. To host them on your server, the data that a map references,
for example, must be accessible to the container machines and the operating
system account the container machines run as.

• Add server objects to your GIS server.
You’ll add to the server the server objects that are required by your client
applications and configure them as needed—specifying whether they are
pooled or non-pooled and how many instances to create.

• Create client applications or use ArcGIS Desktop to access your
server objects.
ArcGIS Desktop clients can directly access the server objects. Connect to a
GIS server in ArcCatalog, and you’ll be able to use, for example, the map
server objects in ArcMap. Alternatively, you can create Web applications that
use the server objects. See Chapter 4, ‘Developing ArcGIS Server applica-
tions’; Chapter 5, ‘Developing Web applications with .NET’; and Chapter 6,
‘Developing Web applications with Java’, for more information on developing
Web applications.

GETTING STARTED

Ch03.pmd 1/25/2005, 5:49 PM51

52 • ArcGIS Server Administrator and Developer Guide

Access to a GIS server—and the server objects running on it—is managed by the
operating systems of the server machines that comprise the GIS server. In much
the same way the operating system allows you to create and delete files on your
own computer, yet prevents you from doing so on your colleague’s computer, the
operating systems on the GIS server machines grant some users access to the server
objects running on the server machines, while denying access to others. When you
log in to your computer, the username and password you specify identifies you as a
valid user on your network. Based on your operating system account, you are
allowed to perform a certain set of actions—one of which might be to access a
GIS server.

Before you can begin to use your GIS server, you need to establish who can access
it. Once you’ve done that, you’ll be able to connect to your GIS server and add
server objects to it.

IDENTIFYING WHO CAN ACCESS THE SERVER

To whom should you grant access to your GIS server? The answer to this question
will depend on what kind of server objects you run on your server and how you
plan to use them. In some cases, the server objects you place on your server should
be made available to everyone. In other cases, you might want to restrict access
because a server object contains sensitive information that only certain individuals
should see.

As the administrator of the GIS server, you allow people to access the GIS server
by adding their operating system account to the list of users who should have
access to the server. In reality, there are actually two lists: a list of users who can
use the server objects running on the server and a list of users who can administer
the server itself (that is, add, delete, and modify server objects). Because it is the
operating system that ultimately controls access to the server, you use two operat-
ing system user groups—ArcGIS Server users and ArcGIS Server administrators—
to manage the two lists of users. A user group simply defines the set of users who
have access to a particular resource, in this case, a GIS server.

In general, the list of accounts you add to the ArcGIS Server users and administra-
tors groups will depend on what clients you anticipate will connect to the server.
Each operating system account from which ArcGIS Desktop is run will need to be
added to the ArcGIS Server users group if you want that client to access the GIS
server. Additionally, each Web application you create can connect to the GIS
server through a particular operating system account. Each account your Web
applications utilize should be added to the ArcGIS Server users group as well.

CONTROLLING ACCESS TO A GIS SERVER

When you install ArcGIS Server, the install program automatically creates the
ArcGIS Server users and administrators groups for you. Specifically, the users
group is named agsusers and the administrators group is named agsadmin. These
groups are created as local operating system groups on the SOM machine and on
each container machine. The ArcGIS Server install program doesn’t automatically
add any users to these groups for you. Thus, you will need to add users to these
groups, depending on the type of access each user should have. Of course, the first
account you’ll need to add to the administrators group is your own.

SETTING UP AND CONNECTING TO A GIS SERVER

Ch03.pmd 1/25/2005, 5:49 PM52

Chapter 3 • Administering an ArcGIS Server • 53

SETTING UP AND CONNECTING TO A GIS SERVER

How you choose to add user accounts to these groups depends on how your
organization manages users in general. If your organization has a number of user
groups already established, you may choose to add particular groups as members
of the ArcGIS Server users or administrators groups. By allocating users based on
other groups, you can minimize the amount of work you need to do to change
access to your GIS server. For example, if a new employee is hired and is added
to one of your organization’s existing groups, access to your GIS server will
automatically be granted because the employee is a member of a group that is a
member of the ArcGIS Server users group.

Alternatively, you can add individual users to the ArcGIS Server users or adminis-
trators groups. This approach requires a little more work because the SOM ma-
chine and each container machine have their own local group for ArcGIS Server
users and ArcGIS Server administrators. Thus, to add a user account, you need to
add that account to the SOM machine’s ArcGIS Server users group and to each
container machine’s ArcGIS Server users group. Similarly, to remove an account,
you’ll need to remove it from the group on each machine.

Because access to the GIS server is managed by the operating system, users can
have either full access or no access to the server. Thus, someone who has access
to the GIS server can work with all the server objects running on the server and
someone who doesn’t have access can’t work with any server objects. This level
of access control does not allow you to restrict access to individual server objects
running on the server. Instead, you’ll need to restrict access to individual server
objects in other ways. For example, instead of allowing your users to directly
connect to the server, you can provide more restricted access through a Web
service catalog. A Web service catalog is a Web service that only exposes the
subset of server objects that you choose to expose.

Adding administrative users to the ArcGIS Server administrators
group, agsadmin, in Windows
The first thing you need to do before you attempt to connect to your GIS server
is grant yourself administrative access to it. You do this by adding your operating
system account to the list of users who can administer the GIS server. If there
are others in your organization that need to administer the GIS server, you can
add their accounts as well. Don’t worry if you don’t have the complete list of
administrators; you can always add and remove accounts later. It’s important to
note that the accounts you add to this group will be able to add, delete, and
modify server objects running on the GIS server.

1. On the SOM machine, start the Computer Management application. Com-
puter Management can be found in the Control Panel under Administrative
Tools.

2. Expand System Tools, then Local Users and Groups, then Groups.

3. Right-click the ArcGIS Server administrators group, named agsadmin, and
click Properties.

The ArcGIS Server Application Developer
Framework for .NET and Java contains a

template that you can use to build a Web service
catalog that contains the server objects you

specify. See Chapter 5, ‘Developing Web applica-
tions with .NET’, or 6, ‘Developing Web

applications with Java’, for information on
creating a Web service catalog.

Ch03.pmd 1/25/2005, 5:49 PM53

54 • ArcGIS Server Administrator and Developer Guide

4. On the Property page, click Add and, in the dialog box that appears, add your
operating system account and any other accounts to which you want to grant
administrative access to the GIS server. The account you add will be the
account that you typically run ArcCatalog through.

5. Repeat steps 1 through 4 on each server object container machine.

The users of the accounts you add to the ArcGIS Server administrators group
may need to log off before the new settings take affect.

Adding users to the ArcGIS Server users group, agsusers, in Windows
The accounts that you add to the ArcGIS Server users group, agsusers, are those
users that you expect to access the objects with ArcGIS Desktop or that your
custom Web applications will connect to the server as. These users will not be
able to administer the GIS server. Don’t worry if you don’t have the complete
list of accounts. You can always add and remove accounts later.

1. On the SOM machine, start the Computer Management application. Com-
puter Management can be found in the Control Panel under Administrative
Tools.

2. Expand System Tools, then Local Users and Groups, then Groups.

3. Right-click the ArcGIS Server users group, named agsusers, and click Proper-
ties.

4. On the Property page, click Add and, in the dialog box that appears, add
those operating system accounts to which you want to grant access to the
GIS server. These are typically the accounts that people use to log in to the
network from their own computer. Note: You don’t need to add administra-
tive users to this group. Administrative users already have user-level privileges
to the server objects.

5. Repeat steps 1 through 4 on each server object container machine.

The users of the accounts you add to the ArcGIS Server users group may need to
log off before the new settings take affect.

SETTING UP AND CONNECTING TO A GIS SERVER

Ch03.pmd 1/25/2005, 5:49 PM54

Chapter 3 • Administering an ArcGIS Server • 55

Adding users to the ArcGIS Server administrators and users group on
Linux or Solaris
When the GIS server is running on Linux or Solaris, perform the following steps
to add users:

1. Log in as root.

2. Browse to /etc folder.

3. Open the ‘group’ file in a vi editor.

4. Modify the agsadmin and agsusers members list.

5. Repeat Steps 1–4 on all server object container machines.

Adding users to the machine acting as Primary Domain Controller on
Windows
When the GIS server is running on UNIX, all agsusers and agsadmin accounts
should also exist on the machine acting as the PDC. To set up the user accounts,
follow the steps described in ‘Adding users to the ArcGIS Server users group,
agsusers, in Windows’.

CONNECTING TO A GIS SERVER

Once you’ve set up access to the server, you can connect to it. ArcCatalog pro-
vides two options for connecting to a GIS server. You can connect to a local
server running at your site over the LAN, or you can connect to a remote server
over the Internet. When you connect to a local server, you can see and utilize all
the server objects running on the server. When you connect over the Internet,
you’re actually connecting to the GIS server through a Web service catalog that
runs on a Web server. It’s important to note, however, that you can only admin-
ister the GIS server when connected to it through the LAN and not over the
Internet.

You can create as many Web service catalogs as you like and organize the server
objects within them to suit your needs. Why would you want to create a Web
service catalog? Perhaps the most compelling reason is that Web service catalogs
allow client applications—such as ArcGIS Desktop—to access the server objects
running on the server over the Internet. For example, if the people who need to
access the server objects running on your GIS server are not within your organiza-
tion, you can create a Web service catalog and allow them access over the
Internet.

Another reason you might want to create a Web service catalog—for people
within your organization—is to better organize the server objects for general
consumption. By creating one or more Web service catalogs, you can organize
server objects for specific groups of people. For example, you might create a Web
service catalog for each department in your organization; each Web service cata-
log would only contain the specific server objects used by the people in that
department. Organizing server objects in Web service catalogs also allows you to
restrict access to particular server objects that contain sensitive information. The
ArcGIS Server Application Developer Frameworks for .NET and Java both
contain a template that will help you build a Web service catalog. For more
information on creating a Web service catalog, see Chapter 5, ‘Developing Web

SETTING UP AND CONNECTING TO A GIS SERVER

Connections to ArcGIS Servers appear in the
Catalog Tree under the GIS Servers node.

Ch03.pmd 1/25/2005, 5:49 PM55

56 • ArcGIS Server Administrator and Developer Guide

SETTING UP AND CONNECTING TO A GIS SERVER

applications with .NET’, or Chapter 6, ‘Developing Web applications with Java’,
depending on your development environment.

Connecting to a local server
When you connect to a GIS server through the LAN, you can administer the
server objects running on the server and aspects of the GIS server’s configura-
tion—assuming you have administrative access to the server. Follow the steps
below to connect to a GIS server in ArcCatalog.

1. Double-click GIS Servers in the Catalog tree.

2. Double-click Add ArcGIS Server.

3. Click Local Server and type the name of the server you want to connect to.
While your GIS server may be configured with several machines, the server
machine you should specify is the one that’s running the server object man-
ager.

The first time you connect to the GIS server after installation, you’ll need to
add one or more container machines to it. This is described later in the sec-
tion ‘Adding container machines to host server objects’.

4. Optionally, check the specific server objects you want to display and click
OK.

If you are unable to connect to the server or you can connect but don’t have
administrative access, it means your operating system account does not have the
right permissions for accessing your GIS server. See the section, ‘Controlling
access to a GIS server’ earlier in this chapter for more information.

Connecting to an Internet server
To connect to a GIS server over the Internet, you specify the URL address of the
particular Web service catalog you want to connect to.

1. Double-click GIS Servers in the Catalog tree.

2. Double-click Add ArcGIS Server.

3. Click Internet Server and type the URL of the Web service catalog you want
to connect to. Typically, the URL will be something like this:
http://www.server.com/MyWebCatalog/default.aspx

4. Optionally, type the username and password if connecting to the Web service
catalog requires this and click OK.

Running ArcCatalog under a different operating system account
As you read earlier, to administer a GIS server, you must be logged in with an
operating system account that has access to the GIS server, where that account is
a member of the agsadmin users group. In general, it’s good practice to use an
account with more restrictive permissions when performing your daily tasks and
to use the administrative account only when you need to administer your server.
To run ArcCatalog under the administrative account without logging off and
back on again, you can use the Windows runas command.

If your organization connects to the Internet
through a proxy server, see the section titled

‘Using a proxy server to connect to the Internet’
later in this chapter for more information.

Ch03.pmd 1/25/2005, 5:49 PM56

Chapter 3 • Administering an ArcGIS Server • 57

SETTING UP AND CONNECTING TO A GIS SERVER

The runas command allows you to run ArcCatalog under an operating system
account other than your current logon. You can run the runas command at the
command prompt and, in some operating system versions, as a right-click menu
option on the ArcCatalog executable, located in the bin folder of your install
location. For example, at the command prompt type:
runas /user:username "C:\Program Files\ArcGIS\bin\ArcCatalog.exe"

Alternatively, navigate to the ArcCatalog.exe file in the bin folder, or locate your
shortcut to it, right-click the executable, and click Run as. Consult the Windows
documentation for more information on using the runas command.

ADDING CONTAINER MACHINES TO HOST SERVER OBJECTS

The first time you connect to your GIS server, you will need to add one or more
server object containers, or container machines, to it. During installation, you
should have installed software on one or more machines to function as container
machines. The container machines host the server objects and are the workhorses
of your GIS server. For your GIS server to utilize these container machines, you
need to link the SOM machine to the container machines. Follow the steps below
to add container machines to your GIS server.

1. In the Catalog tree, right-click the name of your GIS server and click Server
Properties.

2. Click the Hosts tab and click Add.

3. Type the machine name or click the Browse button to locate it on the net-
work. This is the machine on which you installed the SOC software. For
smaller system configurations, this may be the same machine on which you
installed the server object manager.

4. Click OK.

5. Add any other container machines you want to connect to the GIS server.

Now you’re ready to add server objects to your server. This is covered in the next
section.

Ch03.pmd 1/25/2005, 5:49 PM57

58 • ArcGIS Server Administrator and Developer Guide

ADDING AND REMOVING SERVER OBJECTS

The server objects you run on your GIS server are derived from the same re-
sources that you work with in ArcGIS Desktop. These resources are, for example,
the maps and locators you use in your everyday work. By hosting them on the
server, you make them available to any client application that has access to the
server. For example, if you want to quickly share a map among several depart-
ments, you could add it to your GIS server. Then, the people in each department
could connect to the server and view the map in ArcGIS Desktop.

ORGANIZING YOUR GIS DATA

Before you add a server object to your GIS server, you need to consider what that
server object needs to work properly. For example, a map document contains
layers that reference shapefiles, geodatabases, coverages, images, and so on. When
you open the map in ArcMap, the layers won’t display if the data referenced by
the layers are not accessible to you. The same holds true when you add a server
object, such as a map, to your GIS server.

All the data that is required for the server object must be accessible from the
container machines that comprise your GIS server, and the server object con-
tainer account must have the appropriate access permissions. Follow these guide-
lines when organizing the GIS data that is needed for your server objects.

• All data required for the server object must be accessible from all container
machines that comprise your GIS server through shared network directories.

• The ArcGIS Server Container account you established during the postinstall
should have read access to any shared network directories.

• ArcSDE connections must be saved in map documents.

When running the ArcGIS Server on Windows, keep the following in mind:

• Any file-based references to the data in map documents should be specified
using universal naming convention (UNC) pathnames—for instance,
\\server\data\layer1.

When running the ArcGIS Server on UNIX, keep the following in mind:

• File-based references to the data in map documents should be specified as
network file system (NFS) shares—for instance, /net/hostname/hostname1/
data.

• The pathname to file-based data should not contain spaces or uppercase
characters.

• Personal geodatabases are not supported on UNIX. For more information,
refer to Appendix F, ‘Converting personal geodatabases’.

ADDING A SERVER OBJECT TO THE SERVER

At the initial release, ArcGIS Server supports two types of server objects: map
server objects and geocode server objects. You need to create the GIS resource
(that is, map document or locator) before you can add it to the GIS server. Once
created, follow the steps below to add the resource as a server object to the GIS
server.

1. Connect to the GIS server to which you want to add a server object.

Ch03.pmd 1/25/2005, 5:49 PM58

Chapter 3 • Administering an ArcGIS Server • 59

ADDING AND REMOVING SERVER OBJECTS

2. In the Catalog tree, expand the server folder and double-click Add Server
Object. The Add Server Object Wizard appears.

Note: If this is the first time you’re accessing the server, you’ll need to add
one or more container machines to it before you can add a server object. See
the section called ‘Adding container machines to host server objects’ earlier in
this chapter for information on adding container machines.

3. Type the name of the server object. This is the name people will see and use
to identify the server object. Be descriptive. The name can only contain
alphanumeric characters and underscores. No spaces or special characters are
allowed. The name cannot be more than 120 characters in length.

4. Click the Type dropdown arrow, click the server object type, and click Next.

5a. If you’re creating a map server object, browse to the map document and
choose the data frame to display. Optionally, specify an output directory. If
you don’t specify an output directory, the GIS server will only return images
as MIME data. By specifying an output directory that has an associated vir-
tual directory, the returned images will also be accessible via a Uniform
Resource Locator (URL) address. See the section titled ‘Configuring server
directories’ later in this chapter for more information.

Ch03.pmd 1/25/2005, 5:49 PM59

60 • ArcGIS Server Administrator and Developer Guide

ADDING AND REMOVING SERVER OBJECTS

5b. If you’re creating a geocode server object, browse to the locator and set the
batch size. Click Next.

6. Click Pooled or Not Pooled and optionally change the maximum usage and
wait times. Click Next. See Chapter 2, ‘The ArcGIS Server architecture’, for
more information on server object pooling, usage time, and wait time.

7. Set the process isolation level and the recycling parameters. Click Next. See
Chapter 2, ‘The ArcGIS Server architecture’, for more information.

Server object pooling, maximum wait and usage
times, server object isolation, and recycling are
all discussed in more detail in Chapter 2, ‘The
ArcGIS Server architecture’ in the section titled

‘Server objects’.

Ch03.pmd 1/25/2005, 5:49 PM60

Chapter 3 • Administering an ArcGIS Server • 61

ADDING AND REMOVING SERVER OBJECTS

8. Click Yes to start the server object now and click Finish.

9. Verify that your server object is working properly. You can preview a map
server object or display the properties of a geocode server object in
ArcCatalog to ensure that the server object is correctly configured. If, for
some reason, your server object is not working as expected, you can review
the log files for errors. For more information on accessing and reading log
files, consult Appendix B, ‘Configuration and log files’.

ADDING MULTIPLE SERVER OBJECTS TO THE SERVER

ArcCatalog also allows you to add more than one server object to the server at
one time. The default configuration will create pooled objects, with a minimum
of two and a maximum of four instances, and a high process isolation that is
recycled every 10 hours starting at midnight. You can change the configuration of
a server object through its property pages once you’ve added it to the server.

To add more than one server object to the server, follow the steps below.

1. Connect to the ArcGIS server you want to add server objects to.

2. Navigate the Catalog tree and locate the resources you want to add, for
example, all the maps you want to add to the server.

3. Select the resources and drag and drop them onto the server.

4. To start the server objects, from the ArcGIS Server Object Administration
toolbar, click Start.

REMOVING A SERVER OBJECT FROM THE SERVER

When you remove a server object from your server, any client application access-
ing the server object will no longer be able to access it, which may result in an
error being returned to the client. In general, you may want to pause a server
object before deleting it. This will prevent any subsequent client’s access and
allow existing clients to finish using the object. The next section discusses start-
ing, stopping, and pausing server objects in more detail.

1. Connect to the GIS server containing the server object you want to delete.

2. Right-click the server object and click Delete.

For information on using server objects in
ArcGIS Desktop, consult Using ArcCatalog and

Using ArcMap.

Ch03.pmd 1/25/2005, 5:49 PM61

62 • ArcGIS Server Administrator and Developer Guide

MANAGING SERVER OBJECTS

The ArcGIS Server Object Administration toolbar
contains start, stop, and pause buttons.

Once you’ve added server objects to your server, the server will respond to clients
that need to utilize your server objects. Using ArcCatalog, you can monitor how
well the server responds to clients and troubleshoot any problems that may arise.
Over time, demand for your server objects may require that you make a change to
your server. For example, you might allocate more instances for a particular server
object in high demand, or you might add more machines to your server to handle
the increased load.

STARTING, STOPPING, AND PAUSING SERVER OBJECTS

You can start, stop, and pause a server object at any time. In ArcCatalog, right-click
a server object to reveal the context menu for starting, stopping, and pausing the
server object. Alternatively, you can display the ArcGIS Server Object Administra-
tion toolbar that contains these same operations.

Starting a server object makes it available for client access. When you start a
pooled server object, the server instantiates the minimum number of objects you
specified. As clients request the object, the server returns an available object from
the pool of objects. If none are currently available, the server instantiates more
server objects to meet demand until the maximum number of objects is reached.
At this point, any new clients that make a request for the object will be placed in a
queue for the next available instance. The server object will continue to run with
the maximum number of instances until you stop the server object. When you
start a non-pooled object, the server creates instances as clients request them, up to
the maximum number of objects that you specify.

When you stop a server object, the server immediately removes all instances of
that object from the server. This frees up any machine resources that were dedi-
cated to the server object. Clients that were using the object may fail to work
properly because the object is no longer available.

When you pause a server object, the server refuses any new client requests for the
object. However, existing clients can complete their use of the object. Pausing a
server object doesn’t remove instances from the server. You might pause a server
object if a data source required by the server object is not available. For example,
if your map server objects reference an ArcSDE server containing a geodatabase,
and that ArcSDE server is down for maintenance, you might pause the map server
object until the database is available again. Because the instances of the server
object are not removed when you pause it, it’s much quicker to start a paused
server object than one that is stopped.

MONITORING PERFORMANCE

As you’ve read in previous chapters, you control the performance of server objects
by setting options such as whether the object is pooled or not, whether it’s running
in its own process (high or low isolation), and how many instances you’ve allo-
cated to it. ArcCatalog allows you to set and manage all these properties. But how
can you tell whether or not you need to make adjustments to these settings?

Before you put a server object on the server, you should have some idea as to how
it will be used. Will the server object be accessed from, for example, a Web appli-
cation? How many people do you expect to use the application? Knowing the
answers to these and other similar questions will help you determine how to
initially configure the server object.

Ch03.pmd 1/25/2005, 5:49 PM62

Chapter 3 • Administering an ArcGIS Server • 63

MANAGING SERVER OBJECTS

When you first add a server object to the server, you’ll set some initial values for
its configuration. As clients begin accessing the server object, you can monitor its
performance by examining its statistics. You can review statistics for your entire
GIS server as well as each individual server object. You can examine how many
requests get processed per unit of time, what the average wait time is for a client,
and how many requests timed out and didn’t get a response back from the server.

Use your common sense when evaluating the statistics. If you notice a high
number of clients requesting the object and many time-outs, you can try increas-
ing the number of instances for the server object to handle the load. At some
point, increasing the number of instances won’t improve performance because
you’ve reached the capacity of your server machines. To alleviate this issue, you
can try reducing the number of instances allocated to other server objects or, if
that’s not possible, you can add new server machines to your ArcGIS Server
system.

The server log files can also provide useful information on the status of a particu-
lar server object. For more information on log files, see Appendix B, ‘Configura-
tion and log files’.

DISPLAYING STATISTICS FOR A SERVER OBJECT

Statistics for a server object can be found on the property pages of the server
itself.

1. Right-click the name of the GIS server that contains the server object for
which you want to obtain statistics and click Server Properties.

2. Click the Statistics tab.

3. Click the Server Obj dropdown arrow and click the particular server object
you want statistics for.

4. Click Show Statistics.

Ch03.pmd 1/25/2005, 5:49 PM63

64 • ArcGIS Server Administrator and Developer Guide

MANAGING SERVER OBJECTS

LIMITING THE SIZE OF QUERY RESULTS

When working with map and geocode server objects, it’s up to you, as the devel-
oper, to ensure that you use these objects appropriately. For example, you don’t
want your application to send a query to the server that can potentially return all
the records in a particular table. Doing so will undoubtedly have a negative
impact on the performance of the server and of the database.

Both the MapServer and GeocodeServer have built-in limits on the number of
results returned from a query. These limits are exposed as properties of the con-
figuration itself. ArcCatalog does not expose any of these properties in its user
interface. To change the default limits, you need to directly edit the MapServer and
GeocodeServer configuration files and change the value associated with the appro-
priate XML tag. For more information about the GIS server’s configuration files
and how to modify them, see Appendix B, ‘Configuration and log files’.

The properties that limit queries against the MapServer and GeocodeServer are
described below.

MapServer query limits
MaxRecordCount—Limits the number of records returned from a query. Applies
specifically to the following methods on IMapServer: QueryFeatureData, Find, and
Identify. The default value is 500.

MaxBufferFeatures—Limits the number of buffers that can be drawn around the
selected set of features of an ILayerDescription. The default value is 100.

GeocodeServer query limits
MaxResultsSize—Limits the number of records returned by the
FindAddressCandidates and GeocodeAddresses methods. The default value is 500.

MaxBatchSize—Limits the number of input records that can be passed into the
GeocodeAddresses method.

LIMITING THE SIZE OF OUTPUT

Another situation where you need to be careful is when your application writes
output to a server directory. If your application generates large files, it may
consume a large amount of disk space and also require a large amount of re-
sources to produce. MapServer has built-in limits for the size of images that the
ExportMapImage method will produce. You set this maximum through two prop-
erties, MaxImageWidth and MaxImageHeight.

MaxImageWidth—The maximum width of the exported image in pixels. The
default value is 2048.

MaxImageHeight—The maximum height of the exported image in pixels. The
default value is 2048.

You can modify these properties in the MapServer configuration file. For more
information about the GIS server’s configuration files and how to modify them,
see Appendix B, ‘Configuration and log files’.

For additional information on these limits, see
the section titled ‘Limiting the size of query

results and output’ in Chapter 4.

Ch03.pmd 1/25/2005, 5:49 PM64

Chapter 3 • Administering an ArcGIS Server • 65

MANAGING THE SERVER

Your GIS server consists of one or more server machines that together host the
GIS server objects you want to make available. You manage these server ma-
chines with ArcCatalog in much the same way you manage the individual server
objects running on your system. At times, you may need to add new machines to
your server to increase performance or handle increased traffic. Other times, you
may need to remove a particular machine for maintenance. The server itself also
has a set of properties that governs how it runs—for example, where output files
are generated and who has access to the server.

ADDING AND REMOVING CONTAINER MACHINES

One of the first things you’ll need to do when you first install ArcGIS Server is
add one or more machines (server object containers, or container machines) to
host your server objects. As time passes, you’ll periodically need to add or remove
machines for various reasons. When you add a machine to your server, you’ll be
able to take advantage of the additional computing power provided by the new
machine, which the GIS server will start using immediately.

When you remove a server machine from your system, the GIS server will more
heavily utilize the machine resources of the remaining container machines in your
system, which may affect performance of the GIS server as a whole. The server
objects that had been running on the machine you remove will be reallocated to
other machines.

Adding a container machine to your server
1. Connect to your GIS server in the Catalog tree.

2. Right-click the name of the server and click Server Properties.

3. Click the Hosts tab.

4. Click Add.

5. Type the machine name or click the Browse button to locate it on the net-
work.

6. Click OK.

Ch03.pmd 1/25/2005, 5:49 PM65

66 • ArcGIS Server Administrator and Developer Guide

MANAGING THE SERVER

Removing a container machine from your server
1. Connect to your ArcGIS Server in the Catalog tree.

2. Right-click the name of the server and click Server Properties.

3. Click the Hosts tab.

4. Click the name of the server machine you want to remove and click Remove.

CONFIGURING SERVER DIRECTORIES

A server directory represents a physical directory on your network that is acces-
sible to all the container machines of your GIS server. The GIS server manages
one or more server directories and periodically deletes files contained within
them—at an interval you specify. Typically, the files written to a server directory
are transient and need only be available to a client application for a short period
of time. A server directory may also have an associated virtual directory. By
specifying a virtual directory, you allow the contents of the server directory to be
available through a Web server via a URL address. You must create the virtual
directory beforehand in your Web server and link it to the physical directory on
disk. For more information on creating a virtual directory, consult the documen-
tation for your Web server.

If you don’t specify a server directory when configuring a map server object, all
images generated by the GIS server will be returned as MIME data. By specifying
a server directory with a map server object, output images will also be written to
the specified server directory and available through the Web server via the virtual
directory. Thus, you should specify a server directory when your client application
requires it. ArcGIS Desktop applications and the Web templates distributed with
the Application Developer Frameworks for .NET and Java can all work with
MIME data.

Any custom applications you create can also write files to the server directories.
If you want the GIS server to clean up your custom files, prefix them with
“_ags_” (one underscore on each side of ags). Thus, a file named _ags_myfile will
get deleted by the GIS server. For additional information on server directories,
see Chapter 2, ‘The ArcGIS Server architecture’. Follow the steps below to create
a server directory.

1. Right-click the server in the Catalog tree and click Server Properties.

2. Click the Directories tab and click Add.

Ch03.pmd 1/25/2005, 5:49 PM66

Chapter 3 • Administering an ArcGIS Server • 67

MANAGING THE SERVER

3. Set the Output directory, for example, \\mymachine\output. The ArcGIS
Server Container user account that you established during the postinstall phase
must have write access to this location. You will need to use the operating
system tools to set the appropriate access to this location.

4. Optionally, set the Virtual directory, for example, http://server_name/output.
This virtual directory should point to the same disk location as the output
directory. You must create the virtual directory in your Web server and link it
to the physical directory on disk. The virtual directory provides Web applica-
tions access to files created by the GIS server via a URL address.

5. Set the cleaning mode and maximum file age. You can have the server delete
files at regular intervals based either on the age of the file or when the file was
last accessed by a client.

SPECIFYING THE LOG FILE LOCATION

ArcGIS Server records system messages in log files. When you suspect something
isn’t working right, you can examine the log files to see exactly what is happening
with your GIS server. You can specify where the server writes its log files, or
simply accept the default location in the ArcGIS Server installation directory,
<ArcGIS Server Install directory>\log on the SOM machine. Follow the steps
below to view or change the current log directory.

1. Right-click the name of the GIS server for which you want to view or modify
the log file location.

2. Click the General tab.

Ch03.pmd 1/25/2005, 5:49 PM67

68 • ArcGIS Server Administrator and Developer Guide

3. Type a location or click the Browse button to set the location for the log files.

4. Set the maximum file size for an individual log file. When a log file reaches
this size, the server will create a new one.

5. Set the logging level.

0—No logging
1—Errors only
2—Errors and warnings
3—Errors, warnings, and brief administrative messages
4—Errors, warnings, and detailed administrative messages
5—Errors, warnings, and verbose messages used for debugging purposes

For more information on reading the log files and deciphering messages, see
Appendix B, ‘Configuration and log files’.

DISPLAYING STATISTICS FOR THE SERVER

Statistics for the server can be found on the property pages of the server.

1. Right-click the name of the GIS server for which you want to obtain statistics
and click Server Properties.

2. Click the Statistics tab.

3. Choose the statistics you wish to view and click Show Statistics.

USING A PROXY SERVER TO CONNECT TO THE INTERNET

A proxy server is a computer on your LAN that connects to the Internet without
compromising the security of your internal network. If your organization uses a
proxy server to connect to the Internet, you need to configure ArcCatalog so that
it can connect to GIS servers on the Internet through the proxy server.

When configuring a proxy server, all Internet connections—not Local Server
connections—to GIS servers (both ArcGIS and ArcIMS servers) will utilize this
proxy server. Follow the steps below to configure ArcCatalog to use a proxy
server.

MANAGING THE SERVER

Ch03.pmd 1/25/2005, 5:49 PM68

Chapter 3 • Administering an ArcGIS Server • 69

MANAGING THE SERVER

1. In ArcCatalog, click the Tools menu and click Options.

2. Click the Proxy Server tab.

3. Check Use a proxy server for your ArcGIS/ArcIMS server connections.

4. Type the address and port number of the proxy server you want to use to
connect to the Internet.

5. Optionally, type a username and password, if required.

Ch03.pmd 1/25/2005, 5:49 PM69

Ch03.pmd 1/25/2005, 5:49 PM70

Developing
ArcGIS Server

applications

Programming ArcGIS Server applications is about programming with ArcObjects

that are running remotely on a server. Developers can become effective ArcGIS

Server application developers if they understand the ArcObjects programming

model and some key rules for programming with the server.

This chapter contains important information including rules and best practices for

developing ArcGIS Server applications. If you are building Web applications and

Web services with .NET or Java, this chapter is a must read and complements

later chapters that focus on .NET and Java development.

This chapter covers topics such as:

• the ArcGIS Server API • working with ArcObjects in the server • working with

server contexts • stateful versus stateless use of the ArcGIS Server • application

performance and scalability

4

Chapter4.pmd 1/25/2005, 5:51 PM71

72 • ArcGIS Server Administrator and Developer Guide

Programming ArcGIS Server applications is all about programming ArcObjects.
The key to programming ArcGIS Server applications is that these applications
work with ArcObjects that actually run remotely on container machines managed
by your GIS server.

An application developer who can use ArcObjects to build an application that
runs on the desktop can also build ArcGIS Server applications by learning some
rules and programming patterns for working with remote ArcObjects. ArcGIS
Server is a platform for building Web applications and Web services. While the
ArcObjects programming model for ArcGIS Server will be familiar to ArcObjects
developers, developing Web applications does require knowledge of Internet
programming using frameworks such as ASP.NET and J2EE.

This chapter will focus on the ArcObjects programming rules and patterns to
program ArcGIS Server applications. The information in this chapter is comple-
mentary to information about using ArcGIS Server that is more specific to devel-
oping Web applications using the .NET and Java ADFs in Chapter 5, ‘Developing
Web applications with .NET’, and Chapter 6, ‘Developing Web applications with
Java’, respectively.

It is recommended that developers first become familiar with the ArcObjects
programming model, which is discussed in great detail in the ArcGIS Developer
Help system and in the appendixes of this book. This chapter assumes knowledge
of ArcObjects, except where the programming APIs and patterns are specific to
ArcGIS Server development.

ARCGIS SERVER DEFINITIONS AND CONCEPTS

Before diving into the details, it’s important to review some key terms and con-
cepts from Chapter 1, ‘Introducing ArcGIS Server’, and Chapter 2, ‘The ArcGIS
Server architecture’, that will be used throughout this chapter:

GIS server: The GIS server is responsible for hosting and managing server objects.
The GIS server is the set of objects, applications, and services that make it pos-
sible to run ArcObjects components on a server. The GIS server consists of a
server object manager and one or more server object containers.

Server object manager: The SOM is a Windows service or a UNIX daemon that
manages the set of server objects that are distributed across one or more con-
tainer machines. When an application makes a connection to an ArcGIS Server
over a LAN, it is making a connection to the SOM.

Server object container: A SOC is a process in which one or more server objects is
running. SOC processes are started and shut down by the SOM. The SOC pro-
cesses run on the GIS server’s container machines. Each container machine is
capable of hosting multiple SOC processes.

Server object: A server object is a coarse-grained ArcObjects component, that is, a
high-level object that simplifies the programming model for doing certain opera-
tions and hides the fine-grained ArcObjects that do the work. Server objects
support coarse-grained interfaces that have methods that do large units of work,
such as “draw a map” or “geocode a set of addresses”. Server objects also have
SOAP interfaces, which make it possible to expose server objects as Web services
that can be consumed by clients across the Internet.

PROGRAMMING ARCGIS SERVER APPLICATIONS

Chapter4.pmd 1/25/2005, 5:51 PM72

Chapter 4 • Developing ArcGIS Server applications • 73

PROGRAMMING ARCGIS SERVER APPLICATIONS

Web server: The Web server hosts Web applications and Web services written using
the ArcGIS Server API. These Web applications use the ArcGIS Server API to
connect to a SOM to make use of server objects and to create ArcObjects for use
in their applications.

Pooled server object: ArcGIS Server allows you to pool instances of server objects
such that they can be shared between multiple application sessions at the per-
request level. This allows you to support more users with fewer resources. Pooled
server objects should be used by applications that make stateless use of the GIS
server.

Non-pooled server object: Non-pooled server objects are created for exclusive use by
an application session and destroyed when returned by the application to the
server. The creation of the object includes creating the object and loading up any
initialization data, for example, the map document associated with a map server
object. Users of a server application that makes use of a non-pooled server
object require an instance of that object dedicated to their session. Non-pooled
server objects are for applications that make stateful use of the GIS server.The ArcGIS Server is a distributed system that

consists of a server object manager, server
containers, and clients to the server, such as
desktop applications and Web applications.

`

`

`

ArcGIS
Desktop
Servers

ArcGIS
Engine

Applications

Web
Browsers

ArcGIS
Desktop
Servers

Web
Server

Internet

Java or .NET Web
Application
Developers

ArcGIS Server
Administrator
(ArcCatalog) GIS Server

Server Object
Manager

Server Object Containers

File-based data
ArcSDE

LAN

Chapter4.pmd 1/25/2005, 5:51 PM73

74 • ArcGIS Server Administrator and Developer Guide

Application developer framework: A collection of Web controls, convenience classes
and data objects, and application templates that make it easy to build and deploy
.NET or Java Web applications that use ArcObjects running within the GIS
server. The ADF includes a software developer kit with Web controls, Web
application templates, developer help, and code samples. It also includes a Web
application runtime that allows you to deploy applications without having to
install ArcObjects on your Web server.

PROGRAMMING ARCGIS SERVER APPLICATIONS

Chapter4.pmd 1/25/2005, 5:51 PM74

Chapter 4 • Developing ArcGIS Server applications • 75

The ArcGIS Server has three application programming interfaces:

• The Server API

• The .NET Web Controls

• The Java Web Controls

This chapter focuses on the server API, and Chapters 5 and 6 focus on the .NET
Web controls and Java Web controls, respectively. It’s important to understand
the relationship between the Web control APIs, server API, and server program-
ming model if you want to build applications that go beyond simple map viewing
and query.

The server API is a collection of object libraries that contains the ArcObjects
necessary to write an application that connects to the GIS server and makes use
of server objects. These object libraries are available to any developer who in-
stalls the ArcGIS Desktop, ArcGIS Engine, or ArcGIS Server products. The
ArcGIS Server product also includes a set of Web controls and Web application
templates as part of the ADF. Programming with the ADF and the Web controls
is the subject of Chapter 5, ‘Developing Web applications with .NET’, and
Chapter 6, ‘Developing Web applications with Java’.

It is possible to write a number of different types of applications using ArcGIS
Server. The developer who works with the ADF can build server applications,

ARCGIS SERVER APIS

Developers can build different types of ArcGIS
Server applications. These include multiuser

server applications, such as Web applications and
Web services written using the ADF. ArcGIS

Server also supports single-user desktop applica-
tions using the ADF, ArcGIS Engine, or ArcGIS

Desktop products.

`

`

ArcObjectsArcObjectsArcObjects

ArcObjects
Proxies

ArcObjects
Proxies

ArcObjects
Proxies

ArcObjects

ArcObjects
Proxies

ArcObjects

`

` `

GIS Server

Desktop applications
(single user)

.NET/Java ADF

ArcGIS Engine

ArcGIS Desktop

Server applications
(Multi-user)

.NET/Java ADF

Server Object
Manager

Server Object Containers

Chapter4.pmd 1/25/2005, 5:51 PM75

76 • ArcGIS Server Administrator and Developer Guide

such as Web applications, Web services, and enterprise applications—for example,
EJBs. Developers can also build desktop applications using .NET or Java. These
applications are deployed using the ADF runtime.

ArcGIS Engine developers can build desktop applications that make use of
ArcObjects running in the GIS server. ArcGIS Desktop developers can extend
the ArcGIS Desktop applications to include functionality that makes use of the
GIS server. In both of these cases, the deployment of the application itself
requires an ArcGIS Engine runtime deployment license or an ArcGIS Desktop
license.

In the case of ArcGIS Desktop and ArcGIS Engine, developers who write desk-
top applications that use the server will have ArcObjects installed on the machine
on which the application is both developed and deployed on. When using these
products to write applications that use ArcGIS Server, you must follow the same
programming guidelines as a developer using the ADF to build a server applica-
tion, such as a Web application that is deployed within a Web server. The only
difference is that in the case of the desktop application, each instance of your
application is bound to a single user session (though there might be multiple
instances of your application running at any time), while Web applications or
Web services are multiuser/multisession applications.

The .NET ADF runtime and Java ADF runtime installation of ArcGIS Server do
not include ArcObjects components, but they do include .NET assemblies and
object libraries (OLBs) (in the case of the .NET runtime), and JAR files (in the
case of the Java runtime) that provide proxies for working with ArcObjects
running within the server (in addition to Web control APIs). Applications that
are built and deployed using one of the ArcGIS Server runtime installs must
follow the coding guidelines of the server, or they won’t work. Those aspects of
the coding guidelines will become more apparent later in this chapter.

THE SERVER API

Programming with the server API is all about remotely programming ArcObjects.
Programming ArcObjects remotely is the same as programming ArcObjects for
use in desktop applications, but there are some additional details and program-
ming guidelines you need to follow. You need to understand:

• How to connect to the server.

• How to get objects that are running within the server.

• How to create new objects within the server.

• The best ways (dos and don’ts) for working with remote ArcObjects.

The rest of programming the server is just programming ArcObjects. Each aspect
of programming the server listed above will be described in more detail in the
following sections.

ArcGIS Server developers have access to a set of visual Web controls that permit
the use of many properties, events, and methods. The server has no ArcGIS
Desktop applications, such as ArcMap, or any user interface components except
for the Web controls. Although a simple application can be built with just the
Web controls, practical applications of the server require knowledge of the

A proxy object is a local representation of a
remote object. The proxy object controls access
to the remote object by forcing all interaction

with the remote object to be via the proxy
object. The supported interfaces and methods on
a proxy object are the same as those supported

by the remote object. You can make method calls
on, and get and set properties of, a proxy object
as if you were working directly with the remote

object.

ARCGIS SERVER APIS

Chapter4.pmd 1/25/2005, 5:51 PM76

Chapter 4 • Developing ArcGIS Server applications • 77

object libraries that compose the ArcGIS Server. The libraries contained within
the ArcGIS Server are summarized below. The diagrams that accompany this
section indicate the library architecture of the ArcGIS Server. Understanding the
library structure, their dependencies, and basic functionality will help you as a
developer navigate through the components of ArcGIS Server. The libraries are
discussed in dependency order. The diagrams show this with a number in the
upper right corner of the library block.

Object libraries are logical collections of the programmable ArcObjects compo-
nents, ranging from fine-grained objects (for example, individual geometry ob-
jects) to coarse-grained objects, which aggregate logical collections of functional-
ity (for example, an ArcMap object to work with map documents). Programmers
use a number of standards-based APIs (COM, .NET, Java, and C++). These same
libraries are used to program the ArcGIS Desktop and the ArcGIS Engine.

SYSTEM

The System library is the lowest level library in the ArcGIS architecture. The
library contains components that expose services used by the other libraries
composing ArcGIS. There are a number of interfaces defined within System that
can be implemented by the developer. The developer does not extend this library
but can extend the ArcGIS system by implementing interfaces contained within
this library.

SYSTEMUI
The SystemUI library contains the interface definitions for user interface compo-
nents that can be extended within the ArcGIS system. These include the
ICommand, ITool, and IToolControl interfaces. The objects contained within this
library are utility objects available to the developer to simplify some user interface
developments. The developer does not extend this library but can extend the
ArcGIS system by implementing interfaces contained within this library.

GEOMETRY

The Geometry library handles the geometry, or shape, of features stored in fea-
ture classes or other graphical elements. The fundamental geometry objects that
most users will interact with are Point, MultiPoint, Polyline, and Polygon. Besides
those top-level entities are geometries that serve as building blocks for polylines
and polygons. Those are the primitives that compose the geometries. They are
Segments, Paths, and Rings. Polylines and polygons are composed of a sequence of
connected segments that form a path. A segment consists of two distinguished
points, the start and the end point, and an element type that defines the curve
from start to end. The types of segments are CircularArc, Line, EllipticArc, and
BezierCurve. All geometry objects can have Z, M, and IDs associated with their
vertices. The fundamental geometry objects all support geometric operations such
as Buffer and Clip. The geometry primitives are not meant to be extended by
developers.

Entities within a GIS refer to real-world features; the location of these real-world
features is defined by a geometry along with a spatial reference. Spatial reference
objects, for both projected and geographic coordinate systems, are included in the
Geometry library. Developers can extend the spatial reference system by adding
new spatial references and projections between spatial references.

CONNECTING TO THE GIS SERVERARCGIS SERVER APIS

For a comprehensive discussion on each library,
refer to the library overview topics, a part of the
library reference section of the ArcGIS Developer

Help system.

Knowing the library dependency order is
important since it affects the way in which

developers interact with the libraries as they
develop software. As an example, C++ develop-

ers must include the type libraries in the library
dependency order to ensure correct compilation.

Understanding the dependencies also helps when
deploying your developments.

Chapter4.pmd 1/25/2005, 5:51 PM77

78 • ArcGIS Server Administrator and Developer Guide

Contains components that expose
services used by the other libraries
composing ArcGIS.

Defined types used by user
interface components in the
ArcGIS system such as
ICommand and ITool.

Contains the core geometry
objects and defines and
implements the spatial reference
objects for coordinate systems.

Contains types for all the definitions relating
to data access. Features, tables, networks,
and TINs are all defined in this library.

Contains components that support
drawing symbology to an output
device.

Contains the workspace factories and
workspaces for vector and raster data
formats supported by the geodatabase
that are stored within an RDBMS.

Contains the objects used to
obtain a connection to the
ArcGIS Server.

Contains the workspace factories and
workspaces for vector data formats
supported by the geodatabase API.

Contains the workspace
factories and workspaces
for file-based raster
data formats.

Contains the objects required to
support a distributed geodatabase.

Provides workspaces for
working with OleDB-based
data sources.

Contains objects for working
with remote GIS services
provided by either ArcIMS
or the ArcGIS Server.

Contains the objects required
to generate output to both
printers and plotters or
exporting to files.

1
System

2
SystemUI

3
Geometry

Server
5

4
Display

7
GeoDatabase

6
Output

Carto

DataSources-
GDB

10
11

DataSources-
OleDB

9
DataSources-

File
8

GISClient

DataSource-
Raster

12

GeoDatabase-
Distributed

13

ARCGIS SERVER APIS

Chapter4.pmd 1/25/2005, 5:51 PM78

Chapter 4 • Developing ArcGIS Server applications • 79

DISPLAY

The Display library contains objects used for the display of GIS data. In addition
to the main display objects responsible for the actual output of the image, the
library contains objects that represent symbols and colors used to control the
properties of entities drawn on the display. The library also contains objects that
provide the user with visual feedback when interacting with the display. Devel-
opers most often interact with Display through a view similar to the ones pro-
vided by the Map or PageLayout objects. All parts of the library can be extended;
commonly extended areas are symbols, colors, and display feedbacks.

SERVER

The Server library contains objects that allow you to connect and work with
ArcGIS Servers. Developers gain access to an ArcGIS Server using the
GISServerConnection object. The GISServerConnection object gives access to the
ServerObjectManager. Using this object, a developer works with ServerContext
objects to manipulate ArcObjects running on the server. The Server library is not
extended by developers. Developers can also use the GISClient library when
interacting with the ArcGIS Server.

OUTPUT

The Output library is used to create graphical output to devices, such as printers
and plotters, and hardcopy formats such as enhanced metafiles and raster image
formats (JPG, BMP, and so on). The developer uses the objects in the library with
other parts of the ArcGIS system to create graphical output. Usually these would
be objects in the Display and Carto libraries. Developers can extend the Output
library for custom devices and export formats.

GEODATABASE

The GeoDatabase library provides the programming API for the geodatabase. The
geodatabase is a repository of geographic data built on standard industry and
object relational database technology. The objects within the library provide a
unified programming model for all supported data sources within ArcGIS. The
GeoDatabase library defines many of the interfaces that are implemented by data
source providers higher in the architecture. The geodatabase can be extended by
developers to support specialized types of data objects (features, classes, and so
forth); in addition, it can have custom vector data sources added using the
PlugInDataSource objects. The native data types supported by the geodatabase
cannot be extended.

GISCLIENT

The GISClient library allows developers to consume Web services; these Web
services can be provided by ArcIMS and ArcGIS Server. The library includes
objects for connecting to GIS servers to make use of Web services. There is
support for ArcIMS Image and Feature Services. The library provides a common
programming model for working with ArcGIS Server objects in a stateless man-
ner either directly or through a Web service catalog. The ArcObjects components
running on the ArcGIS Server are not accessible through the GISClient interface.
To gain direct access to ArcObjects components running on the server, you should
use functionality in the Server library.

ARCGIS SERVER APIS

Chapter4.pmd 1/25/2005, 5:51 PM79

80 • ArcGIS Server Administrator and Developer Guide

DATASOURCESFILE

The DataSourcesFile library contains the implementation of the GeoDatabase
API for file-based data sources. These file-based data sources include shapefile,
coverage, triangulated irregular network (TIN), computer-aided drafting (CAD),
smart data compression (SDC), and vector product format (VPF). The
DataSourcesFile library is not extended by developers.

DATASOURCESGDB
The DataSourcesGDB library contains the implementation of the GeoDatabase
API for the database data sources. These data sources include Microsoft Access
and relational database management systems supported by ArcSDE—IBM DB2,
Informix, Microsoft SQL Server, and Oracle. The DataSourcesGDB library is not
extended by developers.

DATASOURCESOLEDB
The DataSourcesOleDB library contains the implementation of the GeoDatabase
API for the Microsoft OLE DB data sources. This library is only available on the
Microsoft Windows operating system. These data sources include any OLE DB-
supported data provider and text file workspaces. The DataSourcesOleDB library
is not extended by developers.

DATASOURCESRASTER

The DataSourcesRaster library contains the implementation of the GeoDatabase
API for the raster data sources. These data sources include relational database
management systems supported by ArcSDE—IBM DB2, Informix, Microsoft
SQL Server, and Oracle—along with supported Raster Data Objects (RDO)
raster file formats. Developers do not extend this library when support for new
raster formats is required; rather, they extend RDO. The DataSourcesRaster
library is not extended by developers.

GEODATABASEDISTRIBUTED

The GeoDatabaseDistributed library supports distributed access to an enterprise
geodatabase by providing tools for importing data into and exporting data out of
a geodatabase. The GeoDatabaseDistributed library is not extended by develop-
ers.

CARTO

The Carto library supports the creation and display of maps; these maps can
consist of data in one map or a page with many maps and associated marginalia.
The PageLayout object is a container for hosting one or more maps and their
associated marginalia: North arrows, legends, scale bars, and so on. The Map
object is a container of layers. The Map object has properties that operate on all
layers within the map—spatial reference, map scale, and so on—along with
methods that manipulate the map’s layers. There are many different types of
layers that can be added to a map. Different data sources often have an associated
layer responsible for displaying the data on the map: vector features are handled
by the FeatureLayer object, raster data by the RasterLayer, TIN data by the
TinLayer, and so on. Layers can, if required, handle all the drawing operations for

ARCGIS SERVER APIS

A Raster Data Object is a COM API that
provides display and analysis support for file-

based raster data.

Chapter4.pmd 1/25/2005, 5:51 PM80

Chapter 4 • Developing ArcGIS Server applications • 81

their associated data, but it is more common for layers to have an associated
Renderer object. The properties of the Renderer object control how the data is
displayed in the map. Renderers commonly use symbols from the Display library
for the actual drawing; the renderer simply matches a particular symbol with the
properties of the entity that is to be drawn. A Map object, along with a
PageLayout object, can contain elements. An element has geometry to define its
location on the map or page, along with behavior that controls the display of the
element. There are elements for basic shapes, text labels, complex marginalia, and
so on. The Carto library also contains support for map annotation and dynamic
labeling.

Although developers can directly make use of the Map or PageLayout objects in
their applications, it is more common for developers to use a higher level object
such as the MapControl, PageLayoutControl, or an ArcGIS application. These
higher level objects simplify some tasks, although they always provide access to
the lower level Map and PageLayout objects, allowing the developer fine control
of the objects.

The Map and PageLayout objects are not the only objects in Carto that expose the
behavior of map and page drawing. The MxdServer and MapServer objects both
support the rendering of maps and pages, but instead of rendering to a window,
these objects render directly to a file.

Using the MapDocument object, developers can persist the state of the map and
page layout within a map document (.mxd), which can be used in ArcMap or one
of the ArcGIS controls.

The Carto library is commonly extended in a number of areas. Custom renderers,
layers, and so forth, are common. A custom layer is often the easiest method of
adding custom data support to a mapping application.

LOCATION

The Location library contains objects that support geocoding and working with
route events. The geocoding functionality can be accessed through fine-grained
objects for full control, or the GeocodeServer objects offers a simplified API.
Developers can create their own geocoding objects. The linear referencing func-
tionality provides objects for adding events to linear features and rendering these
events using a variety of drawing options. The developer can extend the linear
reference functionality.

NETWORKANALYST

The NetworkAnalyst library contains objects for working with network datasets.
Developers can extend this library by creating new network servers. A license for
the Network Analyst extension of the ArcGIS Engine Runtime Network option
is required to make use of the objects in this library.

NETWORKANALYSIS

The NetworkAnalysis library provides objects for populating a geodatabase with
network data and objects to analyze the network when it is loaded in the geoda-
tabase. Developers can extend this library to support custom network tracing.
The library is meant to work with utility networks: gas lines, electricity supply
lines, and so on.

ARCGIS SERVER APIS

The ArcGIS Server uses the MapServer object for
its MapService.

Chapter4.pmd 1/25/2005, 5:51 PM81

82 • ArcGIS Server Administrator and Developer Guide

Contains the objects for displaying
data. The PageLayout and Map
objects are in this library along
with map layers and renderers for
all the supported data types.

Contains core spatial analysis operations
that are used by the ArcGIS Spatial
Analyst and ArcGIS 3D Analyst extensions.

Supports the creation and
analysis of utility networks.

Contains objects for performing
analysis and supports the display
of globe data.

Performs 3D analysis of
data and supports 3D
data display.

Contains objects related to working with
location data, either route events or
geocoding locations.

Spatial-
Analyst

21

Carto
14

Network-
Analysis

17

Location
15

18
GeoAnalyst

3DAnalyst
19

GlobeCore
20

Network-
Analyst

16

ARCGIS SERVER APIS

Chapter4.pmd 1/25/2005, 5:51 PM82

Chapter 4 • Developing ArcGIS Server applications • 83

ARCGIS SERVER APIS

GEOANALYST

The GeoAnalyst library contains objects that support core spatial analysis func-
tions. These functions are used within both the SpatialAnalyst and 3DAnalyst
libraries. Developers can extend the library by creating a new type of raster
operation. A license for either the ArcGIS Spatial Analyst or 3D Analyst exten-
sion or the ArcGIS Engine Runtime Spatial or 3D extension is required to make
use of the objects in this library.

3DANALYST

The 3DAnalyst library contains objects for working with 3D scenes in a similar
way that the Carto library contains objects for working with 2D maps. The Scene
object is one of the main objects of the library since it is the container for data
similar to the Map object. The Camera and Target objects specify how the scene is
viewed regarding the positioning of the features relative to the observer. A scene
consists of one or more layers; these layers specify the data in the scene and how
the data is drawn.

It is not common for developers to extend this library. A license for either the
ArcGIS 3D Analyst extension or the ArcGIS Engine Runtime 3D extension is
required to work with objects in this library.

GLOBECORE

The GlobeCore library contains objects for working with globe data in a similar
way that the Carto library contains objects for working with 2D maps. The Globe
object is one of the main objects of the library since it is the container for data
similar to the Map object. The GlobeCamera object specifies how the globe is
viewed regarding the positioning of the globe relative to the observer. The globe
can have one or more layers; these layers specify the data on the globe and how
the data is drawn.

It is not common for developers to extend this library. A license for either the
ArcGIS 3D Analyst extension or the ArcGIS Engine Runtime 3D extension is
required to work with objects in this library.

SPATIALANALYST

The SpatialAnalyst library contains objects for performing spatial analysis on
raster and vector data. Developers most commonly consume the objects within
this library and do not extend it. A license for either the ArcGIS Spatial Analyst
extension or the ArcGIS Engine Runtime Spatial extension is required to work
with objects in this library.

.NET WEBCONTROLS

The .NET WebControls assembly contains Web controls and convenience classes
that make it easy to build and deploy .NET Web applications and Web services
that use ArcObjects running within the GIS server.

JAVA WEBCONTROLS

The Java WebControls JAR contains Web controls and data objects that make it
easy to build and deploy Java Web applications and Web services that use
ArcObjects running within the GIS server.

Chapter4.pmd 1/25/2005, 5:51 PM83

84 • ArcGIS Server Administrator and Developer Guide

To make use of the GIS server to host ArcObjects by your application, the first
thing that application must do is connect to the GIS server, that is, connect to
the SOM. Connections to the GIS server are made through the
GISServerConnection object. The GISServerConnection object supports a single
interface (in addition to IUnknown): IGISServerConnection. IGISServerConnection has
a Connect method that connects the application to the GIS server.

THE SERVERCONNECTION OBJECTS

You can work with the GIS server using COM, .NET, or Java. All of these
runtimes have native server connection objects that you create to connect to the
server. When developing ArcGIS Server applications using COM (for example,
with VB or C++), the COM server connection object can be found in the Server
object library. The following Visual Basic (VB6) code shows how to connect to a
GIS server running on the machine “melange”:
Dim pGISServerConnection As IGISServerConnection

Set pGISServerConnection = New GISServerConnection

pGISServerConnection.Connect "melange"

If your application is written using .NET or Java and is deployed using the .NET
ADF or Java ADF runtime (as is the case with a Web application or Web service),
use the native .NET or Java server connection objects, called ServerConnection, to
connect to the GIS server. The native .NET and Java server connection objects
are in the Web controls assembly (.NET) and ArcObjects JAR (Java) files. If you
use the COM connection object in the Server object library, you will get an error
because the GISServerConnection COM object is not installed with the ADF
runtime.

The following code demonstrates how to connect to the GIS server “melange”
using the native .NET connection object:
C#:

ESRI.ArcGIS.Server.WebControls.ServerConnection connection = new
ESRI.ArcGIS.Server.WebControls.ServerConnection();

connection.Host = "melange";

connection.Connect();

VB.NET:

Dim connection As ESRI.ArcGIS.Server.WebControls.ServerConnection

connection = New ESRI.ArcGIS.Server.WebControls.ServerConnection

connection.Host = "melange"

connection.Connect()

The GISServerConnection object provides
connections to the GIS server and access to the

ServerObjectManager and
ServerObjectAdmin objects.

GISServer-
Connection

IGISServerConnection

 IGISServerConnection : IUnknown Provides access to members that connect to a GIS server.

ServerObjectAdmin:
IServerObjectAdmin

Gets the server object admin for the connected GIS server.

Connects to the GIS server specified by the machineName.

ServerObjectManager:
IServerObjectManager

Gets the server object manager for the connected GIS server.

Connect (in machine:Name: String)

CONNECTING TO THE GIS SERVER

Chapter4.pmd 1/25/2005, 5:51 PM84

Chapter 4 • Developing ArcGIS Server applications • 85

The following code demonstrates how to connect to the GIS
server “melange” using the native Java connection object:
IServerConnection con = new ServerConnection();

con.connect("melange");

If your application is a Web application that uses the ArcGIS
Server Web controls, the Web controls will connect to the
GIS server for you, based on the properties you set for the
control. For example, the Map control has properties for the
server name it uses to make the connection.

CONNECTING TO THE GIS SERVER: SECURITY

For a client application to connect to the GIS server, the
application must be running as an operating system user that
is a member of one of the following two operating system
user groups defined on the GIS server machines: the ArcGIS
Server users group (agsusers) or ArcGIS Server administrators
group (agsadmin). If the user the application is running as is
not a member of either of those groups, then Connect will
return an error.

In addition to the Connect method, the IGISServerConnection
interface has two properties: ServerObjectManager and
ServerObjectAdmin. If the application is running as a user in

the users or administrators group, the application can access the
ServerObjectManager property, which returns an IServerObjectManager interface. The
IServerObjectManager interface provides methods for accessing and creating objects
within the server for use by applications.

To access the ServerObjectAdmin property, the application must be running as a
user who is a member of the administrators group. If the connected user is not a
member of this group, attempts to access the ServerObjectAdmin property will fail.
The ServerObjectAdmin property returns the IServerObjectAdmin interface, which
provides methods for administering the various aspects of the server, such as
server object configurations and server machines. Unless you are writing a GIS
server administration application, your application does not need to make use of
the IServerObjectAdmin interface.

CONNECTING TO THE GIS SERVER

When applications make connections to the GIS
server, they are authenticated against the

agsusers and agsadmin users groups on the GIS
server.

` `

GIS Server

agsusers

Cal

Liz

agsadmin

Amelie

Application running as Amelie
can connect with access to
ServerObjectManager and

ServerObjectAdmin.

Application running as Fred;
connection is refused.

Application running as Cal
can connect with access
to ServerObjectManager.

Internet

ServerObject-
Manager

IServerObjectManager

 IServerObjectManager : IUnknown Provides access to properties of, and members to work
with, a GIS server's server object manager.

CreateServerContext (in configName:
String, in TypeName: String) :
IServerContext

Gets a reference to a server context. The server context can be based
on a specified server object configuration or can be an empty server
context if no server object configuration is specified.

GetConfigurationInfo (in Name: String,
in TypeName: String) :
IServerObjectConfigurationInfo

Gets the information for server object configuration with the specified
 Name and TypeName.

GetConfigurationInfos:
IEnumServerObjectConfigurationInfo

An enumerator over all the GIS server's configuration infos.

GetServerDirectoryInfos:
IEnumServerDirectoryInfo

An enumerator over all the GIS server's directory infos.

GetTypeInfos:
IEnumServerObjectTypeInfo

An enumerator over all the GIS server's type infos.

The ServerObjectManager object provides
methods for getting information about the GIS

server and for creating server contexts for use by
an application.

Chapter4.pmd 1/25/2005, 5:51 PM85

86 • ArcGIS Server Administrator and Developer Guide

ServerObject-
Admin

IServerObjectAdmin
IServerStatistics

The ServerObjectAdmin object provides
methods for administrating the GIS server and

its server objects.

 IServerObjectAdmin : IUnknown Provide access to members that administer the GIS server.

Properties: IPropertySet The logging properties for the GIS server.

AddConfiguration (in config:
IServerObjectConfiguration)

Adds a server object configuration (created with CreateConfiguration)
to the GIS server.

AddMachine (in machine:
IServerMachine)

Adds a host machine (created with CreateMachine) to the GIS server.

AddServerDirectory (in pSD:
IServerDirectory)

Adds a server directory (created with CreateServerDirectory) to the
 GIS server.

CreateConfiguration:
IServerObjectConfiguration

Creates a new server object configuration.

CreateMachine: IServerMachine Creates a new host machine.
CreateServerDirectory: IServerDirectory Creates a new server directory.
DeleteConfiguration (in Name: String, in

TypeName: String)
Deletes a server object configuration from the GIS server.

DeleteMachine (in machineName:
String)

Deletes a host machine from the GIS server, making it unavailable to
host server objects.

DeleteServerDirectory (in Path: String) Deletes a server directory such that its cleanup is no longer managed
by the GIS server. It does not delete the physical directory from disk.

GetConfiguration (in Name: String, in
TypeName: String) :
IServerObjectConfiguration

Get the server object configuration with the specified Name
 and TypeName.

GetConfigurations:
IEnumServerObjectConfiguration

An enumerator over all the server object configurations.

GetConfigurationStatus (in Name:
String, in TypeName: String) :
IServerObjectConfigurationStatus

Get the configuration status for a server object configuration with the
specified Name and TypeName.

GetMachine (in Name: String) :
IServerMachine

Get the host machine with the specified Name.

GetMachines: IEnumServerMachine An enumerator over all the GIS server's host machines.
GetServerDirectories:

IEnumServerDirectory
An enumerator over the GIS server's output directories.

GetServerDirectory (in Path: String) :
IServerDirectory

Get the server directory with the specified Path.

GetTypes: IEnumServerObjectType An enumerator over all the server object types.
PauseConfiguration (in Name: String, in

TypeName: String)
Makes the configuration unavailable to clients for processing requests,

but does not shut down running instances of server objects or
interrupt requests in progress.

StartConfiguration (in Name: String, in
TypeName: String)

Starts a server object configuration and makes it available to clients
for processing requests.

StopConfiguration (in Name: String, in
TypeName: String)

Stops a server object configuration and shuts down any running
instances of server objects defined by the configuration.

UpdateConfiguration (in config:
IServerObjectConfiguration)

Updates the properties of a server object configuration.

UpdateMachine (in machine:
IServerMachine)

Updates the properties of a host machine.

UpdateServerDirectory (in pSD:
IServerDirectory)

Updates the properties of a server directory.

When connecting to the server using the native .NET or Java connection objects
from a Web application or Web service, you must also think about Web applica-
tion impersonation. As discussed in Chapter 2, ‘The ArcGIS Server architecture’,
your Web application must connect to the GIS server as a user in the users group.
To do this, your Web application must impersonate such a user. If you do not use
impersonation, then your Web application will attempt to connect to the GIS
server with the identity of the Web server’s worker process, for example, as the
ASP.NET user for .NET applications. Impersonation strategies for both .NET
and Java are discussed in more detail in Chapter 5, ‘Developing Web applications
with .NET’, and Chapter 6, ‘Developing Web applications with Java’.

CONNECTING TO THE GIS SERVER

Chapter4.pmd 1/25/2005, 5:51 PM86

Chapter 4 • Developing ArcGIS Server applications • 87

Once connected to the GIS server your application can make use of server ob-
jects running within the server and create objects within the server for use by the
application.

SERVER OBJECTS

A server object is a coarse-grained ArcObjects component that runs in a process
on the SOC machine. ArcGIS Server comes with two out-of-the-box server
objects:

• esriCarto.MapServer

• esriLocation.GeocodeServer

The MapServer object provides access to the contents of a map document and
methods for querying and drawing the map. The GeocodeServer object provides
access to an address locator and methods for performing single address and batch
geocoding. These coarse-grained MapServer and GeocodeServer objects use the finer-
grained ArcObjects on the server to perform mapping and geocoding operations,
respectively. Application objects can use the high-level coarse-grained methods on
the MapServer and GeocodeServer object and can also drill down and work with the
fine-grained ArcObjects associated with them (feature layers, feature classes,
renderers, and so on).

A server object, unlike other ArcObjects components, can be preconfigured by a
GIS server administrator. To preconfigure a server object, the GIS server adminis-
trator has to set the object’s properties using ArcCatalog before client applications
can connect and make use of their mapping and geocoding functionality. When a
server object is preconfigured, the administrator must specify a number of con-
figuration properties (see Chapters 2 and 3), including the server object’s pooling
model. The pooling model will dictate the type of usage that an application will
make of the server object. This aspect of server object usage will be discussed in
more detail later when the concept of stateful versus stateless use of the server is
discussed.

GETTING SERVER OBJECTS FROM THE SERVER

You get a server object by asking the server for a server context containing the
object. You can think of a server context as a process, managed by the server,
within which a server object runs. The details of server contexts are discussed
later. Your application keeps a server object alive by holding on to its context,
and must release the server object by releasing its context when it is done with it.
The following VB6 code is an example of getting a GeocodeServer object from the
GIS server and using it to locate an address:
Dim pServerContext As IServerContext

Set pServerContext = pSOM.CreateServerContext("RedlandsGeocode",
"GeocodeServer")

Dim pGCServer As IGeocodeServer

Set pGCServer = pServerContext.ServerObject

Dim pPropertySet As IPropertySet

PROGRAMMING WITH SERVER OBJECTS

MapServer

IMapServer
IMapServerData

IMapServerInit
IMapServerLayout

IMapServerObjects
IMessageHandler
IObjectConstruct
IRequestHandler

The MapServer object is a coarse-grained server
object that provides access to the contents of a
map document and methods for querying and

drawing the map.

The GeocodeServer object is a coarse-grained
server object that provides access to an address

locator and methods for single address and batch
geocoding.

Geocode-
Server

IGeocodeServer-
Objects

IGeocodeServer

IInitGeocodeServer
IMessageHandler
IObjectConstruct
IRequestHandler

Chapter4.pmd 1/25/2005, 5:51 PM87

88 • ArcGIS Server Administrator and Developer Guide

Set pPropertySet = pServerContext.CreateObject("esriSystem.PropertySet")

pPropertySet.SetProperty "Street", "380 New York St"

Dim pResults As IPropertySet

Set pResults = pGCServer.GeocodeAddress(pPropertySet, Nothing)

Dim pPoint As IPoint

Set pPoint = pResults.GetProperty("Shape")

Debug.Print pPoint.X & ", " & pPoint.Y

pServerContext.ReleaseContext

As discussed earlier, a server object also has other associated objects that a devel-
oper can get to and make use of; for example, a developer working with a
MapServer object can get to the Map and Layer objects associated with that map.
These are the same Map and Layer objects that an ArcGIS Desktop or ArcGIS
Engine developer would work with, except they reside in the server. The follow-
ing VB6 code is an example of using the finer-grained ArcObjects associated with
a MapServer object to work with a feature class associated with a particular layer:
Dim pServerContext As IServerContext

Set pServerContext = pSOM.CreateServerContext("RedlandsMap", "MapServer")

Dim pMapServer As IMapServer

Set pMapServer = pServerContext.ServerObject

Dim pMapServerObjs As IMapServerObjects

Set pMapServerObjs = pMapServer

Dim pMap As IMap

Set pMap = pMapServerObjs.Map(pMapServer.DefaultMapName)

Dim pFLayer As IFeatureLayer

Set pFLayer = pMap.Layer(0)

Dim pFeatureClass As IFeatureClass

Set pFeatureClass = pFLayer.FeatureClass

Debug.Print pFeatureClass.FeatureCount(Nothing)

pServerContext.ReleaseContext

In the above examples, pSOM is an IServerObjectManager interface that was previ-
ously retrieved from IGISServerConnection.ServerObjectManager. You will notice
that when the server object’s work is done and the application is finished using
objects associated with the server object (in the first case, pPoint, in the second
case, pFeatureClass), the server context (pServerContext) was explicitly released. It’s
important that the server context is released so other application sessions and
other applications can make use of that server object. If your code does not
explicitly release the context, it will be released once it goes out of scope and
garbage collection kicks in. However, there may be a considerable lag between

PROGRAMMING WITH SERVER OBJECTS

Garbage collection is the process by which .NET
and Java reclaim memory from objects that are
created by applications. Garbage collection will

happen based on memory allocations being
made. When garbage collection occurs is when

objects that are not referenced are actually
cleaned up, which may be some time after they

go out of the scope of your application.

Chapter4.pmd 1/25/2005, 5:51 PM88

Chapter 4 • Developing ArcGIS Server applications • 89

when the server context variable goes out of scope and when garbage collection
kicks in, and if you rely on this mechanism, then your server is at the mercy of
.NET or Java garbage collection in terms of when objects are released.

MANAGING SERVER OBJECT LIFETIME

A key aspect of server object usage is managing the server object’s lifetime. As
described previously, server objects live in server contexts, and you get a server
object by calling CreateServerContext containing a specified server object (see
examples above).

The server object (for example, RedlandsGeocode, RedlandsMap) and all its associ-
ated objects are alive and may be used as long as you hold on to the context.
Once you release the server context (by calling ReleaseContext or allowing the
context to go out of scope), you may no longer make use of the server object or
any other objects you obtained from the context. Once a server object’s context is
released, what happens to the context depends on whether the server object is
pooled or non-pooled.

In the non-pooled case, when the context is released, it is shut down by the
server. The next call to CreateServerContext for that server object will create a new
instance of the server object in a new server context. If the server object is
pooled, ReleaseContext returns the server object and its context to the pool, and
the server will be free to give the server object to a request from another applica-
tion session. This aspect of server object and server context behavior is critical
when designing your application and how it manages state. This is discussed in the
following section.

PROGRAMMING WITH SERVER OBJECTS

This diagram illustrates the server object lifetime for a pooled server object:

1. The client application makes a connection to the SOM and requests a server object.

2. The SOM returns to the client a proxy to one of the server objects available in the pool.

3. The client application works with the server object by making calls on its proxy.

4. When the client is finished with the server object, it releases it.

When the object is released, it is returned to the pool and is available to handle requests from other clients.

Client
application

1

Server objects running in SOCs

SOM

Client
application

proxy

2

Server objects running in SOCs

SOM

Client
application

proxy

3

Server objects running in SOCs

SOM

Client
application

4

Server objects running in SOCs

SOM

Chapter4.pmd 1/25/2005, 5:51 PM89

90 • ArcGIS Server Administrator and Developer Guide

PROGRAMMING WITH SERVER OBJECTS

This diagram illustrates the server object lifetime for a non-pooled server object:

1. The client application makes a connection to the SOM and requests a server object.

2. The SOM creates a new instance of the server object and returns to the client a proxy to the server object.

3. The client application works with the server object by making calls on its proxy.

4. When the client is finished with the server object, it releases it.

When the object is released, it is destroyed. The SOM will create new instances of the server object to handle subsequent requests.

Client
application

1

Server objects running in SOCs

SOM

Client
application

proxy

2

Server objects running in SOCs

SOM

Client
application

proxy

3

Server objects running in SOCs

SOM

Client
application

4

Server objects running in SOCs

SOM

Chapter4.pmd 1/25/2005, 5:51 PM90

Chapter 4 • Developing ArcGIS Server applications • 91

One key aspect of designing your application will be whether it is stateful or
stateless. You can make either stateful or stateless use of a server object running
within the GIS server. Stateless here refers to making read-only use of a server
object, meaning your application does not make changes to the server object or
any of its associated objects. Stateful refers to read–write use of a server object
where your application does make changes to the server object or its related
objects.

The question of state is important in server object usage because it dictates
whether server objects can be shared across application sessions. If you make
stateless use of server objects, then they can be shared across application sessions;
if you make stateful use of server objects, then they cannot be shared.

GIS SERVER STATE AND OBJECT POOLING

This aspect of stateful versus stateless use and server object sharing relates di-
rectly to the pooling model for the server object. The following pro-
gramming rules apply to using server objects:

• Client applications cannot change the properties of a pooled server
object.

• Client applications can change the properties of a non-pooled server
object.

Pooled server objects are expected to be used in a stateless manner. As a
developer, you are responsible for making sure that the state of the
server object, or its associated objects, has not changed when you return
the object to the pool (by releasing its context via ReleaseServerContext).
Each time a user or application session makes a request to create a
pooled server object, it’s indeterminate which running instance it will
get out of the pool; therefore, all instances must have the same state, or
applications will experience inconsistent behavior.

Non-pooled server objects can be used in a stateful manner. Since non-
pooled server objects and their contexts are destroyed when you release
them, you need to hold onto them for as long as the state is important to
you. When you call ReleaseServerContext, or you allow the server context
to go out of scope, the server object and its context are destroyed,
purging any state changes you made.

STATEFUL VERSUS STATELESS USE OF SERVER OBJECTS

Methods and properties that are exposed by server object interfaces, such as
IMapServer and IGeocodeServer, are by their nature stateless methods, such as
IMapServer.ExportMapImage and IGeocodeServer.GeocodeAddress. These methods do
not change any of the properties of the server object when they are called and
are, therefore, safe to call on both pooled and non-pooled server objects. Chang-
ing the state of a server object typically involves making calls to get the finer-
grained ArcObjects associated with a server object and making changes at that
level.

Most GIS Web applications are not stateless. Typically, each user or session may
have a current extent, each user or session may have a set of visible layers (that
can be toggled on and off through the application), and each user or session may

MANAGING APPLICATION SESSION STATE

A server object is a coarse-grained ArcObjects
component that has other associated ArcObjects.

MapServer

Map

Layer

Renderer

Feature
Class

Spatial
Reference

Datum

Chapter4.pmd 1/25/2005, 5:51 PM91

92 • ArcGIS Server Administrator and Developer Guide

have different graphics visible on the map as a result of query operations such as
network tracing. It is possible to write a stateful Web application that makes
stateless use of server objects in the GIS server by maintaining aspects of applica-
tion state, such as the extent of the map, layer visibility, and application-added
graphics, using the Web application server’s session state management capabilities.
Such applications are called “shallowly stateful”.

The GIS server also supports “deeply stateful” applications that use the GIS
server to maintain application state. Examples of deeply stateful Web applica-
tions include:

• An application that starts a geodatabase edit session on behalf of a user and
works with it across multiple requests in a session to support operations such
as undo or redo.

• An application that allows a user to interactively compose a map across mul-
tiple requests within a session.

The following code is an example of a stateless use of a MapServer object. In this
example, a request is made to the MapServer to draw itself at its default extent:
Dim pServerContext As IServerContext

Set pServerContext = pSOM.CreateServerContext("RedlandsMap", "MapServer")

Dim pMapServer As IMapServer

Set pMapServer = pServerContext.ServerObject

Dim it As IImageType

Dim idisp As IImageDisplay

Dim pID As IImageDescription

Set it = pServerContext.CreateObject("esriCarto.ImageType")

it.Format = esriImageFormat.esriImageJPG

it.ReturnType = esriImageReturnType.esriImageReturnMimeData

Set idisp = pServerContext.CreateObject("esriCarto.ImageDisplay")

idisp.Height = 400

idisp.Width = 500

idisp.DeviceResolution = 150

Set pID = pServerContext.CreateObject("esriCarto.ImageDescription")

pID.Display = idisp

pID.Type = it

Dim pMD As IMapDescription

Dim pMapServerInfo As IMapServerInfo

Set pMapServerInfo = pMapServer.GetServerInfo(pMapServer.DefaultMapName)

Set pMD = pMapServerInfo.DefaultMapDescription

Dim pMI As IImageResult

Set pMI = pMapServer.ExportMapImage(pMD, pID)

' do something with the image

pServerContext.ReleaseContext

MANAGING APPLICATION SESSION STATE

Chapter4.pmd 1/25/2005, 5:51 PM92

Chapter 4 • Developing ArcGIS Server applications • 93

The following is an example of a stateful use of a MapServer object. In this
example, the first layer is removed from the map, then a request is made to the
MapServer to draw itself at its default extent:
Dim pServerContext As IServerContext

Set pServerContext = pSOM.CreateServerContext("RedlandsMap", "MapServer")

Dim pMapServer As IMapServer

Set pMapServer = pServerContext.ServerObject

Dim pMapServerObjs As IMapServerObjects

Set pMapServerObjs = pMapServer

Dim pMap As IMap

Set pMap = pMapServerObjs.Map(pMapServer.DefaultMapName)

pMap.DeleteLayer pMap.Layer(0)

pMapServerObjs.RefreshServerObjects

Dim it As IImageType

Dim idisp As IImageDisplay

Dim pID As IImageDescription

Set it = pServerContext.CreateObject("esriCarto.ImageType")

it.Format = esriImageFormat.esriImageJPG

it.ReturnType = esriImageReturnType.esriImageReturnMimeData

Set idisp = pServerContext.CreateObject("esriCarto.ImageDisplay")

idisp.Height = 400

idisp.Width = 500

idisp.DeviceResolution = 150

Set pID = pServerContext.CreateObject("esriCarto.ImageDescription")

pID.Display = idisp

pID.Type = it

Dim pMD As IMapDescription

Dim pMapServerInfo As IMapServerInfo

Set pMapServerInfo = pMapServer.GetServerInfo(pMapServer.DefaultMapName)

Set pMD = pMapServerInfo.DefaultMapDescription

Dim pMI As IImageResult

Set pMI = pMapServer.ExportMapImage(pMD, pID)

' do something with the image

pServerContext.ReleaseContext

In the first example, no changes were made to the server object or any of its
associated objects. Once the code finishes executing and the context is released,
the server object is in the same state as when the application got it. In the second
example, a layer was explicitly removed from the map using the DeleteLayer

MANAGING APPLICATION SESSION STATE

Chapter4.pmd 1/25/2005, 5:51 PM93

94 • ArcGIS Server Administrator and Developer Guide

method on the IMap interface. This is an example of using a fine-grained
ArcObjects component call to change the state of a server object.

Typically, if you are making state changes to server objects, you would hang on to
a reference to its context for the duration of your application session. The above
example releases the server context immediately after processing the request. You
would not do this type of operation with a pooled server object, as subsequent
use of this instance of the MapServer object will reflect the fact that the layer has
been removed.

The state of a server object can be changed in a number of different ways. The
example above demonstrates making direct changes to the properties of a server
object—for example, removing a layer from a map. It’s also possible to change the
state of a server object indirectly through other objects in the server object’s
context. The following table summarizes the ways that you can change the state
of a server object:

Using a method that is stateful on a server object
A stateful method is one that modifies or changes the instance of the server
object. There are many examples of stateful methods; some common examples
include methods that add or remove layers from a map server object or methods
that change a layer’s renderer. These methods should never be called on a pooled
server object unless the client application can return the object to its original state
before releasing it back to the server.

Using a method that is stateful on an environment
Server objects run in contexts that have a number of environment settings associ-
ated with them. Some of these environments can be modified by developers. For
example, the geometry environment can be manipulated through the
IGeometryEnvironment interface. While changes to the geometry environment do
not directly affect a server object, those changes may affect other operations that
a client application may perform using a server object’s context.

The following code is an example of how you can change the state of a server
object’s environment (in this case, the geometry environment) without directly
changing the server object itself:
Dim pServerContext As IServerContext

Set pServerContext = pSOM.CreateServerContext("RedlandsMap", "MapServer")

Dim pGeomEnv As IGeometryEnvironment4

Set pGeomEnv =
pServerContext.CreateObject("esriGeometry.GeometryEnvironment")

pGeomEnv.DeviationAutoDensifyTolerance = 5.7

MANAGING APPLICATION SESSION STATE

Call a stateful method on a
server object

· Adding or removing a layer from a map server object
· Changing the renderer for a layer in a map server object
· Changing the locator properties for a geocode server object

Call a stateful method on an
environment

· Changing the auto densify tolerance in the geometry environment
· Changing the cell size in the raster analysis environment

Stateful operation Example

Chapter4.pmd 1/25/2005, 5:51 PM94

Chapter 4 • Developing ArcGIS Server applications • 95

pGeomEnv.DicingEnabled = True

' perform a geometry operation

pServerContext.ReleaseContext

Changing the state of an environment is valid for both pooled and non-pooled
server object use. To ensure that such changes to environments do not negatively
impact operations made by client applications, applications should not rely on the
environment being in a particular state before performing that operation. When
performing operations that rely on a particular state of the environment, applica-
tions should set the required environment state before performing that operation,
especially when using pooled server objects.

Working with cursors
Some objects that you can create in a server context may lock or use resources
that the object frees only in its destructor. For example, a geodatabase cursor may
acquire a shared schema lock on a file-based feature class or table on which it is
based or may hold on to an ArcSDE stream.

While the shared schema lock is in place, other applications can continue to query
or update the rows in the table, but they cannot delete the feature class or modify
its schema. In the case of file-based data sources, such as shapefiles, update
cursors acquire an exclusive write lock on the file, which will prevent other
applications from accessing the file for read or write. The effect of these locks is
that the data may be unavailable to other applications until all of the references
on the cursor object are released.

In the case of ArcSDE data sources, the cursor holds on to an ArcSDE stream,
and if the application has multiple clients, each may get and hold on to an
ArcSDE stream, eventually exhausting the maximum allowable streams. The
effect of the number of ArcSDE streams exceeding the maximum is that other
clients will fail to open their own cursors to query the database.

Because of the above reasons, it’s important to ensure that your reference to any
cursor your application opens is released in a timely manner. If you are develop-
ing your application using Java, when the cursor (or any other COM object) goes
out of scope, your reference will be removed immediately for you. If you are
developing with .NET, your reference on the cursor (or any other COM object)
will not be released until garbage collection kicks in. In a Web application or Web
service that services multiple concurrent sessions and requests, relying on garbage
collection to release references on objects will result in cursors and their resources
not being released in a timely manner.

To ensure a COM object is released when it goes out of scope, the WebControls
assembly contains a helper object called WebObject. Use the ManageLifetime
method to add your COM object to the set of objects that will be explicitly
released when the WebObject is disposed. You must scope the use of WebObject
within a Using block. When you scope the use of WebObject within a using block,
any object (including your cursor) that you have added to the WebObject using the
ManageLifetime method will be explicitly released at the end of the using block.

MANAGING APPLICATION SESSION STATE

Garbage collection is the process by which .NET
and Java reclaim memory from objects that are
created by applications. Garbage collection will

happen based on memory allocations being
made. When garbage collection occurs is when

objects that are not referenced are actually
cleaned up, which may be some time after they

go out of the scope of your application.

Chapter4.pmd 1/25/2005, 5:51 PM95

96 • ArcGIS Server Administrator and Developer Guide

The following C# example demonstrates this coding pattern:
private void doSomething_Click(object sender, System.EventArgs e)

{

 using (WebObject webobj = new WebObject())

 {

 ServerConnection serverConn = new ServerConnection("doug",true);

 IServerObjectManager som = serverConn.ServerObjectManager;

 IServerContext ctx =
som.CreateServerContext("Yellowstone","MapServer");

 IMapServer mapsrv = ctx.ServerObject as IMapServer;

 IMapServerObjects mapo = mapsrv as IMapServerObjects;

 IMap map = mapo.get_Map(mapsrv.DefaultMapName);

 IFeatureLayer flayer = map.get_Layer(0) as IFeatureLayer;

 IFeatureClass fclass = flayer.FeatureClass;

 IFeatureCursor fcursor = fclass.Search(null, true);

 webobj.ManageLifetime(fcursor);

 IFeature f = null;

 while ((f = fcursor.NextFeature()) != null)

 {

 // do something with the feature

 }

 ctx.ReleaseContext();

 }

}

VB.NET does not have a Using clause. The following example demonstrates the
coding pattern for VB.NET:
Private Sub doSomething_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles doSomething.Click

 Dim webobj As WebObject = New WebObject

 Dim ctx As IServerContext = Nothing

 Try

 Dim serverConn As ServerConnection = New ServerConnection("doug",
True)

 Dim som As IServerObjectManager = serverConn.ServerObjectManager

 ctx = som.CreateServerContext("Yellowstone", "MapServer")

 Dim mapsrv As IMapServer = ctx.ServerObject

 Dim mapo As IMapServerObjects = mapsrv

 Dim map As IMap = mapo.Map(mapsrv.DefaultMapName)

 Dim flayer As IFeatureLayer = map.Layer(0)

 Dim fClass As IFeatureClass = flayer.FeatureClass

 Dim fcursor As IFeatureCursor = fClass.Search(Nothing, True)

 webobj.ManageLifetime(fcursor)

MANAGING APPLICATION SESSION STATE

Chapter4.pmd 1/25/2005, 5:51 PM96

Chapter 4 • Developing ArcGIS Server applications • 97

 Dim f As IFeature = fcursor.NextFeature()

 Do Until f Is Nothing

 ' do something with the feature

 f = fcursor.NextFeature()

 Loop

 Finally

 ctx.ReleaseContext()

 webobj.Dispose()

 End Try

End Sub

The WebMap, WebGeocode, and WebPageLayout objects also have a ManageLifetime
method. If you are using, for example, a WebMap, and scope your code in a using
block, you can rely on these objects to explicitly release objects you add with
ManageLifetime at the end of the using block.

MANAGING STATE IN THE WEB APPLICATION’S SESSION STATE—
SHALLOWLY STATEFUL APPLICATIONS

This is not the end of the story when it comes to managing
state of an ArcGIS Server application. As described above,
it is possible to write a stateful Web application that makes
stateless use of server objects in the GIS server by main-
taining aspects of application state, such as the extent of
the map, layer visibility, and application-added graphics,
using the Web application server’s session state management
capabilities.

The IServerContext interface has methods that allow you to
save GIS objects in session state by exporting them to
strings. The server context also has methods to rehydrate
the objects from strings as you need them. Objects that
support the IPersistStream interface can be exported and
rehydrated in this manner. A very common example illus-
trates this capability, which is managing the user’s or
session’s current extent as it pans and zooms around the
map.

This programming pattern is demonstrated using an
ASP.NET example. The following C# code shows how on session startup you can
save references to both the ServerObjectManager and a serialized copy of the
MapServer’s map description:
private void Page_Load(object sender, System.EventArgs e)

{

 // Put user code to initialize the page here

 if (!Page.IsPostBack)

 {

 // Is this a new session?

 if (Session.IsNewSession)

 {

 // connect to the server

 string m_host = "padisha";

MANAGING APPLICATION SESSION STATE

It is possible to write a stateful Web application
that makes stateless use of server objects in the
GIS server by maintaining aspects of application

state, such as the extent of the map, layer
visibility, and application-added graphics, using the

Web application server’s session state manage-
ment capabilities.

Server object

GIS Server

Client application Client application Client application

Chapter4.pmd 1/25/2005, 5:51 PM97

98 • ArcGIS Server Administrator and Developer Guide

 ESRI.ArcGIS.Server.WebControls.ServerConnection connection = new
ESRI.ArcGIS.Server.WebControls.ServerConnection();

 connection.Host = m_host;

 connection.Connect();

 // save a reference to the SOM as an application variable

 // called "som" so the connection can be used again later

 // in the application

 IServerObjectManager som = connection.ServerObjectManager;

 Application.Set("som", som);

 IServerContext ctx =
som.CreateServerContext("RedlandsMap","MapServer");

 IMapServer map = ctx.ServerObject as IMapServer;

 IMapServerInfo mapinfo = map.GetServerInfo(map.DefaultMapName);

 IMapDescription md = mapinfo.DefaultMapDescription;

 // save the map description as a session variable called "md"

 string sMapDesc = ctx.SaveObject(md);

 Session["md"] = sMapDesc;

 ctx.ReleaseContext();

 }

 }

}

The following Java example shows the same programming pattern:
public void connect() throws Exception

{

 // do only if it is a new session

 if (session.isNew())

 {

 // connect to the server

 IServerConnection connection = new ServerConnection();

 connection.connect("padisha");

 // save a reference to the SOM as an application variable

 // called "som" so the connection can be used again later

 // in the application

 IServerObjectManager som = connection.getServerObjectManager();

 session.setAttribute("som",som);

 IServerContext ctx =
som.createServerContext("RedlandsMap","MapServer");

 IMapServer mapServer = new IMapServerProxy(ctx.getServerObject());

 IMapServerInfo mapInfo =
mapServer.getServerInfo(mapServer.getDefaultMapName());

 IMapDescription mapDesc = mapInfo.getDefaultMapDescription();

MANAGING APPLICATION SESSION STATE

The objects and interfaces used for managing
image displays can be found in the Carto object
library. To learn more about these objects, refer

to the online developer documentation.

Chapter4.pmd 1/25/2005, 5:51 PM98

Chapter 4 • Developing ArcGIS Server applications • 99

 // save the map description as a session variable called "mxd"

 String sMapDesc;

 sMapDesc = ctx.saveObject(mapDesc);

 session.setAttribute("mapDesc",sMapDesc);

 ctx.releaseContext();

 }

}

In the code examples above, the MapServer’s MapDescription is being serialized to a
string and saved in session state. Assume now that the user for this session wishes
to zoom in by a fixed amount. The following code shows how this is done. The
steps are:

1. Load the serialized map description to get the current map description for the
session.

2. Shrink the extent for the map description.

3. Draw the map using the modified map description.

4. Export the modified map description to a string so that the session state is
updated.

The ASP.NET example of this is illustrated below:
private void btnFixedZoomIn_Click(object sender, System.EventArgs e)

{

 IServerObjectManager som = (IServerObjectManager)
Application.Get("som");

 IServerContext ctx = som.CreateServerContext("RedlandsMap","MapServer");

 IMapServer map = ctx.ServerObject as IMapServer;

 // rehydrate the map description

 string smd = (string) Session["md"];

 IMapDescription md = ctx.LoadObject(smd) as IMapDescription;

 // get the extend, shrink it

 IMapArea ma = md.MapArea;

 IEnvelope env = ma.Extent;

 env.Expand(0.9,0.9,true);

 // set the extent into the MapDescription

 IMapExtent mx = ma as IMapExtent;

 mx.Extent = env;

 md.MapArea = ma;

 // create ImageDescription and export the map image

 IImageType it = ctx.CreateObject("esriCarto.ImageType") as ImageType;

 it.Format = esriImageFormat.esriImageJPG;

 it.ReturnType = esriImageReturnType.esriImageReturnURL;

 IImageDisplay idisp = ctx.CreateObject("esriCarto.ImageDisplay") as
IImageDisplay;

MANAGING APPLICATION SESSION STATE

Chapter4.pmd 1/25/2005, 5:51 PM99

100 • ArcGIS Server Administrator and Developer Guide

 idisp.Height = 400;

 idisp.Width = 500;

 idisp.DeviceResolution = 150;

 IImageDescription id = ctx.CreateObject("esriCarto.ImageDescription") as
IImageDescription;

 id.Display = idisp;

 id.Type = it;

 IImageResult ir = map.ExportMapImage(md,id);

 Image1.ImageUrl = ir.URL;

 // export map description with the new extent and save it into session state

 string sMapDesc = ctx.SaveObject(md);

 Session["md"] = sMapDesc;

 ctx.ReleaseContext();

}

The following code shows the Java equivalent:
public void fixedZoom() throws Exception

{

 IServerObjectManager som = (IServerObjectManager)
session.getAttribute("mgr");

 IServerContext ctx =
som.createServerContext("RedlandsMap","MapServer");

 IMapServer mapServer = new IMapServerProxy(ctx.getServerObject());

 // rehydrate object from xml

 String smd = (String) session.getAttribute("mapDesc");

 IMapDescription mapDesc = new
IMapDescriptionProxy(ctx.loadObject(smd));

 // set the new extent

 IMapArea ma = mapDesc.getMapArea();

 IEnvelope env = ma.getExtent();

 env.expand(0.9, 0.9, true);

 // apply new extent to the MapDescription

 IMapExtent mx = (IMapExtent) ma;

 mx.setExtent(env);

 mapDesc.setMapArea(ma);

 // create ImageDescription and export the map image

 IImageType imgType = new
IImageTypeProxy(ctx.createObject(ImageType.getClsid()));

 imgType.setFormat(esriImageFormat.esriImageJPG);

 imgType.setReturnType(esriImageReturnType.esriImageReturnURL);

 IImageDisplay imgDisp = new
IImageDisplayProxy(ctx.createObject(ImageDisplay.getClsid()));

MANAGING APPLICATION SESSION STATE

Chapter4.pmd 1/25/2005, 5:51 PM100

Chapter 4 • Developing ArcGIS Server applications • 101

 imgDisp.setHeight(400);

 imgDisp.setWidth(500);

 imgDisp.setDeviceResolution(150);

 IImageDescription imgDesc = new
IImageDescriptionProxy(ctx.createObject(ImageDescription.getClsid()));

 imgDesc.setDisplay(imgDisp);

 imgDesc.setType(imgType);

 IImageResult imgResult = mapServer.exportMapImage(mapDesc,imgDesc);

 imgResult.getURL();

 // export map description with the new extent and save it into

 // session state

 String sMapDesc = ctx.saveObject(mapDesc);

 session.setAttribute("mapDesc",sMapDesc);

 ctx.releaseContext();

 }

MANAGING STATE IN THE GIS SERVER—DEEPLY STATEFUL APPLI-
CATIONS

The example above is a shallowly stateful application, meaning it is stateful but
its state is managed within the Web application server’s session state. The GIS
server also supports deeply stateful applications that use the GIS server to main-
tain application state.

Supporting such applications requires a server object instance dedicated to each
application session. You can configure this by making your server object non-
pooled. The fact that server objects necessary for such applications are non-
pooled limits the number of concurrent sessions by the processing resources of
the server.

When programming a deeply stateful Web application, you want to use the same
server context and server object throughout the session. So, you want to get a
server context at the beginning of the session and hold on to it until the session
has ended. The following C# code is an example of how you would obtain a
non-pooled server context and add it to your session state in an ASP.NET appli-
cation:
private void Page_Load(object sender, System.EventArgs e)

{

 Session.Timeout = 5;

 // Put user code to initialize the page here

 if (!Page.IsPostBack)

 {

 // Is this a new session?

 if (Session.IsNewSession)

 {

 // connect to the server

 string m_host = "padisha";

MANAGING APPLICATION SESSION STATE

Chapter4.pmd 1/25/2005, 5:51 PM101

102 • ArcGIS Server Administrator and Developer Guide

 ESRI.ArcGIS.Server.WebControls.ServerConnection connection = new
ESRI.ArcGIS.Server.WebControls.ServerConnection();

 connection.Host = m_host;

 connection.Connect();

 IServerObjectManager som = connection.ServerObjectManager;

 IServerContext ctx = som.CreateServerContext("Farms","MapServer");

 // save the server context as a session variable called "context"

 Session["context"] = ctx;

 }

 }

}

The following C# code shows how you can make use of the server context in the
following code, which alters the MapServer by removing the first layer:
private void btnDoSomthing_Click(object sender, System.EventArgs e)

{

 IServerContext ctx = Session["context"] as IServerContext;

 IMapServer map = ctx.ServerObject as IMapServer;

 IMapServerObjects mapObj = map as IMapServerObjects;

 IMap fgmap = mapObj.get_Map(map.DefaultMapName);

 fgmap.DeleteLayer(fgmap.get_Layer(0));

 mapObj.RefreshServerObjects();

}

The server context is held on to for the duration of the session and needs to be
released at the end of the session. The following code shows how to release the
context when the session ends:
protected void Session_End(Object sender, EventArgs e)

{

 IServerContext ctx = Session["context"] as IServerContext;

 ctx.ReleaseContext();

}

Note that the session ends based on a time-out that is set in the application. In
this example, the session time-out was set to five minutes, meaning if the user
does not interact with the running Web application session for five minutes, then
the session will time out, and the server context will be released by the code
above. It also means that once a user has ended the session by closing the Web
browser, the server context will not actually be released for five minutes until the
session time-out is triggered and the code above is executed.

These code examples are illustrations of how you work with server objects when
building applications. It’s important to note that if you are using the Web con-
trols to build a Web application, the Web controls take care of many of these
details, specifically, the Map control takes care of releasing the server context and
takes care of saving the MapDescription in session state for you. The relationship
between Web controls and these aspects of the server API are described in more
detail later.

MANAGING APPLICATION SESSION STATE

Chapter4.pmd 1/25/2005, 5:51 PM102

Chapter 4 • Developing ArcGIS Server applications • 103

APPLICATION STATE AND SCALABILITY

The question of stateful versus stateless use of the GIS server is central to the
scalability of your application. An application is more scalable than another
application if it can support a larger number of users with the same amount of
computer resources. The keys to scalability are:

• Make stateless use of the GIS server.

• Use pooled server objects.

• Minimize the time your application holds on to a server object. Release server
objects as soon as possible and do not rely on .NET or Java garbage collection
to do it for you.

Using the above criteria, it’s clear that stateless or shallowly stateful applications
can make use of object pooling and, therefore, are more scalable than deeply
stateful applications. The question of stateful versus stateless use of the GIS
server will be critical in designing your application.

This is not the end of performance and scalability when it comes to designing
ArcGIS Server applications. More discussion on performance tuning of ArcGIS
Server applications can be found in the ‘ArcGIS Server application performance
tuning’ section later in this chapter.

MANAGING APPLICATION SESSION STATE

Chapter4.pmd 1/25/2005, 5:51 PM103

104 • ArcGIS Server Administrator and Developer Guide

To this point, this chapter has focused on the use of server objects to perform the
functionality that they expose through their coarse-grained interfaces. The ADFs
Web controls’ functionality is based on the functionality exposed by these server
objects. If you want your application to go beyond simple mapping and geocod-
ing using server objects and Web controls, you must become familiar with work-
ing with server contexts as well as the ArcObjects programming model.

GETTING AND RELEASING SERVER CONTEXTS

You get a server context using the CreateServerContext method on
IServerObjectManager, which hands back an IServerContext interface on the server
context. The IServerContext interface has a number of methods for helping you
manage the objects you create within server contexts. So far in the code examples
in this chapter the use of three of these methods, specifically CreateObject,
SaveObject, and LoadObject, have been shown. The use of these and other methods
will be described in more detail in this section.

 IServerObjectManager : IUnknown Provides access to properties of, and members to work
with, a GIS server's server object manager.

CreateServerContext (in configName:
String, in TypeName: String) :
IServerContext

Gets a reference to a server context. The server context can be based
on a specified server object configuration or can be an empty server
context if no server object configuration is specified.

GetConfigurationInfo (in Name: String,
in TypeName: String) :
IServerObjectConfigurationInfo

Gets the information for server object configuration with the specified
 Name and TypeName.

GetConfigurationInfos:
IEnumServerObjectConfigurationInfo

An enumerator over all the GIS server's configuration info.

GetServerDirectoryInfos:
IEnumServerDirectoryInfo

An enumerator over all the GIS server's directory info.

GetTypeInfos:
IEnumServerObjectTypeInfo

An enumerator over all the GIS server's type info.

 IServerContext : IUnknown Provides access to members for managing a server context
 and the objects running within that server context.

ServerObject: IServerObject The map or geocode server object running in the server context.

CreateObject (in CLSID: String) :
IUnknown Pointer

Create an object in the server context whose type is specified by
 the CLSID.

GetObject (in Name: String) : IUnknown
Pointer

Get a reference to an object in the server context's object dictionary
 by its Name.

LoadObject (in str: String) : IUnknown
Pointer

Create an object in the server context from a string that was created
 by saving an object using SaveObject.

ReleaseContext Release the server context back to the server so it can be used by
another client (if pooled) or so it can be destroyed (if nonpooled).

Remove (in Name: String) Remove an object from the server context's object dictionary.
RemoveAll Remove all objects from the server context's object dictionary.
SaveObject (in obj: IUnknown Pointer) :

String
Save an object in the server context to a string.

SetObject (in Name: String, in obj:
IUnknown Pointer)

Add an object running in the server context to the context's object
 dictionary.

When developing applications with ArcGIS Server, all ArcObjects that your
application creates and uses live within a server context. A server context is a
reserved space within the server dedicated to a set of running objects. Server
objects also reside in a server context. To get a server object, you actually get a
reference to its context, then get the server object from the context:
Dim pServerContext as IServerContext

WORKING WITH SERVER CONTEXTS

ServerContextIServerContext

ServerObject-
Manager

IServerObjectManager

The ServerContext object provides access to a
context in the GIS server and methods for
creating and managing objects within that

context.

The ServerObjectManager object provides
methods for getting information about the GIS

server and for creating server contexts for use by
an application.

Chapter4.pmd 1/25/2005, 5:51 PM104

Chapter 4 • Developing ArcGIS Server applications • 105

Set pServerContext =
pServerObjectManager.CreateServerContext("RedlandsMap","MapServer")

Dim pMapServer as IMapServer

Set pMapServer = pServerContext.ServerObject

You can also create empty server contexts. You can use an empty context to
create ArcObjects on the fly within the server to do ad hoc GIS processing:
Dim IServerContext as IServerContext

Set IServerContext = pServerObjectManager.CreateServerContext("","")

Dim pWorkspaceFactory as IWorkspaceFactory

Set pWorkspaceFactory =
pServerContext.CreateObject("esriDataSourcesGDB.SdeWorkspaceFactory")

An empty server context is useful when you want to create objects for your
application’s use in the server but do not require the use of a preconfigured server
object. Empty contexts can be used to create any type of object, such as a con-
nection to a workspace as shown above. Since server objects are ArcObjects, you
can also use empty contexts to create server objects (MapServer, GeocodeServer) on-
the-fly. Empty server contexts are non-pooled and have high isolation.

When your application is finished working with a server context, it must release
it back to the server by calling the ReleaseContext method. If you allow the con-
text to go out of scope without explicitly releasing it, it will remain in use and be
unavailable to other applications until it is garbage collected. Once a context is
released, the application can no longer make use of any objects in that context.
This includes both objects that you may have obtained from or created in the
context.
Dim pServerContext as IServerContext

Set pServerContext =
pServerObjectManager.CreateServerContext("RedlandsMap","MapServer")

Dim pMapServer as IMapServer

Set pMapServer = pServerContext.ServerObject

' Do something with the object

pServerContext.ReleaseContext

CREATING OBJECTS IN THE SERVER

Client machines (for example, the Web server machine) require only the ADF
runtime be installed to run ArcGIS Server applications. The ADF runtime does
not install ArcObjects, so these applications do not have the ability to create local
ArcObjects. All ArcObjects that your application uses should be created within a
server context using the CreateObject method on IServerContext. In previous ex-
amples, you have seen CreateObject used to create an ImageDescription object for
use in ExportMapImage.

ArcGIS Server applications written in languages other than Java should not use
New to create local ArcObjects but should always create objects within the
server by calling CreateObject on IServerContext:

Incorrect:
Dim pPoint as IPoint

Set pPoint = New Point

WORKING WITH SERVER CONTEXTS

Chapter4.pmd 1/25/2005, 5:51 PM105

106 • ArcGIS Server Administrator and Developer Guide

Correct:
Dim pPoint as IPoint

Set pPoint = pServerContext.CreateObject("esriGeometry.Point")

Use CreateObject when you need to create an object for use in your application.
Dim pPointCollection as IPointCollection

Set pPointCollection = pServerContext.CreateObject("esriGeometry.Polygon")

CreateObject will return a proxy to the object that is in the server context. Your
application can make use of the proxy as if the object was created locally within
its process. If you call a method on the proxy that hands back another object,
that object will actually be in the server context, and your application will be
handed back a proxy to that object. In the above example, if you get a point
from the point collection using IPointCollection::Point, the point returned will be in
the same context as the point collection.

If you add a point to the point collection using IPointCollection::AddPoint, you
should create that point in the same context as the point collection.
Dim pPointCollection as IPointCollection

Set pPointCollection = pServerContext.CreateObject("esriGeometry.Polygon")

Dim pPoint as IPoint

Set pPoint = pServerContext.CreateObject("esriGeometry.Point")

pPoint.X = 1

pPoint.Y = 1

pPointCollection.AddPoint pPoint

It’s important to understand how your application is making use of server con-
texts as it does its work because objects that are used together should be in the
same context. For example, if you create a point object to use in a spatial selec-
tion to query features in a feature class, the point should be in the same context
as the feature class. This becomes important if your application makes use of
more than one server context. It may be necessary to copy objects from one
context to another.

Also, you should not directly use objects in a server context with local objects in
your application and vice versa. You can indirectly use objects or make copies of
them. For example, if you have a Point object in a server context, you can get its
X, Y properties and use them with local objects or use them to create a new local
point. Don’t directly use the point in the server context as, for example, the
geometry of a local graphic element object.

Consider the following examples. In each example, assume that objects with
Remote in their names are objects in a server context as in:
Dim pRemotePoint as IPoint

Set pRemotePoint = pServerContext.CreateObject("esriGeometry.Point")

while objects with Local in their name are objects created locally as in:
Dim pLocalPoint as IPoint

Set pLocalPoint = New Point

A proxy object is a local representation of a
remote object. The proxy object controls access
to the remote object by forcing all interaction

with the remote object to be via the proxy
object. The supported interfaces and methods on
a proxy object are the same as those supported

by the remote object. You can make method calls
on, and get and set properties of, a proxy object
as if you were working directly with the remote

object.

WORKING WITH SERVER CONTEXTS

In Java, use of the New keyword is necessary to
avoid a class-cast exception. In this case, the

object returned by the proxy class constructor is
actually a reference to the remote object

created on the server by the
ServerContext.createObject method (see the

‘Java application programming interface’ section
of Appendix D for more information).

Chapter4.pmd 1/25/2005, 5:51 PM106

Chapter 4 • Developing ArcGIS Server applications • 107

You can’t set a local object to a remote object:
' this is incorrect

Set pLocalPoint = pRemotePoint

' this is also incorrect

Set pLocalElement.Geometry = pRemotePoint

Do not set a local object, or a property of a local object, to be an object obtained
from a remote object:
' this is incorrect

Set pLocalPoint = pRemotePointCollection.Point(0)

When calling a method on a remote object, don’t pass in local objects as param-
eters:
' this is incorrect

Set pRemoteWorkspace = pRemoteWorkspaceFactory.Open(pLocalPropertySet,0)

You can get simple data types (double, long, string, and so forth) that are passed
by value from a remote object and use them as properties of a local object as in:
' this is OK

pLocalPoint.X = pRemotePoint.X

pLocalPoint.Y = pRemotePoint.Y

The SaveObject and LoadObject methods allow you to serialize objects in the server
context to a string, then deserialize them back into objects. You have already seen
how these methods can be used to manage state in your application while making
stateless use of a pooled server object (see previous section). These methods also
allow you to copy objects between contexts. Any object that supports
IPersistStream can be saved and loaded using these methods. For example, in an
application that makes use of a MapServer object for mapping and a GeocodeServer

This diagram illustrates the use of SaveObject and LoadObject to copy objects between server contexts:

1. The client application gets or creates an object within a server context.

2. The application uses the SaveObject method on the object’s context to serialize the object as a string that is held in the application’s session state.

3. The client application gets a reference to another server context and calls the LoadObject method, passing in the string created by SaveObject. LoadObject creates
a new instance of the object in the new server context.

1

GIS Server

2 3
Client application

proxy

Server
context

Server
context

GIS Server

Client application

proxy

Server
context

Server
context

GIS Server

Client application

proxy proxy

Server
context

Server
context

"abc"

WORKING WITH SERVER CONTEXTS

Chapter4.pmd 1/25/2005, 5:51 PM107

108 • ArcGIS Server Administrator and Developer Guide

object for geocoding, the GeocodeServer and MapServer will be running in different
contexts. If you use the GeocodeServer object to locate an address and you want to
draw the resulting point that GeocodeAddress returns on your map, you need to
copy the point into your MapServer’s context:
Dim pServerContext as IServerContext

Set pServerContext = pSOM.CreateServerContext("RedlandsMap", "MapServer")

Dim pServerContext2 As IServerContext

Set pServerContext2 = pSOM.CreateServerContext("RedlandsGeocode",
"GeocodeServer")

Dim pGCServer As IGeocodeServer

Set pGCServer = pServerContext2.ServerObject

Dim pPropertySet As IPropertySet

Set pPropertySet = pServerContext2.CreateObject("esriSystem.PropertySet")

pPropertySet.SetProperty "Street", "380 New York St"

Dim pResults As IPropertySet

Set pResults = pGCServer.GeocodeAddress(pPropertySet, Nothing)

Dim pPoint As IPoint

Set pPoint = pResults.GetProperty("Shape")

' copy the Point to the Map's server context

Dim sPoint As String

sPoint = pServerContext2.SaveObject(pPoint)

Dim pPointCopy As IPoint

Set pPointCopy = pServerContext.LoadObject(sPoint)

pServerContext2.ReleaseContext

' add the point as a graphic to the map description and redraw the map

pServerContext.ReleaseContext

MANAGING OBJECTS IN A SERVER CONTEXT

As your application creates and uses various objects within a particular context,
you may want a convenient place to store references to commonly used objects
within the context. You can do this by using the server context’s object dictionary
to keep track of these objects during the lifetime of the context. You can use the
context’s dictionary as a convenient place to store objects that you create within
the context. Note that this dictionary is itself valid only as long as you hold on to
the server context and it’s emptied when you release the context. You can use this
dictionary to share objects created within a context between different parts of
your application that have access to the context.

WORKING WITH SERVER CONTEXTS

A PropertySet is a generic class that is used to
hold any set of properties. A PropertySet’s
properties are stored as name/value pairs.

Examples for the use of a property set are to
hold the properties required for opening a

Spatial Database Engine™ (SDE®) workspace
or geocoding an address. To learn more about
PropertySet objects, see the online developer

documentation.

Chapter4.pmd 1/25/2005, 5:51 PM108

Chapter 4 • Developing ArcGIS Server applications • 109

For example, your application may require a connection to a geodatabase work-
space. Since making a geodatabase workspace connection can be expensive, you
would want your application to make the connection once, then store the Work-
space object in the context’s dictionary so you can use it multiple times without
having to re-create it and, therefore, reconnect to the workspace each time.

You add objects to and retrieve objects from the dictionary using the SetObject
and GetObject methods, respectively. An object that is set in the context will be
available until it is removed (by calling Remove or RemoveAll) or until the context
is released.
Dim pPointCollection as IPointCollection

Set pPointCollection = pServerContext.CreateObject("esriGeometry.Polygon")

pServerContext.SetObject "myPoly", pPointCollection

Dim pPoly as IPolygon

set pPoly = pServerContext.GetObject("myPoly")

Use the Remove and RemoveAll methods to remove an object from a context that
has been set using SetObject. Once an object is removed, a reference to it can no
longer be obtained using GetObject. Note that if you do not explicitly call Remove
or RemoveAll, you can still not get references to objects set in the context after
the context has been released.
pServerContext.Remove "myPoly"

WRITING OUTPUT

When your application performs operations using ArcObjects running in server
contexts, those operations may need to write out data to disk. For example, the
ExportMapImage method on a map server object writes images to disk. You may
have other applications that need to write data; for example, an application that
creates geodatabase checkouts needs to write personal geodatabases to disk where
they can be downloaded from.

Typically, you will want these files to be cleaned up by the server after some
period of time. To ensure this happens, your applications should write their
output to a server directory.

The set of a GIS server’s server directories is available by calling
GetServerDirectoryInfos on the IServerObjectManager interface on the server object
manager. For your files to be cleaned up when written into that server directory,
they must follow a file naming convention. The GIS server will delete all files in a
server directory that are prefixed with “_ags_”. Any files written to an output
directory that are not prefixed with “_ags_” will not be cleaned by the GIS
server.

WORKING WITH SERVER CONTEXTS

 IServerDirectoryInfo : IUnknown Provides access to properties of a server output directory.

CleaningMode:
esriServerDirectoryCleaningMode

The mode by which the files in the server directory are cleaned (by
age, by size, or none).

Description: String The description of the server directory.
MaxFileAge: Long The maximum age (in seconds) a file can be in the server directory

before it is deleted, if the cleaning mode is by file age.
Path: String The path of the output directory.
URL: String The URL of the virtual directory that maps to the physical directory as

described by the Path property.

A server context contains an object dictionary
that serves as a convenient place for you to

store references to commonly used objects. Use
the SetObject and GetObject methods on

IServerContext to work with the object
dictionary.

myWorkspace

myPoint

myProperties

(other)

esriGeodatabase.Workspace

esriGeometry.Point

esriSystem.PropertySet

Chapter4.pmd 1/25/2005, 5:51 PM109

110 • ArcGIS Server Administrator and Developer Guide

The following code shows how you can use the GetServerDirectoryInfos method on
IServerObjectManager to get a server directory and create a new personal
geodatabase:
Dim pServerContext As IServerContext

Set pServerContext = pSOM.CreateServerContext("", "")

Dim pWSF As IWorkspaceFactory

Set pWSF =
pServerContext.CreateObject("esriDataSourcesGDB.AccessWorkspaceFactory")

Dim pEnumSDI As IEnumServerDirectoryInfo

Set pEnumSDI = pSOM.GetServerDirectoryInfos

Dim pSDI As IServerDirectoryInfo

Set pSDI = pEnumSDI.Next

Dim pProps As IPropertySet

Set pProps = pServerContext.CreateObject("esriSystem.PropertySet")

' this database will be cleaned by the GIS server

pProps.SetProperty "DATABASE", pSDI.Path & "_ags_db1.mdb"

pWSF.Create pSDI.Path, "_ags_db1", pProps, 0

' this database will not be cleaned by the GIS server

pProps.SetProperty "DATABASE", pSDI.Path & "\db2.mdb"

pWSF.Create pSDI.Path, "db2", pProps, 0

WORKING WITH ARCGIS SERVER EXTENSIONS

If your server object container machines have licenses for the Spatial or 3D
extensions for ArcGIS Server, your applications can make use of the functional-
ity that is unlocked by that license.

You do not need to do any explicit calls to get a license when you want to use an
object that requires a license. Just create the object on the server and use it. If the
server object container machine is not licensed, then any method calls you make
on the object will fail.

WORKING WITH SERVER CONTEXTS

A PropertySet is a generic class that is used to
hold any set of properties. A PropertySet’s
properties are stored as name/value pairs.

Examples for the use of a property set are to
hold the properties required for opening an SDE

workspace or geocoding an address. To learn
more about PropertySet objects, see the online

developer documentation.

This code creates two geodatabases, one named
such that it will be cleaned by the GIS server,

one named such that it will not be cleaned by
the GIS server.

Chapter4.pmd 1/25/2005, 5:51 PM110

Chapter 4 • Developing ArcGIS Server applications • 111

In many cases, you will be building Web applications that make use of the GIS
server through the Web controls. To build sophisticated GIS applications that go
beyond the functionality exposed by the Web controls, it’s important to under-
stand both the server programming model as discussed in this chapter and the
relationship between the server API and the Web controls API.

There are two key points that are important to discuss with respect to Web
controls and the server API:

• Management of session state

• Management of server contexts for pooled and non-pooled server objects

The Web controls are described in much more detail in Chapter 5, ‘Developing
Web applications with .NET’, and Chapter 6, ‘Developing Web applications with
Java’. The information presented here does not preclude the need to understand
the material presented in those chapters.

WEB CONTROLS AND SESSION STATE

The WebMap (.NET) or AGSWebContext (Java) object of the map and overview
map controls manages the MapDescription of the MapServer object in session state
for you. When you use methods on WebMap or AGSWebContext, such as Zoom,
Pan, and CenterAt, to navigate the map, WebMap or AGSWebContext internally
uses SaveObject and LoadObject as described previously to maintain stateful aspects
of the application, such as current extent, within session state. The page layout
control’s WebPageLayout (.NET) or AGSWebContext (Java) object does the same
for the PageDescription and collection of MapDescriptions associated with the
MapServer’s page layout. The TOC control has methods for turning the visibility
of layers displayed in a map control on and off. Like the WebMap and
WebPageLayout (.NET) and AGSWebContext (Java), using the methods on the TOC
control to turn layers on and off will update the session’s copy of the
MapDescription.

If you want to manipulate the MapDescription yourself, for example, to add
graphics to the map, you can ask the WebMap or AGSWebContext for its
MapDescription, in which case you will be manipulating the copy of the map
description that the WebMap or AGSWebContext is managing in session state for
you.

WEB CONTROLS AND SERVER CONTEXT MANAGEMENT

The WebMap (.NET) or AGSWebContext (Java) object also manages the acquiring
and releasing of server contexts. The remainder of this section will illustrate this
concept using the .NET case (WebMap within an ASP.NET application). For
Java-specific examples of how the AGSWebContext does this, see Chapter 6,
‘Developing Web applications with Java’.

If you scope the use of the WebMap within a Using block, the WebMap will get a
server context from the server at the beginning of the Using block, then explic-
itly release it.

The following code is an example of using the WebMap in a Using block to use
the MapServer’s context to count the number of features in the first layer of the
map that intersect the current extent:
using (WebMap webMap = Map1.CreateWebMap())

WEB CONTROLS AND THE SERVER API

Chapter4.pmd 1/25/2005, 5:51 PM111

112 • ArcGIS Server Administrator and Developer Guide

{

 IMapServer map = webMap.MapServer;

 IMapServerObjects mapso = map as IMapServerObjects;

 IMap fgmap = mapso.get_Map(map.DefaultMapName);

 IFeatureLayer fl = fgmap.get_Layer(0) as IFeatureLayer;

 IFeatureClass fc = fl.FeatureClass;

 IServerContext sctx = webMap.ServerContext;

 ISpatialFilter sf = sctx.CreateObject("esriGeoDatabase.SpatialFilter")
as ISpatialFilter;

 IMapDescription md = webMap.MapDescription;

 IMapArea ma = md.MapArea;

 sf.SpatialRel = esriSpatialRelEnum.esriSpatialRelIntersects;

 sf.Geometry = ma.Extent as IGeometry;

 sf.GeometryField = fc.ShapeFieldName;

 long lcount = fc.FeatureCount(sf);

}

This example is valid to use for either a pooled or non-pooled server object since
it does not change the state of any aspects of the server object and does not save
any objects for later use in the server’s context.

When the Map control’s ServerObject property is set to be a pooled server object,
when you get the WebMap from the Map control using the CreateWebMap
method, the Map control is internally using CreateServerContext to create a new
server context using the ServerObject property of the Web control to create a
server context for the appropriate MapServer object. When the WebMap goes out
of scope, the Map control internally calls ReleaseContext to release the context.
The methods exposed by the Web controls are stateless, so a server object’s state
is never altered by calling one of the methods on a Web control.

When the Map control’s ServerObject property is set to be a non-pooled server
object, the Map control will create a server context at the beginning of the
session and hold on to the same server context for the entire session.
CreateWebMap uses the context already in session, and when the WebMap goes out
of scope, the context is not released.

The next example uses the WebMap with a non-pooled server object to get a
reference to the Workspace for a layer in the map and store that workspace object
in the context’s object dictionary. Since it is a non-pooled server object, the next
time the WebMap is obtained from the Map control, it will be the same context.
The following code would go in the Page_Load event of the application:
using (WebMap webMap = Map1.CreateWebMap())

{

 // get the workspace from the first layer and add it to the context's
object dictionary

 IMapServerObjects mapo = (IMapServerObjects) webMap.MapServer;

 IMap map = mapo.get_Map(webMap.DataFrame);

WEB CONTROLS AND THE SERVER API

The objects and interfaces used for creating and
working with geometries can be found in the
Geometry object library. To learn more about

geometry objects, see the online developer
documentation.

The objects and interfaces used for performing
spatial queries and for working with the results

of those queries can be found in the
GeoDatabase object library. To learn more about

geodatabase objects, see the online developer
documentation.

Chapter4.pmd 1/25/2005, 5:51 PM112

Chapter 4 • Developing ArcGIS Server applications • 113

 // get workspace from first layer and add it to the object dictionary

 IFeatureLayer fl = (IFeatureLayer) map.get_Layer(0);

 IDataset ds = (IDataset) fl.FeatureClass;

 IWorkspaceEdit wse = (IWorkspaceEdit) ds.Workspace;

 IServerContext sc = webMap.ServerContext;

 sc.SetObject("theWS",wse);

}

Once the session ends, you must make sure that server context is released by
looping through all of the Web controls and explicitly releasing their contexts:
protected void Session_End(Object sender, EventArgs e)

{

 IServerContext context;

 for (int i = 0; i < Session.Count; i++)

 {

 context = Session[i] as IServerContext;

 if (context != null)

 context.ReleaseContext();

 }

Session.RemoveAll();

}

It’s important to note that if you create any additional contexts within the Using
block, it is still your responsibility to call ReleaseContext on them. WebMap will
only release the context that it creates.

There is more complete documentation on using the Web controls in Chapter 5,
‘Developing Web applications with .NET’, and Chapter 6, ‘Developing Web
applications with Java’.

WEB CONTROLS AND THE SERVER API

Chapter4.pmd 1/25/2005, 5:51 PM113

114 • ArcGIS Server Administrator and Developer Guide

One aspect of programming ArcGIS Server is to create GIS Web applications
that run in a browser and that people interact with. Developers can also use
ArcGIS Server to create GIS Web services. Unlike a Web application, a Web
service is a program that is used by other programs and not users directly. The
types of Web services that ArcGIS Server supports can be divided into two
categories: application Web services and ArcGIS Server Web services.

APPLICATION WEB SERVICES

A Web service is a set of related application functions that can be programmati-
cally invoked over the Internet. An application Web service solves a particular
problem, for example, a Web service that finds all of the hospitals within a
certain distance of an address or performs some other type of GIS analysis.
Application Web services can be implemented using the native Web service
framework of your Web server, for example, ASP.NET Web service
(WebMethod) or Java Web service (Axis).

When using native frameworks, such as ASP.NET and J2EE, to create and con-
sume your application Web services, you need to use native or application-defined
types as both arguments and return values from your Web methods. Clients of the
Web service will not be ArcObjects applications, and as such, your Web service
should not expect ArcObjects types as arguments and should not directly return
ArcObjects types.

Any development language that can use standard HTTP to invoke methods can
consume a Web service. The Web service consumer can get the methods and types
exposed by the Web service through its Web Service Description Language
(WSDL).

The following is a simple example of a geocoding Web service written using
ASP.NET, which connects to the ArcGIS Server and makes use of a GeocodeServer
object to locate the address. Notice that its arguments are strings (an address and
a ZIP Code), and it does not return an ArcObjects point object but returns the x
and y coordinates of the point as a string:
[WebMethod]

public string LocateAddr(string address, string zipcode)

{

 string wsresult = "";

 if (address == null || zipcode == null)

 return wsresult;

 // connect to the GIS server

 string m_host = "padisha";

 ESRI.ArcGIS.Server.WebControls.ServerConnection connection = new
ESRI.ArcGIS.Server.WebControls.ServerConnection();

 connection.Host = m_host;

 connection.Connect();

 // get a server context

 IServerObjectManager som = connection.ServerObjectManager;

PROGRAMMING WEB SERVICES

To learn more about WSDL, refer to http://
www.w3.org.

Chapter4.pmd 1/25/2005, 5:51 PM114

Chapter 4 • Developing ArcGIS Server applications • 115

 IServerContext sc =
som.CreateServerContext("RedlandsGC","GeocodeServer");

 try

 {

 IServerObject so = sc.ServerObject;

 IGeocodeServer gc = (IGeocodeServer)so;

 IPropertySet ps =
(IPropertySet)sc.CreateObject("esriSystem.PropertySet");

 ps.SetProperty("street",address);

 ps.SetProperty("Zone",zipcode);

 IPropertySet res = gc.GeocodeAddress(ps,null);

 ESRI.ArcGIS.Geometry.IPoint tempPt = (ESRI.ArcGIS.Geometry.IPoint)
res.GetProperty("Shape");

 wsresult = tempPt.X + "," + tempPt.Y;

 // release the server context

 sc.ReleaseContext();

 }

 catch

 {

 // release the server context

 sc.ReleaseContext();

 }

 return wsresult;

}

Notice in the code above, all the standard aspects of programming with the
ArcGIS Server API apply, including connecting to the server, working with server
objects and server contexts, and releasing the server context at the end of the
method. The following C# code is an example of a client to this Web service. In
this example, wsref is the name of the Web reference made to this Web service:
wsref.FindAddress w = new wsref.FindAddress();

string slocation = w.LocateAddr("380 New York St","92373");

An application Web service is built by application developers, using native .NET
or J2EE Web service frameworks. The Web service is processed and executed
within the Web server and makes calls into the GIS server for GIS functionality.

PROGRAMMING WEB SERVICES

Chapter4.pmd 1/25/2005, 5:51 PM115

116 • ArcGIS Server Administrator and Developer Guide

ARCGIS SERVER WEB SERVICES

Administrators can expose MapServer and GeocodeServer objects as generic ArcGIS
Server Web services for access across the Internet. These Web services are pro-
cessed and executed from within the GIS server. SOAP requests are forwarded to
the GIS server by a simple Web page. As described earlier, these server objects
have SOAP interfaces for handling SOAP requests to execute methods and return
results as SOAP responses. It is this support for SOAP request handling that
makes it possible to expose server objects as Web services. ArcGIS Web services
use all ArcObjects types, for example, ArcObjects geometry types.

The Web service templates organize published ArcGIS Server Web services into
Web service catalogs. The ADF for both .NET and Java includes template appli-
cations for both ArcGIS Server Web services and Web service catalogs. To learn
how to use these templates to create Web service catalogs, see Chapter 5, ‘Devel-
oping Web applications with .NET’, and Chapter 6, ‘Developing Web applica-
tions with Java’.

ArcGIS Server Web services can be consumed by both application developers
using .NET and J2EE and can be consumed directly over the Internet by ArcGIS
Desktop applications and ArcGIS Engine applications. When making an Internet
connection to an ArcGIS Server using ArcCatalog, you are actually connecting to
a Web service catalog.

Accessing ArcGIS Web services with ArcObjects using GISClient
ArcGIS Desktop and ArcGIS Engine developers can consume ArcGIS Server
Web services using the ArcGIS Server Client API (AGSClient), which is in the
GISClient object library. The AGSClient includes objects and methods for con-
necting to GIS servers either directly or through Web service catalogs to make use
of MapServer and GeocodeServer objects. The AGSClient differs from the server
API in that it restricts clients to calling only the coarse-grained methods on the

server object and does not provide access to the finer-grained ArcObjects associ-
ated with a server object.

The following VB6 code shows how to use the AGSClient to connect to a Web
service catalog and list the set of server objects and their type that are exposed as
Web services in the Web service catalog:
Dim pAGSConnectionFactory As IAGSServerConnectionFactory

Set pAGSConnectionFactory = New AGSServerConnectionFactory

Dim pAGSConnection As IAGSServerConnection

Dim pConnectionProps As IPropertySet

Set pConnectionProps = New PropertySet

AGSServer-
Connection

IAGSServerConnection

 IAGSServerConnection : IUnknown Provides access to members that have information about
 the GIS server connection

FullName: IName The AGSServerConnectionName object associated with the
 GIS server connection.

Name: String The name of the connection.
ServerObjectNames:

IAGSEnumServerObjectName
The ServerObjectNames in the GIS server.

The AGSServerConnection object provides
connections to the GIS server and ArcGIS Server

Web service catalogs.

PROGRAMMING WEB SERVICES

Chapter4.pmd 1/25/2005, 5:52 PM116

Chapter 4 • Developing ArcGIS Server applications • 117

pConnectionProps.SetProperty "URL", "http://padisha/redlandscatalog/
default.aspx"

Set pAGSConnection = pAGSConnectionFactory.Open(pConnectionProps, 0)

Dim pEnumSOName As IAGSEnumServerObjectName

Set pEnumSOName = pAGSConnection.ServerObjectNames

Dim pSOName As IAGSServerObjectName

Set pSOName = pEnumSOName.Next

Do Until pSOName Is Nothing

 Debug.Print pSOName.Name & ": " & pSOName.Type

 Set pSOName = pEnumSOName.Next

Loop

The GISClient objects can be used to connect to a GIS server either via a LAN
connection (by specifying the machine property in the connection) or via a Web
service catalog (by providing the URL property in the connection). The
GISClient object provides a uniform programming interface for working with
server objects through both LAN connections and Web service connections.

The following VB6 code shows how to use the AGSClient to connect to the GIS
server directly running on the machine “melange” and list the set of server objects
and their type that are running in the GIS server:
Dim pAGSConnectionFactory As IAGSServerConnectionFactory

Set pAGSConnectionFactory = New AGSServerConnectionFactory

Dim pAGSConnection As IAGSServerConnection

Dim pConnectionProps As IPropertySet

Set pConnectionProps = New PropertySet

pConnectionProps.SetProperty "machine", "melange"

Set pAGSConnection = pAGSConnectionFactory.Open(pConnectionProps, 0)

Dim pEnumSOName As IAGSEnumServerObjectName

Set pEnumSOName = pAGSConnection.ServerObjectNames

Dim pSOName As IAGSServerObjectName

Set pSOName = pEnumSOName.Next

Do Until pSOName Is Nothing

 Debug.Print pSOName.Name & ": " & pSOName.Type

 Set pSOName = pEnumSOName.Next

Loop

You can make stateless use of server objects that you get from a GISClient con-
nection and call methods exposed by the server object’s stateless interfaces;
however, you cannot use a server object obtained via GISClient to drill down to
the finer-grained ArcObjects associated with the server object. You can get a
reference to the ServerObjectManager through the GISClient connection, provided

PROGRAMMING WEB SERVICES

Chapter4.pmd 1/25/2005, 5:52 PM117

118 • ArcGIS Server Administrator and Developer Guide

that connection is a LAN connection. You can then use the methods exposed by
the ServerObjectManager to obtain references to server contexts and server objects
to work with the server API.

Accessing ArcGIS Server Web services directly
ArcGIS Server Web services, similar to application Web services, can be accessed
by any development language that can submit SOAP-based requests to a Web
service and process SOAP-based responses. The Web service consumer can get the
methods and types exposed by the Web service through its WSDL. ArcGIS Web
services are based on the SOAP doc/literal format and are interoperable across
Java and .NET.

On the Web server, the Web service catalog templates can be used by developers
to publish any server object as a Web service over HTTP. For any published server
object, the template creates an HTTP endpoint (URL) to which SOAP requests
can be submitted using the standard HTTP POST method. The endpoint also
supports returning the WSDL for the Web service using a standard HTTP GET
method with “wsdl” as the query string. The implementation of the HTTP end-
point is thin, while the actual processing of the SOAP request and the generation
of the SOAP response take place within the GIS server. The WSDLs that de-
scribe the definitions of the SOAP requests and responses are also part of the
GIS server and are installed as part of the ArcGIS Server install under <install
directory>\XMLSchema.

The Web service templates organize published ArcGIS Server Web services into
Web service catalogs. Each Web service is a distinct HTTP endpoint/URL. The
Web service catalog is itself a Web service with a distinct endpoint and can be
queried to obtain the list of Web services in the catalog and the URL for each
Web service in the catalog.

The types of Web services supported at version 9.0 are:

• Web service catalog

• MapServer

• GeocodeServer

Each Web service has its own WSDL.

The Web service templates are available for use on both .NET and Java Web
servers and create identical endpoints. To a consumer of the Web services, the
two different server implementations are identical in terms of WSDLs and how
one obtains the WSDLs and interacts with the Web service over HTTP.

For example, assume that the ArcGIS Server administrator or developer at an
organization named ACME, whose .NET Web server has the URL http://
www.myserver.com, has used the ArcGIS Server Web service catalog templates to
create a Web service catalog called “MyCatalog”, which contains a MapServer
Web service named “PortlandMap” and a GeocodeServer Web service
“PortlandGeocode”. The URLs for the Web services are:

Web service catalog:
http://www.myserver.com/MyCatalog/Default.aspx

PROGRAMMING WEB SERVICES

Chapter4.pmd 1/25/2005, 5:52 PM118

Chapter 4 • Developing ArcGIS Server applications • 119

PROGRAMMING WEB SERVICES

Portland map server:
http://www.myserver.com/MyCatalog/PortlandMap.aspx

Portland geocode server:
http://www.myserver.com/MyCatalog/PortlandGeocode.aspx

If the ArcGIS Server site was running a Java Web server, then the URLs would
be:

Web service catalog:
http://www.myserver.com/MyCatalog/Default.jsp

Portland map server:
http://www.myserver.com/MyCatalog/PortlandMap.jsp

Portland geocode server:
http://www.myserver.com/MyCatalog/PortlandGeocode.jsp

ArcGIS Web services can be consumed from .NET or Java. As a consumer of an
ArcGIS Web service, you can use the methods exposed by the Web service by
including a reference to the Web service in your .NET or Java project. Web
services implemented on a Java Web server can be consumed from a .NET client
and vice versa.

Assume you are a .NET developer who wishes to consume the above Web ser-
vices published by ACME. You can add the following references to your Visual
Studio .NET project:

ServiceCatalog:
http://www.myserver.com/MyCatalog/Default.aspx?wsdl

Portland MapServer Web service:
http://www.myserver.com/MyCatalog/PortlandMap.aspx?wsdl

Portland GeocodeServer Web service:
http://www.myserver.com/MyCatalog/PortlandGeocode.aspx?wsdl

The following C# code is an example of using an ArcGIS Server MapServer Web
service to draw a map. In this example the Portland Web service has been refer-
enced as Port:
Port.Portland map = new Port.Portland ();

Port.MapServerInfo mapi = map.GetServerInfo(map.GetDefaultMapName());

Port.MapDescription pMapDescription = mapi.DefaultMapDescription;

Port.ImageType it = new Port.ImageType();

it.ImageFormat = Port.esriImageFormat.esriImageBMP;

it.ImageReturnType = Port.esriImageReturnType.esriImageReturnMimeData;

Port.ImageDisplay idisp = new Port.ImageDisplay();

idisp.ImageHeight = 400;

idisp.ImageWidth = 500;

idisp.ImageDPI = 150;

Port.ImageDescription pID = new Port.ImageDescription();

pID.ImageDisplay = idisp;

pID.ImageType = it;

Chapter4.pmd 1/25/2005, 5:52 PM119

120 • ArcGIS Server Administrator and Developer Guide

Port.MapImage pMI = map.ExportMapImage(pMapDescription, pID);

System.IO.Stream pStream = new
System.IO.MemoryStream((byte[])pMI.ImageData);

System.Drawing.Image pImage = Image.FromStream(pStream);

The following C# code is an example of using an ArcGIS Server GeocodeServer
Web service to locate an address and get the x and y location of the resulting
point. In this example the PortlandGeocode Web services has been referenced as
PortGC:
PortGC.PortlandGC gc = new PortGC.PortlandGC();

PortGC.PropertySet ps = new PortGC.PropertySet();

PortGC.PropertySetProperty[] pa = new PortGC.PropertySetProperty[2];

PortGC.PropertySetProperty pr = new PortGC.PropertySetProperty();

pr.Key = "street";

pr.Value = "2111 division st";

pa[0] = pr;

PortGC.PropertySetProperty pr2 = new PortGC.PropertySetProperty();

pr2.Key = "zone";

pr2.Value = "97202";

pa[1] = pr2;

ps.PropertyArray = pa;

PortGC.PropertySet resps = gc.GeocodeAddress(ps,null);

PortGC.PropertySetProperty[] respa = resps.PropertyArray;

PortGC.Point pnt = null;

for (int i = 0;i < respa.Length;i++)

{

 if (respa[i].Key == "Shape")

 pnt = respa[i].Value as PortGC.Point;

 break;

}

double X = pnt.X;

double Y = pnt.Y;

The following C# code is an example of using an ArcGIS Server Service Catalog
Web service to query the URLs of the Web services in the Web service catalog. In
this example the Web service catalog has been referenced as WSCat:
WSCat.Default sc = new WSCat.Default();

WSCat.ServiceDescription[] wsdesc = sc.GetServiceDescriptions();

WSCat.ServiceDescription sd = null;

string wsURL = null;

for (int i = 1;i < wsdesc.Length;i++)

{

 sd = wsdesc[i];

 wsURL = sd.Url;

 // do something with the URL

}

PROGRAMMING WEB SERVICES

Chapter4.pmd 1/25/2005, 5:52 PM120

Chapter 4 • Developing ArcGIS Server applications • 121

As discussed in the previous sections, developing ArcGIS Server applications is all
about remotely programming ArcObjects. As such, the server API is wide and
includes a large number of ArcObjects components organized into a series of
object libraries. Developers can build any kind of application using the server
API, so it is possible to build high-performance, scalable applications, and it is
also possible to build extremely slow applications that do not scale.

This section will discuss strategies for avoiding the latter, but it will ultimately be
in the hands of the developer and the GIS server administrator to work together
to design applications that can perform and scale given available hardware re-
sources.

ARCGIS SERVER AND FINE-GRAINED ARCOBJECTS

ArcGIS Server uses the same ArcObjects that ArcGIS Engine and ArcGIS
Desktop use, so if your server application includes GIS functionality that per-
forms poorly in an ArcGIS Engine or ArcGIS Desktop deployment, that same
functionality will likely perform poorly in your server deployments. Conversely, if
that GIS functionality performs well in an ArcGIS Engine or Desktop deploy-
ment, it will also perform well in server deployments if the application is prop-
erly tuned with respect to how it makes use of ArcObjects in the server.

Both coarse-grained calls to remote ArcObjects, such as the methods on the
MapServer and GeocodeServer, and fine-grained calls to remote ArcObjects, such as
looping through all the vertices of a polygon, are exposed through the ArcGIS
Server API and can be used in your application. However, it’s important to note
that when making a call against an object running in the server from your Web
application, you are making that call across processes. The Web server is running
in one process, while the object is running in another process.

Calls to objects across processes are significantly slower than calls to objects in the
same process. It is also likely that your Web application is running on a Web
server that is actually a different machine from which the object is running on, so
the calls are not only cross process, but also cross machine. This performance
difference on the scale of a single call or a few tens of calls is not significant in
terms of the overall performance of your application. However, if your applica-
tion is making thousands of fine-grained ArcObjects calls across process or ma-
chine to the server, there can be a significant performance impact on the applica-
tion.

You should minimize the number of round-trips to the GIS server from your
application by minimizing the number of fine-grained calls to remote objects. If
the nature of your application demands a lot of fine-grained ArcObjects work,
one strategy for supporting such functionality, but keeping remote calls to a
minimum, is to extend the GIS server with application-specific utility COM
objects that you can develop in VB, C++, or .NET.

EXTENDING THE GIS SERVER

The GIS server can easily be extended to use application-specific utility COM
objects that a developer can write in VB, C++, or .NET. If these COM compo-
nents are installed on the server object container machines on which your server
objects are hosted, they can be used to do work for your application. For ex-

The GIS server can easily be extended to use
application-specific COM objects that a developer

can write in VB, C++, or .NET. If these COM
components are installed on the server object

container machines on which your server objects
are hosted, then they can be used to do work for

your application.

Client application

proxies Utility COM
object proxy

GIS Server
Server context

Utility COM
object

ARCGIS SERVER APPLICATION PERFORMANCE TUNING

Chapter4.pmd 1/25/2005, 5:52 PM121

122 • ArcGIS Server Administrator and Developer Guide

ample, you may have a custom network tracing function that you want to use in
your server application. You can write the tracing code as a COM object and
install it on the server:
mylib.TraceUtilities tracer =
pServerContext.CreateObject("mylib.TraceUtilities") as
mylib.TraceUtilities;

result = tracer.DoIsolationTrace(...)

In this example, the tracing function may involve thousands of ArcObjects calls,
but all of those calls happen in the server where the TraceUtilities COM object is
running. The coarse-grained DoIsolationTrace method is the only method that the
Web application needs to call, which means there is only a single remote object
call to the server.

To illustrate this in more detail, here is a simple ASP.NET example in which a
Web application includes a button (btnTotalAreas) that reports the total area of
polygon features in one of the map’s layers that intersect the map extent and
displays the result on a label on the Web form (lblResult). In this example, the
Web application includes a Map control (Map1), from which it gets the MapServer
and its server context, and includes a TOC control (Toc1) that the user of the
Web application uses to identify which layer to query.

To do the above, a spatial query is made on the selected layer’s feature class using
the map’s current extent to return a geodatabase cursor. The application then
loops through the cursor, gets each feature’s geometry, and adds its area to the
total. The following is the C# code that would execute when the button is
clicked:
private void btnTotalAreas_Click(object sender, System.EventArgs e)

{

 using (WebMap webMap = Map1.CreateWebMap())

 {

 IMapServer map = webMap.MapServer;

 IServerContext ctx = webMap.ServerContext;

 IMapServerObjects mapobj = map as IMapServerObjects;

 IMap fgmap = mapobj.get_Map(map.DefaultMapName);

 // find the selected layer

 IEnumLayer maplayers = fgmap.get_Layers(null,true);

 ILayer lyr;

 string sLayername =
Toc1.GetNodeFromIndex(Toc1.SelectedNodeIndex).Text;

 while ((lyr = maplayers.Next()) != null)

 {

 if (lyr.Name == sLayername)

 break;

 }

 if (lyr == null)

 {

 lblResult.Text = "Layer not found";

ARCGIS SERVER APPLICATION PERFORMANCE TUNING

Chapter4.pmd 1/25/2005, 5:52 PM122

Chapter 4 • Developing ArcGIS Server applications • 123

 return;

 }

 // get the feature class and make sure its geometry type is polygon

 IFeatureLayer flyr = lyr as IFeatureLayer;

 IFeatureClass fc = flyr.FeatureClass;

 if (fc.ShapeType != esriGeometryType.esriGeometryPolygon)

 {

 lblResult.Text = "Select a polygon layer";

 return;

 }

 // create the query using the current extent of the map

 ISpatialFilter sf = ctx.CreateObject("esriGeoDatabase.SpatialFilter")
as ISpatialFilter;

 IMapArea ma = webMap.MapDescription.MapArea;

 sf.SpatialRel = esriSpatialRelEnum.esriSpatialRelIntersects;

 sf.GeometryField = fc.ShapeFieldName;

 sf.Geometry = ma.Extent as IGeometry;

 // execute the query and loop through the results

 IFeature f;

 IArea area;

 double dTotalArea = 0.0;

 IFeatureCursor fcursor = fc.Search(sf,true);

 while ((f = fcursor.NextFeature()) != null)

 {

 area = f.Shape as IArea;

 dTotalArea += area.Area;

 }

 lblResult.Text = dTotalArea.ToString();

 }

}

This code makes approximately eight remote calls on ArcObjects running on the
server to get the map from the MapServer, get the layers from the map, find the
selected layer, check to verify that it is a polygon layer, then create the QueryFilter
and set its properties. These fine-grained calls into the server do not add up to any
significant amount of time.

However, once the query has been executed, three calls are made to the server
per feature: one to get the feature, one to get its geometry, and one to get the
geometry’s area. If you consider that (based on the way this application is writ-
ten) the number of features that may result from the query is indeterminate, the
application could potentially loop through thousands of features. If there are
1,000 features intersecting the map extent, then this translates into 3,000 fine-
grained calls into the server.

The cost of this number of fine-grained calls does add up and can cause the
performance of your application to suffer. To minimize or eliminate this large

ARCGIS SERVER APPLICATION PERFORMANCE TUNING

Chapter4.pmd 1/25/2005, 5:52 PM123

124 • ArcGIS Server Administrator and Developer Guide

number of remote calls, you can create a simple COM object that has a method
that does the work of looping through all the features and totaling their areas.
This aspect of the Web application can then be rewritten to call this single
method, reducing this large number of remote calls to a single call to the method
on the COM object.

The following VB6 code shows how you could write this COM object. In this
example, the method of totaling the areas takes as arguments the feature class
and the query filter:
Public Function TotalAreas(pFeatureClass As IFeatureClass, pQueryFilter As
IQueryFilter) As Double

 Dim dResult As Double

 dResult = 0#

 ' check to make sure these are polygon features

 If pFeatureClass.ShapeType <> esriGeometryPolygon Then TotalAreas =
dResult

 ' loop through feature and total their areas

 Dim pFeature As IFeature

 Dim pFeatureCursor As IFeatureCursor

 Dim pArea As IArea

 Set pFeatureCursor = pFeatureClass.Search(pQueryFilter, True)

 Set pFeature = pFeatureCursor.NextFeature

 Do Until pFeature Is Nothing

 Set pArea = pFeature.Shape

 dResult = dResult + pArea.Area

 Set pFeature = pFeatureCursor.NextFeature

 Loop

 TotalAreas = dResult

End Function

The method returns the total area of all the features that satisfy the query. The
return value is tailored to what the calling application (the Web application in
this case) wants as an answer (the total area). Once this COM object is installed
on the server object container and on the Web server, the code behind the click
event of the button in the ASP.NET application can be rewritten as:
private void btnTotalAreas_Click(object sender, System.EventArgs e)

{

 using (WebMap webMap = Map1.CreateWebMap())

 {

 IMapServer map = webMap.MapServer;

 IServerContext ctx = webMap.ServerContext;

 IMapServerObjects mapobj = map as IMapServerObjects;

 IMap fgmap = mapobj.get_Map(map.DefaultMapName);

ARCGIS SERVER APPLICATION PERFORMANCE TUNING

Chapter4.pmd 1/25/2005, 5:52 PM124

Chapter 4 • Developing ArcGIS Server applications • 125

 // find the selected layer

 IEnumLayer maplayers = fgmap.get_Layers(null,true);

 ILayer lyr;

 string sLayername =
Toc1.GetNodeFromIndex(Toc1.SelectedNodeIndex).Text;

 while ((lyr = maplayers.Next()) != null)

 {

 if (lyr.Name == sLayername)

 break;

 }

 if (lyr == null)

 {

 lblResult.Text = "Layer not found";

 return;

 }

 // get the feature class and make sure its geometry type is polygon

 IFeatureLayer flyr = lyr as IFeatureLayer;

 IFeatureClass fc = flyr.FeatureClass;

 if (fc.ShapeType != esriGeometryType.esriGeometryPolygon)

 {

 lblResult.Text = "Select a polygon layer";

 return;

 }

 // create the query using the current extent of the map

 ISpatialFilter sf = ctx.CreateObject("esriGeoDatabase.SpatialFilter")
as ISpatialFilter;

 IMapArea ma = webMap.MapDescription.MapArea;

 sf.SpatialRel = esriSpatialRelEnum.esriSpatialRelIntersects;

 sf.GeometryField = fc.ShapeFieldName;

 sf.Geometry = ma.Extent as IGeometry;

 // create out utility COM object on the server

 ServerUtil.clsTotalAreasClass totarea =
ctx.CreateObject("ServerUtil.clsTotalAreas") as
ServerUtil.clsTotalAreasClass;

 double dTotalArea = totarea.TotalAreas(ref fc, ref sf);

 lblResult.Text = dTotalArea.ToString();

 }

}

Using this version of the code, the remote calls when looping through the fea-
tures, which could total in the thousands, have been reduced to a single call.
Using this method of pushing fine-grained ArcObjects calls into the server can

ARCGIS SERVER APPLICATION PERFORMANCE TUNING

Chapter4.pmd 1/25/2005, 5:52 PM125

126 • ArcGIS Server Administrator and Developer Guide

result in a significant increase in the performance of an operation that requires a
large number of fine-grained ArcObjects calls.

The client machine (that is, your Web server) must also install either the COM
object or a proxy to the COM object so the application will have access to its
interfaces and methods when it’s created on the server.

You can create these utility COM objects using Visual Basic, C++, or .NET.
When using .NET to create a COM object for use in the GIS server, there are
some specific guidelines you need to follow to ensure that you can use your object
in a server context and that it will perform well in that environment. For an
overview of how to create a COM object using .NET, refer to Appendix D,
‘Developer environments’. The guidelines below apply specifically to COM
objects you create to run within the server.

• You must explicitly create an interface that your COM class implements.
Unlike Visual Basic 6, .NET will not create an implicit interface for your
COM class that you can use when creating the object in a server context.

• Your COM class should be marshalled using the Automation marshaller. You
specify this by adding the AutomationProxyAttribute attribute to your class with
a value of true.

• Your COM class should generate a dual class interface. You specify this by
adding the ClassInterfaceAttribute attribute to your class with a value of
ClassInterfaceType.AutoDual.

• To ensure that your COM object performs well in the server, it must inherit
from ServicedComponent, which is in the System.EnterpriseServices assembly. This
is necessary due to the current COM interop implementation of the .NET
framework.

The following C# code shows how you could write the COM object in .NET
with the same functionality as previously demonstrated in VB6. Notice the
interface definition, the use of class attributes, and the fact that the COM class
inherits from ServicedComponent:
public interface IAreaSum

{

 double sumArea(ref IFeatureClass pFClass, ref IQueryFilter pQFilter);

}

namespace ServerUtilCS

{

 [AutomationProxy(true), ClassInterface(ClassInterfaceType.AutoDual)]

 public class ServerUtil:ServicedComponent, IAreaSum

 {

 public ServerUtil()

 {

 }

 public double sumArea(ref IFeatureClass pFClass, ref IQueryFilter
pQFilter)

 {

ARCGIS SERVER APPLICATION PERFORMANCE TUNING

Chapter4.pmd 1/25/2005, 5:52 PM126

Chapter 4 • Developing ArcGIS Server applications • 127

 double dArea = 0;

 // check to make sure these are polygon features

 if (pFClass.ShapeType != esriGeometryType.esriGeometryPolygon)

 return dArea;

 // loop through features and total their areas

 IFeature pFeature = null;

 IArea pArea = null;

 IFeatureCursor pFeatureCursor = pFClass.Search(pQFilter,true);

 while ((pFeature = pFeatureCursor.NextFeature()) != null)

 {

 pArea = pFeature.Shape as IArea;

 dArea += pArea.Area;

 }

 return dArea;

 }

 }

}

The code behind the click event of the button in the ASP.NET application that
creates and uses this version of the COM object would look like the following:
...

// create out utility COM object on the server

IAreaSum totarea = ctx.CreateObject("ServerUtilCS.ServerUtil") as
IAreaSum;

IQueryFilter qf = sf as IQueryFilter;

double dTotalArea = totarea.sumArea(ref fc, ref qf);

...

The following code shows how you could write the COM object in .NET using
VB.NET:
Public Interface IAreaSum

 Function sumArea(ByRef pFClass As IFeatureClass, ByRef pQFilter As
IQueryFilter) As Double

End Interface

<AutomationProxy(True), ClassInterface(ClassInterfaceType.AutoDual)> _

Public Class ServerUtil

 Inherits ServicedComponent

 Implements IAreaSum

 Public Sub New()

 MyBase.New()

 End Sub

 Public Function sumArea(ByRef pFClass As IFeatureClass, ByRef pQFilter
As IQueryFilter) As Double Implements ServerUtilVBNET.IAreaSum.sumArea

 Dim dResult As Double = 0.0#

 ' check to make sure these are polygon features

 If pFClass.ShapeType <> esriGeometryType.esriGeometryPolygon Then
sumArea = dResult

ARCGIS SERVER APPLICATION PERFORMANCE TUNING

Chapter4.pmd 1/25/2005, 5:52 PM127

128 • ArcGIS Server Administrator and Developer Guide

 ' loop through feature and total their areas

 Dim pFeature As IFeature = Nothing

 Dim pArea As IArea = Nothing

 Dim pFeatureCursor As IFeatureCursor = pFClass.Search(pQFilter, True)

 pFeature = pFeatureCursor.NextFeature

 Do Until pFeature Is Nothing

 pArea = pFeature.Shape

 dResult = dResult + pArea.Area

 pFeature = pFeatureCursor.NextFeature

 Loop

 sumArea = dResult

 End Function

End Class

The code behind the click event of the button in the ASP.NET application that
creates and uses this version of the COM object would look like the following:
...

// create out utility COM object on the server

IAreaSum totarea = ctx.CreateObject("ServerUtilVBNET.ServerUtil") as
IAreaSum;

IQueryFilter qf = sf as IQueryFilter;

double dTotalArea = totarea.sumArea(ref fc, ref qf);

...

If your application makes fine-grained use of ArcObjects, it’s not necessary to
always extend the server in this way. As discussed above, it comes down to the
volume of those calls that your application will make. If your application is
written in such a way that it always makes thousands of fine-grained ArcObjects
calls, or the number of fined-grained calls is indeterminate based on user interac-
tion with the application, you should consider moving some of the code into the
server.

If you design your application such that large volumes of fine-grained ArcObjects
calls are not necessary, and your user interface is designed such that your users
cannot make requests that result in a large volume of fine-grained ArcObjects
calls, then extending the server in this manner is not necessary.

USING POOLED SERVER OBJECTS TO POOL OTHER OBJECTS

If your Web application or Web service does not make use of a MapServer or a
GeocodeServer object for its functionality, you can use empty server contexts for
the application or Web service to do its GIS work. In that case, your application
will need to create any necessary objects within the empty server context using
the CreateObject method on the server context.

In some cases, the creation of an object may itself be expensive. A good example
of this is a connection to a geodatabase workspace. Making a geodatabase work-
space connection involves connecting to a database management system (DBMS)
and querying various tables in the database. If each invocation of a Web service

ARCGIS SERVER APPLICATION PERFORMANCE TUNING

Chapter4.pmd 1/25/2005, 5:52 PM128

Chapter 4 • Developing ArcGIS Server applications • 129

started with connecting to a geodatabase workspace, that introduces the fixed
cost of making the connection. Additionally, this puts a load on, and can impact
the scalability of, the database server.

Ideally, your Web service should make use of a pooled workspace connection,
such that a small number of connections are made to the database once and
shared across invocations of the Web service. One method of doing this is to
create a map document that contains a single layer whose source data is a feature
class from the workspace to which your Web service needs to connect. You can
create a pooled MapServer object using this map document as its initialization
data. When the instances of the MapServer are created to populate the object
pool, each will make and hold on to a connection to the workspace. Your Web
service can get a reference to one of the pooled instances of the MapServer, get
the layer from the map, get the feature class from the layer, and ask it for a refer-
ence to its workspace. Once the Web service finishes executing and releases the
MapServer, it and its database connection return to the pool for use by another
invocation of the Web service.

Below is an ASP.NET example of how you can use a pooled MapServer to get a
workspace connection from the first layer:
[WebMethod]

public string PooledWSExample()

{

 // connect to the GIS server

 string m_host = "padisha";

 ESRI.ArcGIS.Server.WebControls.ServerConnection connection = new
ESRI.ArcGIS.Server.WebControls.ServerConnection();

 connection.Host = m_host;

 connection.Connect();

 // get a server context

 IServerObjectManager som = connection.ServerObjectManager;

 IServerContext sc = som.CreateServerContext("MyMapServer","MapServer");

 // get the first layer in the map

 IMapServer map = sc.ServerObject as IMapServer;

 IMapServerObjects mapobj = map as IMapServerObjects;

 // get the workspace from the layer's feature class

 IMap fgmap = mapobj.get_Map(map.DefaultMapName);

 IFeatureLayer fl = fgmap.get_Layer(0) as IFeatureLayer;

 IDataset ds = fl.FeatureClass as IDataset;

 IWorkspace ws = ds.Workspace;

 // do something with the workspace

ARCGIS SERVER APPLICATION PERFORMANCE TUNING

Chapter4.pmd 1/25/2005, 5:52 PM129

130 • ArcGIS Server Administrator and Developer Guide

 sc.ReleaseContext();

 return "Operation complete";

}

If you are developing Web services that involve connecting to geodatabase
workspaces, you should consider this method of pooling those workspace con-
nections.

LIMITING THE SIZE OF QUERY RESULTS AND OUTPUT

As noted earlier, the server API is wide and includes a large number of
ArcObjects components that developers can use to include functionality in their
application. This does put responsibility on the developer to build applications
that do not allow the user of that application to put either the Web server (in the
case of a Web application or Web service) or the database server in a state that
results in a denial of service to other users.

Two key areas that will be discussed in detail are writing output and executing
and evaluating the results of database queries.

Limiting the size of query results
The GeoDatabase library includes objects that allow you to query data in a data-
base using spatial filters, attribute filters, or a combination of both. At this level
of the ArcObjects API, no limits or constraints are put on the nature of the
query or the number of records that may be returned by the cursor resulting from
executing the query. If, for example, a Web application executes a query that
returns 1,000,000 rows and iterates through each row, this can (depending on the
nature of the query) tie up the database server while the query is evaluated, then
tie up the Web server as the application iterates through the 1,000,000 rows.

These types of queries should be avoided by not allowing users to perform ad hoc
queries against the database. Design your application to tightly control the types
of queries that users can execute (or that are executed as a result of their interac-
tion with the application). Also, set limits on the number of query results that the
application will process for those cases where a large number of query results are
returned from the database. You can do this by evaluating a fixed number of
maximum rows from result cursors.

The following is an example of executing a query that may return a cursor with a
large number of records. In this example, the application will stop evaluating the
cursor after the first 100 rows have been retrieved. Assume that pFeatureClass is a
feature class in the server context:
Dim pQueryFilter As IQueryFilter

Set pQueryFilter =
pServerContext.CreateObject("esriGeodatabase.QueryFilter")

pQueryFilter.WhereClause = "ObjectID > 100"

Dim pCursor As ICursor

Set pCursor = pFeatureClass.Search(pQueryFilter, True)

Dim i As Long

i = 1

ARCGIS SERVER APPLICATION PERFORMANCE TUNING

Chapter4.pmd 1/25/2005, 5:52 PM130

Chapter 4 • Developing ArcGIS Server applications • 131

Dim pFeature As IFeature

Set pFeature = pCursor.NextRow

While Not pFeature Is Nothing And i < 100

 ' do something with the feature

 i = i + 1

 Set pFeature = pCursor.NextRow

Wend

There are some cases when using the coarse-grained methods on the MapServer
where queries can be executed, but the execution and evaluation of that query
takes place in the MapServer. For example, the QueryFeatureData method on
IMapServer returns a fully populated record set containing the results of the query.
To ensure that these record sets do not contain a number of rows too large for
the system to handle, the MapServer itself has built-in limits to evaluate the
results of a query to a maximum record count (logically the same as demonstrated
above).

This maximum is set as a property of the MapServer object itself called
MaxRecordCount. By default, the MaxRecordCount is 500, but this property can be
modified by the administrator of the GIS server by modifying the value of the
MaxRecordCount XML tag in the MapServer’s configuration file. For more infor-
mation about the GIS server’s configuration files and how to modify them, see
Appendix B, ‘Configuration and log files’.

This maximum record count will be applied to the results of the following meth-
ods on IMapServer:

• QueryFeatureData

• Find

• Identify

The MapServer also allows you to dynamically draw buffers around features by
specifying a SelectionBufferDistanceProperty on ILayerDescription that is greater than
zero. If the selection is large, this can greatly increase the resources required to
draw a map. The MapServer also has built-in limits to limit the number of fea-
tures that can be buffered per layer.

This maximum is set as a property of the MapServer object itself called
MaxBufferCount. By default, the MaxBufferCount is 100, but this property can be
modified by the administrator of the GIS server by modifying the value of the
MaxBufferCount XML tag in the MapServer’s configuration file. For more infor-
mation about the GIS server’s configuration files and how to modify them, see
Appendix B, ‘Configuration and log files’.

The GeocodeServer also has built-in limits that prevent requests from returning
results that are too large. Specifically, the number of records returned by the
FindAddressCandidates method is limited by the GeocodeServer’s MaxResultSize
property. The default for this is 500, but this property can be modified by the
administrator of the GIS server by modifying the value of the MaxResultSize
XML tag in the GeocodeServer’s configuration file. For more information about
the GIS server’s configuration files and how to modify them, see Appendix B,
‘Configuration and log files’.

ARCGIS SERVER APPLICATION PERFORMANCE TUNING

Chapter4.pmd 1/25/2005, 5:52 PM131

132 • ArcGIS Server Administrator and Developer Guide

The GeocodeServer also has a built-in limit for the number of input records that
can be passed into the GeocodeAddresses method. This maximum is set as a prop-
erty of the GeocodeServer itself called MaxBatchSize and can be modified by the
administrator of the GIS server by modifying the value of the MaxBatchSize
XML tag in the GeocodeServer’s configuration file.

Limiting the size of output
Another area where application developers need to be careful is when their
applications write output to a server directory. Files that are large may take a
large amount of disk space and a large amount of resources to produce. Develop-
ers will have to limit the size of files they write with these considerations in
mind.

The MapServer’s ExportMapImage method takes an ImageDescription object that
includes the size of image requested. To limit the size of images produced by
ExportMapImage, the MapServer has built-in limits for the size of images that
ExportMapImage will produce.

This maximum is set as two properties of the MapServer object itself called
MaxImageWidth and MaxImageHeight, specified in pixels. By default, these are set
to 2048, but these properties can be modified by the administrator of the GIS
server by modifying the values of the MaxImageWidth and MaxImageHeight XML
tags in the MapServer’s configuration file. For more information about the GIS
server’s configuration files and how to modify them, see Appendix B, ‘Configura-
tion and log files’.

ARCGIS SERVER APPLICATION PERFORMANCE TUNING

Chapter4.pmd 1/25/2005, 5:52 PM132

Chapter 4 • Developing ArcGIS Server applications • 133

This chapter has covered many details on programming with ArcGIS Server. At
the beginning of the chapter, it was stated that programming with ArcGIS Server
was about programming ArcObjects remotely and that any ArcObjects developer
could become an ArcGIS Server developer given some patterns and rules for
programming remote ArcObjects and some knowledge of Internet programming.
So far these aspects of programming the server have been covered in great detail.
The following is a summary of the programming rules and best practices for
developing applications with ArcGIS Server.

CONNECTING TO THE SERVER

• Use the native connection object of the environment in which you are devel-
oping your application (.NET, Java, or COM).

• If you are writing Web applications or Web services, you need to use imper-
sonation to fix the identity of your application to a user in the GIS servers
users group (agsusers).

WORKING WITH SERVER OBJECTS

• You get a server object’s context from the server, and the server object from
its context.

• A server object exposes a number of coarse-grained methods. You can also
access the fine-grained ArcObjects associated with a server object.

• When your request on a server object is finished, you must release the server
object back to the server by releasing its context.

MANAGING APPLICATION STATE

• Pooled server objects are intended for stateless use.

• Non-pooled server objects support stateful use.

• There are aspects of your application state you can maintain in a .NET or Java
session state without making stateful use of the GIS server.

• The keys to scalability are to make stateless use of the GIS server, use pooled
server objects, minimize the time your application holds on to a server object,
and explicitly release it.

SERVER CONTEXTS

• All ArcObjects in a server application run in server contexts.

• You are responsible for releasing a server context when you are finished work-
ing with its objects.

• Always create ArcObjects in a server context using its CreateObject method
(the exception being the server connection object).

• Objects work best together if they are in the same context.

• Do not directly use objects in a server context with local objects and vice
versa.

PUTTING IT ALL TOGETHER: BEST PRACTICES

Chapter4.pmd 1/25/2005, 5:52 PM133

134 • ArcGIS Server Administrator and Developer Guide

WEB SERVICES

• ArcGIS Server supports development with both application Web services and
ArcGIS Server Web services.

• Application Web services should never return ArcObjects types but should
return native .NET or Java types.

WEB CONTROLS

• Web controls handle managing the MapDescription in your application’s session
state.

• The WebMap object (.NET) and AGSWebContext object (Java) create and
release server contexts for you.

• For pooled objects, the Web controls will create and release the server context
on each request. For non-pooled objects, the Web controls will hold on to the
same context for the duration of the session.

PERFORMANCE TUNING

• Minimize the number of fine-grained calls to remote ArcObjects.

• If large numbers of fine-grained ArcObjects calls are necessary, think about
extending the server by creating COM objects that move the fine-grained
ArcObjects usage into the server.

• Do not allow application users to perform queries that result in large numbers
of rows, and limit the number of results from queries that you process.

• Work with your GIS server administrator to ensure that the built-in limits for
queries and output for a particular MapServer or GeocodeServer are config-
ured appropriately for your application.

THE REMAINDER OF THIS BOOK

Now that you have a grasp of the core programming model of ArcGIS Server,
the remainder of this book covers the details of the ADFs, several developer
scenarios, and detailed object model overviews. Since many of the concepts
covered in this chapter are central to developing ArcGIS Server applications, it
will be useful to use this chapter as a reference as you read the remainder of this
book.

PUTTING IT ALL TOGETHER: BEST PRACTICES

Chapter4.pmd 1/25/2005, 5:52 PM134

Developing
Web applications

with .NET

ArcGIS Server includes an Application Developer Framework (ADF)—built on top

of Microsoft’s .NET Framework—that allows you to integrate GIS functionality

into your Web applications. The ArcGIS Server ADF for .NET includes a set of

custom Web controls and templates—incorporated into Microsoft Visual Studio

.NET—that you’ll use to build your Web applications. You can start building your

Web application with one of several predefined templates, including the Map

Viewer template that offers basic map navigation and display, the Search

template that finds features by attributes, and the Geocoding template that

locates places by address. Alternatively, use the Web controls directly to create

your own specialized application in a style that conforms to your existing Web site.

This chapter describes how to create Web applications using the ArcGIS Server

ADF for .NET. Many of the topics discussed in this chapter assume you have

already read the previous chapters of this book. At a minimum, you should read

Chapter 4, ‘Developing ArcGIS Server applications’. While it isn’t a requirement

that you use Microsoft Visual Studio .NET to do so, the examples in this chapter

assume you are using this integrated development environment.

Topics covered in this chapter include:

• an overview of the ADF • creating Web applications from templates and Web

controls • programming guidelines • Web control reference.

5

Ch05.pmd 1/25/2005, 5:54 PM135

136 • ArcGIS Server Administrator and Developer Guide

THE ARCGIS SERVER APPLICATION DEVELOPER FRAMEWORK

In the previous chapters of this book, you’ve learned about the ArcGIS Server
architecture, administration, and programming practices. You’ve probably already
added a map to your GIS server and previewed it in ArcCatalog. This chapter will
show you how to integrate that map—or other server object—into a Web appli-
cation. You’ll find that whatever type of Web application you want to build—
from basic map display and query to sophisticated GIS editing and analysis—the
ArcGIS Server ADF for .NET allows you to utilize all of ArcObjects in a Web
environment.

Creating client applications that access your GIS server ultimately involves pro-
gramming ArcObjects. The .NET ADF is built on top of Microsoft’s .NET
Framework, extending the .NET Framework class library with new classes that
support a set of custom Web controls and provide remote access to ArcGIS
Server and, subsequently, ArcObjects. The diagram to the left shows how the
.NET ADF fits into the overall development environment.

You can think of the .NET ADF as a set of:

• Visual Studio .NET templates

• Custom ASP.NET Web controls

• Convenience classes for building client applications that access a GIS server

In the most basic sense, the .NET ADF simply provides you with an additional
set of objects with which to program. You can use these objects to build desktop
and Web applications that access a GIS server; this chapter focuses on creating
Web applications. The .NET ADF delivers these objects to you as custom
ASP.NET Web controls (also known as server controls) and convenience classes.

The Web controls and convenience classes expose a set of properties, methods,
and events that allow you to interact with the GIS server objects, for example,
helping you manage connections to the server, access the SOM, and retrieve
server objects. Actually, you don’t have to use the Web controls at all to create
your Web applications. You can directly access ArcGIS Server objects—and thus,
ArcObjects—through ASP.NET. However, you’ll find that the .NET ADF
encapsulates many of the details of programming directly with ArcGIS Server
objects and exposes a rich, mapping-centric user interface—through the custom
Web controls—that you can place directly on your Web forms.

The Visual Studio .NET templates help you start building your Web applications.
Each template incorporates the Web controls into its user interfaces and addresses
a particular GIS task—for example, map display and query. While you can use the
templates out of the box, they are primarily intended as a starting point for
building your own Web application. All the code for the templates is provided to
you, so you can easily customize a template to suit your needs or cut and paste
code fragments into your own application. The templates also serve as a great
learning tool for building your own applications because all the code is there to
guide you.

The ArcGIS Server ADF for .NET sits at the top
of the various programming components.

ArcGIS Server ADF for .NET

.NET
Framework

ArcGIS Server

ArcObjects

Ch05.pmd 1/25/2005, 5:54 PM136

Chapter 5 • Developing Web applications with .NET • 137

AN OVERVIEW OF TEMPLATES AND WEB CONTROLS

VISUAL STUDIO .NET TEMPLATES

When you create a new project in Visual Studio .NET, you’re presented with a set
of templates that you can use as a starting point to creating an application. In the
New Project dialog box, you’ll notice that there’s a folder that contains ArcGIS
Server Projects as well. Within this folder you’ll find the set of templates distrib-
uted with the .NET ADF.

Each template utilizes the set of Web controls that are part of the .NET ADF.
For example, those templates that display a map utilize the map control. The
primary advantage of building your Web application with one of the templates is
that much of the commonly used functionality is already programmed into them,
so you don’t have to program it yourself. For example, the Map Viewer template
displays a toolbar that contains the common map navigation tools for panning
and zooming around the map.

As with any template, the look of it simply serves as a starting point for your
Web application. You can easily customize the layout of the controls on the
template and change elements, such as fonts and colors, to suit your needs. If you
plan on integrating the application you create into an existing Web site, you might
add other components, such as company logos and site navigation tools, so that it
looks like your existing Web pages and integrates seamlessly into your Web site.

Most likely, you’ll want to extend the functionality provided in a particular
template and incorporate your own custom operations. That’s when you’ll start
programming with the server API and ArcObjects. As mentioned above, each
control provides methods that function as entry points into ArcObjects.

Each template included with the .NET ADF is described below. Later in this
chapter, you’ll see how to use one to build your own Web application in the
section called ‘Building your first Web applications’.

Map Viewer template
The Map Viewer template provides basic map display capabilities. It consists of a
main map, an overview map, a table of contents (legend), a North arrow, and a
scale bar. The template also contains a toolbar with built-in tools for panning and
zooming. For any map-centric application, the Map Viewer template offers a
good starting point.

Create your Web application from a predefined
mapping template.

Map Viewer template

If you don’t see the templates in the New
Project dialog box, they probably aren’t installed

on your system.

Ch05.pmd 1/25/2005, 5:54 PM137

138 • ArcGIS Server Administrator and Developer Guide

AN OVERVIEW OF TEMPLATES AND WEB CONTROLS

Search template
The Search template provides a
search-centric interface for finding
features on a map. The look of the
template is similar to what you
might see on the Web for a search
engine. Enter a search string and
click Go to yield a list of features
that match the search string. Click
the result you’re interested in to get
more details about it or to reveal a
map that highlights the particular
feature.

The Search template searches for
matching values in the attribute
tables of the layers on the map you
incorporate into your application. Thus, the list of results returned is restricted to
the features on your map. When creating your application from this template, you
may want to clearly indicate what type of values can be searched for.

Page Layout template
The Page Layout template displays
the entire page layout of a map. It
shows all the data frames on the
map as well as any map surrounds
on the layout, such as the map
title, legend, North arrow, and
scale bar. This template provides
the same view of a map as you’d
see in layout view in ArcMap.

The toolbar included in the tem-
plate allows you to pan and zoom
each data frame on the map and
also pan and zoom around the page
layout itself.

Geocoding template
The Geocoding template provides an
interface for finding map locations by
address. Enter the address that you
want to find and click Go. You’ll be
presented with a list of candidates
that match the address. Click the result
you’re interested in to reveal a map
that shows the address location. The
interface displayed in the template
assumes the address style you are using
is US Streets or US Streets with Zone.
You can easily change the interface to conform to other styles of addresses.

Page Layout template

Geocoding template

Search template

Ch05.pmd 1/25/2005, 5:54 PM138

Chapter 5 • Developing Web applications with .NET • 139

AN OVERVIEW OF TEMPLATES AND WEB CONTROLS

Thematic template
The Thematic template adds
thematic mapping symboliza-
tion capabilities on top of
the Map Viewer template.
Outwardly, the map display
in this template looks the
same as that of the Map
Viewer template. This tem-
plate, however, allows the
end user to dynamically
change how individual layers
are drawn by classifying the
data in the layer. This tem-
plate actually modifies the
underlying map server object
and, thus, requires that you configure it
with a non-pooled object.

The Thematic template provides the
following classification schemes:

• Natural Breaks

• Equal Interval

• Quantile

Buffer Selection template
The Buffer Selection template allows
you to find features in one layer based on their location relative to features in
another layer. For instance, suppose you want to determine how many homes a
recent flood affected, given that the rivers in the area overflowed their banks by
1,000 meters. An application created from this template can perform the spatial
query and identify which residences were affected by the flooding.

Performing this sort of
spatial query involves
creating a buffer at a speci-
fied distance around a set
of features—for example,
rivers—and finding other
features—for example,
houses—based on their
spatial relationship to the
buffered area. The Buffer
Selection template provides
options for finding features
that are completely within
or intersect the buffered area.

Thematic template

Buffer Selection template

Ch05.pmd 1/25/2005, 5:54 PM139

140 • ArcGIS Server Administrator and Developer Guide

AN OVERVIEW OF TEMPLATES AND WEB CONTROLS

Web Service Catalog template
The Web Service Catalog template provides a way to organize related server
objects into groups and make them accessible over the Internet via HTTP as Web
services. Use Web service catalogs with ArcGIS Desktop to give people access to
the specific server objects they need. For example, you might choose to organize a
series of maps used by a particular group of people in a Web service catalog.
Alternatively, as a Web developer, you can use the services provided by the Web
service catalog in Web applications.

ArcGIS Desktop users can connect to a Web service catalog via the GIS Servers
entry in ArcCatalog. When connecting, just provide the URL address of the Web
service catalog created through this template. For example, http://www.esri.com/
myWebCat/default.aspx. Web developers can reference the Web service catalog
with the following: http://www.esri.com/myWebCat/default.aspx?wsdl.

The Web Service Catalog template is unlike the other templates above in that it
presents no user interface to an end user. Instead, running the template creates a
Web service that can be consumed by client applications such as ArcGIS Desktop.
When you open the template, you can choose the particular server objects you
want to incorporate into your Web service catalog. Once you select the particular
server objects, simply build the project to make the Web service catalog available
for client access.

WEB CONTROLS AND CONVENIENCE CLASSES

As mentioned earlier in this chapter, the .NET ADF comes with a set of Web
controls and convenience classes that you’ll use while building your Web applica-
tions. The Web controls are analogous to the kinds of controls—such as buttons,
labels, and text boxes—you see in any IDE, except in this case, they represent
components commonly found on a map, such as the map itself and a legend (also
referred to as a table of contents). You can think of the Web control as the user
interface component and its associated convenience class as the part that does
most of the GIS work.

As you might expect, the Web controls contain properties such as height, width,
visibility, and border style—everything that relates to arranging the control on a
Web form and controlling its appearance. In addition, Web controls generate
events based on client interaction, such as when a control is clicked, that the
server can respond to. For instance, in the case of a map control, the client action
might be the dragging of a box, and the associated server action might be to
zoom in to the extent specified by the box or to select all the map features that
are contained by the box.

The action executed on the server is typically handled by the control’s associated
convenience class. Why doesn’t the Web control just do all the work? Because
there are times—for example, when creating Web services—when no user inter-
face is necessary. By separating the user interface component from the GIS func-
tionality, you can easily program applications with or without a user interface.
Both the Web controls and convenience classes expose methods to access their
associated object.

The Web controls and convenience classes provide some methods for common

This chapter describes how to create a Web
service catalog using the template provided with

the .NET ADF. For general information about
Web service catalogs, see the section titled
‘Programming Web services’ in Chapter 4.

Ch05.pmd 1/25/2005, 5:54 PM140

Chapter 5 • Developing Web applications with .NET • 141

AN OVERVIEW OF TEMPLATES AND WEB CONTROLS

mapping operations, such as panning and zooming a map, but they don’t attempt
to reproduce all of the functionality of ArcObjects. What they do provide,
however, is entry points into the ArcGIS Server API and the ArcObjects API.
For example, in the code you write, you’ll be able to programmatically access a
specific map server object from the map control. From there, you’ll start pro-
gramming ArcObjects to implement the specific functionality your application
requires—for example, you may want to add new layers to the map or change
how the layers are symbolized.

The following text provides a brief description of each Web control and its
associated convenience class. You’ll find coding examples, along with more
detailed information about the interaction of a particular Web control and con-
venience class, later in this chapter. For a complete description of the properties,
methods, and events, see the ArcGIS Developer Help. The .NET ADF Object
Model Diagram can be accessed from ArcGIS Developer Help as well.

Map control
The map control displays one particular data frame of the map. As with the
ArcMap data view, you can choose which data frame to display in the map con-
trol at a given time. To change the data frame, you simply change the DataFrame
property of the map control. The map control’s convenience class is WebMap.
This class provides methods for panning and zooming the map display. You can
also use methods that identify features—returning a list of attributes—and find
features by their attributes.

Table of contents control
The table of contents control is equivalent to the table of contents you see in
ArcMap. The table of contents lists the layers on the map and shows what the
features represent. Checking a layer in the table of contents will draw it on the
map or page layout. You can choose to show the table of contents for all data
frames in the map server object or just the data frame being displayed in the
associated map control. A table of contents is linked to a particular map or page
layout control. The convenience class for the table of contents control is WebToc.

Overview map control
The overview map control is similar to a map control in that it displays a particu-
lar data frame of a map server object. However, the purpose of the overview
map is to provide a point of reference for the area displayed on its associated map
control. A small box on the overview map represents the currently displayed area
on its associated map control. You can interactively move this box around to pan
the area displayed in the map control. The overview map control has the same
convenience class, WebMap, as the map control.

Page layout control
The page layout control displays the layout of a map and is analogous to layout
view in ArcMap. The page layout control displays all of the map elements, includ-
ing data frames and any map surrounds, such as map titles, North arrows, and
scale bars. The page layout control’s convenience class is WebPageLayout. The
methods available in this class are similar to those in the WebMap class. There are

Ch05.pmd 1/25/2005, 5:54 PM141

142 • ArcGIS Server Administrator and Developer Guide

AN OVERVIEW OF TEMPLATES AND WEB CONTROLS

methods for panning and zooming the page and an individual data frame on the
layout.

Toolbar control
The toolbar control displays a toolbar on the Web form. Toolbars are associated
with one or more map controls or page layout controls. Toolbars contain func-
tions for working with a map or page layout control. For example, you might put
common map navigation tools, such as pan and zoom, on a toolbar. The Toolbar
class implements all the methods it needs; thus, there is no associated convenience
class.

North arrow control
The North arrow control displays a North arrow on the Web form. When you
add a North arrow to your Web form, you associate it with a particular map
control. The North arrow will point in the north direction for the data frame in
the map control. You can set the North arrow symbol and size in design time or
programmatically at runtime. The NorthArrow class implements all the methods it
needs; thus, there is no associated convenience class.

Scale bar control
The scale bar control displays the scale bar of a map control. You can change the
appearance of the scale bar control, such as the font, color, or size. The ScaleBar
class implements all the methods it needs; thus, there is no associated convenience
class.

Impersonation control
The impersonation control allows you to incorporate the appropriate security
credentials for accessing a GIS server into your Web applications. The imperson-
ation control allows the Web application to impersonate the identity of a particu-
lar user and, thus, has all the privileges to which the identity is entitled. As long as
the identity being impersonated is part of the ArcGIS Server users group
(agsusers), the Web application will be granted access to the GIS server.

GeocodeConnection component
The GeocodeConnection component simplifies access to geocode server objects. The
GeocodeConnection component doesn’t have a visual display on a Web form. The
primary purpose of this component is to allow you to specify what GIS server
you want to connect to and what geocode server object you want to access. The
GeocodeConnection component’s convenience class is called WebGeocode. Use this
class to locate addresses.

Ch05.pmd 1/25/2005, 5:54 PM142

Chapter 5 • Developing Web applications with .NET • 143

BUILDING YOUR FIRST WEB APPLICATIONS

If you’ve ever worked with any of Microsoft’s integrated development environ-
ments before, you’ll find adding GIS functionality to Web applications in
Microsoft Visual Studio .NET to be much the same—you drag and drop controls
from a toolbox onto a form (in this case a Web form), set some control proper-
ties, and programmatically define how the control works by writing code that
responds to events such as mouse clicks. Now, in addition to adding text boxes
and buttons, you’ll also be able to add things, such as a map and a table of con-
tents, directly to your Web form. If any part of this process seems unfamiliar to
you, you should probably take a break from learning about ArcGIS Server and
spend some time learning a little more about the .NET Framework, ASP.NET,
and Microsoft Visual Studio .NET. This chapter assumes that you are already
familiar with this development environment and understand Web forms, Web
controls, assemblies, namespaces, and so on.

In this section, you’ll start learning about how to build Web applications with the
.NET ADF. The following four examples explain in step-by-step fashion how to
create the sample applications.

• Creating your first Web application with a template

• Creating a Web service catalog

• Creating a Web application with the Web controls

• Accessing ArcObjects from a Web application

As you build these applications, you’ll be exposed to the various classes imple-
mented in the .NET ADF and also see some of the methods, properties, and
events exposed on these classes. In addition, Chapter 7, ‘Developer scenarios’,
presents more sophisticated examples of Web applications that focus on a par-
ticular GIS activity. For a complete reference of all classes in the .NET ADF, see
the online Help incorporated into Visual Studio .NET’s help system.

To code and run the examples presented below, you need to have a working GIS
server with at least one map server object running on it. See Chapter 3, ‘Adminis-
tering an ArcGIS Server’, for information on starting a map server object. In
addition, the .NET ADF must be installed on the computer from which you will
run Visual Studio .NET. All examples assume you are using this IDE. Although
the sample code provided in this chapter is written with C#, you’ll find that no
matter what language you choose to program in, the process for working with the
underlying classes is the same.

Ch05.pmd 1/25/2005, 5:54 PM143

144 • ArcGIS Server Administrator and Developer Guide

BUILDING YOUR FIRST WEB APPLICATIONS

CREATING YOUR FIRST WEB APPLICATION WITH A TEMPLATE

One of the easiest ways to create a Web application is to start from a template.
This example shows you how to create an application from the Map Viewer
template provided with the .NET ADF.

1. Start Visual Studio .NET and create a new project. Click the File menu, click
New, then click Project.

2. In the New Project dialog box, double-click ArcGIS Server Projects and click
Visual C#.

3. On the right side of the dialog box, click Map Viewer Web Application.

4. Type in a location for the Web application and click OK.

Visual Studio .NET should now show you default.aspx, which contains the
following: a map control, an overview map control, a table of contents
control, a toolbar control, a scale bar control, and a North arrow control.

5. Set the Host property of the map control. Type the name of your GIS server.

6. Set the ServerObject property of the map control. Click the ServerObject
property dropdown arrow and click a map server object in the list. You can
alternatively type in the name of the server object, but be aware that the
name is case sensitive.

7. Set the DataFrame property of the map control. Click the DataFrame prop-
erty dropdown arrow and click a data frame on the map.

8. Set the Host, ServerObject, and DataFrame properties of the overview map
control to the same values as you set for the map control.

In general, you can use any map server object for the overview map as long as
its geographic extent includes the geographic extent of the server object
shown in the map control. If not, you will not see the area-of-interest box on
the overview map control.

9. Set the Identity property for the impersonation control. Click the ellipsis
button to reveal a dialog box and enter a valid username, password, and
domain or machine name. The account you specify should be a member of
the ArcGIS Server users account. Impersonation is discussed in greater detail
later in this chapter in the section titled ‘Accessing a GIS server from a Web
application’.

10. Click the Start button to run the application.

11. Explore the interface of your first Web application. For example, click the
Zoom In tool on the toolbar and drag a rectangle over the map. The extent
box on the overview map updates to reflect the current extent.

12. Click the Stop button to stop the application or close the browser window.

As you can see, you can quickly build a Web application from a template. Try
experimenting with some of the other templates to see how they work and what
functionality they provide. In general, you’ll need to set the same properties for
the controls in the other templates as you did in this example. Each project you
create from a template contains a readme file that describes what you need to do
to make an application run from the template. Read this file for more detailed
information about a template.

When creating Web applications without using a
template, you will need to set the

BuddyControl property for the overview map
and table of contents controls. This property

associates the control with a given map control.

Ch05.pmd 1/25/2005, 5:54 PM144

Chapter 5 • Developing Web applications with .NET • 145

BUILDING YOUR FIRST WEB APPLICATIONS

CREATING A WEB SERVICE CATALOG

The Web Service Catalog template provides a way to organize related server
objects into groups and make them accessible over the Internet via HTTP as Web
services. One of the primary advantages of creating a Web service catalog is that
ArcGIS Desktop users can directly connect to a Web service catalog and utilize
the server objects exposed through it and, for example, add a map server object
to ArcMap. You can include whichever server objects you want to in a Web
service catalog. Thus, you might create a Web service catalog for each department
in your organization with only the specific server objects each department needs
access to.

The .NET ADF Web Service Catalog template allows you to quickly create a Web
service catalog. Follow the steps below to create one.

1. Start Visual Studio .NET and create a new project. Click the File menu, click
New, then click Project.

2. In the New Project dialog box, double-click ArcGIS Server Projects and click
either Visual Basic or Visual C#.

3. On the right side of the dialog box, click Web Service Catalog Application.

4. Type in a location for the Web service catalog and click OK. This is the
location that you’ll use to connect to the Web service catalog. Avoid using
“localhost” as the server name, and instead specify the specific machine name.

5. In the dialog box that appears, type the name of the server you want to
connect to and click Connect.

6. Check the server objects you want to include in the Web service catalog and
click OK.

7. Select the impersonation control on the Web form and set the Identity prop-
erty. Click the ellipsis button to reveal a dialog box and enter a valid
username, password, and domain or machine name. The account you specify
should be a member of the ArcGIS Server users account. Impersonation is
discussed in greater detail later in this chapter in the section titled ‘Accessing a
GIS server from a Web application’.

8. Click the Build menu and click Build Solution.

You now have a Web service catalog that you can connect to. In ArcCatalog,
specify the URL address for the Web service catalog as shown below:
http://myserver/mycatalog1/default.aspx

See Chapter 3, ‘Administering an ArcGIS Server’, for more information on con-
necting to Web service catalogs from ArcCatalog.

You can also access Web service catalogs programmatically using standard Web
protocols. As a developer, you can consume the Web service catalog with the
following reference:
http://myserver/mycatalog1/default.aspx?wsdl

For more information on consuming Web service catalogs from a Web applica-
tion, see the section titled ‘Programming Web services’ in Chapter 4, ‘Developing
ArcGIS Server applications’.

Ch05.pmd 1/25/2005, 5:54 PM145

146 • ArcGIS Server Administrator and Developer Guide

BUILDING YOUR FIRST WEB APPLICATIONS

CREATING A WEB APPLICATION WITH THE WEB CONTROLS

Whether you choose to start building your Web application from a template or
from scratch, utilizing the Web controls directly, you’ll soon have to write your
own custom code to implement the specific functionality you want to incorpo-
rate in your application. As you read at the beginning of this chapter, writing
custom code means programming with the .NET ADF, ArcGIS Server, and
ArcObjects. Through the .NET ADF, you’ll be able to access the server objects
and, in turn, ArcObjects.

The example presented in this section is divided into two parts. In the first part,
you’ll see how you can use the map control to access all the map server objects on
a specific GIS server. Then, you’ll see how you can add tools to interact with the
map control.

Connecting to a server and getting a list of server objects
In this section, you’ll add a list box and map control to a Web form. The list box
will display the list of map server objects running on a particular GIS server
machine. Selecting a map from the list will display it on the map control.

1. In Visual Studio .NET, create a new Visual C# project using the ASP.NET
Web Application template and provide an appropriate name for the applica-
tion.

2. Add a list box to the Web form.

3. Add a map control to the Web form. In the Visual Studio .NET Toolbox,
you’ll notice a category for ESRI Web controls. This category contains the
map control delivered with the .NET ADF.

4. Set the Host, ServerObject, and DataFrame properties of the map control to a
map server object running on your GIS server.

5. Add an impersonation control to the Web form.

6. Set the Identity property of the impersonation control. Click the Browse
button to reveal a dialog box and enter a valid username, password, and
domain or machine name. The account you specify should be a member of
the ArcGIS Server users account. Impersonation is discussed in greater detail
later in this chapter in the section titled ‘Accessing a GIS server from a Web
application’.

7. Open the code behind page, WebForm1.aspx.cs, and add the following state-
ment at the top:
using ESRI.ArcGIS.Server.WebControls;

The controls in Visual Studio .NET

Ch05.pmd 1/25/2005, 5:54 PM146

Chapter 5 • Developing Web applications with .NET • 147

BUILDING YOUR FIRST WEB APPLICATIONS

8. Code the Page_Load event as shown below.
private void Page_Load(object sender, System.EventArgs e)

{

 if (!Page.IsPostBack)

 {

 if (Session.IsNewSession)

 {

 ListBox1.DataSource =

 Map1.ServerConnection.GetServerObjectNames("MapServer");

 ListBox1.DataBind();

 ListItem item = ListBox1.Items.FindByText(Map1.ServerObject);

 ListBox1.SelectedIndex = ListBox1.Items.IndexOf(item);

 }

 }

}

9. Code the ListBox1_SelectedIndexChanged event as shown below. (Double-
click the list box control on the Web form to automatically create an empty
function that you can write the code for.)
private void ListBox1_SelectedIndexChanged(object sender, System.EventArgs e)

{

 Map1.ServerObject = ListBox1.SelectedValue;

 Map1.DataFrame = null;

 Map1.Draw();

}

10. Set the AutoPostBack property of the list box to True.

11. Add the following code to the Session_End event in Global.asax.cs.
protected void Session_End(Object sender, EventArgs e)

{

 ESRI.ArcGIS.Server.IServerContext context;

 for (int i = 0; i < Session.Count; i++)

 {

 context = Session[i] as ESRI.ArcGIS.Server.IServerContext;

 if (context != null)

 context.ReleaseContext();

 }

 Session.RemoveAll();

}

12. Run the application. The list box should show all of the map server objects
running on the server. When you click a map server object in the list, the map
control should update to show the selected map.

Take a look at how this example works.

When you set the Host and ServerObject property at design time, you established
the GIS server you want to connect to and the map server object to display by
default. The list box is populated from this line of code in the Page_Load event:
ListBox1.DataSource =
 Map1.ServerConnection.GetServerObjectNames("MapServer");

Upon running the application, you’ll see the list
of map server objects and the map you selected.

Ch05.pmd 1/25/2005, 5:54 PM147

148 • ArcGIS Server Administrator and Developer Guide

BUILDING YOUR FIRST WEB APPLICATIONS

From the map control, Map1, you get the ServerConnection object, and from this
you can get a list of server objects, in this case, of type MapServer. This list of
map server objects is then bound to the list box control.

Clicking on an item in the list box executes this code:
Map1.ServerObject = ListBox1.SelectedValue;

Map1.DataFrame = null;

Map1.Draw();

This code sets the ServerObject property of the map control to the item selected in
the list box. The DataFrame property is set to null, which means the default data
frame will be displayed. Last, the map control is drawn.

When you display a non-pooled object from the list of maps, the map control
saves the server context for the non-pooled object in session state. Adding code
to the Session_End event cleans up the session variable when the application
ends and ensures that the server context gets released. The “for” loop cycles
through all session variables that were set during the application’s lifetime.
for (int i = 0; i < Session.Count; i++)

If the session variable references a server context, the value of the variable—
context—will not be null, and the server context is subsequently released.
context = Session[i] as ESRI.ArcGIS.Server.IServerContext;

if (context != null)

 context.ReleaseContext();

When working with non-pooled objects, it’s good practice to code the
Session_End event to release any server contexts held in session state. The code
shown in this example is generic. You can use it in any application to release any
server context that may be held in session state.

Adding a toolbar to zoom in
In this section, you’ll add a toolbar control that allows you to zoom in on the
map and also return to the full map extent.

1. From the ESRI tab in the toolbox, drag and drop a toolbar control onto your
Web form.

2. Set the BuddyControls property to specify with which map controls the toolbar
will work. This property is actually a collection, so if you have more than one
map control on the page, the toolbar could work with all of them. In the
BuddyControl Collection Editor, click Add and set the Name property to the
ID of the map control, Map1.

3. Set the ToolbarStyle property to TextOnly.

4. Set the ToolBarItems property. This property is a collection of toolbar items.
Toolbars can contain four types of items: tools, commands, separators, and
spaces. Tools interact with the map control—for example, dragging a box to
zoom in—before executing the code behind, whereas commands simply
execute the code behind. You can use separators and spaces to group tools
and commands on the toolbar. You’ll use a tool for the Zoom In operation
and a command for the Full Extent operation.

The Session_End event executes when the
session times out. You can set the time-out

period for your application in the Web.Config file.

Add a toolbar above the map control.

Ch05.pmd 1/25/2005, 5:54 PM148

Chapter 5 • Developing Web applications with .NET • 149

4a. In the ToolbarItem Collection Editor, click the Add button’s dropdown
arrow and add a Tool. Set the following properties as shown below:
Text = Zoom In
Name = ZoomInTool
ClientToolAction = DragRectangle
ServerToolActionAssembly = ESRI.ArcGIS.Server.WebControls
ServerToolActionClass = ESRI.ArcGIS.Server.WebControls.Tools.MapZoomIn

4b. In the ToolbarItem Collection Editor, click the Add button’s dropdown
arrow and add a Command. Set the following properties as shown below:
Text = Full Extent
Name = FullExtent

5. Click OK to dismiss the ToolbarItem Collection Editor.

6. Code the Toolbar1_CommandClick event as shown below. (Double-click the
toolbar control on the Web form to automatically create an empty function
for which you can write the code.)
private void Toolbar1_CommandClick(object sender,
ESRI.ArcGIS.Server.WebControls.ToolbarCommandClickEventArgs e)

{

using (WebMap webmap = Map1.CreateWebMap())

{

 webmap.DrawFullExtent();

}

}

7. Run the application. Click the Zoom In tool and drag a box over the map to
zoom in to. Click the Full Extent button to return to the full extent of the
map server object.

Take a look at how this example works.

As mentioned above, a toolbar can contain two types of items that perform an
action—tools and commands. Tools have a client-side action as well as a server-
side action. The .NET ADF includes some built-in client- and server-side actions
that you can utilize with no extra coding effort on your part.

In the example above, you specified the DragRectangle client-side action and
MapZoomIn as the server-side action for the Zoom In tool. The client-side action
is implemented as a JavaScript that enables the drawing of a rectangle over the
map control. When you set the ClientToolAction property, you may have noticed
that there are also other options available to you such as drawing a circle, line, or
polygon.

Once the client-side action completes, the server-side action executes. In this
case, dragging a box over the map control specifies the area on the map to zoom
in to. The coordinates of the box are then passed to the server-side action, which
changes the current extent displayed and redraws the map. This server-side action,
MapZoomIn, is already implemented for you. However, you can also write your
own code that executes on the server.

Toolbar commands only have a server-side action that is implemented through the
click event on the toolbar. In this example, there is only one command item and
it returns the map display to the full extent. Thus, the code for the toolbar click

BUILDING YOUR FIRST WEB APPLICATIONS

Use the toolbar to navigate the map.

Ch05.pmd 1/25/2005, 5:54 PM149

150 • ArcGIS Server Administrator and Developer Guide

BUILDING YOUR FIRST WEB APPLICATIONS

event is straightforward. The following line of code:
using (WebMap webmap = Map1.CreateWebMap())

creates a WebMap object. WebMap is the convenience class associated with the
map control and is responsible for getting a server context from the GIS server—
essentially giving you a proxy to the map server object you’re working with.

When you instantiate a WebMap object in your application, your application
utilizes a map server object on the server. Until your application releases the
object, it is unavailable to other clients who may request it. Thus, it’s very impor-
tant to dispose of the object once you’re through using it. For pooled objects, you
can ensure the object is disposed of by creating the WebMap object within a using
statement, as shown in this example, or by calling the Dispose method directly.
For non-pooled objects, you would additionally call ReleaseServerContext, then
Dispose. Releasing objects is discussed in more detail later in this chapter in the
section titled ‘Getting and releasing server contexts’.

Only one line of code is needed to return the map to its full extent. The
DrawFullExtent method resets the displayed extent of the map server object and
causes the map control to redraw.
webmap.DrawFullExtent();

WebMap works differently with respect to pooled and non-pooled objects. With a
pooled object, WebMap automatically releases the server context at the end of the
using block. With a non-pooled object, WebMap doesn’t release the server context
and assumes that your application will use the server context exclusively during
the lifetime of the application and explicitly release it, typically at the end of the
session. Thus, it’s the code in the Session_End event that releases the server
context for non-pooled objects.

When creating your own toolbars, you will likely place more than one command
on them. For toolbars with multiple command items, you can use a switch state-
ment to conditionally execute code based on which command is clicked. For
example, if you want to add another command item to the toolbar in the ex-
ample, you might write code such as this:
private void Toolbar1_CommandClick(object sender,
ESRI.ArcGIS.Server.WebControls.ToolbarCommandClickEventArgs e)

{

switch (e.CommandName)

{

case "FullExtent":

using (WebMap webmap = Map1.CreateWebMap())

{

webmap.DrawFullExtent();

}

break;

case "AnotherCommand":

//Do something here

break;

}

}

In the code above, you obtain the name of the command item clicked with the
CommandName method and use that value as the switch statement.

In general, when working with pooled objects, if
you instantiate any WebMap object within a

using statement, the server context will be
released at the end of the using block. When

working with non-pooled objects, you will need
to explicitly release the server context when

your application is finished using it. This is
typically handled in the Session_End event.

Ch05.pmd 1/25/2005, 5:54 PM150

Chapter 5 • Developing Web applications with .NET • 151

BUILDING YOUR FIRST WEB APPLICATIONS

ACCESSING ARCOBJECTS FROM A WEB APPLICATION

The .NET ADF exposes a great deal of GIS functionality through its API. In the
previous example, you used the WebMap class to draw the map at its full extent
(WebMap::DrawFullExtent). The WebMap class has additional methods that, for
example, pan and zoom the map, identify features, and find features by an at-
tribute value. All of this functionality is built into the .NET ADF using
ArcObjects. While you can write ArcObjects code yourself to do the same thing,
the WebMap class makes it a bit easier because it hides some of the details in the
methods it exposes to you. In a similar way, the WebPageLayout class makes it
easier to work with the page layout of a map.

The .NET ADF, however, does not duplicate all of the functionality in
ArcObjects. To do more than the basic GIS operations provided in the .NET
ADF, you’ll need to write code using the ArcObjects API. As you’ll see in the
example below, you’ll use the same convenience class—WebMap—to access
ArcObjects directly.

The goal of this example is to show you how to work with pooled and non-
pooled server objects and also how to access the ArcGIS Server and ArcObjects
API from the .NET ADF.

The Web form you’ll create will contain four list boxes. The first list box displays
a list of map server objects running on the server. The second list box displays a
list of data frames in the selected map server object. The third list box displays
the list of layers in the selected data frame. The fourth list box displays the
attribute fields of the selected layer. As you make selections from the list boxes,
the other list boxes update accordingly. For example, selecting a new layer in the
layers list box updates the fields list box.

1. In Visual Studio .NET, create a new Visual C# project using the ASP.NET
Web Application template and provide an appropriate name for the applica-
tion.

2. Add four list boxes to the Web form. Name the list boxes as shown below:

lstServerObjs—contains a list of map server objects
lstDataFrames—contains a list of data frames
lstLayers—contains the list of layers
lstFields—contains the list of fields

3. Set the AutoPostBack property to true for lstServerObjs, lstDataFrames, and
lstLayers.

4. Add an impersonation control to the Web form.

5. Set the Identity property of the impersonation control. Click the Browse
button to reveal a dialog box and enter a valid username, password, and
domain or machine name. The account you specify should be a member of
the ArcGIS Server users group (agsusers). Impersonation is discussed in
greater detail later in this chapter in the section titled ‘Accessing a GIS server
from a Web application’.

Add four list boxes and an impersonation control
to the Web form.

Ch05.pmd 1/25/2005, 5:54 PM151

152 • ArcGIS Server Administrator and Developer Guide

6. Open the code behind page, WebForm1.aspx.cs, and add the following state-
ments at the top:
using ESRI.ArcGIS.Server.WebControls;

using ESRI.ArcGIS.Carto;

using ESRI.ArcGIS.Geodatabase;

7. Code the Page_Load event as shown below, substituting the name of your GIS
server for “your_server” below.
private void Page_Load(object sender, System.EventArgs e)

{

 if (!Page.IsPostBack)

 {

 if (Session.IsNewSession)

 {

 // Set host machine and save in session state.

 string host = "your_server";

 Session.Add("host", host);

 // Create a server connection.

 ServerConnection svrConnection = new ServerConnection(host, true);

 // Populate server objects and data frames list boxes.

 Get_ServerObjects(svrConnection);

 Get_DataFrames(svrConnection);

 string mapServerObj = lstServerObjs.SelectedValue;

 string dataFrame = lstDataFrames.SelectedValue;

 // Create WebMap and populate layers and fields list boxes.

 WebMap webmap = Get_WebMap(svrConnection,
 host, mapServerObj, dataFrame);
 Get_Layers(webmap);

 Get_Fields(webmap);

 // Keep server context for non-pooled objects.

 Keep_ServerContext(webmap);

 }

 }

}

8. Code the Get_ServerObjects function as shown:
private void Get_ServerObjects(ServerConnection svrConnection)

{

 // Populate list of map server objects on server.

 lstServerObjs.DataSource =
 svrConnection.GetServerObjectNames("MapServer");

 lstServerObjs.DataBind();

 lstServerObjs.SelectedIndex = 0;

}

BUILDING YOUR FIRST WEB APPLICATIONS

Make sure you substitute the name of your host
machine, otherwise the application won’t work

properly.

Ch05.pmd 1/25/2005, 5:54 PM152

Chapter 5 • Developing Web applications with .NET • 153

9. Code the Get_DataFrames function as shown:
private void Get_DataFrames(ServerConnection svrConnection)

{

 // Populate list of data frames of selected map server object

 string mapServerObj = lstServerObjs.SelectedValue;

 lstDataFrames.DataSource =
 svrConnection.GetDataFramesFromMapServerObject(mapServerObj);

 lstDataFrames.DataBind();

 lstDataFrames.SelectedIndex = 0;

}

10. Code the Get_Layers function as shown:
private void Get_Layers(WebMap webmap)

{

 // Populate list of layers in selected data frame

 ArrayList arrLayers = new ArrayList();

 IMapServer map = webmap.MapServer;

 IMapServerInfo msi = map.GetServerInfo(webmap.DataFrame);

 IMapLayerInfos layers = msi.MapLayerInfos;

 if (layers.Count != 0)

 {

 for (int i = 0; i < layers.Count; i++)

 {

 IMapLayerInfo oneLayer = layers.get_Element(i);

 arrLayers.Add(oneLayer.Name);

 }

 }

 else

 arrLayers.Add ("No layers in data frame.");

 lstLayers.DataSource = arrLayers;

 lstLayers.DataBind();

 lstLayers.SelectedIndex = 0;

}

11. Code the Get_Fields function as shown:
private void Get_Fields(WebMap webmap)

{

 // Populate list of fields

 ArrayList arrFields = new ArrayList();

 int layerIndex = lstLayers.SelectedIndex;

 IMapServer map = webmap.MapServer;

 IMapServerInfo msi = map.GetServerInfo(webmap.DataFrame);

 IMapLayerInfos layers = msi.MapLayerInfos;

 if (layers.Count != 0)

 {

 IMapLayerInfo oneLayer = layers.get_Element(layerIndex);

 if (oneLayer.isFeatureLayer)

 {

BUILDING YOUR FIRST WEB APPLICATIONS

Ch05.pmd 1/25/2005, 5:54 PM153

154 • ArcGIS Server Administrator and Developer Guide

BUILDING YOUR FIRST WEB APPLICATIONS

 IFields fields = oneLayer.Fields;

 for (int i = 0; i < fields.FieldCount; i++)

 {

 IField oneField = fields.get_Field(i);

 arrFields.Add(oneField.Name);

 }

 }

 else

 arrFields.Add ("No fields for this layer.");

 }

 else

 arrFields. Add ("No fields available.");

 lstFields.DataSource = arrFields;

 lstFields.DataBind();

 lstFields.SelectedIndex = 0;

}

12. Code the Get_WebMap function as shown:
private WebMap Get_WebMap (ServerConnection svrConnection, string host,

 string mapServerObj, string dataFrame)

{

 if (Session["serverContext"] != null)

 {

 ESRI.ArcGIS.Server.IServerContext svrContext =

 Session["serverContext"] as ESRI.ArcGIS.Server.IServerContext;

 WebMap webmap = new WebMap (svrContext, host, dataFrame);

 return webmap;

 }

 else

 return new WebMap(svrConnection, mapServerObj, dataFrame);

}

13. Code the Keep_ServerContext function as shown:
private void Keep_ServerContext (WebMap webmap)

{

 // Save ServerContext object in session state for non-pooled object.

 if (!webmap.IsPooled)

 Session.Add("serverContext", webmap.ServerContext);

 webmap.Dispose();

}

14. Double-click the lstServerObjects control and code the
lstServerObjs_SelectedIndexChanged event as shown:
private void lstServerObjs_SelectedIndexChanged(object sender,
 System.EventArgs e)

{

 // New Map Server Object selected. Update list boxes.

 string host = Session["host"] as String;

 ServerConnection svrConnection = new ServerConnection(host, true);

 Get_DataFrames(svrConnection);

 string mapServerObj = lstServerObjs.SelectedValue;

 string dataFrame = lstDataFrames.SelectedValue;

Ch05.pmd 1/25/2005, 5:54 PM154

Chapter 5 • Developing Web applications with .NET • 155

BUILDING YOUR FIRST WEB APPLICATIONS

 // Remove any ServerContext in session state and release server context.

 if (Session["serverContext"] != null)

 {

 ESRI.ArcGIS.Server.IServerContext svrContext =

 Session["serverContext"] as ESRI.ArcGIS.Server.IServerContext;

 svrContext.ReleaseContext();

 Session.Remove("serverContext");

 }

 WebMap webmap = Get_WebMap(svrConnection, host, mapServerObj, dataFrame);

 Get_Layers(webmap);

 Get_Fields(webmap);

 Keep_ServerContext(webmap);

}

15. Double-click the lstDataFrames control and code the
lstDataFrames_SelectedIndexChanged event as shown:
private void lstDataFrames_SelectedIndexChanged(object sender,
 System.EventArgs e)

{

 // New data frame selected. Update list of layers and fields.

 string host = Session["host"] as String;

 string mapServerObj = lstServerObjs.SelectedValue;

 string dataFrame = lstDataFrames.SelectedValue;

 ServerConnection svrConnection = new ServerConnection(host, true);

 WebMap webmap = Get_WebMap(svrConnection, host, mapServerObj, dataFrame);

 Get_Layers(webmap);

 Get_Fields(webmap);

 Keep_ServerContext(webmap);

}

16. Double-click the lstLayers control and code the
lstLayers_SelectedIndexChanged event as shown:
private void lstLayers_SelectedIndexChanged(object sender,
 System.EventArgs e)

{

 // New layer selected. Update list of fields.

 string host = Session["host"] as String;

 string mapServerObj = lstServerObjs.SelectedValue;

 string dataFrame = lstDataFrames.SelectedValue;

 ServerConnection svrConnection = new ServerConnection(host, true);

 WebMap webmap = Get_WebMap(svrConnection, host, mapServerObj, dataFrame);

 Get_Fields(webmap);

 Keep_ServerContext(webmap);

}

17. Run the application. Each list box should be populated with the appropriate
values. For example, as you click a layer name, the list of fields will update.

If you receive an error that the RPC server is unavailable, make sure you
substituted the name of your GIS server in the Page_Load event:
string host = "your_server";

As you click on a new server object, data frame,
or layer, the appropriate list boxes update.

Ch05.pmd 1/25/2005, 5:54 PM155

156 • ArcGIS Server Administrator and Developer Guide

BUILDING YOUR FIRST WEB APPLICATIONS

Take a look at how this example works.

Most of the work performed by the application is done in the several functions
you coded. The Page_Load function populates each of the four list boxes on the
Web form by making a call to these functions. There is a function that populates
each list box and additional functions to create a WebMap object and save the
server context for a non-pooled object. Each function is described in greater
detail below.

Get_ServerObjects function
The Get_ServerObjects function calls the GetServerObjectNames method on the
ServerConnection object. This method returns an array that can be bound directly to
the list box control.
lstServerObjs.DataSource =
 svrConnection.GetServerObjectNames("MapServer");

The last thing the function does is select the first element in the list.
lstServerObjs.SelectedIndex = 0;

This is important because the other functions assume that each list box has a
current selected value, and the other functions use this value in code.

Get_DataFrames function
The Get_DataFrames function is almost identical to the Get_ServerObjects
function. This function calls the GetDataFramesFromMapServerObject method on
the ServerConnection object to populate the list box control. The method requires
the name of a map server object as an argument, which is the selected value in
the list of map server objects.
string mapServerObj = lstServerObjs.SelectedValue;

lstDataFrames.DataSource =
 svrConnection.GetDataFramesFromMapServerObject(mapServerObj);

Get_Layers function
The Get_Layers function requires a little more coding because there is no method
in the .NET ADF for obtaining a list of layers in a data frame. Thus, you need to
write your own code to populate the list of layers.

The function accepts a WebMap object as an argument. The WebMap object is
used by this function and the Get_Fields function. By passing it in as an argument
here, both functions can use the same WebMap object and don’t have to instanti-
ate their own, which saves getting a second server context from the GIS server.

The WebMap class exposes the MapServer method, which returns a map server
object. This object is the coarse-grained server object that represents the map
running on the server. You can use this object as an entry point for accessing
other map server objects.
ArrayList arrLayers = new ArrayList();

IMapServer map = webmap.MapServer;

Through the IMapServer interface, the function gets a MapServerInfo object. The
IMapServerInfo interface has properties that describe the map. One property,
MapLayerInfos, returns a list of layers in the specified data frame.

Ch05.pmd 1/25/2005, 5:54 PM156

Chapter 5 • Developing Web applications with .NET • 157

BUILDING YOUR FIRST WEB APPLICATIONS

IMapServerInfo msi = map.GetServerInfo(webmap.DataFrame);

IMapLayerInfos layers = msi.MapLayerInfos;

If the current data frame has layers, then the function loops through the list of
layers, extracting the name of each layer and populating the ArrayList.
if (layers.Count != 0)

 {

 for (int i = 0; i < layers.Count; i++)

 {

 IMapLayerInfo oneLayer = layers.get_Element(i);

 arrLayers.Add(oneLayer.Name);

 }

 }

else

 arrLayers.Add ("No layers in data frame.");

Last, the function binds the ArrayList to the list box control, which shows the
list of layers in the particular data frame, in the particular map server object.
LstLayers.DataSource = arrLayers;

LstLayers.DataBind();

LstLayers.SelectedIndex = 0;

Get_Fields function
The Get_Fields function populates the last list box control with a list of fields in
the selected layer. This function follows the same coding pattern as the
Get_Layers function, so you can skip over the beginning section and look specifi-
cally at the code that builds the list of fields.

The following code gets the individual layer (MapLayerInfo object) using the
get_Element method and passing in the current selected index number in the list
box of layers—recall that the Get_Layers function populated the list box by
looping through the list of layers, so the order should match the order in the list
box.
int layerIndex = lstLayers.SelectedIndex;

...

IMapLayerInfo oneLayer = layers.get_Element(layerIndex);

Given the selected layer, the next section of code first checks if the layer is a
feature layer—for example, it may be an image layer that doesn’t have fields—
and if so, builds the list of fields in the layer.
if (oneLayer.isFeatureLayer)

{

 IFields fields = oneLayer.Fields;

 for (int i = 0; i < fields.FieldCount; i++)

 {

 IField oneField = fields.get_Field(i);

 arrFields.Add(oneField.Name);

 }

}

Last, the array is bound to the list box control.

Ch05.pmd 1/25/2005, 5:54 PM157

158 • ArcGIS Server Administrator and Developer Guide

BUILDING YOUR FIRST WEB APPLICATIONS

LstFields.DataSource = arrFields;

LstFields.DataBind();

LstFields.SelectedIndex = 0;

Get_WebMap function
The Get_WebMap function is a key function in this application. It creates the
WebMap object and does so differently for pooled and non-pooled server objects.
For pooled objects, the Get_WebMap function returns a WebMap object based on
a server connection. The GIS server hands back a new server context from the
pool. For non-pooled objects, the function uses an existing server context—
extracted from session state—to create the WebMap object. In this case, the
server hands back the same server context the application used previously.

The function first checks if there is a session variable that was created by the
Keep_ServerContext function.
if (Session["serverContext"] != null)

If the session variable exists, it means the application is currently accessing a non-
pooled object, and that object has been created explicitly for this application and
still exists on the server. The function creates a new WebMap object by passing in
the server context, stored in session state, to the constructor.
ESRI.ArcGIS.Server.IServerContext svrContext =

 Session["serverContext"] as ESRI.ArcGIS.Server.IServerContext;

WebMap webmap = new WebMap (svrContext, host, dataFrame);

return webmap;

If the session variable is null, it means the application is currently accessing a
pooled object or this is the first call to create a non-pooled object from this
application. The function then creates a new WebMap object from the server
connection rather than the server context.
return new WebMap(svrConnection, mapServerObj, dataFrame);

Keep_ServerContext function
The Keep_ServerContext function saves the server context in session state if the
server object accessed by the application is a non-pooled object.
if (!webmap.IsPooled)

 Session.Add("serverContext", webmap.ServerContext);

webmap.Dispose();

The function always calls the Dispose method on the WebMap object. For pooled
objects, Dispose also releases the server context. However, Dispose does not
release the server context for non-pooled objects.

LstServerObjs_SelectedIndexChanged function
Whenever an end user of this application selects a new map server object, all the
list boxes on the Web form must update to reflect the change. To update the list
boxes, this function calls the Get_DataFrames, Get_Layers, and Get_Fields
functions to populate each list box. The first few lines of the function establish a
server connection and retrieve the list of data frames in the newly selected ob-
ject.

Ch05.pmd 1/25/2005, 5:54 PM158

Chapter 5 • Developing Web applications with .NET • 159

BUILDING YOUR FIRST WEB APPLICATIONS

// New Map Server Object selected. Update list boxes.

string host = Session["host"] as String;

ServerConnection svrConnection = new ServerConnection(host, true);

Get_DataFrames(svrConnection);

The next few lines of code check if a session variable exists. If it does, it means
the application was previously working with a non-pooled object and the server
context is currently stored in session state.
if (Session["serverContext"] != null)

{

 ESRI.ArcGIS.Server.IServerContext svrContext =

 Session["serverContext"] as ESRI.ArcGIS.Server.IServerContext;

 svrContext.ReleaseContext();

 Session.Remove("serverContext");

}

The function releases the server context—using the ReleaseContext method—since
the application is now finished working with the non-pooled object.

Next, the function calls the Get_WebMap function to create a new WebMap
object and passes that object as an argument to the Get_Layers and Get_Fields
functions, which populate their respective list boxes.
WebMap webmap = Get_WebMap(svrConnection, host, mapServerObj, dataFrame);

Get_Layers(webmap);

Get_Fields(webmap);

The last thing the function does is call Keep_ServerContext.
Keep_ServerContext(webmap);

If the newly selected server object is a non-pooled object, the
Keep_ServerContext function saves the server context in session state. Then, for
any subsequent calls to Get_WebMap, such as when a new data frame or layer is
selected, a new WebMap object is created from the existing server context. How-
ever, if the newly selected server object is a pooled object, the function disposes
of the WebMap object, which also releases the server context.

LstDataFrames_SelectedIndexChanged and
LstLayers_SelectedIndexChanged functions
The LstDataFrames_SelectedIndexChanged and
LstLayers_SelectedIndexChanged functions are essentially the same. These func-
tions simply make calls to the Get_Layers and Get_Fields functions to repopulate
the list boxes when the end user of the application changes the current data
frame or layer. The relevant lines of code to do this are:
WebMap webmap = Get_WebMap(svrConnection, host, mapServerObj, dataFrame);

Get_Layers(webmap);

Get_Fields(webmap);

Keep_ServerContext(webmap);

Ch05.pmd 1/25/2005, 5:54 PM159

160 • ArcGIS Server Administrator and Developer Guide

GUIDELINES FOR CREATING YOUR OWN WEB APPLICATIONS

As you read through this chapter, you’re probably already thinking about how to
apply what you’ve learned to your own project. This section describes some of
the things you’ll need to think about as you begin building your own Web applica-
tions. Some of the information presented here is discussed in more detail in other
chapters of this book as well; however, it’s worth reviewing this information at
this point to ensure you have a clear picture of how to build your Web applica-
tion.

ORGANIZING YOUR DATA AND CREATING SERVER OBJECTS

Presumably, most—if not all—of the GIS functionality you build into your Web
applications will be provided through the server objects you host on your GIS
server. How many server objects a single Web application utilizes depends on
how you organize your server objects and what functionality you want to build
into the Web application. Often, a Web application utilizes more than one server
object, and these server objects need to have some correlation between them. For
example, if you want to build an application that locates places by address, that
application will minimally access a geocode server object to find the address
location and a map server object to display the location to the user. The geocode
and map server objects need to reference the same geographic location, otherwise
the geocoded points won’t draw on the map. Similarly, the geographic area dis-
played in an overview map needs to match that of its associated main map.

As map server objects are based on map documents (for example, .mxd files), you
have some flexibility as to how you organize the data contained within a given
map server object. For instance, suppose you’re creating an application that
displays three maps. Should you create one map document that results in one map
server object with three data frames in it? Or instead, create three map docu-
ments and three server objects with one data frame each?

As a general rule, you should organize the data in a map server object according to
how your Web applications will use it. For example, you would create one map
server object that contains all the data required for a Web application. The server
object would have, for example, one data frame for the main map control and
one data frame for the overview map. Later, if you build another Web applica-
tion that can share the overview map with the first application, you may choose
to host the data for the overview map in its own server object.

DATA ACCESS CONSIDERATIONS

Ensure that the following holds true for your map server objects.

• The map document and all data must be accessible to all server object con-
tainer machines.

• The ArcGIS Server Container account you established during the postinstalla-
tion should have read access to any shared network directories.

• File-based data (for example, coverages and shapefiles) should be placed on
shared networked drives and saved in the map documents using UNC
pathnames.

• ArcSDE connections must be saved in the map document before being added
to the server.

Ch05.pmd 1/25/2005, 5:54 PM160

Chapter 5 • Developing Web applications with .NET • 161

ACCESSING A GIS SERVER FROM A WEB APPLICATION

You need to consider two levels of security when building a Web application that
accesses a GIS server. First, you need to consider who will access your applica-
tion. Does the application contain sensitive information that is not meant for
general consumption? If so, you’ll probably want to restrict access to it in some
way. Second, you need to consider how the Web application itself accesses and
works with the GIS server because the server has its own access control mecha-
nism that your Web application must implement.

To restrict access to a Web application, you need to identify who is attempting to
access the Web site. This process, called authentication, challenges a user to prove
who they are, usually by requiring them to provide some security credentials that
only they and the resource they are trying to access know about. For example, to
access your bank account through an automated teller machine (ATM), you
identify yourself with your ATM card and your personal identification number.
Without both, you are not granted access to the account.

For Web applications, security credentials are commonly expressed in the form of
a username and password. If the username and password are valid, the user is
authenticated and subsequently granted access to the Web site. There are many
ways you can authenticate users and grant them access to a Web application. A
discussion of these methods is beyond the scope of this book. However, whether
you choose to restrict access to your Web application or not, you do need to
consider the second level of security, which governs how the Web application
accesses the GIS server. This is the main focus of this section.

As you read in the previous chapter, access to a GIS server—and the server
objects running on it—is managed by two operating system user groups: ArcGIS
Server users (agsusers) and ArcGIS Server administrators (agsadmin). To access
the server objects, an application must connect to the server as a user in the
ArcGIS Server users group. To additionally administer the GIS server—for ex-
ample, add and remove server objects—an application must connect as a user in
the ArcGIS Server administrators group.

First, consider how you access a GIS server through ArcCatalog. When you
connect to your GIS server in ArcCatalog, if the account you’re currently logged
in as is a member of the ArcGIS Server administrators group, you will see addi-
tional menu choices that let you manage the server. For instance, you can add,
remove, start, and stop server objects. However, if your account is only a mem-
ber of the ArcGIS Server users group, then you will not see any menu choices for
managing server objects and can instead only view the server objects running on
the server. Further, if your account is not a member of either of these user
groups, you won’t have any access to the server.

Access to a GIS server is managed in a similar way with Web applications. A Web
application can connect to the GIS server as a particular user through a process
called impersonation. With impersonation, the Web application assumes the identity
of a particular user and, thus, has all the privileges that user is entitled to. As long
as this user is part of the appropriate group—for example, ArcGIS Server users,
agsusers—the Web application will have access to the server objects running on
the GIS server. So what user should your Web application connect to the server
as? The answer to this question depends on how you choose to set up access to
the GIS server itself.

If you want to learn more about authentication
and impersonation, you can consult almost any

book that discusses ASP.NET or visit Microsoft’s
Developer Network at

www.msdn.microsoft.com. Microsoft Visual
Studio .NET also contains a thorough discussion

of impersonation in the online help.

GUIDELINES FOR CREATING YOUR OWN WEB APPLICATIONS

Ch05.pmd 1/25/2005, 5:54 PM161

162 • ArcGIS Server Administrator and Developer Guide

When incorporating impersonation into your Web application, there are two
approaches you can take. You can use the impersonation control or modify the
configuration of your application in the Web.config file. No matter how your
Web application implements impersonation, most likely the application will
impersonate a user who is a member of the ArcGIS Server users group rather
than the ArcGIS Server administrators group. As a member of the ArcGIS Server
users group, the application will have complete access to the server objects. Thus,
you can write code that works with the object in a shallowly stateful or deeply
stateful manner. You can do anything except manage the server objects them-
selves. If you want to write an application that manages the server, the applica-
tion will have to impersonate a user in the ArcGIS Server administrators group.

Configuring impersonation with the impersonation control
By adding the impersonation control to your Web form at design time, you can set
the necessary identity to impersonate. The Identity property allows you to specify a
username, password, and optional domain or machine name. The identity is
encrypted into the application; thus, it can’t be read. Once you add an imperson-
ation control to the Web form, all .NET ADF Web controls on the page will
utilize the identity established by the impersonation control.

Each page of your Web application needs its own impersonation control on it.
You can also access the impersonation control in your code through the Imperson-
ation class. Thus, you can dynamically change the identity if necessary. Code
examples for doing this are presented later in this chapter in the section ‘Imper-
sonation control’. Setting impersonation through the control overrides any imper-
sonation set in Web.config, described below.

Configuring impersonation through the Web.config file
Alternatively, you can enable impersonation for your Web application by includ-
ing the appropriate setting in a configuration file, Web.config, in the application
root directory. (When you create a Web application in Visual Studio .NET, the
Web.config file is automatically created for you.)

To enable impersonation and to impersonate the authenticated user, include the
following line in the application’s Web.config file:
<identity impersonate="true" />

With this setting, the Web application is now configured to impersonate the
authenticated user who is accessing the Web application. (Note: You may also
need to disable anonymous access to the Web application through the Web server.
This can be done through the Microsoft Management Console for IIS.) In the case
where the client is accessing the Web application through Internet Explorer, the
user identity (Windows account) is automatically passed to the Web application,
and thus, the Web application can seamlessly impersonate the authenticated user.
In the case where the client is accessing the Web application through Netscape®,
the user identity is not automatically passed on to the Web application. Thus, the
user will be prompted by a dialog box to enter a username and password for
authentication.

GUIDELINES FOR CREATING YOUR OWN WEB APPLICATIONS

For more information on how the impersonation
control works, see the section titled ‘Imperson-

ation control’ later in this chapter.

Ch05.pmd 1/25/2005, 5:54 PM162

Chapter 5 • Developing Web applications with .NET • 163

To enable impersonation and to impersonate a specific, hard coded user, include
the following line in the application’s Web.config file:
<identity impersonate="true" userName="domain\user" password="mypass" />

This allows the application to run with the specified identity as long as the iden-
tity information is correct. As you can see, the username and password are stored
in clear text. Although this information is not transmitted via IIS, a user on the
domain with the proper credentials can see the contents of this file. For increased
security, you can encrypt the username and password in the system registry, re-
placing the clear text versions with the following:
userName="registry:HKLM\Software\AspNetIdentity,Name"

password="registry:HKLM\Software\AspNetIdentity,Password"

This method of encrypting the username and password in the registry is beyond
the scope of this book. For further information on this encryption method,
consult Microsoft Knowledge Base Article #329290, entitled HOW TO: Use the
ASP.NET Utility to Encrypt Credentials and Session State Connection Strings.

GETTING AND RELEASING SERVER CONTEXTS

As you’ve already read in this book, the server context provides the means to
access a server object and to instantiate new objects that must exist within the
same context as the server object. When you add a server object to your GIS
server with ArcCatalog, one property you specify is how many instances are
available for clients that need to use the object. The number of instances you
allow impacts how many client applications can simultaneously access the server
object. Of course, the number of instances you can reasonably create depends on,
among other things, how many machines comprise your GIS server and how
many other server objects your server is hosting. In any event, there is a finite
number of instances you can create on your system. You must make sure that
your client applications use these instances judiciously so that the server can
handle the load you expect.

Judicious use of server objects means that client applications get and release a
server context appropriately. The fundamental difference between an application
that utilizes a pooled object versus a non-pooled object is the length of time that
the application holds on to the server context. Pooled objects are meant for
short-term use. An application that utilizes a pooled object will obtain a new
server context for every request it sends to the server, then immediately release it
after using it. Non-pooled objects are meant for long term, deeply stateful use of
a server object. An application that utilizes a non-pooled object will get and hold
on to the server context for the duration of the application. However, it’s just as
important that the application releases the server context when the application
ends because there are a finite number of instances available.

Consider a simple Web application with a map control and a button, where
clicking the button zooms in and pans the map. Here’s what happens with a
pooled object. Clicking the button sends a request to the GIS server, and the
server responds by giving the client application a server context. Within that
server context, the code to zoom in and pan executes, which generates a new
map image that is displayed in the map control. When execution completes, the
application releases the server context back to the pool, and it is made available
to the next client that requests it. The next time you click the button, the appli-

GUIDELINES FOR CREATING YOUR OWN WEB APPLICATIONS

When creating a server object in ArcCatalog, you
can set the maximum usage time, which is the
maximum amount of time a client application

can hold on to a server context.

Ch05.pmd 1/25/2005, 5:54 PM163

164 • ArcGIS Server Administrator and Developer Guide

GUIDELINES FOR CREATING YOUR OWN WEB APPLICATIONS

cation is again given a server context, but it may not be the same server context
used during the last request.

The same Web application, when run with a non-pooled object, functions differ-
ently. In this case, the Web application holds on to the server context. Thus, every
time you click the button, the application uses the same server context. The GIS
server explicitly creates the server context for the application to use during its
lifetime. The Web application holds on to the server context by storing the object
in session or application state.

Of course, you probably wouldn’t use a non-pooled object for a simple Web
application such as the one above. However, you can immediately see how you
might utilize non-pooled objects. Anything you do to the server object within the
server context—for instance, adding a layer to the map, changing a layer’s symbol-
ization, or editing a layer’s features—you can expect it to be maintained on the
server the next time your application sends a request to the server (for example,
the new layer will still be there). When the application ends, the server context is
released and the server object is deleted.

In the .NET ADF, when you work with the WebMap, WebPageLayout, or
WebGecode class, you are indirectly working with a server context because these
classes instantiate a server context. In addition, because these classes are the
convenience classes associated with the map control, overview map control, page
layout control, and geocode connection component, working with these items
also utilizes a server context. By following some simple coding practices, you can
ensure that your application properly gets and releases a server context and keeps
your GIS server running at optimum performance.

There are a few different coding techniques that you can use in your Web applica-
tions to ensure that the application properly releases the server context. The one
you implement will depend on whether you are working with a pooled object or
a non-pooled object. In general, follow this guideline:

When creating an application that uses a pooled object, always dispose of the WebMap,
WebPageLayout, or WebGeocode object. When programming with a non-pooled object,
you must also release the server context, then dispose of the object.

This guideline is illustrated with code samples below. The different coding tech-
niques apply to pooled and non-pooled objects. Although the description and
code samples below refer to the WebMap class, the concepts apply to the
WebPageLayout class as well.

Releasing server contexts of pooled objects
When creating an application that uses a pooled object, you need to dispose of
any WebMap objects you instantiate. In C#, you can create the WebMap object
within a using statement, which implicitly disposes of the WebMap object, or
without a using statement and explicitly calling the Dispose method on the
WebMap class in your code. For example:
using (WebMap webmap = Map1.CreateWebMap())

{

 // use the WebMap object

}

Ch05.pmd 1/25/2005, 5:54 PM164

Chapter 5 • Developing Web applications with .NET • 165

GUIDELINES FOR CREATING YOUR OWN WEB APPLICATIONS

At the end of the using block, the WebMap object is implicitly disposed of by the
.NET Framework—the framework actually calls the Dispose method on the
WebMap object for you. Alternatively, you can code the same thing explicitly with
the following:
WebMap webmap = Map1.CreateWebMap();

try

{

 // use the WebMap object

}

finally

 webmap.Dispose();

The recommended method is to use the using statement because you might forget
to dispose of the object in your code. Through the using statement, the object
will always be disposed of. The Dispose method automatically releases the server
context if the WebMap object references a pooled object. This is done as a conve-
nience to you and also to ensure that pooled server objects are released and made
available to other client applications.

Visual Basic does not have the equivalent of a using statement, thus you always
need to dispose of the WebMap object explicitly.
Dim webmap As WebMap = Map1.CreateWebMap()

Try

 ' use the WebMap object

Finally

 webmap.Dispose()

End Try

Releasing server contexts of non-pooled objects
When you create an application that uses a non-pooled object, the application
should hold on to the server context, typically in session state. When the applica-
tion ends, all server contexts must be released.

The first time your application creates a WebMap, you can save the server context
in session state:
using (WebMap webmap = Map1.CreateWebMap())

{

 // do something with the WebMap object, then

 // save the server context in session state.

 Session.Add ("serverContext", webmap.ServerContext);

}

The next time your Web application needs to use the WebMap object, you can re-
create it from the server context saved in session state:
string host = Map1.Host;

string dataFrame = Map1.DataFrame;

string serverObject = Map1.ServerObject;

IServerContext context = Session["serverContext"] as IServerContext;

using (WebMap webmap = new WebMap(context, host, serverObject, dataFrame))

{

 // do something with the WebMap object

}

The concepts and coding practices described here
with WebMap apply to WebPageLayout and

WebGeocode as well.

IServerContext is part of the ESRI.ArcGIS.Server
namespace.

Ch05.pmd 1/25/2005, 5:54 PM165

166 • ArcGIS Server Administrator and Developer Guide

GUIDELINES FOR CREATING YOUR OWN WEB APPLICATIONS

When your application ends, you need to release the server context. If you have a
WebMap object, you can use the ReleaseServerContext and Dispose methods. For
example, you might code an Exit button on your application that includes the
following code:
webmap.ReleaseServerContext();

webmap.Dispose();

Alternatively, if you don’t have a WebMap object available, you can release the
server context directly from the IServerContext object stored in session state:
IServerContext context = Session["serverContext"] as IServerContext;

context.ReleaseContext();

Session["serverContext"].Remove();

Releasing the server context through an Exit button assumes that the user of
your Web application actually clicks the button. Unfortunately, this isn’t always
the case, and you should write code to handle this situation as well. In addition,
Web servers clean up session variables after a certain period of inactivity. Thus, if
the user of your application steps away from the desk, the session can time-out
before the Exit button is ever clicked. In both cases, the GIS server is still allo-
cating a server context for the application, even though the application can no
longer access it. This ties up the resource, making it unavailable to any other
client application.

In reality, the GIS server does some things to try to free up resources that are no
longer being used (see the maximum usage time property on the Server Object
Properties dialog box in ArcCatalog). However, there is still some amount of
time before this happens during which the resource is unavailable. To ensure that
the resource is freed up, add code to the Session_End event of your Web applica-
tion to release the server context. You can find the Session_End event in the
Global.asax.cs file in your project. For example, you can add code to this event to
search for your session variable and release the server context.
protected void Session_End(Object sender, EventArgs e)

{

 IServerContext context = Session["serverContext"] as IServerContext;

 context.ReleaseContext();

}

A more generic version that cleans up all session variables that reference server
contexts is shown below.

Releasing server context in the Session_End event
The map control, page layout control, and overview map control internally utilize
session state to maintain the server context for non-pooled objects. Thus, when
you use these controls in your Web application, you must code the Session_End
event to release the server context.

The following code sample is a generic version that will release all server contexts
associated with session variables. This will remove those created by the controls
and any that you’ve created in your application.

Ch05.pmd 1/25/2005, 5:54 PM166

Chapter 5 • Developing Web applications with .NET • 167

GUIDELINES FOR CREATING YOUR OWN WEB APPLICATIONS

C# version:
protected void Session_End(Object sender, EventArgs e)

{

 IServerContext context;

 for (int i = 0; i < Session.Count; i++)

 {

 context = Session[i] as IServerContext;

 if (context != null)

 context.ReleaseContext();

 }

 Session.RemoveAll();

}

Visual Basic version:
Sub Session_End(ByVal sender As Object, ByVal e As EventArgs)

 Dim context As IServerContext

 Dim i As Integer

 For i = 0 To Session.Count - 1

 context = Session(i)

 If Not (context Is Nothing) Then

 context.ReleaseContext()

 End If

 Next i

 Session.RemoveAll()

End Sub

Always include this Session_End code in any Web application you create that uses
non-pooled objects.

WORKING WITH FINE-GRAINED ARCOBJECTS

The .NET ADF provides a set of classes that allows you to create Web applica-
tions that incorporate GIS functionality. While the .NET ADF exposes many of
the common GIS operations, it doesn’t attempt to duplicate all of the functional-
ity of ArcObjects. What the .NET ADF does provide, however, is a mechanism
for accessing ArcObjects directly. This is referred to in this book as working with
the fine-grained ArcObjects that comprise a server object. This section describes
some of the things you need to be aware of when working with fine-grained
ArcObjects.

The WebMap and WebPageLayout classes expose a MapServer method that provides
you access to the IMapServer interface of the MapServer coclass. Through the
IMapServerObjects interface of the MapServer coclass, you can access the fine-
grained ArcObjects that make up the map document being served up as a map
server object on your GIS server.

When you call any of the methods on the MapServer coclass’s interfaces, the state
of the fine-grained ArcObjects in the server object instance is not permanently
changed. Rather, the MapDescription or the PageDescription is applied for the dura-
tion of the method, and the state of the fine-grained ArcObjects returns to the
previous state at the end of the call. However, when you work with fine-grained
ArcObjects, the state of the server object instance may be permanently changed,

Additional information about the
MapDescription and PageDescription can be

found in the ‘Map control’ and ‘Page layout
control’ sections, respectively, later in this

chapter.

Ch05.pmd 1/25/2005, 5:54 PM167

168 • ArcGIS Server Administrator and Developer Guide

GUIDELINES FOR CREATING YOUR OWN WEB APPLICATIONS

depending on what methods you call. For this reason, you should work with non-
pooled server objects if you want to make calls on fine-grained ArcObjects that
change the state of the object.

You may have noticed that when you work with the ADF .NET Web controls,
the Web controls appear to maintain things such as layer visibility and the current
map extent. This information is stored in session state as part of the Web applica-
tion itself. The actual server object instance running on the GIS server is unaltered.
Whenever a request gets sent to the server, this state information is reapplied to
the server object instance for the duration of the request.

The map and overview map controls store their state in the MapDescription object.
The MapDescription gets applied to the map server object on every draw and query
request. The page layout control stores its state in the PageDescription object,
which also gets applied to the server object on every draw request.

Because the map, overview map, and page layout controls store some properties
that define their state, it means that these properties are applied to the map server
object and will override any changes you may make directly to the fine-grained
ArcObjects in the server object instance. For example, suppose you access the
IActiveView interface of the data frame you’re working with and change
IActiveView::Extent. If you subsequently call WebMap::Refresh, you might expect
that the data frame will be drawn with the extent you set on IActiveView. This
will not happen because the MapDescription stored by the map control also has an
extent property that you can access via IMapDescription::MapArea, and this prop-
erty overrides the underlying changes to the extent made through IActiveView.
This behavior applies to every property of the MapDescription coclass for the map
and overview map controls and every property of the PageDescription coclass for
the page layout control.

The following steps outline how you can make changes to the fine-grained
ArcObjects and also see them reflected in your Web application.

1. Call WebMap::ApplyMapDescriptionToServer or
WebPageLayout::ApplyPageDescriptionToServer to update the server object in-
stance with the properties stored by the Web controls.

2. Make any changes to the server object instance that you need to, for example,
adding or removing a layer or changing layer rendering.

3. Call WebMap::RefreshServerObjects or WebPageLayout::RefreshServerObjects to
make the MapServer refresh its properties with the current state held by the
fine-grained ArcObjects in the server instance. When you call this method
with no arguments or with “True” as the argument, the MapDescription or
PageDescription held by the convenience class is updated with the default map
or page description from the server.

4. You are now ready to use any of the WebMap or WebPageLayout methods to
draw or query the server object instance.

Ch05.pmd 1/25/2005, 5:54 PM168

Chapter 5 • Developing Web applications with .NET • 169

The following code illustrates this approach:
using (WebMap webmap = Map1.CreateWebMap())

{

 webmap.ApplyMapDescriptionToServer(); //apply control state to server

 // work with fine-grained ArcObjects

 IMapServerObjects mapServerObjects = webmap.MapServer as IMapServerObjects;

 IActiveView map = mapServerObjects.get_Map("Layers") as IActiveView;

 IEnvelope extent =

 webmap.ServerContext.CreateObject("esriGeometry.Envelope") as IEnvelope;

 extent.PutCoords(-30,-30,30,30);

 map.Extent = extent;

 // make map server and webmap take note of these changes

 webmap.RefreshServerObjects();

 webmap.Refresh(); // refreshes map control

}

CHOOSING CAPABILITIES FOR YOUR WEB SERVICE CATALOG

Web service catalogs may contain both MapServer and GeocodeServer Web ser-
vices. Each Web service includes functionality that your users can exercise using
ArcMap and you can exercise in your applications. The functionality provided by a
particular Web service can be limited to, for example, allow consumers of the Web
service to draw the map but not to query the data sources of the layers in the map.

The set of functionality that a Web service supports is called its capabilities. The
capabilities for MapServer and GeocodeServer Web services are organized into
capability groups. The IRequestHandler ::HandleStringRequest method supported by
MapServer and GeocodeServer takes a string parameter named capabilities, whose
value is a comma-delimited list of capabilities, such as
HandleStringRequest(“map,query,data”, <inputSOAP>, <outputSOAP>).

The capability groups and the methods included in each group for MapServer Web
services are:

Map:

• get_DocumentInfo

• get_MapCount

• get_MapName

• get_DefaultMapName

• GetServerInfo

• ExportMapImage

• GetSupportedImageReturnTypes

• GetLegendInfo

• ToMapPoints

• FromMapPoints

GUIDELINES FOR CREATING YOUR OWN WEB APPLICATIONS

Ch05.pmd 1/25/2005, 5:54 PM169

170 • ArcGIS Server Administrator and Developer Guide

GUIDELINES FOR CREATING YOUR OWN WEB APPLICATIONS

Query:

• Identify

• QueryFeatureCount

• QueryFeatureIDs

• QueryHyperlinks

• ComputeScale

• ComputeDistance

• GetSQLSyntaxInfo

Data

• Find

• QueryFeatureData

By default, the Web service catalog template assigns “map” as the capabilities for
all MapServer Web services. Therefore, by default, consumers of the MapServer
Web service, including ArcMap, will not be able to identify or query layers in the
map. You can add additional capability groups (query and data) by editing the
Utility.cs class file and changing the value for MAP_CAPABILITIES. Edit the
following line of code to include query and data:
public const string MAP_CAPABILITIES = "map,query,data";

The above line will set the capabilities for all MapServer Web services included in
the Web service catalog. If you want to set different capabilities for individual
MapServer Web services, edit the aspx.cs file named after the map server object.
For example, if you included a map server object named Counties in your Web
service catalog, you would edit the Counties.aspx.cs file and search for the fol-
lowing line of code:
string responseMessage = svc.QueryService(Utility.MAP_CAPABILITIES,

 request);

You can substitute the following line of code, enabling the appropriate capabili-
ties.
string responseMessage = svc.QueryService("map,query", request);

The capability groups and the methods included in each group for GeocodeServer
Web services are:

Geocode:

• GeocodeAddress

• GeocodeAddresses

• StandardizeAddress

• FindAddressCandidates

• GetAddressFields

• GetCandidateFields

Ch05.pmd 1/25/2005, 5:54 PM170

Chapter 5 • Developing Web applications with .NET • 171

GUIDELINES FOR CREATING YOUR OWN WEB APPLICATIONS

• GetIntersectionCandidateFields

• GetStandardizedFields

• GetStandardizedIntersectionFields

• GetResultFields

• GetDefaultInputFieldMapping

• GetLocatorProperties

Reverse geocode:

• ReverseGeocode

By default, the Web service catalog template assigns “geocode,reversegeocode” as
the capabilities for all GeocodeServer Web services. You can remove a capability
group (geocode or reversegeocode) by editing the Utility.cs class file and changing
the value for GC_CAPABILITIES. Edit the following line of code to change the
capabilities.
public const string GC_CAPABILITIES = "geocode,reversegeocode";

The above line of code sets the capabilities for all GeocodeServer Web services.
To set the capabilities for an individual GeocodeServer Web service, change the
following line of code in the aspx.cs file named after your geocode server object.
string responseMessage = svc.QueryService(Utility.GC_CAPABILITIES,

 request);

Ch05.pmd 1/25/2005, 5:54 PM171

172 • ArcGIS Server Administrator and Developer Guide

MORE ABOUT WEB CONTROLS

AGSWebControl
ESRI.ArcGIS.Server.WebControls

Object
System

Control
System.Web.UI

Component
System.ComponentModel.Component

GeocodeConnection
ESRI.ArcGIS.Server.WebControls

WebControl
System.Web.UI

ScaleBar
ESRI.ArcGIS.Server.WebControls

Impersonation
ESRI.ArcGIS.Server.WebControls

NorthArrow
ESRI.ArcGIS.Server.WebControls

TOC
ESRI.ArcGIS.Server.WebControls

Toolbar
ESRI.ArcGIS.Server.WebControls

Map
ESRI.ArcGIS.Server.WebControls

OverviewMap
ESRI.ArcGIS.Server.WebControls

PageLayout
ESRI.ArcGIS.Server.WebControls

Throughout this chapter, you’ve seen how the various Web controls that are part
of the .NET ADF are used in Web applications. The remaining sections of this
chapter describe each control in more detail, examining the classes that each Web
control is built with and highlighting those methods that you’ll find particularly
useful. This chapter, however, does not serve as a complete reference for all the
objects in the .NET ADF. You can find a complete description of the properties,
methods, and events for all classes in the ArcGIS Developer Help. In addition,
you can view the .NET ADF Object Model Diagram through the ArcGIS Devel-
oper Help.

EXPLORING THE WEB CONTROL OBJECT MODEL

The .NET ADF custom Web controls are built by extending existing classes in the
.NET Framework. The .NET ADF also includes additional convenience classes
that help to support the Web controls. All of the .NET ADF Web controls and
convenience classes are incorporated into one namespace,
ESRI.ArcGIS.Server.WebControls.

The diagram below presents a conceptual object model diagram for the .NET
ADF Web controls.

Ch05.pmd 1/25/2005, 5:54 PM172

Chapter 5 • Developing Web applications with .NET • 173

MORE ABOUT WEB CONTROLS

.NET ADF NAMESPACES

Namespaces group classes with similar functionality. Accordingly, the classes
distributed with the .NET ADF are grouped into namespaces as well. As a Web
application developer, you’ll become most familiar with the
ESRI.ArcGIS.Server.WebControls namespace, as this namespace contains the
custom Web controls that you program with. The following summarizes the three
namespaces distributed with the .NET ADF:

• ESRI.ArcGIS.Server.WebControls—contains the set of custom Web controls
and classes from which you create your Web applications that access the GIS
server.

• ESRI.ArcGIS.Server.WebControls.Design—contains the set of classes that
you can use to extend the .NET ADF custom Web controls or create new
custom controls similar to those in the .NET ADF.

• ESRI.ArcGIS.Server.WebControls.Tools—contains the set of classes that
provide server-side actions for tools on a toolbar control or for ToolItems on a
map or page layout control. For instance, these classes provide the code that
executes on the server for the zoom in, zoom out, and pan operations on a
map or page layout control.

Ch05.pmd 1/25/2005, 5:54 PM173

174 • ArcGIS Server Administrator and Developer Guide

MAP CONTROL

The map control provides the display functionality of the ArcMap data view for
a map document served using ArcGIS Server. As with data view, a map control
displays a single data frame in the map document. Using the map control, you can
navigate the data frame, for example, pan and zoom, and access the fine-grained
ArcObjects that comprise it.

Describes an image type, including
format, size, and resolution.

Provides the business logic behind
the map and overview map
controls and includes methods for
executing common map-based
tasks, such as pan and zoom.

The base class for Map,
OverviewMap, and
PageLayout controls.

The connection to a
Server Object Manager.

Displays a particular data
frame of a Map Server object.

Allows interaction with a
map control using built-in
JavaScript on the client-side
that executes an action on
the server-side.

A collection of
MapToolItem objects.

Lists all the layers displayed on a map or
page layout control and shows what the
features in the layers represent.

An image generated by a map server
object for a particular data frame.

Provides a point of reference for
the area displayed on its associated
map control.

Displays the scale bar
of a map control.

A collection of Tools and Commands
that work with one or more map or
page layout controls.

Displays the North arrow
of a map control.

0..1

1

*

0..1

0..1

1

1 1

*

0..1

0..1

0..1

1 1

0..1 0..1

*

Map Control Objects

AGSWeb-
Control

Map

Overview-
Map

Toolbar

Server-
Connection

Image-
Descriptor

WebMap

WebImage

NorthArrowScaleBar

MapToolItem

MapToolItem-
Collection

Toc

IMapServer-
ToolAction

The Map class provides access to the properties and methods that govern how the
control works. The map control’s convenience class is WebMap. This class pro-
vides the functionality for navigating the data frames and also provides the entry
point for accessing fine-grained ArcObjects. You interact with a map control
either through a tool on a Toolbar or a MapToolItem. The toolbar control presents a
well-defined user interface comprised of tools and commands that interact with
the map control. Alternatively, you can use other user interface elements, such as
an HTML button, that activate particular MapToolItem objects.

Ch05.pmd 1/25/2005, 5:54 PM174

Chapter 5 • Developing Web applications with .NET • 175

MAP CONTROL

The Map class provides the user interface for displaying a data frame from a map
server object on a Web form.

The copyright text to display on the map.
The current toolitem that can be used on the control.
The data frame to display from the current map server object.
The current extent of the data frame displayed in the
 map control.
The URL location of the image to display in the map control.
Draws the map at either the last saved extent or full extent.
The string representation of the MapDescription for a
 particular map server object.
Collection of ToolItems that can be used on the control.

Displays a particular data frame or
 map server object.

Map : AGSWebControl,
System.Web.UI.IPostBackEventHandler,
System.Web.UI.IPostBackDataHandler

CopyrightText: CopyrightText
CurrentToolItem: MapToolItem
DataFrame: System.String
Extent: Extent

ImageUrl: System.String

MapDescription: System.String
InitialExtent: InitialExtent

ToolItems: MapToolItemCollection

CreateWebMap: WebMap

LoadPostData (System.String postDataKey,
System.Collections.Specialized.NameVal
ueCollection values): System.Boolean

RaisePostBackEvent (System.String
eventArgument): System.Void

RaisePostDataChangedEvent: System.Void

Draw: System.Void

Reset: System.Void
Circle: MapCircleEventHandlerCircle: MapCircleEventHandler

DataFrameChanged:
DataFrameChangeEventHandler

DragImage: MapToolEventHandler

DragRectangle: MapToolEventHandler

Line: MapLineEventHandler

MapClick: MapPointEventHandler
Oval: MapOvalEventHandler

Point: MapPointEventHandler

Polygon: MapPolygonEventHandler

Polyline: MapPolylineEventHandler

Creates the WebMap object associated with this control.
Draws the map image using existing settings.
Indicates whether RaisePostDataChangedEvent should
 be called.

Handles postbacks. Raises events based on the event
 argument passed in. Calls the ServerToolAction component
 of the CurrentToolItem.
Enables the map control to process an event raised when a
 form is posted to the server.
Resets the map control to an unbound state.
Occurs when an end user drags a circle on the map control
 using the Circle client tool action.
Occurs when the DataFrame property of the map control has
changed.
Occurs when an end user drags the image in the map
 control using the DragImage client tool action.
Occurs when an end user drags a rectangle on the map
 control using the DragRectangle client tool action.
Occurs when an end user drags a line on the map control
 using the Line client tool action.
Occurs when an end user clicks the map.
Occurs when an end user drags an oval on the Map control
 using the Oval client tool action.
Occurs when an end user clicks the Map control using the
 Point client tool action.
Occurs when an end user drags a polygon on the Map control
 using the Polygon client tool action.
Occurs when an end user drags a polyline on the Map control
 using the Polyline client tool action.

The Map class contains properties, inherited from the WebControl class
(System.Web.UI), that specify how the control looks on the Web page, such as
the height, width, and border style. Typically, you’ll define these properties at
design time.

The CreateWebMap method is an important method as it gives you access to the
map control’s corresponding convenience class, WebMap. It’s the WebMap class
that provides much of the functionality associated with navigating the data
frame. For example, you can enlarge the map extent displayed in a data frame
using the Zoom method.

The ToolItems property gives access to a set of MapToolItem objects that can act on
a map control. A MapToolItem provides a means for interacting with the map
control on the client-side using built-in JavaScript, which in turn executes an
action on the server-side. The CurrentToolItem is the MapToolItem that is currently
active. See the next section, titled ‘Interacting with the map control’ for more
information.

Ch05.pmd 1/25/2005, 5:54 PM175

176 • ArcGIS Server Administrator and Developer Guide

The AutoFirstDraw property, inherited from AGSWebControl, allows you to con-
trol whether the map will draw automatically when the page is first rendered.
When set to true, the control will draw in the OnInit method the first time the
control is drawn in a session. Setting this property to false allows you to handle
the drawing yourself in the Page_Load event, for example:
if (!Page.IsPostBack)

{

 using (WebMap webMap = Map1.CreateWebMap())

 {

 webMap.DrawDefaultExtent();

 }

}

The InitialExtent property, also inherited from AGSWebControl, specifies whether
the map should draw at the last extent saved in the ArcMap document or at the
full extent.

The MapDescription property provides access to the string representation of the
MapDescription object (in the ESRI.ArcGIS.Carto namespace) used to draw the
data frame. This string representation of the MapDescription is stored in session
state and is passed to the MapServer whenever a WebMap object is created using
CreateWebMap and one of its draw or query methods is called. Only changes to
the MapDescription member are saved by the map control. If any other ArcObjects
customizations need to be made, you should be working with a non-pooled server
object. See the section titled ‘Working with fine-grained ArcObjects’ earlier in
this chapter for more information.

While you can programmatically get the MapDescription object from the string by
using IServerContext::LoadObject, it’s easier to access the object directly through
WebMap::MapDescription. Conversely, you can go from the MapDescription object
to the string representation by using IServerContext::SaveObject.

With the UseMIMEData property, you specify whether the data frame images will
be accessed from disk or whether MIME data will be used to get the images as
bytes from the map server object and use the images as bytes within the Web tier.
You can always access data frame images as MIME data. However, depending on
how the server object is configured, you may not always be able to access data
frame images from disk.

The CopyrightText property allows you to display text over the map control so the
image has the appropriate copyright information on it.

INTERACTING WITH THE MAP CONTROL

Just as you can click a button on a Web form, the map control also allows interac-
tion. When you interact with a map control, some action happens on the client
and some action happens on the server. The client-side action is what allows you
to, for example, draw a box over the control. The server-side action is what
allows you to use the coordinates of the box and, for example, zoom in. During
every interaction with a map control, two things happen:

• An end user interacts with the map control on the client.

The map control allows the user to, for example, draw a box over the map
control with the mouse. This client-side action is controlled by a JavaScript

MAP CONTROL

Ch05.pmd 1/25/2005, 5:54 PM176

Chapter 5 • Developing Web applications with .NET • 177

function that executes on the client, without any requests being sent to the
server. The .NET ADF includes prewritten JavaScript code for common
interactions such as drawing a box.

• The server executes an action based on the client interaction.

Once the client-side action is completed, the client sends a request to the
server to execute the server-side action. For example, if server-side action is
to zoom in, the server calculates the new extent for the data frame—based on
the user-defined box—and instructs the map server object to draw the new
extent. All of this happens on the server because it’s the server that has the
ability to access the map control and to draw the new extent. The .NET ADF
provides several classes that implement IMapServerToolAction. These classes
function as server-side actions, for example, MapZoomIn and MapPan.

As a Web application developer, you build functionality into your Web applica-
tion by defining the set of client-side actions and associated server-side actions
you want to include in your application. You’ll use the prewritten JavaScript code
and server-side actions included with the .NET ADF or write your own custom
server-side actions. Once defined, you need to expose this functionality in the
user interface. This is described below.

Using a toolbar to interact with the map control
The toolbar control provides the easiest way of setting up various interactions
with the map control. The toolbar control, like any toolbar you’d see in a desktop
application, allows you to group a set of related actions together in one place.
For example, you might group all the zooming and panning actions on one
toolbar. When you add a toolbar to your Web form, you associate it with a map
control through the toolbar’s BuddyControls property. This identifies which con-
trols the toolbar should interact with.

After you associate a toolbar with a map control, you must define what each item
on the toolbar will do. Through the ToolbarItems property of the toolbar control,
you can add new items and edit existing items on the toolbar. Then, for each item
on the toolbar, you’ll identify what happens when an end user uses it. Some items
will execute both a client-side and server-side action; others will only execute a
server-side action. For more information on setting up toolbars, see the ‘Toolbar
control’ section in this chapter.

Using the ToolItems property of the map control
While a toolbar provides the easiest way to associate actions with a map control,
its user interface may not provide you with the particular look and feel you want
in your Web application. The ToolItems property of the map control provides an
alternative method for associating a set of actions with a map control.

This approach gives you greater control over the user interface design, as it allows
you to use other controls—for example, an HTML button—to interact with the
map control. However, this approach also requires a bit more coding effort on
your part. You will need to more closely manage, through code you write, the
actions performed on the map control. You will also need to manage how the
user interface exposes these actions to an end user and indicates what action will
be performed at any given time. For instance, a toolbar highlights the active tool

MAP CONTROL

Ch05.pmd 1/25/2005, 5:54 PM177

178 • ArcGIS Server Administrator and Developer Guide

and indicates to the end user what will happen when the user interacts with the
map control. You would need to emulate this behavior in some way.

The ToolItems property of the map control exposes a collection of MapToolItem
objects. As with the toolbar control, you identify a client-side and server-side
action for each MapToolItem. You can use the same JavaScript functions and .NET
ADF classes for the client-side and server-side actions, respectively, that you use
with a toolbar control. The CurrentToolItem property of the map control allows
you to specify which MapToolItem is currently active. When the map control
draws, it will activate the JavaScript function associated with the CurrentToolItem.

You can define a MapToolItem through the ToolItems property on the map control
or programmatically in your code. Accessing the ToolItems property of the map
control in Visual Studio .NET displays the MapToolItem Collection Editor. Just
click Add to add a MapToolItem. The figure below shows one entry already added
that implements a zoom in functionality. The client-side action is set to
DragRectangle and the server-side action is set to MapZoomIn. The Name property
is the name you’ll use to reference this MapToolItem; here, the name is zoomin.

MAP CONTROL

Once you’ve defined the client-side and server-side actions for the particular
MapToolItem, you need to make it the map control’s CurrentToolItem. The follow-
ing line of code sets the CurrentToolItem of a map control.
Map1.CurrentToolItem = Map1.ToolItems.Find("zoomin");

Typically, you’ll have more than one MapToolItem associated with the map control.
When you create your Web application, you’ll probably want to include the above
line of code in the Page_Load event to establish a CurrentToolItem the first time a
page loads. Then, you can expose other controls in your user interface that change
the CurrentToolItem. For example, you might add a button server control and
include the following line of code in the button’s click event to change the
CurrentToolItem to a pan tool.
Map1.CurrentToolItem = Map1.ToolItems.Find("pan");

Server controls run on the server, and thus, the above line of code actually
executes on the server.

Another approach you can take to expose the MapToolItem functionality in the
user interface is to use HTML controls. An HTML control doesn’t require a
round-trip to the server to execute. The HTML control you add to your Web
form would define the client-side action by calling the JavaScript function di-

Ch05.pmd 1/25/2005, 5:54 PM178

Chapter 5 • Developing Web applications with .NET • 179

rectly and use the server-side action defined on the MapToolItem. In this case, the
JavaScript function you call should correspond to the client-side action you specify
on the MapToolItem. For example, you can add the following HTML button to
your Web form.
<INPUT style="Z-INDEX: 102; LEFT: 238px; POSITION: absolute; TOP: 80px"
type="button" value="Zoom In" onclick="MapDragRectangle('Map1', 'zoomin',
true)">

In the tag above, the onclick attribute establishes the client-side action the HTML
button performs. In this case, the button calls the MapDragRectangle JavaScript
function directly and passes the name of the map control, the name you specified
in the dialog above, and a Boolean value to display a loading image while the page
refreshes. The MapDragRectangle JavaScript function corresponds to the
DragRectangle client tool action defined in the MapToolItem Collection Editor
above. The name is what links the HTML button to the server-side action. When
the JavaScript posts back to the server—after end user interaction with the map
control—the Map class calls the ServerAction method on the ServerToolAction class.

It’s important to note that if the map control has a toolbar associated with it
(through the toolbar’s BuddyControls property), the settings on the toolbar will
override the settings of the map control’s ToolItems property. For instance, if you
define a MapToolItem called “MyTool” and you have a similarly named tool on a
toolbar associated with the map control, the settings on the toolbar tool take
precedence over the settings on the map control’s MapToolItem.

JavaScripts for client-side interaction
There is a one-to-one relationship between JavaScript function names and
MapClientToolAction enumerations. Thus, the enumeration name you specify when
defining the MapToolItem properties should match the JavaScript function name
you specify in the HTML button. The list of MapClientToolAction enumerations and
their corresponding JavaScript functions is presented below.
MapClientToolAction JavaScript Function

Circle MapCircle

DragImage MapDragImage

DragRectangle MapDragRectangle

Line MapLine

Oval MapOval

Polygon MapPolygon

Polyline MapPolyline

Point MapPoint

When invoking the JavaScript functions directly, supply the following three argu-
ments:

• The ID of the map control, for example, Map1.

• The Name property of the MapToolItem that will handle the server-side action,
for example, zoomin. If you plan to write code to handle a tool event, this is
the value passed in as the ToolName property of the ToolEventArgs object.

• A Boolean value indicating whether to show the loading image between
postback and page refresh.

MAP CONTROL

Ch05.pmd 1/25/2005, 5:54 PM179

180 • ArcGIS Server Administrator and Developer Guide

MAP CONTROL

MAP CONTROL EVENTS

Events provide another way of executing server-side actions. Each
MapClientToolAction enumeration maps to a map control event. When the event is
triggered, your event code executes.

You can write event handlers that operate in conjunction with any server-side
actions you establish through a toolbar or through a MapToolItem. Your event
handler code will execute after the server-side action defined on the toolbar or
MapToolItem. Alternatively, by omitting a server-side action for a particular item
on a toolbar or MapToolItem, you can completely control how your application
responds to a particular client-side action using an event handler. For example,
you might define a client-side action through the DragRectangle enumeration (or
MapDragRectangle JavaScript function) and handle the server-side action through
the following event code:
private void Map1_DragRectangle(object sender,

 ESRI.ArcGIS.Server.WebControls.ToolEventArgs args)

{

 switch (args.ToolName)

 {

 case "zoomin":

 // Extracts the X,Y screen coordinates passed in as arguments

 RectangleEventArgs rectArgs = args as RectangleEventArgs;

 System.Drawing.Rectangle rectangle = rectArgs.ScreenExtent;

 int xcoord = rectangle.X;

 int ycoord = rectangle.Y;

 //Do something further with the screen coordinates.

 break;

 }

}

The above code uses the ToolEventArgs object passed to the function and converts
it to a RectangleEventArgs, which is the specific type of object the
MapDragRectangle JavaScript function provides. In this example, the code only
extracts the X and Y values of the upper left corner and stores them in variables.
Your code could use these values to do something further.

The table below shows the relationship between MapClientToolActions and
ToolEventArgs.
Map Control Events ToolEventArgs Type

Circle CircleEventArgs

DragImage PointEventArgs

DragRectangle RectangleEventArgs

Line LineEventArgs

Oval OvalEventArgs

Polygon PolygonEventArgs

Polyline PolylineEventArgs

Point PointEventArgs

Ch05.pmd 1/25/2005, 5:54 PM180

Chapter 5 • Developing Web applications with .NET • 181

MAP CONTROL

WHAT’S STORED IN SESSION STATE

The map control utilizes session state to maintain information about the server
object referenced by the control. The names of the session variables can be found
in the technical article titled ‘Session variables for the .NET Web controls’ in
ArcGIS Developer Online (http://arcgisdeveloperonline.esri.com).

The following objects are stored in session state.

ServerContext (for non-pooled server objects only)
For non-pooled objects, the ServerContext is stored in session state so the same
instance of the server object can be used for the entire session.

The ServerContext is an object that needs to be released explicitly to release server
resources. You should release this by calling IServerContext.ReleaseContext.

In a deeply stateful Web application that uses a server object for a long period of
time, you should release the ServerContext at the end of the session. The code in
the Session_End method in the Global.asax.cs file gets executed at the end of a
session. In this method, you should loop over all the objects stored in Session and
check if they are of type IServerContext. If they are, you should release the con-
text.
IServerContext context;

for (int i = 0; i < Session.Count; i++)

{

 context = Session[i] as IServerContext;

 if (context != null)

 context.ReleaseContext();

}

MapDescription
MapDescription is stored in the session because it can be a large string.

ImageURL
ImageURL is stored in the session because it can be a large string.

ToolItems
ToolItems is stored in session because it is a complex object.

CopyrightText
CopyrightText is stored in session because it is a complex object.

Extent
Extent is stored in session because it is a complex object.

Ch05.pmd 1/25/2005, 5:54 PM181

182 • ArcGIS Server Administrator and Developer Guide

CONTROL LIFE CYCLE

In addition to what the base class AGSWebControl does, here’s what the map
control does at each point in its life cycle.

• Instantiation—Initializes member variables with default values.

• OnInit—The first time the control is drawn in a session and if AutoFirstDraw
is set to true, the map is drawn at the extent specified by the InitialExtent
property. A copy of the MapDescription property is stored to check if the
content changes between initialization and just before rendering. Copies of the
Host, ServerObject, and DataFrame properties are stored to check if the connec-
tion changes between initialization and just before rendering.

• TrackViewState—Begins tracking view-state changes for complex properties,
such as the ToolItems property.

• LoadViewState—Restores view-state information of complex properties,
such as the ToolItems property, to what they were at the end of the previous
page request. Postback only.

• LoadPostData—Indicates whether RaisePostDataChangedEvent should be
called. Always returns false. Postback only.

• OnLoad—Uses the base class implementation.

• RaisePostDataChangedEvent—Does nothing. Postback only.

• RaisePostBackEvent—Fires server-side events based on the postback event
argument. Calls the CurrentToolItem’s ServerToolAction class’s ServerAction
method. Postback only.

• OnPreRender—Checks if MapDescription, Host, ServerObject, or DataFrame
properties have changed. If the MapDescription has changed, it fires the
ContentsChanged event. If the Host or ServerObject has changed, it fires the
ConnectionChanged event. If the DataFrame has changed, it fires the
DataFrameChanged event. Registers JavaScript required for client-side action.

• SaveViewState—Saves view-state information of complex properties such as
the ToolItems property.

• Render—Renders the HTML required to draw the control. Registers addi-
tional JavaScript used to set control-specific properties.

EVENTS

Events fired on RaisePostBackEvent
The following events are fired on RaisePostBackEvent. They are only fired for
postbacks.

Event fired on all postbacks to map control:

• MapClick

Events based on client interaction with the map control:

• DragImage—Occurs when the image in a map control has been dragged using
the DragImage client tool action.

MAP CONTROL

Ch05.pmd 1/25/2005, 5:54 PM182

Chapter 5 • Developing Web applications with .NET • 183

• DragRectangle—Occurs when a rectangle has been dragged on the map con-
trol using the DragRectangle client tool action.

• Circle—Occurs when a circle has been drawn on the map control using the
Circle client tool action.

• Line—Occurs when a line has been drawn on the map control using the Line
client tool action.

• Point—Occurs when the map control has been clicked using the Point client
tool action.

• Polygon—Occurs when a polygon has been drawn on a map control using the
Polygon client tool action.

• Polyline—Occurs when a polyline has been drawn on the map control using
the Polyline client tool action.

• Oval—Occurs when an oval has been drawn on the map control using the
Oval client tool action.

Events fired on PreRender
The following events are fired on PreRender:

• ConnectionChanged—if the Host and ServerObject have changed.

• ContentsChanged—if the MapDescription has changed.

• DataFrameChanged—if the DataFrame has changed.

Generic control events
The following events are generic to all controls. All of these events are fired
before the control does its work at the respective cycle. For example, the Init
event is fired before the map control does its custom OnInit actions. Here’s what
you can expect to happen at each of these events:

• Init—Occurs when the server control is initialized, which is the first step in its
life cycle. This is too early in the life cycle to access any of the map control’s
properties.

• Load—Occurs when the server control is loaded into the Page object. At this
stage, all of the map control’s initializations are complete and changes saved
into view state on the previous request have been applied. This is the stage to
access control properties.

• PreRender (inherited from Control)—Occurs when the server control is about
to render to its containing Page object and before the ContentsChanged,
ConnectionChanged, and DataFrameChanged events are fired.

• Unload (inherited from Control)—Occurs when the server control is unloaded
from memory. This is where you can check the state after Render.

MAP CONTROL

Ch05.pmd 1/25/2005, 5:54 PM183

184 • ArcGIS Server Administrator and Developer Guide

PAGE LAYOUT CONTROL

The page layout control provides the display functionality of the ArcMap layout
view for a map document served using ArcGIS Server. Using the page layout
control, you can view a map server object’s layout, navigate it, navigate the maps
within the layout, and access the fine-grained ArcObjects that comprise it.

Describes an image type, including
format, size, and resolution.

Displays the layout of a map
server object, including all
of the map elements, such
as data frames and other
map surrounds.

The base class for Map,
OverviewMap, and
PageLayout controls.

The connection to a
Server Object Manager.

Allows interaction with a
page layout control using
built-in JavaScript on the
client-side that executes an
action on the server-side.

A collection of
PageToolItem objects.

Lists all the layers displayed on a map or
page layout control and shows what the
features in the layers represent.

Provides the buisness logic behind the
page layout control and includes
methods for executing common
layout-based tasks, such as pan
and zoom.

A collection of Tools and Commands
that work with one or more map or
page layout controls.

Holds information about a
map in a page layout such as
the extent and location of
the map.

A collection of
LayoutDataFrameInfo objects.

An image generated by a map
server object for a page layout.

1

*

0..1

0..1

1

1 1

*

0..1

1

1

0..1

*

*

1

1

Page Layout Control Objects

LayoutImage-
DataFrameInfo

PageLayout

Image-
Descriptor

LayoutImage-
DataFrame-

InfoCollection

WebPage-
Layout

WebLayout-
Image

Toolbar Toc

PageToolItem

PageToolItem-
Collection

IPageServer-
ToolAction

AGSWeb-
Control

Server-
Connection

The PageLayout class provides access to the properties and methods that govern
how the control works. The page layout control’s convenience class is
WebPageLayout. This class provides the functionality for navigating the layout and
its data frames and also provides the entry point for accessing fine-grained
ArcObjects. You interact with a page layout control either through a tool on a
Toolbar or a PageToolItem. The toolbar control presents a well-defined user inter-
face composed of tools and commands that interact with the page layout control.
Alternatively, you can use other user interface elements, such as an HTML but-
ton, that activate particular PageToolItem objects.

Ch05.pmd 1/25/2005, 5:54 PM184

Chapter 5 • Developing Web applications with .NET • 185

PAGE LAYOUT CONTROL

The PageLayout class provides the user interface for displaying a map server
object’s layout on a Web form.

PageLayout : AGSWebControl,
System.Web.UI.IPostBackEventHandler,
System.Web.UI.IPostBackDataHandler

CopyrightText: CopyrightText
CurrentToolItem: PageToolItem
PageDescription: System.String

ToolItems: PageToolItemCollection
WebLayoutImage: WebLayoutImage

CreateWebPageLayout: WebPageLayout

LoadPostData (System.String postDataKey,
System.Collections.Specialized.NameVal
ueCollection values): System.Boolean

RaisePostBackEvent (System.String
eventArgument): System.Void

RaisePostDataChangedEvent: System.Void

Draw: System.Void

Reset: System.Void
DragImage: PageToolEventHandler

DragRectangle: PageToolEventHandler

MapDragImage: PageToolEventHandler

MapDragRectangle:
PageToolEventHandler

MapPoint: PagePointEventHandler

PageClick: PagePointEventHandler
Point: PagePointEventHandler

The copyright text to display on the page layout.
The current ToolItem that can be used on the control.
The string representation of the PageDescription for a
 particular page layout.
Collection of ToolItems that can be used on the control.
The image displayed by the page layout control
 and its properties.

Displays the layout of a map server object,
 including all of the map elements, such as data
 frames and other map surrounds.

Creates the WebPageLayout object associated with this
 control.
Draws the page layout image using existing settings.
Indicates whether RaisePostDataChangedEvent should
 be called.

Handles postbacks. Raises events based on the event
 argument passed in. Calls the ServerToolAction component
 of the CurrentToolItem.
Enables the page layout control to process an event raised
 when a form is posted to the server.
Resets the page layout to an unbound state.
Occurs when an end user drags the image in the page
 layout control using the DragImage client tool action.
Occurs when an end user drags a rectangle on the page
 layout control using the DragRectangle client tool action.
Occurs when an end user drags a data frame in the page
 layout control using the MapDragImage client tool action.
Occurs when an end user drags a rectangle on a data frame
 in the page layout control using the MapDragRectangle client
 tool action.
Occurs when an end user clicks on a data frame in the page
 layout control using the MapPoint client tool action.
Occurs when an end user clicks the page layout control.
Occurs when an end user clicks the page layout control
 using the Point client tool action.

The PageLayout class contains properties, inherited from the WebControl class
(System.Web.UI), that specify how the control looks on the Web page, such as
the height, width, and border style. Typically, you’ll define these properties at
design time.

The CreateWebPageLayout method is an important method, as it gives you access to
the page layout control’s corresponding convenience class, WebPageLayout. It’s the
WebPageLayout class that provides much of the functionality associated with
navigating the layout. For example, you can enlarge your view of the layout using
the PageZoom method.

The ToolItems property gives access to a set of PageToolItem objects that can act on
a page layout control. A PageToolItem provides a means for interacting with the
page layout control on the client-side using built-in JavaScript, which in turn
executes an action on the server-side. The CurrentToolItem is the PageToolItem that
is currently active. See the next section, titled ‘Interacting with the page layout
control’ for more information.

Ch05.pmd 1/25/2005, 5:54 PM185

186 • ArcGIS Server Administrator and Developer Guide

PAGE LAYOUT CONTROL

The AutoFirstDraw property, inherited from AGSWebControl, allows you to con-
trol whether the page layout will draw automatically when the page is first ren-
dered. When set to true, the control will draw in the OnInit method the first
time the control is drawn in a session. Setting this property to false allows you to
handle the drawing yourself in the Page_Load event, for example:
if (!Page.IsPostBack)

{

 if (Session.IsNewSession)

 {

 using (WebPageLayout layout = PageLayout1.CreateWebPageLayout())

 {

 ESRI.ArcGIS.Geometry.IEnvelope env =

 layout.ServerContext.CreateObject("esriGeometry.Envelope") as

 ESRI.ArcGIS.Geometry.IEnvelope;

 env.PutCoords(0,0,2,2);

 layout.PageDrawExtent(env);

 }

 }

}

The InitialExtent property, also inherited from AGSWebControl, specifies whether
the page layout should draw at the last extent saved in the ArcMap document or
at the full extent.

The PageDescription property provides access to the string representation of the
PageDescription object (in the ESRI.ArcGIS.Carto namespace) used to draw the
layout. This string representation of the PageDescription is stored in session state
and is reapplied to the MapServer on every draw. Only changes to the
PageDescription member are saved by the page layout control. If any other
ArcObjects customizations need to be made, you should be working with a non-
pooled server object. See the section titled ‘Working with fine-grained
ArcObjects’ earlier in this chapter for more information.

While you can programmatically get the PageDescription object from the string by
using IServerContext::LoadObject, it’s easier to access the object directly through
WebPageLayout::PageDescription. Conversely, you can go from the PageDescription
object to the string representation by using IServerContext::SaveObject.

The WebLayoutImage property is the result of a page layout draw operation. It
provides access to the image drawn. It also provides information about the image
and the data frames in the image. Of special interest is the Maps property of the
WebLayoutImage class. This property provides access to the
LayoutImageDataFrameInfo objects corresponding to each data frame in the image.
The LayoutImageDataFrameInfo for a data frame is a required parameter for those
WebPageLayout methods that draw data frames, for example,
WebPageLayout::MapZoom.

With the UseMIMEData property, you specify whether the page layout images
will be written to disk or whether MIME data will be used to get the images as
bytes from the map server object and use the images as bytes within the Web tier.
You can always access page layout images as MIME data. However, depending on
how the server object is configured, you may not always be able to access page
layout images from disk.

Ch05.pmd 1/25/2005, 5:54 PM186

Chapter 5 • Developing Web applications with .NET • 187

PAGE LAYOUT CONTROL

The CopyrightText property allows you to display text over the page layout con-
trol, so that the image has the appropriate copyright information on it.

INTERACTING WITH THE PAGE LAYOUT CONTROL

Just as you can click a button on a Web form, the page layout control also allows
interaction. When you interact with a page layout control, some action happens
on the client and some action happens on the server. The client-side action is
what allows you to, for example, draw a box over the control. The server-side
action is what allows you to use the coordinates of the box and, for example,
zoom in. During every interaction with a page layout control, two things happen:

• An end user interacts with the page layout control on the client.

The page layout control allows the user to, for example, draw a box over the
page layout control with the mouse. This client-side action is controlled by a
JavaScript function that executes on the client, without any requests being
sent to the server. The .NET ADF includes prewritten JavaScript code for
common interactions such as drawing a box.

• The server executes an action based on the client interaction.

Once the client-side action is completed, the client sends a request to the
server to execute the server-side action. For example, if server-side action is
to zoom in, the server calculates the new extent for the page layout—based on
the user-defined box—and instructs the page layout to draw the new extent.
All of this happens on the server because it’s the server that has the ability to
access the page layout control and to draw the new extent. The .NET ADF
provides several classes that implement IPageServerToolAction. These classes
function as server-side actions, for example, PageZoomIn and PagePan.

As a Web application developer, you build functionality into your Web applica-
tion by defining the set of client-side actions and associated server-side actions
you want to include in your application. You’ll use the prewritten JavaScript code
and server-side actions included with the .NET ADF or write your own custom
server-side actions. Once defined, you need to expose this functionality in the
user interface. This is described below.

Using a toolbar to interact with the page layout control
The toolbar control provides the easiest way of setting up various interactions
with the page layout control. The toolbar control, like any toolbar you’d see in a
desktop application, allows you to group a set of related actions together in one
place. For example, you might group all the zooming and panning actions on one
toolbar. When you add a toolbar to your Web form, you associate it with a page
layout through the toolbar’s BuddyControls property. This identifies which controls
the toolbar should interact with.

After you associate a toolbar with a page layout control, you must define what
each item on the toolbar will do. Through the ToolbarItems property of the
toolbar control, you can add new items and edit existing items on the toolbar.
Then, for each item on the toolbar, you’ll identify what happens when an end
user uses it. Some items will execute both a client-side and server-side action;
others will only execute a server-side action. For more information on setting up
toolbars, see the ‘Toolbar control’ section in this chapter.

Ch05.pmd 1/25/2005, 5:54 PM187

188 • ArcGIS Server Administrator and Developer Guide

PAGE LAYOUT CONTROL

Using the ToolItems property of the page layout control
While a toolbar provides the easiest way to associate actions with a page layout
control, its user interface may not provide you with the particular look and feel
you want in your Web application. The ToolItems property of the page layout
control provides an alternative method for associating a set of actions with a
page layout control.

This approach gives you greater control over the user interface design, as it allows
you to use other controls—for example, an HTML button—to interact with the
page layout. However, this approach also requires a bit more coding effort on
your part. You will need to more closely manage, through code you write, the
actions performed on the page layout. You will also need to manage how the user
interface exposes these actions to an end user and indicates what action will be
performed at any given time. For instance, a toolbar highlights the active tool and
indicates to the end user what will happen when the user interacts with the page
layout. You would need to emulate this behavior in some way.

The ToolItems property of the page layout control exposes a collection of
PageToolItem objects. As with the toolbar control, you identify a client-side and
server-side action for each PageToolItem. You can use the same JavaScript func-
tions and .NET ADF classes for the client-side and server-side actions, respec-
tively, that you use with a toolbar control. The CurrentToolItem property of the
page layout control allows you to specify which PageToolItem is currently active.
When the page layout draws, it will activate the JavaScript function associated
with the CurrentToolItem.

You can define a PageToolItem through the ToolItems property on the page layout
control or programmatically in your code. Accessing the ToolItems property of the
page layout control in Visual Studio .NET displays the PageToolItem Collection
Editor. Just click Add to add a PageToolItem. The figure below shows one entry
already added that implements a zoom in functionality. The client-side action is
set to DragRectangle and the server-side action is set to PageZoomIn. The Name
property is the name you’ll use to reference this PageToolItem; here, the name is
zoomin.

Ch05.pmd 1/25/2005, 5:54 PM188

Chapter 5 • Developing Web applications with .NET • 189

PAGE LAYOUT CONTROL

Once you’ve defined the client-side and server-side actions for the particular
PageToolItem, you need to make it the page layout’s CurrentToolItem. The following
line of code sets the CurrentToolItem of a page layout control.
PageLayout1.CurrentToolItem = PageLayout1.ToolItems.Find("zoomin");

Typically, you’ll have more than one PageToolItem associated with the page layout
control. When you create your Web application, you’ll probably want to include
the above line of code in the Page_Load event to establish a CurrentToolItem the
first time a page loads. Then, you can expose other controls in your user interface
that change the CurrentToolItem. For example, you might add a button server
control and include the following line of code in the button’s click event to
change the CurrentToolItem to a pan tool.
PageLayout1.CurrentToolItem = PageLayout1.ToolItems.Find("pan");

Server controls run on the server, and thus, the above line of code actually
executes on the server.

Another approach you can take to expose the PageToolItem functionality in the
user interface is to use HTML controls. An HTML control doesn’t require a
round-trip to the server to execute. The HTML control you add to your Web
form would define the client-side action, by calling the JavaScript function
directly, and use the server-side action defined on the PageToolItem. In this case,
the JavaScript function you call should correspond to the client-side action you
specify on the PageToolItem. For example, you can add the following HTML
button to your Web form.
<INPUT style="Z-INDEX: 102; LEFT: 238px; POSITION: absolute; TOP: 80px"
type="button" value="Zoom In" onclick="PageDragRectangle('PageLayout1',
'zoomin', true)">

In the tag above, the onclick attribute establishes the client-side action the
HTML button performs. In this case, the button calls the PageDragRectangle
JavaScript function directly and passes the name of the page layout control, the
name you specified in the dialog box above, and a Boolean value to display a
loading image while the page refreshes. The PageDragRectangle JavaScript function
corresponds to the DragRectangle client tool action defined in the PageToolItem
Collection Editor above. The name is what links the HTML button to the server-
side action. When the JavaScript posts back to the server—after end user interac-
tion with the page layout control—the PageLayout class calls the ServerAction
method on the ServerToolAction class.

It’s important to note that if the page layout control has a toolbar associated with
it (through the toolbar’s BuddyControls property), the settings on the toolbar will
override the settings of the page layout control’s ToolItems property. For instance,
if you define a PageToolItem called “MyTool” and you have a similarly named tool
on a toolbar associated with the page layout control, the settings on the toolbar
tool take precedence over the settings on the page layout control’s PageToolItem.

JavaScripts for client-side interaction
There is a one-to-one relationship between JavaScript function names and
PageClientToolAction enumerations. Thus, the enumeration name you specify when
defining the PageToolItem properties should match the JavaScript function name

Ch05.pmd 1/25/2005, 5:54 PM189

190 • ArcGIS Server Administrator and Developer Guide

PAGE LAYOUT CONTROL

you specify in the HTML button. The list of PageClientToolAction enumerations
and their corresponding JavaScript functions is presented below.
PageClientToolAction JavaScript Function

DragImage PageDragImage

DragRectangle PageDragRectangle

MapDragImage PageMapDragImage

MapDragRectangle PageMapDragRectangle

MapPoint PageMapPoint

Point PagePoint

When invoking the JavaScript functions directly, supply the following three
arguments.

• The ID of the page layout control, for example, PageLayout1.

• The Name property of the PageToolItem that will handle the server-side action,
for example, zoomin. If you plan to write code to handle a tool event, this is
the value passed in as the ToolName property of the ToolEventArgs object.

• A Boolean value indicating whether to show the loading image between
postback and page refresh.

PAGE LAYOUT EVENTS

Events provide another way of executing server-side actions. Each
PageClientToolAction enumeration maps to a page layout control event. When the
event is triggered, your event code executes.

You can write event handlers that operate in conjunction with any server-side
actions you establish through a toolbar or through a PageToolItem. Your event
handler code will execute after the server-side action defined on the toolbar or
PageToolItem. Alternatively, by omitting a server-side action for a particular item
on a toolbar or PageToolItem, you can completely control how your application
responds to a particular client-side action using an event handler. For example,
you might define a client-side action through the DragRectangle enumeration (or
PageDragRectangle JavaScript function) and handle the server-side action through
the following event code:
private void PageLayout1_DragRectangle(object sender,
 ESRI.ArcGIS.Server.WebControls.ToolEventArgs args,
 ESRI.ArcGIS.Server.WebControls.LayoutImageDataFrameInfo info)

{

 switch (args.ToolName)

 {

 case "zoomin":

 // Extracts the X,Y screen coordinates passed in as arguments

 RectangleEventArgs rectArgs = args as RectangleEventArgs;

 System.Drawing.Rectangle rectangle = rectArgs.ScreenExtent;

 int xcoord = rectangle.X;

 int ycoord = rectangle.Y;

 // Do something further with the screen coordinates.

 break;

 }

}

Ch05.pmd 1/25/2005, 5:54 PM190

Chapter 5 • Developing Web applications with .NET • 191

PAGE LAYOUT CONTROL

The above code uses the ToolEventArgs object passed to the function and converts
it to a RectangleEventArgs—which is the specific type of object the
PageDragRectangle JavaScript function provides. In this example, the code only
extracts the X and Y values of the upper left corner and stores them in variables.
Your code could use these values to do something further.

The table below shows the relationship between PageClientToolActions and
ToolEventArgs.
Page Layout Control Events ToolEventArgs Type

DragImage PointEventArgs

DragRectangle RectangleEventArgs

MapDragImage PointEventArgs

MapDragRectangle RectangleEventArgs

MapPoint PointEventArgs

Point PointEventArgs

WHAT’S STORED IN SESSION STATE

The page layout control utilizes session state to maintain information about the
server object referenced by the control. The names of the session variables can be
found in the technical article titled ‘Session variables for the .NET Web controls’
in ArcGIS Developer Online (http://arcgisdeveloperonline.esri.com).

The following objects are stored in session state.

ServerContext
For non-pooled server objects, the ServerContext is held in session state so that the
same instance of the server object can be used for the entire session.

The ServerContext is an object that must be released explicitly in order to release
server resources. You should release this by calling IServerContext.ReleaseContext.

In a deeply stateful Web application that uses a server object for a long time, you
should release the ServerContext at the end of the session. The code in the
Session_End method in the Global.asax.cs file executes at the end of a session. In
this method, you should loop over all the objects stored in session state and check
if they are of type IServerContext. If they are, you should release the context.
IServerContext context;

for (int i = 0; i < Session.Count; i++)

{

 context = Session[i] as IServerContext;

 if (context != null)

 context.ReleaseContext();

}

PageDescription
PageDescription is stored in the session state because it can be a large string. It is
impractical to store the PageDescription in view state and have it go back and forth
on each request.

WebLayoutImage
WebLayoutImage is also stored in session state for the same reason as
PageDescription. It can be large depending on the number of data frames in a page
layout.

Ch05.pmd 1/25/2005, 5:54 PM191

192 • ArcGIS Server Administrator and Developer Guide

PAGE LAYOUT CONTROL

ToolItems
ToolItems is stored in session because it is a complex object.

CopyrightText
CopyrightText is stored in session because it is a complex object.

CONTROL LIFE CYCLE

In addition to what the base class AGSWebControl does, here’s what the page
layout control does at each point in its life cycle.

• Instantiation—Initializes member variables with default values.

• OnInit—The first time the control is drawn in a session and if AutoFirstDraw
is set to true, the page layout is drawn at its full extent. A copy of the
PageDescription property is stored to check if the content changes between
initialization and just before rendering. Copies of the Host and ServerObject
properties are stored to check if the connection changes between initialization
and just before rendering.

• TrackViewState—Begins tracking view-state changes for complex properties
such as the ToolItems property.

• LoadViewState—Restores view-state information of complex properties,
such as the ToolItems property, to what they were at the end of the previous
page request. Postback only.

• LoadPostData—Indicates whether RaisePostDataChangedEvent should be
called. Always returns false. Postback only.

• OnLoad—Uses the base class implementation.

• RaisePostDataChangedEvent—Does nothing. Postback only.

• RaisePostBackEvent—Fires server-side events based on the postback event
argument. Calls the CurrentToolItem’s ServerToolAction class’s ServerAction
method. Postback only.

• OnPreRender—Fires the ContentsChanged event if the PageDescription
property has changed after LoadViewState for postbacks or after OnInit for
nonpostbacks. Fires the ConnectionChanged event if the Host or ServerObject
properties have changed after LoadViewState for postbacks or after OnInit
for nonpostbacks. Registers JavaScript required for client-side action.

• SaveViewState—Saves view-state information of complex properties such as
the ToolItems property.

• Render—Renders the HTML required to draw the control. Registers addi-
tional JavaScript used to set control specific properties.

EVENTS

Events fired on RaisePostBackEvent
The following events are fired on RaisePostBackEvent. They are only fired for
postbacks.

Event fired on all postbacks to page layout control:

• PageClick

Ch05.pmd 1/25/2005, 5:54 PM192

Chapter 5 • Developing Web applications with .NET • 193

Events based on client interaction with the whole page displayed in the page
layout control:

• DragImage—Occurs when the image in the page layout control has been
dragged using the DragImage client tool action.

• DragRectangle—Occurs when a rectangle has been dragged on the page layout
control using the DragRectangle client tool action.

• Point—Occurs when the page layout control has been clicked using the Point
client tool action.

Events based on client interaction with the maps in the page displayed in the page
layout control:

• MapDragImage—Occurs when a data frame in the page layout control has
been dragged using the MapDragImage client tool action.

• MapDragRectangle—Occurs when a rectangle has been dragged on a data
frame in the page layout control using the MapDragRectangle client tool action.

• MapPoint—Occurs when a data frame in the page layout control has been
clicked upon using the MapPoint client tool action.

Events fired on PreRender
The following events are fired on PreRender:

• ConnectionChanged—if the Host and ServerObject have changed.

• ContentsChanged—if the PageDescription has changed.

Generic control events
The following events are generic to all controls. All of these events are fired
before the control does its work at the respective cycle. For example, the Init
event is fired before the page layout control does its custom OnInit actions.
Here’s what you can expect to happen at each of these events:

• Init—Occurs when the server control is initialized, which is the first step in its
life cycle. This is too early in the life cycle to access any of the page layout
control’s properties.

• Load—Occurs when the server control is loaded into the Page object. At this
stage, all of the page layout control’s initializations are complete and changes
saved into ViewState on the previous request have been applied. This is the
stage to access control properties other than WebLayoutImage.

• PreRender (inherited from Control)—Occurs when the server control is about
to render to its containing Page object and before the ContentsChanged and
ConnectionChanged events are fired. Between the Load and PreRender
phases, the RaisePostBackEvent method could have resulted in refreshing the
page layout display. At the PreRender phase, you can assume that the
WebLayoutImage property is set to its final value for the page cycle.

• Unload (inherited from Control)—Occurs when the server control is unloaded
from memory. This is where you can check the state after Render.

PAGE LAYOUT CONTROL

Ch05.pmd 1/25/2005, 5:54 PM193

194 • ArcGIS Server Administrator and Developer Guide

OVERVIEW MAP CONTROL

The overview map control is similar to a map control in that it displays a particu-
lar data frame of a map server object. However, the purpose of the overview
map is to provide a point of reference for the area displayed on its associated map
control. A small box on the overview map represents the currently displayed area
on its associated map control.

The base class for the Map,
OverviewMap, and
PageLayout controls.

The connection to a Server
Object Manager.

An image generated by a map server
object for a particular data frame. Displays a particular data frame

of a map server object.

Provides the business logic behind the
map and overview map controls and
includes methods for executing common
map-based tasks, such as pan and zoom.

Describes an image type, including
format, size, and resolution.

Provides a point of
reference for the area
displayed on its associated
map control.

1

*

1

*

0..1

0..1

0..1

0..1

Overview Map Control Objects

Image-
Descriptor

WebMap

Server-
Connection

AGSWeb-
Control

MapWebImage

OverviewMap

The OverviewMap class provides access to the properties and methods that govern
how the control works. Like the map control, the overview map control’s conve-
nience class is WebMap. However, unlike the map control, the overview map
control doesn’t provide the same interactive capabilities as the map control. For
example, you can’t add a toolbar to your Web form and add tools that interact
with the overview map control.

The primary purpose of the overview map control is to provide a visual reference
to the area displayed on its associated map control. Thus, the geographic area
displayed on an overview map control should match the geographic area displayed
on its associated map control.

Ch05.pmd 1/25/2005, 5:54 PM194

Chapter 5 • Developing Web applications with .NET • 195

The OverviewMap class provides the user interface for displaying a data frame from
a map server object on a Web form.

OVERVIEW MAP CONTROL

The extent of the area of interest displayed on the
 associated map control.
The map control the overview map is linked to.
The data frame to display from the map server object.
The current extent of the data frame in the overview
 map control.
The URL location of the image to display in the overview
 map control.
The string representation of the MapDescription for a
 particular map server object.

Provides a point of reference for the area displayed
 in its associated map control.

OverviewMap : AGSWebControl,
System.Web.UI.IPostBackEventHandler,
System.Web.UI.IPostBackDataHandler

AOIExtent: Extent

BuddyControl: System.String
DataFrame: System.String
Extent: Extent

ImageUrl: System.String

MapDescription: System.String

CenterAt (System.Int32 x, System.Int32 y):
System.Void

CreateWebMap: WebMap

LoadPostData (System.String postDataKey,
System.Collections.Specialized.NameVal
ueCollection values): System.Boolean

RaisePostBackEvent (System.String
eventArgument): System.Void

RaisePostDataChangedEvent: System.Void

Draw: System.Void

Reset: System.Void
OverviewMapPoint: MapPointEventHandler

Center the area of interest to the specifed screen coordinates.

Creates the WebMap object associated with this control.
Draws the map image using existing settings.
Indicates whether RaisePostDataChangedEvent should
 be called.

Handles postbacks. Raises events based on the event
 argument passed in. Calls the ServerToolAction component
 of the CurrentToolItem.
Enables the map control to process an event raised when a
 form is posted to the server.
Resets the map control to an unbound state.
Occurs when an end user clicks the control using the Point
 client tool action.

The OverviewMap class contains properties, inherited from the WebControl class
(System.Web.UI), that specify how the control looks on the Web page, such as
the height, width, and border style. Typically, you’ll define these properties at
design time. The CreateWebMap method is an important method as it gives you
access to the overview map control’s corresponding convenience class, WebMap.
The BuddyControl property links the overview map to a map control.

SETTING THE EXTENT OF THE OVERVIEW MAP CONTROL

When you add an overview map control to a Web form, by default the overview
map will display the full extent of the specified data frame. Alternatively, you can
set the InitialExtent property, inherited from AGSWebControl, at design time
through the Visual Studio .NET interface. This property allows you to specify
whether you want to display the data frame at its full extent or the last extent
saved in the ArcMap document that contains it. You can also set the extent
programmatically. For instance, you might add the following code to the
Page_Load event to explicitly set the extent you want to display in the overview
map control.

Ch05.pmd 1/25/2005, 5:54 PM195

196 • ArcGIS Server Administrator and Developer Guide

private void Page_Load(object sender, System.EventArgs e)

{

 if (!Page.IsPostBack)

 {

 if (Session.IsNewSession)

 {

 Extent extent = new Extent(2301791, 731414, 2310360, 740087);

 OverviewMap1.Extent = extent;

 // No need to draw control; it will automatically when page draws

 }

 }

}

SETTING THE AREA OF INTEREST

The small box that displays on the overview map control represents the area of
interest of the associated map control. The overview map automatically updates
the area of interest box whenever the extent changes in the associated map
control. Thus, if an end user zooms in to an area with the map control, the new
extent is automatically reflected by the area of interest box on the overview map
control.

If you want, you can programmatically control the area of interest box through
the AOIExtent property on the overview map control. For example, the follow-
ing code, attached to the Click event of a server button, sets the area of interest
and updates the map control to reflect the new area of interest.
private void Button1_Click(object sender, System.EventArgs e)

{

 Extent extent = new Extent(2301791, 731414, 2310360, 740087);

 // Change the area of interest box

 OverviewMap1.AOIExtent = extent;

 OverviewMap1.Draw();

 // Change the extent of the map control to match

 Map1.Extent = extent;

 Map1.Draw();

}

WHAT’S STORED IN SESSION STATE

The overview map control utilizes session state to main information about the
server object referenced by the control. The names of the session variables can be
found in the technical article titled ‘Session variables for the .NET Web controls’
in ArcGIS Developer Online (http://arcgisdeveloperonline.esri.com).

The following objects are stored in session state.

ServerContext (for non-pooled server objects only)
For non-pooled objects, the ServerContext is stored in session state so that the
same instance of the server object can be used for the entire session.

The ServerContext is an object that needs to be released explicitly to release server
resources. You should release this by calling IServerContext.ReleaseContext.

OVERVIEW MAP CONTROL

Ch05.pmd 1/25/2005, 5:54 PM196

Chapter 5 • Developing Web applications with .NET • 197

In a deeply stateful Web application that uses a server object for a long period of
time, you should release the ServerContext at the end of the session. The code in
the Session_End method in the Global.asax.cs file gets executed at the end of a
session. In this method, you should loop over all the objects stored in Session and
check if they are of type IServerContext. If they are, you should release the con-
text.
IServerContext context;

for (int i = 0; i < Session.Count; i++)

{

 context = Session[i] as IServerContext;

 if (context != null)

 context.ReleaseContext();

}

MapDescription
MapDescription is stored in the session because it can be a large string.

ImageURL
ImageURL is stored in the session because it can be a large string.

CONTROL LIFE CYCLE

In addition to what the base class AGSWebControl does, here’s what the map
control does at each point in its life cycle.

• Instantiation—Initializes member variables with default values.

• OnInit—A copy of the MapDescription property is stored to check if the
content changes between initialization and just before rendering. A copy of
the Host and ServerObject properties is stored to check if the connection
changes between initialization and just before rendering.

• LoadViewState—Uses base class implementation. Postback only.

• LoadPostData—Indicates whether RaisePostDataChangedEvent should be
called. Always returns false. Postback only.

• OnLoad—Uses the base class implementation.

• RaisePostDataChangedEvent—Does nothing. Postback only.

• RaisePostBackEvent—Fires server-side events based on the postback event
argument. Centers the area of interest at the clicked-on location.

• OnPreRender—The first time the control is drawn in a session, if
AutoFirstDraw is set to true, the overview map is drawn at the extent specified
by its InitialExtent property. Fires the ContentsChanged event if the
MapDescription property has changed after LoadViewState for postbacks or
after OnInit for nonpostbacks. Fires the ConnectionChanged event if the Host
or ServerObject properties have changed after LoadViewState for postbacks or
after OnInit for nonpostbacks. Registers JavaScript required for client-side
action.

• Render—Renders the HTML required to draw the control. Registers addi-
tional JavaScript used to set control-specific properties.

OVERVIEW MAP CONTROL

Ch05.pmd 1/25/2005, 5:54 PM197

198 • ArcGIS Server Administrator and Developer Guide

EVENTS

Events fired on RaisePostBackEvent
The following event is fired on RaisePostBackEvent. It is only fired for
postbacks.

• OverviewMapPoint

Events fired on PreRender
The following events are fired on PreRender:

• ConnectionChanged—if the Host and ServerObject have changed.

• ContentsChanged—if the MapDescription has changed.

Generic control events
The following events are generic to all controls. All of these events are fired
before the control does its work at the respective cycle. For example, the Init
event is fired before the map control does its custom OnInit actions. Here’s what
you can expect to happen at each of these events:

• Init—Occurs when the server control is initialized, which is the first step in its
life cycle. This is too early in the life cycle to access any of the overview map
control’s properties.

• Load—Occurs when the server control is loaded into the Page object. At this
stage, all of the overview map control’s initializations are complete and
changes saved into view state on the previous request have been applied. This
is the stage to access control properties.

• PreRender (inherited from Control)—Occurs when the server control is about
to render to its containing Page object and before the ContentsChanged and
ConnectionChanged events are fired.

• Unload (inherited from Control)—Occurs when the server control is unloaded
from memory. This is where you can check the state after Render.

OVERVIEW MAP CONTROL

Ch05.pmd 1/25/2005, 5:54 PM198

Chapter 5 • Developing Web applications with .NET • 199

TOC CONTROL

The Toc control—or table of contents control—displays the contents of a map
and allows an end user to turn layers on and off. The Toc control functions in the
same manner as the table of contents in ArcMap. The Toc control presents a
hierarchical list of data frames, layers, and symbols displayed on the map.

Displays the layout of a map
server object, including all of
the map elements, such as
data frames and other
map surrounds.

Provides the buisness logic
behind the page layout control
and includes methods for
executing common
layout-based tasks, such as
pan and zoom.

Contains information about
a group of symbols
displayed in a Toc.

Contains information about
a symbol displayed in a Toc.

Contains information about a
data frame displayed in the Toc.

The table of contents
information for a map server
object displayed in a Toc control.

Provides the business logic behind the
map and overview map controls
and includes methods for executing
common map-based tasks,
such as pan and zoom.

Contains information about a layer
that is displayed in a Toc.

Lists all the layers displayed on a map
or page layout control and shows
what the features in the layers represent.

The base class for child nodes
of parent controls.

The abstract base class
for TocNodes.

Represents a tree node in
a Toc and handles its events.

A collection of TocNodes
within a Toc.

The base class for collections
of TocChildNode objects.

Displays a particular data
frame of a map server object.

1

1

*

0..1

0..1

0..1

0..1

1

0..1

0..1

0..1

1

0..1

1
1

*

1

*1

*

1

*

*
1

Toc Control Objects

TocChildNode-
Collection

Map

TocChild-
Node

TocNode-
Collection

TocBase

TocNode

Toc

WebMap

WebToc

TocDataframe

TocItem

Page-
Layout

WebPage-
Layout

TocGroup

TocClass

In looking at the above object model diagram, you can conceptually split the
diagram in two. There is a set of classes associated with the Toc control—for
example, TocNodeCollection—that comprises the visual component of the control
on a Web form. A Toc control functions as a tree control that contains a set of
nodes that you can expand or contract. These nodes represent the individual data
frames and layers in a map server object. In addition, there is a set of classes
associated with the Toc control’s convenience class, WebToc. WebToc interacts

Ch05.pmd 1/25/2005, 5:54 PM199

200 • ArcGIS Server Administrator and Developer Guide

TOC CONTROL

with a map server object to obtain the table of contents information from the
map server object that ultimately gets displayed in the Toc control. It uses its
associated classes to store the retrieved information.

You can get a WebToc object from a WebMap or a WebPageLayout object. A WebToc
is comprised of one or more TocDataFrame objects that correspond to data frames
in a map server object. A TocDataFrame has one TocItem object for each layer in
the data frame. For group layers, a TocItem object itself may contain one or more
TocItem objects, one for each layer in the group. The TocItem object provides
properties that, for example, allow you to access the layer name and layer visibil-
ity.

When you classify a layer in ArcMap, you end up with a group of symbols that
might, for instance, represent population values. A TocGroup represents this group
of symbols used for a particular layer. Each individual symbol in the group is
represented with a TocClass object.

Toc : PostBackControl

AutoLayerVisibility: System.Boolean

AutoPostBack: System.Boolean
AutoSelect: System.Boolean

BuddyControl: System.String
DefaultStyle: Design.CssCollection
Enabled: System.Boolean
EnableViewState: System.Boolean

ExpandedImageUrl: System.String
ExpandLevel: System.Int32

HoverStyle: Design.CssCollection
ImageFormat: WebImageFormat

ImageUrl: System.String
Indent: System.Int32

Nodes: TocNodeCollection

SelectedImageUrl: System.String
PatchFormat: System.String

SelectedNodeIndex: System.String
SelectedStyle: Design.CssCollection
SelectExpands: System.Boolean
ShowAllDataFrames: System.Boolean
ShowLines: System.Boolean
ShowPlus: System.Boolean
Target: System.String
UseMIMEData: System.Boolean

Bind: System.Void

GetNodeFromIndex (System.String
strIndex): TocNode

Draw: System.Void

SetLayerVisibility (System.String map,
System.Int32 layerID, System.Boolean
visible): System.Void

Check: TocClickEventHandler
Collapse: TocClickEventHandler
ContentsChanged:
 ContentsChangeEventHandler
Expand: TocClickEventHandler
SelectedIndexChange:

TocSelectEventHandler

When true, automatically draws the layer when the check box
 is checked. When false, you can process the event yourself.
Whether or not to post back to the server on each interaction.
When true, keyboard hovering will automatically
 select the node.
The map or page layout control the TOC is linked to.
The CSS attributes to apply to the TOC.
Whether or not the control is enabled.
Whether the control automatically saves its state
 between round-trips.
URL of the image to display next to an expanded node.
The minimum number of levels to expand the tree view
 by default.
The CSS attributes to apply when the a node is hovered over.
Image format to use to generate Web images for TOC
 symbol swatches.
URL of the image to display next to a node.
The number of pixels to indent each level of tree if
 ShowLines is false.
Gets the collection of nodes in the control.
Defines how the patches displaying symbology look in the TOC.
URL of the image to display next to a selected node.
Index of the selected node.
The CSS attributes to apply to a selected node in the TOC.
Expands or collapses a node by clicking on it.
Indicates whether to display all data frames in a map control.
Shows dotted lines connecting the tree hierarchy.
Shows +/- symbols on expandable nodes.
The ID of the frame to target upon selecting a node.
Streams images instead of getting files from the server.

Lists all the layers displayed on a map or page
 layout control and shows what the features in
 the layers represent.

Forces the node to bind immediately, even if it isn't expanded.
Draws the TOC.

Occurs when a node's check box is clicked.
Occurs when a node is collapsed.
Occurs when the contents of the Toc control have changed.

Occurs when a node is expanded.
Occurs when the selected node changes.

Returns the TocNode at the given index location.

Sets the visibility of a layer.

Ch05.pmd 1/25/2005, 5:54 PM200

Chapter 5 • Developing Web applications with .NET • 201

TOC CONTROL

The easiest way to work with a Toc control is to associate it with a map or page
layout control, through the BuddyControl property. Doing so binds the Toc control
to the particular map or page layout control. This allows the Toc control to
respond to the ContentsChanged event of the map or page layout control and
update itself accordingly. However, you can also use a Toc control independently,
without any association, by leaving the BuddyControl property empty. The Toc
control can depict any data that has a tree structure. When using a Toc in this
manner, you will need to populate the nodes in it, through the Nodes property.
The Identify dialog box in the Map Viewer template has an example of a Toc
control that has no association with a map or page layout control.

When the Toc control is associated with a map control, you can show all the data
frames in the map server object or just a particular data frame. When associated
with a page layout control, all data frames are shown in the Toc control.

IMMEDIATE POSTBACK UPON CHECKING A BOX

In ArcMap, when you check a layer in the table of contents, that layer draws
immediately. By default, when you associate a Toc control with a map or page
layout control on your Web form, you’ll see the same behavior in your Web
application when it’s displayed in a browser. However, with Web applications,
you may not want to send a request back to the server every time the end user of
your Web application interacts with the Toc control, because round-trips to the
server consume server resources and take time to process.

Instead, you can disable this automatic postback behavior by setting the
AutoPostBack property to false. With this setting, when an end user checks layers
on or off, the map display won’t update until a postback occurs. The Toc control
keeps track of any user interaction, and when a postback does occur, any changes
to the layer visibility will be reflected on the map control. For instance, if you
disable this property, you might add a server button to refresh the map where the
click event contains the following:
Map1.Draw();

Note, however, when the Toc control is associated with a map control, you can’t
set the AutoPostBack property to false when you show all data frames in the Toc
control—when ShowAllDataFrames is true. AutoPostBack must be set to true when
ShowAllDataFrames is true.

CONTROLLING LAYER DRAWING

When you check the box next to a layer name in the Toc control, you typically
expect the layer to draw. This is, in fact, the default behavior of the Toc control.
However, if you need to, you can change this behavior. For example, you may
not want an end user to be able to toggle the visibility of a layer.

You control the automatic drawing and clearing of layers through the
AutoLayerVisibility property of the Toc control. When this property is true,
checking a layer on or off will draw or clear the layer, respectively, from the
associated map or page layout control. When you set this property to false, noth-
ing will automatically happen when you check or uncheck a layer. In this case,
you may also want to code the Toc control’s Check event. This event is triggered
whenever a layer is checked or unchecked. Additionally setting the AutoPostBack
property to true will execute the event immediately.

Ch05.pmd 1/25/2005, 5:54 PM201

202 • ArcGIS Server Administrator and Developer Guide

TOC CONTROL

The following code emulates the AutoLayerVisibility property and draws layers in
a map control based on whether or not they are checked in the Toc control. You
can easily code the event to do other things.
private void Toc1_Check(object sender,
ESRI.ArcGIS.Server.WebControls.TocClickEventArgs args)

{

 TocNode node = Toc1.GetNodeFromIndex(args.NodeIndex);

 using (WebMap webmap = Map1.CreateWebMap())

 {

 IMapDescription mapdesc = webmap.MapDescription;

 ILayerDescriptions layerdesc = mapdesc.LayerDescriptions;

 ILayerDescription onelayerdesc = layerdesc.get_Element(node.LayerID);

 onelayerdesc.Visible = node.Checked;

 webmap.Refresh();

 }

}

From the TocClickEventArgs, you can get the index of the node that was checked
or unchecked and use this index to get a TocNode object. With the TocNode object,
you can obtain the LayerID of the particular layer the node represents. With the
LayerID, you can find the LayerDescription object and change its visibility. Notice
that the MapDescription is obtained from the WebMap object. This is the
MapDescription that is associated with the map control. Thus, the changes you
make to this MapDescription are reflected on the map control.

If you have both AutoLayerVisibility set to true and have coded the Check event,
the code in the Check event executes first. Thus, you can write custom code, yet
still allow the control to manage drawing the layers.

WORKING WITH THE TOC TREE

The following code samples illustrate different ways to work with the compo-
nents of the Toc control. The samples show you some of the things you may
want to do when building your own Web applications.

Navigating through the Toc control to find a data frame
The following code gets the name of the data frame the checked layer is con-
tained in. The code is placed in the Check event on the Toc control.
private void Toc1_Check(object sender,
ESRI.ArcGIS.Server.WebControls.TocClickEventArgs args)

{

 TocNode node = Toc1.GetNodeFromIndex(args.NodeIndex);

 string layername = node.Text;

 // Get the parent of the current node.

 node = node.Parent as TocNode;

 // Use while loop to handle grouped layers

 while (node.Parent is TocNode)

 {

 node = node.Parent as TocNode;

 }

 string dataframename = node.Text;

}

Ch05.pmd 1/25/2005, 5:54 PM202

Chapter 5 • Developing Web applications with .NET • 203

TOC CONTROL

Removing check boxes from the Toc control
In some Web applications, you may not want your end users to toggle the visibility
of the layers on the map. The following function hides the check boxes on the Toc
control. The function calls itself recursively because the Toc control can have
many tree levels.
private void RemoveCheckbox(TocNodeCollection nodes)

{

 foreach (TocNode node in nodes)

 {

 node.CheckBox = false;

 if (node.Nodes != null) RemoveCheckbox(node.Nodes);

 }

}

The function should be called from the ContentsChanged event on the Toc control,
as shown below.
private void Toc1_ContentsChanged(object sender, System.EventArgs e)

{

 RemoveCheckbox(Toc1.Nodes);

}

The reason you need to hide the check boxes on every postback is because the Toc
control doesn’t save this information between postbacks. Thus, by adding code to
the ContentsChanged event, you can ensure the check boxes remain hidden.

Manually populating a Toc control
The BuddyControl property of the Toc allows you to link the control to a map or
page layout control. In doing so, you get a lot of built-in functionality, such as the
automatic drawing of layers. However, there may be times when you want to
manage the Toc control yourself.

The sample code below populates a Toc control with the layer names in the current
data frame. When implementing this code, you should not set the BuddyControl
property of the Toc control.

With a Toc control and a map control on a Web form, add the following code to
the Page_Load event:
private void Page_Load(object sender, System.EventArgs e)

{

 if (!Page.IsPostBack)

 {

 using (WebMap webmap = Map1.CreateWebMap())

 {

 WebToc webtoc = webmap.WebToc(WebImageFormat.PNG,false,true, null);

 TocDataFrame dataframe = webtoc.Find(Map1.DataFrame);

 TocNode parent = new TocNode();

 parent.Expanded = true;

 parent.Text = dataframe.Name;

 TocNode node = null;

Ch05.pmd 1/25/2005, 5:54 PM203

204 • ArcGIS Server Administrator and Developer Guide

TOC CONTROL

 // Create a node in the Toc for each layer

 foreach (TocItem item in dataframe)

 {

 node = new TocNode();

 node.Text = item.Name;

 parent.Nodes.Add(node);

 // If the layer is a group layer, expand it

 if (item.TocItemCount > 0)

 {

 node.Expandable = ExpandableValue.Always;

 node.Expanded = true;

 GetGroupLayerItems (item, node);

 }

 }

 Toc1.Nodes.Add(parent);

 }

 }

}

Code the following function. This function gets called from the above Page_Load
event and populates the Toc control with group layers. It calls itself recursively
because a group layer can contain other group layers.
private void GetGroupLayerItems(TocItem item, TocNode parent)

{

 // This function adds layers in a group layer to the Toc

 TocNode node = null;

 int i;

 for (i = 0; i < item.TocItemCount; i++)

 {

 node = new TocNode();

 node.Text = item.GetTocItem(i).Name;

 parent.Nodes.Add(node);

 if (item.GetTocItem(i).TocItemCount > 0)

 {

 node.Expandable = ExpandableValue.Always;

 node.Expanded = true;

 GetGroupLayerItems (item.GetTocItem(i), node);

 }

 }

}

WHAT’S STORED IN SESSION

The Toc control utilizes session state to maintain information about the control.
The following are stored in session state.

• A HashTable with the list of expanded nodes.

• URL properties: ImageUrl, SelectedImageUrl, ExpandedImageUrl, and
SystemImagesPath are stored in session because they can potentially be long
strings.

• Nodes and the style properties, DefaultStyle, HoverStyle, and SelectedStyle, are
stored in session state, as they are not simple data types and can be large.

Ch05.pmd 1/25/2005, 5:54 PM204

Chapter 5 • Developing Web applications with .NET • 205

CONTROL LIFE CYCLE

Here’s what Toc control does at each point in its life cycle.

• Instantiation—Initializes member variables with default values.

• OnInit—If the BuddyControl property is set, the Toc control starts listening to
the buddy control's ContentsChanged event.

• TrackViewState—Begins tracking view-state changes for complex properties
such as Nodes, TocNodeTypes, DefaultStyle, HoverStyle, and SelectedStyle.

• LoadViewState—Restores view-state information of complex properties such
as Nodes, TocNodeTypes, DefaultStyle, HoverStyle, and SelectedStyle, to what they
were at the end of the previous page request. Postback only.

• LoadPostData—At this phase, the control looks at the posted data to deter-
mine which node was selected, expanded, collapsed, checked, or unchecked
and changes the node accordingly. Postback only.

• OnLoad—Toc.Draw is called if it is not a postback.

• RaisePostDataChangedEvent—This IPostBackDataHandler method is imple-
mented to raise events signaling that something about the control has changed.
The Toc control raises the SelectedIndexChanged, Expand, Collapse, and Check
events at this phase. If a check box has been checked or unchecked, the
visibility of a layer is turned on or off if AutoLayerVisibility is set to True.
Postback only.

• RaisePostBackEvent—As all the Toc control events are change events, noth-
ing happens in this phase. Postback only.

• OnPreRender—Checks if HoverNodeIndex and SelectedNodeIndex are valid.

• SaveViewState—Saves view-state information of complex properties such as
Nodes, TocNodeTypes, DefaultStyle, HoverStyle, and SelectedStyle.

• Render—Renders the HTML required to draw the control.
RichControl.Render calls RenderUpLevelPath if the browser is at Internet
Explorer 5.5 or higher. It calls RenderDownLevelPath if browser is different
or the Internet Explorer version is lower than 5.5.

EVENTS

Events fired on RaisePostDataChangedEvent
The following events are fired on RaisePostDataChangedEvent.

• Check—This event is fired when a node in the Toc control is checked or
unchecked. In a bound Toc control, only nodes associated with layers have a
check box next to them.

• Collapse—This event is fired when a node is collapsed to hide the nodes
contained in it.

• Expand—This event is fired when a node is expanded to expose the nodes
contained in it.

• SelectedIndexChange—This event is fired when node is selected and the node
is different from the previously selected node.

TOC CONTROL

Ch05.pmd 1/25/2005, 5:54 PM205

206 • ArcGIS Server Administrator and Developer Guide

TOC CONTROL

Event fired on PreRender
The following event is fired on PreRender:

• ContentsChanged—The Toc control fires its ContentsChanged event in the
OnPreRender method when the user has refreshed the Toc control. When the
Toc control is refreshed in response to its buddy control’s ContentsChanged
event, it fires its ContentsChanged event after refreshing itself. In both of
these scenarios, the ContentsChanged event will be fired in the PreRender
phase of a page cycle.

Ch05.pmd 1/25/2005, 5:54 PM206

Chapter 5 • Developing Web applications with .NET • 207

TOOLBAR CONTROL

The toolbar control displays a toolbar on a Web form. A toolbar allows you to
associate a set of actions with one or more map controls or one or more page
layout controls. You can place as many toolbars as you like on your Web form to
organize the tools in your Web application.

A collection of Tools or Commands
that work with one or more map
or page layout controls.

A collection of toolbar objects.

Displays the layout of a map
server object, including all of
the map elements, such as
data frames and other map
surrounds.

A button on a Toolbar that
executes both a client-side and
server-side action.

A button on a toolbar that executes
server-side code without requiring
client-side interaction.

Associates one control with
another.

A collection of BuddyControl
objects.

An empty space on a toolbar.A line on a toolbar
that separates items
on the toolbar.

Displays a particular
data frame of a map
server object.

The base class for Command,
Separator, Space, and Tool.

1

1

0..1 0..1

1

1

*

1

*

1

1
1

Toolbar Control Objects

ToolbarItem

ToolbarItem-
Collection

BuddyControl-
Collection

Map

BuddyControl

Toolbar

PageLayout

Command Separator Space

MapCenterAt

MapPan

MapZoomIn

MapZoomOut

PageCenterAt

PagePan

PageMapAt

PageMapPan

PageZoomIn

PageZoomOut

PageMap-
ZoomIn

PageMap-
ZoomOut

Tool

IPageServer-
ToolAction

IMapServer-
ToolAction

Ch05.pmd 1/25/2005, 5:54 PM207

208 • ArcGIS Server Administrator and Developer Guide

TOOLBAR CONTROL

Unlike some of the other controls in the .NET ADF, a toolbar doesn’t have any
associated convenience class. This is because the primary purpose of a toolbar is
to provide a user interface for a set of actions that can be applied to a map or
page layout control. All of the properties and methods that make the toolbar
work are built into the Toolbar class itself.

Specifies how text and images should be aligned.
The background color of the control. This property is not used.
The set of page layout or map controls that this toolbar
 acts on.
The type of the buddy controls associated with this control,
 either map or page layout.
The selected tool on this toolbar.
Indicates whether the Web control is enabled.
 This property is not used.
 Indicates whether the server control persists its view state,
 and the view state of any child controls it contains, to the
 requesting client.
The font used in the control. This property is not used.

A collection of Tools and Commands that work
 with one or more map or page layout controls.

Toolbar :
System.Web.UI.WebControls.WebControl,
System.Web.UI.IPostBackDataHandler,
System.Web.UI.IPostBackEventHandler

Alignment: Alignment
BackColor: System.Drawing.Color
BuddyControls: BuddyControlCollection

BuddyControlType: BuddyControlType

CurrentTool: System.String
Enabled: System.Boolean

EnableViewState: System.Boolean

Font:
System.Web.UI.WebControls.FontInfo

ForeColor: System.Drawing.Color
Group: System.String
Orientation: Orientation
TextPosition: TextPosition
ToolbarItemDefaultStyle:

System.Web.UI.WebControls.Style
ToolbarItemDisabledStyle:

System.Web.UI.WebControls.Style
ToolbarItemHoverStyle:

System.Web.UI.WebControls.Style
ToolbarItems: ToolbarItemCollection
ToolbarItemSelectedStyle:

System.Web.UI.WebControls.Style
ToolbarStyle: ToolbarStyle

ToolTip: System.String

LoadPostData (System.String postDataKey,
System.Collections.Specialized.NameVal
ueCollection values): System.Boolean

RaisePostBackEvent (System.String
eventArgument): System.Void

RaisePostDataChangedEvent: System.Void
CommandClick:

ToolbarCommandClickEventHandler

The foreground color of the control. This property is not used.
The group to which this toolbar belongs.
The orientation of the toolbar, either horizontal or vertical.
The text position relative to the image on a button.
The style applied to make Commands and Tools when they
are not selected, disabled, or hovered upon.
The style applied to Commands and Tools when they
are disabled.
The style applied to Commands and Tools when they are
 hovered upon.
The collection of ToolbarItem objects on the Toolbar.
The style applied to Commands and Tools when they
 are selected.
The style of the toolbar; whether it displays both text and
 image for a command or tool or only one of the two.
The ToolTip used in the control. This property is not used.

Gets the current tool from the page for postbacks.

Handles postbacks and raises events based on the
 event argument.
This method is not used.
Occurs when a Command on the Toolbar has been clicked.

ASSOCIATING A TOOLBAR WITH A CONTROL

You specify which map or page layout controls a toolbar will work with through
the toolbar control’s BuddyControls property. This property allows you to specify
one or more map or page layout controls the toolbar will operate on. However, a
toolbar can only have buddy controls of one type, either map controls or page
layout controls, but not both. Use the BuddyControlType property to specify which
type the toolbar will work with.

ITEMS ON A TOOLBAR

A toolbar control is composed of many ToolbarItem objects. A ToolbarItem can be
one of several types:

• Tool—A Tool executes a client-side action to set the stage for interaction with
a map or page layout control. When the interaction completes, an action

Ch05.pmd 1/25/2005, 5:54 PM208

Chapter 5 • Developing Web applications with .NET • 209

TOOLBAR CONTROL

executes on the server side. For example, the end user of a Zoom In tool
would drag a box over the map to identify an area to zoom in to. Subse-
quently, the server-side action executes to zoom in to the specified area.

• Command —A Command simply executes server-side code and requires no end
user interaction. For example, the end user would simply click a full extent
command on a toolbar and would not need to interact with the map.

• Space—A Space object allows you to make room on your Toolbar for other
HTML controls or Web controls. Using the Size property of a Space object,
you can specify how big a space you want on your toolbar. A size of 1 trans-
lates to a space of 10 pixels. However, the size of a space can vary with the
size of a toolbar control. If you shrink a toolbar control, the size of a space
will decrease before other items get truncated. A Space does not execute any
action.

• Separator—A Separator object is a line between items on the toolbar control
that allows you to form groups of related items on the toolbar. A Separator
does not execute any action.

The ToolBarItems property on the toolbar control provides access to the
ToolBarItemCollection class, which is a collection of ToolBarItem objects. These are
the Tool, Command, Separator, and Space objects on the toolbar. You can program-
matically add items to the toolbar with the ToolbarItemCollection::Add method. In
Visual Studio .NET, clicking on the ToolbarItems property displays the
ToolbarItem Collection Editor.

The CurrentTool property of the toolbar identifies the active tool. This is the tool
that will be active when the page is first drawn. At runtime, clicking a tool will
make it the active tool. There is only one current tool on a toolbar or a set of
toolbars that have been grouped together.

GROUPING TOOLBARS

There may be times when you want to have more than one toolbar on your Web
form that works with a map or page layout control. For example, you may want
to use the toolbar itself as a means for organizing related functions, such as
having all the map navigation tools on one toolbar. You might also want to place
toolbars in different locations on your Web form, for example, along the top and
side of a particular map or page layout control. In both cases, you want the set of
toolbars you define to work with the same control. The Group property allows
one or more toolbars to work together and essentially function as one. Thus, at
any given time, there is only one currently active tool on the set of grouped
toolbars.

You organize toolbars into groups by using the same value for the Group property
on each toolbar you want to participate in the group. Setting the CurrentTool
property on one toolbar will clear the CurrentTool property of the other toolbars
in the group. When creating a group, you must ensure that you provide a unique
name for each ToolBarItem across all the grouped toolbars. You are also respon-
sible for ensuring that the BuddyControls property is the same for of all the
toolbars in the group.

Tool Command

 Separator Space

Ch05.pmd 1/25/2005, 5:54 PM209

210 • ArcGIS Server Administrator and Developer Guide

TOOLBAR CONTROL

Configuring tools on a toolbar
As described above, a Tool performs two actions: a client-side action that enables
an end user to interact with the map or page layout control and a server-side
action that executes after the end user has finished interacting with the map or
page layout control. The ToolbarItems Collection Editor allows you to specify
both the client-side and server-side actions thorough the ClientToolAction,
ServerToolActionAssembly, and ServerToolActionClass properties.

Client-side actions are controlled by JavaScript functions that execute on the
client, without any requests being sent to the server. The .NET ADF includes
prewritten JavaScript code for common interactions such as drawing a box. The
map and page layout controls each have their own JavaScript functions. For a
listing of these JavaScript functions available for each control, see the ‘Map
control’ and ‘Page layout control’ sections earlier in this chapter.

You can define a Tool (also Command, Space, and Separator) through the
ToolbarItem Collection Editor.

The editor allows you to specify the client-side and server-side actions. Use the
ClientToolAction property to specify the client-side action. With this property,
you’ll see the list of prewritten JavaScript functions and also a custom option
that allows you to write your own function.

Choosing the custom JavaScript option displays a dialog box into which you can
enter your JavaScript code. You might simply call your own JavaScript function
before calling one of the prewritten JavaScript functions. For example, the
following is from the Zoom In tool on the Buffer Selection template.

Ch05.pmd 1/25/2005, 5:54 PM210

Chapter 5 • Developing Web applications with .NET • 211

TOOLBAR CONTROL

In a more complex scenario, you might handle all of the client interaction with
your custom JavaScript. In this case, your custom ClientToolAction JavaScript
should set up a function that will be called at the onmousedown event of an
HTML element on the form. You would embed the JavaScripts required for your
custom ClientToolAction into the page itself.

When the interaction finishes, another JavaScript function should post back
either to the buddy control or to the toolbar control by calling the __doPostBack
function. One of the arguments in the __doPostBack functions is the name of
the control to post back to. The other is the event argument. If the postback goes
to the toolbar control, it will call the ServerAction method of the
ServerToolActionClass with no arguments. If the postback goes to the buddy
control, the buddy control will call the ServerAction method of the
ServerToolActionClass. This will happen only if the event argument is the string
equivalent of a PageClientToolAction enumeration value for page layout controls
and if the event argument is the string equivalent of a MapClientToolAction enu-
meration value for map controls.

Use the prewritten JavaScript functions as an example when writing your own
custom ClientToolActions. You can find these in the ArcGIS Server installation
location under: <ArcGIS Install Location>\DotNet\VirtualRootDir\
aspnet_client\esri_arcgis_server_webcontrols\9_0\JavaScript.

After configuring the client-side action, you need to specify the server-side action.
The server-side action executes after the JavaScript has posted back to the buddy
control or toolbar control. Two properties control the server-side action:
ServerToolActionAssembly and ServerToolActionClass. The ServerToolActionAssembly is
the fully qualified display name of the assembly containing the ToolItem. The
ServerToolActionClass property is the fully qualified name of a class. This class is
expected to implement IPageServerToolAction for toolbars with BuddyControlType set
to PageLayout; it is expected to implement IMapServerToolAction for toolbars with
BuddyControlType set to Map.

The .NET ADF provides common server-side actions for tools, such as Zoom In,
Zoom Out, and Pan. You can also write your own class to handle server-side
actions. You would do this by implementing either IPageServerToolAction or
IMapServerToolAction depending on the BuddyControlType of the toolbar. If you
add a class to your current project you’ll have to type in the assembly name for
the ServerToolActionAssembly property in the ToolbarItem Collection Editor the
first time you use it. For the class to be available in the editor, you’ll have to
build the project after adding the class.

See Chapter 7, ‘Developer scenarios’ for
examples of tool actions.

Ch05.pmd 1/25/2005, 5:54 PM211

212 • ArcGIS Server Administrator and Developer Guide

TOOLBAR CONTROL

Configuring commands on a toolbar
Commands on a toolbar control execute a server-side action only. You write the
code that executes on the server in the CommandClick event for a toolbar control.
The argument passed into the event handler is of type
ToolbarCommandClickEventArgs. This argument has a property called
CommandName through which you can find out which Command an end user
clicked. The following code shows how you can use a switch statement to ex-
ecute the appropriate server-side action based on the command clicked.
private void Toolbar1_CommandClick(object sender,

 ESRI.ArcGIS.Server.WebControls.ToolbarCommandClickEventArgs e)

{

 switch(e.CommandName)

 {

 case "FullExtent":

 FullExtent();

 break;

 case "ZoomBack":

 ZoomBack();

 break;

 case "ZoomNext":

 ZoomForward();

 break;

}

}

CONTROLLING THE LOOK OF THE TOOLBAR

The Orientation property allows you to specify whether the toolbar control is
displayed horizontally or vertically. The ToolbarStyle allows you to specify whether
or not the toolbar will have text and images. You can choose from the following
three styles: ImageAndText, TextOnly, and ImageOnly. Use the TextPosition and
Alignment properties to position the text relative to the image.

You control the look of the toolbar with the following four properties. Each
style property allows you to set up the background color, font, and so on.

• ToolbarItemDefaultStyle—the style applied to Commands and Tools when they are
not disabled; hovered upon; or, in the case of Tools, selected.

• ToolbarItemHoverStyle—the style applied to Commands and Tools when the
mouse is held over them.

• ToolbarItemDisabledStyle—the style applied to Commands and Tools when their
Disabled property is set to True.

• ToolbarItemSelectedStyle—the style applied to the CurrentTool of the toolbar. It’s
also applied to a Command from the time it gets clicked until the page re-
freshes.

A toolbar can show text and images, text only,
or images only.

Ch05.pmd 1/25/2005, 5:54 PM212

Chapter 5 • Developing Web applications with .NET • 213

WHAT’S STORED IN SESSION

The following complex properties: ToolbarItems, BuddyControls,
ToolbarItemDefaultStyle, ToolbarItemHoverStyle, ToolbarItemDisabledStyle, and
ToolbarItemSelectedStyle are stored in session state if EnableSessionState is set to True
on the Page. Otherwise, they are stored in view state.

CONTROL LIFE CYCLE

Here’s what the toolbar control does at each point in its life cycle.

• Instantiation—Initializes member variables with default values.

• OnInit—Toolbox adds any of its ToolbarItems that are Tool objects to the
ToolItems collection of each of the buddy controls.

• TrackViewState—Begins tracking view-state changes for complex properties,
such as ToolbarItems, BuddyControls, ToolbarItemDefaultStyle,
ToolbarItemHoverStyle, ToolbarItemDisabledStyle, and ToolbarItemSelectedStyle.

• LoadViewState—Restores view-state information of complex properties,
such as ToolbarItems, BuddyControls, ToolbarItemDefaultStyle,
ToolbarItemHoverStyle, ToolbarItemDisabledStyle, and ToolbarItemSelectedStyle, to
what they were at the end of the previous page request. Postback only.

• LoadPostData—Indicates whether RaisePostDataChangedEvent should be
called. Always returns false. Retrieves the selected tool from the hidden field
on the Web form used to store it and sets it up as the CurrentTool property.
Postback only.

• RaisePostDataChangedEvent—Does nothing. Postback only.

• RaisePostBackEvent—Fires server-side events based on the postback event
argument. If the event argument is the name of a Command, the toolbar
control fires the CommandClick event passing the name of the Command as part
of the argument. If the event argument is the name of a Tool, the toolbar
control calls the Tool’s ServerToolActionClass ServerAction method with a null
argument. Postback only.

• OnPreRender—Sets up the CurrentTool of the toolbar as the CurrentToolItem
for all of the buddy controls. Registers JavaScript required for client-side
behavior.

• SaveViewState—Saves view-state information of complex properties such as
ToolbarItems, BuddyControls, ToolbarItemDefaultStyle, ToolbarItemHoverStyle,
ToolbarItemDisabledStyle, and ToolbarItemSelectedStyle.

• Render—Renders the HTML required to draw the toolbar control. Registers
additional JavaScript used to set control specific properties. Registers a hidden
field that will keep track of the current Tool.

TOOLBAR CONTROL

Ch05.pmd 1/25/2005, 5:54 PM213

214 • ArcGIS Server Administrator and Developer Guide

EVENTS

Event fired on RaisePostBackEvent
If the event argument on a postback is the name of a Command, the
CommandClick event is fired.

Generic control events
The following events are generic to all controls. All of these events are fired
before the control does its work at the respective cycle. For example, the Init
event is fired before the toolbar control does its custom OnInit actions. Here’s
what you can expect to happen at each of these events:

• Init—Occurs when the server control is initialized, which is the first step in its
life cycle. This is too early in the life cycle to access any of the toolbar
control’s properties.

• Load—Occurs when the server control is loaded into the Page object. At this
stage, all of the toolbar control’s initializations are complete, and changes
saved into view state on the previous request have been applied. This is the
stage to access control properties.

• PreRender—Occurs when the server control is about to render to its contain-
ing Page object and before the CurrentToolItem properties of the buddy con-
trols are set.

• Unload—Occurs when the server control is unloaded from memory. This is
where you can check the state after Render.

TOOLBAR CONTROL

Ch05.pmd 1/25/2005, 5:54 PM214

Chapter 5 • Developing Web applications with .NET • 215

IMPERSONATION CONTROL

In order to access a GIS server and the server objects running on it, a Web appli-
cation must connect to the server using an operating system account that has
access to the GIS server. The impersonation control helps you set the particular
identity, or user account, your Web application will impersonate. The imperson-
ation control accepts a username, password, and a domain or machine name and
encrypts this information into the Web application. The control dynamically
changes the identity of the Web application from the logged on user account to
the impersonated user account.

Incorporates the appropriate
security credentials for
accessing a GIS server
onto a Web application.

Impersonation Control Object

Impersonation

The impersonation control provides a simple mechanism for allowing your Web
application to access a GIS server. ASP.NET provides other ways to impersonate
a user identity and to manage security in general. A discussion of those methods is
beyond the scope of this book. If you have difficulty implementing imperson-
ation in your Web application, you might find the following URL useful:

http://support.microsoft.com/?id=306158
USING THE IMPERSONATION CONTROL

The impersonation control utilizes the Win32 API LogonUser to dynamically
perform the impersonation. The LogonUser function verifies that the specific
user account is a valid account on the system. If the account is valid, the Web
application will successfully impersonate the specified user account. However,
that user account must also have access to the GIS server for the Web application
to run properly. You need to ensure that you’ve added this account to the ArcGIS
Server users group, called agsusers. For more information on adding a user ac-
count to the agsusers group, see the section titled ‘Setting up and connecting to a
GIS server’ in Chapter 3, ‘Administering an ArcGIS Server’.

The current Windows user as returned by the
 System.Security.Principle.WindowsIdentity object.
The user to impersonate who has access to the
 GIS server.
Returns true if impersonating, false otherwise.

Incorporates the appropriate security credentials
 for accessing a GIS server into a Web application.

Impersonation :
System.Web.UI.WebControls.WebControls

CurrentUser: System.String

Identity: System.String

IsImpersonating: System.Boolean

Impersonate: System.Boolean

UndoImpersonation: System.Void

IdentityObject (Identity id): Identity Sets the identity of a user through the Identity class.
Dynamically modifies the current windows user with the
 value in the Identity property.
Return to the original Windows identity.

Ch05.pmd 1/25/2005, 5:54 PM215

216 • ArcGIS Server Administrator and Developer Guide

The impersonation control encrypts the identity and stores it in session state on
the server for the duration of the session. When creating a Web application, each
page of the application should contain an impersonation control. However, only
the main page requires that you set a valid identity. This identity is shared by
other pages and the controls on those pages.

You can alternatively implement impersonation programmatically in your Web
application. For example, suppose you want your Web application to prompt the
end user for a username and password. Then, you can use the information the
user enters to set up impersonation. For example, you can add the following code
to the Global.asax.cs file of your Web application to enable impersonation on
every request.

At the top of the Global.asax.cs file, define the following variable:
ESRI.ArcGIS.Server.WebControls.Impersonation impersonate = null;

Then code the Application_BeginRequest and Application_EndRequest events,
substituting the appropriate values for the username, domain name, and pass-
word.
protected void Application_BeginRequest(Object sender, EventArgs e)

{

 // Enable impersonation at the beginning of a request.

 impersonate = new ESRI.ArcGIS.Server.WebControls.Impersonation();

 ESRI.ArcGIS.Server.WebControls.Identity id =

 new ESRI.ArcGIS.Server.WebControls.Identity();

 id.UserName = "username";

 id.Domain = "domainname";

 id.Password = "password";

 impersonate.IdentityObject(id);

 impersonate.Impersonate();

}

protected void Application_EndRequest(Object sender, EventArgs e)

{

 // Undo impersonation at the end of a request.

 impersonate.UndoImpersonation();

}

In your code, you probably won’t hard code the username and password, as
shown above, but instead you’ll obtain them from an end user.

WHAT’S STORED IN SESSION STATE

The impersonation control stores the Identity in application state so that it can be
shared between other Web controls in the .NET ADF. Nothing is stored in view
state.

IMPERSONATION CONTROL

Ch05.pmd 1/25/2005, 5:54 PM216

Chapter 5 • Developing Web applications with .NET • 217

IMPERSONATION CONTROL

CONTROL LIFE CYCLE

Here’s what the control does at each point in its life cycle.

• Instantiation—Initializes member variables with default values.

• OnInit—Attempts to log on as the specified identity.

• TrackViewState—Uses the base class implementation.

• LoadViewState—Uses the base class implementation. Postback only.

• LoadPostData—Does nothing.

• OnLoad—Uses the base class implementation.

• RaisePostDataChangedEvent—Does nothing.

• RaisePostBackEvent—Does nothing.

• OnPreRender—Does nothing.

• SaveViewState—Uses the base class implementation.

• Render—Does nothing.

• Unload—If impersonating a validated identity, removes the impersonation
and reestablishes the default user.

Ch05.pmd 1/25/2005, 5:54 PM217

218 • ArcGIS Server Administrator and Developer Guide

NORTH ARROW CONTROL

Displays the North arrow of
a map control.

Displays a particular data frame
of a map server object.

North Arrow Control Objects

0..1

NorthArrow

Map

The associated map control.
The font character index of the North arrow.
The font the North arrow is obtained from.
The format of the image that will be generated.
The URL location of the image to display in the control.
The size of the North arrow in points.
The tab index of the control.
Streams images instead of getting files from the server.

Displays the North arrow of a map control.NorthArrow :
System.Web.UI.WebControls.Image

BuddyControl: System.String
CharacterIndex: System.Int32
FontName: System.String
ImageFormat: WebImageFormat
ImageUrl: System.String
Size: System.Int32
TabIndex: System.Int16
UseMIMEData: System.Boolean

Draw (WebMap webMap): WebImage Draws the North arrow character marker.

The North arrow control displays a North arrow on the Web form. A North
arrow indicates the orientation of the data frame. The North arrow will point in
the north direction for the data frame displayed in the map control.

When you add a North arrow to your Web form, you associate it with a particular
map control with the BuddyControl property. The North arrow control implements
all the methods it needs; thus, there is no associated convenience class.

The default FontName used by Visual Studio .NET is ESRI North. This font
contains the North arrows used in ArcGIS Desktop. Within this font, you specify
the particular CharacterIndex of the North arrow you want to use. The default
CharacterIndex is 177. In the ESRI North font, character indexes range from 33 to
125 and 161 to 218.

Ch05.pmd 1/25/2005, 5:54 PM218

Chapter 5 • Developing Web applications with .NET • 219

NORTH ARROW CONTROL

To obtain an appropriate value for CharacterIndex, convert the hexadecimal num-
ber—displayed in the lower left corner of the dialog box—to decimal and use the
decimal value as the CharacterIndex. In the figure above, the hexadecimal value of
4E represents a decimal value of 78. You would use 78 as the CharacterIndex.

Alternatively, you can use ArcMap to view character indexes directly. Just add a
North arrow in ArcMap, then display the properties of the North arrow.

Click the Character button on the dialog box to display the symbols. In the lower
left corner, you’ll see character index. In the figure below, the CharacterIndex is 78.

You can use the Microsoft Windows Character Map to view the fonts available to
you.

Ch05.pmd 1/25/2005, 5:54 PM219

220 • ArcGIS Server Administrator and Developer Guide

NORTH ARROW CONTROL

WHAT’S STORED IN SESSION STATE

The North arrow control does not utilize session state unless UseMIMEData is set
to true. In this case, the MIMEData object is stored in session state.

CONTROL LIFE CYCLE

Here’s what the control does at each point in its life cycle.

• Instantiation—Initializes member variables with default values.

• OnInit—If the North arrow control is associated with a map control, it
listens for the DataFrameChanged event.

• TrackViewState—Uses the base class implementation.

• LoadViewState—Uses the base class implementation. Postback only.

• LoadPostData—Does nothing.

• OnLoad—Uses the base class implementation.

• RaisePostDataChangedEvent—Does nothing.

• RaisePostBackEvent—Does nothing.

• OnPreRender—Draws the North arrow if necessary.

• SaveViewState—Uses the base class implementation.

• Render—Writes the HTML tag.

• Unload—Does nothing.

Ch05.pmd 1/25/2005, 5:54 PM220

Chapter 5 • Developing Web applications with .NET • 221

SCALE BAR CONTROL

The bar color of the scale bar image.
The font used for the display of text labels.
The scale bar height in points.
The style of the scale bar.
The measurement units (e.g., miles) of the scale bar.
The associated map control.
The total number of divisions.
The number of divisions to the left of the zero.
The format of the image that will be generated.
The URL location of the image to display in the control.
The number of subdivisions per major division.
The tab index of the control.
Streams images instead of getting files from the server.

Displays the scale bar of a map control.ScaleBar : System.Web.UI.WebControls.Image

BarColor: System.Drawing.Color
BarFont: System.Drawing.Font
BarHeight: System.Double
BarStyle: ScaleBarStyle
BarUnits: Units
BuddyControl: System.String

Subdivisions: System.Int16

Divisions: System.Int32
DivisionsBeforeZero: System.Int32
ImageFormat: WebImageFormat
ImageUrl: System.String

TabIndex: System.Int16
UseMIMEData: System.Boolean

Draw (WebMap webMap): WebImage Draws the scale bar.

Displays the scale bar of
a map control.

Displays a particular data frame
of a map server object.

Scale Bar Control Objects

0..1

ScaleBar

Map

The scale bar control displays the scale bar of a particular data frame of a map
server object. The scale bar provides a visual indication of the sizes of features
and the distances between features shown on a data frame. A scale bar is divided
into parts and labeled with its ground length, usually in multiples of map units
such as tens of kilometers or hundreds of miles. If the scale of the data frame
changes, for example, when an end user zooms in, the scale bar control updates
accordingly.

The scale bar control has no convenience class, as all the necessary functionality is
encapsulated within the control itself. When you add a scale bar to your Web
application, you must set the BuddyControl property to associate the scale bar with
a particular map control.

The properties of the scale bar control allow you to control the visual aspects of
the display. You can set the color with BarColor property and the font with
BarFont property. Use BarStyle to choose the particular style of scale bar you want
to display and BarUnits to set the map units.

Ch05.pmd 1/25/2005, 5:55 PM221

222 • ArcGIS Server Administrator and Developer Guide

SCALE BAR CONTROL

The scale bar is divided into segments that measure distances. You can control
how many segments will appear with the Divisions property. For example, the
scale bars in the figure to the left have two major divisions. The first division is
divided into four subdivisions. The number of subdivisions for the first division
is controlled with the Subdivisions property.

WHAT’S STORED IN SESSION STATE

The scale bar control does not utilize session state unless UseMimeData is set to
true. In this case, the MIMEData object is stored in session state.

CONTROL LIFE CYCLE

Here’s what the control does at each point in its life cycle.

• Instantiation—Initializes member variables with default values.

• OnInit—Listens for the DataFrameChanged or ContentsChanged events on
the associated map control.

• TrackViewState—Uses the base class implementation.

• LoadViewState—Uses the base class implementation. Postback only.

• LoadPostData—Does nothing.

• OnLoad—Uses the base class implementation.

• RaisePostDataChangedEvent—Does nothing.

• RaisePostBackEvent—Does nothing.

• OnPreRender—Draws the scale bar if necessary.

• SaveViewState—Uses the base class implementation.

• Render—Writes the HTML tag.

• Unload—Does nothing.

The BarStyle property sets the style of the scale
bar. From top to bottom: Alternating,

DoubleAlternating, Hollow, SingleDivision,
ScaleLine, and SteppedScaleLine.

Ch05.pmd 1/25/2005, 5:55 PM222

Chapter 5 • Developing Web applications with .NET • 223

GEOCODECONNECTION COMPONENT

The GeocodeConnection component does not present a visual interface to work with
in the Visual Studio .NET designer; rather, it provides a server component similar
to that of a SQL data provider.

Unlike the other .NET ADF controls, this component derives from
System.ComponentModel.Component, not
System.Web.UI.WebControls.WebControl.

Specifies what GIS server and
geocode server object to access.

Provides the buisness logic
behind the GeocodeConnection
component and includes
methods for geocoding addresses.

GeocodeConnection Component Objects

0..1

1

Geocode-
Connection

WebGeocode

The GeocodeConnection component has properties to define the Host and
ServerObject and also a few properties that define how addresses will be
matched—MininumCandidateScore, MinimumMatchScore, and ShowAllCandidates.
The GeocodeConnection component’s convenience class is WebGeocode. You can
create a WebGeocode object through the GeocodeConnection::CreateWebGeocode
method or directly through the WebGeocode class itself. Through WebGeocode, you
can find addresses.

Name of the ArcGIS Server host machine to connect to.
The mimimum candidate score set on the
 GeocodeServer results.
The minimum match score set on the GeocodeServer results.
The name of the geocode server object.
When true, displays all candidates. When false, only shows
matched candidates.

Specifies what GIS server and geocode server
 object to access.

GeocodeConnection :
System.ComponentModel.Component

Host: System.String
MinimumCandidateScore: System.Int32

MinimumMatchScore: System.Int32
ServerObject: System.String
ShowAllCandidates: System.Boolean

CreateWebGeocode: WebGeocode Creates a WebGeocode object.

The GeocodeConnection object always releases the server context when you dispose
of the object (that is, at the end of a using block). This is true for both pooled
and non-pooled objects.

FINDING AN ADDRESS

The primary purpose of the GeocodeConnection component is to allow you to
match addresses using a geocode server object. The example below shows you
how to use the FindAddressCandidates and GetCandidateFields methods on a
WebGeocode object. This example utilizes the following controls: a
GeocodeConnection component, an impersonation control, two data grids, and a
button.

Ch05.pmd 1/25/2005, 5:55 PM223

224 • ArcGIS Server Administrator and Developer Guide

You will need the following using statements in your code to run the code below.
using ESRI.ArcGIS.Server;

using ESRI.ArcGIS.Server.WebControls;

using ESRI.ArcGIS.esriSystem;

The following code is attached to the button control’s Click event. Although the
address information is hard coded into this example, you can easily add user
interface components, such as a text input control, to the Web form to prompt
the end user for these values.
private void Button1_Click(object sender, System.EventArgs e)

{

 geocodeConnection1.Host = "gisserver";

 geocodeConnection1.ServerObject = "RedlandsGeo";

 geocodeConnection1.MinimumCandidateScore = 60;

 geocodeConnection1.MinimumMatchScore = 10;

 geocodeConnection1.ShowAllCandidates = true;

 using (WebGeocode geocodeconn = geocodeConnection1.CreateWebGeocode())

 {

 IServerContext context = geocodeconn.ServerContext;

 IPropertySet pset = context.CreateObject("esriSystem.PropertySet")

 as IPropertySet;

 pset.SetProperty("Street", "380 New York Street");

 pset.SetProperty("Zone", "92373");

 System.Data.DataSet dataset1 =

 geocodeconn.FindAddressCandidates(pset, null, false, false);

 if (dataset1 != null)

 {

 DataGrid1.DataSource = dataset1;

 DataGrid1.DataBind();

 }

 System.Data.DataSet dataset2 = geocodeconn.GetCandidateFields();

 if (dataset2 != null)

 {

 DataGrid2.DataSource = dataset2;

 DataGrid2.DataBind();

 }

 }

}

MAPPING AN ADDRESS

Suppose you want to draw an address location on a map. In your Web applica-
tion, you’ll utilize both a geocode server object and a map server object. The
geocode server object finds the location of the address you want to draw on the
map server object. However, because a geocode server object and a map server
object run in separate server contexts, you need to pass the coordinates of the
geocoded location to the map server object.

The sample code below geocodes an address and draws a marker symbol on the
map at the address location. To create this sample, add the following controls to a
Web form: a map control, a GeocodeConnection component, an impersonation
control, and a button. Set a map server object on the map control and a geocode

GEOCODECONNECTION COMPONENT

Ch05.pmd 1/25/2005, 5:55 PM224

Chapter 5 • Developing Web applications with .NET • 225

server object on the GeocodeConnection component. The map and geocode server
objects should share the same geographic location.

Code the Click event of the button as follows:
private void Button1_Click(object sender, System.EventArgs e)

{

 geocodeConnection1.Host = "gisserver";

 geocodeConnection1.ServerObject = "RedlandsGeo";

 using (WebGeocode wgc = geocodeConnection1.CreateWebGeocode())

 {

 IPropertySet pset =

 wgc.ServerContext.CreateObject("esriSystem.PropertySet") as

 IPropertySet;

 pset.SetProperty("Street", "380 New York St");

 pset.SetProperty("Zone", "92373");

 IPoint pt = wgc.GeocodeAddress(pset, null);

 using (WebMap webmap = Map1.CreateWebMap())

 {

 DrawAddress(webmap, pt);

 webmap.Zoom(0.5, pt);

 webmap.Refresh();

 }

 }

}

The code above calls the following function. This function draws the address
location with a marker symbol that is added to the map’s graphic layer.
public void DrawAddress (WebMap webmap, IPoint pt)

{

 IServerContext serverContext = webmap.ServerContext;

 IMapDescription mapDescription = webmap.MapDescription;

 // Copy the geocoded address point to the map context

 IPoint point = serverContext.CreateObject("esriGeometry.Point") as

 IPoint;

 IGeometry geometry = point;

 geometry.SpatialReference = webmap.SpatialReference;

 point.PutCoords(pt.X, pt.Y);

 point.Project(mapDescription.SpatialReference);

 if (point == null)

 return;

 // Instantiate a graphics elements collection

 IGraphicElements graphicElements =

 serverContext.CreateObject("esriCarto.GraphicElements") as

 IGraphicElements;

 // Specify symbol RGB color

 IRgbColor rgbColor = Converter.ToRGBColor(serverContext,

 System.Drawing.Color.Red);

 ISimpleMarkerSymbol simpleMarkerSymbol1 =

 serverContext.CreateObject("esriDisplay.SimpleMarkerSymbol") as

 ISimpleMarkerSymbol;

 simpleMarkerSymbol1.Color = rgbColor;

GEOCODECONNECTION COMPONENT

Ch05.pmd 1/25/2005, 5:55 PM225

226 • ArcGIS Server Administrator and Developer Guide

 simpleMarkerSymbol1.Style = esriSimpleMarkerStyle.esriSMSCircle;

 simpleMarkerSymbol1.Size = 9;

 //Create MarkerElement

 IMarkerElement markerElement1 =

 serverContext.CreateObject("esriCarto.MarkerElement") as

 IMarkerElement;

 markerElement1.Symbol = simpleMarkerSymbol1;

 IElement pointElement1 = markerElement1 as IElement;

 //Set the geometry of the point element

 pointElement1.Geometry = point;

 IGraphicElement markerGraphicElement1 = pointElement1 as

 IGraphicElement;

 graphicElements.Add(markerGraphicElement1);

 // Pass array of elements to Graphic Container of Map Description

 mapDescription.CustomGraphics = graphicElements;

}

WHAT’S STORED IN SESSION

The GeocodeConnection component doesn’t utilize session state.

CONTROL LIFE CYCLE

Unlike other ADF Web controls, a server component does not have a control life
cycle; instead, the class is instantiated during Page load and construction in the
Page Life cycle.

GEOCODECONNECTION COMPONENT

Ch05.pmd 1/25/2005, 5:55 PM226

6
Developing

Web applications
with Java

ArcGIS Server includes an Application Developer Framework (ADF)—built with the

Java 2 Platform Enterprise Edition (J2EE) standard JavaServer Faces (JSF)—that

allows you to integrate GIS functionality into your Web applications. The ArcGIS

Server Java ADF includes a set of custom Web controls and templates that you’ll

use to build your Web applications. You can start building your Web application with

one of several predefined templates, including the Map Viewer template that

offers basic map navigation and display, the Search template that finds features

by attributes, and the Geocoding template that locates places by address.

Alternatively, use the Web controls directly to create your own specialized

application in a style that conforms to your existing Web site.

This chapter describes how to create Web applications using the ArcGIS Server

ADF for Java. Many of the topics discussed in this chapter assume you have

already read the previous chapters of this book. At a minimum, you should read

Chapter 4, ‘Developing ArcGIS Server applications’.

Topics covered in this chapter include:

• an overview of the ADF • creating Web applications from templates and Web

controls • programming guidelines • Web control reference

ch06.pmd 1/25/2005, 5:57 PM227

228 • ArcGIS Server Administrator and Developer Guide

THE ARCGIS SERVER APPLICATION DEVELOPER FRAMEWORK

In the previous chapters of this book, you learned about the ArcGIS Server
architecture, administration, and programming practices. You’ve probably already
added a map to your GIS server and previewed it in ArcCatalog. This chapter will
show you how to integrate that map or a locator into a Web application. You’ll
find that whatever type of Web application you want to build—from basic map
display and query to sophisticated GIS editing and analysis—the ArcGIS Server
ADF for Java allows you to utilize all of ArcObjects in a Web environment.

Creating Web applications that access your GIS server ultimately involves pro-
gramming ArcObjects. The Java ADF is built on top of JSF, using this standard
to create new classes that support a set of custom Web controls and provide
access to ArcGIS Server and, subsequently, ArcObjects. The diagram to the left
shows how the Java ADF fits into the overall development environment.

You can think of the Java ADF as:

• A set of custom Web controls exposed as JavaServer Pages (JSP) tags.

• A set of templates to be used as starting points for your Web application.

• An API for building client applications that access a GIS server.

• A J2EE Connector Architecture (JCA) compliant resource adapter that
allows Enterprise JavaBeans (EJB) to call and work with ArcGIS Server
objects.

This chapter describes the Web controls, Web templates, and programming prac-
tices for building applications that access a GIS server. Information and discus-
sion regarding the JCA resource adapter and EJBs can be found in Appendix C,
‘Developing applications with EJBs’.

In the most basic sense, the Java ADF provides you with an additional set of
objects to program with. This chapter focuses on how to create Web applications
that access a GIS server with the Java ADF objects. The Java ADF delivers these
objects to you as Web controls.

The Web controls expose a set of properties and methods that allow you to
interact with the GIS server objects, for example, helping you manage connec-
tions to the server, access the SOM, and retrieve server objects. Actually, you
don’t have to use the Java ADF at all to create your Web applications. You can
directly access ArcGIS Server objects—and thus, ArcObjects—through the Java
API. However, you’ll find that the Java ADF encapsulates many of the details of
programming directly with the ArcGIS Server objects and exposes a rich,
mapping-centric user interface through the Web controls.

The templates help you start building your Web applications. Each template
incorporates the Web controls into its user interface and addresses a particular
GIS task—for example, map display and query. While you can use the templates
out of the box and simply connect them to your GIS server and server objects,
they are primarily intended as a starting point for building your own Web applica-
tion. All the code for the templates is provided to you, so you can easily custom-
ize a template to suit your needs or cut and paste JSP code fragments into your
own application. The templates also serve as a great learning tool for building
your own applications because all the code is there to guide you.

The ArcGIS Server Application Developer
Framework for Java sits at the top of the various

programming components.

The Java ADF, as described in this chapter,
was developed with JSF version 1.0. For the

latest information on supported servlet
engines and application servers as well as
software and documentation updates, visit

the ESRI Support Web site at http://
support.esri.com. For more information about

JSF, visit http://java.sun.com/j2ee/
javaserverfaces.

ArcGIS Server ADF for Java

JSF
Framework

ArcGIS Server

ArcObjects

ch06.pmd 1/25/2005, 5:57 PM228

Chapter 6 • Developing Web applications with Java• 229

AN OVERVIEW OF THE TEMPLATES AND WEB CONTROLS

WEB TEMPLATES

The Java ADF includes a set of templates you can use as a starting point for
creating an application.

Each template utilizes a set of Web controls that is part of the Java ADF. For
example, those templates that display a map utilize the map control. The primary
advantage of building your Web application with one of the templates is that
much of the commonly used functionality is already programmed into them so
you don’t have to program it yourself. For example, the Map Viewer template
displays a toolbar that contains the common map navigation tools for panning
and zooming around the map.

As with any template, the look of it serves as a starting point for your Web
application. You can customize the layout of the controls on the template and
change things such as fonts and colors to suit your needs. If you plan to integrate
the application you create into an existing Web site, you also might add compo-
nents, such as company logos and site navigation tools, so that it looks similar to
your existing Web pages and integrates seamlessly into your Web site.

Most likely, you’ll want to extend the functionality provided in a particular
template and incorporate your own custom operations. That’s when you’ll start
programming with the server API and ArcObjects.

Each template included with the Java ADF is described below. Later in this
chapter, you’ll see how to use one to build your own Web application.

Map Viewer template
The Map Viewer template provides basic map display capabilities. It consists of a
main map, an overview map, a table of contents (legend), a North arrow, and a
scale bar. The template also contains a toolbar with built-in tools for panning and
zooming. For any map-centric application, the Map Viewer template offers a
good starting point.

Search template
The Search template provides a search-centric interface for finding features on a
map. The look of the template is similar to what you might see on the Web for a
search engine. Enter a search string and click GO to yield a list of features that
match the search string. Click the result you’re interested in to get more details
about it or to reveal a map that highlights the particular feature.

The Search template searches for matching values in the attribute tables of the
layers on the map you incorporate into your application. Thus, the list of results
returned is restricted to the features on your map. When creating your applica-
tion, you may want to clearly indicate the types of values that can be searched.

Page Layout template
The Page Layout template displays the entire page layout of a map. It shows all
the data frames on the map as well as any map surrounds on the layout, such as
the map title, legend, North arrow, and scale bar. This template provides the same
view of a map as you’d see in layout view in ArcMap. The toolbar included in the
template allows you to pan and zoom each data frame on the map and also pan
and zoom around the page layout itself.

Search template

Page Layout template

Map Viewer template

ch06.pmd 1/25/2005, 5:57 PM229

230 • ArcGIS Server Administrator and Developer Guide

Thematic template
The Thematic template adds thematic mapping symbolization capabilities on top
of the Map Viewer template. Outwardly, the map display in this template looks
the same as that of the Map Viewer template. This template, however, allows the
end user to dynamically change how individual layers are drawn by classifying the
data in the layer. This template actually modifies the underlying map server object
and, thus, requires that you configure it with a non-pooled object.

The Thematic template provides the following classification schemes:

• Natural Breaks

• Equal Interval

• Quantile

Geocoding template
The Geocoding template provides an interface for finding map locations by
address. Enter the address that you want to find and click Locate. You’ll be
presented with a list of candidates that match the address. Click the result you’re
interested in to reveal a map that shows the address location. The interface
displayed in the template changes depending on the address style you specify.

Buffer Selection template
The Buffer Selection template allows you to find features in one layer based on
their location relative to features in another layer. For instance, suppose you want
to determine how many homes a recent flood affected, given that the rivers in the
area overflowed their banks by 1,000 meters. An application created from this
template can perform the spatial query and identify which residences were af-
fected by the flooding.

Performing this sort of spatial query involves creating a buffer at a specified
distance around a set of features—for example, rivers—and finding other fea-
tures based on their spatial relationship to the buffered area. The Buffer Selection
template provides options for finding features that are completely within or
intersect the buffered area.

Web Service Catalog template
The Web Service Catalog template provides a way to organize related server
objects into groups and make them accessible over the Internet via HTTP as Web
services. Use Web service catalogs with ArcGIS Desktop to give people access to
the specific server objects they need. For example, you might choose to organize a
series of maps used by a particular group of people in a Web service catalog.
Alternatively, as a Web developer, you can use the services provided by the Web
service catalog in Web applications.

ArcGIS Desktop users can connect to a Web service catalog via the GIS Servers
entry in ArcCatalog. When connecting, provide the URL address of the Web
service catalog created through this template, for example,
http://www.esri.com/webcatalog/default.jsp. Web developers can reference the Web
service catalog with the following:
http://www.esri.com/webcatalog/default.jsp?wsdl.

This chapter describes how to create a Web
service catalog using the template provided with
the Java ADF. For general information about Web
service catalogs, see the section titled ‘Program-

ming Web services’ in Chapter 4.

Thematic template

Geocoding template

Buffer Selection template

AN OVERVIEW OF THE TEMPLATES AND WEB CONTROLS

ch06.pmd 1/25/2005, 5:57 PM230

Chapter 6 • Developing Web applications with Java• 231

The Web Service Catalog template is unlike the other templates in that it presents
no user interface to an end user. Instead, running the template creates a Web
service that can be consumed by client applications such as ArcGIS Desktop.
When you build the template, you can choose the particular server objects you
want to incorporate into your Web service catalog. Once you select them, simply
deploy the template to make the Web service catalog available for client access.

WEB CONTROLS

As mentioned earlier, the Java ADF comes with a set of Web controls that you’ll
use while building your Web applications. The Web controls are analogous to the
kinds of controls—such as buttons, labels, and text boxes—you see in any Web
application, except in this case, they represent components commonly found on a
map, such as the map itself and a legend (also referred to as a table of contents).
You can think of the set of Web controls as the user interface component and its
associated data object the part that does most of the GIS work.

As you might expect, the Web controls have attributes such as height, width,
visibility, border style, and so on. In addition, the Web controls can respond to
client actions, such as a control being clicked, and perform an appropriate action.
For instance, in the case of a map control, the client action might be the dragging
of a box and the associated server-side event might be to zoom in to the extent
specified by the box or to select all the map features that are contained by the
box. The Java ADF includes tools, command buttons, and listeners. Tools interact
with a control, for example, clicking a feature on the map control. A command
button directly executes a server-side action. A listener responds to an event
passed from a command button. You’ll find descriptions of tools, command
buttons, and listeners later in this chapter. You can also learn more about the Java
ADF listeners in the ArcGIS Server Java ADF Listeners and Actions documenta-
tion in the ArcGIS Developer Help.

The Web controls provide listeners and actions for common mapping operations,
such as panning and zooming a map or buffering features, but they don’t attempt
to reproduce all of the functionality of ArcObjects. What they do provide,
however, is entry points into the ArcGIS Server and ArcObjects APIs. For ex-
ample, in the code you write, you’ll be able to programmatically access a specific
map server object from the map control. From there, you’ll start programming
ArcObjects to implement the specific functionality your application requires—for
example, you may want to add new layers to the map or change how the layers
are symbolized.

The following sections provide a brief description of each Web control and a
look at how each tag is used in the templates. For a complete description of the
tags and attributes, see the Java ADF tag library in the ArcGIS Developer Help.
You’ll find coding examples along with more detailed information about the
interaction of a particular Web control later in this chapter. In addition, view the
Java ADF object model diagram accessed from the ArcGIS Developer Help.

Data objects are discussed in more detail later
in this chapter.

AN OVERVIEW OF THE TEMPLATES AND WEB CONTROLS

ch06.pmd 1/25/2005, 5:57 PM231

232 • ArcGIS Server Administrator and Developer Guide

Context control
The context control establishes and maintains a connection with the GIS server.
In the context tag, the resource attribute specifies the GIS server machine and the
server object. All controls must be nested within a context tag. Nesting other tags
within the context tag links them together and allows all the controls to share the
same context. For example, you put a map tag and a toc tag in the same context to
indicate that they work with each other. The example below is based on the tags
in the Map Viewer template’s mapviewer.jsp file. As you read through the remain-
ing sections that describe the other controls, refer to this code to understand how
the tags are structured.
<ags:context id="mapContext" resource="world@localhost">
 <ags:map ... />
 <ags:overview ... />
 <ags:toc ... />
 <ags:northArrow ... />
 <ags:scaleBar ... />
</ags:context>

The above example shows how control tags are nested within the context con-
trol. Alternatively, you could associate, or “buddy”, the controls to the context.
<ags:context id="mapContext" resource="world@locahost" />

<ags:map contextId="mapContext" ... />

<ags:overview contextId="mapContext" ... />

<ags:toc contextId="mapContext" ... />

<ags:northArrow contextId="mapContext" ... />

<ags:scaleBar contextId="mapContext" ... />

The examples used in this guide will work with a nested context. For further
information on how to use the tags in the buddy system, refer to the Java ADF
tag library in the ArcGIS Developer Help.

Map control
Because the map control displays the map, it will often be the main visual compo-
nent of your Web application. The map control displays one particular data frame
of a map document. Like the ArcMap data view, you can choose which data
frame to display in the map control at a given time. You can change the data
frame by setting the dataFrame attribute of the map tag.

The Java ADF provides listeners and actions for panning and zooming the map.
Listeners and actions are discussed later in this chapter and described in the
ArcGIS Developer Help.

PAGE LA

To learn more about the attributes of these
tags, refer to the Java ADF tag library in the

ArcGIS Developer Help.

AN OVERVIEW OF THE TEMPLATES AND WEB CONTROLS

ch06.pmd 1/25/2005, 5:57 PM232

Chapter 6 • Developing Web applications with Java• 233

Page layout control
The page layout control displays the layout of a map and is analogous to layout
view in ArcMap. The page layout control, represented by the pageLayout tag,
displays all the map elements, including data frames and any map surrounds. This
example is based on the tags in the Page Layout template’s pageLayout.jsp.
<ags:context id="mapContext" resource="world@localhost">
 <ags:pageLayout id="PageLayout0" left="233" top="115" width="535"
 height="408" activeTool="PageMapZoomIn" .../>
 <ags:toc ... />
</ags:context>

The Java ADF provides listeners and actions for panning and zooming the page
layout or individual data frames on the layout.

Overview control
The overview control is similar to the map control in that it displays a particular
data frame of a map server object. However, the purpose of an overview map is
to provide a point of reference for the area displayed on its associated map
control. The overview control, represented by the overview tag, always shows its
data frame at full extent. A small area of interest box on the overview map
represents the currently displayed area on its associated map control. You can
interactively move this box around to pan the area displayed in the map control.

Like the other controls, the overview tag should be nested in a context tag to link it
to a particular map control. But the overview tag is different in that it has a resource
attribute that allows you to specify a different server object (from the map) for
the overview map.

Table of contents control
The table of contents control is equivalent to the table of contents you see in
ArcMap. The table of contents control, represented by the toc tag, lists the layers
on the map and shows what the features represent. Checking a layer in the table
of contents will draw it on the map or page layout. You can choose to show the
table of contents for all data frames in the map server object or just the data
frame being displayed in the associated map control.

North arrow control
The North arrow control displays the North arrow of a map control. This control
uses a default symbol from the ESRI North TrueType font. You can specify a
character index, using the northArrow tag’s charIndex attribute, if you want to
change the North arrow symbol.

Scale bar control
The scale bar control displays the scale bar of a map control. You can change the
appearance of the scale bar control, such as the font, color, or size, and set other
properties, such as the units and number of divisions, by editing the attributes of
the scaleBar tag.

AN OVERVIEW OF THE TEMPLATES AND WEB CONTROLS

ch06.pmd 1/25/2005, 5:57 PM233

234 • ArcGIS Server Administrator and Developer Guide

Geocode control
The geocode control renders the input fields that allow you to enter address
information. This control works with the address style from the locator to deter-
mine the input fields to display. For example, if the address style is US Streets
with Zone, the control will render an address and ZIP Code text box. The results
of a geocode operation are put into a data table.

The example below, based on the Geocoding template’s geocode.jsp file, uses two
context tags. The first context tag references the geocode server object and the
resourceType attribute is set to geocode. The second context tag includes the map
and dataTable tags. The dataTable tag should be nested in the same context tag as
the map tag to display the geocoded address on the map.
<ags:context id="geocodeContext" resource="locator@localhost"
 resourceType="geocode">

 <ags:geocode id="geocode1" left="45" top="15" width="688">

 <jsfc:attribute name="fieldAlias:Street" value="Address" />

 <jsfc:attribute name="fieldAlias:Zone" value="ZIP Code" />

 </ags:geocode>

</ags:context>

<ags:context id="mapContext" resource="map@localhost">

 <ags:map .../>

 <!— Geocode result Data Table —>

 <jsfh:dataTable id="geocodeTable"

 binding="#{sessionScope['geocodeContext'].webGeocode.results.dataComponent}"

 value="#{sessionScope['geocodeContext'].webGeocode.results.resultRows}"

 rendered=
 "#{sessionScope['geocodeContext'].webGeocode.results.count > 0}"

 rows="5" … >

 </jsfh:dataTable>

 <!— Geocode result Scroller Component —>

 <ags:scroller id="idScroller" dataComponent="geocodeTable" left="300"
 top="250" height="20" width="400" ... />

</ags:context>

If you don’t want to display the geocoded address on a map, you would put the
geocode and dataTable tags in the same context tag. In this example, which is not
taken from the Geocoding template, you would only get a list of geocode results.
<ags:context id="geocodeContext" resource="locator@localhost"
 resourceType="geocode">

 <ags:geocode id="geocode1" left="45" top="15" width="688">

 <jsfc:attribute name="fieldAlias:Street" value="Address" />

 <jsfc:attribute name="fieldAlias:Zone" value="ZIP Code" />

 </ags:geocode>

 <jsfh:dataTable id="geocodeTable"

 binding="#{sessionScope['geocodeContext'].webGeocode.results.dataComponent}"

 value="#{sessionScope['geocodeContext'].webGeocode.results.resultRows}"

 rendered=
 "#{sessionScope['geocodeContext'].webGeocode.results.count > 0}"

 rows=:"5" … >

 </jsfh:dataTable>

 <ags:scroller id="idScroller" dataComponent="geocodeTable" left="300"
 top="250" ... />

</ags:context>

AN OVERVIEW OF THE TEMPLATES AND WEB CONTROLS

ch06.pmd 1/25/2005, 5:57 PM234

Chapter 6 • Developing Web applications with Java• 235

Identify results control
The identify results control renders the results of an identify, the action of click-
ing a map feature (or features) to return its attributes. You would use an identify
tool to perform the action of clicking a map feature.

This sample shows a map, an identify tool, and the identifyResults tag.
<ags:context id="mapContext" resource="world@localhost">
 <ags:map ... />
 <ags:identifyResults cssClass="identifyClass" />
 <IMG id="imgIdentify" name="imgIdentify" src="images/identify.gif"
 MapPoint('Map0', 'Identify')>
</ags:context>

Scroller control
The scroller control implements paging for a data table of results, such as the
results from a search or buffer operation. A listener displays search results in a
data table. The data table that displays those results has an id attribute. You can
associate a scroller control with a data table by passing the value of the id at-
tribute to the scroller tag’s dataComponent attribute.

This example is based on the Search template; it shows the data table for a set of
find results and the scroller control attached to this data table.
<!— Find results Data table —>

<jsfh:dataTable id="findTable"

 binding="#{sessionScope['searchContext'].
 attributes['esriAGSFindResults'].dataComponent}"

value="#{sessionScope['searchContext'].attributes['esriAGSFindResults'].resultRows}"

 var="result"

 rows="5"

 rendered="#{sessionScope['searchContext'].
 attributes['esriAGSFindResults'].count > 0}" …>

 <jsfh:column id="colHeader">

 <jsfc:facet name="header"><jsfh:outputText value="Field" />
 </jsfc:facet>

 <jsfh:outputText value="#{result.field}" />

 </jsfh:column>

 …

</jsfh:dataTable>

<!— Find result Scroller Component —>

<ags:scroller id="idScroller" dataComponent="findTable" left="300"
 top="240" ... />

AN OVERVIEW OF THE TEMPLATES AND WEB CONTROLS

ch06.pmd 1/25/2005, 5:57 PM235

236 • ArcGIS Server Administrator and Developer Guide

BUILDING YOUR FIRST WEB APPLICATIONS

JSF technology offers the ability to build a Java Web application by dragging and
dropping controls to design an interface. Using an IDE that integrates with JSF,
you could drag the Java ADF map or page layout control onto a form, the way
you would a text box or button. When this book was written, no IDE with these
capabilities was available, and thus, there is no drag and drop support with the
Java ADF. However, you can use an IDE, such as JBuilder, to write the JSP files
for your application.

In this section, you’ll start learning about how to build Web applications with the
Java ADF. The following four examples explain step-by-step how to create the
sample applications.

• Creating your first Web application with a template

• Creating a Web service catalog

• Creating a Web application with the Web controls

• Accessing ArcObjects from a Web application

Each set of steps is followed by a detailed explanation of the code.

When you start using the Java ADF, located at <install
location>\DeveloperKit\Templates\Java, you will find a series of folders named
after the templates described earlier. The build and deployment tool used by the
Java ADF is Another Neat Tool (Ant), a commonly used build and deployment
tool for Java applications. Ant is part of the Java ADF installation and is invoked
with the arcgisant commands. Do not edit the files associated with the templates
found in the <install location>\DeveloperKit\Templates\Java folder. After
running the arcgisant build command, a Web application with the name you speci-
fied is created for you at <install location>\DeveloperKit\Templates\Java\
build. It is the JSP file found in this Web application’s folder that you will edit.

As you build these sample applications, you’ll be exposed to the various controls
implemented in the Java ADF and see some of the attributes, actions, events, and
listeners that are used. Chapter 7, ‘Developer scenarios’, presents more sophisti-
cated examples of Web applications that focus on a particular GIS activity. For a
complete reference of all the controls in the Java ADF, refer to the ArcGIS
Developer Help.

To code and deploy the examples yourself, you need to have access to a working
GIS server with at least one map server object running on it. See Chapter 3,
‘Administering an ArcGIS Server’, for information on starting a map server
object. In addition, you will need to understand how your application will access
the GIS server and server objects before building your first application with the
Java ADF. The ArcGIS Server administrator should add your account into the
ArcGIS Server users group, agsusers. You will enter that account along with its
domain and password when you are creating your Web application. Accessing a
GIS server is described in more detail later in this chapter.

Also, verify that you followed the instructions in the ArcGIS Server Java ADF
installation guide for configuring the Java ADF. You will need to set some envi-
ronment variables and edit a common.properties file.

ch06.pmd 1/25/2005, 5:57 PM236

Chapter 6 • Developing Web applications with Java• 237

CREATING YOUR FIRST WEB APPLICATION WITH A TEMPLATE

One of the easiest ways to create a Web application is to start from a template.
This example shows you how to create an application from the Map Viewer
template provided with the Java ADF.

1. Open a command window and navigate to
<install_location>\DeveloperKit\Templates\Java.

2. In the command window, type:
arcgisant build

3. In the dialog, type the name of your application. In this example, you can call
it “map”.

4. Type the name of the GIS server you want to use.

5. Type the domain, username, and password of an account that has access to
that GIS server.

6. Click Connect.

7. Choose the Map Viewer template from the list.

8. Choose a map server object from the list for the Map.

9. Choose a map server object from the list for the Overview Map.

In general, you can use any map server object for the overview map as long as
its geographic extent includes the geographic extent of the server object
shown in the map control. If not, you will not see the area of interest box on
the overview map.

10. Click OK.

You can navigate to <install
location>\DeveloperKit\Templates\Java\build\map to see your application.

Once created, you need to deploy your application. The deployment com-
mand will depend on the servlet engine you are using.

In this example, Tomcat is the servlet engine and the Web server’s port num-
ber is 8080.

11. To deploy your application, verify that your command window is in the
<install_location>\DeveloperKit\Templates\Java directory. Type:
arcgisant tomcat-deploy

12. In the command window, type the name of your application. In this example,
it is named ‘map’.

13. Stop and restart Tomcat.

14. View your application in a Web browser.
http://myserver:8080/map/index.html

As you can see, you can quickly build a Web application from a template. Try
experimenting with some of the other templates to see how they work and what
functionality they provide. In general, you’ll follow the same steps to build and
deploy the other templates. The next section takes a look at how you would
design an application’s look and feel.

This URL assumes that your Web server is
running on port 8080.

The username and password must have previ-
ously been granted access to the GIS server. If

your machine is not running on a domain, enter
the machine name as the domain.

Before deploying Java ADF applications, verify
that you edited the common.properties file for

your servlet engine or application server. The
common.properties file is found in the

<installlocation>\DeveloperKit
\Templates\Java folder. Information on how to

install and configure the Java ADF is found in the
ArcGIS Server Java ADF installation guide.

Type “arcgisant -projecthelp” to see the help
for arcgisant. Unlike the arcgisant build com-
mand, the arcgisant deploy command doesn’t

open a dialog; you’ll enter the required informa-
tion for the deploy into the command window.

BUILDING YOUR FIRST WEB APPLICATIONS

When experimenting with the other templates,
remember that you can only use non-pooled
server objects for the map in the Thematic

template. The Geocoding template requires a
geocode server object and a map server object.

ch06.pmd 1/25/2005, 5:57 PM237

238 • ArcGIS Server Administrator and Developer Guide

Customizing the presentation
When building an application with the arcgisant command, you only set a few
properties: a connection to a host and a server object for the map, page, overview
map, or geocode controls. Setting these properties is enough to get started with a
Java ADF template, but as you proceed with your application development, you
will want to change the presentation of the application. For example, you may
want to choose a particular data frame to display in the map, set a tooltip for the
map, or turn off the overview map. The Java ADF provides three ways to cus-
tomize the presentation:

• Edit the application’s JSP to set new values for tag attributes.

• Edit the variables in the application’s Extensible Stylesheet Language (XSL)
file to set style attributes. If a conflicting value is set in the JSP and the XSL,
the JSP tag attributes take precedence over the XSL variables.

• Edit the application’s Cascading Style Sheet (CSS) file to set the style at-
tributes. If a conflicting value is set in the JSP, XSL, and CSS, the JSP has
highest precedence, followed by the XSL, then the CSS.

Although there is some overlap, the JSP, XSL, and CSS do not offer the same set
of customization options. Refer to the ArcGIS Server Java ADF Attribute
Comparison documentation in ArcGIS Developer Help for a chart showing
which aspects of the application’s presentation can be changed in the JSP, XSL,
or CSS. Editing JSP tags, XSL variables, or CSS attributes is a common practice
when customizing Web applications. You may want to reference other materials
in addition to this section if these technologies are not familiar to you.

What you get with a Java ADF template
Take a look at what you get when you create an application from a Java ADF
template. The files of interest to you are:

• The JSP file, in the main application folder, is the starting point of the tem-
plate. This JSP includes the tags for each Web control and the HTML tools
and command buttons that make up the template’s toolbar.

• The two CSS files, in the css folder, define styles used in the template. The
CSS named in accordance with the type of template—for example,
mapviewer.css—defines the style attributes for the template. The other CSS,
webcontrols.css, defines the styles for the controls.

• The XSL files, in the xsl folder, contain variables for setting the display of the
template. There is an XSL for each Web control as well as a common.xsl. The
common.xsl specifies elements shared by all of the controls.

• The default.xml file in the tools folder defines the default set of tools used by
the template. These tools correspond to functions in the JavaScript library
provided with the Java ADF.

The other file that you may need to edit is the arcgis_webapps.properties file.
This file stores the username, password, and domain of the account for con-
necting to the GIS server as well as other properties of the controls.

You can navigate to the map application built in the previous example to see the
other files that make up a Java ADF template.

BUILDING YOUR FIRST WEB APPLICATIONS

ch06.pmd 1/25/2005, 5:57 PM238

Chapter 6 • Developing Web applications with Java• 239

Customizing an application’s JSP
The JSP file created for applications built from Java ADF templates can be
considered the main file of the application. You will find the context, map, overview,
toc, pageLayout, and other Java ADF tags toward the top of the JSP file. Some
attributes are already specified for each tag.

Take a look at an example of how you would edit the JSP tags. Most of the
templates use the map control. The map tag, as specified in the Map Viewer
template’s JSP, is:
<ags:map id="Map0" left="233" top="115" ... />

If you wanted to add some copyright text to the map, you could add the
copyrightText attribute and set it to display your text.
<ags:map id="Map0" left="233" top="115" ...
 copyrightText="This is the copyright text for my map." />

The following sections show you how to use the XSL variables and CSS styles to
customize the presentation of the Java ADF templates. Unlike the XSL or CSS
which simply change the look and feel of the application, you can edit the JSP to
add functionality to your application, such as changing an existing tool or adding
a new tool.

Customizing an application’s XSL
The Java ADF uses XSL to convert XML, returned from a processed JSP tag, into
HTML for final display in a Web browser. An XSL file can also be regarded as a
transformation file where the input XML is transformed, using Extensible
Stylesheet Language Transformation (XSLT), into something else, such as another
XML or HTML file. Each Web control in the Java ADF has a corresponding XSL
file. The goal of this section is to explain how to modify the XSL variables to
customize the final display for each Web control.

If you are not familiar with XSL, there are many Web sites where you can learn
about it, such as http://www.w3schools.com/xsl/xsl_intro.asp.

Here’s how you can edit the XSL of the map control to change the border color
and border style of the map and add a tooltip to it. To edit the XSL for the map
control, navigate to <install location>\DeveloperKit\Templates\build\
<application name>\WEB-INF\classes\xsl and open map.xsl in a text editor.
You will see the list of variables at the top of the file. If you want to add a
tooltip to the map, which instructs the users of your Web site on how to use the
Zoom In tool, you would change the customToolTip variable. Suppose you also
want to change the color of the map border to blue and its style to dotted. Here
are the variables with the suggested changes.
<xsl:variable name="customCssClass"></xsl:variable>

<xsl:variable name="customBorderColor">Blue</xsl:variable>

<xsl:variable name="customBorderStyle">Dotted</xsl:variable>

<xsl:variable name="customDragBoxColor"></xsl:variable>

<xsl:variable name="customDragLineWidth"></xsl:variable>

<xsl:variable name="customToolTip">Drag a box on the map</xsl:variable>

You would follow a similar practice to change the other variables.

Refer to the JSP tag library documentation in
the ArcGIS Developer Help for more information

on the tags and their attributes.

A description of how to add a measure tool to
your application is in the section titled ‘Map

control’ later in this chapter.

BUILDING YOUR FIRST WEB APPLICATIONS

ch06.pmd 1/25/2005, 5:57 PM239

240 • ArcGIS Server Administrator and Developer Guide

If you want to see the XML created by the controls, you can change the log_level
property in the application’s arcgis_webapps.properties file. By setting this prop-
erty to “FINE”, the XML generated by the controls is output to your servlet
engine or application server log. Here is an example of the map control’s XML:
<?xml version="1.0" encoding="UTF-8"?>

<map>

<client>ie</client>

<user-agent>Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR
1.1.4322)</user-agent>

<common-resources-registered>false</common-resources-registered>

<form-id>frmMap</form-id>

<resource-bundle-name>D:\WEB-INF\classes\res\Res.xml</resource-bundlename>

<context-path/>

<first-time>true</first-time>

<id>Map0</id>

<css-class>mapClass</css-class>

<image-url>mimedata?id=map22472173</image-url>

<width>503</width>

<height>376</height>

<left>249</left>

<top>131</top>

<border-width>16</border-width>

<tool>

<tool-key>ZoomIn</tool-key>

<client-action>MapDragRectangle</client-action>

</tool>

</map>

In addition to setting variables in the XSL to control the presentation of the Web
controls, use the XSL to output to a markup language other than HTML. XML
can be transformed into any markup language supported by XSL, such as HTML,
XHTML, or PDF.

If you want your map in XHTML format, you could write a generateXHTML.xsl
that renders the map control into XHTML. When using your own XSL, you
would set the xslFile attribute of the map tag to, for example,
generateXHTML.xsl. The ArcGIS Developer Help includes a sample on how to
render the contents of a page in XHTML format.

Customizing an application’s CSS
CSS is a language for adding display styles to HTML. You can edit the CSS in-
cluded with a Java ADF application to change the display of the Web controls.

To edit the CSS for the map control, navigate to <install
location>\DeveloperKit\Templates\build\<application name>\css and open
webcontrols.css in a text editor. The map control is listed at the top of the file:
div.mapClass { border-color: #B0C4DE; border-style: Solid; }

The color values are in hexadecimal. The value for the map’s border color is the
hexadecimal value for LightSteelBlue. You can change the map border to a dark
red color with the following code:
div.mapClass { border-color: #B22222; border-style: Solid; }

If you make a mistake while editing the XSL,
the errors are sent to your servlet engine or

application server log.

Refer to the JSP tag library documentation in
the ArcGIS Developer Help for more details on

the xslFile attribute.

A Web site for finding hexadecimal color codes is
http://www.december.com/html/spec/

color.html.

BUILDING YOUR FIRST WEB APPLICATIONS

ch06.pmd 1/25/2005, 5:57 PM240

Chapter 6 • Developing Web applications with Java• 241

The CSS files specific to each template are also found in the css folder. For a Map
Viewer template, open the mapviewer.css, to edit styles for items such as the title
and logo.

CREATING A WEB SERVICE CATALOG

The Web Service Catalog template provides a way to organize related server
objects into groups and make them accessible over the Internet via HTTP as Web
services. One of the primary advantages of creating a Web service catalog is that
ArcGIS Desktop users can directly connect to a Web service catalog and utilize
the server objects exposed through it and, for example, add a map server object
to ArcMap. You can include whichever server objects you want to in a Web
service catalog. Thus, you might create a Web service catalog for each department
in your organization with only the specific server objects to which they need
access.

The Java ADF Web Service Catalog template allows you to quickly create a Web
service catalog. Follow the steps below to create one.

1. Open a command window and navigate to <install
location>\DeveloperKit\Templates\Java.

2. In the command window, type:
arcgisant build

3. Type the name of your application; in this example, you can call it
“webservicecatalog”.

4. Type the name of the GIS server you want to use.

5. Type the domain, username, and password of an account that has access to
that GIS server.

6. Click Connect.

7. Choose the Web Service Catalog template from the list.

8. Check the server objects you want to include in the Web service catalog.

9. Click OK.

10. In the command window, type:
arcgisant tomcat-deploy

11. In the command window, type the name of your application. This is the
name you entered in the first input box, Application Name, on the Ant dialog
during the build process. For this example, type “webservicecatalog”.

12. Stop and restart Tomcat.

You now have a Web service catalog to which you can connect. In ArcCatalog,
specify the URL for the Web service catalog as shown below:

http://myserver:8080/webservicecatalog/default.jsp

See Chapter 3, ‘Administering an ArcGIS Server’, for more information on con-
necting to Web service catalogs from ArcCatalog.

You can also access Web service catalogs programmatically using standard Web
protocols. As a developer, you can consume the Web service catalog with the
following reference:

You can navigate to <install
location>\DeveloperKit\Templates\Java\build

\webservicecatalog to see your application.

For more information on adding capabilities to
your Web service catalog, see the section titled
‘Guidelines for creating your own Web applica-

tions’ later in this chapter.

BUILDING YOUR FIRST WEB APPLICATIONS

ch06.pmd 1/25/2005, 5:57 PM241

242 • ArcGIS Server Administrator and Developer Guide

http://myserver:8080/webservicecatalog/default.jsp?wsdl

For more information on consuming Web service catalogs from a Web applica-
tion, see the section titled ‘Programming Web services’ in Chapter 4.

CREATING A WEB APPLICATION WITH THE WEB CONTROLS

Whether you choose to start building your Web application from a template or
from scratch utilizing the Web controls directly, you’ll soon have to write your
own custom code to implement the specific functionality you want to incorpo-
rate in your application. As you read at the beginning of this chapter, writing
custom code means programming with the Java ADF, ArcGIS Server, and
ArcObjects. Through the Java ADF, you’ll be able to access the server objects
and, in turn, ArcObjects.

In this example, you’ll see how you can use the map control to access all the map
server objects on a specific GIS server. Then, you’ll see how you can add tools to
interact with the map control.

In addition to the files included with an application built with the Java ADF Web
controls, you will create a JSP file called serverlist.jsp and a Java file called
ContextUtil.java. The serverlist.jsp is the page displayed to the Web application
user. The page shows an input box and button for connecting to a host, a list box
of server objects, a map, and map navigation tools. The Java code in
ContextUtil.java is in a bean. The serverlist.jsp file will call the Java code with
the useBean tag.

Building the Web controls application
You will use the arcgisant command to create an application called serverlist.

1. Open a command window and navigate to <install
location>\Java\webcontrols.

2. In the command window, type:
arcgisant build

3. Type the name of the GIS server you want to use.

4. Type the domain, username, and password of an account that has access to
that GIS server.

5. Click Check Connection.

6. For the name of the application, type “serverlist”.

7. In this example, Tomcat is used, so the directory is Apache Group\Tomcat
4.1\webapps. Click OK.

Browse to the Apache Group\Tomcat 4.1\webapps\serverlist directory to re-
view the files that have been created as part of this Java ADF Web controls
application. The structure of the Web application is the same as one created from
a Java ADF template, but the contents of the Web application are different.
You’ll notice that you do not have a JSP file in the main folder. You will create
serverlist.jsp file in this location. In addition, the css folder only contains a CSS
for the Web controls, whereas an application built with a Java ADF template
includes a CSS file for the template.

The domain, username, and password entered into the arcgisant build dialog is
stored in the arcgis_webapps.properties file. The application has been created for

If you are not using Tomcat, you’ll typically use
your servlet engine or application server’s

working directory.

BUILDING YOUR FIRST WEB APPLICATIONS

ch06.pmd 1/25/2005, 5:57 PM242

Chapter 6 • Developing Web applications with Java• 243

that account. The serverlist.jsp includes an input box and button for connecting
to a host. The host can be any GIS server that recognizes this account.

Getting the list of server objects
1. Navigate to your application’s WEB-INF directory and create this folder

structure: classes\com\esri\arcgis\webcontrols\samples. Create
ContextUtil.java in the samples directory.

2. Add the following import statements to the top of the file.
package com.esri.arcgis.webcontrols.samples;

import java.util.*;

import com.esri.arcgis.webcontrols.util.WebUtil;

import com.esri.arcgis.webcontrols.ags.data.AGSWebContext;

import com.esri.arcgis.webcontrols.ags.data.AGSWebMap;

import com.esri.arcgis.webcontrols.ags.data.AGSResource;

import com.esri.arcgis.server.IEnumServerObjectConfigurationInfo;

import com.esri.arcgis.server.IServerObjectConfigurationInfo;

import com.esri.arcgis.carto.IMapLayerInfos;

import com.esri.arcgis.carto.IMapLayerInfo;

import com.esri.arcgis.geodatabase.IFields;

import javax.faces.context.FacesContext;

import java.util.logging.*;

3. Declare the class as ContextUtil.
public class ContextUtil {

...

}

4. Add the following variables:
private static Logger logger =

 Logger.getLogger(ContextUtil.class.getName());

private String host;

private List serverObjects = new ArrayList();

private String serverObject;

5. Add the getChangeOperation and changeOperation methods.
public String getChangeOperation() {

 changeOperation();

 return "";

}

public void changeOperation() {

 Map rMap = FacesContext.getCurrentInstance().
 getExternalContext().getRequestParameterMap();

 String operation = (String)rMap.get("operation");

 if(operation == null || operation.equals(""))

 return;

 if(operation.equals("userHost")) {

 setHost((String)rMap.get("txtHost"));

 return;

 }

 if(operation.equals("serverObject")) {

BUILDING YOUR FIRST WEB APPLICATIONS

ch06.pmd 1/25/2005, 5:57 PM243

244 • ArcGIS Server Administrator and Developer Guide

 setServerObject((String)rMap.get("selServerObject"));

 return;

 }

 }

6. Add the methods to set, then return the name of the GIS server.
public void setHost(String value) {

 host = value;

 serverObjects.clear(); getServerObjects();

 setServerObject(serverObjects.size() > 0 ?
 (String)serverObjects.get(0) : "");

 }

public String getHost() { return host; }

7. Add the methods to set, then return the selected server object.
public void setServerObject(String value) {

 this.serverObject = value;

}

public String getServerObject() { return serverObject; }

8. Add the method to return the list of server objects on the GIS server.
public List getServerObjects() {

 if(serverObjects.size() > 0)

 return serverObjects;

 AGSResource resource = null;

 try {

 resource = new AGSResource(host, "");

 IEnumServerObjectConfigurationInfo configs =
 resource.getServerObjectManager().getConfigurationInfos();

 configs.reset();

 IServerObjectConfigurationInfo config;

 while ((config = configs.next()) != null) {

 if (!config.getTypeName().equalsIgnoreCase("MapServer"))

 continue;

 serverObjects.add(config.getName());

 }

 return serverObjects;

 }

 catch (Exception e) {

 logger.log(Level.WARNING, "Unable to get server objects.", e);

 return serverObjects;

 }

 finally {

 if (resource != null)

 resource.destroy();

 }

}

9. Save ContextUtil.java, compile it, and verify that the class file is in the WEB-
INF\classes\com\esri\arcgis\webcontrols\samples directory.

BUILDING YOUR FIRST WEB APPLICATIONS

ch06.pmd 1/25/2005, 5:57 PM244

Chapter 6 • Developing Web applications with Java• 245

Take a look at ContextUtil.java.

You have added methods to the bean to get the name of the GIS server and the
list of server objects running on that host.

getChangeOperation and changeOperation methods
The getChangeOperation method is called when the page is loaded. The
getChangeOperation method calls the changeOperation method to determine if the
host, server object, data frame, or layer has been set. The first time this applica-
tion is run, the changeOperation method does nothing. However, if the application
user enters a new host name or selects a new server object, the changeOperation
method calls the setHost and setServerObject methods. This case of finding a previ-
ously entered host is only valid for the same browser session. Once the browser is
closed, the connection to the host is released.

setHost and getHost methods
The setHost method sets the name of the GIS server. The getHost method returns
the name of the GIS server.

setServerObject, getServerObject, and getServerObjects methods
The setServerObject method sets the selected server object. The getServerObject
method returns the name of the currently selected server object. The
getServerObjects method returns the list of all the map server objects on the GIS
server.

Displaying the list of server objects
In this section, you’ll add an input box, a button, a list box, a context control,
and a map control to the application. The input box is for entering the name of a
GIS server. The list box will display the map server objects running on the GIS
server. Selecting a server object from the list will display it on the map control.

1. Browse to the Apache Group\Tomcat 4.1\webapps\serverlist folder and
create a file named serverlist.jsp.

2. Add this tag to set the content type and character set for the page.
<%@ page contentType="text/html; charset=ISO-8859-1" %>

3. Add references to the following tag libraries. These tag libraries are required
for any Java ADF application.
<%@ taglib uri="http://www.esri.com/arcgis/webcontrols" prefix="ags" %>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="jsfc" %>

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="jsfh" %>

4. Add a reference to the JavaServer Pages Standard Tag Library (JSTL). JSTL is
a commonly used tag library in JSP applications.
<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

5. Add the useBean and setProperty tags to reference the bean in the
ContextUtil.java file. If localhost is not your GIS server, replace localhost
with the name of your GIS server.

BUILDING YOUR FIRST WEB APPLICATIONS

ch06.pmd 1/25/2005, 5:57 PM245

246 • ArcGIS Server Administrator and Developer Guide

<jsp:useBean id="contextUtil"
 class="com.esri.arcgis.webcontrols.samples.ContextUtil"
 scope="session">

 <jsp:setProperty name=
 "contextUtil" property="host" value="localhost" />

</jsp:useBean>

6. Add opening and closing tags for the view tag and add the getProperty tag.
<jsfc:view>

 <jsp:getProperty name="contextUtil" property="changeOperation" />

...

</jsfc:view>

7. Add opening and closing tags for the html, head, title, htmlBase, and noCache
tags to the view tag.
<html>

<head>

<title>Getting Started with the Java ADF</title>

<ags:htmlBase />

</head>

<ags:noCache />

...

</html>

8. Add the JavaScript changeOperation function inside the noCache tag. This func-
tion is called when a server object is selected from the list.
<script language="Javascript">

 function changeOperation(operation) {

 var theForm = document.forms[0];

 theForm.operation.value = operation;

 theForm.submit();

 }

</script>

9. Add opening and closing tags for the body and form tags. The form tag encloses
all controls that display or collect data.
<body>

<jsfh:form id="frmServerList">

...

</jsfh:form>

</body>

10. Add the input box and button for connecting to a host and a list box for the
server objects. When a server object is selected from the list, the
changeOperation JavaScript function is called.
<div id="host" style="position:absolute;left:50px;top:50px;">

 Host

 <input name="txtHost" value="<c:out
 value='${sessionScope.contextUtil.host}'/>" />

 <input type="BUTTON" value="Connect"
 onclick="javascript:changeOperation('userHost');"/>

</div>

<div id="serverobject" style="position:absolute;left:50px;top:100px;">

BUILDING YOUR FIRST WEB APPLICATIONS

ch06.pmd 1/25/2005, 5:57 PM246

Chapter 6 • Developing Web applications with Java• 247

 <input type="HIDDEN" name="operation">Server Objects

 <select name="selServerObject" onchange=
 "javascript:changeOperation('serverObject');">

 <c:forEach var="item" items=
 "${sessionScope.contextUtil.serverObjects}">

 <option value='<c:out value="${item}"/>'
 <c:if test='${sessionScope.contextUtil.serverObject ==
 item}'>selected="true"</c:if>><c:out value='${item}'/></option>

 </c:forEach>

 </select>

</div>

11. Add the context tag. ContextUtil.java has two methods, getServerObject and
getHost, which are used to set the resource attribute of the context tag.
<ags:context id="sampleContext"
resource='<%=(contextUtil.getServerObject() + "@" +
 contextUtil.getHost())%>' >

...

</ags:context>

12. Add the map tag to the context tag. The map tag will display a 400 x 400 map
with a solid border.
<ags:context id="sampleContext"
resource='<%=(contextUtil.getServerObject() + "@" +
 contextUtil.getHost())%>' >

 <ags:map id="Map0" left="450" top="100" width="400" height="400" />

...

</ags:context>

13. Save serverlist.jsp.

Take a look at serverlist.jsp.

As mentioned above, the first three tag libraries referenced in this application are
required for any Java ADF application.
<%@ taglib uri="http://www.esri.com/arcgis/webcontrols" prefix="ags" %>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="jsfc" %>

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="jsfh" %>

The first tag library, http://www.esri.com/arcgis/webcontrols, is the core ArcGIS Web
controls tag library. It includes such controls as the context, map, and TOC. The
next two tag libraries reference JSF. The core JSF tag library is http://
java.sun.com/jsf/core. It contains the essential tags for building any JSF Web appli-
cation. The standard JSF components tag library is
http://java.sun.com/jsf/html. These standard components are rendered as HTML
widgets, such as forms, text fields, or check boxes. They are associated with their
server-side components by the JSF technology.

The fourth tag library is the JSTL.
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

JSTL is a commonly used tag library in JSP applications. In this application, JSTL
is used to iterate a collection of server objects in order to populate a list.

This may be your first time using the view tag from the core JSF tag library.
<jsfc:view>

...

</jsfc:view>

BUILDING YOUR FIRST WEB APPLICATIONS

ch06.pmd 1/25/2005, 5:57 PM247

248 • ArcGIS Server Administrator and Developer Guide

When you reference JSF tags from within a JSP page, you must enclose them in
the view tag. You can enclose other content, such as HTML and other JSP tags,
within the view tag as well.

The next section of code uses the htmlBase tag.
<ags:htmlBase />

The htmlBase tag is from the core ArcGIS Web controls tag library. Before a JSF
application can launch a JSP page, the Web application must invoke the
FacesServlet to begin the JSF application’s life cycle. To do this, “faces” must be
included in the URL path. The URL for this serverlist application is http://
localhost/serverlist/faces/serverlist.jsp. With this as the URL, the default base of
the page is http://localhost/serverlist/faces/. If any image or any other resource
on the page is accessed as , the browser will re-
solve this as http://localhost/serverlist/faces/images/image.gif. However, there
is no physical resource that corresponds to “faces”, so this URL would show a
broken link. To prevent this problem, the utility htmlBase tag has been included
with the Java ADF, which will explicitly set the base of the page to the root of
the Web application, that is, http://localhost/serverlist.

When a new server object is selected from the list, the changeOperation JavaScript
function is called. This function calls the bean’s getServerObject and getHost meth-
ods to set the name of the GIS server and the selected server object.

The context and map tags, from the ArcGIS Web controls tag library, expose the
context and map controls. When a map server object is chosen from the list, the
map control displays the selected map.

Adding a Full Extent button and Zoom In and Pan tools
In this section, you’ll add a command button to display the map at its full extent
and tools for zooming in and panning the map.

1. Open serverlist.jsp.

2. Add Zoom In and Pan tools within the context tag.
<div id="button" style="position:absolute;left:550px;top:50px;">

 <input type="button" value="Zoom In" title="Zoom In"
 onclick="MapDragRectangle('Map0', 'ZoomIn');" />

 <input type="button" value="Pan" title="Pan"
 onclick="MapDragImage('Map0','Pan');" />

...

</div>

3. Add a Full Extent button to the div tag added in the previous step. This
button is associated with the ZoomFullExtentListener.
<jsfh:commandButton id="idZoomFullExtent" value="Zoom Full Extent"
 title="Full Extent">

 <jsfc:actionListener type=
 "com.esri.arcgis.webcontrols.ags.faces.event.ZoomFullExtentListener"
 />

</jsfh:commandButton>

The context tag should look like this:

BUILDING YOUR FIRST WEB APPLICATIONS

ch06.pmd 1/25/2005, 5:57 PM248

Chapter 6 • Developing Web applications with Java• 249

<ags:context id="sampleContext"
resource='<%=(contextUtil.getServerObject() + "@" +
 contextUtil.getHost())%>' >

<div id="button" style="position:absolute;left:550px;top:50px;">

 <input type="button" value="Zoom In" title="Zoom In"
 onclick="MapDragRectangle('Map0', 'ZoomIn');" />

 <input type="button" value="Pan" title="Pan"
 onclick="MapDragImage('Map0','Pan');" />

 <jsfh:commandButton id="idZoomFullExtent" value="Zoom Full Extent"
 title="Zoom Full Extent">

 <jsfc:actionListener type=
 "com.esri.arcgis.webcontrols.ags.faces.event.ZoomFullExtentListener"

 />

 </jsfh:commandButton>

</div>

 <ags:map id="Map0" left="450" top="100" width="400" height="400" />

</ags:context>

4. Save serverlist.jsp.

5. Stop and restart Tomcat.

6. If you do not want to use localhost as your GIS server, verify that you added
your GIS server to the value attribute of the setProperty tag.
<jsp:useBean id="contextUtil"
 class="com.esri.arcgis.webcontrols.samples.ContextUtil"
 scope="session">

 <jsp:setProperty name=
 "contextUtil" property="host" value="localhost" />

</jsp:useBean>

From the application, you can connect to any GIS server that recognizes the
account you used when building the application with the arcgisant build com-
mand.

In a Web browser, type “http://localhost/serverlist/faces/serverlist.jsp”.

The application you created looks like this:

BUILDING YOUR FIRST WEB APPLICATIONS

ch06.pmd 1/25/2005, 5:57 PM249

250 • ArcGIS Server Administrator and Developer Guide

You can click the Zoom In tool and drag a box over the map to zoom in. Click
the Pan tool and drag the map image to a new location. Click the Full Extent
button to return to the full extent of the map.

Take a look at these additions to serverlist.jsp.

A toolbar can contain two types of items—tools and commands. Tools have a
client-side action as well as a server-side action. Tools interact with the map
control—for example, dragging a box to zoom in—before executing a server-side
event. Commands directly execute a server-side event. Full Extent is imple-
mented as a JSF command button, but Zoom In and Pan are tools.

In the example above, you specified MapDragRectangle as the JavaScript function
for the Zoom In tool.
<input type="button" value="Zoom In" title="Zoom In"
onclick="MapDragRectangle('Map0', 'ZoomIn');" />

MapDragRectangle enables the drawing of a rectangle over the map control. When
this client-side action completes, a request is sent to the server passing the argu-
ments of the MapDragRectangle function: the ID of the control and the tool key.
In this example, the ID of the control is “Map0” and the tool key is “ZoomIn”.
The map control parses these arguments and delegates processing to the server-
side action class associated with the tool’s key. The Zoom In tool is associated
with the ZoomInToolAction class.

Commands, on the other hand, directly execute server-side actions. JSF has
standard command components, such as buttons and hyperlinks. These command
components are associated with listeners. When a command is clicked, a server-
side event is triggered, calling the associated listeners to process the event. The
Java ADF includes a series of listeners for common mapping operations, such as
displaying the map at full extent or panning the map in a particular direction. You
can learn more about the Java ADF listeners in the ArcGIS Developer Help.

BUILDING YOUR FIRST WEB APPLICATIONS

ch06.pmd 1/25/2005, 5:57 PM250

Chapter 6 • Developing Web applications with Java• 251

ACCESSING ARCOBJECTS FROM A WEB APPLICATION

The Java ADF exposes a great deal of GIS functionality through its API. In the
previous example, you used the map tag with the ZoomFullExtentListener to display
the map at its full extent and the Zoom In and Pan tools for zooming in to and
panning the map. Similar tools are available for changing the extent of the page
layout. The Java ADF has additional tools for identifying or selecting features.

The Java ADF does not duplicate all of the functionality in ArcObjects. To do
more than the basic GIS operations provided in the Java ADF, you’ll need to
write code directly against ArcObjects. The goal of this example is to show you
how to access the ArcGIS Server and ArcObjects API from the Java ADF.

This example describes how to add code to the ContextUtil.java and serverlist.jsp
files created in the previous example in order to display the data frames, layers,
and fields of a server object. The first additional list box displays the list of data
frames for a selected map server object. The next list box displays the list of
layers in the selected data frame. The final list box displays the attribute fields of
the selected layer. As you make selections from the list boxes, the other list boxes
will update to reflect the current selection. For example, if you select a new data
frame, the layers and fields list boxes will update to reflect the change.

Getting the data frames, layers, and fields for a server object
1. Open ContextUtil.java created in the previous example.

2. Add four variables to the list of variables.
private static Logger logger =
Logger.getLogger(ContextUtil.class.getName());

private String host;

private List serverObjects = new ArrayList();

private String serverObject;

private Map layers = new Hashtable();

private String layer;

private List fields = new ArrayList();

private String contextId;

3. Add the conditional checks to the changeOperation function for the data frames
and layers.
public void changeOperation() {

 Map rMap = FacesContext.getCurrentInstance().getExternalContext()
 .getRequestParameterMap();

 String operation = (String)rMap.get("operation");

 if(operation == null || operation.equals(""))

 return;

 if(operation.equals("userHost")) {

 setHost((String)rMap.get("txtHost"));

 return;

 }

 if(operation.equals("serverObject")) {

 setServerObject((String)rMap.get("selServerObject"));

 return;

 }

 if(operation.equals("dataFrame")) {

BUILDING YOUR FIRST WEB APPLICATIONS

ch06.pmd 1/25/2005, 5:57 PM251

252 • ArcGIS Server Administrator and Developer Guide

 setDataFrame((String)rMap.get("selDataFrame"));

 return;

 }

 if(operation.equals("layer")) {

 setLayer((String)rMap.get("selLayer"));

 return;

 }

 }

4. Add code to set the data frame to the setServerObject method.
public void setServerObject(String value) {

 this.serverObject = value;

 setDataFrame(null);

 }

5. Add the methods to set and return the selected data frame.
public void setDataFrame(String value) {

 if(value != null) {

 AGSWebContext agsContext = getAGSWebContext();

 ((AGSWebMap)agsContext.getWebMap(true)).setFocusMapName(value);

 agsContext.refresh();

 }

 layers.clear(); setLayer(null);

 }

public String getDataFrame() {

 try {

 return
 ((AGSWebMap)getAGSWebContext().getWebMap(true)).getFocusMapName();

 }

 catch(Exception e) {

 logger.log(Level.WARNING, "Unable to find the current data frame.",
 e);

 return null;

 }

 }

6. Add the method to return the collection of data frames.
public Collection getDataFrames() {
 return getAGSWebContext().getDataFrames();

}

7. Add the methods to set the selected layer, return the selected layer, and
return the list of layers for a data frame.
public void setLayer(String value) {

 this.layer = value;

 fields.clear();

}

public String getLayer() { return layer; }

public Map getLayers() {

 if(layers.size() > 0)

 return layers;

 if(getDataFrame() == null) {

 layer = null; layers.clear(); fields.clear();

BUILDING YOUR FIRST WEB APPLICATIONS

Insert this code after the getServerObjects
method.

ch06.pmd 1/25/2005, 5:57 PM252

Chapter 6 • Developing Web applications with Java• 253

 return layers;

 }

 try {

 IMapLayerInfos infos =
 ((AGSWebMap)getAGSWebContext().getWebMap(true)).
 getFocusMapServerInfo().getMapLayerInfos();

 IMapLayerInfo info;

 for (int i = 0; i < infos.getCount(); i++) {

 info = infos.getElement(i);

 layers.put(Integer.toString(info.getID()), info.getName());

 }

 if(layers.size() > 0)

 setLayer((String)layers.keySet().iterator().next());

 return layers;

 }

 catch (Exception e) {

 logger.log(Level.WARNING, "Unable to get layers", e);

 return layers;

 }

 }

8. Add the methods to return the fields for the selected layer.
public List getFields() {

 if(fields.size() > 0)

 return fields;

 if(layer == null) {

 fields.clear();

 return fields;

 }

 try {

 IFields iFields = ((AGSWebMap)getAGSWebContext().getWebMap(true)).
 getFocusMapServerInfo().getMapLayerInfos().
 getElement(Integer.parseInt(layer)).getFields();

 if (iFields != null) {

 for (int i = 0; i < iFields.getFieldCount(); ++i)

 fields.add(iFields.getField(i).getName());

 }

 return fields;

 }

 catch (Exception e) {

 logger.log(Level.WARNING, "Unable to get fields.", e);

 return fields;

 }

}

9. Add the getContextId, setContextId, and getAGSWebContext methods.
public String getContextId() { return contextId; }

public void setContextId(String value) { contextId = value; }

private AGSWebContext getAGSWebContext() {

 return
 (AGSWebContext)WebUtil.getWebContext(FacesContext.getCurrentInstance(),
 contextId);

}

BUILDING YOUR FIRST WEB APPLICATIONS

ch06.pmd 1/25/2005, 5:57 PM253

254 • ArcGIS Server Administrator and Developer Guide

10. Save ContextUtil.java and compile it.

Displaying the list of server objects, data frames, layers, and fields
You’ll add list boxes for the list of data frames, layers, and fields to serverlist.jsp.

1. Add code to set the contextId property to the value used in the context tag.
<jsp:useBean id="contextUtil" class="com.esri.arcgis.webcontrols
 .samples.ContextUtil" scope="session">

 <jsp:setProperty name=
 "contextUtil" property="host" value="localhost" />

 <jsp:setProperty name="contextUtil" property="contextId"
 value="sampleContext" />

</jsp:useBean>

2. Open serverlist.jsp in a text editor. Add this code to the context tag.
<ags:context id="sampleContext"
resource='<%=(contextUtil.getServerObject() + "@" +
contextUtil.getHost())%>'>

<div id="dataFrame" style="position:absolute;left:50px;top:150px;">

 DataFrames

 <select name="selDataFrame"
 onchange="javascript:changeOperation('dataFrame');">

 <c:forEach var="item"
 items="${sessionScope.contextUtil.dataFrames}">

 <option value='<c:out value='${item}'/>'
 <c:if test="${sessionScope.contextUtil.dataFrame ==
 item}">selected='true'</c:if> > <c:out value="${item}"/>
 </option>

 </c:forEach>

 </select>

 </div>

 <div id="layer" style="position:absolute;left:50px;top:200px;">

 Layers

 <select name="selLayer"
 onchange="javascript:changeOperation('layer');">

 <c:forEach var="item" items="${sessionScope.contextUtil.layers}">

 <option value='<c:out value="${item.key}"/>'
 <c:if test="${sessionScope.contextUtil.layer ==
 item.key}">selected="true"</c:if> >
 <c:out value="${item.value}"/></option>

 </c:forEach>

 </select>

 </div>

 <div id="fields" style="position:absolute;left:50px;top:250px;">

 Fields

 <c:forEach var="item" items="${sessionScope.contextUtil.fields}">

 <c:out value="${item}"/>

BUILDING YOUR FIRST WEB APPLICATIONS

ch06.pmd 1/25/2005, 5:57 PM254

Chapter 6 • Developing Web applications with Java• 255

 </c:forEach>

 </div>

<div id="button" style="position:absolute;left:550px;top:50px;">

 <input type="button" value="Zoom In" title="Zoom In"
 onclick="MapDragRectangle('Map0', 'ZoomIn');" />

 <input type="button" value="Pan" title="Pan"
 onclick="MapDragImage('Map0','Pan');" />

 <jsfh:commandButton id="idZoomFullExtent" value="Zoom Full Extent"
 title="Zoom Full Extent">

 <jsfc:actionListener type=
 "com.esri.arcgis.webcontrols.ags.faces.event.
 ZoomFullExtentListener" />

 </jsfh:commandButton>

 </div>

 <ags:map id="Map0" left="450" top="100" width="400" height="400" />

 </ags:context>

3. Save serverlist.jsp.

4. Stop and restart your servlet engine. You are ready to view the application. In
a Web browser, type “http://localhost/serverlist/faces/serverlist.jsp”.

The application you just created looks like this:

Take a look at how this example works.

setDataFrame, getDataFrame, and getDataFrames methods
The setDataFrame method calls the AGSWebMap’s setFocusMapName method to set
the selected data frame. Similarly, the getDataFrame method calls the
AGSWebMap’s getFocusMapName method and returns the selected data frame. The
getDataFrames method returns the collection of data frames.

BUILDING YOUR FIRST WEB APPLICATIONS

ch06.pmd 1/25/2005, 5:57 PM255

256 • ArcGIS Server Administrator and Developer Guide

BUILDING YOUR FIRST WEB APPLICATIONS

setLayer, getLayer, and getLayers methods
The setLayer and getLayer methods respectively set, then return the selected layer.
The getLayers method calls the getMapLayerInfos method on IMapServerInfo to
return the layers of the focus map.
IMapLayerInfos infos =
 ((AGSWebMap)getAGSWebContext().getWebMap(true)).
 getFocusMapServerInfo().getMapLayerInfos();

getFields method
The getFields method, based on the selected layer, returns the list of fields by
calling the getFields method on IMapLayerInfo.

 IFields iFields = ((AGSWebMap)getAGSWebContext().getWebMap(true)).
 getFocusMapServerInfo().getMapLayerInfos().
 getElement(Integer.parseInt(layer)).getFields();

 if (iFields != null) {

 for (int i = 0; i < iFields.getFieldCount(); ++i)

 fields.add(iFields.getField(i).getName());

 }

 return fields;

getContextId, setContextId, and getAGSWebContext methods
The getContextId and setContextId methods respectively set, then return the ID of
the context. The getAGSWebContext method is a convenience method to get the
AGSWebContext.

ch06.pmd 1/25/2005, 5:57 PM256

Chapter 6 • Developing Web applications with Java• 257

GUIDELINES FOR CREATING YOUR OWN WEB APPLICATIONS

As you read through this chapter, you’re probably already thinking about how to
apply what you’ve learned to your own project. This section describes some of
the things you’ll need to think about as you begin building your own Web applica-
tions. Some of the information presented here is discussed in more detail in other
chapters of this book; however, it’s worth reviewing this information to ensure
you have a clear picture of how to build your Web application.

ORGANIZING YOUR DATA AND CREATING SERVER OBJECTS

Presumably, most—if not all—of the GIS functionality you build into your Web
applications will be provided through the server objects you host on your GIS
server. How many server objects a single Web application utilizes depends on
how you organize your server objects and what functionality you want to build
into the Web application. Often, a Web application utilizes more than one server
object and these server objects need to have some correlation between them. For
example, if you want to build an application that locates places by address, that
application will at minimum access a geocode server object to find the address
location and a map server object to display the location. The map and geocode
server object need to reference the same geographic location; otherwise the
geocoded points won’t draw on the map. Similarly, the geographic area displayed
in an overview map needs to match that of its associated main map.

As map server objects are based on map documents (.mxd files), you have some
flexibility as to how you organize the data contained within a given map server
object. For instance, suppose you’re creating an application that displays three
maps. Should you create one map document resulting in one map server object
with three data frames in it? Or should you create three map documents—and
three server objects—with one data frame each?

As a general rule, you should organize the data in a map server object according to
how your Web applications will use it. For example, you would create one map
server object that contains all the data required for a Web application. The server
object would have, for example, one data frame for the main map control and
one data frame for the overview map. Later, if you build another Web applica-
tion that can share the overview map with the first application, you may choose
to host the data for the overview map in its own server object.

DATA ACCESS CONSIDERATIONS

Ensure that the following holds true for your map server objects.

• The map document and all data must be accessible to the SOM machine and
all container machines.

• The ArcGIS Server Container account you established during the
postinstallation should have read access to any shared network directories.

• File-based data (for example, coverages and shapefiles) should be placed on
shared networked drives and saved in the map documents using UNC
pathnames.

• ArcSDE connections must be saved in the map document before being added
to the server.

ch06.pmd 1/25/2005, 5:57 PM257

258 • ArcGIS Server Administrator and Developer Guide

ACCESSING A GIS SERVER FROM YOUR WEB APPLICATION

You need to consider two levels of security when building a Web application that
accesses a GIS server. First, you need to consider who will access your applica-
tion. Does the application contain sensitive information that is not meant for
general consumption? If so, you’ll probably want to restrict access to it in some
way. Second, you need to consider how the Web application itself accesses and
works with the GIS server because the server has its own access control mecha-
nism that your Web application must implement.

In order to restrict access to a Web application, you need to identify who is
attempting to access the Web site. This process, called authentication, challenges a
user to prove who they are, usually by requiring them to provide some security
credentials that only they and the resource they are trying to access know about.
For example, to access your bank account through an ATM, you identify yourself
with your ATM card and your personal identification number. Without both, you
are not granted access to the account.

For Web applications, security credentials are commonly expressed in the form of
an account and a password. If the account and password are valid, the user is
authenticated and subsequently granted access to the Web site. There are many
ways you can authenticate users and grant them access to a Web application. A
discussion of these methods is beyond the scope of this book. However, whether
you choose to restrict access to your Web application or not, you do need to
consider the second level of security, which governs how the Web application
accesses the GIS server. This is the main focus of this section.

As you read in the previous chapters, access to a GIS server—and the server
objects running on it—is managed by two operating system user groups: ArcGIS
Server users (agsusers) and ArcGIS Server administrators (agsadmin). To access
the server objects, an application must connect to the server as an account in the
agsusers group. To additionally administer the GIS server—for example, add and
remove server objects—an application must connect as an account in the
agsadmin group.

First, take a look at how you access a GIS server through ArcCatalog. When you
connect to your GIS server in ArcCatalog, if the account you’re currently logged
in as is a member of the ArcGIS Server administrators group, you will see addi-
tional menu choices that let you manage the server. For instance, you can add,
remove, start, and stop server objects. However, if your account is only a mem-
ber of the ArcGIS Server users group, you will not see any menu choices for
managing server objects and can instead only view the server objects running on
the server. Further, if your account is not a member of either of these user
groups, you won’t have any access to the server.

Access to a GIS server is managed in a similar way with Web applications. A Web
application can connect to the GIS server as a particular account through a
process called impersonation. With impersonation, the Web application assumes the
identity of a particular account and, thus, has all the privileges the account is
entitled to. As long as this account is part of the appropriate group, for example,
agsusers, the Web application will have access to the server objects running on the
GIS server. So what account should your Web application connect to the server
as? The answer to this question depends on how you choose to set up access to
the GIS server itself.

GUIDELINES FOR CREATING YOUR OWN WEB APPLICATIONS

ch06.pmd 1/25/2005, 5:57 PM258

Chapter 6 • Developing Web applications with Java• 259

Your application will connect to the GIS server as a specific account. You essen-
tially hard code the account into your Web application. You can view the
username and encrypted password that your Web application uses in the
arcgis_webapps.properties file, located at <install
location>\DeveloperKit\Templates\Java\build\<Web application
name>\WEB-INF\classes. The ArcGIS Server administrator will either add your
account or give you an existing account to use. Either way, the account is a
member of the agsusers group.

Most likely the application will impersonate an account that is a member of the
agsusers group rather than the agsadmin group. As a member of the agsusers
group, the application will have complete access to the server objects. Thus, you
can write code that works with the object in a stateless or stateful manner. You
can do anything except manage the server objects themselves. If you want to
write an application that manages the server, the application will have to imper-
sonate an account in the agsadmin group.

Refer to the ‘Context control’ section later in this chapter for more guidelines on
working with the server context, pooled versus non-pooled objects, and making
fine-grained ArcObjects calls in your Java ADF applications.

CHOOSING CAPABILITIES FOR YOUR WEB SERVICE CATALOG

Web service catalogs may contain both MapServer and GeocodeServer Web
services. Each Web service includes functionality that your users can exercise
using ArcMap and you can exercise in your applications. The functionality pro-
vided by a particular Web service can be limited to, for example, allow consumers
of the Web service to draw the map but not to query the data sources of the
layers in the map.

The set of functionality that a Web service supports is called its capabilities. The
capabilities for MapServer and GeocodeServer Web services are organized into
capability groups. The IRequestHandler ::HandleStringRequest method supported by
MapServer and GeocodeServer takes a string parameter named capabilities,
whose value is a comma-delimited list of capabilities, such as
HandleStringRequest(“map,query,data”, <inputSOAP>, <outputSOAP>).

The capability groups and the methods included in each group for MapServer
Web services are:

Map:

• get_DocumentInfo

• get_MapCount

• get_MapName

• get_DefaultMapName

• GetServerInfo

• ExportMapImage

• GetSupportedImageReturnTypes

• GetLegendInfo

GUIDELINES FOR CREATING YOUR OWN WEB APPLICATIONS

ch06.pmd 1/25/2005, 5:57 PM259

260 • ArcGIS Server Administrator and Developer Guide

• ToMapPoints

• FromMapPoints

Query:

• Identify

• QueryFeatureCount

• QueryFeatureIDs

• QueryHyperlinks

• ComputeScale

• ComputeDistance

• GetSQLSyntaxInfo

Data:

• Find

• QueryFeatureData

By default, the Web service catalog template assigns “map” as the capabilities for
all MapServer Web services. Therefore, by default, consumers of the MapServer
Web service, including ArcMap, will not be able to identify or query layers in the
map. You can add additional capability groups, query, and data by editing the JSP
file created for each server object in the Web service catalog. For example, if two
MapServer objects named canada and mexico were added to the Web service
catalog, and you wanted to add query and data capabilities, you would edit the
canada_MapServer.jsp and mexico_MapServer.jsp files. Edit the following line
of code to include query and data:
String agsCapabilities="map,query,data";

The capability groups and the methods included in each group for GeocodeServer
Web services are:

Geocode:

• GeocodeAddress

• GeocodeAddresses

• StandardizeAddress

• FindAddressCandidates

• GetAddressFields

• GetCandidateFields

• GetIntersectionCandidateFields

• GetStandardizedFields

• GetStandardizedIntersectionFields

• GetResultFields

GUIDELINES FOR CREATING YOUR OWN WEB APPLICATIONS

ch06.pmd 1/25/2005, 5:57 PM260

Chapter 6 • Developing Web applications with Java• 261

• GetDefaultInputFieldMapping

• GetLocatorProperties

Reverse geocode:

• ReverseGeocode

By default, the Web service catalog template assigns “geocode,reversegeocode” as
the capabilities for all GeocodeServer Web services. You can remove a capability
group, geocode, or reversegeocode by editing the JSP file created for each server
object in the Web service catalog. For example, if a GeocodeServer object named
locator was added to the Web service catalog, and you wanted to remove the
reverse geocoding capability, you would edit the locator_GeocodeServer.jsp file.
Edit the following line of code to remove the reversegeocode capability:
String agsCapabilities="geocode";

GUIDELINES FOR CREATING YOUR OWN WEB APPLICATIONS

ch06.pmd 1/25/2005, 5:57 PM261

262 • ArcGIS Server Administrator and Developer Guide

Throughout this chapter, you’ve seen how the various Java ADF Web controls
get used in Web applications. The remaining sections of this chapter describe each
control in more detail, examining the classes with which each Web control is built
and highlighting those methods that you’ll find particularly useful. In addition,
you will see how the Java ADF works with the JSF standard, how to implement
new classes for tool actions and listeners, and the basics of the Java ADF object
model. This chapter, however, does not serve as a complete reference for all the
objects in the Java ADF. You can find a complete description of the packages,
classes, and methods in the ArcGIS Developer Help. In addition, you can view
the Java ADF object model diagram in the ArcGIS Developer Help.

EXPLORING THE WEB CONTROL OBJECT MODEL

The Java ADF Web controls extend the JSF Framework. Controls that accept
events extend the UICommand class and implement ActionListener, enabling them
to respond to action events and invoke listeners. The other controls extend from
UIComponentBase. In addition to the JSF classes mentioned, other concepts from
JSF will be referred to throughout this section. If you are not familiar with JSF,
you may want to visit http://java.sun.com/j2ee/javaserverfaces.

The diagram below presents a conceptual object model diagram of the Java ADF
Web controls.

MORE ABOUT WEB CONTROLS

Control Objects Overview

PageLayout-
Control

Overview-
Control

Action-
ListenerUICommandUIComponent-

Base

MapControl

TocControl

Geocode-
Control

NorthArrow-
Control

Context-
Control

ScaleBar-
Control

Identify-
ResultsControl

ch06.pmd 1/25/2005, 5:57 PM262

Chapter 6 • Developing Web applications with Java• 263

JAVA ADF PACKAGES

Packages group classes with similar functionality. Accordingly, the classes distrib-
uted with the Java ADF are organized as Java packages. The base package of the
Java ADF is com.esri.arcgis.webcontrols. This section lists the packages that
comprise this base package.

faces.component package
All of the Java ADF Web controls are contained in the faces.component package.
A Web control is a JSF custom component. If the component responds to client
actions, it is created by extending the UICommand class and implementing
ActionListener. Otherwise, the component extends the UIComponentBase class.
The context, North arrow, and scale bar controls are examples of controls that
do not respond to client-side action events.

faces.event package
The faces.event package contains event argument objects for some of the Web
controls. It also contains:

• ClientActionArgs subclasses representing client actions such as dragging a rect-
angle or an image.

• IMapToolAction and IPageLayoutToolAction interfaces that you can use to imple-
ment your own map or page layout tools.

• Classes that act as descriptors for the map and page layout tools.

faces.renderkit.xml package
The faces.renderkit.xml package contains classes for the custom renderers associ-
ated with each Web control. These renderers output XML. This XML then goes
through an XSLT transformation to a markup language, such as another XML or
HTML, specified in an XSL file. The Java ADF’s processing of XML is described
in more detail in the section titled ‘Building your first Web applications’ earlier in
this chapter.

faces.taglib package
All the tag handler classes that wrap the Web controls are stored in the
faces.taglib package. For example, the MapTag class exposes the functionality of
the map control. These tag handler classes extend from the JSF UIComponentTag
class.

faces.validator package
The faces.validator package contains custom validator classes that validate user
inputs. When an input is considered invalid, a validator throws a
ValidatorException with a FacesMessage. This message shows the reason the
input wasn’t validated. When an input is considered invalid, no events in that
request are executed.

MORE ABOUT WEB CONTROLS

ch06.pmd 1/25/2005, 5:57 PM263

264 • ArcGIS Server Administrator and Developer Guide

MORE ABOUT WEB CONTROLS

data package
The data package contains the data classes that work with the Web controls.
Some examples of classes in this package include WebMap, WebOverview, and
WebPageLayout. These classes are typically abstract and require concrete implemen-
tations for use with their respective Web controls. The default implementations
of these abstract classes, to be used with a GIS server, can be found in the
com.esri.arcgis.webcontrols.ags.data package. Each of these classes stores proper-
ties that reflect the type of control they represent. The WebMap class, for ex-
ample, can retrieve information about the map such as width, height, data frame,
and image format.

ags.data package
The ags.data package comprises the default implementations of the abstract
business classes defined in the com.esri.arcgis.webcontrols.data package and contains
objects that store data in the ADF. For example, AGSBuffer stores buffer data
and AGSMapResource stores information pertaining to the server connection.
Classes that represent a GIS server’s resources and other helper classes are also
included in this package.

ags.faces.event package
The ags.faces.event package has implementations of the Java ADF server-side
tool actions and listeners.

ags.util package
The ags.util package contains the AOUtil class, which provides ArcObjects helper
methods.

util package
The util package contains utility helper classes. The WebUtil class gives you quick
access to the WebContext and information about your WebApplication and
WebSession. The ApplicationProperties class reads and stores information pertaining
to the arcgis_webapps.properties file. The XMLUtil class provides access to XML
functions for tasks such as creating documents or elements. This package also has
classes that implement the MIME data servlet, the servlet context listener, and
the session time-out servlet filter.

ch06.pmd 1/25/2005, 5:57 PM264

Chapter 6 • Developing Web applications with Java• 265

The context control establishes a working environment with a GIS server. By
specifying a value for the context tag’s resource and resourceType attributes, a con-
nection to a GIS server is established and maintained.

The diagram above illustrates how the ContextControl works with an abstract
WebContext class. By default, the ContextControl provides a concrete subclass of
WebContext called AGSWebContext that has been designed to work with a GIS
server. The ContextTag class wraps the functionality of the ContextControl and
enables the use of the context tag in a JSP page.

The AGSWebContext works with the ContextControl to take care of various tasks
essential to working with a GIS server. AGSWebContext does the following:

• Establishes and maintains a connection with a GIS server.

• Detects the pooling method of a server object.

• When working with non-pooled server objects, connects to a GIS server when
the session starts and persists the server context for the entire session.

• When working with pooled server objects, establishes a server context with a
GIS server when a request is received and releases the server context once the
request has been serviced.

• When working with pooled server objects, serializes the changed MapDescrip-
tion and persists this even after the server context has been released. When the
server context is released, the client’s view of the server context must be
persisted. For example, if a map is zoomed, the changed extent needs to be
persisted on the client. The server context is re-created when a connection to
the GIS server is reestablished on receipt of the next request and the MapDe-
scription is reapplied.

• Maintains relationships with all the controls within its scope.

CONTEXT CONTROL

Stores the information
pertinent to a
Web session.

Stores information for
the current
Web application.

Maintains communication
with a GIS server and
manages controls within
its scope.

Tag handler class for the
JSP context tag.

An abstract class
representing a
context control.

The default
implementation of
WebContext to
access a GIS resource.

Context Control Objects

WebSessionContext-
ControlWebContext

Web-
ApplicationContextTagAGSWeb-

Context

ch06.pmd 1/25/2005, 5:57 PM265

266 • ArcGIS Server Administrator and Developer Guide

CONTEXT CONTROL

WORKING WITH THE CONTEXT CONTROL

The ContextControl acts as a container for all other controls. The first task of the
context control is to create a WebContext for the current WebSession by passing in
the resource, the resource type (map or geocode), the default data frame, and a
class name for the implementation of the abstract WebContext. The default imple-
mentation of WebContext is AGSWebContext. This new WebContext object is
stored in session scope and is accessible by invoking the following code. In this
example, CONTEXTID is the user-assigned identifier for the context control.
WebUtil.getWebContext(facesContext, CONTEXTID)

During the initialization phase of AGSWebContext, new objects are created based
on the resource type of the context. If the type is map, a new AGSMapResource
and AGSWebMap are created. These objects work with the map control. If the
type is geocode, new AGSGeocodeResource and AGSWebGeocode objects are cre-
ated to work with the geocode control. The WebMap and WebGeocode objects can
be retrieved by calling WebContext.getWebMap or WebContext.getWebGeocode.

You can ask for data objects used by the other controls, for example,
WebPageLayout, WebToc, and WebOverview. These objects are automatically created
and stored on the WebContext when the controls are placed on the page.

All other data objects are stored as request attributes to the WebContext and are
only accessible by calling the getAttribute method. These objects are instantiated on
an as-needed basis and are classified as managed context attributes. For example,
the identify tool uses a data object called AGSWebIdentifyResults to store the
results of an identify. To use AGSWebIdentifyResults you must first initialize the
object so that you can call the setLocation method. The setLocation method sets the
x,y point to use for the identify action. Once the setLocation method has been
called, call fetchResults to return the results of the identify. The code for an iden-
tify is:
AGSWebIdentifyResults results =
 (AGSWebIdentifyResults)context.getAttribute
 (AGSWebIdentifyResults.WEB_CONTEXT_ATTRIBUTE_NAME);

 results.setLocation(new AGSPoint
 (wMap.toMapPoint(clientPoint.getX(), clientPoint.getY())));

 results.fetchResults();

The first line of code in this example asks for the AGSWebIdentifyResults object
stored under its WEB_CONTEXT_ATTRIBUTE_NAME. Because this is the
first time you are calling the getAttribute method, the attribute does not currently
exist. The Java ADF checks to see if this object is a managed context attribute
specified in the WEB-INF\classes\managed_context_attributes.xml file. If it is
listed in this file, a new AGSWebIdentifyResults object is instantiated and stored
under the appropriate attribute name.

The data objects of the other controls are
described in the following sections.

ch06.pmd 1/25/2005, 5:57 PM266

Chapter 6 • Developing Web applications with Java• 267

CONTEXT CONTROL

If you need to add a custom object to the managed_context_attributes.xml file,
you would use the following syntax:
<managed-context-attribute>

 <name>esriWebIdentifyResults</name>

 <attribute-class>
 com.esri.arcgis.webcontrols.ags.data.AGSWebIdentifyResults
 </attribute-class>

 <description>
 Results as a result of the identify tool operation.
 </description>

</managed-context-attribute>

On initialization or change of the WebContext, objects are automatically created
or updated. In order to have objects that are managed context attributes updated
by the context control, the objects must implement an interface called
WebContextInitialize and provide an implementation of the init method.

Another important interface is WebContextObserver. This interface requires an
implementation of the update method. When the current context is refreshed, the
WebContext calls the update method for all registered observers. To become a
registered observer, call the WebContext.addObserver method. The refresh method
can also take an optional args argument. You would use the args argument if, for
example, you wanted the observer to refresh only if the map has changed.

As mentioned earlier, a WebContext is part of a WebSession. A WebSession contains
a WebApplication. The responsibilities of the WebApplication are:

• Read the arcgis_webapps.properties file in order to initialize impersonation.

• Load the collection of tool items.

• Load the collection of managed context attributes.

• Provide access to the resource bundle, enabling the lookup of localized
strings.

• Specify a directory for file caching of MIME data.

METHODS

Every control works with an abstract class and a concrete implementation of this
abstract class to enable access to the business logic. The ContextControl can retrieve
the associated class by calling the getWebContext method, which then returns a
WebContext object. The default implementation of WebContext is AGSWebContext.
The AGSWebContext contains methods to:

• Create server objects.

• Retrieve the server context, map and layer descriptions, and data frames.

• When working with pooled server objects, load and save objects to a string.

• Retrieve the business objects associated with the AGSWebContext by calling
methods such as getWebMap or getWebOverview.

• Refresh the WebContext and all controls registered as a WebContextObserver to
the context.

ch06.pmd 1/25/2005, 5:57 PM267

268 • ArcGIS Server Administrator and Developer Guide

CONTEXT CONTROL

The diagrams below show the methods available from WebContext and
AGSWebContext.

Take a look at some examples on how you would use AGSWebContext. In these
examples, you’ll see that each must start with this line of code that retrieves the
context from the JSF Faces context. In this example, CONTEXTID should be
replaced with the identifier of the context control.
AGSWebContext context = (AGSWebContext)WebUtil.
 getWebContext(FacesContext.getCurrentInstance(), CONTEXTID);

In a Java ADF application, if the overview control extent changes, the map
control refreshes to that new extent as well because the map is registered as an
observer to the context. In this code example, the WebContext and all the observer
controls are refreshed.
AGSWebContext context = (AGSWebContext)WebUtil.
 getWebContext(FacesContext.getCurrentInstance(), CONTEXTID);

context.refresh();

AGSWebContext
com.esri.arcgis.webcontrols.ags.data

AGSWebContext () Class constructor method.

createServerObject(progId: String): Object

getDataFrames(): Collection
getLayerDescription(mapName: String,layerID:
 int) com.esri.arcgis.carto. ILayerDescription
getMapDescription(mapName: String): com.
 esri.arcgis.carto.IMapDescription
getMapDescriptions(): com.esri.arcgis.carto.
 IMapDescriptions
getServer(): com.esri.arcgis.carto. IMapServer
getServerConnection (): com.esri.arcgis.
 server.IServerConnection
getServerContext(): com.esri.arcgis.server.
 IServerContext
getServerObjectManager(): com.esri.arcgis.
 server.IServerObjectManager
getWebGeocode(create: boolean):
 WebGeocode
getWebMap(create: boolean): WebMap
getWebOverview(create: boolean):
 WebOverview
getWebPageLayout(create: boolean):
 WebPageLayout
getWebToc (create: boolean): WebToc
isStateful(): boolean
loadObject(xml: String): Object
saveObject(persistObj: Object): String

getAGSResource(): AGSMapResource
Creates the AGS object within the server context.
Returns the associated AGSResource.
Returns the collection of data frame names.
Returns the layer description for the layer ID of the given map.

Returns the map description for the given map.

Returns all the map descriptions of a server object.

Returns the IMapServer object from the GIS server.
Returns the IServerConnection object from the GIS server.

Returns the IServerContext object from the GIS server.

Returns the IServerObjectManager object from the GIS server.

Returns the WebGeocode object, creating a new
 one if specified.
Returns the WebMap object, creating a new one if specified.
Returns the WebOverview object, creating a new
 one if specified.
Returns the WebPageLayout object, creating a new
 one if specified.
Returns the WebToc object, creating a new one if specified.
Indicates if the context is non-pooled.
Deserializes the text string to its object.
Serializes an object to a text string.

WebContext
com.esri.arcgis.webcontrols.data

WebContext ()

resource: String
resourceType: String
session: WebSession

addObserver(observer: WebContextObserver)
getAttribute(name: String): Object
getAttributes(): Map
refresh ()
refresh(arg: Object)

setAttribute(name: String, value: Object)

Class constructor method.

Gets the resource string for the server object and host.
Gets the type of resource, map, or geocode.
Gets the WebSession that maintains the context.

Registers the WebContextObserver with this context.
Returns the custom object stored in this attribute name.
Returns all of the attributes stored in this context.
Refreshes the WebContext for all observers.
Refreshes the WebContext for all observers of the
 passed AGSRefreshId.
Sets the custom object as an attribute stored by passed name.

In this code example as well as others in the
remainder of this chapter, CONTEXTID is a
placeholder for the identifier of the context

control. For example, if the context tag specifies
the id="mapContext", then CONTEXTID would

be replaced with "mapContext".

ch06.pmd 1/25/2005, 5:57 PM268

Chapter 6 • Developing Web applications with Java• 269

CONTEXT CONTROL

This example shows how to retrieve objects for the SOM, server context, and
server object’s map descriptions and data frames.
AGSWebContext context = (AGSWebContext)WebUtil.
 getWebContext(FacesContext.getCurrentInstance(), CONTEXTID);

IServerObjectManager som = context.getServerObjectManager();

IServerContext srvContext = context.getServerContext();

IMapDescriptions descriptions = context.getMapDescriptions();

Collection dataFrames = context.getDataFrames();

In this example, a new server object is created within the server context.
AGSWebContext context = (AGSWebContext)WebUtil.
 getWebContext(FacesContext.getCurrentInstance(), CONTEXTID);

IPolyline pLine = new
 IPolylineProxy(context.createServerObject(Polyline.getClsid()));

In this example, a request attribute is stored in the WebContext.
AGSWebContext context = (AGSWebContext)WebUtil.
 getWebContext(FacesContext.getCurrentInstance(), CONTEXTID);

context.setAttribute("newAttribute", MyObject)

ACCESSING OBJECTS THROUGH REQUEST SCOPE

The WebContext is stored in session scope and is available for the duration of the
client session. Earlier you saw how to retrieve the WebContext in Java code by
calling the getWebContext method. Now take a look at how to retrieve the
WebContext from session within a JSP page. The previous example stored a re-
quest attribute on the WebContext called newAttribute and set the value to
MyObject.

To retrieve the WebContext and access a property on it, use the following JSTL
syntax:
${sessionScope['CONTEXTID'].attributes['newAttributeName'].myProperty}

If you want to use this request attribute within a JSF component, you must
follow the JSF value binding expression syntax. The syntax of a value binding
expression is syntactically the same as JSP 2.0 variable references defined in their
expression language. A value binding must be referenced using #{Value}. To
change the previous example to use value binding expression syntax, change the
“$” to a “#” to reference the attribute stored in the WebContext.
#{sessionScope['CONTEXTID'].attributes['newAttribute'].myProperty}

In this example, variables are set using JSTL to store the resource and resource
type used in the WebContext.
<c:set var="res" value="${sessionScope['CONTEXTID'].resource}"/>

<c:set var="resType" value="${sessionScope['CONTEXTID'].resourceType}"/>

In this example, the value of the context’s resource string is output using the JSF
outputText tag.
<jsfh:outputText value="#{sessionScope['CONTEXTID'].resource }"

The other Java ADF Web controls are discussed in the remainder of this chapter.
For each control, look for a section titled ‘Accessing objects through
WebContext’ to see examples of how to access other objects stored in the
WebContext.

As mentioned, the context control establishes a working environment with a GIS

ch06.pmd 1/25/2005, 5:57 PM269

270 • ArcGIS Server Administrator and Developer Guide

CONTEXT CONTROL

server. Now that you have learned how to use the context control, the following
sections describe how the context control takes care of using pooled and non-
pooled server objects. Also included in the remainder of this section is a discus-
sion on how the context control provides access to ArcObjects components that
allow more advanced customization of your Web applications.

GETTING AND RELEASING SERVER CONTEXTS

In the Java ADF, all Web controls work within the context control. The context
control takes care of working with the server context. This means you do not
need to make coding considerations for pooled versus non-pooled objects; the
release of the server context is taken care of by the context control.

How the context control works with the server context
If you want to write a new class that requires saving state between requests for a
pooled object, then you will need to implement the WebLifecycle interface and
provide activate and passivate methods. The WebContext calls activate and passivate
for any object that is an instance of WebLifecycle if it is stored as an attribute to
the WebContext.

Take a look at the coding considerations you need to make when writing a new
class.

When you work with AGSWebMap, AGSWebPageLayout, or AGSWebGeocode, you
are indirectly working with a server context because these classes are associated
with an AGSResource or AGSGeocodeResource object. AGSResource establishes
communication with a MapServer context based on the pooling model.
AGSResource utilizes the WebLifecycle interface and implements two important
methods: activate and passivate. The activate method does the following:

• Creates a new ServerConnection and connects to the server

• Creates a new server context

• Retrieves the server object from the server context

The passivate method releases the server context.

If the server object is pooled, activate is called when a request is received and
passivate is called when the response has been generated. If the server object is
non-pooled, activate is called once and maintained for the duration of the session
or until explicitly released by calling passivate.

Maintaining state using WebLifecycle
In addition, WebLifecycle can be used to maintain any state needed between
requests. The WebContext calls the activate and passivate methods as needed for
every object registered. In the case of AGSWebMap, the state of the map is
maintained between requests by storing the MapDescription and ImageDescription
objects.

This code shows how the activate and passivate methods save these objects:
 public void activate() {

 try {

 if (null != xImageDesc)

ch06.pmd 1/25/2005, 5:57 PM270

Chapter 6 • Developing Web applications with Java• 271

imageDesc = new
IImageDescriptionProxy(agsContext.loadObject(xImageDesc));

 if (null != xCopyrightSymbol)

copyrightSymbol = new
IFormattedTextSymbolProxy(agsContext.loadObject(xCopyrightSymbol));

 }

 catch(Exception e) {

 logger.log(Level.SEVERE, "Cannot activate map.", e);

 }

 finally {

 xImageDesc = null;

 xCopyrightSymbol = null;

 }

 }

 public void passivate() {

 try {

 if (null != imageDesc)

 xImageDesc = agsContext.saveObject(imageDesc);

 if (null != copyrightSymbol)

 xCopyrightSymbol = agsContext.saveObject(copyrightSymbol);

 }

 catch(Exception e) {

 logger.log(Level.SEVERE, "Cannot passivate map.", e);

 }

 finally {

 imageDesc = null;

 copyrightSymbol = null;

 }

 }

WORKING WITH FINE-GRAINED ARCOBJECTS

The Java ADF provides a set of classes that allow you to create Web applications
that incorporate GIS functionality. While the Java ADF exposes many of the
common GIS operations, it doesn’t attempt to duplicate all of the functionality
of ArcObjects. What the Java ADF does provide, however, is a mechanism for
accessing ArcObjects directly. This is referred to in this book as working with the
fine-grained ArcObjects that comprise a server object. This section describes some
of the things you need to be aware of when working with fine-grained
ArcObjects.

AGSWebContext and AGSWebMap expose a getServer method that provides access
to the IMapServer interface of the MapServer coclass. Through IMapServer, you can
access the fine-grained ArcObjects that make up the map document being served
on your GIS server. When you call any of the methods on the MapServer coclass’s
interface, the state of the fine-grained ArcObjects in the server object instance is
not permanently changed. Rather, the MapDescription is applied for the duration
of the method, and the state of the fine-grained ArcObjects returns to the previ-
ous state at the end of the request. The same holds true for the PageDescription
when using IMapServerLayout, retrieved using the getServerLayout method on
AGSWebPageLayout. However, when you work with fine-grained ArcObjects, the
state of the server object instance may be permanently changed, depending on

CONTEXT CONTROL

AGSWebMap and AGSWebPageLayout are
discussed in detail later in this chapter.

ch06.pmd 1/25/2005, 5:57 PM271

272 • ArcGIS Server Administrator and Developer Guide

CONTEXT CONTROL

what methods you call. For this reason, you should work with non-pooled server
objects if you want to make calls to fine-grained ArcObjects that change the state
of the object.

You may have noticed that when you work with the Java ADF Web controls, the
Web controls appear to maintain things such as layer visibility and the current
map extent. This information is stored in session state as part of the Web applica-
tion itself. The actual server object instance running on the GIS server is unal-
tered. Whenever a request gets sent to the server, this state information is re-
applied to the server object instance for the duration of the request.

The map and overview controls store their state in the MapDescription object. The
MapDescription gets applied to the map server object on every draw and query
request. The page layout control stores its state in the PageDescription object,
which also gets applied to the map server object on every draw request.

Because the map, overview, and page layout controls store some properties that
define their state, it means that these properties get applied to the map server
object and will override any changes you may make directly to the fine-grained
ArcObjects in the server object instance.

For example, suppose you access the IActiveView interface to the data frame
you’re working with and change IActiveView.setExtent. If you subsequently call
WebContext.refresh, you might expect that the data frame will be drawn with the
extent you set on IActiveView. This will not happen because the MapDescription
stored by the map control also has an extent property, which you can access via
MapDescription.setMapArea, and this property overrides the underlying changes to
the extent made through IActiveView. This behavior applies to every property of
the MapDescription coclass for the map and overview controls and every property
of the PageDescription coclass for the page layout control.

The following steps outline how you can make changes to the fine-grained
ArcObjects and also see them reflected in your Web application.

1. Call AGSWebContext.applyDescriptions to apply the current state of the map,
page, and layer descriptions to the underlying server object.

2. Make any changes to the server object instance that you need to, for example,
adding or removing a layer, modifying the extent, or changing layer rendering.

3. Call AGSWebContext.reloadDescriptions to refresh the map description and
reload the Web controls with these changes held by the fine-grained
ArcObjects in the server instance.

The following code illustrates this approach:
AGSWebContext context =

 (AGSWebContext)WebUtil.getWebContext(event.getComponent(),
 (String)event.getComponent().getAttributes().get("contextId"));

AGSWebMap webMap = (AGSWebMap)context.getWebMap();

 // Step 1: Apply the descriptions.

context.applyDescriptions();

// Step 2: Modify the extent.

IActiveView map =

 new IActiveViewProxy(mapServerObjects.getMap(webMap.getFocusMapName()));

IEnvelope extent =

You can learn more about MapDescription in
Chapter 4, ‘Developing ArcGIS Server applica-

tions’.

ch06.pmd 1/25/2005, 5:57 PM272

Chapter 6 • Developing Web applications with Java• 273

CONTEXT CONTROL

new IEnvelopeProxy(context.createServerObject(Envelope.getClsid()));

extent.putCoords(6837437,1854359,6849844,1842728);

map.setExtent(extent);

// Step 3: Refresh the map description and reload the Web controls.

context.reloadDescriptions();

ch06.pmd 1/25/2005, 5:57 PM273

274 • ArcGIS Server Administrator and Developer Guide

MAP CONTROL

The map control provides the display functionality of the ArcMap data view for
a map document served using ArcGIS Server. As with data view, a map control
displays a single data frame in the map document. Using the map control, you can
navigate the data frame, for example, pan and zoom, and access the fine-grained
ArcObjects that comprise it.

The diagram above illustrates the relationships between the map control and its
associated business objects. The MapControl works with an abstract WebMap
object. The AGSWebContext creates a new AGSWebMap object, which is a sub-
type of the WebMap. The MapControl then associates itself with the WebMap
object. The MapRenderer class renders the control to the appropriate markup, and
the MapTag class exposes the control as a JSP custom tag named map. In addition,
events are exposed through MapEventArgs, and various map tool actions can be
performed on the control.

An abstract class
representing a map control.

Displays a map and
manages events that occur.

Tag handler class for the
JSP map tag.

Performs a pan on the
map tool action.

Renders the map
control.

Performs an identify
tool action.

Performs a zoom in
tool action.

The default implementation
of WebMap to access
information about a map.

Performs a selection
of feature's tool action.

Performs a zoom out
tool action.

An object representing the
map arguments passed
from a client action.

The interface for all map tool actions.

Map Control Objects

WebSession

MapControl

WebMap

MapEvent-
Args

IMap-
ToolAction

WebSession ContextTagMap-
Renderer

MapTag

AGSWebMap

WebSession

ZoomOut-
ToolAction

Selection-
ToolAction

WebSession ContextTagIdentify-
ToolAction

PanTool-
Action

ZoomIn-
ToolAction

ch06.pmd 1/25/2005, 5:57 PM274

Chapter 6 • Developing Web applications with Java• 275

MAP CONTROL

The majority of the business logic is exposed through AGSWebMap, which per-
forms the following tasks:

• Render the map.

• Expose an API that provides access to the details of the map.

• Set up the map for client-side actions. These client-side actions could be
dragging a rectangle on the map for zoom operations, clicking a map feature
for identify operations, or drawing complex vector features, such as a circle or
a polyline.

• Associate the client-side tool actions to server-side action classes.

• Set up a framework to implement new tool actions.

• Execute server-side listeners.

THE MODEL VIEW CONTROLLER PATTERN

Unlike the context control, the map control is a visual JSF component. The map
control renders a view, controls events, and implements the business logic. To
better understand the architecture of the map control, take a look at a popular
design pattern known as the Model View Controller (MVC).

The Java ADF Web controls follow the MVC design pattern. Knowing this
pattern will help you understand how the map control responds to tool actions
and listeners, accesses the business logic, and renders the map. You can then apply
your knowledge to customize the Java ADF and plug in your own tools or listen-
ers.

The MVC pattern distinctly separates the different behaviors of the components:
view, controller, and model.

In the MVC pattern:

• The view provides a visual representation of the component. The client
interacts with this view and submits events to the controller.

• The controller delegates business processing to the other entities, which make
use of the model objects to carry out tasks. When events are queued on a
component, the component can delegate the handling of these events to the
listeners registered on it. The listeners, in turn, communicate with the business
objects to process these events.

Allows user interaction
Processes user
interaction and passes
request to controller

Provides a gateway
between view
and model
Receives an event
request from the view
and delegates handling
of this event

Processes the business
logic to satisfy the
request from the view

View Controller Model

ch06.pmd 1/25/2005, 5:57 PM275

276 • ArcGIS Server Administrator and Developer Guide

MAP CONTROL

• The model objects maintain the data and provide methods that aid in the
actual business processing.

• Once the business task is finished, the view once again renders the control to
the client.

The diagram below illustrates how the MVC paradigm maps to the Java ADF:

View
In a JSP usage, the map control is placed on the page using the following code:
<ags:context id="mapContext" resource="ServerObject@MyHost" >

 <ags:map id="Map0" left="0" top="0" width="400" height="300" />

<ags:context />

The map tag is invoked using the MapTag handler class. The MapTag uses the
MapRenderer to generate the markup—XML translated to HTML—and to display
the map. On the client-side, the map is set up for various JavaScript operations,
such as zoom, pan, and identify. After a client-side action is performed, the
MapRenderer decodes the request and passes it on to the MapControl.

Controller
The MapControl processes the request. First, the MapControl creates an event
argument object, MapEventArgs, to represent the event in an object form. The
MapControl has tool actions associated with it. Based on the operation that the
client performed, the map control next delegates the business processing to the
appropriate tool action object. For example, if the client performed a ZoomIn
action, the map control would forward the MapEventArgs to the ZoomInToolAction
class. The tool action then derives the necessary information from the event
arguments—in the case of ZoomIn, the x,y coordinates of the zoom rectangle.
The mapping business objects, such as WebMap and AGSWebMap, use this infor-
mation to perform the task. Finally, on completion of the task, the MapRenderer
displays the changed map and the whole cycle repeats.

View Controller Model

H
T

M
L

C
lie

nt
S

er
ve

r

MapRenderer MapControl

IMapToolAction WebMap

AGSWebMap
ZoomIn-

ToolAction
Pan-

ToolAction

MapEventArgs

ch06.pmd 1/25/2005, 5:57 PM276

Chapter 6 • Developing Web applications with Java• 277

MAP CONTROL

Model
The business objects, WebMap and AGSWebMap, interface with the GIS server
and the necessary ADF objects to perform GIS tasks for the map control. On
initialization of AGSWebContext, a new AGSWebMap is created, which is a sub-
type of the WebMap. The MapControl associates itself with this WebMap object.

This diagram shows the methods available from WebMap and AGSWebMap.

The AGSWebMap is the gateway to information about the map displayed in the
map control.

The default implementation of WebMap.AGSWebMap
com.esri.arcgis.webcontrols.ags.data

AGSWebMap(agsContext:
 AGSWebContext)

focusMapExtent: com.esri.arcgis.
 geometry.IEnvelope
focusMapName: String

createServerObject(progId: String): Object
getFeatureLayers(mapName: String):
 Hashtable
getFocusMapDescription():com.esri.
 arcgis.carto.IMapDescription
getFocusMapFeatureLayers(): Hashtable
getFocusMapFullExtentScale(): double
getFocusMapScale(): double
getFocusMapServerInfo ():
 com.esri.arcgis.carto.IMapServerInfo
getFocusMapUnits(): int
getFocusMapUnitsString(): String
getImageDescription():
 com.esri.arcgis.carto.IImageDescription
getImageUrl (): String

getMapFullExtentScale(mapName:
 String): double
getMapScale(mapName: String): double
getMapUnitsOptions(): ArrayList
getServer(): com.esri.arcgis.carto.
 IMapServer

fromMapPoint(point: com.esri.arcgis.
 geometry.IPoint): int[]
toMapPoint(x: int, y: int): com.esri.arcgis.
 geometry.IPoint

setHeight(height: int)
setImageFormat(imageFormat: String)
setWidth(width: int)

Class constructor method

Gets/sets the extent of the focus map.

Gets/sets the name of the focus map.

Creates the AGS object represented by the progId.
Returns the feature layers for a given map.

Returns the focus map's map description.

Returns the feature layers of the focus map.
Returns the scale of the focus map when it is at full extent.
Returns the current scale of the focus map.
Returns the focus map's IMapServerInfo object.

Returns the units of the focus map.
Returns the units of the focus map as descriptive text.
Returns the image description for the map.

Returns the URL of the map to be displayed by the
 map control.
Returns the scale of the given map when it is at full extent.

Returns the current scale of the given map.
Calls AOUtil.getUnits() to return the options for map units.
Returns the IMapServer object from the server.

Sets the height of the map.
Sets the image format of the returned map image.
Sets the width of the map.
Converts a map point to screen coordinates.

Converts the screen coordinates to a map point.

WebMap
com.esri.arcgis.webcontrols.data

WebMap(context: WebContext)

copyrightText: String
dpi: int
height: int
imageFormat: String
width: int

Class constructor method.

Gets/sets the copyright text on the map.
Gets/sets the dots per inch of the map image.
Gets/sets the height of the map image.
Gets/sets the image format of the map.
Gets/sets the width of the map image.

Returns the WebContext associated with this WebMap.
Indicates whether the control returns MIME data.
Indicates whether the map is visible.
Sets the control to return MIME data.
Sets the visibility of the map.

getWebContext(): WebContext

isVisible(): boolean

setVisible(visible: boolean)

isMimeData(): boolean

setUseMIMEData(useMIMEData: boolean)

ch06.pmd 1/25/2005, 5:57 PM277

278 • ArcGIS Server Administrator and Developer Guide

MAP CONTROL

Take a look at some code that works with AGSWebMap.

The following code shows how to access information about the map.
AGSWebMap wMap = (AGSWebMap)context.getWebMap();

Double mapScale = wMap.getMapScale("dataframe1");

System.out.println("The map scale is: " + mapScale);

ArrayList featureLayers = wMap.getFeatureLayers();

for (int i=0; i<featureLayers.size(); i++)

 System.out.println("Layer name: " + featureLayers.get(i));

The following code shows how to change the current extent of the map. Use the
toMapPoint method to convert from screen coordinates to map coordinates.
AGSWebMap wMap = (AGSWebMap)context.getWebMap();

IEnvelope extent = wMap.getFocusMapExtent();

extent.centerAt(wMap.toMapPoint(20), wMap.toMapPoint(20));

wMap.setFocusMapExtent(extent);

context.refresh
 (com.esri.arcgis.webcontrols.ags.data.AGSRefreshId.MAP_OPERATION);

The following code shows how to change the image format for the map.
AGSWebMap wMap = (AGSWebMap)context.getWebMap();

wMap.setImageFormat("JPG");

The following code shows how to access objects on the GIS server with
AGSWebMap.
AGSWebMap wMap = (AGSWebMap)context.getWebMap();

IMapServerInfo serverInfo = wMap.getFocusMapServerInfo();

int mapUnits = serverInfo.getMapUnits();

System.out.println("Map units: " + AOUtil.getUnitsString(mapUnits,

 agsContext));

INTERACTING WITH THE MAP CONTROL USING TOOLS

When you interact with a map control, an action happens on the client that
triggers an action on the server. The client-side action is what allows you to, for
example, draw a box over the control. The server-side action is what allows you
to use the coordinates of the box and, for example, zoom in.

During every interaction with a map control, two things happen:

• An end user interacts with the map control on the client.

The client-side action is controlled by a JavaScript function that executes on
the client without any requests being sent to the server. The Java ADF in-
cludes JavaScript code for common interactions, such as drawing a box.

• The server executes an action based on the client interaction.

Once the client-side action is completed, the client sends a request to the
server to execute the server-side action. The MapRenderer decodes the request
and passes the FacesContext to the MapControl. The FacesContext contains the
request parameters and the tool key, for example, ZoomIn. The MapControl
then creates a MapEventArgs object that holds the tool action and the client
arguments for that tool action. Last, an ActionEvent is fired and the map
control’s processAction method retrieves the appropriate IMapToolAction, for
example, ZoomInToolAction, and calls the execute method with the

ch06.pmd 1/25/2005, 5:57 PM278

Chapter 6 • Developing Web applications with Java• 279

MAP CONTROL

MapEventArgs. The ZoomInToolAction retrieves the arguments and performs the
zoom in.

A ToolItemCollection consists of one or more ToolItem objects. ToolItem stores the
tool key, the client-side action, and the server-side action class, IToolAction. The
diagram below shows the methods on the ToolItem object.

As a Web application developer, you build functionality into your Web applica-
tion by defining a set of client-side actions and associated server-side actions.

By default, the Java ADF initializes the ToolItemCollection object with the fol-
lowing map tool items:
Key Server ToolAction JavaScript method

ZoomIn ZoomInToolAction MapDragRectangle

ZoomOut ZoomOutToolAction MapDragRectangle

Pan PanToolAction MapDragImage

Identify IdentifyToolAction MapPoint

Selection SelectionToolAction MapDragRectangle

The tool actions are found in the com.esri.arcgis.webcontrols.ags.faces.event
package, and the JavaScript is located in the Web application’s js directory. You
can change an existing tool provided by the Java ADF or add a new tool.

Tools are listed in the default.xml file found in your application’s WEB-
INF\classes\tools directory. You can edit the existing default.xml file or write
your own XML file. If you choose to write your own, you either need to name
your file default.xml or set the map tag’s toolItemCollection attribute to the name of
your new XML file. The only requirement is that the file be placed in the WEB-
INF\classes\tools directory.

Adding a tool
To add a tool, a new tool item must be added to the default.xml file. The code
below is a tool item for a measure tool.
<tool-item>

 <key>Measure</key>

 <action-class>
 com.esri.arcgis.webcontrols.ags.faces.event.MeasureToolAction</action-
 class>

 <client-action>MapPolyline</client-action>

</tool-item>

This new tool item sets the client-side action and the server-side action class. The
Java ADF JavaScript library has a MapPolyline client action. The MapPolyline client
action allows the drawing of multiple line segments on the map and finds the
total distance of those segments. For the server-side action, the next section
describes how you would write an action class called MeasureToolAction.

ToolItem-
Collection

ToolItem

ToolItem
com.esri.arcgis.webcontrols.faces.event

ToolItem(key: String, actionClass: String,
 clientAction:String)

getClientAction(): String
getKey(): String

getToolClass(): String
getToolAction(): IToolAction

Class constructor method.

Returns the client action to perform.
Returns the tool key.
Instantiates an IToolAction object with the name toolClass.
Returns the class name to invoke for the tool.

A ToolItemCollection consists of one or more
ToolItem objects.

ch06.pmd 1/25/2005, 5:57 PM279

280 • ArcGIS Server Administrator and Developer Guide

MAP CONTROL

Creating a server-side action class
A common task when working with the Java ADF will be to create a new server-
side tool action class. In the previous section, you added a tool item for a measure
tool. Now, implement the code for the MeasureToolAction class.

Create MeasureToolAction.java and add the following code.
package com.esri.arcgis.webcontrols.ags.faces.event;

import com.esri.arcgis.webcontrols.faces.event.*;

import com.esri.arcgis.webcontrols.ags.data.AGSWebMap;

import com.esri.arcgis.webcontrols.ags.data.AGSWebContext;

import com.esri.arcgis.geometry.*;

public class MeasureToolAction implements IMapToolAction {

 public static final String MEASURE_REQUEST_ATTRIBUTE_NAME =
 "esriMeasureDistance";

 public void execute(MapEventArgs args) throws Exception {

 PolylineArgs polyLineArgs = (PolylineArgs)args.getClientActionArgs();

 ClientPoint[] points = polyLineArgs.getPoints();

 AGSWebContext agsContext = (AGSWebContext)args.getWebContext();

 AGSWebMap wMap = (AGSWebMap)agsContext.getWebMap();

 IPolyline pLine = new
 IPolylineProxy(wMap.createServerObject("Polyline.getClsid()));

 IPointCollection collection = new IPointCollectionProxy(pLine);

 for(int i = 0; i < points.length; ++i) {

 collection.addPoint(wMap.toMapPoint(points[i].getX(),

 points[i].getY()), null, null);

 }

 agsContext.setAttribute(MEASURE_REQUEST_ATTRIBUTE_NAME,

 Double.toString(pLine.getLength()));

 }

}

Look at this code in more detail.

All map tool action classes must implement IMapToolAction and the execute ab-
stract method.
public class MeasureToolAction implements IMapToolAction {

public void execute(MapEventArgs args) throws Exception {

}

}

As mentioned previously, the MapEventArgs object was provided to the MapCon-
trol by the MapRenderer; the MapRenderer received this information from the
client’s action request.

ch06.pmd 1/25/2005, 5:57 PM280

Chapter 6 • Developing Web applications with Java• 281

MAP CONTROL

To implement the execute method, follow these steps:

1. Retrieve the client action arguments from the MapEventArgs object. In the
case of the measure tool, the client action arguments are the line segments
drawn on the map to measure a distance.

The Java ADF has several classes representing the available ClientActionArgs.
The table below describes the default action mappings for the map control.
Client Action ClientActionArgs

MapPoint PointArgs

MapDragImage DragImageArgs

MapDragRectangle DragRectangleArgs

MapPolyline PolylineArgs

MapLine LineArgs

MapPolygon PolygonArgs

MapCircle CircleArgs

MapOval OvalArgs

You can add to the default collection of action argument classes by calling
this code:
ClientActionArgs.addClientActionArgs("actionName", "argsClassName");

In this example, the PolylineArgs class, from the default collection, is used
because the client-side action is MapPolyline.
PolylineArgs polyLineArgs = (PolylineArgs)args.getClientActionArgs();

ClientPoint[] points = polyLineArgs.getPoints();

Now, all the points are accessible to write some ArcObjects code to calculate
the length of the polyline.

2. Retrieve the WebMap object.
AGSWebContext agsContext = (AGSWebContext)args.getWebContext();

AGSWebMap wMap = (AGSWebMap)agsContext.getWebMap();

3. Use the createServerObject method on the WebContext to create any new server
objects within the server context.
IPolyline pLine = new
 IPolylineProxy(agsContext.createServerObject("Polyline.getClsid()));

4. Convert the points from screen coordinates to map points by using the
toMapPoint method on the WebMap.
IPointCollection collection = new IPointCollectionProxy(pLine);

for(int i = 0; i < points.length; ++i) {

collection.addPoint(wMap.toMapPoint(points[i].getX(),
points[i].getY()), null, null);

}

A collection of points is stored in the pLine object. The length of the line can be
determined by using pLine.getLength. The length of the polyline is then stored as
an attribute to the WebContext so it can be retrieved in the JSP page.
agsContext.setAttribute(MEASURE_REQUEST_ATTRIBUTE_NAME,

 Double.toString(pLine.getLength()));

Now that you have completed the code for MeasureToolAction.java, navigate to
your application’s WEB-INF directory and create this structure:
classes\com\esri\arcgis\webcontrols\ags\faces\event. Compile the file and place
the class file in the event directory.

ch06.pmd 1/25/2005, 5:57 PM281

282 • ArcGIS Server Administrator and Developer Guide

MAP CONTROL

To add the measure tool to the JSP, edit your JSP file to include this code that
will display the measure tool as well as text that reports the measure distance.
<ags:context id="mapContext" resource="world@localhost">

 <ags:map ... />

 <input type="button" value="Measure" onclick="MapPolyline('Map0',
 'Measure');" />

 <div style="position:absolute;left:233px;top:600px;">

 Measured Distance: <c:out value="${sessionScope
 ['mapContext'].attributes['esriMeasureDistance']}"/>

</div>

</ags:context>

To use the measure tool, click Measure and click the map at the points you want
to measure. Double-click to end measuring; the measure distance, reported in
map units, will be displayed under the map.

INTERACTING WITH THE MAP CONTROL USING LISTENERS

Not all actions performed on the map require a client-side action. In some cases,
you may want to implement custom server-side functionality invoked by a user
command. JSF ships with some standard command components, such as buttons
and hyperlinks. These command components can be associated with listeners.
When the command component is clicked, the JSF framework triggers a server-
side event and calls the associated listeners to process the event.

The Java ADF provides these listeners as part of the
com.esri.arcgis.webcontrols.ags.faces.event package for the map:

• DirectionalPanListener

• FixedZoomListener

• ZoomRelativeToFullExtentListener

• ZoomFullExtentListener

You can get more details about the listeners provided with the Java ADF in the
ArcGIS Developer Help.

To program a listener in JSF, you must implement the
javax.faces.event.ActionListener interface. This interface requires an implementation
of the following abstract method:
public void processAction(ActionEvent event)

This example shows the JSP code for the FixedZoomListener. The purpose of this
listener is to zoom a map in or out by a fixed factor. In this example, the zoom
factor is 50 percent.
<jsfh:commandButton id="zoom" image="images/zoom.gif">

 <jsfc:actionListener type=
 "com.esri.arcgis.webcontrols.ags.faces.event.FixedZoomListener" />

 <jsfc:attribute name="factor" value="0.5" />

</jsfh:commandButton>

The JSF commandButton component, when clicked, sends the event to the listener
associated with the actionListener tag. The factor attribute is passed to the
FixedZoomListener, and the server-side event is handled.

ch06.pmd 1/25/2005, 5:57 PM282

Chapter 6 • Developing Web applications with Java• 283

MAP CONTROL

This is the implementation of the listener code.
package com.esri.arcgis.webcontrols.ags.faces.event;

import javax.faces.event.*;

import com.esri.arcgis.webcontrols.util.WebUtil;

import java.util.logging.*;

import com.esri.arcgis.webcontrols.data.*;

import com.esri.arcgis.geometry.*;

import com.esri.arcgis.webcontrols.ags.data.*;

public class FixedZoomListener implements ActionListener {

 private static Logger logger =
 Logger.getLogger(FixedZoomListener.class.getName());

 public static final String FACTOR = "factor";

 public void processAction(ActionEvent event) throws
 javax.faces.event.AbortProcessingException {

 try {

 AGSWebMap wMap =
 (AGSWebMap)WebUtil.getWebContext(event.getComponent(),
 (String)event.getComponent().getAttributes().get("contextId")).getWebMap();

 double factor =
 Double.parseDouble((String)event.getComponent().getAttribute(FACTOR));

 IEnvelope extent = wMap.getFocusMapExtent();

 extent.expand(factor, factor, true);

 IEnvelope fullExtent = wMap.getFocusMapServerInfo().getFullExtent();

 if(extent.getWidth() > fullExtent.getWidth() || extent.getHeight() >
 fullExtent.getHeight())

 extent = fullExtent;

 wMap.setFocusMapExtent(extent);

 wMap.getWebContext().refresh(AGSRefreshId.MAP_OPERATION);

 }

 catch(Exception e) {

 logger.log(Level.WARNING, "Unable to process action for
 FixedZoomListener.", e);

 }

 }

}

The first step in implementing a listener is to implement from the ActionListener
interface.
public class FixedZoomListener implements ActionListener {

}

As mentioned, ActionListener requires the implementation of the abstract method,
processAction. This method gets invoked from the client’s command action. Refer
to the code comments for more details about this code.
public static final String FACTOR = "factor";

public void processAction(ActionEvent event) throws
javax.faces.event.AbortProcessingException {

 try {

ch06.pmd 1/25/2005, 5:57 PM283

284 • ArcGIS Server Administrator and Developer Guide

MAP CONTROL

// The WebMap, retrieved from the WebContext, can return
// the AGSWebMap object using the getWebMap method on WebContext.

AGSWebMap wMap =
 (AGSWebMap)WebUtil.getWebContext(event.getComponent(),
 (String)event.getComponent().getAttributes().get("contextId")).getWebMap();

// Get the factor attribute provided to the listener.

double factor =
 Double.parseDouble((String)event.getComponent().getAttribute(FACTOR));

// Get the focus map extent from the WebMap and store this extent.

IEnvelope extent = wMap.getFocusMapExtent();

// Using ArcObjects IEnvelope expand method, stretch the
// current extent by the factor specified.

extent.expand(factor, factor, true);

// If the new extent is greater than the full extent of
// the focus map, set the new extent to the full extent.

IEnvelope fullExtent = wMap.getFocusMapServerInfo().getFullExtent();

if(extent.getWidth() > fullExtent.getWidth() || extent.getHeight() >
 fullExtent.getHeight())

 extent = fullExtent;

// Set the calculated extent to the new extent.

wMap.setFocusMapExtent(extent);

// Update the context and tell all the observers of the context
// that the map has changed and they may need to update.

wMap.getWebContext().refresh(AGSRefreshId.MAP_OPERATION);

}

 catch(Exception e) {

 logger.log(Level.WARNING, "Unable to process action for
 FixedZoomListener.", e);

 }

}

The JSF listeners (working within the JSF framework) eliminate the need for
you, as the Web developer, to take care of when and how the server-side event is
triggered.

INTERACTING WITH THE MAP CONTROL USING ACTION
METHODS

A JSF component can trigger events by associating itself to a JavaBeans method.
The Java ADF refers to these as action methods. For a list of the available action
methods see the ArcGIS Server Java ADF Listeners and Actions documentation
in the ArcGIS Developer Help.

Now take a look at an example of how you would create one of these action
methods. In the previous section, a FixedZoomListener was created. Now you will
implement this functionality using an action method.

1. Implement the bean class AGSFixedZoom and the doFixedZoom action method.
package com.esri.arcgis.webcontrols.ags.data;

import com.esri.arcgis.webcontrols.data.WebContext;

import com.esri.arcgis.webcontrols.data.WebContextInitialize;

import java.util.logging.Logger;

import java.util.logging.Level;

import com.esri.arcgis.geometry.*;

ch06.pmd 1/25/2005, 5:57 PM284

Chapter 6 • Developing Web applications with Java• 285

// Implement WebContextIntialize to update this class with
// the current WebContext.

public class AGSFixedZoom implements WebContextInitialize {

 private static Logger logger =
 Logger.getLogger(AGSFixedZoom.class.getName());

 private AGSWebContext m_agsContext;

 // Set a default zoom factor.

 double factor = .5;

 // Update the value of WebContext on initialization or change.

 public void init(WebContext agsContext){

 if(agsContext == null || !(agsContext instanceof AGSWebContext))

 throw new IllegalArgumentException
 (“WebContext is null or is not an instance of AGSWebContext.”);

 this.m_agsContext = (AGSWebContext)agsContext;

 }

 // Sets the zoom factor.

 public void setFactor(double factor){

 this.factor = factor;

 }

 // Returns the zoom factor.

 public double getFactor(){

 return this.factor;

 }

 // Implement the doFixedZoom action method.

 // Retrieve the WebMap and determine the extent of the focus map.

 // Expand the IEnvelope by the set factor in both directions. Change
 // the WebMap to use the new map extent and refresh the WebContext.

 public String doFixedZoom(){

 try {

 AGSWebMap wMap = (AGSWebMap)m_agsContext.getWebMap();

 IEnvelope extent = wMap.getFocusMapExtent();

 extent.expand(factor, factor, true);

 IEnvelope fullExtent =
 wMap.getFocusMapServerInfo().getFullExtent();

 if(extent.getWidth() > fullExtent.getWidth() ||
 extent.getHeight() > fullExtent.getHeight())

 extent = fullExtent;

 wMap.setFocusMapExtent(extent);

 wMap.getWebContext().refresh(AGSRefreshId.MAP_OPERATION);

 }

 catch(Exception _) {

 logger.log(Level.WARNING, "Unable to do fixed zoom", _);

 }

 return null;

 }

}

2. Add the AGSFixedZoom class as a managed context attribute. Edit the Web
application’s managed_context_attributes.xml file with the entry below. The
new bean is referenced as esriAGSFixedZoom.
<managed-context-attribute>

MAP CONTROL

Managed context attributes are discussed in
more detail in the ‘Working with the context

control’ section earlier in this chapter.

ch06.pmd 1/25/2005, 5:57 PM285

286 • ArcGIS Server Administrator and Developer Guide

MAP CONTROL

 <name>esriAGSFixedZoom</name>

 <attribute-class>com.esri.arcgis.webcontrols.ags.data.AGSFixedZoom
 </attribute-class>

 <description>Performs a fixed zoom on the map.</description>

</managed-context-attribute>

3. Write JSP code to access the doFixedZoom action method and dynamically set
the factor using a JSF inputText box.
<ags:context id="mapContext" resource="world@localhost">

 <ags:map id="Map0" left="233" top="115" width="535" height="408" ... />

 <table cellpadding="0" cellspacing="1" class="tblToolBar">

 <tr>

 <td>

<jsfh:inputText id="factor" value="#{sessionScope['mapContext']
 .attributes['esriAGSFixedZoom'].factor}" />

 </td>

 <td>

<jsfh:commandButton id="cmdFixed" value="Fixed Zoom"
 action="#{sessionScope['mapContext']
 .attributes['esriAGSFixedZoom'].doFixedZoom}" />

 </td>

 </tr>

 </table>

</ags:context>

ACCESSING OBJECTS THROUGH WEBCONTEXT

As mentioned in the section titled ‘Context control’, the WebMap object is acces-
sible through the WebContext and can be retrieved using the following Java code:
AGSWebContext context = (AGSWebContext)
 WebUtil.getWebContext(FacesContext.getCurrentInstance(), CONTEXTID);

AGSWebMap map = (AGSWebMap)context.getWebMap();

// The WebPageMap, retrieved from the WebContext,
// can be used to retrieve the name of the focus map.

String focusMapName = map.getFocusMapName();

The name of the focus map can also be retrieved in JSP code:
${requestScope['esriWebContext'].webMap.focusMapName}:

<c:set var="focusMapName"
value="${sessionScope['CONTEXTID'].webMap.focusMapName}" />

The above code sets a focusMapName variable, with the value retrieved from the
getFocusMapName method on AGSWebMap.

Take a look at a few more examples that relate to the buffer operation on a map.

The following code shows how to display a JSF inputText box to set a buffer
distance. A buffer distance must be set before a buffer operation can be per-
formed.
<jsfh:inputText value="#{sessionScope['CONTEXTID'].attributes

 ['esriAGSBuffer'].bufferDistance}"/>

The following code uses the JSF selectitems tag to display a dropdown list of
choices for setting the map units. The selectOneMenu tag automatically calls
AGSBuffer.setBufferUnits with the value selected.

ch06.pmd 1/25/2005, 5:57 PM286

Chapter 6 • Developing Web applications with Java• 287

MAP CONTROL

<jsfh:selectOneMenu id="selBufferUnit" value=
 "#{sessionScope['CONTEXTID'].attributes['esriAGSBuffer'].bufferUnits}">

 <jsfc:selectItems id="selBufferUnitOption" value=
 "#{sessionScope['CONTEXTID'].webMap.mapUnitsOptions}"/>

</jsfh:selectOneMenu>

The following code shows how to display the details of a buffer result by using
the JSF dataTable. First, the ArrayList of details is associated to the value at-
tribute. Then for each result detail, the field and value are accessed via the item
variable. The rendered attribute of the dataTable ensures that there are buffer
result details available to print out.
<jsfh:dataTable id="detailsTable"
 value="#{sessionScope['CONTEXTID']

 .attributes['esriAGSBufferResults'].detailsResult.details}"

 var="item"

 rendered="#{sessionScope['CONTEXTID']
 .attributes['esriAGSBufferResults'].detailsResult != null}" … >

 <jsfh:column>

 <jsfc:facet name=
 "header"><jsfh:outputText value="Field" /></jsfc:facet>

 <jsfh:outputText value="#{item[0]}" />

 </jsfh:column>

 <jsfh:column>

 <jsfc:facet name=
 "header"><jsfh:outputText value="Value" /></jsfc:facet>

 <jsfh:outputText value="#{item[1]}" />

 </jsfh:column>

 </jsfh:dataTable>

ch06.pmd 1/25/2005, 5:57 PM287

288 • ArcGIS Server Administrator and Developer Guide

PAGE LAYOUT CONTROL

The page layout control provides the display functionality of the ArcMap layout
view for a map document served using ArcGIS Server. Using the page layout
control, you can view a map server object’s layout, navigate it, navigate the maps
within the layout, and access the fine-grained ArcObjects that comprise it.

The diagram above illustrates the relationships between the page layout control
and its associated business objects. The PageLayoutControl works with an ab-
stract WebPageLayout object. The actual WebPageLayout object is created by the

An abstract class representing
a page layout control.

Displays a page layout and
manages events that occur.

An object representing the page
layout arguments passed from
a client action.

Renders the page
layout control.

The interface for all page
layout tool actions.

Performs a zoom out
on the page layout.

Performs a zoom in
on the page layout.

Performs a pan on
the page layout.

Performs a zoom out
on the page layout's map.

Performs a zoom in
on the page layout's map.

Performs a pan on the
page layout's map.

The default implementation
of WebPageLayout.

The interface for all
map tool actions.

Tag handler class for
the JSP pageLayout tag.

Page Layout Control Objects

PageLayout-
Control

WebPage-
Layout

PageLayout-
EventArgs

IPageLayout-
ToolAction

PageLayout-
Renderer

Page-
LayoutTag

AGSWeb-
PageLayout

WebSession
PageLayout-

ZoomIn-
ToolAction

PageLayout-
PanToolAction

PageLayout-
ZoomOut-
ToolAction

IMap-
ToolAction

WebSession
PageMap-
ZoomIn-

ToolAction

PageMap-
PanToolAction

PageMap-
ZoomOut-
ToolAction

ch06.pmd 1/25/2005, 5:57 PM288

Chapter 6 • Developing Web applications with Java• 289

PAGE LAYOUT CONTROL

parent context control, and by default, a new AGSWebPageLayout is initialized.
The PageLayoutControl also accepts map tool actions for the maps on the page.
In addition, the PageLayoutControl responds to events on the page itself by
executing actions of type IPageLayoutToolAction. The PageLayoutRenderer class
renders the control to the appropriate markup, and the PageLayoutTag class ex-
poses the control as a JSP custom tag named pageLayout. AGSWebPageLayout
performs these important functions for the PageLayoutControl:

 • Renders the page layout.

• Exposes an API that provides access to the details of the page layout and map.

• Sets up the page layout for client-side actions on the map and the page. These
client-side actions could be dragging a rectangle to do a page zoom or dragging
an image to pan the page.

• Associates the client-side tool actions to server-side action classes.

• Sets up a framework to implement new tool actions.

• Executes server-side listeners.

The diagram below shows some of the methods available on WebPageLayout.

WebPageLayout
com.esri.arcgis.webcontrols.data

WebPageLayout(context: WebContext)

dpi: int
height: int
imageFormat: String
width: int

getWebContext(): WebContext
isMimeData(): boolean
isVisible(): boolean
setUseMIMEData(useMIMEData: boolean)
setVisible(visible: boolean)

Class constructor method.

The dots per inch (DPI) of the page layout.
The height of the page layout.
The image format of the page layout.
The width of the page layout.

Returns the WebContext associated with this WebPageLayout.
Indicates whether the control returns MIME data.
Indicates whether the page layout is visible.
Sets whether the control returns MIME data.
Sets the visibility of the page layout.

ch06.pmd 1/25/2005, 5:57 PM289

290 • ArcGIS Server Administrator and Developer Guide

PAGE LAYOUT CONTROL

The diagram below shows some of the methods available on AGSWebPageLayout.

The AGSWebPageLayout provides you with an API to access information about
the page layout and control its behavior. The examples below illustrate some
common usages.

The following code shows how to change the current page extent of the layout
and refresh all observers of the WebContext.
AGSWebPageLayout wPage =
 (AGSWebPageLayout)context.getWebPageLayout();

IEnvelope extent = wPage.getPageExtent();

extent.centerAt(wPage.toPagePoint(50),wPage.toPagePoint(50));

wPage.setPageExtent(extent);

context.refresh(AGSRefreshId.PAGE_LAYOUT_OPERATION);

The following code shows how to access objects on a GIS server with
AGSWebPageLayout. This code also retrieves the map images contained in the
layout and prints out the URL to the first map.
AGSWebPageLayout wPage =
 (AGSWebPageLayout)context.getWebPageLayout();

IPageDescription pageDesc = wPage.getPageDescription();

IImageDescription imageDesc = wPage.getImageDescription();

The default implementation of WebPageLayout.AGSWebPageLayout
com.esri.arcgis.webcontrols.ags.data

AGSWebPageLayout(agsContext:
 AGSWebContext)

pageExtent: com.esri.arcgis.
 geometry.IEnvelope

createServerObject(progId: String): Object
getDataFrameName(index: int): String
getFullExtent(): AGSExtent
getImageDescription(): com.esri.arcgis.
 carto.IImageDescription
getImageRectangle(mapName: String):
 ImageRectangle
getImageRectangles(): ImageRectangle[]
getImageUrl(): String
getMapDescriptions(): com.esri.arcgis.
 carto.IMapDescriptions
getMapExtent(mapName: String): com.
 esri.arcgis.geometry.IEnvelope
getMapServerInfo(mapName: String):
 com.esri.arcgis.carto.IMapServerInfo
getPageDescription():
 com.esri.arcgis.carto.IPageDescription
getServerLayout():
 com.esri.arcgis.carto.IMapServerLayout

fromMapPoint(point: com.esri.arcgis.
 geometry.Ipoint, mapName: String): int[]
toMapPoint(x: int, y: int, mapName: String):
 com.esri.arcgis.geometry.IPoint
fromPagePoint(point: com.esri.arcgis.
 geometry.IPoint): int[]
toPagePoint(x: int, y: int):
 com.esri.arcgis.geometry.IPoint

setHeight(height: int)
setImageFormat(imageFormat: String)
setMapExtent(extent: com.esri.arcgis.
 geometry.IEnvelope, mapName: String)
setWidth(width: int)

Class constructor method.

The extent of the page.

Creates the AGS object represented by the progId.
Returns the data frame name based on an integer index.
Returns the full extent of the page layout.
Returns the image description for the page layout.

Returns the data frame location in screen coordinates.

Return all data frame locations in screen coordinates.
Returns the URL of the page layout.
Returns the map descriptions for the page layout.

Returns the extent of the given data frame.

Returns the IMapServerInfo object based on data
 frame name.
Returns the page description for the page layout.

Returns the IMapServerLayout object from the server.

Sets the height of the page layout.
Sets the image format for the page layout.
Sets the extent for the given data frame name.

Sets the width of the page layout.
Converts a map point to screen coordinates.

Converts a screen coordinate to a map point.

Converts a page point to screen coordinates.

Converts the screen coordinates to a page point.

ch06.pmd 1/25/2005, 5:57 PM290

Chapter 6 • Developing Web applications with Java• 291

ILayoutImage srvLayout = wPage.getServerLayout()
 .exportLayout(pageDesc,imageDesc);

IMapImages images = srvLayout.getMapImages();

System.out.println("The first map: " + images.getElement(0).getURL());

The following code shows how to perform operations on a map in the page
layout. This code sets the map to its full extent and refreshes the display.
AGSWebPageLayout wPage =
 (AGSWebPageLayout)context.getWebPageLayout();

wPage.setMapExtent(wPage.getMapServerInfo("dataframe1").
 getFullExtent(), "dataframe1");

context.refresh(AGSRefreshId.MAP_OPERATION);

The following code shows how to query the page layout to determine if the
image is returned as a URL or as MIME data. If the server object is set up as
MIME Only, the isMIMEData method will return True even if
PageLayoutControl.setUseMIMEData set it to False.
AGSWebPageLayout wPage =
 (AGSWebPageLayout)context.getWebPageLayout();

System.out.println("MIME is set to: " + wPage.isMIMEData());

INTERACTING WITH THE PAGE LAYOUT CONTROL USING TOOLS

The page layout control interacts with tools in the same way that the map control
interacts with tools. The only difference between the two is that the page layout
control can process both map and page tool actions.

In addition to the tool items for the map control, the ToolItemCollection object is
populated with tool items for the page layout control. Below is the listing of the
tool items specific to the page layout control and their client-side and server-side
mappings.
Key Server ToolAction JavaScript method

PageLayoutZoomIn PageLayoutZoomInToolAction PageDragRectangle

PageLayoutZoomOut PageLayoutZoomOutToolAction PageDragRectangle

PageLayoutPan PageLayoutPanToolAction PageDragImage

PageMapZoomIn PageMapZoomInToolAction PageMapDragRectangle

PageMapZoomOut PageMapZoomOutToolAction PageMapDragRectangle

PageMapPan PageMapPanToolAction PageMapDragImage

The PageLayoutRenderer decodes the request and passes the FacesContext to the
PageLayoutControl. The FacesContext contains the request parameters and the
tool key for that request. The PageLayoutControl then creates an EventArgs
object that holds the tool action and the tool action’s client arguments. If the
ToolAction is for a map, it creates a MapEventArgs. If the ToolAction is for a page, it
creates a PageEventArgs. An ActionEvent is fired, and the page layout control’s
processAction method retrieves the appropriate IToolAction and calls the execute
method with the EventArgs. In the case of a zoom in on the page, the
PageLayoutZoomInToolAction parses the arguments and performs the zoom in on the
page.

Look at creating a new tool for the page layout. The steps here are similar to the
steps taken to create a new tool for the map control. In this example, the new
tool’s client-side action is PagePoint. The server-side action takes the point from
the client and zooms in relative to that point by a factor of 50 percent.

PAGE LAYOUT CONTROL

ch06.pmd 1/25/2005, 5:57 PM291

292 • ArcGIS Server Administrator and Developer Guide

PAGE LAYOUT CONTROL

1. Change the application's default.xml file to add a new tool, PageFixedZoomIn.
<tool-item>

 <key>PageFixedZoomIn</key>

 <action-class>
 com.esri.arcgis.webcontrols.ags.faces.event.PageFixedZoomInToolAction
 </action-class>

 <client-action>PagePoint</client-action>

</tool-item>

The ClientActionArgs mapping for the page layout control is below. The
PagePoint action maps to the PointArgs object on the server.
Client Action ClientActionArgs

PagePoint PointArgs

PageDragRectangle DragRectangleArgs

PageDragImage DragImageArgs

PageMapPoint PointArgs

PageMapDragRectangle DragRectangleArgs

PageMapDragImage DragImageArgs

2. Create PageFixedZoomInToolAction.java.

3. Add the following code to PageFixedZoomInToolAction.java. The code below
has comments describing the implementation.
package com.esri.arcgis.webcontrols.ags.faces.event;

import com.esri.arcgis.webcontrols.faces.event.*;

import com.esri.arcgis.webcontrols.ags.data.AGSWebPageLayout;

import com.esri.arcgis.webcontrols.ags.data.AGSWebContext;

import com.esri.arcgis.webcontrols.ags.data.AGSRefreshId;

import com.esri.arcgis.geometry.*;

// Implement from the IPageLayoutToolAction interface.

public class PageFixedZoomInToolAction implements IPageLayoutToolAction {

// Zoom in by a fixed factor of 50%.

 protected static final double ZOOM_IN_FACTOR = 0.5;

// Implement the execute method to perform the task.

 public void execute(PageLayoutEventArgs args) throws Exception {

// The PagePoint method maps to PointArgs. Extract the client action

// arguments and cast it to PointArgs.

 PointArgs pointArgs = (PointArgs)args.getClientActionArgs();

// Retrieve the WebContext and WebPageLayout.

 AGSWebContext agsContext = (AGSWebContext)args.getWebContext();

 AGSWebPageLayout wPage =
 (AGSWebPageLayout)agsContext.getWebPageLayout(true);

// Get the current page’s extent from the WebPageLayout.

 IEnvelope extent = wPage.getPageExtent();

ch06.pmd 1/25/2005, 5:57 PM292

Chapter 6 • Developing Web applications with Java• 293

PAGE LAYOUT CONTROL

// Extract the x,y coordinate point from PointArgs. Convert both of these

// screen points to page points using the toPagePoint method.

// Center the new extent of the page at the new point and expand it 50%.

 extent.centerAt(wPage.toPagePoint(pointArgs.getPoint().getX(),
 pointArgs.getPoint().getY()));

 extent.expand(ZOOM_IN_FACTOR, ZOOM_IN_FACTOR, true);

// Set the new page extent to the expanded extent.

 wPage.setPageExtent(extent);

// Refresh the context and update those controls that listen for

// changes to the page layout.

 agsContext.refresh(AGSRefreshId.PAGE_LAYOUT_OPERATION);

 }

}

4. Now that you have completed the code for
PageFixedZoomInToolAction.java, navigate to your application’s WEB-INF
directory and create this directory structure:
classes\com\esri\arcgis\webcontrols\faces\event

Compile the file, and place the class file in the event directory.

5. To add the button for zooming the page layout to the JSP, edit your JSP file
to include this code that will display the new button. The button’s onclick
event is set to execute the PagePoint JavaScript method and pass the identifier
of the page layout control and the tool key.

<ags:context id="mapContext" resource="world@localhost">

 <ags:pageLayout ... />

 <input type="button" value="Page Fixed Zoom"
 onclick="PagePoint('PageLayout0', 'PageFixedZoomIn', 'false');" />

</ags:context>

INTERACTING WITH THE PAGE LAYOUT CONTROL USING
LISTENERS

Like the map control, listeners can be associated with JSF command components.
Refer to the section titled ‘Interacting with the map control using listeners’ for
details on how to implement a new listener and attach listeners to commands.

The Java ADF provides these listeners, as part of the
com.esri.arcgis.webcontrols.ags.faces.event package, for the page layout:

• PageLayoutDirectionalPanListener

• PageLayoutZoomFullExtentListener

• PageLayoutZoomFullSizeListener

Refer to the ArcGIS Server Java ADF Listeners and Actions documentation in
the ArcGIS Developer Help for more details on each listener.

The third parameter is an optional Boolean to
specify whether you want to see the loading

image while the request is processing; the
default is true.

ch06.pmd 1/25/2005, 5:57 PM293

294 • ArcGIS Server Administrator and Developer Guide

PAGE LAYOUT CONTROL

ACCESSING OBJECTS THROUGH WEBCONTEXT

The WebPageLayout can be retrieved through the WebContext by using the follow-
ing Java code:
AGSWebContext context = (AGSWebContext)
 WebUtil.getWebContext(FacesContext.getCurrentInstance(), CONTEXTID);

AGSWebPageLayout page = (AGSWebPageLayout)context.getWebPageLayout();

// The WebPageLayout, retrieved from the WebContext,
// can be used to retrieve the width and height of the page.

int width = page.getWidth();

int height = page.getHeight();

The width and height of the page can also be retrieved using the following JSP
code:
<c:set var="pageWidth" value=

 "${sessionScope['CONTEXTID'].webPageLayout.width}" />

<c:set var=”pageHeight” value=

 "${sessionScope['CONTEXTID'].webPageLayout.height}" />

ch06.pmd 1/25/2005, 5:57 PM294

Chapter 6 • Developing Web applications with Java• 295

OVERVIEW CONTROL

The overview control is similar to a map control in that it displays a particular
data frame of a map server object. However, the purpose of the overview map is
to provide a point of reference for the area displayed on its associated map
control. The overview control can show its data frame at full extent or the last
extent at which the file was saved. A small box on the overview map represents
the currently displayed area on its associated map control. You can interactively
move this box around to pan the area displayed in the map control.

The diagram above illustrates the relationships between the overview control and
its associated business objects, WebOverview and AGSWebOverview. The overview
control works with an abstract WebOverview. The actual WebOverview object is
created by the parent context control, and by default, a new AGSWebOverview is
initialized. The OverviewEventArgs object is used by the control to extract the
point on the overview map to center at. The OverviewRenderer class renders the
control to the appropriate markup, and the OverviewTag class exposes the control
as a JSP custom tag named overview. AGSWebOverview performs these important
functions for the overview control:

• Renders the overview map

• Exposes an API to retrieve information about the overview map

• Sets up the overview map to handle events for panning the area of interest

• Updates the map based on an overview map event

An abstract class representing
an overview map control.

Displays an overview map
and manages events that occur.

Tag handler class for the
JSP overview tag.

Renders the overview
map.

The default implementation
of WebOverview.

An object representing the
map arguments passed
from a client.

Overview Control Objects

WebSession

Overview-
Control

WebOverview

Overview-
EventArgs

WebSession ContextTagOverview-
Renderer

OverviewTag

AGSWeb-
Overview

ch06.pmd 1/25/2005, 5:57 PM295

296 • ArcGIS Server Administrator and Developer Guide

OVERVIEW CONTROL

The diagram below shows some of the methods available from WebOverview and
AGSWebOverview.

The AGSWebOverview provides you with an API to access information about the
overview and control its behavior. The examples below illustrate some common
usages.

The following code shows how to generate the overview map image and retrieve
a reference to it; this reference could be a URL or a MIME data string.
AGSWebOverview wOverview = (AGSWebOverview)context.getWebOverview();

String ovMap = wOverview.getImageUrl();

The following code shows how to determine the width and height of the area of
interest box on the overview map.
AGSWebOverview wOverview =(AGSWebOverview)context.getWebOverview();

ImageRectangle rect = wOverview.getImageRectangle();

System.out.println("The width: " + rect.getX1() – rect.getX2());

System.out.println("The height: " + rect.getY1() – rect.getY2());

The following code shows how to set a new data frame to display in the over-
view map.
AGSWebOverview wOverview =(AGSWebOverview)context.getWebOverview();

wOverview.setDataFrame("newDataFrame");

context.refresh();

WebOverview
com.esri.arcgis.webcontrols.data

WebOverview(map: WebMap)

dataFrame: String
dpi: int
height: int
imageFormat: String
resource: String
width: int

getWebMap(): WebMap
isMimeData(): boolean
isVisible(): boolean
setUseMIMEData(useMIMEData: boolean)
setVisible(visible: boolean)

Class constructor method.

Gets/sets the data frame to use for the overview map.
Gets/sets the dots per inch of the overview map image.
Gets/sets the height of the overview map.
Gets/sets the image format of the overview map.
Gets/sets the resource to be used in the overview map.
Gets/sets the width of the overview map.

Returns the associated WebMap object.
Indicates whether the control returns MIME data.
Indicates whether the overview map is visible.
Sets whether the control returns MIME data.
Sets the visibility of the overview map.

The default implementation of WebOverview.AGSWebOverview
com.esri.arcgis.webcontrols.ags.data

AGSWebOverview(agsMap:
 AGSWebMap)

getImageRectangle(): ImageRectangle
getImageUrl(): String

fromMapPoint(point: com.esri.arcgis.
 geometry.IPoint,mapDesc:
 com.esri.arcgis.carto.IMapDescription):
 int[]

setDataFrame(dataFrame: String)
setImageFormat(imageFormat: String)
setResource(resource: String)

Class constructor method.

Returns the current extent rectangle in screen coordinates.
Returns the URL to be displayed by the Overview Control.
Sets the data frame to be displayed in the overview map.
Sets the image format for the overview map.
Sets the resource to be displayed in the overview map.
Converts a map point on the overview map to screen
 coordinates.

Converts the screen coordinates to the overview map point.toMapPoint (x: int, y: int): com.esri.arcgis.
 geometry.IPoint

ch06.pmd 1/25/2005, 5:57 PM296

Chapter 6 • Developing Web applications with Java• 297

INTERACTING WITH THE OVERVIEW CONTROL

The overview control automatically handles two events on the client. These
functions can be found in the overview_functions.js file included with Java ADF
applications.

• OVClick—A single mouse click to center the area of interest.

• OVDragUp—A drag rectangle up event to define a new area of interest.

After either of these two events occurs on the client, the center x,y value is
posted back to the server and received by the OverviewRenderer. The renderer
decodes the center coordinate and passes these values to the OverviewControl for
creation of an OverviewEventArgs object. An action event is then fired on the
control to update the map control accordingly. Below is the code for the
handleEvent method on AGSWebOverview:
public void handleEvent(OverviewEventArgs args) throws Exception {

IEnvelope extent = agsMap.getFocusMapExtent();

extent.centerAt(toMapPoint(args.getCenterX(), args.getCenterY()));

agsMap.setFocusMapExtent(extent);

agsMap.getWebContext().refresh(AGSRefreshId.MAP_OPERATION);

}

The OverviewEventArgs object is passed to the handleEvent method by the frame-
work, and the x,y coordinate is extracted using getCenterX and getCenterY. The x,y
center is converted to map units, and the new extent is set on the WebMap. The
WebContext is refreshed to update all observers that the map extent has changed.

ACCESSING OBJECTS THROUGH WEBCONTEXT

The WebOverview can be retrieved through the WebContext using the following Java
code:
AGSWebContext context = (AGSWebContext)
 WebUtil.getWebContext(FacesContext.getCurrentInstance(), CONTEXTID);

AGSWebOverview overview = (AGSWebOverview)context.getWebOverview();

// The WebOverview, retrieved from the WebContext, can be
// used to retrieve the resource string used with the overview map.

String resource = overview.getResource();

The same information can be accessed in JSP code using:
<c:set var="resource" value=
 "${sessionScope['CONTEXTID'].webOverview.resource}"/>

The above code sets a variable, resource, with the value retrieved from the
WebOverview.getResource method.

OVERVIEW CONTROL

ch06.pmd 1/25/2005, 5:57 PM297

298 • ArcGIS Server Administrator and Developer Guide

TOC CONTROL

The Toc control—or table of contents control—displays the contents of a map
and allows an end user to turn layers on and off. The Toc control functions in the
same manner as the table of contents in ArcMap: it presents a hierarchical list of
data frames, layers, and symbols displayed on the map.

The diagram above shows the relationships between the TocControl and its
business objects, WebToc and AGSWebToc. The TocControl works with an ab-
stract WebToc object. The actual WebToc object is created by the parent context
control, and by default, a new AGSWebToc is initialized. The TocRenderer class
renders the control to the appropriate markup, and the TocTag class exposes the
control as a JSP custom tag named toc. The AGSWebToc performs the following
tasks:

• Renders the table of contents

• Exposes an API to retrieve information about the table of contents

• Sets up the table of contents to handle events for toggling layer visibility and
changing data frames

An abstract class
representing a Toc control.

Displays a table of contents
and manages events that occur.

The default
implementation
of WebToc.

An object representing the
table of contents arguments
passed from a client action.

Renders the table of
contents control.

The layer name on the
Toc control.

The data frame on the
Toc control.

The box that shows the
symbol on the Toc control.

The heading on the
Toc control.

Tag handler class for
 the JSP toc tag.

Represents a single node
of the TocControl.

Represents content for
a single node of
the TocControl.

Table of Contents Objects

TocControl

WebToc

TocEventArgs

TocNode

TocNode-
Content

TocRendererTocTag

AGSToc-
DataFrame

AGSToc-
SymbolPatch

AGSTocLayerAGSToc-
HeadingPatch

AGSWebToc

ch06.pmd 1/25/2005, 5:57 PM298

Chapter 6 • Developing Web applications with Java• 299

TOC CONTROL

• Updates the map or page layout based on a Toc event

WORKING WITH THE TOC TREE

The table of contents is made up of a collection of TocNode objects. A TocNode
stores content, maintains hierarchical relationships, and responds to an event that
occurs at that node. To store content, a TocNode requires a TocNodeContent object
to encapsulate the content at that node. A TocNode handles its own expand or
collapse event and delegates the check box event—for layer visibility—and the
node operation—when node content is clicked—to the TocNodeContent’s event
handling methods:
public void handleCheckedEvent(TocEventArgs args)

public void handleNodeEvent(TocEventArgs args)

The diagram below shows you some of the methods available from WebToc and
AGSWebToc.

In general, you will only work with these methods if you want to change the way
the existing TocControl works in order to write a new tree control. An example
of this in the Java ADF is the IdentifyResultsControl, which uses the Toc objects to
display the results of an identify in tree form. When a result is clicked in the tree,
the attributes are shown.

The AGSWebToc provides you with an API to access information about the table
of contents and control its behavior. The AGSWebToc utilizes additional data
objects to build the TOC structure. Each of these data objects extends
TocNodeContent.

• AGSTocDataFrame—Represents the content for a data frame

• AGSTocHeadingPatch—Represents the content of the symbol patch node

The default implementation of WebToc.AGSWebToc
com.esri.arcgis.webcontrols.ags.data

AGSWebToc(agsMap: AGSWebMap)

getDataFrames(): Collection
reload()
setImageFormat(imageFormat: String)

Class constructor method.

Gets the TocNodes for the top-level data frames.
Reloads the TOC control.
Sets the image format for the TOC control.

WebToc
com.esri.arcgis.webcontrols.data

WebToc(map: WebMap)

expandLevel: int
imageFormat: String
showAllDataFrames: boolean

useMIMEData: boolean
visible: boolean

findNode(key: String): TocNode
getWebMap(): WebMap
isMimeData(): boolean
isShowAllDataFrames(): boolean

isVisible(): boolean
setShowAllDataFrames
 (showAllDataFrames: boolean)
setUseMIMEData(useMIMEData: boolean)
setVisible(visible: boolean)

Class constructor method.

The number of levels for the TOC to be expanded.
The format of the TOC images.
Indicates whether to show all data frames or only the
 default data frame.
Indicates whether MIME data is used.
Indicates whether the TOC is visible.

Returns a TocNode from the TOC tree.
Returns the associated WebMap object.
Indicates whether the control returns MIME data.
Indicates whether to show all data frames or only the
 default data frame.
Indicates whether the TOC is visible.
Sets whether to show all data frames or only the default
 data frame.
Sets whether the control returns MIME data.
Sets the visibility of the TOC.

ch06.pmd 1/25/2005, 5:57 PM299

300 • ArcGIS Server Administrator and Developer Guide

TOC CONTROL

• AGSTocLayer—Stores the content for the layer in the TocNode

The examples below illustrate how to use these business objects for the TOC.

The following code shows how to loop through all the data frames in the TOC
and collapse all the nodes.
AGSWebToc wToc = (AGSWebToc)context.getWebToc();

Object obj;

for(java.util.Iterator dataFrames = wToc.getDataFrames().iterator();
 dataFrames.hasNext();) {

 obj = dataFrames.next();

 if(!(obj instanceof TocNode))

 continue;

 ((TocNode)obj).setExpanded(false);

 }

This diagram shows the methods available from TocNodeContent.

The following code shows how to find a node in the TOC and retrieve informa-
tion about its content.
AGSWebToc wToc = (AGSWebToc)context.getWebToc();

TocNode firstNode = wToc.findNode("0");

System.out.println("The text on the node: " +
 firstNode.getContent().getText());

System.out.println("Is the node checked? " +
 firstNode.getContent().isChecked());

The following code shows how to create a data frame node and add the layers of
the data frame as children (TocNodeContent) to that node.
TocNode dataFrameNode;

TocNode node;

IMapLayerInfos lInfos;

IMapLayerInfo info;

String mapName = "map1";

IMapServer server = null;

AGSWebToc wToc = (AGSWebToc)context.getWebToc();

AGSWebMap agsMap = (AGSWebMap)context.getWebMap();

server = agsMap.getServer();

lInfos = server.getServerInfo(mapName).getMapLayerInfos();

// Create data frame node.

TocNodeContent
com.esri.arcgis.webcontrols.data

TocNodeContent()

getImageUrl(): String

isCheckable(): boolean
isChecked(): boolean
isDisabled(): boolean
isSelected(): boolean
isUrl(): boolean

getText(): String
Returns the image URL for the content of the TOC node.
Returns the text of the node.
Indicates whether the node is checkable.
Indicates whether the node is checked.
Indicates whether the node should be shown as disabled.
Indicates whether the node is selected.
Indicates whether the node has a URL.

Class constructor method.

ch06.pmd 1/25/2005, 5:57 PM300

Chapter 6 • Developing Web applications with Java• 301

TOC CONTROL

dataFrameNode = new TocNode(new AGSTocDataFrame(mapName, agsMap), 0);

// Add layers to the data frame node.

for(int j = 0; j < lInfos.getCount(); ++j) {

 info = lInfos.getElement(j);

 if(info.getParentLayerID() != -1)

 continue;

 node = dataFrameNode.addChild
 (new AGSTocLayer(info, mapName, agsMap));

 addLayerChildren(node, info, mapName, lInfos);

}

The following code shows how to reload the TOC.
AGSWebToc wToc = (AGSWebToc)context.getWebToc();

wToc.reload();

INTERACTING WITH THE TOC CONTROL

The TocRenderer controls how the TocControl is displayed on the page and man-
ages the events for the table of contents. The TocRenderer decodes the following
request parameters from the FacesContext:

• nodeKey—The key of the node responsible for the operation

• nodeOperation—The operation to be performed on the node, which is either
click or expandCollapse

The TocRenderer also retrieves all of the available node key parameter names and
builds a HashMap of checked and unchecked key values. The TocRenderer then
calls the TocControl’s setEventArgs method with the nodeKey, nodeOperation, and
checkedNodeKeys. A new TocEventArgs is constructed with this information, and an
action event is fired on the control to process the event. The processAction event
for the control does the following using the TocEventArgs object:

• Retrieves the node where the event occurred

• Calls node.handleNodeEvent with the arguments

• Iterates through all the checked nodes and calls each node’s handleCheckedEvent
method

By default, the TocNodeContent can respond to events two ways:

• AGSTocDataFrame—The handleNodeEvent method receives the click event for
changing a data frame. A new focus map is set and the TOC is redrawn.

• AGSTocLayer—The handleCheckedEvent method toggles the layer visibility and
the map is redrawn automatically if the autoPostBack attribute is set to true.

IMMEDIATE POSTBACK UPON CHECKING A BOX

In ArcMap, when you check on a layer in the table of contents, that layer draws
immediately. By default, when you associate a TocControl with a map or page
layout control, you’ll see the same behavior in your Java ADF application. How-
ever, with Web applications, you may not want to send a request back to the
server every time the end user of your Web application interacts with the

The autoPostBack attribute is discussed in the
next section.

ch06.pmd 1/25/2005, 5:57 PM301

302 • ArcGIS Server Administrator and Developer Guide

TOC CONTROL

TocControl. Round-trips to the server consume server resources and take time to
process.

Instead, you can disable this automatic postback behavior by setting the
autoPostBack attribute to false in the toc tag. With this setting, when an end user
checks layers on or off, the map display won’t update until a postback occurs.
The TOC keeps track of any user interaction when a postback does occur, and
any changes to the checked layers will be reflected on the map control. When the
autoPostBack attribute is set to false, you might add a JSF command button and
attach a listener to that button to refresh the context for the current view of the
TOC. For example, the processAction method of the listener would look like this:
public void processAction(ActionEvent event) throws
 javax.faces.event.AbortProcessingException {

 try {

 WebUtil.getWebContext(event.getComponent(),
 (String)event.getComponent().getAttributes().get("contextId")).getWebMap().refresh();

 }

 catch(Exception e) {

 logger.log(Level.WARNING, "Unable to process action for
 RefreshTocListener.", e);

 }

 }

CONTROLLING LAYER DRAWING

A TocControl is associated with a map or page layout control by nesting it within
the same context control. You can customize the presentation or client-side
actions of the TocControl by modifying the toc.xsl. For example, if you would
like to remove the ability to toggle a layer’s visibility, you would remove the
presentation logic that allows you to check that box. To accomplish this, there are
two places in toc.xsl where code needs to be removed.

First, remove this entire section of code:
<!— Add the checkbox based on checked attribute —>

<xsl:call-template name="fcheckbox">

<xsl:with-param name="ischecked" select="content/@checked"/>

<xsl:with-param name="isdisabled" select="content/@disabled"/>

<xsl:with-param name="level" select="level"/>

<xsl:with-param name="id" select="$id"/>

<xsl:with-param name="key" select="$key"/>

<xsl:with-param name="autopostback" select="/toc/auto-post-back"/>

</xsl:call-template>

Second, remove the fcheckbox function:
<xsl:template name="fcheckbox">

…

</xsl:template>

ch06.pmd 1/25/2005, 5:57 PM302

Chapter 6 • Developing Web applications with Java• 303

TOC CONTROL

After this change, your Web application will no longer display check boxes for
controlling the layer visibility.

ACCESSING OBJECTS THROUGH WEBCONTEXT

The WebToc can be retrieved through the WebContext by using the following Java
code:
AGSWebContext context = (AGSWebContext)
 WebUtil.getWebContext(FacesContext.getCurrentInstance(), CONTEXTID);

AGSWebToc toc = (AGSWebToc)context.getWebToc();

// The WebToc has been retrieved from the WebContext in order to

// test if the TOC is visible.

boolean isVisible = toc.isVisible();

And the WebToc can be retrieved through the WebContext to test if the TOC is
visible by using the following JSP code:
<c:set var="initialVisibility"
 value="${sessionScope['CONTEXTID'].webToc.visible}"/>

The above code sets a variable, initialVisibility, with the value retrieved from the
WebToc.isVisible method.

ch06.pmd 1/25/2005, 5:57 PM303

304 • ArcGIS Server Administrator and Developer Guide

The North arrow control displays a North arrow on the page. The North arrow
matches the North direction for the data frame in the map control. You can set
the North Arrow symbol and size.

The diagram above shows the relationship between the associated North arrow
objects to the NorthArrowControl. The NorthArrowControl works with an abstract
WebNorthArrow object. The default implementation of WebNorthArrow is
AGSWebNorthArrow. The NorthArrowRenderer class renders the control, and the
NorthArrowTag class exposes the control as a JSP custom tag named northArrow.

The diagram below shows the methods available from WebNorthArrow.

NORTH ARROW CONTROL

An abstract class representing
a North arrow control.

Displays a North arrow.

Tag handler class for
the JSP northArrow tag.Renders the North

arrow control.

The default implementation
of WebNorth Arrow.

North Arrow Control Objects

NorthArrow-
Control

WebNorth-
Arrow

AGSWeb-
NorthArrow

North-
ArrowTag

NorthArrow-
Renderer

WebNorthArrow
com.esri.arcgis.webcontrols.data

WebNorthArrow()

blue: int
charIndex: int
dpi: int
font: String
green: int
height: int
imageFormat: String
red: int
width: int

isMimeData(): boolean
isVisible(): boolean
setUseMIMEData(useMIMEData: boolean)
setVisible(visible: boolean)

Class constructor method.

The blue shade of the North arrow.
The character index of the North arrow symbol.
The dots per inch of the North arrow.
The font of the North arrow.
The green shade of the North arrow.
The height of the North arrow.
The image format of the North arrow.
The red shade of the North arrow.
The width of the North arrow.

Indicates whether the control returns MIME data.
Indicates whether the North arrow is visible.
Sets whether the control returns MIME data.
Sets the visibility of the North arrow.

ch06.pmd 1/25/2005, 5:57 PM304

Chapter 6 • Developing Web applications with Java• 305

NORTH ARROW CONTROL

The diagram below shows the methods available from AGSWebNorthArrow.

AGSWebNorthArrow performs the following tasks:

• Displays the map’s North arrow

• Exposes an API to control the appearance of the North arrow

The AGSWebNorthArrow provides you with an API to access information about
the North arrow and control its appearance on the page. The diagrams above
show some of the methods on AGSWebNorthArrow and WebNorthArrow.

The WebNorthArrow is stored as a request attribute of the WebContext. The code
below retrieves the WebNorthArrow from the WebContext by asking for the object
stored in WebNorthArrow.WEB_CONTEXT_ATTRIBUTE.
(AGSWebNorthArrow)context.

 getAttribute(WebNorthArrow.WEB_CONTEXT_ATTRIBUTE_NAME);

Take a look at what can be accomplished using the WebNorthArrow API.

The following code shows how to retrieve information about the appearance of
the North arrow.
AGSWebNorthArrow northarrow = (AGSWebNorthArrow)context.

 getAttribute(WebNorthArrow.WEB_CONTEXT_ATTRIBUTE_NAME);

int arrowSize = northarrow.getSize();

int characterIndex = northarrow.getCharIndex();

int size = northarrow.getImageFormat();

The following code shows how to change the character index, color, and size of
the North arrow.
AGSWebNorthArrow northarrow = (AGSWebNorthArrow)context.

 getAttribute(WebNorthArrow.WEB_CONTEXT_ATTRIBUTE_NAME);

northarrow.setSize(60);

northarrow.setCharIndex(177);

northarrow.setFont("ESRI North");

context.refresh();

The default font for the North arrow is ESRI North. This font contains the
North arrows used in ArcGIS Desktop. Within this font, you specify the particu-
lar charIndex of the North arrow you want to use. The default charIndex is 177.
In the ESRI North font, character indexes range from 33 to 125 and 161 to 218.

The default implementation of WebNorthArrow.AGSWebNorthArrow
com.esri.arcgis.webcontrols.ags.data

AGSWebNorthArrow()

getImageUrl(): String

init (agsContext: WebContext)
setCharIndex(charIndex: int)
setFont(font: String)
setImageFormat(imageFormat: String)

Class constructor method.

Returns the URL of the North arrow.
Initializes the object with the associated WebContext.
Sets the character index of the North arrow symbol.
Sets the font of the North arrow.
Sets the image format of the North arrow.

ch06.pmd 1/25/2005, 5:57 PM305

306 • ArcGIS Server Administrator and Developer Guide

NORTH ARROW CONTROL

You can use the Microsoft Windows Character Map to view the fonts.

To obtain an appropriate value for charIndex, convert the hexadecimal number—
displayed in the lower left corner of the dialog box—to decimal and use the
decimal value as the charIndex. In the figure above, the hexadecimal value of 4E
represents a decimal value of 78. You would use 78 as the charIndex.

Alternatively, you can use ArcMap to view character indexes directly. Just add a
North arrow in ArcMap, then display the properties of the North arrow.

Click the Character button on the dialog box to display the symbols. In the lower
left corner, you’ll see character index. In the figure below, the charIndex is 78.

ACCESSING OBJECTS THROUGH WEBCONTEXT

The previous code examples showed you how to access WebNorthArrow through
the WebContext using:
AGSWebContext context = (AGSWebContext) WebUtil

 .getWebContext(FacesContext.getCurrentInstance(), CONTEXTID);

(AGSWebNorthArrow)
 context.getAttribute(WebNorthArrow.WEB_CONTEXT_ATTRIBUTE_NAME);

The example below shows you how to access information about the size, charac-
ter index, and image format of the North arrow using JSP code:
<c:set var="size" value="${sessionScope['CONTEXTID'].

 attributes['esriWebNorthArrow'].size}"/>

<c:set var="charIndex" value="${sessionScope['CONTEXTID'].

 attributes['esriWebNorthArrow'].charIndex}"/>

<c:set var="imageFormat" value="${sessionScope['CONTEXTID'].

 attributes['esriWebNorthArrow'].imageFormat}"/>

ch06.pmd 1/25/2005, 5:57 PM306

Chapter 6 • Developing Web applications with Java• 307

SCALE BAR CONTROL

The scale bar control displays the scale bar of a map control. You can change the
appearance of the scale bar control, such as the font, color, or size.

The diagram above shows the relationship between the associated scale bar
objects to the ScaleBarControl. The scale bar control works with an abstract
WebScalebar object. The default implementation of WebScalebar is
AGSWebScaleBar. The ScaleBarRenderer class renders the control, and the
ScaleBarTag class exposes the control as a JSP custom tag named scaleBar.

The diagram below shows the methods available from WebScaleBar.

An abstract class representing
a scale bar control.

Displays a scale bar.

Tag handler class for
the JSP scaleBar tag.Renders the scale bar

control.

The default implementation
of WebScaleBar.

Scale Bar Control Objects

ScaleBar-
Control

WebScaleBar

AGSWeb-
ScaleBar

ScaleBarTagScaleBar-
Renderer

WebScaleBar
com.esri.arcgis.webcontrols.data

WebScaleBar(context: WebContext))

blue: int
dpi: int
fontName: String
fontSize: int
green: int
height: int
imageFormat: String
red: int
type: String
units: String
width: int

isMimeData(): boolean
isVisible(): boolean
setUseMIMEData(useMIMEData: boolean)
setVisible(visible: boolean)

Class constructor method.

The blue shade of the scale bar.
The dots per inch of the scale bar.
The font name of the scale bar.
The font size of the scale bar.
The green shade of the scale bar.
The height of the scale bar.
The format of the scale bar image.
The red shade of the scale bar.
The type of scale bar.
The units of the scale bar.
The width of the scale bar.

Indicates whether the control returns MIME data.
Indicates whether the scale bar is visible.
Sets whether the control returns MIME data.
Sets the visibility of the scale bar.

ch06.pmd 1/25/2005, 5:57 PM307

308 • ArcGIS Server Administrator and Developer Guide

SCALE BAR CONTROL

The diagram below shows the methods available from AGSWebScaleBar.

AGSWebScaleBar performs the following tasks:

• Displays the map’s scale bar

• Registers itself as a WebContextObserver and updates itself for any map changes

• Exposes an API to control the appearance of the scale bar

The AGSWebScaleBar provides you with an API to access information about the
scale bar and control its appearance on the page.

The WebScaleBar is stored as a request attribute of the WebContext. The code
below retrieves the WebScaleBar from the WebContext by asking for the object
stored in WebScaleBar.WEB_CONTEXT_ATTRIBUTE.
(AGSWebScaleBar)context.getAttribute
 (WebScaleBar.WEB_CONTEXT_ATTRIBUTE_NAME);

Take a look at what can be accomplished using the WebScaleBar API.

The following code shows how to get information about the appearance of the
scale bar.
AGSWebScaleBar scalebar = (AGSWebScaleBar)context.
 getAttribute(WebScaleBar.WEB_CONTEXT_ATTRIBUTE_NAME);

int fontSize = scalebar.getFontSize();

String fontName = scalebar.getFontName();

int format = scalebar.getImageFormat();

The following code shows how to change the units, type, color, and text font
(bold) for the scale bar.
AGSWebScalebar scalebar = (AGSWebScaleBar)context.
 getAttribute(WebScaleBar.WEB_CONTEXT_ATTRIBUTE_NAME);

scalebar.setUnits("Kilometers");

scalebar.setType("SteppedScaleLine");

scalebar.setFontBold();

scalebar.setRed(255);

scalebar.setGreen(0);

scalebar.setBlue(0);

context.refresh();

The default implementation of WebScaleBar.AGSWebScaleBar
com.esri.arcgis.webcontrols.ags.data

AGSWebScaleBar()

getImageUrl(): String

setHeight(height: int)

setUnits(units: String)
setWidth(width: int)

setImageFormat(imageFormat: String)

setDpi(dpi: int)
init (agsContext: WebContext)

Class constructor method.

Returns the URL of the scale bar.
Initializes the object with the associated WebContext.
Sets the dots per inch of the scale bar.
Sets the height of the scale bar.
Sets the image format of the returned scale bar.
Sets the units of the scale bar.
Sets the width of the scale bar.

The type attribute sets the style of the scale
bar. From top to bottom: Alternating,

DoubleAlternating, Hollow, SingleDivision,
ScaleLine, and SteppedScaleLine.

ch06.pmd 1/25/2005, 5:57 PM308

Chapter 6 • Developing Web applications with Java• 309

SCALE BAR CONTROL

ACCESSING OBJECTS THROUGH WEBCONTEXT

The previous examples showed how to access WebScaleBar through the
WebContext using:
AGSWebContext context = (AGSWebContext) WebUtil

 .getWebContext(FacesContext.getCurrentInstance(), CONTEXTID);

(AGSWebScaleBar)context.getAttribute(WebScaleBar.WEB_CONTEXT_ATTRIBUTE_NAME);

The example below shows you how to access information about the font size,
font name, and image format of the scale bar using JSP code:
<c:set var="fontSize" value="${sessionScope['CONTEXTID'].

 attributes['esriWebScaleBar'].fontSize}"/>

<c:set var="fontName" value="${sessionScope['CONTEXTID'].

 attributes['esriWebScaleBar'].fontName}"/>

<c:set var="imageFormat" value="${sessionScope['CONTEXTID'].

 attributes['esriWebScaleBar'].imageFormat}"/>

ch06.pmd 1/25/2005, 5:57 PM309

310 • ArcGIS Server Administrator and Developer Guide

GEOCODE CONTROL

The geocode control renders the input fields to be displayed for entering the
address information. This control works with the specified address style to deter-
mine which input fields to display. For example, if the address style is US Streets
with Zone, the control will render an address and ZIP Code text box. If the
address style is simply US Streets, only an address input box will be rendered.

As with the other controls, the geocode control must work within a context
control. The geocode control is different in that the context control specifies a
locator resource instead of a map resource. The geocode control performs the
geocode operation and stores the results in the AGSGeocodeResults object.

The diagram above shows the relationship between the associated geocode ob-
jects to the GeocodeControl. The GeocodeControl works with an abstract WebGeocode
object. The default implementation of WebGeocode is AGSWebGeocode. The
GeocodeRenderer class renders the control, and the GeocodeTag class exposes the
control as a JSP custom tag named geocode.

An abstract class representing
a geocode control.

Displays the result of a
geocode operation
on the map.

Tag handler class for
the JSP geocode tag.

Renders the geocode
control.

The default implementation
of WebGeocode.

The data object representing
the geocode results.

The data object representing
a geocode result.

Geocode Control Objects

Geocode-
Control

WebGeocode

AGSWeb-
Geocode

AGSGeocode-
Results

AGSGeocode-
Result

GeocodeTagGeocode-
Renderer

ch06.pmd 1/25/2005, 5:57 PM310

Chapter 6 • Developing Web applications with Java• 311

GEOCODE CONTROL

AGSWebGeocode performs the following tasks:

• Establishes a connection with the GeocodeServer

• Retrieves the address fields

• Retrieves the locator properties, such as minimum candidate score and mini-
mum match score

• Performs a geocode operation

• Exposes an API to manage the results of a geocode operation

The AGSWebGeocode provides you with an API to geocode a location and access
the results. The WebGeocode object is accessible through the WebContext by calling
the getWebGeocode method.

Take a look at what can be accomplished using the WebGeocode API.

The following code shows how to perform a geocode operation and set properties
to control the type of results returned. The code assumes that the address fields
and values to geocode have already been set for AGSWebGeocode to access.
AGSWebGeocode geocode = (AGSWebGeocode)context.getWebGeocode();

geocode.setMinimumMatchScore(75);

geocode.setMinimumCandidateScore(75);

geocode.setShowAllCandidates(true);

geocode.geocodeAddresses();

The default implementation of WebGeocode.AGSWebGeocode
com.esri.arcgis.webcontrols.ags.data

AGSWebGeocode(agsContext:
 AGSWebContext,resource:
 AGSGeocodeResource)

geocodeAddresses()
createServerObject(progId: String): Object

setAddressFieldValue(fieldName: String,
 fieldValue: String)

getAddressFields(): Collection

getResource(): AGSGeocodeResource

getAddressFieldValue
 (fieldName: String): String

getResults(): AGSGeocodeResults
getServer(): com.esri.arcgis.location.
 IGeocodeServer

Class constructor method.

Creates the AGS object represented by the progId.
Returns the addresses.
Returns a collection of address field names.
Returns the value associated with a given address field name.

Returns the associated AGSGeocodeResource for the
 AGSGeocode.
Returns the geocoded results from a server request.
Returns the IGeocodeServer associated with this resource.

Sets the value of an address field.

WebGeocode
com.esri.arcgis.webcontrols.data

WebGeocode(context: WebContext))

context: WebContext
minimumCandidateScore: int

minimumMatchScore: int

isShowAllCandidates(): boolean
getWebContext(): WebContext

isVisible(): boolean

setVisible (visible: boolean)

setShowAllCandidates(showAllCandidates:
 boolean)

Class constructor method.

The WebContext in which the geocode control is associated.
The minimum score a result must have to be considered
 a candidate.
The minimum score a result must have to be considered
 a match.

Returns the WebContext associated with this WebGeocode.
Indicates whether to show all candidates for geocoding.
Indicates whether the geocode control is visible.
Sets whether to show all candidates.

Sets the visibility of the geocode control.

The diagrams below show the methods available from WebGeocode and
AGSWebGeocode.

ch06.pmd 1/25/2005, 5:58 PM311

312 • ArcGIS Server Administrator and Developer Guide

GEOCODE CONTROL

The following code shows how to access the geocode server object through
AGSWebGeocode and get information about the locator.
AGSWebGeocode geocode = (AGSWebGeocode)context.getWebGeocode();

IGeocodeServer server = geocode.getServer();

// Get the minimum candidate score property.

int score =
Integer.parseInt(properties.getProperty("MinimumCandidateScore").toString());

// Fetch all the address fields.

IFields fields = server.getAddressFields();

 int count = fields.getFieldCount();

 String fieldName;

 for(int i = 0; i < count; ++i) {

 fieldName = fields.getField(i).getName();

 System.out.println("Field name: " + fieldname);

 }

INTERACTING WITH THE GEOCODE CONTROL

The geocode control renders input fields for geocoding and a button to submit
the geocode request. The request is passed to the GeocodeRenderer, which retrieves
the field values set in the control. A collection of field name and value pairs are
set using WebGeocode.setAddressFieldValue (fieldName, fieldValue). An ActionEvent is
then fired on the geocode control, and WebGeocode.geocodeAddresses is invoked.
Then the AGSGeocodeResults are available for display.

WORKING WITH THE RESULTS OF A GEOCODE

As mentioned before, the geocode control populates the AGSGeocodeResults
object with the results of a geocode operation. The diagram below shows the
methods available on AGSGeocodeResults and AGSGeocodeResult.

getDataComponent(): UIData

AGSGeocodeResults
com.esri.arcgis.webcontrols.ags.data

AGSGeocodeResults() Class constructor method.

clearResults()
fetchResults()
getDisplayResult(): AGSGeocodeResult
getAddressFields(): Collection
getAddressString(): String
getAGSWebGeocode(): AGSWebGeocode

getResultRows(): Collection
isResultsFetched(): boolean
setDisplayResult(displayResult:
 AGSGeocodeResult)

Clears the geocode results.
Fetches the results and stores them in AGSGeocodeResults.
Returns one display result.
Returns the address fields of the geocode results.
Returns the address string for the geocode operation.
Returns the associated AGSWebGeocode object.
Returns the count of the geocode results.
Returns the UIData component for displaying results.
Returns the number of rows of the geocode results.
Indicates if the geocode results were retrieved.
Sets one display result for the geocode results.

getCount(): int

AGSGeocodeResult
com.esri.arcgis.webcontrols.ags.data

AGSGeocodeResult(row:com.esri.arcgis.
 geodatabase.IRow, id: results:
 AGSGeocodeResults)

Class constructor method.

getCenterX(): String
getCenterY(): String
getFieldsValues(): Hashtable
getLocation(): AGSPoint
getValue(fieldName: String): String

Returns the x coordinate of the geocode result.
Returns the y coordinate of the geocode result.
Returns field names and values for a geocode result.
Returns the location of the geocode result.
Returns the value of a given field for a geocode result.

ch06.pmd 1/25/2005, 5:58 PM312

Chapter 6 • Developing Web applications with Java• 313

GEOCODE CONTROL

AGSGeocodeResults performs the following tasks:

• Renders a list of results for an associated geocode control

• For each geocode result, stores the x,y location and the field name/value pairs

• Maintains a list of geocode results and information about those results

The AGSGeocodeResults provides you with an API to access the results of a
geocode operation. The diagram above shows the methods available from
AGSGeocodeResults. The AGSGeocodeResults object is accessible through the
WebContext by calling WebContext.getAttribute.

Look at how to work with the AGSGeocodeResults API.

The following code shows how to retrieve the results of a geocode operation and
iterate through all the address fields and results.
AGSGeocodeResults results =
 (AGSGeocodeResults)context.
 getAttribute(AGSGeocodeResults.WEB_CONTEXT_ATTRIBUTE_NAME);

int totalRows = results.getCount();

Collection rows = results.getResultRows();

// Get all the address fields.

Collection addressFields = results.getAddressFields();

for (Iterator iterator = addressFields.iterator(); iterator.hasNext();)

 System.out.println("Address field is: " + (String) iterator.next());

// Get all the values for each address field.

String value;

AGSGeocodeResult[] result =
 (AGSGeocodeResult[])rows.toArray(new AGSGeocodeResult[0]);

for(int i = 0; i < totalRows; i++) {

 for(Iterator iterator = addressFields.iterator(); iterator.hasNext();) {

 val = (String)iterator.next();

 System.out.println
 ("Value of address field: " + result[i].getValue(value));

 }

}

Binding geocode results to a data table
You can use a data table to access information about AGSGeocodeResults and
display the geocode results. The following code shows the dataTable tag:
<ags:context id="geocodeContext" resource="locator@localhost"
 resourceType="geocode">

 <ags:geocode id="geocode1" left="45" top="15" width="688">

 <jsfc:attribute name="fieldAlias:Street" value="Address" />

 <jsfc:attribute name="fieldAlias:Zone" value="ZIP Code" />

 </ags:geocode>

 <jsfh:dataTable id="geocodeTable" binding=
 "#{sessionScope['geocodeContext'].webGeocode.results.dataComponent}"

 value="#{sessionScope['geocodeContext'].webGeocode.results.resultRows}"
 rendered=
 "#{sessionScope['geocodeContext'].webGeocode.results.count > 0}"
 rows="5"...>

A data table can be used to display
AGSFindResults and AGSBufferResults as well.

For more information on how to use a data
table, refer to the JSF documentation.

ch06.pmd 1/25/2005, 5:58 PM313

314 • ArcGIS Server Administrator and Developer Guide

GEOCODE CONTROL

 </jsfh:dataTable>

 <ags:scroller id="idScroller" dataComponent="geocodeTable" left="300"
 top="250" height="20" width="400" ... />

</ags:context>

The dataTable tag allows you to access the properties of AGSGeocodeResults
directly using the following syntax:
#{sessionScope['geocodeContext'].results}

In this example, geocodeContext is the ID of the context control that established
a connection to the locator.

The binding attribute of the dataTable tag must point to a UIData component
accessible through the getDataComponent method on AGSGeocodeResults. This
UIData component is populated by the fetchResults method when AGSWebGeocode
performs the geocode operation. If you want the geocode results to display on
the map, you place the dataTable tag within a map context.

The following line shows the exact syntax:
binding="#{sessionScope['geocodeContext'].webGeocode.results.dataComponent}"

In the initial release of the Java ADF, the AGSGeocodeResults,
AGSBufferResults, and AGSFindResults objects directly set the value of the
associated data table to a collection of results. Because of this, there was no need
for a value attribute. This approach works fine when using the server-side state
saving method. However, if you want to use the client-side state saving, JSF
serializes and deserializes the results associated with the data table on every
request. Not only is this a performance deterrent, but this would also require the
entire object graph associated with the results to be serializable.

To get around these limitations, the results are bound to the data table as opposed
to directly setting it as a value. The problems mentioned above are avoided
because a value binding is just a reference and not the actual value.

The rendered attribute of the dataTable tag allows you to control when the data
table is rendered. In the example below, AGSGeocodeResults is checked to deter-
mine if it has any entries.
rendered="#{sessionScope['geocodeContext'].webGeocode.results.count > 0}"

Other attributes of the dataTable tag allow you to control the table output. For
example, the rows attribute can be set to control the number of rows displayed. If
the rows attribute is used in conjunction with the scroller tag, you can implement
paging of results. The scroller tag takes the ID of the data table in its
dataComponent attribute and automatically works with data table to page the
results. The dataTable tag exposes attributes to set the style of the header and
rows.

ACCESSING OBJECTS THROUGH WEBCONTEXT

The WebGeocode can be retrieved through the WebContext using the following Java
code:
AGSWebContext context = (AGSWebContext)
 WebUtil.getWebContext(FacesContext.getCurrentInstance(), CONTEXTID);

AGSWebGeocode geocode = (AGSWebGeocode)context.getWebGeocode();

// The WebGeocode, retrieved from the WebContext, can be
// used to retrieve the address string.

A value attribute has been added to the
dataTable tag in the Geocode, Buffer Selection,

and Search templates.

ch06.pmd 1/25/2005, 6:31 PM314

Chapter 6 • Developing Web applications with Java• 315

GEOCODE CONTROL

String addressStr = geocode.getResults().getAddressString();

Now, the same information can be accessed in JSP code using:
<c:set var="addressStr" value=
 "${sessionScope['CONTEXTID'].webGeocode.results.addressString}" />

The above code sets a variable, addressStr, with the value retrieved from
WebGeocode.results.addressString.

ch06.pmd 1/25/2005, 6:31 PM315

316 • ArcGIS Server Administrator and Developer Guide

 IDENTIFY RESULTS CONTROL

The identify results control renders results of an identify, the action of clicking a
map feature (or features) to return the feature’s attributes. Initially, the control
renders the features found for the topmost layer. A dropdown list at the top of
the identify dialog allows you to identify features in the topmost layer, visible
layers, all layers, or a specified layer. After clicking a map feature, the identify
results control lists the feature and its layer name.

The diagram above shows the relationship between the associated identify results
objects to the IdentifyResultsControl. The IdentifyResultsControl works with a
WebIdentifyResults object, which is a collection of WebIdentifyResult objects. The
default implementation of WebIdentifyResults is AGSWebIdentifyResults. The
IdentifyResultsRenderer class renders the control, and the IdentifyResultsTag class
exposes the control as a custom JSP tag named identifyResults.

An abstract class representing
an identify results control.

Represents a result of
an identify operation.

Lists the results of an
identify operation.

Represents a layer
node in the identify
results Toc.

The identify result for the
current table of contents node.

An object representing the
identify results arguments
passed from a client.

An object representing the
identify table of contents
arguments passed from
a client action.

The default
implementation of
WebIdentifyResults.

Tag handler for the
JSP identifyResults tag.

Renders the results of
an identify operation.

The default
implementation of
WebIdentifyResult.

Identify Results Objects

AGSWeb-
IdentifyResult

WebIdentify-
Result

Identify-
ResultsTag

IdentifyResults-
EventArgs

IdentifyResults-
Renderer

TocEvent-
Args

TocNode-
Content

Identify-
ResultsControl

WebIdentify-
Results

AGSWeb-
IdentifyResults

AGSIdentify-
TocResult

AGSIdentify-
TocLayer

ch06.pmd 1/25/2005, 5:58 PM316

Chapter 6 • Developing Web applications with Java• 317

 IDENTIFY RESULTS CONTROL

The diagram below shows the methods available from WebIdentifyResults and
AGSWebIdentifyResults.

AGSWebIdentifyResults performs the following tasks:

• Renders a list of results from the identify tool action or event on the control

• Maintains a list of results and information about those results

• Exposes an API to manipulate the results

The AGSWebIdentifyResults provides you with an API to access the results of an
identify. The diagram above shows some of the methods available on
AGSWebIdentifyResults. The WebIdentifyResults object is accessible through the
WebContext by retrieving the attribute stored in request scope.

Take a look at how to work with the WebIdentifyResults API.

The following code shows how to implement the identify tool action’s execute
method and adds a loop through the selected identify result.
public void execute(MapEventArgs args) throws Exception {

 // Retrieve the x,y coordinate of the identify tool action.

 PointArgs pointArgs = (PointArgs)args.getClientActionArgs();

 ClientPoint clientPoint = pointArgs.getPoint();

 // Retrieve the WebContext and WebMap from the map's event arguments.

 AGSWebContext wContext = (AGSWebContext)args.getWebContext();

 AGSWebMap wMap = (AGSWebMap)wContext.getWebMap();

 // Retrieve the identify results from the WebContext
 // stored in request scope.

 AGSWebIdentifyResults results = (AGSWebIdentifyResults)wContext.

 getAttribute(WebIdentifyResults.WEB_CONTEXT_ATTRIBUTE_NAME);

WebIdentifyResults
com.esri.arcgis.webcontrols.data

WebIdentifyResults() Class constructor method.

Stores whether the identify results are visible.
The name by which this object is referenced in webContext.
The current identify option.
The currently selected identify result.

Populates the nodes of the identify results tree.
Finds the TocNode identified by this key.
Indicates whether the identify results are visible.
Sets the visibility of the identify results..

fetchResults()
findNode(key: String): TocNode
isVisible(): boolean
setVisible(visible: boolean)

selectedResult: WebIdentifyResult

visible: boolean
WEB_CONTEXT_ATTRIBUTE_NAME: String
identifyOption: int

clearResults()

getIdentifyOptions(): Map
fetchResults()

getLayers(): Collection
getMapName(): String
getWebContext(): AGSWebContext

The default implementation of WebIdentifyResults.AGSWebIdentifyResults
com.esri.arcgis.webcontrols.ags.data

AGSWebIdentifyResults()

location: AGSPoint

init (agsContext: WebContext)

Class constructor method.

The location point used to identify features.

Clears the identify results.
Fetches the identify results.
Returns the available identify options.
Returns the top-level layer nodes for the identify results.
Returns the map name.
Returns the associated WebContext.
Initializes the object with the associated WebContext.

ch06.pmd 1/25/2005, 5:58 PM317

318 • ArcGIS Server Administrator and Developer Guide

 IDENTIFY RESULTS CONTROL

 // Set the location of the client's point for the result set.

 results.setLocation(new AGSPoint(wMap.toMapPoint(clientPoint.getX(),
 clientPoint.getY())));

 // Change the identify option to use all visible layers
 // (default is topmost).

 results.setIdentifyOption(new Integer
 (esriIdentifyOption.esriIdentifyVisibleLayers));

 // Populate AGSWebIdentifyResults with the matching
 // results based on the identify option and client point.

 // Fetch results calls results.clearResults() to clear
 // any previous results.

 results.fetchResults();

 // Loop through the selected identify result.

 WebIdentifyResult result = results.getSelectedResult();

 if(result != null) {

 String[] field;

 // Retrieve the collection of field names and values and iterate.

 for (Iterator iterator = result.getProperties().iterator();
 iterator.hasNext();) {

 field = (String[])iterator.next();

 System.out.println("Field name is: " + field[0]);

 System.out.println("Value of field is: " + field[1]);

 }

 }

 }

INTERACTING WITH THE IDENTIFY RESULTS CONTROL

The identify results control is set up to handle three operations:

• Clicking a layer name in the tree to expand or collapse the display of identified
features

• Displaying the selected identify result’s field name and value by clicking a
feature result in the tree

• Changing the identify option to select features and fetching a list of new
results

The identifyResults.xsl utilizes the identifyNodeFunc JavaScript method—in the
identify_functions.js—to pass information about the node key representing the
selected layer and the node operation (click or expandCollapse).

The identifyResults.xsl also defines the dropdown list of identify options and sets
the value of the _identifyOption parameter. The _hide parameter can also be set to
control the current visibility of the control.

The IdentifyResultsControl creates a new IdentifyResultsEventArgs and passes a
WebIdentifyResult to perform the node operation for the selected layer or the
changing of the identify option. An ActionEvent is then fired on the control,
which does the following:

• Retrieves the TocNode for the event. If there is an event to perform, it calls
the handleNodeEvent method on TocNode with the necessary arguments.

ch06.pmd 1/25/2005, 5:58 PM318

Chapter 6 • Developing Web applications with Java• 319

 IDENTIFY RESULTS CONTROL

• Retrieves the current identify option and fetches the results based on this
option.

• Checks the _hide parameter. If true, it sets the visibility of the control to false.

ACCESSING OBJECTS THROUGH WEBCONTEXT

The WebIdentifyResults can be retrieved through the WebContext with the following
Java code:
AGSWebContext context = (AGSWebContext)
 WebUtil.getWebContext(FacesContext.getCurrentInstance(), CONTEXTID);

AGSWebIdentifyResults results = (AGSWebIdentifyResults)wContext.

 getAttribute(WebIdentifyResults.WEB_CONTEXT_ATTRIBUTE_NAME);

// The WebIdentifyResults, retrieved from the WebContext, can
// be used to retrieve the map name for the identified results.

results.getMapName();

The same information can be accessed in JSP code using:
<c:set var="mapName" value="${sessionScope['CONTEXTID']
 .attributes['esriWebIdentifyResults'].mapName}"/>

ch06.pmd 1/25/2005, 5:58 PM319

ch06.pmd 1/25/2005, 5:58 PM320

Developer
scenarios

Previous chapters of this book introduced several programming concepts, patterns,

and new APIs. This chapter contains walkthroughs of example developer scenarios

of building applications using ArcGIS Server that apply these concepts and use

these APIs. Each scenario is available with the ArcGIS Developer samples installed

as part of the ArcGIS Server developer kits.

The developer scenarios included are:

• creating an application Web service (.NET and Java) • extending a Web

application template (.NET and Java) • developing an ArcGIS Server Web service

client (.NET and Java) • extending the GIS server with utility COM objects

7

Chapter7.pmd 1/25/2005, 6:01 PM321

322 • ArcGIS Server Administrator and Developer Guide

EXTENDING A WEB APPLICATION TEMPLATE (.NET)

This walkthrough is for developers who need to build and deploy a .NET Web
application that extends one of the application templates installed as part of the
.NET Application Developer Framework SDK. The application incorporates
focused geodatabase editing capabilities using the ArcGIS Server API, .NET Web
controls, and ArcObjects. It describes the process of building, deploying, and
consuming the Extending_a_template sample, which is part of the ArcGIS Devel-
oper samples.

You can find this sample in:
<install_location>\DeveloperKit\samples\Developer_Guide_Scenarios\
Extending_a_web_application_templateVBNET.zip

PROJECT DESCRIPTION

The purpose of this scenario is to create an ASP.NET Web application using
Visual Studio .NET to extend the MapViewer ArcGIS Server Web application
project template. The application uses ArcObjects to manage a geodatabase edit
session and allows users to start editing, create new features, undo, redo, and save
their edits.

The following is how the user will interact with the application:

1. Open a Web browser and specify the URL of the Web application.

2. Click Start Editing to start an edit session.

3. Click the Add Conservation Plan tool on the toolbar and digitize the new
conservation plan polygon on the map.

4. Additional conservation plan features can be created, and users can click the
Undo and Redo buttons to undo and redo their edits.

Rather than walk through this scenario, you can
get the completed Web application from the
samples installation location. The sample is

installed as part of the ArcGIS developer
samples.

The MapViewer Web application template is
installed as part of the .NET Application

Developer Framework SDK.

Chapter7.pmd 1/25/2005, 6:01 PM322

Chapter 7 • Developer scenarios • 323

5. Once finished, users can either click Stop Editing and Save to save their edits
or Stop Editing and Discard to discard their edits.

If the users choose to save their edits, the geodatabase edit session is ended and
their changes are saved. If the users choose to not save edits, then the geodata-
base edit session is ended and their edits are discarded.

CONCEPTS

The application templates provided with the ArcGIS Server Application Devel-
oper Framework SDK provide a good starting point for developers to create Web
applications with advanced GIS functionality. Developers will extend these
applications using remote ArcObjects that are exposed through the ArcGIS
Server API.

Both coarse-grained calls to remote ArcObjects, such as the methods on the
MapServer and GeocodeServer, as well as fine-grained calls to remote
ArcObjects, such as creating new geometries, are exposed through the ArcGIS
Server API and can be used in your application. With the functionality of
ArcObjects available to the Web application developer, the template applications
can be extended to include a wide variety of GIS functionality. This functionality
includes what is possible using ArcObjects, including analysis; query; display; and,
as in this application, data maintenance.

DESIGN

This Web application is an example of a deeply stateful application in that it’s
designed to make stateful use of the GIS server. Since this Web application
supports edit sessions that span multiple requests for operations, such as creating
new features and supporting undo, redo, and the ability to stop editing and dis-
card your edits, the application must use the same workspace object and
geodatabase edit session throughout a Web application session. To do this, the
Web application must make use of the same server context throughout the user
session, then release that context only when the session has ended.

Because each user session needs its own server context and server object dedi-
cated to it, the server object cannot be shared across multiple user sessions and,
therefore, cannot be pooled. When this application is deployed, there will be an
instance of a running map server object for each concurrent user of the applica-
tion.

To provide the actual functionality, the application uses the toolbar Web control
and events on the map Web control to expose commands for managing the edit
session (Start Editing, Stop Editing, Undo, Redo) and tools to get a polygon from
the user and to use that polygon and ArcObjects to update the geodatabase. To
support this application, a non-pooled map server object must be added to
ArcGIS Server using ArcCatalog.

The Web application will use the Web controls to manage the connection to the
GIS server, and the MapViewer Web application template will provide the basic
mapping functionality that is required for this application. You will add new tools
and commands to the toolbar and map control that allow users to manage edit
sessions and click the map as input to creating new features.

It is possible to create an ArcGIS Server applica-
tion that includes editing functionality and is

stateless. In such an application, each request to
make an edit would be its own edit session and

the application would not support undo, redo,
and the option to save or not save edits. This
example includes undo and redo functionality

and, therefore, must make use of a non-pooled
server object.

This application is designed to directly edit the
version of the geodatabase that the map server
object is connected to. Therefore, all users of the

application are editing the same version. This can
be augmented with version management

capabilities to, for example, create a new version
for each session and have all edits go into that

version.

While the design of this example allows the
editing of personal geodatabases, one could only

deploy this application to support multiple
editors if the geodatabase was a multiuser

geodatabase managed by ArcSDE.

EXTENDING A WEB APPLICATION TEMPLATE (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM323

324 • ArcGIS Server Administrator and Developer Guide

REQUIREMENTS

The requirements for working through this scenario are that you have
ArcGIS Server and ArcGIS Desktop installed and running. The machine
on which you develop this Web application must have the ArcGIS
Server .NET Application Developer Framework SDK installed.

You must have a map server object configured and running on your
ArcGIS Server that uses the Conservation.mxd map document installed
with the ArcGIS Developer Samples. The map document references a
personal geodatabase with feature classes of farm data. It also references
a QuickBird satellite imagery courtesy of DigitalGlobe.

In ArcCatalog, create a connection to your GIS server, and use the Add
Server Object command to create a new server object with the following proper-
ties:

Name: FarmConservation

Type: MapServer

Description: Map server showing conservation resource planning.

Map document: <install_location>\DeveloperKit\Samples\

Data\ServerData\Conservation\Conservation.mxd

Output directory: Choose from the output directories
configured in your server.

Pooling: The Web service makes stateful use of the server
object. Click Not pooled for the pooling model and
accept the defaults for the max instances (4).

Accept the defaults for the remainder of the configura-
tion properties.

After creating the server object, start it and click the
Preview tab to verify that it is correctly configured and
that the map draws.

You can refer to Chapter 3 for more information on
using ArcCatalog to connect to your server and create a
new server object. Once the server object is configured
and running, you can begin to code your Web applica-
tion.

The following ArcObjects .NET assemblies will be used in this example:

• ESRI.ArcGIS.Carto

• ESRI.ArcGIS.Geodatabase

• ESRI.ArcGIS.Geometry

• ESRI.ArcGIS.Server

• ESRI.ArcGIS.Server.WebControls

• ESRI.ArcGIS.esriSystem

EXTENDING A WEB APPLICATION TEMPLATE (.NET)

The Add Server Object wizard

ArcCatalog is used for managing your spatial
data holdings, defining your geographic data

schemas, and managing your ArcGIS Server. Once
you have created your FarmConservation

server object, preview it using ArcCatalog to
verify it is correctly configured.

Chapter7.pmd 1/25/2005, 6:01 PM324

Chapter 7 • Developer scenarios • 325

The development environment does not require any ArcGIS licensing; however,
connecting to a server and using a map server object require that the GIS server is
licensed to run ArcObjects in the server. None of the assemblies used require an
extension license.

The IDE used in this example is Visual Studio .NET 2003. This Web application
can be implemented with other .NET IDEs.

IMPLEMENTATION

In this scenario, you will use the MapViewer template project that is installed as
part of the ArcGIS Server Application Developer Framework’s SDK to provide
some basic mapping functionality, and you will extend this template with your
own functionality. The code for this scenario will be written in C#; however, you
can also write this Web application using VB.NET.

The first step is to create the new project.

Creating a new project
1. Start Visual Studio .NET.

2. Click File, click New, then click Project.

3. In the New Project dialog box, under Project Types, click the
ArcGIS Server Projects category, then the Visual C# category. Under
Templates, click MapViewer Web Application.

4. For the Web application name, type “http://localhost/
ConservationWebApp”.

5. Click OK. This will create a new project that contains all of the
functionality included in the MapViewer template.

Setting the necessary properties on the Web controls
The template includes a Map control, an OverviewMap control, and an Impersonation
control. The map and impersonation controls require properties to be set, specifi-
cally the GIS server name and the MapServer object that the map control will use
and the user account that the Web application will run as for the impersonation
controls. This application does not need the overview control, so you will delete
it from the application.

1. In the Solution Explorer, double-click Default.aspx. This will open the Web
form in design mode.

2. On the Web form, click the Map1 map control.

3. In the Properties for the map control, type the name of the GIS server for the
host property, then click the ServerObject dropdown and click
FarmConservation for the server object.

4. On the Web form, click the Impersonation1 impersonation control.

5. In the Properties for the impersonation control, click the Identity property
and click the Browse button. This will open the Identity dialog box.

6. Type the username, password, and domain for the account that your Web
application will run as, then click OK.

EXTENDING A WEB APPLICATION TEMPLATE (.NET)

The New Project dialog box

The Map control’s properties

If the FarmConservation map server object is
not listed, verify that the server object is started.

Chapter7.pmd 1/25/2005, 6:01 PM325

326 • ArcGIS Server Administrator and Developer Guide

7. On the Web form, right-click the OverviewMap1 control, and click Delete.

Getting a reference to the workspace from the map
Now that the basic properties of the application template have been set, you
need to add code to execute at session startup and session end to get the
workspace from the FarmConservation server object that you will be using
throughout the application. Since you need to keep the workspace around, you
will use the SetObject method on the server context to add the workspace to the
server context’s object dictionary. When you need to use the workspace through-
out the application, you can use the GetObject method to get the workspace out
of the server context.

Since the FarmConservation map server object is a non-pooled object, the map
control will ask the GIS server for an instance of that map server object and hold
on to it for the duration of the session. This means that each time you get the
server object and server context from the map control during the application
session, you know you are always getting the same one.

In this example, you will get the workspace from the first layer in the map. You
do this by getting a reference to the map server object from the WebMap’s server
context. You can then use the IMapServerObjects interface to access the map
server’s fine-grained ArcObjects to get a reference to the first layer in the map.

1. In the Solution Explorer, double-click Default.aspx. This will open the Web
form in design mode.

2. Right-click the Web form and click View Code. This will open the code
behind for Default.aspx.

3. Add using statements for the additional assemblies used in this project. At the
top of the code window, add the following using statement:
using ESRI.ArcGIS.Geodatabase;

4. Scroll in the code window until you find the following line:
if (Session.IsNewSession)

5. Click the plus sign to expand the New Session Startup code region.

6. Add the following lines of code to the New Session Startup region:
using (WebMap webMap = Map1.CreateWebMap())

{

 // get the workspace from the first layer and set it in the context

 IMapServerObjects mapo = webMap.MapServer as IMapServerObjects;

 IMap map = mapo.get_Map(webMap.DataFrame);

 IFeatureLayer fl = map.get_Layer(0) as IFeatureLayer;

 IDataset ds = fl.FeatureClass as IDataset;

 IWorkspace ws = ds.Workspace;

 IServerContext sc = webMap.ServerContext;

 sc.SetObject("theWorkspace",ws);

}

EXTENDING A WEB APPLICATION TEMPLATE (.NET)

It is possible to build a Web application that uses
a non-pooled server object for stateful use
without using the Web controls. In such an

application, it would be the developer’s responsi-
bility to keep a reference to the same server

context for the duration of the Web application
session.

The Impersonation control’s Identity dialog box

For your Web application to successfully connect
to the GIS server, the account you specify in the

impersonation control’s properties must be a
member of the ArcGIS Server users group on the
GIS server. Since the Impersonation control sets

impersonation at the Web page level, there is an
impersonation control on both the Default.aspx

and Identify.aspx pages.

Chapter7.pmd 1/25/2005, 6:01 PM326

Chapter 7 • Developer scenarios • 327

Your code for the New Session Startup code region should now look like the fol-
lowing:
// Is this a PostBack or just started?

if (!Page.IsPostBack)

{

 // Is this a new session?

 if (Session.IsNewSession)

 {

 #region New Session Startup - - - TODO:Add new session startup code
here

 // Set default tool to ZoomIn

 Map1.CurrentToolItem = Map1.ToolItems.Find("ZoomIn");

 // Save extent history to Session

 m_extenthistory = new ArrayList();

 m_extenthistory.Add(Map1.Extent);

 Session.Add("extenthistory", m_extenthistory);

 Session.Add("index", -1);

 m_lastextent = Map1.Extent;

 using (WebMap webMap = Map1.CreateWebMap())

 {

 // Get the workspace from the first layer and set it in the context

 IMapServerObjects mapo = webMap.MapServer as IMapServerObjects;

 IMap map = mapo.get_Map(webMap.DataFrame);

 // Get workspace from first layer

 IFeatureLayer fl = map.get_Layer(0) as IFeatureLayer;

 IDataset ds = fl.FeatureClass as IDataset;

 IWorkspace ws = ds.Workspace;

 IServerContext sc = webMap.ServerContext;

 sc.SetObject("theWorkspace",ws);

 }

 #endregion

}

Closing any open edit sessions on session end
During the application session, users may start but not stop an edit session before
the session times out. This can happen if users start editing and close their
browser without stopping editing or if their session times out while their edit
session is active.

This will keep the geodatabase edit session open even though the user is no longer
using the Web application. You want to safeguard against this by explicitly stop-
ping the edit session if the session times out and it is still active. The template
application includes code that executes when the session ends. You will add code
to include stopping any active geodatabase edit session.

1. In the Solution Explorer, double-click Global.asax.

2. Click the click here to switch to code view button.

EXTENDING A WEB APPLICATION TEMPLATE (.NET)

A server context contains an object dictionary
that serves as a convenient place for you to

store references to commonly used objects. This
example uses the SetObject method on

IServerContext to add the workspace to the
object dictionary. As you will see later, since you
are using the same server context through the

application session, you can get to the workspace
by using GetObject in various parts of the

application.

Chapter7.pmd 1/25/2005, 6:01 PM327

328 • ArcGIS Server Administrator and Developer Guide

EXTENDING A WEB APPLICATION TEMPLATE (.NET)

3. In the code view, scroll down to the Session_end method.

4. Add the following lines of code to the if (context != null) statement:
// need to close any open edit session

ESRI.ArcGIS.Geodatabase.IWorkspaceEdit wse =
context.GetObject("theWorkspace") as
ESRI.ArcGIS.Geodatabase.IWorkspaceEdit;

if (wse.IsBeingEdited())

 wse.StopEditing(false);

Your Session_End method should now look like this:
protected void Session_End(Object sender, EventArgs e)

{

 IServerContext context;

 for (int i = 0; i < Session.Count; i++)

 {

 context = Session[i] as IServerContext;

 if (context != null)

 {

 // need to close any open edit session

 ESRI.ArcGIS.Geodatabase.IWorkspaceEdit wse =
context.GetObject("theWorkspace") as
ESRI.ArcGIS.Geodatabase.IWorkspaceEdit;

 if (wse.IsBeingEdited())

 wse.StopEditing(false);

 context.ReleaseContext();

 }

 }

 Session.RemoveAll();

}

Adding editing commands to your toolbar
This application allows the user to start and stop edit sessions, create features,
and undo and redo edit operations. To provide the necessary tools and commands
for the user to do this, you will add them using the toolbar control.

The template includes a toolbar control that already has a number of tools
(Zoom In, Zoom Out, Pan, Identify, and so forth). You will add the following
commands to the toolbar:

Start Editing: starts a new edit session

Stop Editing and Save Edits: stops editing and saves the edits

Stop Editing and Discard Edits: stops editing and discards the edits

Undo: undoes an edit operation

Redo: redoes an edit operation

You will add the following tool:

Create Conservation Plan: creates a new conservation plan feature

The MapViewer template’s toolbar already
contains tools and commands for navigating the
map (zoom in, zoom out, pan) and for identify-

ing features in the map.

The session time-out defines how long the
session stays active after there has been no user
interaction. This includes users closing their Web
browsers. The session time-out is a configurable
property. By default, the template application’s
session time-out is set to 20 minutes, but you

can change this by changing the time-out
property in the session state settings in the

application’s Web.config file.

Chapter7.pmd 1/25/2005, 6:01 PM328

Chapter 7 • Developer scenarios • 329

Before adding the commands, you will need to copy a set of images that you will
use for the commands and tools in the toolbar. Copy the following image files
from
<install_location>\DeveloperKit\Samples\Data\ServerData\Conservation to
your application’s Images folder (this will be
c:\inetpub\wwwroot\VegetationWebApp\Images):

• polygon.gif

• polygonU.gif

• polygonD.gif

• Redo.gif

• RedoD.gif

• RedoU.gif

• StartEditing.gif

• StartEditingD.gif

• StartEditingU.gif

• StopEditingDiscard.gif

• StopEditingDiscardD.gif

• StopEditingDiscardU.gif

• StopEditingSave.gif

• StopEditingSaveD.gif

• StopEditingSaveU.gif

• Undo.gif

• UndoD.gif

• UndoU.gif

Now you will add the commands to the toolbar.

In the Solution Explorer, double-click Default.aspx to open the Web form in
design mode.

1. Click the toolbar control.

2. In the properties for the toolbar control, click the ToolbarItemsCollection
property and click the Browse button. This will open the Toolbar Item Collec-
tion Editor.

3. Click the Add dropdown, then click Command. This will add a new command
to the toolbar collection.

4. Click the Name property for the new command and type “tbStartEditing” for
the name.

5. Click the Text property and type “Start Editing” for the text.

6. Click the ToolTip property and type “Starts an edit session” for the tooltip.

7. Click the DefaultImage property and type “Images\StartEditing.gif ” for the
default image.

EXTENDING A WEB APPLICATION TEMPLATE (.NET)

The Toolbar control’s properties

Chapter7.pmd 1/25/2005, 6:01 PM329

330 • ArcGIS Server Administrator and Developer Guide

8. Click the HoverImage property and type “Images\StartEditingU.gif ” for the
hover image.

9. Click the SelectedImage property and type “Images\StartEditingD.gif ” for the
click image.

10. Click OK.

11. Repeat steps 3 to 10 to add a command with the following
properties:

Name: tbStopEditingandSave

Text: Stop Editing and Save Edits

ToolTip: Stop editing and save your edits

DefaultImage: Images\StopEditingSave.gif

HoverImage: Images\StopEditingSaveU.gif

SelectedImage: Images\StopEditingSaveD.gif

Disabled: True

12. Repeat steps 3 to 10 to add a command with the following
properties:

Name: tbStopEditingandDiscard

Text: Stop Editing and Discard Edits

 ToolTip: Stop editing and discard your edits

 DefaultImage: Images\StopEditingDiscard.gif

 HoverImage: Images\StopEditingDiscardU.gif

 SelectedImage: Images\StopEditingDiscardD.gif

 Disabled: True

13. Repeat steps 3 to 10 to add a command with the following properties:

 Name: tbUndo

 Text: Undo

 ToolTip: Undoes the edit operation

 DefaultImage: Images\Undo.gif

 HoverImage: Images\UndoU.gif

 SelectedImage: Images\UndoD.gif

 Disabled: True

14. Repeat steps 3 to 10 to add a command with the following properties:

 Name: tbRedo

 Text: Redo

 ToolTip: Redoes the edit operation

 DefaultImage: Images\Redo.gif

EXTENDING A WEB APPLICATION TEMPLATE (.NET)

The ToolbarItem Collection Editor dialog box

Chapter7.pmd 1/25/2005, 6:01 PM330

Chapter 7 • Developer scenarios • 331

 HoverImage: Images\RedoU.gif

 SelectedImage: Images\RedoD.gif

 Disabled: True

Now that the commands have been added to the toolbar, you will add the code
to execute when they are clicked.

15. Double-click the toolbar. This will open the code
window in the toolbar’s CommandClick event.

You will see the code that executes when the user
 clicks one of the toolbar commands that was

included as part of the template. You will add additional code to handle the
new commands that you created.

16. Add the following case statements:
case "tbStartEditing":

 break;

case "tbStopEditingandSave":

 break;

case "tbStopEditingandDiscard":

 break;

case "tbUndo":

 break;

case "tbRedo":

 break;

In the first case statement you will add code to handle the user clicking the Start
Editing button. This code will get the workspace you set in the server context
and start an edit session. When the edit session is started, you will also enable the
Stop Editing commands and disable the Start Editing command. You will add
more code later to this case block to enable your edit tool, but you have not
created the tool yet.

17. In the tbStartEditing case block, add the following lines of code:
case "tbStartEditing":

 using (WebMap webMap = Map1.CreateWebMap())

 {

 // get the workspace from the server context

 IServerContext ctx = webMap.ServerContext;

 IWorkspaceEdit wse = ctx.GetObject("theWorkspace") as IWorkspaceEdit;

 // check to see if an edit session is already started

 if (!wse.IsBeingEdited())

 wse.StartEditing(true);

 // enable stop editing command and add conservation feature tool

 ToolbarItemCollection tbcol = Toolbar1.ToolbarItems;

 Command cmd = tbcol.Find("tbStopEditingandSave") as Command;

 cmd.Disabled = false;

 cmd = tbcol.Find("tbStopEditingandDiscard") as Command;

 cmd.Disabled = false;

EXTENDING A WEB APPLICATION TEMPLATE (.NET)

The new commands that you add through the
Toolbar Collection Editor will appear on the

toolbar.

The objects and interfaces used for managing
geodatabase edit sessions can be found in the

GeoDatabase object library. To learn more about
geodatabase edit session objects, see the online

developer documentation.

Chapter7.pmd 1/25/2005, 6:01 PM331

332 • ArcGIS Server Administrator and Developer Guide

 // disable start editing

 cmd = tbcol.Find("tbStartEditing")as Command;

 cmd.Disabled = true;

 // TODO enable AddConservationPlan tool

 }

break;

In the second case statement, you will add code to handle the user clicking the
Stop Editing and Save button. This button will call stop editing on the
workspace and saves the edits the user has made. Once you add the tool to create
conservation plan features, you will revisit this code to also disable that tool
when the Stop Editing and Save button is clicked.

18. In the tbStopEditingandSave case block, add the following lines of code:
case "tbStopEditingandSave":

 using (WebMap webMap = Map1.CreateWebMap())

 {

 // get the workspace from the server context

 IServerContext ctx = webMap.ServerContext;

 IWorkspaceEdit wse = ctx.GetObject("theWorkspace") as IWorkspaceEdit;

 // stop editing and save edits

 wse.StopEditing(true);

 // disable stop editing commands, undo and redo commands,

 // new conservation tool and enable start editing command

 ToolbarItemCollection tbcol = Toolbar1.ToolbarItems;

 Command cmd = tbcol.Find("tbStopEditingandSave") as Command;

 cmd.Disabled = true;

 cmd = tbcol.Find("tbStopEditingandDiscard") as Command;

 cmd.Disabled = true;

 cmd = tbcol.Find("tbUndo") as Command;

 cmd.Disabled = true;

 cmd = tbcol.Find("tbUndo") as Command;

 cmd.Disabled = true;

 // TODO disable AddConservationPlan tool

 cmd = tbcol.Find("tbStartEditing") as Command;

 cmd.Disabled = false;

 }

 break;

In the third case statement, you will add code to handle the user clicking the Stop
Editing and Discard button. This button will call stop editing on the workspace
and not save the edits the user has made. Once you add your tool to create con-
servation plan features, you will revisit this code to also disable that tool when
the Stop Editing and Discard button is clicked.

EXTENDING A WEB APPLICATION TEMPLATE (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM332

Chapter 7 • Developer scenarios • 333

19. In the tbStopEditingandDiscard case block, add the following lines of code:
case "tbStopEditingandDiscard":

 using (WebMap webMap = Map1.CreateWebMap())

 {

 // get the workspace from the server context

 IServerContext ctx = webMap.ServerContext;

 IWorkspaceEdit wse = ctx.GetObject("theWorkspace") as IWorkspaceEdit;

 // stop editing and don’t save edits

 wse.StopEditing(false);

 // disable stop editing commands, undo and redo commands,

 // new conservation tool and enable start editing command

 ToolbarItemCollection tbcol = Toolbar1.ToolbarItems;

 Command cmd = tbcol.Find("tbStopEditingandSave") as Command;

 cmd.Disabled = true;

 cmd = tbcol.Find("tbStopEditingandDiscard") as Command;

 cmd.Disabled = true;

 cmd = tbcol.Find("tbUndo") as Command;

 cmd.Disabled = true;

 cmd = tbcol.Find("tbUndo") as Command;

 cmd.Disabled = true;

 // TODO disable AddConservationPlan tool

 cmd = tbcol.Find("tbStartEditing") as Command;

 cmd.Disabled = false;

 webMap.Refresh();

 }

 break;

The tbUndo case statement will contain the code to execute when the user clicks
the Undo button. This button will only be enabled if there are edit operations on
the edit stack that can be undone. When this button is clicked, you must enable
the Redo button, and if this button undoes the last edit operation, the Undo
button must be disabled.

20. In the tbUndo case block, add the following lines of code:
case "tbUndo":

 using (WebMap webMap = Map1.CreateWebMap())

 {

 // get the workspace from the server context

 IServerContext ctx = webMap.ServerContext;

 IWorkspaceEdit wse = ctx.GetObject("theWorkspace") as IWorkspaceEdit;

 // undo the last edit operation

 wse.UndoEditOperation();

 // enable Redo command

 ToolbarItemCollection tbcol = Toolbar1.ToolbarItems;

 Command cmd = tbcol.Find("tbRedo") as Command;

EXTENDING A WEB APPLICATION TEMPLATE (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM333

334 • ArcGIS Server Administrator and Developer Guide

 cmd.Disabled = false;

 // check to see if there are still operations that can be undone

 bool bhasUndos = false;

 wse.HasUndos(ref bhasUndos);

 if (!bhasUndos)

 {

 cmd = tbcol.Find("tbUndo") as Command;

 cmd.Disabled = true;

 }

 webMap.Refresh();

 }

 break;

The tbRedo case statement will contain the code to execute when the user clicks
the Redo button. This button will only be enabled if there are edit operations on
the edit stack that can be redone. When this button is clicked, you must enable
the Undo button, and if the Redo button redoes the last edit operation, the Redo
button must be disabled.

21. In the tbRedo case block, add the following lines of code:
case "tbRedo":

 using (WebMap webMap = Map1.CreateWebMap())

 {

 // get the workspace from the server context

 IServerContext ctx = webMap.ServerContext;

 IWorkspaceEdit wse = ctx.GetObject("theWorkspace") as IWorkspaceEdit;

 // undo the last edit operation

 wse.RedoEditOperation();

 // enable Undo command

 ToolbarItemCollection tbcol = Toolbar1.ToolbarItems;

 Command cmd = tbcol.Find("tbUndo") as Command;

 cmd.Disabled = false;

 // check to see if there are still operations that can be redone

 bool bhasRedos = false;

 wse.HasRedos(ref bhasRedos);

 if (!bhasRedos)

 {

 cmd = tbcol.Find("tbRedo") as Command;

 cmd.Disabled = true;

 }

 webMap.Refresh();

 }

 break;

Adding the New Conservation Plan tool
Now that you have added commands to handle managing your edit session, you
will add the tool that will actually make edits on the database. This application

EXTENDING A WEB APPLICATION TEMPLATE (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM334

Chapter 7 • Developer scenarios • 335

allows the user to digitize new conservation plan features in the geodatabase by
digitizing a polygon on the map control. To allow the user to do this, you will add
a new tool to the toolbar’s tool collection.

In this example, you will add a single tool for creating new conservation plan
polygons of a user-specified type. The types of possible conservation plans will
be available from a dropdown list that the user will pick from.

The first step is to add the dropdown list that will contain the list of conserva-
tion plan types to your application:

1. In the Solution Explorer, double-click
Default.aspx to open the Web form in
design mode.

2. In the Microsoft Visual Studio .NET
toolbox, click the Web Forms tab to
display the Web Forms tools.

3. In the toolbox, click Label and drag a
label onto the form next to the map
control.

4. In the label’s properties, type
“Conservation plan type:” for the Text
property.

5. In the toolbox, click DropDownList and
drag a dropdown list onto the form
under the label you just added.

6. In the dropdown list’s properties, type
“drpTypes” for the ID property.

Now that you have added the dropdown list control to the Web form, you need
to add code to populate it with the different conservation plan types. The feature
class in the geodatabase that stores the conservation plan features contains a type
field. The type field has a domain associated with it that defines the valid types
of conservation plans. You will add code to the session startup to read the values
from this domain and add them to the dropdown list.

7. Right-click the Web form and click ViewCode. This will open the code behind
for Default.aspx.

8. Scroll in the code window until you find the following line:
if (Session.IsNewSession)

9. Click the plus sign to expand the New Session Startup code region.

10. Add the following lines of code to the New Session Startup region in the
same Using block that you created when getting the workspace and setting it
into the server context:

// populate the dropdown list with the conservation types

IFeatureWorkspace fws = ws as IFeatureWorkspace;

IFeatureClass fc = fws.OpenFeatureClass("ConservationPlan");

EXTENDING A WEB APPLICATION TEMPLATE (.NET)

The VegetationWebApp project in the Visual
Studio .NET IDE

Chapter7.pmd 1/25/2005, 6:01 PM335

336 • ArcGIS Server Administrator and Developer Guide

IField fld = fc.Fields.get_Field(fc.FindField("TYPE"));

ICodedValueDomain cv = fld.Domain as ICodedValueDomain;

for (int i = 0; i < cv.CodeCount; i++)

{

 drpTypes.Items.Add(cv.get_Name(i));

}

Your code for the New Session Startup code region should now look like the
following:
// Is this a PostBack or just started?

if (!Page.IsPostBack)

{

 // Is this a new session?

 if (Session.IsNewSession)

 {

 #region New Session Startup - - - TODO:Add new session startup code
here

 // Set default tool to ZoomIn

 Map1.CurrentToolItem = Map1.ToolItems.Find("ZoomIn");

 // Save extent history to Session

 m_extenthistory = new ArrayList();

 m_extenthistory.Add(Map1.Extent);

 Session.Add("extenthistory", m_extenthistory);

 Session.Add("index", -1);

 m_lastextent = Map1.Extent;

 using (WebMap webMap = Map1.CreateWebMap())

 {

 // Get the workspace from the first layer and set it in the context

 IMapServerObjects mapo = webMap.MapServer as IMapServerObjects;

 IMap map = mapo.get_Map(webMap.DataFrame);

 // Get workspace from first layer

 IFeatureLayer fl = map.get_Layer(0) as IFeatureLayer;

 IDataset ds = fl.FeatureClass as IDataset;

 IWorkspace ws = ds.Workspace;

 IServerContext sc = webMap.ServerContext;

 sc.SetObject("theWorkspace",ws);

 // Populate the dropdown list with the conservation types

 IFeatureWorkspace fws = ws as IFeatureWorkspace;

 IFeatureClass fc = fws.OpenFeatureClass("ConservationPlan");

 IField fld = fc.Fields.get_Field(fc.FindField("TYPE"));

 ICodedValueDomain cv = fld.Domain as ICodedValueDomain;

 for (int i = 0; i < cv.CodeCount; i++)

 {

 drpTypes.Items.Add(cv.get_Name(i));

 }

 }

EXTENDING A WEB APPLICATION TEMPLATE (.NET)

A coded value domain is a valid value list that
can be associated with a field for a class or
subtype in a geodatabase. The coded value

domain consists of value/description pairs that
allow user interfaces to display user understand-

able text strings to describe valid database
values. To learn more about coded value domain
objects, see the online developer documentation.

Chapter7.pmd 1/25/2005, 6:01 PM336

Chapter 7 • Developer scenarios • 337

 #endregion

}

Now you can add the tool to your toolbar that will actually let users digitize new
conservation plan polygons on the map. Before adding the tool to the toolbar, you
must create a new class that implements the IMapServerToolAction interface and
defines the functionality for the tool.

Creating the NewConservationPlan class
The first step is to add the new class to the project.

1. In the Solution Explorer, right-click the ConservationWebApp project, click
Add, then click Add New Item.

2. In the Add New Item dialog box, under Templates, click Class.

3. For the Name, type “NewConservationPlan.cs”.

4. Click Open.

This will add a new class (NewConservationPlan) to your project and will open the
code for the class with some autogenerated code.

5. Add using statements for the assemblies you will use in this class. At the top
of the code window, add the following using statements:
using ESRI.ArcGIS.Server;

using ESRI.ArcGIS.Server.WebControls;

using ESRI.ArcGIS.Server.WebControls.Tools;

using ESRI.ArcGIS.Geometry;

using ESRI.ArcGIS.Geodatabase;

Implementing the NewConservationPlan class
Now you are ready to implement the NewConservationPlan class
that contains the code to execute when a new polygon is digi-
tized by the user on the map. Since this class is a map server tool
action, it must implement the IMapServerToolAction interface.

1. Change the following line:
public class NewConservationPlan

to:
public class NewConservationPlan: IMapServerToolAction

2. In the Class View window, expand the class list to the Bases
and Interfaces of the NewConservationPlan class.

3. Right-click the IMapServerToolAction interface, click Add, then click Imple-
ment Interface.

Visual Studio stubs out the members of IMapServerToolAction in the code window
automatically, bracketing the stubs within a region named IMapServerToolAction
Members.

The IMapServerToolAction has a single method to implement called ServerAction.
This method is where you will put the code to execute when the user clicks the
map. The following code will be added to your class:
#region IMapServerToolAction Members

EXTENDING A WEB APPLICATION TEMPLATE (.NET)

The Add New Item dialog box

Chapter7.pmd 1/25/2005, 6:01 PM337

338 • ArcGIS Server Administrator and Developer Guide

public void ServerAction(ToolEventArgs args)

{

 // TODO: Add NewConservationPlan.ServerAction implementation

}

#endregion

The remainder of the code will be added to this method.

In order to create a new feature, you need to use the workspace object you saved
in the server context to start and stop an edit operation. You will get the map
server’s context from the map control’s WebMap object and create the ArcObjects
you will use to perform the edit operation within that context. Since the
FarmConservation map server object is a non-pooled server object, the WebMap
will hand you a reference to the same context in which you saved the workspace
object. You will scope the use of the WebMap within a Using block.

The args object passed into the ServerAction method includes a reference to the
map control.

4. Add the following code to your ServerAction method:
if (args.Control is ESRI.ArcGIS.Server.WebControls.Map)

{

 Map map = args.Control as Map;

 using (WebMap webMap = map.CreateWebMap())

 {

 }

}

You need to get a reference to the WebMap’s server context; you can then use the
IServerContext interface to get the workspace that you set in the context when the
session began.

5. Add the following lines of code to your using block:
// get the server object and server context from the Web map,

// and get the workspace from the context

IServerObject so = (IServerObject) webMap.MapServer;

IServerContext soc = webMap.ServerContext;

IWorkspaceEdit wse = soc.GetObject("theWorkspace") as IWorkspaceEdit;

The args object also contains the VectorEventArgs collection of points and vectors
that describe the polygon the user digitized in screen coordinates. You will use
these points with the Converter class to convert the set of points to a new polygon
geometry in the server context.

6. Add the following lines of code to your using block:
// get the polygon from the event

VectorEventArgs vargs = args as VectorEventArgs;

System.Drawing.Point[] pts = vargs.Vectors;

IGeometry geom = Converter.ToPolygon(webMap,pts) as IGeometry;

Next, you will use the coded value domain to look up the value associated with
the domain description that the user selected in the dropdown list on the Web
form. To do this, you will use the workspace object to open the ConservationPlan
feature class and get the type field and its domain.

EXTENDING A WEB APPLICATION TEMPLATE (.NET)

The class view

Chapter7.pmd 1/25/2005, 6:01 PM338

Chapter 7 • Developer scenarios • 339

7. Add the following lines of code to your using block:
// open the feature class

IFeatureWorkspace fws = wse as IFeatureWorkspace;

IFeatureClass fc = fws.OpenFeatureClass("ConservationPlan");

// get the type from the dropdown list and look up the value from the domain

System.Web.UI.WebControls.DropDownList drpDomain =
map.Page.FindControl("drpTypes") as
System.Web.UI.WebControls.DropDownList;

string sDomainDesc = drpDomain.SelectedItem.Text;

string sDomainValue = "";

int lTypeFld = fc.FindField("TYPE");

IField fld = fc.Fields.get_Field(lTypeFld);

ICodedValueDomain cv = fld.Domain as ICodedValueDomain;

for (int i = 0; i < cv.CodeCount; i++)

{

 if (cv.get_Name(i) == sDomainDesc)

 {

 sDomainValue = cv.get_Value(i) as string;

 }

}

Now that you have the geometry for the new conservation plan feature and the
type, you can create your new conservation plan feature. To do this, you will use
the workspace object to start an edit operation. Within this edit operation, you
will create a new feature, set the geometry for the new feature to be your poly-
gon, and set the type to be the domain value associated with the description the
user chose.

Once you have set these new properties for the feature, you will use Store to
store it in the geodatabase and stop the edit operation.

8. Add the following lines of code to your using block:
// start an edit operation and create the new feature

wse.StartEditOperation();

IFeature f = fc.CreateFeature();

IFeatureSimplify fs = (IFeatureSimplify) f;

fs.SimplifyGeometry(geom);

f.Shape = geom;

// initialize default values

IRowSubtypes subt = f as IRowSubtypes;

subt.SubtypeCode = 0;

subt.InitDefaultValues();

// set the type as specified by the user

f.set_Value(lTypeFld, sDomainValue);

f.Store();

wse.StopEditOperation();

EXTENDING A WEB APPLICATION TEMPLATE (.NET)

Because the ConservationPlan feature class is a
layer in the map server object’s map document,
it was opened when the map server object was
created at the beginning of the session. The call

to open the ConservationPlan feature class made
against the workspace will actually get the

feature class that is already opened in the map.

An edit operation may be thought of as a short
transaction nested within the long transaction

corresponding to the edit session. Edit operations
also define collections of edits that correspond to

a single undo or redo. All related changes to
objects in the database within an edit session

should be grouped into edit operations. To learn
more about geodatabase edit session objects, see

the online developer documentation.

Chapter7.pmd 1/25/2005, 6:01 PM339

340 • ArcGIS Server Administrator and Developer Guide

Now that the new feature is created, you need to update a couple of aspects of
the application. Specifically, you will enable the Undo command on the toolbar,
because there is now an edit operation to undo, and refresh the map to draw the
new feature.

9. Add the following lines of code to your Using block:
// enable undo

Toolbar tb = map.Page.FindControl("Toolbar1") as Toolbar;

ToolbarItemCollection tcoll = tb.ToolbarItems;

Command cmd = tcoll.Find("tbUndo") as Command;

cmd.Disabled = false;

// refresh the map

webMap.Refresh();

Now that the class is defined, you must compile your project to add your new
NewConservationPlan class to the .NET assembly list.

10. Click Build, then click Build Solution.

11. Fix any errors.

Adding the New Conservation Plan tool to the toolbar
Now that you have implemented the class, you will add the tool to your toolbar,
which will allow the user to digitize a new polygon and execute the code in the
NewConservationPlan class.

1. In the Solution Explorer, double-click Default.aspx to open the Web form in
design mode.

2. Click the toolbar control.

3. In the properties for the toolbar control, click the
ToolbarItemsCollection property and click the Browse button. This
will open the Toolbar Item Collection Editor.

4. Click the Add dropdown, then click Tool. This will add a new tool
to the toolbar collection.

5. Click the Name property for the new tool and type
“tbNewConservationPlan” for the name.

6. Click the Text property and type “Add Conservation Plan” for the
text.

7. Click the ToolTip property and type “Add new conservation plan”
for the tooltip.

8. Click the ClientToolAction property dropdown list and click
Polygon.

9. Click the ServerToolActionAssembly property and type
“ConservationWebApp” for the assembly name.

10. Click the ServerToolActionClass property dropdown list and click
ConservationWebApp.NewConservationPlan for the class (this is the class you
just created).

11. Click the Disabled property dropdown list and click True.

EXTENDING A WEB APPLICATION TEMPLATE (.NET)

The ToolbarItem Collection Editor dialog box

By compiling the project, this allows you to pick
MapView.NewConservationPlan for the

ServerToolActionClass in the Toolbar
CollectionEditor.

Chapter7.pmd 1/25/2005, 6:01 PM340

Chapter 7 • Developer scenarios • 341

12. Click the DefaultImage property and type “Images\polygon.gif ” for the
default image.

13. Click the HoverImage property and type “Images\polygonU.gif ” for the
hover image.

14. Click the SelectedImage property and type “Images\polygonD.gif ” for the
selected image.

15. Click OK. This will add the new tool to your toolbar.

Finally, you will revisit the code in the toolbar’s
CommandClick event to enable and disable this
tool appropriately.

16. Double-click the Toolbar1 control. This will
open the code window in the toolbar’s CommandClick event.

17. In the tbStartEditing case block, change the following line:
// TODO enable AddConservationPlan tool

to:
Tool t = tbcol.Find("tbNewConservationPlan") as Tool;

t.Disabled = false;

18. In the tbStopEditingandSave and tbStopEditingandDiscard case blocks,
change the following line:

// TODO disable AddConservationPlan tool

to:
Tool t = tbcol.Find("tbNewConservationPlan") as Tool;

t.Disabled = true;

Your Web application is now ready to be tested. Compile the project (Build/Build
Solution), and fix any errors.

Testing the Web application
If you run the Web application from within Visual Studio, it will open a browser
and connect to the application’s startup page (Default.aspx).

1. Click Debug, then click Start.

2. Click the Start Editing button on the toolbar.

3. Click the conservation type dropdown list and click a conservation type to
create.

4. Click the New Conservation Plan tool.

5. Click the map to digitize your new conservation plan polygon. Once you have
added all the points, double-click.

The new conservation plan polygon will be drawn on the map.

6. Click the Undo command to undo the edit.

7. Click the Redo command to redo the edit.

8. Click either the Stop Editing and Save command or the Stop Editing and
Discard command to stop editing.

EXTENDING A WEB APPLICATION TEMPLATE (.NET)

The new tool that you add through the Toolbar
Collection Editor will appear on the toolbar.

The ClientToolAction specifies what code is
executed in the client (the Web browser). In this

case, JavaScript for drawing a polygon on the
map control is the client tool action.

The ServerToolAction is the code in the server
that is executed when the client tool action has
completed. In this case, the server tool action is

defined by the NewConservationPlan class.

Chapter7.pmd 1/25/2005, 6:01 PM341

342 • ArcGIS Server Administrator and Developer Guide

DEPLOYMENT

Presumably you developed this Web application using your development Web
server. To deploy this Web application on your production Web server, you can
use the built-in Visual Studio .NET tools to copy the project.

1. In the Solution Explorer, click the ConservationEditing project.

2. Click Project, then click Copy Project.

3. In the Copy Project dialog box, specify the location on your Web server to
copy the project to.

4. Click OK.

ADDITIONAL RESOURCES

This scenario includes functionality and programming techniques covering a
number of different aspects of ArcObjects, the ArcGIS Server API, .NET appli-
cation templates, and Web controls.

You are encouraged to read Chapter 4 of this book to get a better understanding
of core ArcGIS Server programming concepts such as stateful versus stateless
server application development. Chapter 4 also covers concepts and programming
guidelines for working with server contexts and ArcObjects running within those
contexts.

This scenario makes use of a Web application template and the ArcGIS Server
.NET ADF Web controls to provide the majority of the user interface for this
Web application. To learn more about this Web application template and other
template applications that are included with the .NET ADF, see Chapter 5 of
this book. Chapter 5 also includes detailed descriptions and examples of using the

EXTENDING A WEB APPLICATION TEMPLATE (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM342

Chapter 7 • Developer scenarios • 343

.NET Web controls, including the map and toolbar Web controls that you made
use of while programming this Web application. If you are unfamiliar with
ASP.NET Web development, it’s also recommended that you refer to your .NET
developer documentation to become more familiar with Web application devel-
opment.

ArcGIS Server applications exploit the rich GIS functionality of ArcObjects.
This application is no exception. It includes the use of ArcObjects to work with
the components of a MapServer, manage a geodatabase edit session, create and
set properties of features in the geodatabase, and manipulate geometries. To learn
more about these aspects of ArcObjects, refer to the online developer documen-
tation on the Carto, GeoDatabase, and Geometry object libraries.

EXTENDING A WEB APPLICATION TEMPLATE (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM343

344 • ArcGIS Server Administrator and Developer Guide

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

This walkthrough is for developers who need to build and deploy a Web applica-
tion that extends one of the application templates installed as part of the Java
Application Developer Framework SDK. The application incorporates focused
geodatabase editing capabilities using the ArcGIS Server API, Java Web controls,
and ArcObjects. It describes the process of building, deploying, and consuming
the Extending_a_template sample, which is part of the ArcGIS developer samples.

You can find this sample in:

<install_location>\DeveloperKit\samples\Developer_Guide_Scenarios\
Extending_a_web_application_templateJava.zip

PROJECT DESCRIPTION

The purpose of this scenario is to create a JSP Web application by extending the
Java ADF MapViewer template. The application uses ArcObjects to manage a
geodatabase edit session and allows the user to start editing; create new features;
and undo, redo, and save their edits.

The following is how the user will interact with the application:

1. Open a Web browser and specify the URL of the Web application.

2. Click Start Editing to start an edit session.

3. Click the Add Conservation Plan tool on the toolbar and digitize the new
conservation plan polygon on the map.

4. Additional conservation plan features can be created, and users can click the
Undo and Redo buttons to undo and redo their edits.

5. Once finished, users can either click Stop Editing and Save to save their edits
or Stop Editing and Discard to discard their edits.

The MapViewer Web application template is
installed as part of the Java ADF SDK.

The Java ADF, as described in this scenario,
was developed with JavaServer Faces

version 1.0. For the latest information on
supported servlet engines and application

servers as well as software and documenta-
tion updates, visit the ESRI Support Web site

at http://support.esri.com. For more
information about JSF, visit http://
java.sun.com/j2ee/javaserverfaces.

Rather than walk through this scenario, you can
get the completed Web application from the
samples installation location. The sample is

installed as part of the ArcGIS Developer
samples.

Chapter7.pmd 1/25/2005, 6:01 PM344

Chapter 7 • Developer scenarios • 345

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

If users choose to save their edits, the geodatabase edit session is ended and their
changes are saved. If users choose to not save edits, then the geodatabase edit
session is ended and their edits are discarded.

CONCEPTS

The application templates provided with the ArcGIS Server Application Devel-
oper Framework SDK provide a good starting point for developers to create Web
applications with advanced GIS functionality. Developers will extend these
applications using remote ArcObjects that are exposed through the ArcGIS
Server API.

Both coarse-grained calls to remote ArcObjects, such as the methods on the
MapServer and GeocodeServer, as well as fine grained calls to remote
ArcObjects, such as creating new geometries, are exposed through the ArcGIS
Server API and can be used in your application. With the functionality of
ArcObjects available to the Web application developer, the template applications
can be extended to include a wide variety of GIS functionality. This functionality
includes what is possible using ArcObjects, including analysis; query; display; and,
as in this application, data maintenance.

DESIGN

This Web application is an example of a deeply stateful application in that it’s
designed to make stateful use of the GIS server. Since this Web application
supports edit sessions that span multiple requests for operations, such as creating
new features, supporting undo and redo, and the ability to stop editing and dis-
card your edits, the application must use the same workspace object and
geodatabase edit session throughout a Web application session. To do this, the
Web application must make use of the same server context throughout the user
session and release that context only when the session has ended.

Because each user session needs its own server context and server object dedi-
cated to it, the server object cannot be shared across multiple user sessions and,
therefore, cannot be pooled. When this application is deployed, there will be an
instance of a running map server object for each concurrent user of the applica-
tion.

To provide the actual functionality, the application uses command buttons to
work with the events on the map Web control to expose and manage the edit
session (Start Editing, Stop Editing, Undo, Redo) and tools to get a polygon from
the user and use that polygon and ArcObjects to update the geodatabase. In order
to support this application, a non-pooled map server object must be added to the
ArcGIS Server using ArcCatalog.

The Web application will use the Web controls to manage the connection to the
GIS server, and the MapViewer Web application template will provide the basic
mapping functionality that is required for this application. You will add new tools
and commands to the tools collection and map control that allow users to manage
their edit session and click the map as input to creating new features.

It is possible to create an ArcGIS Server applica-
tion that includes editing functionality and is

stateless. In such an application, each request to
make an edit would be its own edit session and

the application would not support undo, redo,
and the option to save or not save edits. This
example includes undo and redo functionality

and, therefore, must make use of a non-pooled
server object.

This application is designed to directly edit the
version of the geodatabase that the map server
object is connected to. Therefore, all users of the

application are editing the same version. This can
be augmented with version management

capabilities to, for example, create a new version
for each session and have all edits go into that

version.

While the design of this example allows the
editing of personal geodatabases, one could only

deploy this application to support multiple
editors if the geodatabase was a multiuser

geodatabase managed by ArcSDE.

Chapter7.pmd 1/25/2005, 6:01 PM345

346 • ArcGIS Server Administrator and Developer Guide

REQUIREMENTS

The requirements for working through this scenario are that you have ArcGIS
Server and ArcGIS Desktop installed and running. The machine on which you
develop this Web application must have the ArcGIS Server Java Application
Developer Framework SDK installed.

You must have a map server object configured and running on your ArcGIS
Server that uses the Conservation.mxd map document installed with the ArcGIS
developer samples. The map document references a personal geodatabase with
feature classes of farm data. It also references a QuickBird satellite image cour-
tesy of DigitalGlobe.

In ArcCatalog, create a connection to your GIS server and use the Add Server
Object command to create a new server object with the following properties:

Name: FarmConservation

Type: MapServer

Description: Map server showing conservation resource planning

Map document: <install_location>\DeveloperKit\Samples\
Data\ServerData\Conservation\Conservation.mxd

Output directory: Choose from the output directories configured in your server.

Pooling: The Web service makes stateful use of the server
object. Click Not pooled for the pooling model and
accept the defaults for the max instances (4).

Accept the defaults for the remainder of the configura-
tion properties.

After creating the server object, start it and click the
Preview tab to verify that it is correctly configured and
that the map draws.

You can refer to Chapter 3 for more information on
using ArcCatalog to connect to your server and create a
new server object. Once the server object is configured
and running, you can begin to code your Web applica-
tion.

The following ArcObjects—Java packages will be used
in this example:

• com.esri.arcgis.carto

• com.esri.arcgis.geodatabase

• com.esri.arcgis.geometry

• com.esri.arcgis.server

• com.esri.arcgis.webcontrols

• com.esri.arcgis.system

The development environment does not require any ArcGIS licensing; however,
connecting to a server and using a map server object require that the GIS server is
licensed to run ArcObjects in the server. None of the assemblies used require an

ArcCatalog is used for managing your spatial
data holdings, defining your geographic data

schemas, and managing your ArcGIS Server. Once
you have created your FarmConservation server
object, preview it using ArcCatalog to verify it is

correctly configured.

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

This scenario uses data from a personal
geodatabase. On Solaris and Linux, personal

geodatabases are not supported, and the
supplied Conservation.mxd map document will

not work. However, you can use ArcCatalog on a
Windows machine to re-create the map

document using an ArcSDE geodatabase and the
included fc-gen2.sid raster layer. Be sure to

classify the ConservationPlan feature class on the
Type field in your new map and to click Add All
Values to show the complete domain. It is also

important to use relative paths when adding the
fc-gen2.sid layer and to register the ArcSDE
feature dataset as versioned. See Appendix F,

‘Converting personal geodatabases’, for instruc-
tions on how to copy the personal geodatabase

file, portland.mdb, into an ArcSDE-enabled
database.

Chapter7.pmd 1/25/2005, 6:01 PM346

Chapter 7 • Developer scenarios • 347

extension license.

The IDE used in this example is JBuilder 9 Enterprise Edition, and all IDE
specific steps will assume that is the IDE you are using. This Web application can
be implemented with other Java IDEs.

IMPLEMENTATION

In this scenario, you will use the MapViewer template project that is installed as
part of the ArcGIS Server Application Developer Framework’s SDK to provide
some basic mapping functionality, and you will extend this template with your
own functionality.

The first step is to create an application based on the MapViewer template, which
you will extend.

Creating an application
1. Open a command window and navigate to the folder

<install_location>\ArcGIS\DeveloperKit\Templates\Java

2. At the command prompt, type “arcgisant build”.

3. In the Input dialog box, type “ConservationWebApp” for the Application
name.

4. In the Connect to a GIS server section, for GIS Server, Domain, Username,
and Password enter information pertaining to your GIS server and the account
that you want the Web application to connect to the GIS server as.

5. Click Connect.

6. In the Choose template and set properties section, click the Name dropdown
and click Map Viewer.

7. Click the Map dropdown and click FarmConservation.

8. Click the Overview map dropdown and click FarmConservation.

9. Click OK.

This will create the folder ConservationWebApp under
<install_location>\ArcGIS\DeveloperKit\Templates\Java\build. This is a fully func-
tional Web application that you will extend with your editing functionality. First,
you will load the application into JBuilder.

Creating a working directory
1. Create a new folder, editing_projects. This is where your Web application

project files will be copied.

2. Copy the folder ConservationWebApp from
<install_location>\ArcGIS\DeveloperKit\Templates\Java\build to your
editing_projects folder.

3. Create a folder, editing, under the editing_projects folder.

4. Create a folder, src, under the editing folder.

5. Copy the contents of ConservationWebApp\WEB-INF\classes into the location
editing_projects\editing\src.

The template Web application deployment Input
dialog box

If the FarmConservation map server object is
not listed, verify that the server object is started.

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM347

348 • ArcGIS Server Administrator and Developer Guide

Your directory structure should look like the following:
+---editing_projects

¦ +---ConservationWebApp

¦ ¦ +---*.jsp, *.html

¦ ¦ +---css

¦ ¦ +---images

¦ ¦ +---js

¦ ¦ +---WEB-INF

¦ ¦ +---classes

¦ ¦ ¦ +---arcgis_webapps.properties

¦ ¦ ¦ +---managed_context_attributes.xml

¦ ¦ ¦ +---tools

¦ ¦ ¦ +---xsl

¦ ¦ +---lib

¦ +---editing

¦ +---src

¦ +---res

¦ +---tools

¦ +---xsl

¦ +---arcgis_webapps.properties

¦ +---managed_context_attributes.xml

Creating a new project
1. Start JBuilder.

2. Click File, then click New Project to open the Project Wizard window.

3. In the Project Wizard dialog box, type “editing” for the Name, then type the
path to the editing_projects folder you created above for the Directory.

4. Click Finish.

Adding references to the Java Application Developer Framework
library

The Project wizard

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM348

Chapter 7 • Developer scenarios • 349

To use the Web controls, you need to add references to the Java ADF libraries.
These libraries are installed when you install the Java ADF. To add these refer-
ences, you will create a new library and add it to your project.

1. Click Tools, then click Configure Libraries.

2. In the Configure Libraries dialog box, click New to create a new library.

3. In the New Library wizard, type “webcontrols_lib” for the Name.

4. Click Add, browse to the location, select <install_location>/ArcGIS/java/
webcontrols/WEB-INF/lib, and click OK.

If you have already created the library in one of
the other developer scenario examples, you can

add the existing library to your project.

The Configure Libraries dialog box

The New Library wizard

The Directory browser dialog box

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM349

350 • ArcGIS Server Administrator and Developer Guide

5. Click OK to close the Configure Libraries dialog box.

Now you will add the new library to your project.

6. Click Project, then click Project Properties.

7. In the Project Properties dialog box, click the Required Libraries tab.

8. Click Add.

9. Under User Home, click webcontrols_lib and click OK.

10. Click OK.

Adding a new Web application project
1. Click File, then click New.

2. In the Object Gallery dialog box, click the Web tab and click Web Applica-
tion.

3. Click OK.

4. In the Web Application wizard, type “ConservationWebApp” for Name.

5. Click the Browse button and browse to your editing_projects/
ConservationWebApp folder for the Directory.

6. Click OK.

The Configure Libraries dialog box

The Object Gallery dialog box

The Web Application wizard

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM350

Chapter 7 • Developer scenarios • 351

Configuring the Web application project
The last step to set up the new project is to configure the deployment descriptors
and enable copying of resources to the project.

1. In the Project pane, right-click ConservationWebApp, then click Properties.

2. Click the Directories tab, and check the Include regular content in WEB-INF
and subdirectories check box.

3. Click OK.

4. Click Project, then click Project Properties.

5. Click the Build tab, then click the Resource tab.

6. In the file types list, select xml, xsl, and properties.

7. Click the Copy option.

8. Click OK.

9. Click Project, then click Rebuild project “editing.jpx” to build the application.

Getting a reference to the workspace from the map
Now that the basic properties of the application template have
been set, you need to add code to execute at session startup and
session end to get the workspace from the FarmConservation server
object that you will be using throughout the application. Since you
need to keep the workspace around, you will use the SetObject
method on the server context to add the workspace to the server
context’s object dictionary. When you need to use the workspace
throughout the application, you can use the GetObject method to
get the workspace out of the server context.

Since the FarmConservation map server object is a non-pooled ob-
ject, the context control will ask the GIS server for an instance of
that map server object and hold on to it for the duration of the
session. This means that each time you get the server object and
server context from the context control during the application
session, you know you are always getting the same one.

To do this, you will create a JavaBean to store all of the business data.

1. Click File, then click New Class.

2. In the Class wizard, type “conservationPlan” for the Package and type
“ConservationPlan” for the Class Name.

3. Click OK.

This will add a new class to your project and will open the code for the class with
some autogenerated code. The autogenerated code will include the name of the
package (conservationPlan) and a stubbed out class definition for ConservationPlan.
package conservationPlan;

public class ConservationPlan {

 public ConservationPlan() {

 }

}

It is possible to build a Web application that uses
a non-pooled server object for stateful use
without using the Web controls. In such an

application, it would be the developer’s responsi-
bility to keep a reference to the same server

context for the duration of the Web application
session.

The project properties dialog box

The Project Properties dialog box

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM351

352 • ArcGIS Server Administrator and Developer Guide

4. Add import statements for the additional Java packages you will use in this
project. At the top of the code window, add the following import statements:

import java.io.*;

import java.util.*;

import java.util.logging.*;

import javax.faces.model.*;

import com.esri.arcgis.webcontrols.ags.data.*;

import com.esri.arcgis.webcontrols.data.*;

import com.esri.arcgis.server.*;

import com.esri.arcgis.carto.*;

import com.esri.arcgis.geodatabase.*;

For the ConservationPlan class to be part of the request response life
cycle of the Web application it must implement WebLifecycle. By imple-
menting WebLifecycle, you can add actions to ConservationPlan that need

to be performed when the session is created and destroyed. You also want the
context control to manage the instantiation of your ConservationPlan class. To
achieve this the ConservationPlan class should implement WebContextInitialize.

5. Change the following line:
public class ConservationPlan {

to:
public class ConservationPlan implements WebLifecycle,
WebContextInitialize {

You must add the WebLifecycle and WebContextInitialize methods to your class.

Add the following lines of code to your ConservationPlan class.
public void init(WebContext ctx) {

}

public void destroy() {

}

public void activate() {

}

public void passivate() {

}

Your code should now look like the following:
package conservationPlan;

import java.io.*;

import java.util.*;

import java.util.logging.*;

import javax.faces.model.*;

import com.esri.arcgis.webcontrols.ags.data.*;

import com.esri.arcgis.webcontrols.data.*;

The Class wizard

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM352

Chapter 7 • Developer scenarios • 353

import com.esri.arcgis.server.*;

import com.esri.arcgis.carto.*;

import com.esri.arcgis.geodatabase.*;

public class ConservationPlan implements WebLifecycle,
WebContextInitialize {

 public void init(WebContext ctx) {

 }

 public void destroy() {

 }

 public void activate() {

 }

 public void passivate() {

 }

}

In this example, you will get the workspace from the first layer in the map. You
do this by getting a reference to the map server object from AGSWebContext. You
can then use the IMapServerObjects interface to access the map server’s fine-
grained ArcObjects to get a reference to the first layer in the map.

6. Add the following attributes to your class.
Logger logger = Logger.getLogger(ConservationPlan.class.getName());

 public static final String WEB_CONTEXT_ATTRIBUTE_NAME =
"esriConservationPlan";

 private static final String WS_NAME = "theWorkspace";

 private AGSWebContext agsContext;

The code to get the workspace from the map will be added to the init method.
The code in the init method will be executed when this class is initialized by the
context control.

7. Add the following code to your class.
public void init(WebContext ctx) {

 this.agsContext = (AGSWebContext)ctx;

 try {

 AGSWebMap agsMap = (AGSWebMap)agsContext.getWebMap();

 IMapServerObjects mapo = new
IMapServerObjectsProxy(agsMap.getServer());

 IMap map = new IMapProxy(mapo.getMap(agsMap.getFocusMapName()));

 // get workspace from first layer

 IFeatureLayer fl = new IFeatureLayerProxy(map.getLayer(0));

 IDataset ds = new IDatasetProxy(fl.getFeatureClass());

 IWorkspace ws = new IWorkspaceProxy(ds.getWorkspace());

 IServerContext sc = agsContext.getServerContext();

 sc.setObject(WS_NAME, ws);

 }

 catch (Exception e) {

A server context contains an object dictionary
that serves as a convenient place for you to

store references to commonly used objects. This
example uses the SetObject method on

IServerContext to add the workspace to the
object dictionary. As you will see later, since you
are using the same server context through the

application session, you can get to the workspace
by using GetObject in various parts of the

application.

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM353

354 • ArcGIS Server Administrator and Developer Guide

 throw new IllegalStateException("Cannot create conservation plan.\n\t"
+ e);

 }

}

To facilitate getting the workspace from the server context later in the applica-
tion, you will add a help method to your ConservationPlan class to return the
workspace.

8. Add the following code to your ConservationPlan class.
public IWorkspace getWorkspace() {

 try {

 IServerContext sc = agsContext.getServerContext();

 IWorkspace ws = new IWorkspaceProxy(sc.getObject(WS_NAME));

 return ws;

 }

 catch(Exception e) {

 throw new IllegalStateException("Cannot get workspace.\n\t" + e);

 }

}

Closing any open edit sessions on session end
During the application session, users may start but not stop an edit session before
the session times out. This can happen if users start editing and close their
browser without stopping editing, or if their session times out while their edit
session is active.

This will keep the geodatabase edit session open even though the user is no longer
using the Web application. You want to safeguard against this by explicitly stop-
ping the edit session if the session times out and it is still active. Since the
ConservationPlan class implements WebLifecycle, its destroy method will be called
when the session times out. You will add code to the destroy method to stop any
active edit sessions.

1. Add the following lines of code to your destroy method.
 // need to close any open edit session

 try {

 IWorkspaceEdit wse = new IWorkspaceEditProxy(getWorkspace());

 if (wse.isBeingEdited()) {

 wse.stopEditing(false); // stop editing and don't save edits

 }

 }

 catch (IOException ex) {

 }

You don’t have to add any code to the activate and passivate methods. The code
for the ConservationPlan class should look like the following:
package conservationPlan;

import java.io.*;

import java.util.*;

import java.util.logging.*;

import javax.faces.model.*;

import com.esri.arcgis.webcontrols.ags.data.*;

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM354

Chapter 7 • Developer scenarios • 355

import com.esri.arcgis.webcontrols.data.*;

import com.esri.arcgis.server.*;

import com.esri.arcgis.carto.*;

import com.esri.arcgis.geodatabase.*;

public class ConservationPlan implements WebLifecycle,
WebContextInitialize {

 Logger logger = Logger.getLogger(ConservationPlan.class.getName());

 public static final String WEB_CONTEXT_ATTRIBUTE_NAME =
"esriConservationPlan";

 private static final String WS_NAME = "theWorkspace";

 private AGSWebContext agsContext;

 public void init(WebContext ctx) {

 this.agsContext = (AGSWebContext)ctx;

 try {

 AGSWebMap agsMap = (AGSWebMap)agsContext.getWebMap();

 IMapServerObjects mapo = new
IMapServerObjectsProxy(agsMap.getServer());

 IMap map = new IMapProxy(mapo.getMap(agsMap.getFocusMapName()));

 // get workspace from first layer

 IFeatureLayer fl = new IFeatureLayerProxy(map.getLayer(0));

 IDataset ds = new IDatasetProxy(fl.getFeatureClass());

 IWorkspace ws = new IWorkspaceProxy(ds.getWorkspace());

 IServerContext sc = agsContext.getServerContext();

 sc.setObject(WS_NAME, ws);

 }

 catch (Exception e) {

 throw new IllegalStateException("Cannot create conservation
plan.\n\t" + e);

 }

 }

 public IWorkspace getWorkspace() {

 try {

 IServerContext sc = agsContext.getServerContext();

 return new IWorkspaceProxy(sc.getObject(WS_NAME));

 }

 catch(Exception e) { throw new IllegalStateException("Cannot get
workspace.\n\t" + e); }

 }

 public void destroy() {

 // need to close any open edit session

 try {

 IWorkspaceEdit wse = new IWorkspaceEditProxy(getWorkspace());

 if (wse.isBeingEdited()) {

 wse.stopEditing(false); // stop editing and don't save edits

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM355

356 • ArcGIS Server Administrator and Developer Guide

 }

 }

 catch (IOException ex) {

 }

 }

 public void activate() {

 }

 public void passivate() {

 }

}

Adding editing commands to your toolbar
This application allows the user to start and stop edit sessions, create features,
and undo and redo edit operations. To support these functions you will add code
to the ConservationPlan class.

1. You will add code to get the workspace you saved in the server context. Add
the following code to your class:
private IWorkspaceEdit getWorkspaceEdit() {

 try { return new IWorkspaceEditProxy(getWorkspace()); }

 catch (IOException e) {

 throw new IllegalStateException("Cannot get workspace edit.\n\t" + e);

 }

}

Next, define action methods that will be called when users of the application
click buttons to control the edit session, as well as the enabled and disabled state
of the buttons, on the JSP page. JSF expects action methods to return a string
outcome. This string outcome is used for page navigation. Since your application
does not require navigation to another page, the methods return null.

2. Add the following code to your class:
public String start() {

 try {

 getWorkspaceEdit().startEditing(true);

 }

 catch (IOException e) {

 logger.log(Level.WARNING, "Unable to start editing.", e);

 }

 return null;

}

public String save() {

 try {

 getWorkspaceEdit().stopEditing(true);

 agsContext.refresh();

 }

 catch (IOException e) {

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

The objects and interfaces used for managing
geodatabase edit sessions can be found in the

GeoDatabase object library. To learn more about
geodatabase edit session objects, see the online

developer documentation.

Chapter7.pmd 1/25/2005, 6:01 PM356

Chapter 7 • Developer scenarios • 357

 logger.log(Level.WARNING, "Unable to save editing.", e);

 }

 return null;

}

public String discard() {

 try {

 getWorkspaceEdit().stopEditing(false);

 agsContext.refresh();

 }

 catch (IOException e) {

 logger.log(Level.WARNING, "Unable to discard editing.", e);

 }

 return null;

}

public String undo() {

 try {

 getWorkspaceEdit().undoEditOperation();

 agsContext.refresh();

 }

 catch (IOException e) {

 logger.log(Level.WARNING, "Unable to undo editing.", e);

 }

 return null;

}

public String redo() {

 try {

 getWorkspaceEdit().redoEditOperation();

 agsContext.refresh();

 }

 catch (IOException e) {

 logger.log(Level.WARNING, "Unable to redo editing.", e);

 }

 return null;

}

3. To determine whether the Undo and Redo buttons should be enabled, add the
following methods to your class, which will be called by the JSP page:
public boolean isCanUndo() {

 try {

 boolean[] hasUndos = new boolean[]{ true };

 getWorkspaceEdit().hasUndos(hasUndos);

 return hasUndos[0];

 }

 catch (Exception e) {

 logger.log(Level.WARNING, "Unable to determine if can undo.", e);

 }

 return true;

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM357

358 • ArcGIS Server Administrator and Developer Guide

}

public boolean isCanRedo() {

 try {

 boolean[] hasRedos = new boolean[]{ true };

 getWorkspaceEdit().hasRedos(hasRedos);

 return hasRedos[0];

 }

 catch (Exception e) {

 logger.log(Level.WARNING, "Unable to determine if can redo.", e);

 }

 return true;

}

public boolean isEditing() {

 try {

 return getWorkspaceEdit().isBeingEdited();

 }

 catch (Exception e) {

 logger.log(Level.WARNING, "Unable to determine if editable.", e);

 }

 return false;

}

Adding the New Conservation Plan tool
Now that you have added commands to handle managing your edit session, you
will add the tool that will actually make edits on the database. This application
allows the user to digitize new conservation plan features in their geodatabase by
digitizing a polygon on the map control. To allow the user to do this, you will add
a new tool to the tools collection.

In this example, you will add a single tool for creating new conservation plan
polygons of a user-specified type. The types of possible conservation plans will
be available from a dropdown list that the user will pick from based on a domain
assigned to the Type field in the ConservationPlan feature class. The first step is to
add code to get the list of valid domain values to the ConservationPlan class.

Add the following code to your ConservationPlan class.
private ArrayList domainOptions;

public ArrayList getDomainOptions() {

 if (domainOptions != null) return domainOptions;

 // populate the dropdown list with the conservation types

 try {

 IFeatureWorkspace fws = new IFeatureWorkspaceProxy(getWorkspace());

 IFeatureClass fc = new
IFeatureClassProxy(fws.openFeatureClass("ConservationPlan"));

 IField fld = new
IFieldProxy(fc.getFields().getField(fc.findField("TYPE")));

 ICodedValueDomain cv = new ICodedValueDomainProxy(fld.getDomain());

 domainOptions = new ArrayList(cv.getCodeCount());

 String cvName;

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM358

Chapter 7 • Developer scenarios • 359

 for (int i = 0; i < cv.getCodeCount(); i++) {

 cvName = cv.getName(i);

 domainOptions.add(new SelectItem(cvName, cvName, cvName));

 }

 return domainOptions;

 }

 catch (IOException e) { throw new IllegalStateException("Cannot get
domain options.\n\t" + e); }

}

private String domainOption;

public void setDomainOption(String domainOption) {

 this.domainOption = domainOption;

}

public String getDomainOption() {

 return domainOption;

}

Add the class to the collection of managed beans of the application. The Context
controls will instantiate the classes added to this collection by calling their init
method.

1. In the Project pane, expand <Project Source>double-click
managed_context_attribute.xml to open it in the code window.

2. Add the following lines to the end of the file before the tag </managed-context-
attributes>:
<managed-context-attribute>

<name>esriConservationPlan</name>

<attribute-class>conservationPlan.ConservationPlan</attribute-class>

<description>Performs Edit Operations.</description>

</managed-context-attribute>

The next step is to create a new class that implements the IMapToolAction inter-
face and defines the functionality for the tool.

1. Click File, then click New Class.

2. In the Class wizard, type “conservationPlan.event” for the Package,
“NewConservationPlanToolAction” for the Class Name, and
“com.esri.arcgis.webcontrols.faces.event.IMapToolAction” for the
Base Class.

3. Click OK.

This will add a new class to your project and will open the code for the
class with the following autogenerated code.
package conservationPlan.event;

import com.esri.arcgis.webcontrols.faces.event.IMapToolAction;

import com.esri.arcgis.webcontrols.faces.event.MapEventArgs;

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

The Class wizard

Chapter7.pmd 1/25/2005, 6:01 PM359

360 • ArcGIS Server Administrator and Developer Guide

public class NewConservationPlanToolAction implements IMapToolAction {

 public void execute(MapEventArgs parm1) throws java.lang.Exception {

 /**@todo Implement this
com.esri.arcgis.webcontrols.faces.event.IMapToolAction method*/

 throw new java.lang.UnsupportedOperationException("Method execute()
not yet implemented.");

 }

}

4. Edit the autogenerated code to change the variable name parm1 to args and
remove the UnsupportedOperationException. Your code should look like the
following:
package conservationPlan.event;

import com.esri.arcgis.webcontrols.faces.event.IMapToolAction;

import com.esri.arcgis.webcontrols.faces.event.MapEventArgs;

public class NewConservationPlanToolAction implements IMapToolAction {

 public NewConservationPlanToolAction() {

 }

 public void execute(MapEventArgs args) throws java.lang.Exception {

 }

}

5. Add the following import statements to add the packages you will use in this
class.
import com.esri.arcgis.geodatabase.*;

import com.esri.arcgis.geometry.*;

import com.esri.arcgis.webcontrols.ags.data.*;

import com.esri.arcgis.webcontrols.faces.event.*;

import conservationPlan.*;

Implementing the NewConservationPlanToolAction class
Now you are ready to implement the NewConservationPlanToolAction class that
contains the code to execute when a new polygon is digitized by the user on the
map. Since this class is a map tool action, it must implement the IMapToolAction
interface. The IMapToolAction has a single method to implement called execute.
This method is where you will put the code to execute when the user clicks the
map. The remainder of the code will be added to this method.

In order to create a new feature, you need to use the workspace object you saved
in the server context to start and stop an edit operation. You will get the map
server’s context from the AGSWebContext object and create the ArcObjects you
will use to perform the edit operation within that context. Since the
FarmConservation map server object is a non-pooled server object, the
AGSWebContext will hand you a reference to the same context in which you
saved the workspace object.

The args object passed into the execute method includes a reference to the map
control.

1. Add the following code to your execute method:

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM360

Chapter 7 • Developer scenarios • 361

AGSWebMap wMap = (AGSWebMap) args.getWebContext().getWebMap();

AGSWebContext context = (AGSWebContext) args.getWebContext();

ConservationPlan plan =
(ConservationPlan)context.getAttribute(ConservationPlan.WEB_CONTEXT_ATTRIBUTE_NAME);

You need to get a reference to the workspace that you set in the context when
the session began.

2. Add the following line of code to your execute method:
IWorkspaceEdit wse = new IWorkspaceEditProxy(plan.getWorkspace());

The args object also contains the ClientActionArgs collection of points and vectors
that describe the polygon the user digitized in screen coordinates. You will use
these points with the ToMapPoint method on the AGSWebMap to get the set of
points in the spatial reference of the map. You will then use these points to create
a new polygon geometry in the server context.

3. Add the following lines of code to your execute method:
PolygonArgs pargs = (PolygonArgs) args.getClientActionArgs();

ClientPoint[] pts = pargs.getPoints();

IPointCollection pcol = new
IPointCollectionProxy(context.createServerObject(Polygon.getClsid()));

for (int i = 0; i < pts.length; i++) {

 IPoint pt = wMap.toMapPoint(pts[i].getX(), pts[i].getY());

 pcol.addPoint(pt, null, null);

}

IGeometry geom = new IGeometryProxy(pcol);

Next, you will use the coded value domain to look up the value associated with
the domain description that the user selected in the dropdown list on the Web
form. To do this, you will use the workspace object to open the ConservationPlan
feature class and get the type field and its domain.

4. Add the following lines of code to your execute method:
IFeatureWorkspace fws = new IFeatureWorkspaceProxy(wse);

IFeatureClass fc = new
IFeatureClassProxy(fws.openFeatureClass("ConservationPlan"));

String sDomainDesc = plan.getDomainOption();

String sDomainValue = null;

int lTypeFld = fc.findField("TYPE");

if (lTypeFld != -1) {

 IField fld = fc.getFields().getField(lTypeFld);

 ICodedValueDomain cv = new ICodedValueDomainProxy(fld.getDomain());

 for (int i = 0; i < cv.getCodeCount(); i++) {

 if (cv.getName(i).equals(sDomainDesc)) {

 sDomainValue = (String) cv.getValue(i);

 break;

 }

 }

}

Now that you have the geometry for the new conservation plan feature and the
type, you can create the new conservation plan feature. To do this, you will use
the workspace object to start an edit operation. Within this edit operation, you
will create a new feature, set the geometry for the new feature to be your poly-

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

A coded value domain is a valid value list that
can be associated with a field for a class or
subtype in a geodatabase. The coded value

domain consists of value/description pairs that
allow user interfaces to display user understand-

able text strings to describe valid database
values. To learn more about coded value domain
objects, see the online developer documentation.

Because the ConservationPlan feature class is
a layer in the map server object’s map docu-

ment, it was opened when the map server
object was created at the beginning of the

session. The call to open the ConservationPlan
feature class made against the workspace will

actually get the feature class that is already
opened in the map.

The objects and interfaces used for creating and
working with geometries can be found in the
Geometry object library. To learn more about

geometry objects, see the online developer
documentation.

Chapter7.pmd 1/25/2005, 6:01 PM361

362 • ArcGIS Server Administrator and Developer Guide

gon, and the type to be the domain value associated with the description the user
chose.

Once you have set these new properties for the feature, you will use Store to
store it in the geodatabase and stop the edit operation.

5. Add the following lines of code to the execute method:
wse.startEditOperation();

IFeature f = fc.createFeature();

IFeatureSimplify fs = new IFeatureSimplifyProxy(f);

fs.simplifyGeometry(geom);

f.setShapeByRef(geom);

IRowSubtypes subt = new IRowSubtypesProxy(f);

subt.setSubtypeCode(0);

subt.initDefaultValues();

if (lTypeFld != -1) {

 f.setValue(lTypeFld, sDomainValue);

}

f.store();

wse.stopEditOperation();

context.refresh();

Adding the New Conservation Plan tool to the tools collection
Now that you have implemented the class, you will add the tool to your tools
collection, which will allow the user to digitize a new polygon and execute the
code in the NewConservationPlan class.

1. In the Project pane, click tools, then double-click default.xml to open it in the
code window.

2. Add the following lines to the end of the file before the tag </tool-item-collec-
tion>:
<tool-item>

<key>NewConservationPlan</key>

<action-class>conservationPlan.event.NewConservationPlanToolAction</
action-class>

<client-action>MapPolygon</client-action>

</tool-item>

The tag <key> will be used in the JSP page to identify the tool inside the applica-
tion. The tag <action-class> is the class you created in the previous step that will
be executed on the server in response to this tool. The tag <client-action> repre-
sents the name of the JavaScript function that will be executed when the user
interacts with the tool.

Adding functionality to the JSP page
Now that you have created your business object ConservationPlan and the map tool
NewConservationPlanToolAction, you can add commands to the mapviewer.jsp page.

The template includes a collection of tools and commands (Zoom In, Zoom Out,
Pan, Identify, and so forth). You will add the following commands to this collec-
tion:

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

An edit operation may be thought of as a short
transaction nested within the long transaction

corresponding to the edit session. Edit operations
also defined collections of edits that correspond
to a single undo or redo. All related changes to
objects in the database within an edit session

should be grouped into edit operations. To learn
more about geodatabase edit session objects, see

the online developer documentation.

Chapter7.pmd 1/25/2005, 6:01 PM362

Chapter 7 • Developer scenarios • 363

Start Editing: starts a new edit session

Stop Editing and Save Edits: stops editing and saves the edits

Stop Editing and Discard Edits: stops editing and discards the edits

Undo: undoes an edit operation

Redo: redoes an edit operation

You will add the following tool:

Create Conservation Plan: creates a new conservation plan feature

1. In the Project pane, click ConservationWebApp, click Root directory, then
double-click mapviewer.jsp.

The application does not need the overview map control, so you will delete it
from the application.

2. Delete the following lines of code from mapviewer.jsp. The text
.[OvMapServerObject]@[Server]. will be populated with information that you
chose when creating your application.
<tr>

 <td valign="top">

 <ags:overview id="Overview0"

 resource="[OvMapServerObject]@[Server]"

 width="200" height="125" borderWidth="2"

 cssClass="overviewClass"/>

 </td>

</tr>

3. Before adding the commands, you will need to copy a set of images that you
will use for the commands and tools in the toolbar. Copy the following image
files from <install_location>\DeveloperKit\Samples\Data\ServerData\Conservation
to your application’s Images folder:

• Redo.gif

• RedoD.gif

• RedoU.gif

• StartEditing.gif

• StartEditingD.gif

• StartEditingU.gif

• StopEditingDiscard.gif

• StopEditingDiscardD.gif

• StopEditingDiscardU.gif

• StopEditingSave.gif

• StopEditingSaveD.gif

• StopEditingSaveU.gif

• Undo.gif

• UndoD.gif

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM363

364 • ArcGIS Server Administrator and Developer Guide

• UndoU.gif

4. Add the following lines of code after the identify tool to add the commands
and tools to the JSP page.
<td>

<!-- Start editing button -->

<jsfh:commandButton id="start" image="images/StartEditing.gif"
title="Start Editing" alt="Start Editing"

action="#{sessionScope['mapContext'].attributes['esriConservationPlan'].start}"

disabled="#{sessionScope['mapContext'].attributes['esriConservationPlan'].editing}"

onmousedown="this.src='images/StartEditingD.gif'"

onmouseover="this.src='images/StartEditingU.gif'"

onmouseout="this.src='images/StartEditing.gif'"/>

<!-- Stop editing Discard button -->

<jsfh:commandButton id="discard" image="images/StopEditingDiscard.gif"
title="Stop Editing Discard" alt="Stop Editing Discard"

action="#{sessionScope['mapContext'].attributes['esriConservationPlan'].discard}"

disabled="#{!sessionScope['mapContext'].attributes['esriConservationPlan'].editing}"

onmousedown="this.src='images/StopEditingDiscardD.gif'"

onmouseover="this.src='images/StopEditingDiscardU.gif'"

onmouseout="this.src='images/StopEditingDiscard.gif'"/>

<!-- Stop editing Save button -->

<jsfh:commandButton id="save" image="images/StopEditingSave.gif"
title="Stop Editing Save" alt="Stop Editing Save"

action="#{sessionScope['mapContext'].attributes['esriConservationPlan'].save}"

disabled="#{!sessionScope['mapContext'].attributes['esriConservationPlan'].editing}"

onmousedown="this.src='images/StopEditingSaveD.gif'"

onmouseover="this.src='images/StopEditingSaveU.gif'"

onmouseout="this.src='images/StopEditingSave.gif'"/>

<!-- Undo editing button -->

<jsfh:commandButton id="undo" image="images/Undo.gif" title="Undo Editing"
alt="Undo Editing"

action="#{sessionScope['mapContext'].attributes['esriConservationPlan'].undo}"

disabled="#{!sessionScope['mapContext'].attributes['esriConservationPlan'].canUndo}"

onmousedown="this.src='images/UndoD.gif'"

onmouseover="this.src='images/UndoU.gif'"

onmouseout="this.src='images/Undo.gif'"/>

<!-- Redo editing button -->

<jsfh:commandButton id="redo" image="images/Redo.gif" title="Redo Editing"
alt="Redo Editing"

action="#{sessionScope['mapContext'].attributes['esriConservationPlan'].redo}"

disabled="#{!sessionScope['mapContext'].attributes['esriConservationPlan'].canRedo}"

onmousedown="this.src='images/RedoD.gif'"

onmouseover="this.src='images/RedoU.gif'"

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM364

Chapter 7 • Developer scenarios • 365

onmouseout="this.src='images/Redo.gif'"/>

<!-- Polygon editing button -->

<jsfh:commandButton id="planTool" image="images/polygon.gif" title="New
Conservation Plan" alt="New Conservation Plan"

onclick="this.src='images/polygonD.gif';MapPolygon('Map0',
'NewConservationPlan');return false;"

disabled="#{!sessionScope['mapContext'].attributes['esriConservationPlan'].editing}"

onmouseover="this.src='images/polygonU.gif'"

onmouseout="ButtonOut('planTool', 'Map0', 'NewConservationPlan',
'images/polygon.gif', 'images/polygonD.gif')" />

<!-- Select Box for Domain types -->

Conservation Plan Type

<jsfh:selectOneMenu

value="#{sessionScope['mapContext'].attributes['esriConservationPlan'].domainOption}">

<jsfc:selectItems

value="#{sessionScope['mapContext'].attributes['esriConservationPlan'].domainOptions}"/
>

</jsfh:selectOneMenu>

</td>

Testing the Web application
The JavaScript functions will not work correctly inside the JBuilder browser, so
you will modify the IDE options to start the application. Once started, you can
use another browser to test the application.

1. Click Tools, then IDE options.

2. On the IDE Options dialog box, click the Web tab.

3. Click the Do not use Web View, always launch separate process option and
click OK.

4. In the Project pane, click ConservationWebApp, then click Root directory.

5. Right-click index.html, and click Web Run using defaults.

This will execute the application. After executing index.html, open an exter-
nal browser, such as Internet Explorer or Netscape, and type the URL “http:/
/localhost:8080/ConservationWebApp/index.html”.

6. Click the Start Editing button on the toolbar.

7. Click the Conservation Plan Type dropdown list and choose a conservation
type to create.

8. Click the New Conservation Plan tool.

9. Click on the map to digitize your new conservation plan polygon. Once you
have added all the points, double-click.

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

The IDE Options dialog box

Chapter7.pmd 1/25/2005, 6:01 PM365

366 • ArcGIS Server Administrator and Developer Guide

10. The new conservation plan polygon will be drawn on the map.

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

11. Click the Undo command to undo the edit.

12. Click the Redo command to redo the edit.

13. Click either the Stop Editing and Save command or the Stop Editing and
Discard command to stop editing.

DEPLOYMENT

The Web application was developed with JBuilder’s built-in Web server. To
deploy this Web application on your production Web server, use the Web archive
file ConservationWebApp.war at $/editing_projects and follow the deployment
procedure for your Web server.

ADDITIONAL RESOURCES

This scenario includes functionality and programming techniques covering a
number of different aspects of ArcObjects, the ArcGIS Server API, Java applica-
tion templates, and Web controls.

You are encouraged to read Chapter 4, ‘Developing ArcGIS Server applications’,
of this book to get a better understanding of core ArcGIS Server programming
concepts such as stateful versus stateless server application development.
Chapter 4 also covers concepts and programming guidelines for working with
server contexts and ArcObjects running within those contexts.

This scenario makes use of a Web application template and the ArcGIS Server’s

Chapter7.pmd 1/25/2005, 6:01 PM366

Chapter 7 • Developer scenarios • 367

EXTENDING A WEB APPLICATION TEMPLATE (JAVA)

Java ADF Web controls to provide the majority of the user interface for this Web
application. To learn more about this Web application template and other tem-
plate applications that are included with the Java ADF, see Chapter 6, ‘Develop-
ing Web applications with Java’, of this book. Chapter 6 also includes detailed
descriptions and examples of using the Java Web controls, including the map
control that you made use of while programming this Web application. If you are
unfamiliar with Java Web development, it’s also recommended that you refer to
your Java developer documentation to become more familiar with Web applica-
tion development.

ArcGIS Server applications exploit the rich GIS functionality of ArcObjects.
This application is no exception. It includes the use of ArcObjects to work with
the components of a MapServer, manage a geodatabase edit session, create and
set properties of features in the geodatabase, and manipulate geometries. To learn
more about these aspects of ArcObjects, refer to the online developer documen-
tation on the Carto, GeoDatabase, and Geometry object libraries.

Chapter7.pmd 1/25/2005, 6:01 PM367

368 • ArcGIS Server Administrator and Developer Guide

This walkthrough is for developers who need to build and deploy a .NET applica-
tion Web service incorporating geocoding and spatial query functionality using the
ArcGIS Server API. It describes the process of building, deploying, and consum-
ing the Application_web_service sample, which is part of the ArcGIS developer
samples.

<install_location>\DeveloperKit\samples\Developer_Guide_Scenarios\
Application_web_serviceVBNET.zip

PROJECT DESCRIPTION

The purpose of this scenario is to create an ASP.NET Web service using Visual
Studio .NET that uses ArcObjects to locate all of the toxic waste sites within a
specified distance of a specified address. The Web service returns a .NET array of
application-defined toxic waste site objects.

This Web service is intended to be called by other programs, and an example of
such a client program is a .NET Windows application. This scenario will also
provide an example of how a client application would consume this Web service.

CONCEPTS

A Web service is a set of related application functions that can be programmati-
cally invoked over the Internet. The function can be one that solves a particular
application problem, as in this example; a Web service that finds all of the toxic
waste sites within a certain distance of an address; or performs some other type
of GIS function. Web services can be implemented using the native Web service
framework of your Web server such as ASP.NET Web service (WebMethod) or
Java Web service (Axis).

When using native frameworks, such as ASP.NET and J2EE, to create and con-
sume your application Web services, you need to use native or application-defined
types as both arguments and return values from your Web methods. Clients of the
Web service will not be ArcObjects applications, and as such, your Web service
should not expect ArcObjects types as arguments and should not directly return
ArcObjects types.

Any development language that can use standard HTTP to invoke methods can
consume this Web service. The Web service consumer can get the methods and
types exposed by the Web service through its Web Service Description Language
(WSDL). As you walk through this scenario, you will see where special attributes
need to be added to your methods and classes such that they can be expressed in
WSDL and serialized as XML.

DESIGN

This Web service is designed to make stateless use of the GIS server. It uses
ArcObjects on the server to locate an address and query a feature class. To sup-
port this application, you need to add a pooled geocode server object to your
ArcGIS Server using ArcCatalog.

Both coarse-grained calls to remote ArcObjects, such as the methods on the
MapServer and GeocodeServer, as well as fine-grained calls to remote

DEVELOPING AN APPLICATION WEB SERVICE (.NET)

One key aspect of designing your application is
whether it is stateful or stateless. You can make

either stateful or stateless use of a server object
running within the GIS server. A stateless

application makes read-only use of a server
object, meaning the application does not make

changes to the server object or any of its
associated objects. A stateful application makes

read–write use of a server object where the
application does make changes to the server

object or its related objects.

Web services are, by definition, stateless applica-
tions.

Rather than walk through this scenario, you can
get the completed Web service from the samples

installation location. The sample is installed as
part of the ArcGIS developer samples.

To learn more about WSDL, refer to http://
www.w3.org.

Chapter7.pmd 1/25/2005, 6:01 PM368

Chapter 7 • Developer scenarios • 369

ArcObjects, such as creating new geometries, are exposed through the ArcGIS
Server API and can be used in your Web service. The Web service will connect to
the GIS server and use an instance of the geocode server object to locate the
address supplied to the Web method from the calling application. To then buffer
the resultant point and use that buffered geometry to query toxic waste sites, you
will use the geocode server’s server context. Since the geodatabase has been
designed such that the address locator is stored in the same geodatabase as the
feature class containing the toxic waste sites, you can use the fine-grained objects
associated with the geocode server to get a reference to that workspace.

REQUIREMENTS

The requirements for working through this scenario are that you have
ArcGIS Server and ArcGIS Desktop installed and running. The machine
on which you develop this Web service must have the ArcGIS Server
.NET Application Developer Framework installed.

You must have a geocode server object configured and running on your
ArcGIS Server that uses the Portland.loc locator installed with the
ArcGIS Developer Samples. In ArcCatalog, create a connection to your
GIS server and use the Add Server Object command to create a new
server object with the following properties:

Name: PortlandGeocode

Type: GeocodeServer

Description: Geocode server object for metropolitan Portland

Locator:
<install_location>\DeveloperKit\Samples\Data\ServerData\Toxic\Portland.loc

Batch size: 10 (default)

Pooling: The Web service makes stateless use of the
server object. Accept the defaults for the pooling
model (pooled server object with minimum instances =
2, max instances = 4).

Accept the defaults for the remainder of the configura-
tion properties.

After creating the server object, start it and right-click
to verify that it is correctly configured and that the
geocoding properties are displayed.

You can refer to Chapter 3 for more information on
using ArcCatalog to connect to your server and to
create a new server object. Once the server object is
configured and running, you can begin to code your
Web service.

DEVELOPING AN APPLICATION WEB SERVICE (.NET)

The Add Server Object wizard

ArcCatalog is used for managing your spatial
data holdings, defining your geographic data

schemas, and managing your ArcGIS Server. Once
you have created your PortlandGC server

object, open its properties using ArcCatalog to
verify it is correctly configured.

Chapter7.pmd 1/25/2005, 6:01 PM369

370 • ArcGIS Server Administrator and Developer Guide

The following ArcObjects assemblies will be used in this example:

• ESRI.ArcGIS.Geodatabase

• ESRI.ArcGIS.Geometry

• ESRI.ArcGIS.Location

• ESRI.ArcGIS.Server

• ESRI.ArcGIS.Server.WebControls

• ESRI.ArcGIS.esriSystem

The development environment does not require any ArcGIS licensing; however,
connecting to a server and using a geocoding server object do require that the GIS
server is licensed to run ArcObjects in the server. None of the assemblies used
require an extension license.

The IDE used in this example is Visual Studio .NET 2003, and all
IDE specific steps will assume that is the IDE you are using. This Web
service can be implemented with other .NET IDEs.

IMPLEMENTATION

All code written in this example is in C#; however, you can write this
Web service using VB.NET. To begin, you must create a new project in
Visual Studio .NET.

Creating a new project
1. Start Visual Studio .NET.

2. Click File, click New, then click Project.

3. In the New Project dialog box, click the Visual C# category and click
ASP.NET Web Service.

4. For the Web service name, type “http://localhost/ToxicLocations”.

5. Click OK. This will create a blank Web service application.

6. In the Solution Explorer, right-click Service1.asmx and click Rename. Type
“ToxicLocations.asmx” as the new name.

Adding references to ESRI assemblies to your project
To program using ArcGIS Server, you need to add references to the ESRI assem-
blies that contain proxies to the ArcObjects components that the Web service
will use. These assemblies were installed when you installed the ArcGIS Server
.NET Application Developer Framework.

1. In the Solution Explorer, right-click References and click Add Reference.

2. In the Add Reference dialog box, double-click the following assemblies:

• ESRI.ArcGIS.Geodatabase

• ESRI.ArcGIS.Geometry

• ESRI.ArcGIS.Location

• ESRI.ArcGIS.Server

DEVELOPING AN APPLICATION WEB SERVICE (.NET)

A proxy object is a local representation of a
remote object. The proxy object controls access
to the remote object by forcing all interaction

with the remote object to be via the proxy
object. The supported interfaces and methods on
a proxy object are the same as those supported

by the remote object. You can make method calls
on, and get and set properties of, a proxy object
as if you were working directly with the remote

object.

The New Project dialog box

Chapter7.pmd 1/25/2005, 6:01 PM370

Chapter 7 • Developer scenarios • 371

• ESRI.ArcGIS.Server.WebControls

• ESRI.ArcGIS.System

3. Click OK.

This Web service does not use any of the Web controls, but the
ESRI.ArcGIS.Server.WebControls assembly contains the .NET ServerConnection
object required to connect to the GIS server.

Add using statements to add these assemblies’ namespaces to your application.

4. In the Solution Explorer, double-click ToxicLocations.asmx.

5. In the design window, right-click and click View Code. The code for the
implementation of this Web service will appear.

6. At the top of the code window, add the following using statements:
using ESRI.ArcGIS.Geodatabase;

using ESRI.ArcGIS.Geometry;

using ESRI.ArcGIS.Location;

using ESRI.ArcGIS.Server;

using ESRI.ArcGIS.Server.WebControls;

using ESRI.ArcGIS.esriSystem;

Modifying the automatically generated code
The code generated by Visual Studio .NET defaults the name of the
Web service and contains an example HelloWorld Web method. You will
rename the Web service and delete the sample Web method.

1. Rename the class and its constructor to “ToxicSiteLocator”.

Change the following line:
public class Service1 : System.Web.Services.WebService

to:
public class ToxicSiteLocator: System.Web.Services.WebService

Change the following line:
public Service1()

to:
public ToxicSiteLocator()

2. Delete the following lines of code:
 // WEB SERVICE EXAMPLE

 // The HelloWorld() example service returns the string Hello World.

 // To build, uncomment the following lines then save and build the
 // project.

 // To test this Web service, press F5.

// [WebMethod]

// public string HelloWorld()

// {

// return "Hello World";

// }

DEVELOPING AN APPLICATION WEB SERVICE (.NET)

The Add Reference dialog box

The Solution Explorer

Chapter7.pmd 1/25/2005, 6:01 PM371

372 • ArcGIS Server Administrator and Developer Guide

DEVELOPING AN APPLICATION WEB SERVICE (.NET)

Your code should look like the following:
using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Diagnostics;

using System.Web;

using System.Web.Services;

using ESRI.ArcGIS.Geodatabase;

using ESRI.ArcGIS.Geometry;

using ESRI.ArcGIS.Location;

using ESRI.ArcGIS.Server;

using ESRI.ArcGIS.esriSystem;

namespace ToxicLocations

{

 /// <summary>

 /// Summary description for Service1.

 /// </summary>

 public class ToxicSiteLocator: System.Web.Services.WebService

 {

 public ToxicSiteLocator()

 {

 // CODEGEN: This call is required by the ASP.NET Web Services
 // Designer.

 InitializeComponent();

 }

 Component Designer generated code here

 }

}

The point of this Web service is to expose a method that is accessible via HTTP-
based SOAP requests and that returns all of the toxic site loca-
tions within a specified distance of a specified address. These
types of methods must be declared as public and support the
[WebMethod] attribute.

Creating the toxic site class
Before you create your new method, first define your toxic waste
class that will be returned as a result of the method.

1. In the Solution Explorer, right-click the ToxicLocations
project, click Add, then click Add New Item.

2. In the Add New Item dialog box, under Templates, click Class.

3. For the Name, type “ToxicSite.cs”.

4. Click Open.

This will add a new class (ToxicSite) to your project and will open the code for
the class with some autogenerated code.

The Solution Explorer

The Add New Item dialog box

Chapter7.pmd 1/25/2005, 6:01 PM372

Chapter 7 • Developer scenarios • 373

The code view for the ToxicSite class should look like the following:
using System;

namespace ToxicLocations

{

 /// <summary>

 /// My custom toxic site class

 /// </summary>

 public class ToxicSite

 {

 public ToxicSite()

 {

 //

 // TODO: Add constructor logic here

 //

 }

 }

}

Results returned from Web services must be serializable in XML. The ToxicSite
type must be marked as to be serializable as XML by including the XmlInclude
attribute. Because the XmlInclude attribute is defined in the
System.Xml.Serialization namespace, you need to add a using statement for that
assembly.

5. Add the following using statement to your code:
using System.Xml.Serialization;

6. Add the following attribute to your class declaration:
[XmlInclude(typeof(ToxicSite))]

Your code should now look like this:
using System;

using System.Xml.Serialization;

namespace ToxicLocations

{

 /// <summary>

 /// My custom toxic site class

 /// </summary>

 [XmlInclude(typeof(ToxicSite))]

 public class ToxicSite

 {

 public ToxicSite()

 {

 //

 // TODO: Add constructor logic here

 //

 }

 }

}

You are interested in returning the type of toxic site, the name of the organiza-

DEVELOPING AN APPLICATION WEB SERVICE (.NET)

Classes that have the XmlInclude attribute can
be serialized into XML. Any custom type that is

returned by a Web service must have the
XmlInclude attribute.

Chapter7.pmd 1/25/2005, 6:01 PM373

374 • ArcGIS Server Administrator and Developer Guide

tion associated with the toxic site, and the x,y coordinates of the toxic site
feature. So, you will add four public fields to your ToxicSite class and an over-
loaded constructor to set the data.

7. Add the following lines of code to your ToxicSite class:
public string Name;

public string Type;

public double X;

public double Y;

8. To add the overloaded constructor, type the following in your class definition:
public ToxicSite(string sName, string sType, double dX, double dY)

{

 Name = sName;

 Type = sType;

 X = dX;

 Y = dY;

}

The code for your ToxicSite class should now look like the following:
using System;

using System.Xml.Serialization;

namespace ToxicLocations

{

 /// <summary>

 /// My custom toxic site class

 /// </summary>

 [XmlInclude(typeof(ToxicSite))]

 public class ToxicSite

 {

 public ToxicSite()

 {

 //

 // TODO: Add constructor logic here

 //

 }

 public ToxicSite(string sName, string sType, double dX, double dY)

 {

 Name = sName;

 Type = sType;

 X = dX;

 Y = dY;

 }

 public string Name;

 public string Type;

 public double X;

 public double Y;

 }

}

DEVELOPING AN APPLICATION WEB SERVICE (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM374

Chapter 7 • Developer scenarios • 375

Creating the Web service method
Now that you have defined your ToxicSite class, you will implement your Web
service method. As described above, the point of this Web service is to expose a
method that is accessible via HTTP-based SOAP requests and that returns all of
the toxic site locations within a specified distance of a specified address. These
types of methods must both be declared as public and support the [WebMethod]
attribute.

You will create a method called FindToxicLocations that takes as arguments an
address, ZIP Code, and search distance and returns an array of ToxicSite objects.

This method will ultimately open a cursor on a feature class in a geodatabase. To
ensure that your reference to the cursor is released at the end of each request, you
will use the WebObject object to explicitly release the cursor. You will scope the
use of the WebObject in a using block.

1. In the Solution Explorer, double-click ToxicLocations.asmx.

2. In the design window, right-click and click View Code. The code for the imple-
mentation of this Web service will appear.

3. Add the following lines of code:
[WebMethod]

public ToxicSite[] FindToxicLocations(string Address, string ZipCode,
double Distance)

{

 using (WebObject webObj = new WebObject())

 {

 return null;

 }

}

Your code should now look like the following:
using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Diagnostics;

using System.Web;

using System.Web.Services;

using ESRI.ArcGIS.Geodatabase;

using ESRI.ArcGIS.Geometry;

using ESRI.ArcGIS.Location;

using ESRI.ArcGIS.Server;

using ESRI.ArcGIS.esriSystem;

namespace ToxicLocations

{

 /// <summary>

 /// Summary description for Service1.

 /// </summary>

 public class ToxicSiteLocator: System.Web.Services.WebService

 {

DEVELOPING AN APPLICATION WEB SERVICE (.NET)

.NET methods within a class that have the
[WebMethod] attribute set are called XML

Web service methods and are callable from
remote Web clients.

The FindToxicLocations Web method returns
an array of ToxicSite objects, rather than a

generic collection, such as an ArrayList. If the
method did not have a return type of ToxicSite,
then the custom class wouldn’t be expressed in

the Web service’s WSDL.

References to COM objects in .NET are not
released until garbage collection kicks in. Some
objects, such as geodatabase cursors, lock or use

resources that the object frees only in its
destructor. You can use the WebObject object to

explicitly release references to COM objects
when it is disposed. For more information on
releasing COM objects and the WebObject

object, refer to Chapter 4, ‘Developing ArcGIS
Server applications’.

Chapter7.pmd 1/25/2005, 6:01 PM375

376 • ArcGIS Server Administrator and Developer Guide

 public ToxicSiteLocator()

 {

 // CODEGEN: This call is required by the ASP.NET Web Services
Designer

 InitializeComponent();

 }

 Component Designer generated code here

 [WebMethod]

 public ToxicSite[] FindToxicLocations(string Address, string ZipCode,
double Distance)

 using (WebObject webObj = new WebObject())

 {

 return null;

 }

 }

}

Validating input parameters
The first thing the Web method will do is verify the provided parameters are valid
and, if not, return null.

Type the following in your using block method (note all code additions from this
step on are made to this using block):
if (Address == null || ZipCode == null || Distance == 0.0)

 return null;

Connecting to the GIS server
This Web service makes use of objects in the GIS server, so you will add code to
connect to the GIS server and get the IServerObjectManager interface. In this
example, the GIS server is running on a machine called “melange”.

1. Add the following lines of code:
ESRI.ArcGIS.Server.WebControls.ServerConnection connection = new
ESRI.ArcGIS.Server.WebControls.ServerConnection();

connection.Host = "melange";

connection.Connect();

IServerObjectManager som = connection.ServerObjectManager;

The Web service will make use of the PortlandGC server object that you created
with ArcCatalog. You get a server object by asking the server for a server context
containing the object.

2. Add the following line of code to get the server object’s context:
IServerContext sc =
som.CreateServerContext("PortlandGeocode","GeocodeServer");

It’s the responsibility of the developer to release the server object’s context when
finished using it. It’s important to ensure that your method calls ReleaseContext on
the server context when the method no longer needs the server object or any
other objects running in the context. It’s also important that you ensure the
context is released in the event of an error. So, the remainder of the code will

DEVELOPING AN APPLICATION WEB SERVICE (.NET)

This example uses the ServerConnection and
ServerObjectManager objects to connect to
the server and get references to the geocode

server object. As an alternative, this Web service
could make use of the geocodeConnection

Web control in the
ESRI.ArcGIS.Server.WebControls assembly. The

Web control would manage the connection and
the geocode server objects’ server context as

well as provide convenient methods for working
with the geocode server object using .NET.

To successfully connect to the GIS server, your
Web service must impersonate a user who is a

member of the ArcGIS Server users group on the
GIS server. There are a number of strategies for
implementing impersonation in .NET. For more

details on impersonation, refer to
Chapter 5, ‘Developing Web applications with

.NET’, and your .NET documentation.

Chapter7.pmd 1/25/2005, 6:01 PM376

Chapter 7 • Developer scenarios • 377

run within a try/catch block. If an error occurs in the code in the try block, the
code in the catch block will be executed. So, you will add the call to release the
context at the end of the try block and in the catch block.

3. Add the following code to your Web service:
try

{

 sc.ReleaseContext();

}

catch

{

 sc.ReleaseContext();

}

Your FindToxicLocations method should now look like the following:
[WebMethod]

 public ToxicSite[] FindToxicLocations(string Address, string ZipCode,
double Distance)

{

 using (WebObject webObj = new WebObject())

 {

 if (Address == null || ZipCode == null || Distance == 0.0)

 return null;

 ESRI.ArcGIS.Server.WebControls.ServerConnection connection = new
ESRI.ArcGIS.Server.WebControls.ServerConnection();

 connection.Host = "melange";

 connection.Connect();

 IServerObjectManager som = connection.ServerObjectManager;

 IServerContext sc =
som.CreateServerContext("PortlandGeocode","GeocodeServer");

 try

 {

 sc.ReleaseContext();

 }

 catch

 {

 sc.ReleaseContext();

 }

 return null;

 }

}

DEVELOPING AN APPLICATION WEB SERVICE (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM377

378 • ArcGIS Server Administrator and Developer Guide

Geocoding the input address
Now that you have connected to the GIS server and have a context containing
the geocode server object, you will add the code to use the server object to
geocode the input address and store the resulting point as gcPoint.

Add the following lines of code to your try block:
IServerObject so = sc.ServerObject;

IGeocodeServer gc = so as IGeocodeServer;

IPropertySet ps = sc.CreateObject("esriSystem.PropertySet") as
IPropertySet;

ps.SetProperty("street",Address);

ps.SetProperty("Zone",ZipCode);

IPropertySet res = gc.GeocodeAddress(ps,null);

IPoint gcPoint = res.GetProperty("Shape") as IPoint;

Buffering the result and querying the toxic sites
You will buffer this point and use the resulting geometry to query the toxic sites
from the ToxicSites feature class. Since the ToxicSites feature class is in the same
workspace as the geocode server object’s locator’s reference data, you do not have
to create a new connection to the geodatabase but can use the geocode server’s
connection.

1. Add the following code to your try block to buffer the point, open the feature
class, and query it:
ISegmentCollection segc = sc.CreateObject("esriGeometry.Polygon") as
ISegmentCollection;

segc.SetCircle(gcPoint, Distance);

IGeometry geom = segc as IGeometry;

IGeocodeServerObjects gcso = gc as IGeocodeServerObjects;

IReferenceDataTables reftabs = gcso.AddressLocator as
IReferenceDataTables;

IEnumReferenceDataTable enumreftabs = reftabs.Tables;

enumreftabs.Reset();

IReferenceDataTable reftab = enumreftabs.Next();

IDatasetName dsname = reftab.Name as IDatasetName;

IName wsnm = dsname.WorkspaceName as IName;

IFeatureWorkspace fws = wsnm.Open() as IFeatureWorkspace;

IFeatureClass fc = fws.OpenFeatureClass("ToxicSites");

ISpatialFilter sf = sc.CreateObject("esriGeoDatabase.SpatialFilter") as
ISpatialFilter;

sf.Geometry = geom;

sf.GeometryField = fc.ShapeFieldName;

sf.SpatialRel = esriSpatialRelEnum.esriSpatialRelIntersects;

IFeatureCursor fcursor = fc.Search(sf, true);

You’ll use the ManageLifetime method on the WebObject to add your feature cursor
to the set of objects that the WebObject will explicitly release at the end of the
using block.

DEVELOPING AN APPLICATION WEB SERVICE (.NET)

Since you can get the workspace from the
geocode server object, the connection is pooled
by the geocode server. The code as written still

has to open the ToxicSites feature class. This
application could be further optimized by using a
pooled map server object that has a single layer

whose source data is the ToxicSites feature
class. The application would then get the feature
class from the map server object, effectively using

the map server to pool the feature class.

If the ToxicSites feature class was not in the
same workspace as the locator, this method

would be the recommended approach for pooling
both the workspace connection and the feature

class.

A PropertySet is a generic class that is used to
hold a set of any properties. A PropertySet’s

properties are stored as name/value pairs.
Examples for the use of a property set are to

hold the properties required for opening an SDE
workspace or geocoding an address. To learn

more about PropertySet objects, see the online
developer documentation.

Chapter7.pmd 1/25/2005, 6:01 PM378

Chapter 7 • Developer scenarios • 379

2. Add the following code to your try block:
webObj.ManageLifetime(fcursor);

You will now add code to loop through the features returned by the query and
use the Name and SiteType field values and the X and Y properties of the
feature’s geometry as the arguments for the ToxicSite class constructor to create a
new ToxicSite object for each feature. Because the number of features returned by
the query is unknown until the cursor has been exhausted, you can’t declare your
ToxicSite array, as its size is unknown. First, you will store these ToxicSite objects
in an ArrayList collection, then copy the contents of that ArrayList to an array of
ToxicSite objects that will be returned by the method.

3. Add the following code to your try block:
int lName;

int lType;

IFields flds = fc.Fields;

lName = flds.FindField("NAME");

lType = flds.FindField("SITETYPE");

ArrayList toxicList = new ArrayList();

IFeature f;

while ((f = fcursor.NextFeature()) != null)

{

 IPoint pt = f.Shape as IPoint;

 toxicList.Add (new ToxicSite((string) f.get_Value(lName),
(string)f.get_Value(lType),pt.X,pt.Y));

}

ToxicSite[] toxicArray = new ToxicSite[toxicList.Count];

toxicList.CopyTo(toxicArray);

4. To complete the function add the following line to the end of the try block to
return the array of toxic sites:
return toxicArray;

Your FindToxicLocations method should now look like the following:
[WebMethod]

public ToxicSite[] FindToxicLocations(string Address, string ZipCode,
double Distance)

{

 using (WebObject webObj = new WebObject())

 {

 if (Address == null || ZipCode == null || Distance == 0.0)

 return null;

 ESRI.ArcGIS.Server.WebControls.ServerConnection connection = new
ESRI.ArcGIS.Server.WebControls.ServerConnection();

 connection.Host = "padisha";

 connection.Connect();

 IServerObjectManager som = connection.ServerObjectManager;

 IServerContext sc =
som.CreateServerContext("PortlandGeocode","GeocodeServer");

DEVELOPING AN APPLICATION WEB SERVICE (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM379

380 • ArcGIS Server Administrator and Developer Guide

 try

 {

 IServerObject so = sc.ServerObject;

 IGeocodeServer gc = so as IGeocodeServer;

 IPropertySet ps = sc.CreateObject("esriSystem.PropertySet") as
IPropertySet;

 ps.SetProperty("street",Address);

 ps.SetProperty("Zone",ZipCode);

 IPropertySet res = gc.GeocodeAddress(ps,null);

 IPoint gcPoint = res.GetProperty("Shape") as IPoint;

 ISegmentCollection segc = sc.CreateObject("esriGeometry.Polygon") as
ISegmentCollection;

 segc.SetCircle(gcPoint, Distance);

 IGeometry geom = segc as IGeometry;

 IGeocodeServerObjects gcso = gc as IGeocodeServerObjects;

 IReferenceDataTables reftabs = gcso.AddressLocator as
IReferenceDataTables;

 IEnumReferenceDataTable enumreftabs = reftabs.Tables;

 enumreftabs.Reset();

 IReferenceDataTable reftab = enumreftabs.Next();

 IDatasetName dsname = reftab.Name as IDatasetName;

 IName wsnm = dsname.WorkspaceName as IName;

 IFeatureWorkspace fws = wsnm.Open() as IFeatureWorkspace;

 IFeatureClass fc = fws.OpenFeatureClass("ToxicSites");

 ISpatialFilter sf = sc.CreateObject("esriGeoDatabase.SpatialFilter")
as ISpatialFilter;

 sf.Geometry = geom;

 sf.GeometryField = fc.ShapeFieldName;

 sf.SpatialRel = esriSpatialRelEnum.esriSpatialRelIntersects;

 IFeatureCursor fcursor = fc.Search(sf, true);

 webObj.ManageLifetime(fcursor);

 int lName;

 int lType;

 IFields flds = fc.Fields;

 lName = flds.FindField("NAME");

 lType = flds.FindField("SITETYPE");

 ArrayList toxicList = new ArrayList();

 IFeature f;

 while ((f = fcursor.NextFeature()) != null)

 {

DEVELOPING AN APPLICATION WEB SERVICE (.NET)

The objects and interfaces used for performing
spatial queries and for working with the results

of those queries can be found in the
GeoDatabase object library. To learn more about

geodatabase objects, see the online developer
documentation.

The objects and interfaces used for creating and
working with geometries can be found in the
Geometry object library. To learn more about

geometry objects, see the online developer
documentation.

The Locator object is the fine-grained ArcObjects
component associated with a GeocodeServer

object. Once you have a reference to the Locator
(which you can get from the GeocodeServer

via the IGeocodeServerObjects interface), you
can access other objects associated with the

Locator, such as the Locator’s reference data.

Chapter7.pmd 1/25/2005, 6:01 PM380

Chapter 7 • Developer scenarios • 381

DEVELOPING AN APPLICATION WEB SERVICE (.NET)

 IPoint pt = f.Shape as IPoint;

 toxicList.Add (new ToxicSite((string) f.get_Value(lName),
(string)f.get_Value(lType),pt.X,pt.Y));

 }

 ToxicSite[] toxicArray = new ToxicSite[toxicList.Count];

 toxicList.CopyTo(toxicArray);

 return toxicArray;

 sc.ReleaseContext();

 }

 catch

 {

 sc.ReleaseContext();

 }

 return null;

 }

}

Your Web service is now ready to be tested. Compile the project (Build/Build
Solution) and fix any errors.

Testing the Web service
If you run the Web service from within Visual Studio, it will open a browser and
list the FindToxicLocations method, which you can invoke from within the
browser.

1. Click Debug, then click Start.

2. On the browser that opens, click the FindToxicLocations link.

3. Type the following values for the Web service parameters:

Address: 2111 Division St

ZipCode: 97202

Distance: 10000

4. Click Evoke. A new browser will open; confirm the following results from the
Web service:
<?xml version="1.0" encoding="utf-8" ?>

- <ArrayOfAnyType xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://
tempuri.org/">

- <anyType xsi:type="ToxicSite">

 <Name>TRI MET CENTER STREET GARAGE</Name>

 <Type>Hazardous waste generator</Type>

 <X>7651285.4405499762</X>

 <Y>672416.22979136126</Y>

 </anyType>

- <anyType xsi:type="ToxicSite">

 <Name>EAST SIDE PLATING INC PLANT 4</Name>

 <Type>Hazardous waste generator</Type>

 <X>7647860.94568513</X>

When you run your Web service within Visual
Studio, it will open a browser listing the Web

service’s methods. You can evoke the methods by
clicking the links on the browser and typing the
method’s inputs . You can also see the WSDL for

the Web service by clicking the ServiceDescription
link.

Chapter7.pmd 1/25/2005, 6:01 PM381

382 • ArcGIS Server Administrator and Developer Guide

 <Y>679162.18254093162</Y>

 </anyType>

- <anyType xsi:type="ToxicSite">

 <Name>Portland Office of Transportation</Name>

 <Type>Brownfield Pilot</Type>

 <X>7646057.6159455236</X>

 <Y>684318.6635023664</Y>

 </anyType>

- <anyType xsi:type="ToxicSite">

 <Name>Portland Office of Transportation</Name>

 <Type>Brownfield Pilot</Type>

 <X>7646057.6159455236</X>

 <Y>684318.6635023664</Y>

 </anyType>

 </ArrayOfAnyType>

This indicates that four toxic sites were found within 10,000 feet of the given
address.

DEVELOPING AN APPLICATION WEB SERVICE (.NET)

When you evoke the Web method, a new
browser will open, displaying the results returned

from the method in XML.

Chapter7.pmd 1/25/2005, 6:01 PM382

Chapter 7 • Developer scenarios • 383

Creating a client application
Since your Web service exposes a language-neutral interface that can be called
using HTTP, your Web service can be called from any language that understands
HTTP and WSDL. An elaborate client application, which itself could be a Web
application, a desktop application, or even another Web service, is not demon-
strated here, but the following is an example of how such an application would
call the Web service method.

The example uses C#. Rather than describe such an application in detail, assume
that this is a Windows desktop application that contains a button called
btnCallWS whose Click event calls into your Web service. The code for this might
look like the following, assuming you have added your Web service as a Web
reference called ToxicLocation:
private void btnCallWS_Click(object sender, System.EventArgs e)

{

 ToxicLocation.ToxicSiteLocator toxloc = new
ToxicLocation.ToxicSiteLocator();

 object[] objs = toxloc.FindToxicLocations("2111 Division
St","97202",10000);

 for (int i = 0; i < objs.Length; i++)

 {

 ToxicLocation.ToxicSite toxsite = objs[i] as ToxicLocation.ToxicSite;

 // Do something with the toxic site object.

 }

}

DEPLOYMENT

Presumably you developed this Web service using your development Web server.
To deploy this Web service on your production Web server, you can use the built-
in Visual Studio .NET tools to copy the project.

1. In the Solution Explorer, click ToxicLocations.

2. Click Project, then click Copy Project.

3. In the Copy Project dialog box, specify the location on your Web server to
which you want the project copied.

4. Click OK.

ADDITIONAL RESOURCES

This scenario includes functionality and programming techniques covering a
number of different aspects of ArcObjects, the ArcGIS Server API, and .NET
Web controls.

You are encouraged to read Chapter 4, ‘Developing ArcGIS Server applications’,
to get a better understanding of core ArcGIS Server programming concepts and
programming guidelines for working with server contexts and ArcObjects running
within those contexts.

This scenario makes use of the ArcGIS Server’s .NET ADF Web controls to
provide the GIS server connection object for this Web service. To learn more

DEVELOPING AN APPLICATION WEB SERVICE (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM383

384 • ArcGIS Server Administrator and Developer Guide

about the .NET Web controls, see Chapter 5, ‘Developing Web applications with
.NET’. If you are unfamiliar with ASP.NET Web development, it’s also recom-
mended that you refer to your .NET developer documentation to become more
familiar with Web application development.

ArcGIS Server applications exploit the rich GIS functionality of ArcObjects.
This Web service is no exception. It includes the use of ArcObjects to work with
the components of a GeocodeServer to locate an address, manipulate geometries,
and perform spatial queries against feature classes in a geodatabase. To learn more
about these aspects of ArcObjects, refer to the online developer documentation
on the Location, GeoDatabase, and Geometry object libraries.

DEVELOPING AN APPLICATION WEB SERVICE (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM384

Chapter 7 • Developer scenarios • 385

This walkthrough is for developers who need to build and deploy a Java applica-
tion Web service incorporating geocoding and spatial query functionality using the
ArcGIS Server API. It describes the process of building, deploying, and consum-
ing the Application_web_service sample, which is part of the ArcGIS developer
samples.

You can find this sample in:
<install_location>\DeveloperKit\samples\Developer_Guide_Scenarios\
Application_web_serviceJava.zip

PROJECT DESCRIPTION

The purpose of this scenario is to create a Java Web service that uses ArcObjects
to locate all of the toxic waste sites within a specified distance of a specified
address. The Web service returns an array of application-defined toxic waste site
objects.

This Web service is intended to be called by other programs, and an example of
such a client program is a Java class. This scenario will also provide an example of
how a client application would consume this Web service.

CONCEPTS

A Web service is a set of related application functions that can be programmati-
cally invoked over the Internet. The function can be one that solves a particular
application problem, as in this example; a Web service that finds all of the toxic
waste sites within a certain distance of an address; or performs some other type
of GIS function. Web services can be implemented using the native Web service
framework of your Web server, such as ASP.NET Web service (WebMethod) or
Java Web service (Axis).

When using native frameworks, such as ASP.NET and J2EE, to create and con-
sume your application Web services, you need to use native or application-defined
types as both arguments and return values from your Web methods. Clients of the
Web service will not be ArcObjects applications, and as such, your Web service
should not expect ArcObjects types as arguments and should not directly return
ArcObjects types.

Any development language that can use standard HTTP to invoke methods can
consume this Web service. The Web service consumer can get the methods and
types exposed by the Web service through its Web Service Description Language.
As you walk through this scenario, you will see where special attributes need to
be added to your methods and classes such that they can be expressed in WSDL
and serialized as XML.

DESIGN

This Web service is designed to make stateless use of the GIS server. It uses
ArcObjects on the server to locate an address and query a feature class. To sup-
port this application, you need to add a pooled geocode server object to your
ArcGIS Server using ArcCatalog.

Both coarse-grained calls to remote ArcObjects, such as the methods on the
MapServer and GeocodeServer, and fine-grained calls to remote ArcObjects, such
as creating new geometries, are exposed through the ArcGIS Server API and can
be used in your Web service. The Web service will connect to the GIS and can be

One key aspect of designing your application is
whether it is stateful or stateless. You can make

either stateful or stateless use of a server object
running within the GIS server. A stateless

application makes read-only use of a server
object, meaning the application does not make

changes to the server object or any of its
associated objects. A stateful application makes

read–write use of a server object where the
application does make changes to the server

object or its related objects.

Web services are, by definition, stateless applica-
tions.

Rather than walk through this scenario, you can
get the completed Web service from the samples

installation location. The sample is installed as
part of the ArcGIS developer samples.

To learn more about WSDL, refer to http://
www.w3.org.

DEVELOPING AN APPLICATION WEB SERVICE (JAVA)

Two versions of this scenario are provided. The
first uses data from a personal geodatabase,
while the second uses file-based data. Users

working through this scenario on a Windows
machine can use either version. However, Solaris

and Linux users must utilize the file-based
version as personal geodatabases are not

supported on these operating systems.

Chapter7.pmd 1/25/2005, 6:01 PM385

386 • ArcGIS Server Administrator and Developer Guide

used in your Web service. The Web service will connect to the GIS server and use
an instance of the geocode server object to locate the address supplied to the
Web method from the calling application. To then buffer the resultant point and
use that buffered geometry to query for toxic waste sites, you will use the geo-
code server’s server context to work in. The version of this scenario that utilizes
a geodatabase has been designed such that the address locator is stored in the
same geodatabase as the feature class containing the toxic waste sites. In the
file-based version of the scenario, the locator is stored in the same workspace as
the ToxicSites shapefile feature class. In both cases, this design enables you to use
the fine-grained objects associated with the geocode server to get a reference to
that workspace.

REQUIREMENTS

The requirements for working through this scenario are that you have
ArcGIS Server and ArcGIS Desktop installed and running. The machine on
which you develop this Web service must have the ArcGIS Server Java
Application Developer Framework installed.

You must have a geocode server object configured and running on your
ArcGIS Server that uses one of the Portland locators in the ArcGIS devel-
oper samples. The personal geodatabase version of this scenario (Windows
only) utilizes Portland.loc, while the file-based version
(Windows, Solaris, or Linux) utilizes Portland_shp.loc. In ArcCatalog, create
a connection to your GIS server and use the Add Server Object command to
create a new server object with the following properties:

Name: PortlandGC

Type: GeocodeServer

Description: Geocode server object for metropolitan
Portland

Locator (Windows):
<install_location>\DeveloperKit\samples\
data\serverdata\toxic\portland.loc or

Locator (Solaris or Linux):
<install_location>/developerkit/samples/data/
serverdata/toxic/portland_shp.loc

Batch size: 10 (default)

Pooling: The Web service makes stateless use of the server
object. Accept the defaults for the pooling model
(pooled server object with minimum instances = 2, max
instances = 4).

Accept the defaults for the remainder of the configuration properties.

After creating the server object, start it and right-click it to verify that it is cor-
rectly configured and that the geocoding properties are displayed.

You can refer to Chapter 3, ‘Administering an ArcGIS Server’, for more informa-
tion on using ArcCatalog to connect to your server and create a new server ob-
ject. Once the server object is configured and running, you can begin to code your
Web service.

The Add Server Object wizard

ArcCatalog is used for managing your spatial
data holdings, defining your geographic data

schemas, and managing your ArcGIS Server. Once
you have created your PortlandGC server

object, open its properties using ArcCatalog to
verify it is correctly configured.

DEVELOPING AN APPLICATION WEB SERVICE (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM386

Chapter 7 • Developer scenarios • 387

The following ArcObjects—Java packages will be used in this example:

• com.esri.arcgis.geodatabase

• com.esri.arcgis.geometry

• com.esri.arcgis.location

• com.esri.arcgis.server

• com.esri.arcgis.system

The development environment does not require any ArcGIS licensing; however,
connecting to a server and using a geocode server object does require that the GIS
server be licensed to run ArcObjects in the server. None of the packages used
require an extension license.

The IDE used in this example is JBuilder 9 Enterprise Edition, and all
IDE specific steps will assume this is the IDE you are using. This Web
service can be implemented with other Java IDEs.

IMPLEMENTATION

To begin, you must create a new JBuilder project and a working direc-
tory that will be used for this project.

Creating a new project
1. Create a new folder called “webservice_projects”. This is where

your Web service project files will be created.

2. Start JBuilder.

3. Click File, then click New Project to open the Project Wizard
window.

4. In the Project Wizard dialog box, “type toxiclocation_project” for
the Name, then type the path to the webservice_projects you
created above for the Directory.

Adding references to the ArcObjects—Java libraries
To program using ArcGIS Server, references to the ArcObjects—Java libraries
must be added in your development environment. These libraries contain proxies
to the ArcObjects components the Web service will use. These libraries are in-
stalled when you install the ArcGIS Server Java ADF. To add these references,

you will create a new library and add it to your project.

1. Click Tools, then click Configure Libraries.

2. In the Configure Libraries dialog box, click New to create a new
library.

3. In the New Library wizard, type “arcgis_lib” for the Name.

4. Click Add and browse to the location and select
<install_location>/ArcGIS/java/jintegra.jar, then click OK.

5. Repeat step 4 to add <install_location>/ArcGIS/java/opt/
arcobjects.jar.

6. Click OK to close the Configure Libraries dialog box.

DEVELOPING AN APPLICATION WEB SERVICE (JAVA)

The Project wizard

The Configure Libraries dialog box

A proxy object is a local representation of a
remote object. The proxy object controls access
to the remote object by forcing all interaction

with the remote object to be via the proxy
object. The supported interfaces and methods on
a proxy object are the same as those supported

by the remote object. You can make method calls
on, and get and set properties of, a proxy object
as if you were working directly with the remote

object.

Chapter7.pmd 1/25/2005, 6:01 PM387

388 • ArcGIS Server Administrator and Developer Guide

Now you will add the new library to your project.

7. Click Project, then click Project Properties.

8. In the Project Properties dialog box, click the Required Libraries
tab.

9. Click Add.

10. Under User Home, click arcgis_lib and click OK.

11. Click OK to close the Project Properties dialog box.

Creating the ToxicSite class
The point of this Web service is to expose a method that is accessible
via HTTP-based SOAP requests and that returns all of the toxic site
locations within a specified distance of a specified address. Before you
create your new method, first define the toxic waste class that will be
returned when this Web service is invoked.

1. Click File, then click New Class.

2. In the Class Wizard, type “toxiclocation” for the Package, and type
“ToxicSite” for the Class Name.

3. Click OK.

This will add a new class to your project and will open the code for the
class with some autogenerated code. The autogenerated code will
include the name of the package (toxiclocation) and a stubbed out
class definition for ToxicSite and a default constructor:
package toxiclocation;

public class ToxicSite {

 public ToxicSite () {

 }

Results returned from Web services must be serializable in XML. The
ToxicSite type must be marked as serializable by implementing
Serializable. Because Serializable is defined in the java.io.Serializable
Java package, you need to add an import statement for that package.

4. Add the following import statement to your code:
import java.io.Serializable;

5. Change the following line:
public class ToxicSite {

to:
public class ToxicSite implements Serializable{

Your code should now look like this:
package toxiclocation;

import java.io.Serializable;

public class ToxicSite implements Serializable{

 public ToxicSite () {

 }

DEVELOPING AN APPLICATION WEB SERVICE (JAVA)

The Configure Libraries dialog box

The New Library wizard

The Class wizard

Classes that implement Serializable can be
serialized into XML. Any custom type that is
returned by a Web service must implement

Serializable.

Chapter7.pmd 1/25/2005, 6:01 PM388

Chapter 7 • Developer scenarios • 389

You are interested in returning the type of toxic site, the name of the organiza-
tion associated with the toxic site, and the x and y coordinates of the toxic site
feature. So, you will add four private fields to your ToxicSite class, an overloaded
constructor to set the data, and Get and Set methods for each field.

6. Add the following lines of code to your ToxicSite class:
private String name;

private String type;

private double X;

private double Y;

7. To add the overloaded constructor, type the following in your class definition:
public ToxicSite(String name, String type, double x, double y) {

 this.name = name;

 this.type = type;

 this.X = x;

 this.Y = y;

 }

8. To add the Get and Set methods, type the following in your class definition:
 public void setName(String name){

 this.name= name;

 }

 public String getName(){

 return name;

 }

 public void setType(String type){

 this.type = type;

 }

 public String getType(){

 return type;

 }

 public void setX(double x){

 this.X = x;

 }

 public double getX(){

 return X;

 }

 public void setY(double y){

 this.Y = y;

 }

 public double getY(){

 return Y;

 }

DEVELOPING AN APPLICATION WEB SERVICE (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM389

390 • ArcGIS Server Administrator and Developer Guide

The code for your ToxicSite class should now look like the following:
package toxiclocation;

import java.io.Serializable;

public class ToxicSite implements Serializable{

 private String name;

 private String type;

 private double X;

 private double Y;

 public ToxicSite() {

 }

 public ToxicSite(String name, String type, double x, double y) {

 this.name = name;

 this.type = type;

 this.X = x;

 this.Y = y;

 }

 public void setName(String name){

 this.name= name;

 }

 public String getName(){

 return name;

 }

 public void setType(String type){

 this.type = type;

 }

 public String getType(){

 return type;

 }

 public void setX(double x){

 this.X = x;

 }

 public double getX(){

 return X;

 }

 public void setY(double y){

 this.Y = y;

 }

 public double getY(){

 return Y;

 }

}

DEVELOPING AN APPLICATION WEB SERVICE (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM390

Chapter 7 • Developer scenarios • 391

Creating the ToxicSiteLocator class
Now that you have defined your ToxicSite class, you will implement your Web
service method. As described above, the point of this Web service is to expose a

method that is accessible via HTTP-based SOAP requests and that
returns all of the toxic site locations within a specified distance of a
specified address. This class will have the method that will be exposed
as a Web service.

1. Click File, then click New Class.

2. In the Class Wizard, type “toxiclocation” for the Package, and type
“ToxicSiteLocator” for the Class Name.

3. Click OK.

This will add a new class to your project and will open the code for the
class with some autogenerated code. The autogenerated code will
include the name of the package (toxiclocation) and a stubbed out
class definition for ToxicSite and a default constructor:

package toxiclocation;

public class ToxicSiteLocator {

 public ToxicSiteLocator () {

 }

To program using ArcGIS Server, you need to import ArcObjects—Java API
packages that contain the proxies for the ArcObjects that the Web service will
use. In addition, you need to import some standard Java packages.

4. Add the following import statement to your class:
import java.util.ArrayList;

import com.esri.arcgis.geodatabase.*;

import com.esri.arcgis.geometry.*;

import com.esri.arcgis.location.*;

import com.esri.arcgis.server.*;

import com.esri.arcgis.system.*;

You will create a method called FindToxicLocations that takes as arguments
an address, ZIP Code, and search distance and returns an array of ToxicSite
objects.

5. Add the following lines of code to your ToxicSiteLocator class:
public ToxicSite[] FindToxicLocations(String address, String
zipCode,double distance) throws Exception {

}

Your code should now look like the following:
package toxiclocation;

import java.util.ArrayList;

import com.esri.arcgis.geodatabase.*;

import com.esri.arcgis.geometry.*;

import com.esri.arcgis.location.*;

DEVELOPING AN APPLICATION WEB SERVICE (JAVA)

The Class wizard

The Project Properties dialog box

The FindToxicLocations method returns an
array of ToxicSite objects, rather than a generic

collection, such as an ArrayList. If the method
did not have a return type of ToxicSite, then the

custom class wouldn’t be expressed in the Web
service’s WSDL.

Chapter7.pmd 1/25/2005, 6:01 PM391

392 • ArcGIS Server Administrator and Developer Guide

import com.esri.arcgis.server.*;

import com.esri.arcgis.system.*;

public class ToxicSiteLocator {

 public ToxicSite[] FindToxicLocations(String address, String
zipCode,double distance) throws Exception {

 }

}

Validating input parameters
The first thing the Web service will do is verify the provided parameters are valid
and, if not, return null.

1. Type the following in your FindToxicLocations method (note, all code addi-
tions from this step on are made to this method):
if (address == null || zipCode == null || distance == 0.0)

 return null;

You will now create some local variables to hold the server context, server con-
nection, and an ArrayList of resultant ToxicSite objects.

2. Add the following lines of code to your method.
IServerContext sc = null;

IServerConnection con = new ServerConnection();

ArrayList toxicSiteList = new ArrayList();

It’s the responsibility of the developer to release the server object’s context when
it’s finished using it. It’s important to ensure that your method calls ReleaseContext
on the server context when the method no longer needs the server object or any
other objects running in the context. It’s also important that you ensure the
context is released in the event of an error. If an error occurs in the code in the
try block, the code in the catch block will be executed. So, you will add the call
to release the context at the end of the try block and in the catch block.

3. Add the following lines of code to your method.
try {

 sc.releaseContext();

}

catch (Exception e) {

 sc.releaseContext();

 e.printStackTrace();

 return null;

}

Connecting to the GIS server
This Web service makes use of objects in the GIS server, so you will add code to
connect to the GIS server and get the IServerObjectManager interface. In this
example, the GIS server is running on a machine called “melange” as user
“amelie” with a password of “xyz”.

1. Add the following lines of code to your try block.
ServerInitializer si = new ServerInitializer();

DEVELOPING AN APPLICATION WEB SERVICE (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM392

Chapter 7 • Developer scenarios • 393

si.initializeServer("melange", "amelie", "xyz");

con.connect("melange");

IServerObjectManager som = con.getServerObjectManager();

The Web server will make use of the PortlandGC server object that you created as
a requirement to this Web service. You get a server object by asking the server for
a server context containing the object.

2. Add the following line of code to get the server object’s context.
sc = som.createServerContext("PortlandGC", "GeocodeServer");

Geocoding the input address
Now that you have connected to the GIS server and have a context containing
the geocode server object, you will add the code to use the server object to
geocode the input address and store the resulting point as gcPoint. Add the
following lines of code to your try block:
IServerObject so = new IServerObjectProxy(sc.getServerObject());

IGeocodeServer gc = new IGeocodeServerProxy(so);

IPropertySet ps = new
IPropertySetProxy(sc.createObject(PropertySet.getClsid()));

ps.setProperty("Street", address);

ps.setProperty("Zone", zipCode);

 IPropertySet res = gc.geocodeAddress(ps, null);

 IPoint gcPoint = new IPointProxy(res.getProperty("Shape"));

Buffering the result and querying the toxic sites
You will buffer this point and use the resulting geometry to query the toxic sites
from the ToxicSites feature class. If you are working through the personal
geodatabase version of the scenario, note that since the ToxicSites feature class is
in the same workspace as the geocode server object’s locator, you do not have
to create a new connection to the geodatabase but can use the geocode server’s
connection.

1. Add the following code to your try block to buffer the point, open the feature
class, and query it.
ISegmentCollection segc = new ISegmentCollectionProxy(sc.createObject(
Polygon.getClsid()));

segc.setCircle(gcPoint, distance);

IGeometry geom = new IGeometryProxy(segc);

IGeocodeServerObjects gcso = new IGeocodeServerObjectsProxy(gc);

IReferenceDataTables reftabs = new
IReferenceDataTablesProxy(gcso.getAddressLocator());

IEnumReferenceDataTable enumreftabs = new
IEnumReferenceDataTableProxy(reftabs.getTables());

enumreftabs.reset();

IReferenceDataTable reftab = new
IReferenceDataTableProxy(enumreftabs.next());

IDatasetName dsname = new IDatasetNameProxy(reftab.getName());

IName wsnm = new INameProxy(dsname.getWorkspaceName());

IFeatureWorkspace fws = new IFeatureWorkspaceProxy(wsnm.open());

DEVELOPING AN APPLICATION WEB SERVICE (JAVA)

To successfully connect to the GIS server, your
Web service must impersonate a user who is a

member of the ArcGIS Server users group on the
GIS server. There are a number of strategies for
implementing impersonation in Java. For more

details on impersonation, refer to
Chapter 6, ‘Developing Web applications with

Java’, and your Java documentation.

A PropertySet is a generic class that is used to
hold any set of properties. A PropertySet’s
properties are stored as name/value pairs.

Examples for the use of a property set are to
hold the properties required for opening an SDE

workspace or geocoding an address. To learn
more about PropertySet objects, see the online

developer documentation.

Since you can get the workspace from the
geocode server object, the connection is pooled
by the geocode server. The code as written still

has to open the ToxicSites feature class. This
application could be further optimized by using a
pooled map server object that has a single layer

whose source data is the ToxicSites feature
class. The application would then get the feature
class from the map server object, effectively using

the map server to pool the feature class.

If the ToxicSites feature class was not in the
same workspace as the locator's source data,

this method would be the recommended
approach for pooling both the workspace

connection and the feature class.

Chapter7.pmd 1/25/2005, 6:01 PM393

394 • ArcGIS Server Administrator and Developer Guide

IFeatureClass fc = fws.openFeatureClass("toxicsites");

ISpatialFilter sf = new
ISpatialFilterProxy(sc.createObject(SpatialFilter.getClsid()));

sf.setGeometryByRef(geom);

sf.setGeometryField(fc.getShapeFieldName());

sf.setSpatialRel(esriSpatialRelEnum.esriSpatialRelIntersects);

IFeatureCursor fCursor = fc.search(sf, true);

You will now loop through the features returned by the query and use the Name
and SiteType field values and the x and y properties of the feature’s geometry as
the arguments for the ToxicSite class constructor to create a new ToxicSite object
for each feature. Because the number of features returned by the query is un-
known until the cursor has been exhausted, you can’t declare your ToxicSite array,
as its size is unknown. First, you will store these ToxicSite objects in an ArrayList
collection, then copy the contents of that ArrayList to an array of ToxicSite
objects that will be returned by the method.

2. Add the following code to your try block:
int lName;

int lType;

IFields flds = fc.getFields();

lName = flds.findField("NAME");

lType = flds.findField("SITETYPE");

IFeature f;

while ((f = fCursor.nextFeature()) != null) {

 IPoint pt = new IPointProxy(f.getShape());

 ToxicSite toxicSite = new ToxicSite((String) f.getValue(lName),(String)
f.getValue(lType),pt.getX(),pt.getY());

 toxicSiteList.add(toxicSite);

}

ToxicSite[] sites = new ToxicSite[toxicSiteList.size()];

for (int i = 0; i < sites.length; i++) {

 sites[i] = (ToxicSite) toxicSiteList.get(i);

}

sc.releaseContext();

return sites;

The class is now ready to be exposed as a Web service. Your ToxicSiteLocator class
should now look like the following:
package toxiclocation;

import java.util.ArrayList;

import com.esri.arcgis.geodatabase.*;

import com.esri.arcgis.geometry.*;

import com.esri.arcgis.location.*;

import com.esri.arcgis.server.*;

import com.esri.arcgis.system.*;

public class ToxicSiteLocator {

DEVELOPING AN APPLICATION WEB SERVICE (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM394

Chapter 7 • Developer scenarios • 395

 public ToxicSite[] FindToxicLocations(String address, String
zipCode,double distance) throws Exception {

 if (address == null || zipCode == null || distance == 0.0) {

 return null;

 }

 IServerContext sc = null;

 IServerConnection con = new ServerConnection();

 ArrayList toxicSiteList = new ArrayList();

 try {

 ServerInitializer si = new ServerInitializer();

si.initializeServer("melange", "amelie", "xyz");

con.connect("melange");

 IServerObjectManager som = con.getServerObjectManager();

 sc = som.createServerContext("PortlandGC", "GeocodeServer");

 IServerObject so = new IServerObjectProxy(sc.getServerObject());

 IGeocodeServer gc = new IGeocodeServerProxy(so);

 IPropertySet ps = new
IPropertySetProxy(sc.createObject(PropertySet.getClsid()));

 ps.setProperty("Street", address);

 ps.setProperty("Zone", zipCode);

 IPropertySet res = gc.geocodeAddress(ps, null);

 IPoint gcPoint = new IPointProxy(res.getProperty("Shape"));

 ISegmentCollection segc = new
ISegmentCollectionProxy(sc.createObject(Polygon.getClsid()));

 segc.setCircle(gcPoint, distance);

 IGeometry geom = new IGeometryProxy(segc);

 IGeocodeServerObjects gcso = new IGeocodeServerObjectsProxy(gc);

 IReferenceDataTables reftabs = new
IReferenceDataTablesProxy(gcso.getAddressLocator());

 IEnumReferenceDataTable enumreftabs = new
IEnumReferenceDataTableProxy(reftabs.getTables());

 enumreftabs.reset();

 IReferenceDataTable reftab = new
IReferenceDataTableProxy(enumreftabs.next());

 IDatasetName dsname = new IDatasetNameProxy(reftab.getName());

 IName wsnm = new INameProxy(dsname.getWorkspaceName());

 IFeatureWorkspace fws = new IFeatureWorkspaceProxy(wsnm.open());

 IFeatureClass fc = fws.openFeatureClass("toxicsites");

 ISpatialFilter sf = new
ISpatialFilterProxy(sc.createObject(SpatialFilter.getClsid()));

 sf.setGeometryByRef(geom);

 sf.setGeometryField(fc.getShapeFieldName());

 sf.setSpatialRel(esriSpatialRelEnum.esriSpatialRelIntersects);

DEVELOPING AN APPLICATION WEB SERVICE (JAVA)

The objects and interfaces used for creating and
working with geometries can be found in the
Geometry object library. To learn more about

geometry objects, see the online developer
documentation.

The Locator object is the fine-grained ArcObjects
component associated with a GeocodeServer

object. Once you have a reference to the Locator,
which you can get from the GeocodeServer via
the IGeocodeServerObjects interface, you can
access other objects associated with the Locator,

such as the Locator’s reference data.

The objects and interfaces used for performing
spatial queries and for working with the results

of those queries can be found in the
GeoDatabase object library. To learn more about

geodatabase objects, see the online developer
documentation.

Chapter7.pmd 1/25/2005, 6:01 PM395

396 • ArcGIS Server Administrator and Developer Guide

 IFeatureCursor fCursor = fc.search(sf, true);

 int lName;

 int lType;

 IFields flds = fc.getFields();

 lName = flds.findField("NAME");

 lType = flds.findField("SITETYPE");

 IFeature f;

 while ((f = fCursor.nextFeature()) != null) {

 IPoint pt = new IPointProxy(f.getShape());

 ToxicSite toxicSite = new ToxicSite((String)f.getValue(lName),
(String)f.getValue(lType), pt.getX(),pt.getY());

 toxicSiteList.add(toxicSite);

 }

 ToxicSite[] sites = new ToxicSite[toxicSiteList.size()];

 for (int i = 0; i < sites.length; i++) {

 sites[i] = (ToxicSite) toxicSiteList.get(i);

 }

 sc.releaseContext();

 return sites;

 }

 catch (Exception e) {

 sc.releaseContext();

 e.printStackTrace();

 return null;

 }

}

Creating the Web service
JBuilder has a version of Apache Axis toolkit built into it, and you will use this

to expose the Java classes as a Web service.

1. In the Project pane, right-click ToxicSiteLocator.java and click
Export as Web Service.

2. In the Web Services Configuration Wizard, click New.

3. In the Web Application wizard, type “toxicloc” for the Name and
click OK.

4. Click Finish.

5. Accept the defaults in the Export as Axis Web Service dialog box,
and click Finish.

The toxicloc Web application is created. JBuilder has Tomcat Servlet
engine built in; you can run the Web application and host your Web

service by running this Web application.

DEVELOPING AN APPLICATION WEB SERVICE (JAVA)

The Export as Axis Web Service wizard

Chapter7.pmd 1/25/2005, 6:01 PM396

Chapter 7 • Developer scenarios • 397

1. In the Project pane, click toxicloc, then click Root Directory.

2. Right-click index.html and, from the context menu, click Web Run using
“Web Services Server”.

By default, JBuilder will start Tomcat on port 8080, and you will see the JBuilder
Apache Axis Admin Console. You can view the WSDL generated for the Web
service you created.

1. Click the link to View the list of deployed Web services.

2. Click the link to ToxicSiteLocator (wsdl).

The WSDL for the Web service will be displayed. You can also use an external
Web browser to view the WSDL by typing the URL “http://localhost:8080/
toxicloc/services/ToxicSiteLocator?wsdl”.

Creating a client application
Since your Web service exposes a language-neutral interface that can be called
using HTTP, your Web service can be called from any language that understands
HTTP and WSDL. An elaborate client application (which itself could be a Web
application, a desktop application, or even another Web service) is not demon-
strated here, but the following is an example of how such an application would
call the Web service method. This will be a simple Java class that will call the
Web service in its main method.

Create a new JBuilder project for the client application. JBuilder will generate
stub classes for the client by using the WSDL2Java utility of Apache Axis.

1. Click File, then click New Project.

When you run your Web service within JBuilder,
it will display a browser with links to view the
list of deployed services and the WSDL for your

Web service.

DEVELOPING AN APPLICATION WEB SERVICE (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM397

398 • ArcGIS Server Administrator and Developer Guide

2. In the Project Wizard dialog box, type “toxicLocationClient” for the
Name, then type the path to your webservice_projects folder for the
Directory.

3. Click Finish.

You will now create the stub classes from the Web service’s WSDL.

1. Click File, then click New.

2. In the Object Gallery dialog box, click the Web Services tab.

3. Click Import A Web Service and click OK.

 4. In the Import A Web Service With Axis dialog box, click the Browse
button beside WSDL URL.

5. In the File or URL text box, type “http://localhost:8080/toxicloc/
services/ToxicSiteLocator?wsdl”, then click OK.

6. Click Finish.

Rebuild the project (Project/Rebuild Project “toxicLocationClient.jpx”).
The project should rebuild without any errors. Now that the stub classes for
the client have been successfully compiled, you will create the client class.

1. Click File, then click New Class.

2. In the Class wizard, type “client” for the Package, and type
 “ToxicSitelocatorClient” for the Class Name.

3. Click OK.

Open the file ToxicSitelocatorClient by double-clicking on it in the
Project pane.

Add the following import statements for referencing the generated stub
classes.
import localhost.toxicloc.services.ToxicSiteLocator.*;

import toxiclocation.*;

Next, you will create a main function that will be executed when you
run this project.

Add the following lines of code to your class:
public static void main(String[] args) {

}

Next, you will create a service from the generated stub classes.

Add the following lines of code to your main function:
// Make a service using wasdl2java generated client proxy class.

ToxicSiteLocatorService service = new ToxicSiteLocatorServiceLocator();

Use the findToxicLocations method to locate the address “2111 Division St” with
ZIP Code 97202 and find all the toxic locations within a distance of 10,000
units.

DEVELOPING AN APPLICATION WEB SERVICE (JAVA)

The Object Gallery dialog box

The Import A Web Service With Axis wizard

The Project wizard

Chapter7.pmd 03/18/2005, 10:01 AM398

Chapter 7 • Developer scenarios • 399

Add the following lines of code to your main function.
try {

 // Now use the service to get the stub class.

 ToxicSiteLocator port = service.getToxicSiteLocator();

 // Make the actual call; use stub class for remote service just like a
 // local object.

 ToxicSite[] sites = (ToxicSite[]) port.findToxicLocations("2111 Division
St", "97202", 10000);

 for (int i = 0; i < sites.length; i++) {

 ToxicSite site = sites[i];

 System.out.println("-------- Site : "+ (i+1) + " ---------");

 System.out.println("Name : "+ site.getName());

 System.out.println("Type : "+ site.getType());

 System.out.println("X : "+ site.getX());

 System.out.println("Y : "+ site.getY());

 }

 }

catch (Exception ex) {

 System.out.println(ex.getStackTrace());

}

The code for your ToxicSitelocatorClient should look like the following.:
package client;

import localhost.toxicloc.services.ToxicSiteLocator.*;

import toxiclocation.*;

public class ToxicSiteLocatorClient {

 public static void main(String[] args) {

 // Make a service using wasdl2java generated client proxy class.

 ToxicSiteLocatorService service = new
ToxicSiteLocatorServiceLocator();

 try {

 // Now use the service to get the stub class.

 ToxicSiteLocator port = service.getToxicSiteLocator();

 // Make the actual call; use stub class for remote service just like
 // a local object.

 ToxicSite[] sites = (ToxicSite[]) port.findToxicLocations(

 "2111 Division St", "97202", 10000);

 for (int i = 0; i < sites.length; i++) {

 ToxicSite site = sites[i];

 System.out.println("-------- Site : "+ (i+1) + " ---------");

 System.out.println("Name : "+ site.getName());

 System.out.println("Type : "+ site.getType());

 System.out.println("X : "+ site.getX());

 System.out.println("Y : "+ site.getY());

 }

DEVELOPING AN APPLICATION WEB SERVICE (JAVA)

Chapter7.pmd 03/18/2005, 10:01 AM399

400 • ArcGIS Server Administrator and Developer Guide

 }

 catch (Exception ex) {

 System.out.println(ex.getStackTrace());

 }

 }

}

Testing the Web service
Execute the client to work with the Web service.

In the Project pane, right-click the node ToxicSiteLocatorClient.java and click
Run using defaults.

The results should resemble the following:
-------- Site : 1 ---------

Name : Portland Office of Transportation

Type : Brownfield Pilot

X : 7646057.614036874

Y : 684318.6770439692

-------- Site : 2 ---------

Name : Tri-County Metropolitan Transportation District of

Type : Brownfield Pilot

X : 7646057.614036874

Y : 684318.6770439692

-------- Site : 3 ---------

Name : EAST SIDE PLATING INC PLANT 4

Type : Hazardous waste generator

X : 7647860.949718554

Y : 679162.1745111668

-------- Site : 4 ---------

Name : TRI MET CENTER STREET GARAGE

Type : Hazardous waste generator

X : 7651285.4340737425

Y : 672416.2253208841

DEPLOYMENT

You can deploy the Web service you created on a production server by deploying
the Web application archive file “toxicloc.war” in any J2EE-compliant servlet
engine or application server. Depending on the final URL for the WSDL file of
the Web service, you may need to generate the client stubs again to recompile
your client application.

ADDITIONAL RESOURCES

This scenario includes functionality and programming techniques covering a
number of different aspects of ArcObjects and the ArcGIS Server API.

You are encouraged to read Chapter 4, ‘Developing ArcGIS Server applications’,
to get a better understanding of core ArcGIS Server programming concepts and
programming guidelines for working with server contexts and ArcObjects running
within those contexts.

DEVELOPING AN APPLICATION WEB SERVICE (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM400

Chapter 7 • Developer scenarios • 401

This scenario makes use of the ArcGIS Server Java ADF to provide the GIS
server connection object for this Web service. To learn more about the Java Web
controls, see Chapter 6, ‘Developing Web applications with Java’. If you are
unfamiliar with Java Web development, it’s also recommended that you refer to
your Java developer documentation to become more familiar with Web applica-
tion development.

ArcGIS Server applications exploit the rich GIS functionality of ArcObjects.
This Web service is no exception. It includes the use of ArcObjects to work with
the components of a GeocodeServer to locate an address, manipulate geometries,
and perform spatial queries against feature classes in shapefiles or geodatabases.
To learn more about these aspects of ArcObjects, refer to the online developer
documentation on the Location, GeoDatabase, DataSourcesFile, and Geometry
object libraries.

DEVELOPING AN APPLICATION WEB SERVICE (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM401

402 • ArcGIS Server Administrator and Developer Guide

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

This walkthrough is for developers who need to build and deploy a .NET Win-
dows desktop application incorporating mapping functionality using ArcGIS
Server Web services directly. It describes the process of building, deploying, and
consuming the ArcGIS_web_service_client sample, which is part of the ArcGIS
Developer Samples.

You can find this sample in:
<install_location>\DeveloperKit\samples\Developer_Guide_Scenarios\
Web_service_clientVBNET.zip

PROJECT DESCRIPTION

The purpose of this scenario is to create a windows application using Visual
Studio .NET that uses MapServer Web services published in Web service catalogs
to navigate the maps served by those Web services.

The following is how the user will interact with the application:

1. Specify the URL of a Web service catalog and click Get Web Services.

2. Click the Map Server web service dropdown list and click the desired
MapServer to browse.

3. Click the Data frame dropdown list to choose the data frame of interest from
the MapServer.

4. Navigate the map using the Bookmark list and the Zoom In, Zoom Out, Full
Extent, and Pan tools on the toolbar.

Rather than walk through this scenario, you can
get the completed application from the samples

installation location. The sample is installed as
part of the ArcGIS developer samples.

Chapter7.pmd 1/25/2005, 6:01 PM402

Chapter 7 • Developer scenarios • 403

CONCEPTS

A Web service is a set of related application functions that can be programmati-
cally invoked over the Internet. ArcGIS Server Web services can be accessed by
any development language that can submit SOAP-based requests to a Web service
and process SOAP-based responses. The Web service consumer can get the meth-
ods and types exposed by the Web service through its Web Service Description
Language. ArcGIS Web Services are based on the SOAP doc/literal format and
are interoperable across Java and .NET.

On the Web server, the Web service catalog templates can be used by developers
to publish any server object as a Web service over HTTP. For any published server
object, the template creates an HTTP endpoint (URL) to which SOAP requests
can be submitted using standard HTTP POST. The endpoint also supports return-
ing the WSDL for the Web service using a standard HTTP GET with “wsdl” as
the query string. The implementation of the HTTP endpoint is thin, while the
actual processing of the SOAP request and the generation of the SOAP response
take place within the GIS server. The WSDLs that describe the definitions of the
SOAP requests and responses are also part of the GIS server and are installed as
part of the ArcGIS Server install under <install directory>\XMLSchema.

ArcGIS Web services can be consumed from .NET or Java. As a consumer of an
ArcGIS Web service, you can use the methods exposed by the Web service by
including a reference to the Web service in your .NET or Java project. Web
services implemented on a Java Web server can be consumed from a .NET client
and vice versa.

DESIGN

This application makes use of the methods and objects defined by the ArcGIS
Server Web service catalog and MapServer Web service. These methods and
objects correspond to the set of ArcObjects necessary to call the stateless meth-
ods exposed by the MapServer object.

To support this application, you need to have access to a Web service catalog that
contains at least one MapServer Web service. Note: The Web service catalog
itself can be either .NET or Java. For purposes of this example, the assumption
is that the Web service is .NET.

The application will connect to a Web service catalog and present to the user a
list of the available MapServer Web services in the Web service catalog. The
application will list the available data frames in the map and any bookmarks
associated with the data frame that the user can pick from. In addition, the user
can navigate the map using navigation tools in a toolbar.

REQUIREMENTS

The requirement for working through this scenario is that you have access to an
ArcGIS Server Web service catalog that contains at least one MapServer Web
service. The machine on which you develop this application does not need to
have any ArcGIS software or licensing installed on it.

For the purposes of this example, assume you have access to a Web service

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

To learn more about WSDL, refer to http://
www.w3.org.

If you have already worked with the stateless
methods on the MapServer using ArcObjects,

you’ll notice that there are differences working
with those methods on the MapServer Web

service.

If you are building an application using ArcGIS
Desktop or ArcGIS Engine, you can use the

objects in the GISClient object library to access
ArcGIS Server Web services. This is an example of

using those Web services directly from an
application that does not require any ArcObjects

components to run.

For more information on using the objects in
GISClient, see Chapter 4, ‘Developing ArcGIS
Server applications’, and the developer help.

Chapter7.pmd 1/25/2005, 6:01 PM403

404 • ArcGIS Server Administrator and Developer Guide

catalog created with .NET with the following URL:
http://padisha/MyWebServiceCatalog/default.aspx

The Web service catalog contains a MapServer Web service for a MapServer
object called “Map” whose URL is:
http://padisha/MyWebServceCatalog/Map.aspx

It will be easiest to follow this walkthrough if you create a Web service catalog
with the same name as above (MyWebServiceCatalog) and a MapServer server
object and Web service (Map), although this is not necessary. For more informa-
tion about creating a map server object, see Chapter 3, ‘Administering an ArcGIS
Server’. For information on creating a Web service catalog and exposing your
MapServer as a Web service using .NET, see Chapter 5, ‘Developing Web applica-
tions with .NET’.

If you have your own Web service catalog and MapServer Web services with
different names, the points at which the difference in names will impact the code
for this application will be pointed out.

The IDE used in this example is Visual Studio .NET 2003. This Web application
can be implemented with other .NET IDEs.

IMPLEMENTATION

In this scenario, you will use the Windows Application template project that is
installed as part of Visual Studio .NET that you will add your functionality to.
The code for this scenario will be written in C#; however, you can also write this
application using VB.NET.

The first step is to create the new project.

Creating a new project
1. Start Visual Studio .NET.

2. Click File, click New, then click Project.

3. In the New Project dialog box, under Project Types, click the Visual C#
Projects category. Under Templates, click Windows Application.

4. For the application name, type “MapServerBrowser”.

5. Click OK. This will create a new project that contains a single Windows form.

Adding references to the Web services
For your application to have access to the methods and objects ex-
posed by Web service catalog and MapServer Web services, you need to
add Web references to a Web service catalog and a reference to a
MapServer Web service to your application. A Web reference enables
you to use objects and methods provided by a Web service in your
code. After adding a Web reference to your project, you can use any
element or functionality provided by that Web service within your
application.

The New Project dialog box

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

While the examples given are .NET Web service
catalogs, if you have access to Java Web services

catalogs, you can use those in your .NET
application.

Chapter7.pmd 1/25/2005, 6:01 PM404

Chapter 7 • Developer scenarios • 405

1. In the Solution Explorer, right-click References and click Add Web Reference.

2. For URL, type the URL of your Web service catalog with “wsdl” as the query
string. In this example, the URL would be:
http://padisha/MyWebServiceCatalog/default.aspx?wsdl

3. Click Go.

4. Once the Web service is found, type “WebCatalog” for the Web reference
name, then click Add Reference.

5. In the Solution Explorer, right-click References and click Add Web Reference.

6. For URL, type the URL of your MapServer Web service with “wsdl” as the
query string. In this example, the URL would be:
http://padisha/MyWebServiceCatalog/Map.aspx?wsdl

7. Click Go.

8. Once the Web service is found, type MapServerWS for the Web
reference name, then click Add Reference.

In the project’s class view, expand MapServerBrowser, then expand
MapServerWS and WebCatalog to see the classes that have been added
to your project by referencing the Web services. Now that these
references have been added to the project, you will start programming
your Windows application to make use of the classes and methods
provided by these Web service references to consume ArcGIS Server
Web services.

Setting the properties of the form
To accommodate the functionality for this application, you will add a

number of user interface controls to the windows form. Before doing that, you
need to set some properties on the form itself, such as its size and text.

1. In the Solution Explorer, double-click Form1.cs. This will open the form in
design mode.

2. In the Properties for the form, type “584, 596” for the Size property and type
“MapServer Browser” for the Text property.

Adding controls to the form
This application utilizes a number of user controls that you need to add to and
arrange on the form.

The first control you’ll add is a picture box that will display the map images
returned by the MapServer Web service.

1. In the Microsoft Visual Studio .NET toolbox, click the Windows Forms tab
to display the Windows Forms tools.

2. In the toolbox, click PictureBox and drag a picture box onto the form.

3. In the picture box’s properties, type “552, 400” for the Size property and type
“12, 152” for the Location property.

4. Click Fixed3D for the BorderStyle property.

The Solution Explorer dialog box

The Add Web Reference dialog box

The Class View dialog box

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM405

406 • ArcGIS Server Administrator and Developer Guide

The next set of controls you’ll add is to handle the user input for the URL of the
Web service catalog that the user of the application wants to connect to.

1. In the Microsoft Visual Studio .NET toolbox, click the Windows Forms tab
to display the Windows Forms tools.

2. In the toolbox, click Label and drag a label onto the form.

3. In the label’s properties, type “Web Service Catalog URL:” for the Text prop-
erty, “140, 20” for the Size property, and “12, 64” for the Location property.

4. In the Windows Forms toolbox, click TextBox and drag a text box onto the
form.

5. In the text box’s properties, type “txtServer” for the (Name) property, “288,
20” for the Size property, and “156, 64” for the Location property.

6. In the Windows Forms toolbox, click Button and drag a button onto the
form.

7. In the button’s properties, type “btnConnect” for the (Name) property, “Get
Web Services” for the Text property, “104, 23” for the Size property, and
“452, 64” for the Location property.

The next controls you’ll add are the controls to list the MapServer Web services
that are in the Web service catalog specified by the user.

1. In the Microsoft Visual Studio .NET toolbox, click the Windows Forms tab
to display the Windows Forms tools.

2. In the toolbox, click Label and drag a label onto the form.

3. In the label’s properties, type “Map Server Web service:” for the Text property,
“128, 20” for the Size property, and “12, 92” for the Location property.

4. In the Microsoft Visual Studio .NET toolbox, click the Windows Forms tab
to display the Windows Forms tools.

5. In the toolbox, click ComboBox and drag a combo box onto the form.

6. In the combo box’s properties, type “cboMapServer” for the (Name), “400,
21” for the Size property, and “156, 92” for the Location property.

7. Click DropDownList for the DropDownStyle property.

8. Click False for the Enabled property.

The next set of controls you’ll add is the controls to list the data frames in the
MapServer Web service selected by the user.

1. In the Microsoft Visual Studio .NET toolbox, click the Windows Forms tab
to display the Windows Forms tools.

2. In the toolbox, click Label and drag a label onto the form.

3. In the label’s properties, type “Data frame:” for the Text property, “64, 20” for
the Size property, and “12, 120” for the Location property.

4. In the Microsoft Visual Studio .NET toolbox, click the Windows Forms tab
to display the Windows Forms tools.

5. In the toolbox, click ComboBox and drag a combo box onto the form.

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

While this example includes exact control
placement and size on the form, you can also

arrange these controls interactively by dragging
them and sizing them with the mouse.

Chapter7.pmd 1/25/2005, 6:01 PM406

Chapter 7 • Developer scenarios • 407

6. In the combo box’s properties, type “cboDataFrame” for the (Name), “224,
21” for the Size property, and “156, 120” for the Location property.

7. Click DropDownList for the DropDownStyle property.

8. Click False for the Enabled property.

The next set of controls you’ll add is the toolbar and its buttons for navigating
the map.

1. In the Microsoft Visual Studio .NET toolbox, click the
Windows Forms tab to display the Windows Forms tools.

2. In the toolbox, click ToolBar and drag a toolbar onto the
form. The toolbar will automatically size and position
itself along the top of the form.

3. Click Flat for the Appearance property.

Before adding the tools to the toolbar, you will add an image
list to the form that will contain the images for the com-
mands on the toolbar.

1. In the Microsoft Visual Studio .NET toolbox, click the
Windows Forms tab to display the Windows Forms tools.

2. In the toolbox, click ImageList and drag an image list
onto the form. The image list is a nonvisual control, so it
will appear in the IDE below the form.

3. Click the Images property and click the Browse button.
This will open the Image Collection Editor.

4. Click Add and click
<install_location>\DeveloperKit\Samples\Data\ServerData\zoomin.gif.

5. Repeat step 4 to add the following images to the image collection:

<install_location>\DeveloperKit\Samples\Data\ServerData\zoomout.gif

<install_location>\DeveloperKit\Samples\Data\ServerData\fullext.gif

<install_location>\DeveloperKit\Samples\Data\ServerData\pan.gif

6. Type “28,28” for the ImageSize property.

7. Click OK to close the Image Collection Editor.

8. On the form, click the toolbar control.

9. In the toolbar control’s properties, click imageList1 for the ImageList property.

The Image Collection Editor dialog box

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM407

408 • ArcGIS Server Administrator and Developer Guide

Now that you have added the image collection, you will add the commands to
the toolbar.

1. In the toolbar control’s properties, click the Buttons property and click the
Browse button. This will open the ToolBarButton Collection Editor.

2. Click Add. This will add a new toolbar button.

3. Type “tbZoomIn” for the Name.

4. Click False for the Enabled property.

5. Click 0 for the ImageIndex property.

6. Click PushButton for the Style property.

7. Type “Zoom in” for the ToolTipText property.

8. Repeat steps 2 to 7 to add a button with the following
properties:

 Name: tbZoomOut

 Enabled: False

 ImageIndex: 1

 Style: PushButton

 ToolTipText: Zoom out

9. Repeat steps 2 to 7 to add a button with the following
properties:

 Name: tbFullExt

 Enabled: False

ImageIndex: 2

Style: PushButton

ToolTipText: Full Extent

10. Repeat steps 2 to 7 to add a button with the following properties:

 Name: tbPan

 Enabled: False

 ImageIndex: 3

 Style: ToggleButton

 ToolTipText: Pan

The last controls you’ll add are the controls to list the bookmarks in the
MapServer Web service’s data frame selected by the user.

1. In the Microsoft Visual Studio .NET toolbox, click the Windows Forms tab
to display the Windows Forms tools.

2. In the toolbox, click Label and drag a label onto the form.

3. In the label’s properties, type “Bookmark:” for the Text property, “60, 16” for
the Size property, and “260, 16” for the Location property.

The ToolBarButton Collection Editor dialog box

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM408

Chapter 7 • Developer scenarios • 409

4. In the Microsoft Visual Studio .NET toolbox, click the Windows Forms tab
to display the Windows Forms tools.

5. In the toolbox, click ComboBox and drag a combo box onto the form.

6. In the combo box’s properties, type “cboBookMark” for the (Name), “228,
21” for the Size property, and “320, 12” for the Location property.

7. Click DropDownList for the DropDownStyle property.

8. Click False for the Enabled property.

Now you have added all the controls necessary for the application to the form.
Your form should look like the following in design mode:

Now you’ll add the code to the events for the controls in the application.

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM409

410 • ArcGIS Server Administrator and Developer Guide

Adding member variables to the application
This application requires a number of private member variables. Each variable
will not be explained here, but as you add code to the various control events, you
will use these variables.

1. Right-click the form and click ViewCode. This will open the code window for
the form.

You will see that there are already a number of private member variables that
were added by Visual Studio .NET for the controls you added to the form.

2. Below these member variables, add the following lines of code:
private string m_sSelectedMap;

private MapServerWS.MapDescription m_sMapDesc;

private string m_sDataFrame;

private double startX;

private double startY;

private int startDragX;

private int startDragY;

private int deltaDragX;

private int deltaDragY;

private MapServerWS.ImageDisplay idisp;

private System.Drawing.Image pImage;

Adding code to get the list of Web services in the catalog
When using this application, the user will type the URL of a Web service catalog,
then click the Get Web Services button. You will add code to the click event of
the button to get the MapServer Web services in the Web service catalog and add
them to the Web service combo box (cboMapServer).

1. In the Solution Explorer, double-click Form1.cs to open the form in design
mode or click the Form1.cd [Design] tab.

2. Double-click the Get Web Services button you added to the form. This will
open the code window and place the cursor in the default event for the but-
ton, which is the click event. The code for the click event should look like the
following:
private void btnConnect_Click(object sender, System.EventArgs e)

{

}

You will add code to the click event to connect to the Web service catalog and
get the list of MapServer Web services to add to the Web service combo box.

First, since the operation may take a few seconds to execute, you’ll want to
indicate to the user that the application is busy. To do this, you will set the cursor
to a wait cursor. You’ll also add code to clear the contents of the Web services
combo box.

3. Add the following lines of code to the click event:
this.Cursor = Cursors.WaitCursor;

cboMapServer.Items.Clear();

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

Double-click the Get Web Services button to
open the code window in the button’s click

event.

Chapter7.pmd 1/25/2005, 6:01 PM410

Chapter 7 • Developer scenarios • 411

The remainder of the code will run within a try/catch block. If an error occurs
in the code in the try block, the code in the catch block will be executed. The
catch block will change the cursor back to a normal cursor and display a message
box containing an error message.

4. Add the following lines of code to the click event:
try

{

 this.Cursor = Cursors.Default;

}

catch (Exception exception)

{

 this.Cursor = Cursors.Default;

 MessageBox.Show(exception.Message ,"An error has occurred");

}

Next, you need to add code to create an instance of a WebCatalog.Default object.
WebCatalog is the name of the Web service catalog Web reference you added
earlier in this scenario, and Default is the name of the actual Web service. Once
you create a WebService.Default, you’ll set the URL property to be the URL
specified by the use in the txtServer text box.

5. Add the following lines of code to your try block:
WebCatalog.Default sc = new WebCatalog.Default();

sc.Url = txtServer.Text;

Next you’ll call the GetServiceDescriptions method on the Web service catalog to
get an array of ServiceDescription objects. You’ll loop through this array and get
the URLs for the MapServer Web services and add their URLs to the Web service
combo box (cboMapServer). Finally, you’ll add code to enable the cboMapServer
combo box.

6. Add the following lines of code to the try block:
WebCatalog.ServiceDescription[] wsdesc = sc.GetServiceDescriptions();

WebCatalog.ServiceDescription sd = null;

for (int i = 0;i < wsdesc.Length;i++)

{

 sd = wsdesc[i];

 if (sd.Type == "MapServer")

 {

 cboMapServer.Items.Add(sd.Url);

 }

}

cboMapServer.Enabled = true;

The completed code for the click event of your button should look like the
following:
private void btnConnect_Click(object sender, System.EventArgs e)

{

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

If you named your Web service catalog Web
reference something other than WebCatalog,

then you’ll have to modify this code to reflect
the naming difference.

For example, if you named your Web reference
MyWebRef, then the object would be

MyWebRef.Default.

Chapter7.pmd 1/25/2005, 6:01 PM411

412 • ArcGIS Server Administrator and Developer Guide

 this.Cursor = Cursors.WaitCursor;

 cboMapServer.Items.Clear();

 try

 {

 WebCatalog.Default sc = new WebCatalog.Default();

 sc.Url = txtServer.Text;

 WebCatalog.ServiceDescription[] wsdesc = sc.GetServiceDescriptions();

 WebCatalog.ServiceDescription sd = null;

 for (int i = 0;i < wsdesc.Length;i++)

 {

 sd = wsdesc[i];

 if (sd.Type == "MapServer")

 {

 cboMapServer.Items.Add(sd.Url);

 }

 }

 cboMapServer.Enabled = true;

 this.Cursor = Cursors.Default;

 }

 catch (Exception exception)

 {

 this.Cursor = Cursors.Default;

 MessageBox.Show(exception.Message ,"An error has occurred");

 }

}

Adding code to get the data frames from the MapServer
Once connected to the Web service catalog, the user will pick a MapServer Web
service with which to work. You will add code to the selected index changed
event of the Web service combo box (cboMapServer) to get the list of data
frames in the MapServer and add them to the data frames combo box
(cboDataFrame). You’ll also set some of the member variables added earlier.

1. In the Solution Explorer, double-click Form1.cs to open the form in design
mode, or click the Form1.cd [Design] tab.

2. Double-click the MapServer Web service combo box you added to the form.
This will open the code window and place the cursor in the default event for
the combo box, which is the selected index changed event. The code for the
selected index changed event should look like the following:
private void cboMapServer_SelectedIndexChanged(object sender,
System.EventArgs e)

{

}

One of the member variables you added to the form was a string called
m_sSelectedMap. You will use this variable to remember what the URL of the
currently selected MapServer Web service is. This will be the value of the Text

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

Double-click the Web service combo box to open
the code window in the combo box’s selected

index changed event.

Chapter7.pmd 1/25/2005, 6:01 PM412

Chapter 7 • Developer scenarios • 413

property of the map server combo box.

3. Add the following line of code to your event:
m_sSelectedMap = cboMapServer.Text;

The rest of the code for this event will be in a try/catch block.

4. Add the following lines of code to the event.
try

{

}

catch(Exception exception)

{

 MessageBox.Show(exception.Message ,"An error has occurred");

}

Next you need to add code to create an instance of a MapServerWS.Map object.
MapServerWS is the name of the MapServer Web service Web reference you
added earlier in this scenario, and Map is the name of the actual Web service.
Once you create a MapServerWS.Map, you’ll set the URL property to be the
value of the m_sSelectedMap member variable.

5. Add the following lines of code to your try block:
MapServerWS.Map map = new MapServerWS.Map();

map.Url = m_sSelectedMap;

m_sDataFrame is another string member variable that you added to the form.
This member variable will store the name of the currently selected data frame. By
default, when a new MapServer Web service is selected, the default data frame is
picked for the user. So, you’ll set the value of m_sDataFrame to be the default
data frame of the MapServer.

6. Add the following line of code to your try block:
m_sDataFrame = map.GetDefaultMapName();

Next, you’ll add code to loop through all the data frames in the Web service and
add them to the data frame combo box (cboDataFrame). Once the combo box is
populated, set its text property to be the value of m_sDataFrame.

7. Add the following code to your try block:
// Get dataframes, populate dropdown.

cboDataFrame.Items.Clear();

for (int i=0;i<map.GetMapCount();i++)

{

 cboDataFrame.Items.Add(map.GetMapName(i));

}

cboDataFrame.Text = m_sDataFrame;

8. Finally, add the following code to your try block to enable the other controls
and toolbar buttons on the form.
// Enable controls.

cboDataFrame.Enabled = true;

cboBookMark.Enabled = true;

IEnumerator benum = toolBar1.Buttons.GetEnumerator();

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

If the MapServer Web service that you created
your Web reference from was not called Map,

then the name of the object will not be
MapServerWS.Map, but will be the name of your

MapServer.

For example, if you referenced a MapServer Web
service called “World”, then the object’s name

would be MapServerWS.World.

When you set the Text property on the
cboDataFrame combo box, it will trigger its

selected index changed event. You’ll add code to
that event next.

Chapter7.pmd 1/25/2005, 6:01 PM413

414 • ArcGIS Server Administrator and Developer Guide

ToolBarButton btn = null;

while (benum.MoveNext())

{

 btn = benum.Current as ToolBarButton;

 btn.Enabled = true;

}

The completed code for the selected index changed event should look like the
following:
private void cboMapServer_SelectedIndexChanged(object sender,
System.EventArgs e)

{

 m_sSelectedMap = cboMapServer.Text;

 try

 {

 MapServerWS.Map map = new MapServerWS.Map();

 map.Url = m_sSelectedMap;

 m_sDataFrame = map.GetDefaultMapName();

 // Get dataframes, populate dropdown.

 cboDataFrame.Items.Clear();

 for (int i=0;i<map.GetMapCount();i++)

 {

 cboDataFrame.Items.Add(map.GetMapName(i));

 }

 cboDataFrame.Text = m_sDataFrame;

 // Enable controls.

 cboDataFrame.Enabled = true;

 cboBookMark.Enabled = true;

 IEnumerator benum = toolBar1.Buttons.GetEnumerator();

 ToolBarButton btn = null;

 while (benum.MoveNext())

 {

 btn = benum.Current as ToolBarButton;

 btn.Enabled = true;

 }

 }

 catch(Exception exception)

 {

 MessageBox.Show(exception.Message ,"An error has occurred");

 }

}

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM414

Chapter 7 • Developer scenarios • 415

Adding code to get the bookmarks for the selected data frame
You will add code to the selected index changed event of the data frame combo
box (cboDataFrame) to get the list of spatial bookmarks for the selected data
frame and add them to the bookmarks combo box (cboBookMark). You’ll also
set some of the member variables added earlier.

1. In the Solution Explorer, double-click Form1.cs to open the form in design
mode, or click the Form1.cd [Design] tab.

2. Double-click the data frame combo box you added to the form. This will open
the code window and place the cursor in the default event for the combo box,
which is the selected index changed event. The code for the selected index
changed event should look like the following:
private void cboDataFrame_SelectedIndexChanged(object sender,
System.EventArgs e)

{

}

Since the data frame has changed, you’ll set the data frame member variable
(m_sDataFrame) to be the Text value of the data frame combo box.

Add the following line of code to the event:
m_sDataFrame = cboDataFrame.Text;

The rest of the code for this event will be in a try/catch block.

3. Add the following lines of code to the event.
try

{

}

catch(Exception exception)

{

 MessageBox.Show(exception.Message ,"An error has occurred");

}

Next, you need to add code to create an instance of a MapServerWS.Map object
and set the URL property to be the value of the m_sSelectedMap member vari-
able.

4. Add the following lines of code to your try block:
MapServerWS.Map map = new MapServerWS.Map();

map.Url = m_sSelectedMap;

To get a list of the spatial bookmarks in the map, you’ll add code to get a refer-
ence to the MapServer’s MapServerWS.MapServerInfo object for the selected
data frame, then get an array of bookmarks from MapServerInfo.

Once you have the array of bookmarks, you’ll loop through the array and add the
names of the bookmarks to the bookmarks combo box (cboBookMark). Notice
the code also adds a “<Default Extent>” item to the combo box. This allows the
user to return to the default extent of the data frame.

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

Double-click the data frame combo box to open
the code window in the combo box’s selected

index changed event.

If the MapServer Web service that you created
your Web reference from was not called Map,

then the name of the object will not be
MapServerWS.Map but will be the name of your

MapServer.

For example, if you referenced a MapServer Web
service called “World”, then the object’s name

would be MapServerWS.World.

Chapter7.pmd 1/25/2005, 6:01 PM415

416 • ArcGIS Server Administrator and Developer Guide

5. Add the following lines of code to your try block:
// Get bookmarks, populate bookmarks dropdown.

MapServerWS.MapServerInfo mapi = map.GetServerInfo(m_sDataFrame);

MapServerWS.MapServerBookmark[] pMSBookMarks = mapi.Bookmarks;

cboBookMark.Items.Clear();

cboBookMark.Items.Add("<Default Extent>");

MapServerWS.MapServerBookmark pMDBook;

for (int j = 0;j<pMSBookMarks.Length;j++)

{

 pMDBook = pMSBookMarks[j];

 cboBookMark.Items.Add(pMDBook.Name);

}

cboBookMark.SelectedItem = "<Default Extent>";

The completed code for the selected index changed event should look like the
following:
private void cboDataFrame_SelectedIndexChanged(object sender,
System.EventArgs e)

{

 m_sDataFrame = cboDataFrame.Text;

 try

 {

 // Find the info about the selected data frame from the map server.

 MapServerWS.Map map = new MapServerWS.Map();

 map.Url = m_sSelectedMap;

 // Get bookmarks, populate bookmarks dropdown.

 MapServerWS.MapServerInfo mapi = map.GetServerInfo(m_sDataFrame);

 MapServerWS.MapServerBookmark[] pMSBookMarks = mapi.Bookmarks;

 cboBookMark.Items.Clear();

 cboBookMark.Items.Add("<Default Extent>");

 MapServerWS.MapServerBookmark pMDBook;

 for (int j = 0;j<pMSBookMarks.Length;j++)

 {

 pMDBook = pMSBookMarks[j];

 cboBookMark.Items.Add(pMDBook.Name);

 }

 cboBookMark.SelectedItem = "<Default Extent>";

 }

 catch(Exception exception)

 {

 MessageBox.Show(exception.Message ,"An error has occurred");

 }

}

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

When you set the Text property on the
cboBookMark combo box, it will trigger its

selected index changed event. You’ll add code to
that event later.

Chapter7.pmd 1/25/2005, 6:01 PM416

Chapter 7 • Developer scenarios • 417

Adding helper function to draw the map
To this point, the code you have added to the application has used methods on
the Web service catalog and MapServer Web services to get information about a
particular Web service catalog or MapServer Web service and populate controls
on the form.

The next set of controls whose events you’ll add code to will actually draw the
map and display the result in the picture box. To draw the map, you’ll add a
helper function that these events will call to do the map drawing.

1. Add the following function to your form:
private void drawMap(ref MapServerWS.MapDescription pMapDescription)

{

}

As you can see, the drawMap function takes a single argument of type
MapServerWS.MapDescription. The map description object is used by a
MapServer when drawing maps to allow, at draw time, various aspects of the
map to be changed, without changing the running MapServer object. These
properties include the extent to draw, the layers to turn on or off, and so on. In
this respect, the map description serves the purpose of allowing stateless use of a
MapServer while allowing these aspects of state to be saved in the application by
saving and modifying a local copy of the map description.

This function doesn’t do anything to the map description except use it to draw
the map. You’ll see later how the code that calls the drawMap function modifies
and uses the map description to allow the user to navigate around the map.

The first code you’ll add to this function creates an instance of a
MapServerWS.Map object and sets the URL property to be the value of the
m_sSelectedMap member variable.

2. Add the following lines of code to the function block:
MapServerWS.Map map = new MapServerWS.Map();

map.Url = m_sSelectedMap;

3. Next, add the following lines of code to create an image description object
that you’ll use when drawing the map. Notice that the ImageDisplay object
(idisp) is one of the member variables you added to the form. You will see
later that this ImageDisplay object will be used to query the map in the events
for the Pan command.
// Set up the image description for the output.

MapServerWS.ImageType it = new MapServerWS.ImageType();

it.ImageFormat = MapServerWS.esriImageFormat.esriImageJPG;

it.ImageReturnType =
MapServerWS.esriImageReturnType.esriImageReturnMimeData;

idisp = new MapServerWS.ImageDisplay();

idisp.ImageHeight = 400;

idisp.ImageWidth = 552;

idisp.ImageDPI = 150;

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

If the MapServer Web service that you created
your Web reference from was not called Map,

then the name of the object will not be
MapServerWS.Map but will be the name of

your MapServer.

For example, if you referenced a MapServer Web
service called “World”, then the object’s name

would be MapServerWS.World.

By definition, Web services are stateless. For
more information about programming ArcGIS

Server and how it relates to managing state in
an application that makes stateless use of server
objects, see Chapter 4, ‘Developing ArcGIS Server

applications’.

The size of the ImageDisplay is the same as
the size of the picture box control. This will

produce an image that fits exactly in the picture
box on the form.

Chapter7.pmd 1/25/2005, 6:01 PM417

418 • ArcGIS Server Administrator and Developer Guide

MapServerWS.ImageDescription pID = new MapServerWS.ImageDescription();

pID.ImageDisplay = idisp;

pID.ImageType = it;

Finally, add the following lines of code to call the ExportMapImage method on the
MapServer to draw the map, then convert the result into a .NET Image object
and set it as the Image property of the picture box, then return. Notice that the
Image object (pImage) is a member variable of the form. This will be used again
later in the events for the Pan button.
MapServerWS.MapImage pMI = map.ExportMapImage(pMapDescription, pID);

System.IO.Stream pStream = new
System.IO.MemoryStream((byte[])pMI.ImageData);

pImage = Image.FromStream(pStream);

pictureBox1.Image = pImage;

pictureBox1.Refresh();

return;

The completed code for the drawMap function should look like the following:
private void drawMap(ref MapServerWS.MapDescription pMapDescription)

{

 MapServerWS.Map map = new MapServerWS.Map();

 map.Url = m_sSelectedMap;

 // Set up the image description for the output.

 MapServerWS.ImageType it = new MapServerWS.ImageType();

 it.ImageFormat = MapServerWS.esriImageFormat.esriImageJPG;

 it.ImageReturnType =
MapServerWS.esriImageReturnType.esriImageReturnMimeData;

 idisp = new MapServerWS.ImageDisplay();

 idisp.ImageHeight = 400;

 idisp.ImageWidth = 552;

 idisp.ImageDPI = 150;

 MapServerWS.ImageDescription pID = new MapServerWS.ImageDescription();

 pID.ImageDisplay = idisp;

 pID.ImageType = it;

 MapServerWS.MapImage pMI = map.ExportMapImage(pMapDescription, pID);

 System.IO.Stream pStream = new
System.IO.MemoryStream((byte[])pMI.ImageData);

 pImage = Image.FromStream(pStream);

 pictureBox1.Image = pImage;

 pictureBox1.Refresh();

 return;

}

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM418

Chapter 7 • Developer scenarios • 419

Adding code to draw the extent of the selected bookmark
When the user clicks the bookmarks combo box and picks a bookmark, the
picture box will display the map for the extent of the selected bookmark. To do
this you’ll add code to the selected index changed event of the bookmarks combo
box (cboBookMark).

1. In the Solution Explorer, double-click Form1.cs to open the form in design
mode, or click the Form1.cd [Design] tab.

2. Double-click the bookmarks combo box you added to the form. This will
open the code window and place the cursor in the default event for the
combo box which is the selected index changed event. The code for the
selected index changed event should look like the following:
private void cboBookMark_SelectedIndexChanged(object sender,
System.EventArgs e)

{

}

Since the operation may take a few seconds to execute, you’ll want to indicate to
the user that the application is busy. To do this, you will set the cursor to a wait
cursor.

3. Add the following line of code to the click event:
this.Cursor = Cursors.WaitCursor;

The rest of the code for this event will be in a try/catch block.

4. Add the following lines of code to the event:
try

{

}

catch(Exception exception)

{

 this.Cursor = Cursors.Default;

 MessageBox.Show(exception.Message ,"An error has occurred");

}

Next you need to add code to create an instance of a MapServerWS.Map object
and set the URL property to be the value of the m_sSelectedMap member vari-
able. Then you’ll get a MapServerInfo object for the selected data frame
(m_sDataFrame).

5. Add the following lines of code to your try block:
MapServerWS.Map map = new MapServerWS.Map();

map.Url = m_sSelectedMap;

MapServerWS.MapServerInfo mapi = map.GetServerInfo(m_sDataFrame);

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

If the MapServer Web service that you created
your Web reference from was not called Map,

then the name of the object will not be
MapServerWS.Map but will be the name of your

MapServer.

For example, if you referenced a MapServer Web
service called “World”, then the object’s name

would be MapServerWS.World.

Double-click the bookmarks combo box to open
the code window in the combo box’s selected

index changed event.

Chapter7.pmd 1/25/2005, 6:01 PM419

420 • ArcGIS Server Administrator and Developer Guide

6. Next, add code to create a MapServerWS.MapDescription variable. If the
Text value of the bookmarks combo box is “<Default Extent>”, then set the
map description to be the default map description for the data frame, update
the map description member variable m_sMapDesc, draw the map, and return.
Otherwise, set the map description to be the map description member vari-
able.
MapServerWS.MapDescription pMapDescription;

// If they chose the default extent, get the map description from the map
// server, then exit.

if(cboBookMark.Text == "<Default Extent>")

{

 pMapDescription = mapi.DefaultMapDescription;

 m_sMapDesc = pMapDescription;

 drawMap (ref pMapDescription);

 this.Cursor = Cursors.Default;

 return;

}

pMapDescription = m_sMapDesc;

A copy of the map description is being stored in a member variable, because as
you implement other commands, such as the zoom and pan commands, you’ll
want to keep track of the user’s current extent to know what to zoom or pan
from. These commands will modify the extent of the local copy of the map
description, then use it as input to the drawMap function.

7. Next, add the following code to find the bookmark that corresponds to the
bookmark picked by the user, get its extent, set the extent into the map
description, then draw the map. Notice that after the map description is
modified, the member variable m_sMapDesc is updated so the user’s current
extent is remembered.
// Find the chosen bookmark.

MapServerWS.MapServerBookmark[] pMSBookMarks = mapi.Bookmarks;

MapServerWS.MapServerBookmark pMDBook = null;

for (int i = 0;i < pMSBookMarks.Length;i++)

{

 pMDBook = pMSBookMarks[i];

 if (pMDBook.Name == cboBookMark.Text)

 break;

}

// Set the extent of the map description to the bookmark's extent.

MapServerWS.MapArea pMA = pMDBook;

pMapDescription.MapArea = pMA;

// Save the map description.

m_sMapDesc = pMapDescription;

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

By definition, Web services are stateless. For
more information about programming ArcGIS

Server and how it relates to managing state in
an application that makes stateless use of server
objects, see Chapter 4, ‘Developing ArcGIS Server

applications’.

Chapter7.pmd 1/25/2005, 6:01 PM420

Chapter 7 • Developer scenarios • 421

drawMap (ref pMapDescription);

this.Cursor = Cursors.Default;

The completed code for the selected index changed event should look like the
following:
private void cboBookMark_SelectedIndexChanged(object sender,
System.EventArgs e)

{

 this.Cursor = Cursors.WaitCursor;

 try

 {

 MapServerWS.Map map = new MapServerWS.Map();

 map.Url = m_sSelectedMap;

 MapServerWS.MapServerInfo mapi = map.GetServerInfo(m_sDataFrame);

 MapServerWS.MapDescription pMapDescription;

 // If they chose the default extent, get the map description from the
 // map server, then exit.

 if(cboBookMark.Text == "<Default Extent>")

 {

 pMapDescription = mapi.DefaultMapDescription;

 m_sMapDesc = pMapDescription;

 drawMap (ref pMapDescription);

 this.Cursor = Cursors.Default;

 return;

 }

 pMapDescription = m_sMapDesc;

 // Find the chosen bookmark.

 MapServerWS.MapServerBookmark[] pMSBookMarks = mapi.Bookmarks;

 MapServerWS.MapServerBookmark pMDBook = null;

 for (int i = 0;i < pMSBookMarks.Length;i++)

 {

pMDBook = pMSBookMarks[i];

 if (pMDBook.Name == cboBookMark.Text)

 break;

 }

 // Set the extent of the map description to the bookmark's extent.

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM421

422 • ArcGIS Server Administrator and Developer Guide

 MapServerWS.MapArea pMA = pMDBook;

 pMapDescription.MapArea = pMA;

 // Save the map description.

 m_sMapDesc = pMapDescription;

 drawMap (ref pMapDescription);

 this.Cursor = Cursors.Default;

 }

 catch (Exception exception)

 {

 this.Cursor = Cursors.Default;

 MessageBox.Show(exception.Message ,"An error has occurred");

 }

}

Adding code for the Zoom, Full Extent buttons
Some of the map navigation functionality in this application includes fixed zoom
in, fixed zoom out, and zoom to full extent commands. You added these com-
mands as buttons to the toolbar on the form. You’ll add the code to execute
when these commands are clicked to the button-click event of the toolbar
(toolBar1).

1. In the Solution Explorer, double-click Form1.cs to open the form in design
mode, or click the Form1.cd [Design] tab.

2. Double-click the toolbar you added to the form. This will open the code
window and place the cursor in the default event for the toolbar, which is the
button-click event. The code for the button-click event should look like the
following:
private void toolBar1_ButtonClick(object sender,
System.Windows.Forms.ToolBarButtonClickEventArgs e)

{

}

3. Add the following code to determine which button was clicked.
// Evaluate the Button property to determine which button was clicked.

switch(toolBar1.Buttons.IndexOf(e.Button))

{

 case 0: // Zoom in.

 break;

 case 1: // Zoom out.

 break;

 case 2: // Full extent.

 break;

 case 3: // Pan.

 break;

}

For the zoom in case, you’ll add code to get the MapServerWS.Map object, set its
URL, get the map description saved as m_sMapDesc, shrink its extent, draw the

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

If the MapServer Web service that you created
your Web reference from was not called Map,

then the name of the object will not be
MapServerWS.Map but will be the name of your

MapServer.

For example, if you referenced a MapServer Web
service called “World”, then the object’s name

would be MapServerWS.World.

Chapter7.pmd 1/25/2005, 6:01 PM422

Chapter 7 • Developer scenarios • 423

map, then update m_sMapDesc with the new extent.

4. Add the following code to case 0.
this.Cursor = Cursors.WaitCursor;

try

{

 MapServerWS.Map map = new MapServerWS.Map();

 map.Url = m_sSelectedMap;

 MapServerWS.MapDescription pMapDescription = m_sMapDesc;

 // Get the current extent and shrink it, then set the new extent into
 // the map description.

 MapServerWS.EnvelopeN pEnvelope = pMapDescription.MapArea.Extent as
MapServerWS.EnvelopeN;

 double eWidth = Math.Abs(pEnvelope.XMax - pEnvelope.XMin);

 double eHeight = Math.Abs(pEnvelope.YMax - pEnvelope.YMin);

 double xFactor = (eWidth - (eWidth * 0.75))/2;

 double yFactor = (eHeight - (eHeight * 0.75))/2;

 pEnvelope.XMax = pEnvelope.XMax - xFactor;

 pEnvelope.XMin = pEnvelope.XMin + xFactor;

 pEnvelope.YMax = pEnvelope.YMax - yFactor;

 pEnvelope.YMin = pEnvelope.YMin + yFactor;

 MapServerWS.MapExtent pMapExtext = new MapServerWS.MapExtent();

 pMapExtext.Extent = pEnvelope;

 pMapDescription.MapArea = pMapExtext;

 // Save the map description and draw the map.

 m_sMapDesc = pMapDescription;

 drawMap (ref pMapDescription);

 this.Cursor = Cursors.Default;

}

catch (Exception exception)

{

 this.Cursor = Cursors.Default;

 MessageBox.Show(exception.Message ,"An error has occurred");

}

For the zoom out case, you’ll add similar code as that for zoom in, except you’ll
expand the map description’s extent.

5. Add the following code to case 1.
this.Cursor = Cursors.WaitCursor;

 try

{

 MapServerWS.Map map = new MapServerWS.Map();

 map.Url = m_sSelectedMap;

 MapServerWS.MapDescription pMapDescription = m_sMapDesc;

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM423

424 • ArcGIS Server Administrator and Developer Guide

 // Get the current extent and shrink it, then set the new extent into
 // the map description.

 MapServerWS.EnvelopeN pEnvelope = pMapDescription.MapArea.Extent as
MapServerWS.EnvelopeN;

 double eWidth = Math.Abs(pEnvelope.XMax - pEnvelope.XMin);

 double eHeight = Math.Abs(pEnvelope.YMax - pEnvelope.YMin);

 double xFactor = ((eWidth * 1.25) - eWidth)/2;

 double yFactor = ((eHeight * 1.25) - eHeight)/2;

 pEnvelope.XMax = pEnvelope.XMax + xFactor;

 pEnvelope.XMin = pEnvelope.XMin - xFactor;

 pEnvelope.YMax = pEnvelope.YMax + yFactor;

 pEnvelope.YMin = pEnvelope.YMin - yFactor;

 MapServerWS.MapExtent pMapExtext = new MapServerWS.MapExtent();

 pMapExtext.Extent = pEnvelope;

 pMapDescription.MapArea = pMapExtext;

 // Save the map description and draw the map.

 m_sMapDesc = pMapDescription;

 drawMap (ref pMapDescription);

 this.Cursor = Cursors.Default;

}

catch (Exception exception)

{

 this.Cursor = Cursors.Default;

 MessageBox.Show(exception.Message ,"An error has occurred");

}

For the full extent case, the code is similar, except you get the full extent from
the map server’s MapServerInfo object and set it into the map description.

6. Add the following code to case 2.
this.Cursor = Cursors.WaitCursor;

try

{

 MapServerWS.Map map = new MapServerWS.Map();

 map.Url = m_sSelectedMap;

 MapServerWS.MapServerInfo mapi = map.GetServerInfo(m_sDataFrame);

 MapServerWS.MapDescription pMapDescription = m_sMapDesc;

 // Get the full extent of the map and set it as the map description's extent.

 MapServerWS.Envelope pEnvelope = mapi.FullExtent;

 MapServerWS.MapExtent pMapExtext = new MapServerWS.MapExtent();

 pMapExtext.Extent = pEnvelope;

 pMapDescription.MapArea = pMapExtext;

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM424

Chapter 7 • Developer scenarios • 425

 // Save the map description and draw the map.

 m_sMapDesc = pMapDescription;

 drawMap(ref pMapDescription);

 this.Cursor = Cursors.Default;

}

catch (Exception exception)

{

 this.Cursor = Cursors.Default;

 MessageBox.Show(exception.Message ,"An error has occurred");

}

The code for the button-click event should look like the following:
private void toolBar1_ButtonClick(object sender,
System.Windows.Forms.ToolBarButtonClickEventArgs e)

{

 // Evaluate the Button property to determine which button was clicked.

 switch(toolBar1.Buttons.IndexOf(e.Button))

 {

 case 0:

 this.Cursor = Cursors.WaitCursor;

 // Zoom in.

 try

 {

 MapServerWS.Map map = new MapServerWS.Map();

 map.Url = m_sSelectedMap;

 MapServerWS.MapDescription pMapDescription = m_sMapDesc;

 // Get the current extent and shrink it, then set the new extent
// into the map description.

 MapServerWS.EnvelopeN pEnvelope = pMapDescription.MapArea.Extent
as MapServerWS.EnvelopeN;

 double eWidth = Math.Abs(pEnvelope.XMax - pEnvelope.XMin);

 double eHeight = Math.Abs(pEnvelope.YMax - pEnvelope.YMin);

 double xFactor = (eWidth - (eWidth * 0.75))/2;

 double yFactor = (eHeight - (eHeight * 0.75))/2;

 pEnvelope.XMax = pEnvelope.XMax - xFactor;

 pEnvelope.XMin = pEnvelope.XMin + xFactor;

 pEnvelope.YMax = pEnvelope.YMax - yFactor;

 pEnvelope.YMin = pEnvelope.YMin + yFactor;

 MapServerWS.MapExtent pMapExtext = new MapServerWS.MapExtent();

 pMapExtext.Extent = pEnvelope;

 pMapDescription.MapArea = pMapExtext;

 // Save the map description and draw the map.

 m_sMapDesc = pMapDescription;

 drawMap (ref pMapDescription);

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM425

426 • ArcGIS Server Administrator and Developer Guide

 this.Cursor = Cursors.Default;

 }

 catch (Exception exception)

 {

 this.Cursor = Cursors.Default;

 MessageBox.Show(exception.Message ,"An error has occurred");

 }

 break;

 case 1: // Zoom out.

 this.Cursor = Cursors.WaitCursor;

 try

 {

 MapServerWS.Map map = new MapServerWS.Map();

 map.Url = m_sSelectedMap;

 MapServerWS.MapDescription pMapDescription = m_sMapDesc;

 // Get the current extent and shrink it, then set the new extent
 // into the map description.

 MapServerWS.EnvelopeN pEnvelope = pMapDescription.MapArea.Extent
as MapServerWS.EnvelopeN;

 double eWidth = Math.Abs(pEnvelope.XMax - pEnvelope.XMin);

 double eHeight = Math.Abs(pEnvelope.YMax - pEnvelope.YMin);

 double xFactor = ((eWidth * 1.25) - eWidth)/2;

 double yFactor = ((eHeight * 1.25) - eHeight)/2;

 pEnvelope.XMax = pEnvelope.XMax + xFactor;

 pEnvelope.XMin = pEnvelope.XMin - xFactor;

 pEnvelope.YMax = pEnvelope.YMax + yFactor;

 pEnvelope.YMin = pEnvelope.YMin - yFactor;

 MapServerWS.MapExtent pMapExtext = new MapServerWS.MapExtent();

 pMapExtext.Extent = pEnvelope;

 pMapDescription.MapArea = pMapExtext;

 // Save the map description and draw the map.

 m_sMapDesc = pMapDescription;

 drawMap (ref pMapDescription);

 this.Cursor = Cursors.Default;

 }

 catch (Exception exception)

 {

 this.Cursor = Cursors.Default;

 MessageBox.Show(exception.Message ,"An error has occurred");

 }

 break;

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM426

Chapter 7 • Developer scenarios • 427

 case 2: // Full extent

 this.Cursor = Cursors.WaitCursor;

 try

 {

 MapServerWS.Map map = new MapServerWS.Map();

 map.Url = m_sSelectedMap;

 MapServerWS.MapServerInfo mapi = map.GetServerInfo(m_sDataFrame);

 MapServerWS.MapDescription pMapDescription = m_sMapDesc;

 // Get the full extent of the map and set it as the map
 // description's extent.

 MapServerWS.Envelope pEnvelope = mapi.FullExtent;

 MapServerWS.MapExtent pMapExtext = new MapServerWS.MapExtent();

 pMapExtext.Extent = pEnvelope;

 pMapDescription.MapArea = pMapExtext;

 // Save the map description and draw the map.

 m_sMapDesc = pMapDescription;

 drawMap(ref pMapDescription);

 this.Cursor = Cursors.Default;

 }

 catch (Exception exception)

 {

 this.Cursor = Cursors.Default;

 MessageBox.Show(exception.Message ,"An error has occurred");

 }

 break;

 case 3: //Pan

 break;

 }

}

You will implement case 3 (pan) next.

Adding code for the Pan button
The final piece of functionality you’ll add to the application is the ability for the
user to interactively pan the map. To do this, you’ll add code to a number of
events on the picture box control, specifically, the mouse down, mouse up, mouse
move, and paint events. Before adding code to those events, you’ll add code to
the button-click event of the toolbar to change the cursor for the picture box
when the Pan button is pushed in.

1. Add the following lines of code to case 3 in the toolbar-click event.
ToolBarButton btn = e.Button;

if (btn.Pushed)

 pictureBox1.Cursor = Cursors.Hand;

else

 pictureBox1.Cursor = Cursors.Default;

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM427

428 • ArcGIS Server Administrator and Developer Guide

Next, you will add code to the mouse down event for the picture box. This code
will check to see if the Pan button is pushed and, if so, record the point on the
map (for example, picture box) that is clicked in both screen and map coordi-
nates, then save those coordinates in two of the member variables you added to
the form.

1. In the Solution Explorer, double-click Form1.cs to open the form in design
mode, or click the Form1.cd [Design] tab.

2. Click the picture box control on the form.

3. In the picture box’s properties, click the Event button, then double-click the
MouseDown event. This will open the code window and place the cursor in
the mouse down event. The code for the mouse event should look like the
following:
private void pictureBox1_MouseDown(object sender,
System.Windows.Forms.MouseEventArgs e)

{

}

4. Add the following code to the event to verify if the left mouse button is
clicked and, if not, return.
if(e.Button != MouseButtons.Left)

 return;

Next, verify the Pan button is pushed and, if it is, create an instance of the
MapServerWS.Map object, and use the map description and image display variables
(m_sMapDesc and idisp) with the ToMapPoints method on the MapServer to
convert the screen coordinates of the point clicked to map coordinates. Then
save the map and screen coordinates as the member variables startX, startY,
startdragX, and startdragY.

5. Add the following code to the event:
// Is pan enabled?

IEnumerator benum = toolBar1.Buttons.GetEnumerator();

ToolBarButton btn = null;

while (benum.MoveNext())

{

 btn = benum.Current as ToolBarButton;

 if (toolBar1.Buttons.IndexOf(btn) == 3 && btn.Pushed == true)

 {

 MapServerWS.Map map = new MapServerWS.Map();

 map.Url = m_sSelectedMap;

 MapServerWS.MapDescription pMapDescription = m_sMapDesc;

 int[] Xs = {e.X};

 int[] Ys = {e.Y};

 MapServerWS.MultipointN mpnt = map.ToMapPoints(m_sMapDesc,idisp,Xs,Ys)
as MapServerWS.MultipointN;

 MapServerWS.Point[] pnta = mpnt.PointArray;

 MapServerWS.PointN pnt = pnta[0] as MapServerWS.PointN;

 startX = pnt.X;

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

The picture box control’s Properties dialog box

If the MapServer Web service that you created
your Web reference from was not called Map,

then the name of the object will not be
MapServerWS.Map but will be the name of your

MapServer.

For example, if you referenced a MapServer Web
service called “World”, then the object’s name

would be MapServerWS.World.

Chapter7.pmd 1/25/2005, 6:01 PM428

Chapter 7 • Developer scenarios • 429

 startY = pnt.Y;

 startDragX = e.X;

 startDragY = e.Y;

 }

}

The completed code for the mouse down event should look like the following:
private void pictureBox1_MouseDown(object sender,
System.Windows.Forms.MouseEventArgs e)

{

 if(e.Button != MouseButtons.Left)

 return;

 // Is pan enabled?

 IEnumerator benum = toolBar1.Buttons.GetEnumerator();

 ToolBarButton btn = null;

 while (benum.MoveNext())

 {

 btn = benum.Current as ToolBarButton;

 if (toolBar1.Buttons.IndexOf(btn) == 3 && btn.Pushed == true)

 {

 MapServerWS.Map map = new MapServerWS.Map();

 map.Url = m_sSelectedMap;

 MapServerWS.MapDescription pMapDescription = m_sMapDesc;

 int[] Xs = {e.X};

 int[] Ys = {e.Y};

 MapServerWS.MultipointN mpnt =
map.ToMapPoints(m_sMapDesc,idisp,Xs,Ys) as MapServerWS.MultipointN;

 MapServerWS.Point[] pnta = mpnt.PointArray;

 MapServerWS.PointN pnt = pnta[0] as MapServerWS.PointN;

 startX = pnt.X;

 startY = pnt.Y;

 startDragX = e.X;

 startDragY = e.Y;

 }

 }

 }

The next event you’ll implement is the mouse move. In the mouse move event,
you’ll add code similar to the code you added in the mouse down event to verify
the Pan button is pushed and the mouse button is the left mouse button. The
code that executes when these conditions are met calculates the amount the
mouse has moved from the original point that was clicked on the picture box
(startX, startY) and stores the difference as member variables deltaDragX and
deltaDragY. It then forces a redraw of the picture box by calling its Invalidate
method.

6. In the Solution Explorer, double-click Form1.cs to open the form in design
mode, or click the Form1.cd [Design] tab.

7. Click the picture box control on the form.

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM429

430 • ArcGIS Server Administrator and Developer Guide

8. In the picture box’s properties, click the Event button, then double-click the
MouseMove event. This will open the code window and place the cursor in
the mouse move event. The code for the mouse move event should look like
the following:
private void pictureBox1_MouseMove(object sender,
System.Windows.Forms.MouseEventArgs e)

{

}

9. Add code to your mouse move event, so it looks like the following:
private void pictureBox1_MouseMove(object sender,
System.Windows.Forms.MouseEventArgs e)

{

 if (e.Button != MouseButtons.Left)

 return;

 IEnumerator benum = toolBar1.Buttons.GetEnumerator();

 ToolBarButton btn = null;

 while (benum.MoveNext())

 {

 btn = benum.Current as ToolBarButton;

 if (toolBar1.Buttons.IndexOf(btn) == 3 && btn.Pushed == true)

 {

 // Drag the image.

 pictureBox1.Image = null;

 deltaDragX = startDragX - e.X;

 deltaDragY = startDragY - e.Y;

 pictureBox1.Invalidate();

 }

 }

}

The Invalidate method triggers the picture box’s Paint event. Next you’ll add
code to the paint event to draw the image offset from the picture box as the
mouse is dragged.

10. In the Solution Explorer, double-click Form1.cs to open the form in design
mode, or click the Form1.cd [Design] tab.

11. Click the picture box control on the form.

12. In the picture box’s properties, click the Event button, then double-click the
Paint event. This will open the code window and place the cursor in the paint
event. The code for the paint event should look like the following:

private void pictureBox1_MouseMove(object sender,
System.Windows.Forms.MouseEventArgs e)

{

}

The code you add to this event gets the image from the member variable pImage,
then applies the offset of the upper left corner of the image based on the values
of deltaDragX and deltaDragY and creates a new rectangle the same width as the

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM430

Chapter 7 • Developer scenarios • 431

picture, but offset, and draws the image in that offset rectangle. The effect is that
as the user drags the mouse, it will appear as though the map is being dragged.
This feedback makes it easier for the user to effectively pan the map.

13. Add code to your paint event, such that it looks like the following:
private void pictureBox1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

{

 // Get the image.

 Image newImage = pImage;

 if (newImage != null)

 {

 // Create rectangle for displaying image.

 Point loc = pictureBox1.Location;

 Rectangle destRect = new Rectangle(pictureBox1.Left - loc.X -
deltaDragX, pictureBox1.Top - loc.Y - deltaDragY, pictureBox1.Width,
pictureBox1.Height);

 // Draw image to screen.

 e.Graphics.DrawImage(newImage, destRect);

 }

}

The last event to implement is the mouse up event. The code in this event will
execute when the user has completed the pan and releases the button.

14. In the Solution Explorer, double-click Form1.cs to open the form in design
mode, or click the Form1.cd [Design] tab.

15. Click the picture box control on the form.

16. In the picture box’s properties, click the Event button, then double-click the
MouseUp event. This will open the code window and place the cursor in the
mouse up event. The code for the mouse up should look like the following:

private void pictureBox1_MouseUp(object sender,
System.Windows.Forms.MouseEventArgs e)

{

}

Like the mouse down and mouse move events, your code will check to verify the
left mouse button is clicked and that the Pan button is pushed. Once that is
verified, your code will get the MapServerWS.Map object, get the user’s current
extent from the map description (m_sMapDesc), apply the deltaX and deltaY
offset to its coordinates, update the map description (m_sMapDesc), and redraw
the map. It also resets the deltaDragX and deltaDragY member variables to 0 for
the next pan operation.

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

If the MapServer Web service that you created
your Web reference from was not called Map,

then the name of the object will not be
MapServerWS.Map but will be the name of your

MapServer.

For example, if you referenced a MapServer Web
service called “World”, then the object’s name

would be MapServerWS.World.

Chapter7.pmd 1/25/2005, 6:01 PM431

432 • ArcGIS Server Administrator and Developer Guide

17. Add code to your mouse up event, so it looks like the following:
private void pictureBox1_MouseUp(object sender,
System.Windows.Forms.MouseEventArgs e)

{

 if(e.Button != MouseButtons.Left)

 return;

 // Is pan enabled?

 IEnumerator benum = toolBar1.Buttons.GetEnumerator();

 ToolBarButton btn = null;

 while (benum.MoveNext())

 {

 btn = benum.Current as ToolBarButton;

 if (toolBar1.Buttons.IndexOf(btn) == 3 && btn.Pushed == true)

 {

 this.Cursor = Cursors.WaitCursor;

 MapServerWS.Map map = new MapServerWS.Map();

 map.Url = m_sSelectedMap;

 MapServerWS.MapDescription pMapDescription = m_sMapDesc;

 int[] Xs = {e.X};

 int[] Ys = {e.Y};

 MapServerWS.MultipointN mpnt =
map.ToMapPoints(m_sMapDesc,idisp,Xs,Ys) as MapServerWS.MultipointN;

 MapServerWS.Point[] pnta = mpnt.PointArray;

 MapServerWS.PointN pnt = pnta[0] as MapServerWS.PointN;

 double deltaX = pnt.X - startX;

 double deltaY = pnt.Y - startY;

 // Change the extent and draw.

 MapServerWS.EnvelopeN pEnvelope = pMapDescription.MapArea.Extent as
MapServerWS.EnvelopeN;

 pEnvelope.XMax = pEnvelope.XMax - deltaX;

 pEnvelope.XMin = pEnvelope.XMin - deltaX;

 pEnvelope.YMax = pEnvelope.YMax - deltaY;

 pEnvelope.YMin = pEnvelope.YMin - deltaY;

 MapServerWS.MapExtent pMapExtext = new MapServerWS.MapExtent();

 pMapExtext.Extent = pEnvelope;

 pMapDescription.MapArea = pMapExtext;

 // Save the map description and draw the map.

 m_sMapDesc = pMapDescription;

 drawMap (ref pMapDescription);

 deltaDragX = 0;

 deltaDragY = 0;

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM432

Chapter 7 • Developer scenarios • 433

 pictureBox1.Invalidate();

 this.Cursor = Cursors.Default;

 }

 }

}

Your application is now ready to be tested. Compile the project (Build/Build
Solution) and fix any errors.

Testing the application
If you run the application from within Visual Studio (Debug/Start), it will open
the form.

1. Type the URL of a Web service catalog.

2. Choose one of the MapServer Web services.

3. Click on the Bookmark combo box and choose a bookmark to zoom to.

4. Use the Zoom In, Zoom Out, Full Extent, and Pan buttons to navigate
around the map.

5. Try choosing different MapServer Web services and data frames.

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

You can use this application to connect to any
ArcGIS Server Web service catalog, whether that

Web service catalog was written in .NET or
Java.

Chapter7.pmd 1/25/2005, 6:01 PM433

434 • ArcGIS Server Administrator and Developer Guide

DEPLOYMENT

Because this application requires no ArcGIS software or licensing to run, you can
simply build an executable and copy it to any machine that has the .NET frame-
work installed. If a user has access and knows the URL to an ArcGIS Server Web
service catalog, the application’s functionality can be utilized.

ADDITIONAL RESOURCES

This scenario includes functionality and programming techniques for consuming
ArcGIS Server Web services over the Internet. You are encouraged to read
Chapter 4, ‘Developing ArcGIS Server applications’, to get a better understanding
of ArcGIS Server Web service concepts and programming guidelines.

If you are unfamiliar with developing applications that make use of Web services
with .NET, it’s also recommended that you refer to your .NET developer docu-
mentation to become more familiar with .NET application development. If you
want to learn more about Web services in general, visit www.w3.org.

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (.NET)

Chapter7.pmd 1/25/2005, 6:01 PM434

Chapter 7 • Developer scenarios • 435

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

This walkthrough is for developers who need to build and deploy a Java desktop
application incorporating mapping functionality using ArcGIS Server Web ser-
vices directly. It describes the process of building, deploying, and consuming the
ArcGIS_web_service_client sample, which is part of the ArcGIS developer
samples.

You can find this sample in:
<install_location>\DeveloperKit\samples\Developer_Guide_Scenarios\
Web_service_clientJava.zip

PROJECT DESCRIPTION

The purpose of this scenario is to create a standalone application using JBuilder
that uses MapServer Web services published in Web service catalogs to navigate
the maps served by those Web services.

The following is how the user will interact with the application:

1. Specify the URL of a Web service catalog and click Get Web Services.

2. Click the MapServer web service dropdown list and click the desired
MapServer.

3. Click the Data frame list to choose the data frame of interest from the
MapServer.

4. Navigate the map using the Bookmark list and the Zoom In, Zoom Out, Full
Extent, and Pan tools on the toolbar.

Rather than walk through this scenario, you can
get the completed application from the samples

installation location. The sample is installed as
part of the ArcGIS developer samples.

Chapter7.pmd 1/25/2005, 6:01 PM435

436 • ArcGIS Server Administrator and Developer Guide

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

CONCEPTS

A Web service is a set of related application functions that can be programmati-
cally invoked over the Internet. ArcGIS Server Web services can be accessed by
any development language that can submit SOAP-based requests to a Web service
and process SOAP-based responses. The Web service consumer can get the meth-
ods and types exposed by the Web service through its Web Service Description
Language. ArcGIS Web Services are based on the SOAP doc/literal format and
are interoperable across Java and .NET.

On the Web server, the Web service catalog templates can be used by developers
to publish any server object as a Web service over HTTP. For any published
server object, the template creates an HTTP endpoint (URL) to which SOAP
requests can be submitted using standard HTTP POST. The endpoint also sup-
ports returning the WSDL for the Web service using a standard HTTP GET with
“wsdl” as the query string. The implementation of the HTTP endpoint is thin,
while the actual processing of the SOAP request and the generation of the SOAP
response take place within the GIS server. The WSDLs that describe the defini-
tions of the SOAP requests and responses are also part of the GIS server and are
installed as part of the ArcGIS Server install under <install
directory>\XMLSchema.

ArcGIS Web services can be consumed from .NET or Java. As a consumer of an
ArcGIS Web service, you can use the methods exposed by the Web service by
including a reference to the Web service in your .NET or Java project. Web
services implemented on a Java Web server can be consumed from a .NET client
and vice versa.

DESIGN

This application makes use of the methods and objects defined by the ArcGIS
Server Web service catalog and MapServer Web service. These methods and
objects correspond to the set of ArcObjects necessary to call the stateless meth-
ods exposed by the MapServer server object.

To support this application, you need to have access to a Web service catalog that
contains at least one MapServer Web service. Note: The Web service catalog
itself can be either .NET or Java. For purposes of this example, the assumption
is that the Web service is Java.

The application will connect to a Web service catalog and present to the user a
list of the available MapServer Web services in the Web service catalog. The
application will list the available data frames in the map and any bookmarks
associated with the data frame that the user can pick from. In addition, the user
can navigate the map using navigation tools in a toolbar.

REQUIREMENTS

The requirements for working through this scenario are that you have access to an
ArcGIS Server Web service catalog that contains at least one MapServer Web
service. The machine on which you develop this application does not need to
have any ArcGIS software or licensing installed on it.

To learn more about WSDL, refer to
http://www.w3.org.

If you have already worked with the stateless
methods on the MapServer using ArcObjects,

you’ll notice that there are differences working
with those methods on the MapServer Web

service.

If you are building an application using ArcGIS
Desktop or ArcGIS Engine, you can use the

objects in the GISClient object library to access
ArcGIS Server Web services. This is an example of

using those Web services directly from an
application that does not require any ArcObjects

components to run.

For more information on using the objects in
GISClient, see Chapter 4, ‘Developing ArcGIS
Server applications’, and the developer help.

Chapter7.pmd 1/25/2005, 6:01 PM436

Chapter 7 • Developer scenarios • 437

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

For the purposes of this example, assume you have access to a Web service
catalog created with Java with the following URL:
http://doug/MyWebServiceCatalog/default.jsp

The Web service catalog contains a MapServer Web service for a MapServer
object called “Map” whose URL is:
http://doug/MyWebServceCatalog/Map_Mapserver.jsp

It will be easiest to follow this walkthrough if you create a Web service catalog
with the same name as above (MyWebServiceCatalog) and a MapServer server
object and Web service (Map), although this is not necessary. For more informa-
tion about creating a map server object, see Chapter 3, ‘Administering an ArcGIS
Server’. For information on creating a Web service catalog and exposing your
MapServer as a Web service using Java, see Chapter 6, ‘Developing Web applica-
tions with Java’.

If you have your own Web service catalog and MapServer Web services with
different names, the points at which the difference in names will impact the code
for this application will be pointed out.

The IDE used in this example is JBuilder 9 Enterprise. This application can be
implemented with other Java IDEs.

IMPLEMENTATION

The first step is to create the new project.

To begin, you must create a new JBuilder project and a working directory that
will be used for this project.

Creating a new project
1. Create a new folder called webservice_projects. This is where your Web

service project files will be created.

2. Start JBuilder.

3. Click File, then click New Project to open the Project Wizard window.

4. In the Project Wizard dialog box, type “MapServerBrowser” for the Name,
then type the path to the webservice_projects you created above for the
Directory.

5. Click Finish.

While the examples given are Java Web service
catalogs, if you have access to .NET Web services
catalogs, you can use those in your Java applica-

tion.

The Project wizard

Chapter7.pmd 1/25/2005, 6:01 PM437

438 • ArcGIS Server Administrator and Developer Guide

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

Adding references to the Web services
For your application to have access to the methods and objects exposed by the
Web service catalog and MapServer Web services, you need to add references to a
Web service catalog and a reference to a MapServer Web service to your applica-
tion. A reference enables you to use objects and methods provided by a Web
service in your code. After adding a reference to your project, you can use any
element or functionality provided by that Web service within your application.

You will now create a reference to the Web services and create the stub classes
from the Web service’s WSDL.

1. Click File, then click New.

2. In the Object Gallery dialog box, click the Web Services tab.

3. Click Import A Web Service and click OK.

4. In the Import A Web Service With Axis dialog box, click the Browse button
beside WSDL URL. In the File or URL text box, type “http://padisha/
MyWebServiceCatalog/default.jsp?wsdl”, then click OK.

5. Click Finish.

6. Click File, then click New.

7. In the Object Gallery dialog box, click the Web Services tab.

8. Click Import A Web Service and click OK.

9. In the Import A Web Service With Axis dialog box, click the Browse button
beside WSDL URL. In the File or URL text box type “http://padisha/
MyWebServiceCatalog/Map_MapServer.jsp?wsdl”, then click OK.

10. Click Finish.

Rebuild the project (Project|Rebuild Project “MapServerBrowser.jpx”). The
project should rebuild without any errors. In the project browser you can see the
classes that have been added to your project by referencing the Web services.
Now that these references have been added to the project, you will start pro-
gramming your application to make use of the classes and methods provided by
these Web service references to consume ArcGIS Server Web services.

The Object Gallery dialog box

The Import A Web Service With Axis wizard

Chapter7.pmd 1/25/2005, 6:01 PM438

Chapter 7 • Developer scenarios • 439

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

Creating a Swing application
1. Click File, then click New.

2. In the Object Gallery dialog box, click the General tab.

3. Click Application and click OK.

4. In the Application Wizard dialog box, type “mapserverbrowser” for the Pack-
age, then type “MapServerBrowser” for Class name.

5. Click Finish.

Two new classes will be created as a result: MapServerBrowser.java and
Frame1.java.

Create a new class MapPanel as the subclass of JPanel. This is will be used to
display the map image returned by the ArcGIS Server.

1. Click File, then click New Class.

2. In the Class Wizard dialog box, type “mapserverbrowser” for the Package,
then type “MapPanel” for Class name and “javax.swing.JPanel” for Base Class.

3. Click OK.

This will add a new class to your project and will open the code for the class with
some autogenerated code. The autogenerated code will include the name of the
package (mapserverbrowser) and a stubbed out class definition for MapPanel.

The Object Gallery dialog box

The Application wizard

The Class wizard

Chapter7.pmd 1/25/2005, 6:01 PM439

440 • ArcGIS Server Administrator and Developer Guide

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

4. Add import statements for the additional Java packages you will use in this
project. At the top of the code window, add the following import statements:
import java.awt.Image;

import java.awt.Graphics;

5. Add the following member variable and functions to the MapPanel class.
Image mapimage = null;

public void drawMap(Image image) {

 mapimage = image;

 repaint();

}

public void paint(Graphics g) {

 super.paint(g);

 if (mapimage != null) {

 g.drawImage(mapimage, 0, 0, this);

 }

}

The code for your MapPanel class should now look like the following:
package mapserverbrowser;

import javax.swing.JPanel;

import java.awt.Image;

import java.awt.Graphics;

public class MapPanel extends JPanel {

 Image mapimage = null;

 public void drawMap(Image image) {

 mapimage = image;

 repaint();

 }

 public void paint(Graphics g) {

 super.paint(g);

 if (mapimage != null) {

 g.drawImage(mapimage, 0, 0, this);

 }

 }

 public MapPanel() {

 }

}

6. Next, copy the following images from
<install_location>\DeveloperKit\Samples\data\serverdata to
mapserverbrowser/src/mapserverbrowser/images:

• fullext.gif

• pan.gif

• zoomin.gif

• zoomout.gif

For cross-platform compatibility, the data used
and pathnames must be lowercased.

Chapter7.pmd 1/25/2005, 6:01 PM440

Chapter 7 • Developer scenarios • 441

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

7. Click Project/Refresh.

These images will be used for icons that you will add to your application later. To
use these images as icons, you’ll create member variables of type ImageIcons to be
used as image icons for the buttons.

8. In the Project pane, double-click Frame1.java. This will open the code win-
dow for Frame1.

9. Add the following lines of code to your Frame1 class.
private ImageIcon icon1 = new
ImageIcon(this.getClass().getResource("images/zoomin.gif"));

private ImageIcon icon2 = new
ImageIcon(this.getClass().getResource("images/zoomout.gif"));

private ImageIcon icon3 = new
ImageIcon(this.getClass().getResource("images/fullext.gif"));

private ImageIcon icon4 = new
ImageIcon(this.getClass().getResource("images/pan.gif"));

10. Rebuild the project (Project|Rebuild Project “MapServerBrowser.jpx”).

Adding controls to the frame
To accommodate the functionality for this application, you will add a number of
user interface controls to the frame. This application utilizes a number of user
controls that you need to add to and arrange on the form.

1. Open Frame1.java by double-clicking Frame1.java in the Project pane.

2. Switch to the design mode by clicking View/Switch Viewer to “Design”.

3. Right-click the properties browser and set the Property Exposure Level to
Hidden.

The JBuilder IDE

Chapter7.pmd 1/25/2005, 6:01 PM441

442 • ArcGIS Server Administrator and Developer Guide

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

4. In the component tree window, click this. Type “Map Server Browser” for the
Title property and “600,600” for the Size property.

5. Click contentPane in the component tree window. Click null for the Layout
property.

The next set of controls you’ll add is the toolbar and its buttons for navigating
the map.

1. Click the Swing Containers tab in the Component palette and click JToolbar.
Drag a new toolbar on the content pane.

2. In the toolbar’s properties, type “5,5,160,27” for the Bounds property.

3. Click the Swing tab in the Component palette and click JButton. Drag a new
button onto the toolbar you added to the Content pane.

4. In the button’s properties, type “zoominButton” for the Name property,
“9,1,37,25” for the Bounds property, and “1,1,1,1” for the Margin property
and click icon1 for the Icon property.

5. Click JButton in the Component palette. Drag a new button onto the toolbar
you added to the Content pane.

6. In the button’s properties, type “zoomoutButton” for the Name property,
“46,1,37,25” for the Bounds property, and “1,1,1,1” for the Margin property
and click icon2 for the Icon property.

7. Click JButton in the Component palette. Drag a new button onto the toolbar
you added to the Content pane.

8. In the button’s properties, type “fullextButton” for the Name property,
“87,1,37,25” for the Bounds property, and “1,1,1,1” for the Margin property
and click icon3 for the Icon property.

9. Click JToggleButton in the Component palette. Drag a new toggle button onto
the toolbar you added to the Content pane.

10. In the toggle button’s properties, type “panButton” for the Name property
and “1,1,1,1” for the Margin property and click icon4 for the Icon property.

The next set of controls you’ll add includes the controls to list the bookmarks in
the MapServer Web service’s data frame selected by the user.

1. Click JLabel in the Component palette. Drag a new label onto the Content
pane.

2. In the label’s properties, type “255,8,65,25” for the Bounds property and
“Bookmark:” for the Text property.

3. Click JComboBox in the Component palette. Drag a new combo box onto the
Content pane.

4. In the combo box’s properties, type “bookmarkComboBox” for the Name
property and type “320,8,250,25” for the Bounds property.

While this example includes exact control
placement and size on the form, you can also

arrange these controls interactively by dragging
them and sizing them with the mouse.

Chapter7.pmd 1/25/2005, 6:01 PM442

Chapter 7 • Developer scenarios • 443

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

The next set of controls you’ll add is to handle the user input for the URL of the
Web service catalog that the user of the application wants to connect to.

1. Click JLabel in the Component palette. Drag a new label onto the Content
pane.

2. In the label’s properties, type “10,50,162,24” for the Bounds property and
“Web Service Catalog URL:” for the Text property.

3. Click JTextField in the Component palette. Drag a new text field onto the
Content pane.

4. In the text field’s properties, type “urlTextField” for the Name property and
type “170,50,267,25” for the Bounds property.

5. Click JButton in the Component palette. Drag a new button onto the toolbar
you added to the Content pane.

6. In the button’s properties, type “getWebServices” for the Name property,
“445,50,130,26” for the Bounds property, and “Get Web Services” for the
Text property.

The next set of controls you’ll add includes the controls to list the MapServer
Web services that are in the Web service catalog specified by the user.

1. Click JLabel in the Component palette. Drag a new label onto the content
pane.

2. In the label’s properties, type “10,85,149,20” for the Bounds property and
“Map Server Web Service:” for the Text property.

3. Click JComboBox in the Component palette. Drag a new combo box onto the
Content pane.

4. In the combo box’s properties, type “mapserverComboBox” for the Name
property and type “170,85,405,25” for the Bounds property.

The next set of controls you’ll add includes the controls to list the data frames in
the MapServer Web service selected by the user.

1. Click JLabel in the Component palette. Drag a new label onto the content
pane.

2. In the label’s properties, type “10,120,140,20” for the Bounds property and
“Data Frame:” for the Text property.

3. Click JComboBox in the Component palette. Drag a new combo box onto the
Content pane.

4. In the combo box’s properties, type “dfComboBox” for the Name property
and “170,120,269,25” for the Bounds property.

The next set of controls you’ll add is the MapPanel that will display the map
images returned by the MapServer Web service.

1. Click the Bean Chooser (leftmost icon on the component palette), then click
Select.

2. In the Bean Chooser dialog box, type “mapserverbrowser.MapPanel” for the
Class name.

3. Click OK.
The Bean Chooser dialog box

Chapter7.pmd 1/25/2005, 6:01 PM443

444 • ArcGIS Server Administrator and Developer Guide

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

4. Add the map panel by drawing a box on the Content pane.

5. In the properties for the map panel, type “mapPanel” for the Name property
and “10,160,572,418” for the Bounds property. Click LoweredBevel for the
Border property.

Now you have added all the controls necessary for the application. Your applica-
tion should look like the following in design mode:

Now you’ll add the code to the events for the controls in the application.

The JBuilder IDE

Chapter7.pmd 1/25/2005, 6:01 PM444

Chapter 7 • Developer scenarios • 445

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

Adding import statements and member variables to the application
This application requires a number of import statements and private member
variables. Each variable will not be explained here, but as you add code for the
various events, you will use these variables.

Switch to the source code view of Frame1.java by clicking the Source tab at the
bottom of the Content pane. You will see that there are already a number of
private member variables that were added by JBuilder for the controls you added
to the application.

1. Add the following import statements:
import java.net.*;

import java.awt.Color;

import com.esri.www.schemas.ArcGIS._9_0.*;

import com.esri.www.schemas.ArcGIS._9_0.Point;

2. Add the following member variables to your Frame1 class:
private Image mapimage = null;

private int startX;

private int startY;

private MapDescription mapDescription = null;

private ImageDisplay idisp = null;

Next, you’ll need to add an init method to your Frame1 class that will hold the
event listeners for all the controls that you added to your application. Add the
following method to your Frame1 class:
private void init() {

}

Adding code to get the list of Web services in the catalog
On using this application, the user will type the URL of a Web service catalog,
then click the Get Web Services button. You will add code to add an action
listener to a button that calls a function to get the MapServer Web services in the
Web service catalog and add them to the Web service combo box
(mapserverComboBox).

1. Add the following lines of code inside the init method.
// Add event listener to the Get Web Services button.

getWebServices.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 getMapServer();

 }

});

Now create the getMapserver function to get all the MapServer Web services and
add their URLs to the map server combo box (mapserverComboBox).

2. Add the following method to your Frame1 class.
private void getMapServer() {

}

You will add code to the function getMapServer to connect to the Web service
catalog and get the list of MapServer Web services to add to the Web service
combo box.

Chapter7.pmd 1/25/2005, 6:01 PM445

446 • ArcGIS Server Administrator and Developer Guide

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

First, make sure the urlTextField is not empty. Since the operation may take a few
seconds to execute, you’ll want to indicate to the user that the application is busy.
To do this, you will set the cursor to a wait cursor. You’ll also add code to clear
the contents of the Web services combo box. Add the code within a try/catch
block. If an error occurs in the code in the try block, first the code in the catch
block executes, then the code in the finally block executes. The catch block will
print the stack trace of the error, and the finally block will change the cursor
back to a normal cursor.

3. Add the following lines of code to the getMapServer function:
try {

 // Make sure input text field is not empty.

 if (urlTextField.getText().length() == 0) {

 return;

 }

 this.setCursor(new Cursor(Cursor.WAIT_CURSOR));

 // Clear old items in the MapServer JComboBox.

 mapserverComboBox.removeAllItems();

}

catch (Exception ex) {

 ex.printStackTrace();

}

finally {

 this.setCursor(new Cursor(Cursor.DEFAULT_CURSOR));

}

Next, you will use the stub classes created by Apache Axis from the WSDL to
create a Web service catalog. Use the URL specified by the user in the urlTextField
to discover the services in the catalog.

4. Add the following lines of code to your try block:
 // Get MapServers.

URL url = new URL(urlTextField.getText());

ServiceCatalogBindingStub servicecatalog = (ServiceCatalogBindingStub)new

 _defaultLocator().getServiceCatalogPort(url);

Next you’ll call the getServiceDescriptions method on the Web service catalog to get
an array of serviceDescription objects. You’ll loop through this array and get the
URL for the MapServer Web services and add their URLs to the Web service
combo box (mapserverComboBox).

5. Add the following lines of code to your try block:
ArrayOfServiceDescription sdArray =
servicecatalog.getServiceDescriptions();

ServiceDescription sd[] = sdArray.getServiceDescription();

// Add MapServers to the JComboBox.

for (int i = 0; i < sd.length; i++) {

 if (sd[i].getType().equals("MapServer")) {

 mapserverComboBox.addItem(sd[i].getUrl());

 }

}

Chapter7.pmd 1/25/2005, 6:01 PM446

Chapter 7 • Developer scenarios • 447

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

The code for the init method and the completed code for the getMapServer method
should look like the following:
private void init() {

 // Add event listener to the Get Web Services button.

 getWebServices.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 getMapServer();

 }

 });

}

private void getMapServer() {

 try {

 // Make sure input text field is not empty.

 if (urlTextField.getText().length() == 0) {

 return;

 }

 this.setCursor(new Cursor(Cursor.WAIT_CURSOR));

 // Clear old items in the MapServer JComboBox.

 mapserverComboBox.removeAllItems();

 // Get MapServers.

 URL url = new URL(urlTextField.getText());

 ServiceCatalogBindingStub servicecatalog =
(ServiceCatalogBindingStub)new

 _defaultLocator().getServiceCatalogPort(url);

 ArrayOfServiceDescription sdArray =
servicecatalog.getServiceDescriptions();

 ServiceDescription sd[] = sdArray.getServiceDescription();

 // Add MapServers to the JComboBox.

 for (int i = 0; i < sd.length; i++) {

 if (sd[i].getType().equals("MapServer")) {

 mapserverComboBox.addItem(sd[i].getUrl());

 }

 }

 }

 catch (Exception ex) {

 ex.printStackTrace();

 }

 finally {

 this.setCursor(new Cursor(Cursor.DEFAULT_CURSOR));

 }

}

Chapter7.pmd 1/25/2005, 6:01 PM447

448 • ArcGIS Server Administrator and Developer Guide

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

Adding code to get the data frames from the MapServer
Once connected to the Web service catalog, the user will pick a MapServer Web
service with which to work. You will add code to add an event listener to the
Web service combo box (mapserverComboBox) that calls a function to get the list
of data frames in the MapServer and add them to the data frames combo box
(dfComboBox).

1. Add the following code inside the init method.
// Add event listener to the mapserver JComboBox.

mapserverComboBox.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 getDataFrame(((JComboBox) e.getSource()).getSelectedItem());

 }

});

Next, create the getDataFrame method to get all the data frames of the selected
MapServer.

2. Add the following method to your Frame1 class.
private void getDataFrame(Object obj) {

}

The rest of the code will be in a try/catch block. Next you need to add code to
create an instance of the selected map server Web service.

3. Add the following lines of code to your try block:
try {

 URL url = new URL(obj.toString());

 MapServerBindingStub mapserver = (MapServerBindingStub)new
MapLocator().getMapServerPort(url);

}

catch (Exception ex) {

 ex.printStackTrace();

}

Next, you’ll add code to loop through all the data frames in the Web service and
add them to the data frame combo box (dfComboBox). Remove items from the list
before populating it.

4. Add the following code to your try block.
dfComboBox.removeAllItems();

for (int i = 0; i < mapserver.getMapCount(); i++) {

 dfComboBox.addItem(mapserver.getMapName(i));

}

If the MapServer Web service that you created
your Web reference from was not called Map,

then the name of the object will not be
MapLocator, but will be the name of your
MapServer<Locator>. For example, if you

referenced a MapServer Web service called
“World”, then the object’s name would be

WorldLocator.

Chapter7.pmd 1/25/2005, 6:01 PM448

Chapter 7 • Developer scenarios • 449

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

The code for the init method and the completed code for the getDataFrame
method should look like the following:
private void init() {

 // Add event listener to the Get Web Services button.

 getWebServices.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 getMapServer();

 }

 });

 // Add event listener to the mapserver JComboBox.

 mapserverComboBox.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 getDataFrame(((JComboBox) e.getSource()).getSelectedItem());

 }

 });

}

private void getDataFrame(Object obj) {

 try {

 URL url = new URL(obj.toString());

 MapServerBindingStub mapserver = (MapServerBindingStub)new
MapLocator().getMapServerPort(url);

 dfComboBox.removeAllItems();

 for (int i = 0; i < mapserver.getMapCount(); i++) {

 dfComboBox.addItem(mapserver.getMapName(i));

 }

 }

 catch (Exception ex) {

 ex.printStackTrace();

 }

}

Adding code to get the bookmarks for the selected data frame
You will add code to add an action listener to the combo box that calls a function
to get the list of spatial bookmarks for the selected data frame and add them to
the bookmarks combo box (bookmarksComboBox).

1. Add the following line of code to the init method:
// Add event listener to the bookmark JComboBox.

dfComboBox.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

 getBookmark(((JComboBox) e.getSource()).getSelectedItem());

 }

});

Next create the getBookmark function to get all the spatial bookmarks and add
them to the bookmarks combo box (bookmarksComboBox).

Chapter7.pmd 1/25/2005, 6:01 PM449

450 • ArcGIS Server Administrator and Developer Guide

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

2. Add the following method to your Frame1 class.
private void getBookmark(Object obj) {

}

The rest of the code will be in a try/catch block. Next you need to add code to
create an instance of the selected map server Web service.

3. Add the following lines of code to your try block:
try{

 URL url = new URL(mapserverComboBox.getSelectedItem().toString());

 MapServerBindingStub mapserver = (MapServerBindingStub)new
MapLocator().

 getMapServerPort(url);

}

 catch (Exception ex) {

 ex.printStackTrace();

}

To get a list of the spatial bookmarks in the map, you’ll add code to get a refer-
ence to the MapServer’s MapServerInfo object for the selected data frame, then get
an array of bookmarks from MapServerInfo. Once you have the array of book-
marks, you’ll loop through the array and add the names of the bookmarks to the
bookmarks combo box (bookmarksComboBox). Notice the code also adds a “<De-
fault Extent>” item to the combo box. This allows the user to return to the
default extent of the data frame.

4. Add the following lines of code to your try block:
String name = mapserver.getMapName(dfComboBox.getSelectedIndex());

MapServerInfo mapInfo = mapserver.getServerInfo(name);

ArrayOfMapServerBookmark bookmarkArray = mapInfo.getBookmarks();

MapServerBookmark[] bookmarks = bookmarkArray.getMapServerBookmark();

bookmarkComboBox.removeAllItems();

bookmarkComboBox.addItem("<Default Extent>");

if (bookmarks != null) {

 for (int i = 0; i < bookmarks.length; i++) {

 bookmarkComboBox.addItem(bookmarks[i].getName());

 }

}

 bookmarkComboBox.setSelectedItem("<Default Extent>");

The code for the init method and the completed code for the getBookmark method
should look like the following:
private void init() {

 // Add event listener to the Get Web Services button.

 getWebServices.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 getMapServer();

 }

 });

 // Add event listener to the mapserver JComboBox.

 mapserverComboBox.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 getDataFrame(((JComboBox) e.getSource()).getSelectedItem());

If the MapServer Web service that you created
your Web reference from was not called Map,

then the name of the object will not be
MapLocator but will be the name of your
MapServer<Locator>. For example, if you

referenced a MapServer Web service called
“World”, then the object’s name would be

WorldLocator.

Chapter7.pmd 1/25/2005, 6:01 PM450

Chapter 7 • Developer scenarios • 451

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

 }

 });

 // Add event listener to the bookmark JComboBox.

 dfComboBox.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 getBookmark(((JComboBox) e.getSource()).getSelectedItem());

 }

 });

}

private void getBookmark(Object obj) {

 try {

 URL url = new URL(mapserverComboBox.getSelectedItem().toString());

 MapServerBindingStub mapserver = (MapServerBindingStub)new
MapLocator().

 getMapServerPort(url);

 String name = mapserver.getMapName(dfComboBox.getSelectedIndex());

 MapServerInfo mapInfo = mapserver.getServerInfo(name);

 ArrayOfMapServerBookmark bookmarkArray = mapInfo.getBookmarks();

 MapServerBookmark[] bookmarks = bookmarkArray.getMapServerBookmark();

 bookmarkComboBox.removeAllItems();

 bookmarkComboBox.addItem("<Default Extent>");

 for (int i = 0; i < bookmarks.length; i++) {

 bookmarkComboBox.addItem(bookmarks[i].getName());

 }

 bookmarkComboBox.setSelectedItem("<Default Extent>");

 }

 catch (Exception ex) {

 ex.printStackTrace();

 }

}

Adding helper function to draw the map
To this point the code you have added to the application has used methods on the
Web service catalog and MapServer Web services to get information about a
particular Web service catalog or MapServer Web service and populate controls
on the application.

The next set of controls whose events you’ll add code to will actually draw the
map and display the result in the picture box. To draw the map, you’ll add a
helper function that these events will call to do the map drawing.

1. Add the following function to your Frame1 class:
private void drawMap(MapDescription mapDesc) {

 try {

 }

 catch (Exception ex) {

 ex.printStackTrace();

Chapter7.pmd 1/25/2005, 6:01 PM451

452 • ArcGIS Server Administrator and Developer Guide

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

 }

}

As you can see, the drawMap function takes a single argument of type
MapDescription. The map description object is used by a MapServer when drawing
maps to allow, at draw time, various aspects of the map to be changed, without
changing the running MapServer object. These properties include the extent to
draw, the layers to turn on or off, and so on. In this respect, the map description
serves the purpose of allowing stateless use of a MapServer, while allowing these
aspects of state to be saved in the application by saving and modifying a local
copy of the map description.

This function doesn’t do anything to the map description except use it to draw
the map. You’ll see later how the code that calls the drawMap function modifies
and uses the map description to allow the user to navigate around the map.

The first code you’ll add to this function is to create an instance of the selected
map server Web service.

2. Add the following lines of code to the try block of the function:
URL url = new URL(mapserverComboBox.getSelectedItem().toString());

MapServerBindingStub mapserver = (MapServerBindingStub) new
MapLocator().getMapServerPort(url);

3. Next, add the following lines of code to create an image description object
that you’ll use when drawing the map.
ImageType it = new ImageType();

it.setImageFormat(EsriImageFormat.esriImageJPG);

 it.setImageReturnType(EsriImageReturnType.esriImageReturnMimeData);

ImageDisplay idisp = new ImageDisplay();

idisp.setImageHeight(400);

idisp.setImageWidth(552);

idisp.setImageDPI(150);

ImageDescription iDesc = new ImageDescription();

iDesc.setImageDisplay(idisp);

iDesc.setImageType(it);

Finally, add the following lines of code to call the exportMapImage method on the
MapServer to draw the map. Get the bytes from the resulting image and create an
image to be drawn on the mapPanel.
MapImage mi = mapserver.exportMapImage(mapDesc, iDesc);

byte[] data = mi.getImageData();

mapimage = java.awt.Toolkit.getDefaultToolkit().createImage(data);

// Wait for the image to load.

MediaTracker tracker = new MediaTracker(this);

tracker.addImage(mapimage,1);

tracker.waitForID(1);

The size of the ImageDisplay is the same as
the size of the picture box control. This will

produce an image that fits exactly in the picture
box on the form.

By definition, Web services are stateless. For
more information about programming ArcGIS

Server and how it relates to managing state in
an application that makes stateless use of server
objects, see Chapter 4, ‘Developing ArcGIS Server

applications’.

Chapter7.pmd 1/25/2005, 6:01 PM452

Chapter 7 • Developer scenarios • 453

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

// Draw the image.

mapPanel.drawMap(mapimage);

The completed code for the drawMap function should look like the following:
private void drawMap(MapDescription mapDesc) {

 try {

 URL url = new URL(mapserverComboBox.getSelectedItem().toString());

 MapServerBindingStub mapserver = (MapServerBindingStub) new
MapLocator().getMapServerPort(url);

 ImageType it = new ImageType();

 it.setImageFormat(EsriImageFormat.esriImageJPG);

 it.setImageReturnType(EsriImageReturnType.esriImageReturnMimeData);

 idisp = new ImageDisplay();

 idisp.setImageHeight(400);

 idisp.setImageWidth(552);

 idisp.setImageDPI(150);

 ImageDescription iDesc = new ImageDescription();

 iDesc.setImageDisplay(idisp);

 iDesc.setImageType(it);

 MapImage mi = mapserver.exportMapImage(mapDesc, iDesc);

 byte[] data = mi.getImageData();

 mapimage = java.awt.Toolkit.getDefaultToolkit().createImage(data);

 // Wait for the image to load.

 MediaTracker tracker = new MediaTracker(this);

 tracker.addImage(mapimage,1);

 tracker.waitForID(1);

 // Draw the image.

 mapPanel.drawMap(mapimage);

 }

 catch (Exception ex) {

 ex.printStackTrace();

 }

}

Adding code to draw the extent of the selected bookmark
When the user clicks the bookmarks combo box and picks a bookmark, the panel
will display the map for the extent of the selected bookmark. To do this you’ll
add code to the selected index changed event of the bookmarks combo box
(cboBookMark).

1. Add the following lines of code to the init method.
// Add event listener to the bookmark JComboBox.

bookmarkComboBox.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

Chapter7.pmd 1/25/2005, 6:01 PM453

454 • ArcGIS Server Administrator and Developer Guide

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

 bookmarkSelected(((JComboBox)e.getSource()).getSelectedItem());

}

});

Next, create the bookmarkSelected method to update the map with the correspond-
ing extent.

2. Add the following method to your Frame1 class.
private void bookmarkSelected(Object obj) {

 try {

 }

 catch (Exception ex) {

 ex.printStackTrace();

 }

}

The rest of the code will be in a try/catch block. Next, you need to add code to
create an instance of the selected map server Web service. Then you’ll get a
MapServerInfo object for the selected data frame.

3. Add the following lines of code to your try block:
URL url = new URL(mapserverComboBox.getSelectedItem().toString());

MapServerBindingStub mapserver = (MapServerBindingStub)new
MapLocator().getMapServerPort(url);

String name = mapserver.getMapName(dfComboBox.getSelectedIndex());

MapServerInfo mapInfo = mapserver.getServerInfo(name);

Next, add code to create a MapDescription variable. Add a condition statement to
check if the user picked a bookmark or if it is a default extent and execute the
corresponding code. If the text value of the bookmarks combo box is “<Default
Extent>”, then set the map description to be the default map description for the
data frame and draw the map. If the user picked a bookmark, find the bookmark
that corresponds to the bookmark picked by the user, get its extent, set the
extent into the map description, then draw the map.

4. Add the following lines of code to the try block:
MapDescription mapDesc = null;

if (dfComboBox.getSelectedItem().toString().equals("<Default Extent>")) {

 mapDesc = mapInfo.getDefaultMapDescription();

} else {

 mapDesc = mapDescription;

 ArrayOfMapServerBookmark bookmarkArray = mapInfo.getBookmarks();

 MapServerBookmark[] bookmarks = bookmarkArray.getMapServerBookmark();

 if (bookmarks != null) {

 for (int i = 0; i < bookmarks.length; i++) {

 if (
bookmarks[i].getName().equals(dfComboBox.getSelectedItem().toString())) {

 mapDesc.setMapArea(bookmarks[i]);

 }

 }

 }

}

If the MapServer Web service that you created
your Web reference from was not called Map,

then the name of the object will not be
MapLocator but will be the name of your
MapServer<Locator>. For example, if you

referenced a MapServer Web service called
“World”, then the object’s name would be

WorldLocator.

Chapter7.pmd 1/25/2005, 6:01 PM454

Chapter 7 • Developer scenarios • 455

mapDescription = mapDesc;

drawMap(mapDescription);

A copy of the map description is being stored in a member variable, because as
you implement other commands, such as the Zoom and Pan commands, you’ll
want to keep track of the user’s current extent to know what to zoom or pan
from. These commands will modify the extent of the local copy of the map
description, then use it as input to the drawMap function.

The code for the init method and the completed code for the bookmarkSelected
method should look like the following:
private void init() {

 // Add event listener to the Get Web Services button.

 getWebServices.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 getMapServer();

 }

 });

 // Add event listener to the mapserver JComboBox.

 mapserverComboBox.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 getDataFrame(((JComboBox) e.getSource()).getSelectedItem());

 }

 });

 // Add event listener to the bookmark JComboBox.

 dfComboBox.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 getBookmark(((JComboBox) e.getSource()).getSelectedItem());

 }

 });

 // add event listener to the bookmark JComboBox

 bookmarkComboBox.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 bookmarkSelected(((JComboBox)e.getSource()).getSelectedItem());

 }

 });

 }

private void bookmarkSelected(Object obj) {

 try {

 URL url = new URL(mapserverComboBox.getSelectedItem().toString());

 MapServerBindingStub mapserver = (MapServerBindingStub)new
MapLocator().getMapServerPort(url);

 String name = mapserver.getMapName(dfComboBox.getSelectedIndex());

 MapServerInfo mapInfo = mapserver.getServerInfo(name);

 MapDescription mapDesc = null;

 if (dfComboBox.getSelectedItem().toString().equals("<Default
Extent>")) {

 mapDesc = mapInfo.getDefaultMapDescription();

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

By definition, Web services are stateless. For
more information about programming ArcGIS

Server and how it relates to managing state in
an application that makes stateless use of server
objects, see Chapter 4, ‘Developing ArcGIS Server

applications’.

Chapter7.pmd 1/25/2005, 6:01 PM455

456 • ArcGIS Server Administrator and Developer Guide

 } else {

 ArrayOfMapServerBookmark bookmarkArray = mapInfo.getBookmarks();

 MapServerBookmark[] bookmarks =
bookmarkArray.getMapServerBookmark();

 for (int i = 0; i < bookmarks.length; i++) {

 if (
bookmarks[i].getName().equals(dfComboBox.getSelectedItem().toString())) {

 mapDesc.setMapArea(bookmarks[i]);

 }

 }

 }

 mapDescription = mapDesc;

 drawMap(mapDescription);

 }

 catch (Exception ex) {

 ex.printStackTrace();

 }

}

Adding code for the Zoom and Full Extent buttons
Some of the map navigation functionality in this application includes fixed zoom
in, fixed zoom out, and zoom to full extent commands. You added these com-
mands as buttons to the toolbar on the frame. You’ll add action listeners to these
buttons to execute the code when these buttons are clicked.

1. Add the following lines of code to the init method.
// Add event listener to the Zoom In button.

zoominButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

 zoomin();

 }

});

// Add event listener to the Zoom Out button.

zoomoutButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

 zoomout();

 }

});

// Add event listener to the Full Ext button.

fullextButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

 fullext();

 }

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM456

Chapter 7 • Developer scenarios • 457

});

Now you will add code to the functions zoomin, zoomout, and fullext.

Add code to create the zoomin function to get the envelope from the
mapDescription member variable, shrink its extent, draw the map, then update the
variable mapDescription with the new extent.

2. Add the following method to your Frame1 class.
private void zoomin() {

 try {

 EnvelopeN env = (EnvelopeN) mapDescription.getMapArea().getExtent();

 double w = Math.abs(env.getXMax().doubleValue() -
env.getXMin().doubleValue());

 double h = Math.abs(env.getYMax().doubleValue() -
env.getYMin().doubleValue());

 double xFactor = (w -(w * 0.75))/2;

 double yFactor = (h -(h * 0.75))/2;

 env.setXMax(new Double(env.getXMax().doubleValue() - xFactor));

 env.setXMin(new Double(env.getXMin().doubleValue() + xFactor));

 env.setYMax(new Double(env.getYMax().doubleValue() - yFactor));

 env.setYMin(new Double(env.getYMin().doubleValue() + yFactor));

 MapExtent mapExt = new MapExtent();

 mapExt.setExtent(env);

 mapDescription.setMapArea(mapExt);

 drawMap(mapDescription);

 }

 catch (Exception ex) {

 ex.printStackTrace();

 }

}

Add code to create the zoomout function to get the envelope from the
mapDescription member variable, expand its extent, draw the map, then update the
variable mapDescription with the new extent.

3. Add the following method to your Frame1 class.
private void zoomout() {

 try {

 EnvelopeN env = (EnvelopeN) mapDescription.getMapArea().getExtent();

 double w = Math.abs(env.getXMax().doubleValue() -
env.getXMin().doubleValue());

 double h = Math.abs(env.getYMax().doubleValue() -
env.getYMin().doubleValue());

 double xFactor = ((w * 1.25) - w)/2;

 double yFactor = ((h * 1.25) - h)/2;

 env.setXMax(new Double(env.getXMax().doubleValue() + xFactor));

 env.setXMin(new Double(env.getXMin().doubleValue() - xFactor));

 env.setYMax(new Double(env.getYMax().doubleValue() + yFactor));

 env.setYMin(new Double(env.getYMin().doubleValue() - yFactor));

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

Chapter7.pmd 1/25/2005, 6:01 PM457

458 • ArcGIS Server Administrator and Developer Guide

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

 MapExtent mapExt = new MapExtent();

 mapExt.setExtent(env);

 mapDescription.setMapArea(mapExt);

 drawMap(mapDescription);

 }

 catch (Exception ex) {

 ex.printStackTrace();

 }

}

Add code to create the fullext function to get the full extent from the map server’s
MapServerInfo object and set it into the map description.

4. Add the following method to your Frame1 class.
private void fullext() {

 try {

 URL url = new URL(mapserverComboBox.getSelectedItem().toString());

 MapServerBindingStub mapserver = (MapServerBindingStub)new
MapLocator().getMapServerPort(url);

 String name = mapserver.getMapName(dfComboBox.getSelectedIndex());

 MapServerInfo mapInfo = mapserver.getServerInfo(name);

 EnvelopeN env = (EnvelopeN) mapInfo.getFullExtent();

 MapExtent mapExt = new MapExtent();

 mapExt.setExtent(env);

 mapDescription.setMapArea(mapExt);

 drawMap(mapDescription);

 }

 catch (Exception ex) {

 ex.printStackTrace();

 }

}

Adding code for the Pan button
The final piece of functionality you’ll add to the application is the ability for the
user to interactively pan the map. To do this, you’ll add code to a number of
events on the mapPanel control, specifically, the mouse pressed, mouse released,
and mouse dragged events. Before adding code to those events, you’ll add an
actionListener to the panButton. Add code to change the cursor for the mapPanel
when the Pan button is pushed in.

1. Add the following lines of code to the init method.
// Add event listener to the Pan button.

panButton.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 if (((JToggleButton) (e.getSource())).isSelected()) {

 mapPanel.setCursor(new Cursor(Cursor.HAND_CURSOR));

 } else {

 mapPanel.setCursor(new Cursor(Cursor.DEFAULT_CURSOR));

 }

If the MapServer Web service that you created
your Web reference from was not called Map,

then the name of the object will not be
MapLocator, but will be the name of your
MapServer<Locator>. For example, if you

referenced a MapServer Web service called
“World”, then the object’s name would be

WorldLocator.

Chapter7.pmd 1/25/2005, 6:01 PM458

Chapter 7 • Developer scenarios • 459

 }

});

Next you will add code to add a mouse listener to the mapPanel. You will also add
code to implement the mousePressed and the mouseReleased methods.

2. Add the following lines of code to the init method.
mapPanel.addMouseListener(new MouseAdapter() {

 public void mousePressed(MouseEvent e) {

 }

 public void mouseReleased(MouseEvent e) {

 }

});

Next, you will add code to implement the mousePressed event for the mapPanel.
This code will check to see if the Pan button is pushed and, if so, save the screen
coordinates in two of the member variables you added to the frame.

3. Add the following method to your Frame1 class.
public void mousePressed(MouseEvent e) {

 if (panButton.isSelected()) {

 startX = e.getX();

 startY = e.getY();

 }

}

Next, you will add code to implement the mouseReleased event for the mapPanel.
This code will check to see if the Pan button is pushed and, if it is, create an
instance of the MapLocator object and use the map description and image display
variables (mapDescription and idisp) with the toMapPoint method on the MapServer
to convert the screen coordinates of the point clicked to map coordinates.
Record the point on the map that is clicked in both screen and map coordinates.

4. Add the following method to your Frame1 class:
public void mouseReleased(MouseEvent e) {

 if (! panButton.isSelected())

 return;

 try {

 // Get selected map server.

 URL url = new URL(mapserverComboBox.getSelectedItem().toString());

 MapServerBindingStub mapserver = (MapServerBindingStub)new
MapLocator().getMapServerPort(url);

 // Calculate mouse move distance in map unit.

 ArrayOfInt arraystartX = new ArrayOfInt();

 arraystartX.set_int(new int[] {startX});

 ArrayOfInt arraystartY = new ArrayOfInt();

 arraystartY.set_int(new int[] {startY});

 ArrayOfInt arrayendX = new ArrayOfInt();

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

If the MapServer Web service that you created
your Web reference from was not called Map,

then the name of the object will not be
MapLocator, but will be the name of your
MapServer<Locator>. For example, if you

referenced a MapServer Web service called
“World”, then the object’s name would be

WorldLocator.

Chapter7.pmd 1/25/2005, 6:02 PM459

460 • ArcGIS Server Administrator and Developer Guide

 arrayendX.set_int(new int[] {e.getX()});

 ArrayOfInt arrayendY = new ArrayOfInt();

 arrayendY.set_int(new int[] {e.getY()});

 MultipointN mpStart = (MultiPointN)
mapserver.toMapPoints(mapDescription,idisp,arraystartX,arraystartY);

 MultipointN mpEnd =
(MultiPointN)mapserver.toMapPoints(mapDescription,idisp,arrayendX,arrayendY);

 PointN pStart = ((PointN) mpStart).getPointArray().getPoint(0);

 PointN pEnd = ((PointN) mpEnd).getPointArray().getPoint(0);

 double deltaX = pEnd.getX() - pStart.getX();

 double deltaY = pEnd.getY() - pStart.getY();

 // Change map extent and redraw.

 EnvelopeN env = (EnvelopeN) mapDescription.getMapArea().getExtent();

 env.setXMax(new Double(env.getXMax().doubleValue() - deltaX));

 env.setXMin(new Double(env.getXMin().doubleValue() - deltaX));

 env.setYMax(new Double(env.getYMax().doubleValue() - deltaY));

 env.setYMin(new Double(env.getYMin().doubleValue() - deltaY));

 MapExtent mapExt = new MapExtent();

 mapExt.setExtent(env);

 mapDescription.setMapArea(mapExt);

 drawMap(mapDescription);

 }

 catch (Exception ex) {

 ex.printStackTrace();

 }

}

Next you will add code to add a mouse motion listener to the mapPanel. You will
also add code to implement the mouseDragged method.

5. Add the following lines of code to the init method.
// Add mouse motion listener to the MapPanel.

mapPanel.addMouseMotionListener(new MouseMotionAdapter() {

 public void mouseDragged(MouseEvent e) {

 }

});

Next you will add code to implement the mouseDragged event. In the
mouseDragged event, you’ll add code similar to the code you added in mousePressed
to verify the Pan button is pushed. The code that executes when these conditions

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

Chapter7.pmd 1/25/2005, 6:02 PM460

Chapter 7 • Developer scenarios • 461

are met calculates the amount the mouse has moved from the original point that
was clicked on the picture box. It then forces a redraw of the image.

6. Add the following method to your Frame1 class:
public void mouseDragged(MouseEvent e) {

 if (panButton.isSelected()) {

 Graphics g = mapPanel.getGraphics();

 int w = (int) mapPanel.getSize().getWidth();

 int h = (int) mapPanel.getSize().getHeight();

 g.clearRect(0, 0, w, h);

 g.drawImage(mapimage, e.getX() - startX, e.getY() - startY, mapPanel);

 }

}

Adding init method to the Frame constructor
Add the init method you created to the constructor of the frame. This will enable
all the action listeners associated with the controls to be initialized.

Add the following line of code to the Frame1 constructor.
init();

The complete code for the Frame1 constructor should look like the following:
public Frame1() {

 enableEvents(AWTEvent.WINDOW_EVENT_MASK);

 try {

 jbInit();

 init();

 }

 catch (Exception e) {

 e.printStackTrace();

 }

}

Your application is now ready to be tested. Compile the project (Project/Rebuild
project “MapServerBrowser_project.jpx”).

Testing the application
Run the application from within JBuilder.

1. Right-click on MapServerBrowser.java from the project explorer.

2. Click Run using “MapServerBrowser”; it will open the frame.

3. Type the URL of a Web service catalog.

4. Choose one of the MapServer Web services.

5. Click the Bookmark combo box and choose a bookmark to zoom to.

6. Use the Zoom In, Zoom Out, Full Extent, and Pan buttons to navigate
around the map.

7. Try choosing different MapServer Web services and data frames.

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

Chapter7.pmd 1/25/2005, 6:02 PM461

462 • ArcGIS Server Administrator and Developer Guide

DEPLOYMENT

Because this application requires no ArcGIS software or licensing to run, you can
simply build an executable and copy it to any machine that has the Java runtime
installed. If users have access and know the URL to an ArcGIS Server Web
service catalog, they can make use of the application’s functionality.

You can use this application to connect to any ArcGIS Server Web service cata-
log, whether that Web service catalog was written in .NET or Java.

ADDITIONAL RESOURCES

This scenario includes functionality and programming techniques for consuming
ArcGIS Server Web services over the Internet. You are encouraged to read
Chapter 4, ‘Developing ArcGIS Server applications’, to get a better understanding
of ArcGIS Server Web service concepts and programming guidelines.

If you are unfamiliar with developing applications that make use of Web services
with Java, it’s also recommended that you refer to your Java developer documen-
tation to become more familiar with Java application development. If you want
to learn more about Web services in general, visit www.w3.org.

DEVELOPING AN ARCGIS SERVER WEB SERVICE CLIENT (JAVA)

Chapter7.pmd 1/25/2005, 6:02 PM462

Chapter 7 • Developer scenarios • 463

EXTENDING ARCGIS SERVER WITH SERVER-SIDE LIBRARIES

This walkthrough is for developers who need to build and deploy a .NET Web
application, incorporating GIS functionality using the ArcGIS Server API that
makes heavy use of fine-grained ArcObjects method calls. It describes the process
of building, deploying, and consuming the Extending_the_server developer
scenario sample, which is part of the ArcGIS developer samples.

You can find this sample in:
<install_location>\DeveloperKit\samples\Developer_Guide_Scenarios\
Extending_the_GIS_serverVBNET.zip

PROJECT DESCRIPTION

The purpose of this scenario is to create an ASP.NET Web application using
Visual Studio .NET to extend the MapViewer ArcGIS Server Web application
project template. The application uses ArcObjects to clip the geometries of
vegetation polygons to a buffer of user-specified size around a user-specified
point. It will then report the total area of each different vegetation type within
the buffered area.

The following is how the user will interact with the application:

1. Open a Web browser and specify the URL of the Web application.

2. Type the buffer distance (in meters).

3. Click the Summarize Vegetation tool and click the point on the map to buffer.

A graphic displaying the clipped vegetation polygons is displayed on the map, and
a table summarizing the total area of each vegetation type within the buffer is
displayed in the browser.

While this example makes use of extending the
server to support functionality in a Web applica-

tion, you can use the same technique when
creating other types of applications, such as Web

services.

Rather than walk through this scenario, you can
get the completed Web application from the
samples installation location. The sample is

installed as part of the ArcGIS developer
samples.

Chapter7.pmd 1/25/2005, 6:02 PM463

464 • ArcGIS Server Administrator and Developer Guide

EXTENDING ARCGIS SERVER WITH SERVER-SIDE LIBRARIES

CONCEPTS

Both coarse-grained calls to remote ArcObjects, such as the methods on the
MapServer and GeocodeServer, as well as fine-grained calls to remote
ArcObjects, such as looping through all the vertices of a polygon, are exposed
through the ArcGIS Server API and can be used in your application. However,
it’s important to note that when making a call against an object running in the
server from your Web application, you are making that call across processes. The
Web server is running in one process, while the object is running in another
process.

Calls to objects across processes are significantly slower than calls to objects in the
same process. It’s also likely that your Web application is running on a Web server
that is actually a different machine from the one the object is running on, so the
calls are not only cross process but also cross machine.

This application includes functionality that requires making a large number of
fine-grained ArcObjects calls to loop through features, get their geometry, clip the
geometry, summarize the areas for the different vegetation types, create a graphic
for each feature, and so on. Since the user of the application is free to specify a
buffer distance that may include a large number of features, the number of
features that would be analyzed is indeterminate, which could easily result in
thousands of fine-grained ArcObjects calls.

To minimize this large number of remote calls, you can create a simple utility
COM object in VB, C++, or .NET that does the majority of the fine-grained
ArcObjects work but exposes a single coarse-grained method that the Web appli-
cation calls. Using this technique, the application has the same functionality, but
the cross process/cross machine cost is minimized by running the bulk of the
code in the GIS server. In this example, this technique will help to maximize the
performance of the Web application.

DESIGN

This Web application is designed to make stateless use of the GIS server. It uses
events on the map Web control to get a point from the user, then uses that point
and ArcObjects to perform analysis on the vegetation polygons. To support this
application, you need to add a pooled map server object to your ArcGIS Server
using ArcCatalog.

The Web application will use the Web controls to manage the connection to the
GIS server, and the MapViewer Web application template will provide the basic
mapping functionality that is required for this application. You will add a new
tool to the Toolbar control that allows the user to click the map as input to the
analysis. The results are displayed on the map as a set of graphics and summarized
in a table on the Web page. The bulk of the ArcObjects processing will be imple-
mented as a separate utility COM object that is installed on the server and created
in the server by the Web application.

REQUIREMENTS

The requirements for working through this scenario are that you have ArcGIS
Server and ArcGIS Desktop installed and running. The machine on which you
develop this Web server must have the ArcGIS Server .NET Application Devel-
oper Framework SDK installed.

One key aspect of designing your application is
whether it is stateful or stateless. You can make

either stateful or stateless use of a server object
running within the GIS server. A stateless

application makes read-only use of a server
object, meaning the application does not make

changes to the server object or any of its
associated objects. A stateful application makes

read–write use of a server object where the
application does make changes to the server

object or its related objects.

Web services are, by definition, stateless applica-
tions.

Chapter7.pmd 1/25/2005, 6:02 PM464

Chapter 7 • Developer scenarios • 465

EXTENDING ARCGIS SERVER WITH SERVER-SIDE LIBRARIES

You must have a map server object configured and running on your ArcGIS
Server that uses the Yellowstone.mxd map document, which is installed with the
ArcGIS developer samples. In ArcCatalog, create a connection to your GIS server
and use the Add Server Object command to create a new server object with the
following properties:

Name: Yellowstone

Type: MapServer

Description: Map server containing vegetation data for Yellowstone National Park

Map document:
<install_location>\DeveloperKit\Samples\Data\ServerData\Yellowstone\Yellowstone.mxd

Output directory: Choose from the output directories defined by your
server.

Pooling: The Web service makes stateless use of the server object. Accept
the defaults for the pooling model (pooled server object with minimum
instances = 2, max instances = 4).

Accept the defaults for the remainder of the configuration properties.

After creating the server object, start it and click the Preview tab to
verify that it is correctly configured and that the map draws.

You can refer to Chapter 3 for more information on using ArcCatalog to
connect to your server and create a new server object. Once the server
object is configured and running, you can begin to code your Web ser-
vice.

The following ArcObjects .NET assemblies will be used in this example:

• ESRI.ArcGIS.Carto

• ESRI.ArcGIS.Geodatabase

• ESRI.ArcGIS.Geometry

• ESRI.ArcGIS.Server

• ESRI.ArcGIS.Server.WebControls

• ESRI.ArcGIS.esriSystem

To create your utility COM object, the following COM
object libraries will be used:

• esriCarto

• esriDisplay

• esriGeoDatabase

• esriGeometry

• esriSystem

The development environment does not require any ArcGIS licensing; however,
connecting to a server and using a map server object does require that the GIS
server is licensed to run ArcObjects in the server. None of the assemblies or
object libraries used require an extension license.

The Add Server Object wizard

ArcCatalog is used for managing your spatial
data holdings, defining your geographic data

schemas, and managing your ArcGIS server. Once
you have created your Yellowstone server object,

preview it using ArcCatalog to verify it is
correctly configured.

Chapter7.pmd 1/25/2005, 6:02 PM465

466 • ArcGIS Server Administrator and Developer Guide

EXTENDING ARCGIS SERVER WITH SERVER-SIDE LIBRARIES

The IDE used in this example is Visual Studio .NET 2003 for the Web applica-
tion, and all IDE specific steps will assume that it is the IDE you are using. This
Web service can be implemented with other .NET IDEs. The utility COM object
will be written using Visual Basic 6, but it can be implemented using any COM
language/IDE.

IMPLEMENTATION

The code for this scenario is divided into two parts. The first is the implementa-
tion of the utility COM object, which will run within the GIS server, and ex-
poses the coarse-grained method that the Web application will call. This will be
written in VB using VB6.

The second is the Web application itself. The Web application code will be writ-
ten in C#; however, you can also write this Web application using VB.NET. The
Web application executes within the Web server.

Part 1: Creating the utility COM object
To begin, you must create a new project in VB6:

Creating a new project
1. Start Visual Basic 6.

2. Click File, then click New Project.

3. In the New Project dialog box, click ActiveX DLL as the project type.

4. Click OK. This will create a blank application.

5. Click Project, then click Project1 Properties. In the Properties dialog box, for
the Project name, type “VegUtilities”.

6. Click OK.

7. In the project browser, click Class1 (Class1), then in the Properties for Class1,
type “clsVegUtils” for the name.

8. Click File, then click Save Project to save the project.

Adding references to ESRI object libraries
1. Click Project, then click References.

2. In the References dialog box, check the following object libraries:

• ESRI Carto Object Library

• ESRI GeoDatabase Object Library

• ESRI Geometry Object Library

• ESRI System Object Library

• ESRI Display Object Library

This COM object will also make use of the Scripting.Dictionary object.

To learn more about COM and developing with
ArcObjects and COM, refer to Appendix D,

‘Developer environments’, and the online
developer documentation.

The New Project dialog box

The Project Properties dialog box

The Project browser

Chapter7.pmd 1/25/2005, 6:02 PM466

Chapter 7 • Developer scenarios • 467

EXTENDING ARCGIS SERVER WITH SERVER-SIDE LIBRARIES

3. To have access to this object, in the References dialog box, check the follow-
ing:

Microsoft Scripting Runtime

4. Click OK.

Creating the results class
The Web application you are going to build requires two things from the utility
function: an array of graphics to draw on the map and a record set of the vegeta-
tion types and their total area. To do this, you will implement a new object that
contains these two aspects of the results of the function.

1. In the project browser, right-click VegUtilities, click Add, then click Class
Module.

2. In the Add Class Module dialog box, click Class Module, then click Open. This
will add the new class module to your project and open it.

3. In the project browser, click Class1 (Class1), then in the Properties for Class1,
type “clsVegResults” for the name.

The clsVegResults class will have two read–write properties:

ResGraphics: a collection of graphic elements representing the geometry of the
vegetation polygons intersecting the buffer.

Stats: a record set with a record for each type of vegetation and the total area of
that vegetation type contained within the buffer.

The class will hold the graphics array and the record set in two private variables.

4. Add the following code to your clsVegResults class:
Option Explicit

Private m_resGraphics As esriCarto.IGraphicElements

Private m_resStats As esriGeoDatabase.IRecordSet

For your function to set these properties and for your Web application to get
these properties, you will add public Get and Set properties for each.

5. Add the following code to your clsVegResults class:
Public Property Get ResGraphics() As esriCarto.IGraphicElements

 Set ResGraphics = m_resGraphics

End Property

Public Property Set ResGraphics(pResGraphics As
esriCarto.IGraphicElements)

 Set m_resGraphics = pResGraphics

End Property

Public Property Get Stats() As esriGeoDatabase.IRecordSet

 Set Stats = m_resStats

End Property

Public Property Set Stats(pStats As esriGeoDatabase.IRecordSet)

 Set m_resStats = pStats

End Property

The References dialog box

The Project browser box

The Add Class dialog box

Chapter7.pmd 1/25/2005, 6:02 PM467

468 • ArcGIS Server Administrator and Developer Guide

EXTENDING ARCGIS SERVER WITH SERVER-SIDE LIBRARIES

The clsVegResults class is complete. Your code for the clsVegResults class should
look like the following:
Option Explicit

Private m_resGraphics As esriCarto.IGraphicElements

Private m_resStats As esriGeoDatabase.IRecordSet

Public Property Get ResGraphics() As esriCarto.IGraphicElements

 Set ResGraphics = m_resGraphics

End Property

Public Property Set ResGraphics(pResGraphics As
esriCarto.IGraphicElements)

 Set m_resGraphics = pResGraphics

End Property

Public Property Get Stats() As esriGeoDatabase.IRecordSet

 Set Stats = m_resStats

End Property

Public Property Set Stats(pStats As esriGeoDatabase.IRecordSet)

 Set m_resStats = pStats

End Property

Implementing the analysis function
You will now add the public function called sumVegetationType that will do the
analysis, create and populate the clsVegResults object, and pass it back to the
calling application (your Web application in this case) to the clsVegUtils class. In
addition, you will implement some private helper functions.

The sumVegetationType function will take the following parameters:

pVegClass: the feature class containing the polygon features to analyze.

pPoint: the point to buffer.

dDistance: a double that represents the distance to buffer the point.

sSummaryField: the name of the field whose unique values will be summarized by
the area of the polygons in the buffer.

The function returns a clsVegResults object.

1. To define your public function, add the following lines of code to the
clsVegUtils class:
Option Explicit

Public Function sumVegetationType(pVegClass As IFeatureClass, pPoint As
IPoint, dDistance As Double, sSummaryFld As String) As clsVegResults

End Function

The first step this function needs to take is to buffer the input (pPoint) the dis-
tance specified by dDistance to create a new geometry called pGeom.

The results class includes a ResGraphics property,
which is a GraphicElements collection. As you

will see later, the MapServer’s MapDescription
object allows you to add graphics to a map at
draw time. The MapDescription takes those

graphics as a GraphicElements collection. This
is an example of how you can write your utility
COM object to best satisfy the requirements of

an ArcGIS Server application.

Chapter7.pmd 1/25/2005, 6:02 PM468

Chapter 7 • Developer scenarios • 469

2. Add the following lines of code to your sumVegetationType function:
' Buffer the point.

Dim pTopoOp As ITopologicalOperator

Set pTopoOp = pPoint

Dim pGeom As IGeometry

Set pGeom = pTopoOp.Buffer(dDistance)

Next, you will use the buffer as the geometry for a spatial query to query the
feature class for all of the polygons that intersect the buffer.

3. Add the following lines of code to your sumVegetationType function:
' Query the feature class.

Dim pSFilter As ISpatialFilter

Set pSFilter = New SpatialFilter

Set pSFilter.Geometry = pGeom

pSFilter.SpatialRel = esriSpatialRelIntersects

pSFilter.GeometryField = pVegClass.ShapeFieldName

Dim pFCursor As IFeatureCursor

Set pFCursor = pVegClass.Search(pSFilter, True)

Before looping through the features, you need to create a GraphicElements collec-
tion to hold the graphics, a simple fill symbol to apply to each graphic element, a
dictionary object that you will use to categorize the different vegetation types,
and some other needed variables. Note that the fill symbol is created using a
helper function called newFillS. You will create this function later.

4. Add the following lines of code to your sumVegetationType function:
' Loop through the features, clip each geometry to the buffer

' and total areas by attribute value.

Set pTopoOp = pGeom

Dim pNewGeom As IGeometry

Dim lPrim As Long

lPrim = pVegClass.FindField(sSummaryFld)

Dim pFeature As IFeature

Dim pArea As IArea

Dim pFE As IFillShapeElement

Dim pElement As IElement

Dim sType As String

Dim dict As Scripting.Dictionary

Set dict = New Scripting.Dictionary

' Create the symbol and collection for the graphics.

Dim pSFS As ISimpleFillSymbol

Set pSFS = newFillS

Dim pGraphics As IGraphicElements

Set pGraphics = New GraphicElements

The next step is to loop through the features in the pVegClass feature class that
intersect the buffer geometry and clip each vegetation polygon to the buffer. The

EXTENDING ARCGIS SERVER WITH SERVER-SIDE LIBRARIES

The objects and interfaces used for creating and
working with geometries can be found in the
Geometry object library. To learn more about

geometry objects, see the online developer
documentation.

The objects and interfaces used for performing
spatial queries and for working with the results

of those queries can be found in the
GeoDatabase object library. To learn more about

geodatabase objects, see the online developer
documentation.

Chapter7.pmd 1/25/2005, 6:02 PM469

470 • ArcGIS Server Administrator and Developer Guide

resulting clipped geometry is then used to create a graphic that is added to the
graphics collection. The area of the clipped geometry is added to the total area of
the feature’s type (as defined by the value of sSummaryField) in the dictionary
object.

5. Add the following lines of code to your sumVegetationType function:
Set pFeature = pFCursor.NextFeature

Do Until pFeature Is Nothing

 ' Create the graphic.

 Set pFE = New PolygonElement

 Set pElement = pFE

 ' Clip the geometry.

 Set pNewGeom = pTopoOp.Intersect(pFeature.Shape, esriGeometry2Dimension)

 pElement.Geometry = pNewGeom

 pFE.Symbol = pSFS

 pGraphics.Add pFE

 ' Add to dictionary.

 Set pArea = pNewGeom

 sType = pFeature.Value(lPrim)

 If dict.Exists(sType) Then

 dict.Item(sType) = dict.Item(sType) + pArea.Area

 Else

 dict.Item(sType) = pArea.Area

 End If

 Set pFeature = pFCursor.NextFeature

Loop

After this code executes, the dictionary object will have a key for each unique
value of the sSummaryField field whose item is the total area for that unique
value within the buffer. The next step is to create a record set object and copy
the keys and items from the dictionary into rows and fields in the record set. This
is accomplished using the sumRS helper function. You will implement the sumRS
helper function later.

6. Add the following lines to your sumVegetationType function:
' Create the summary recordset.

Dim psumRS As IRecordSet

Set psumRS = sumRS(dict)

Finally, since the sumVegetationType function returns a clsVegResults object, the last
part of the function creates a new clsVegResults object, sets the graphics collec-
tion and summary record set in the object, and returns the object to the caller.

7. Add the following lines of code to complete your sumVegetationType function:
' Create the results object.

Dim pResClass As clsVegResults

Set pResClass = New clsVegResults

Set pResClass.ResGraphics = pGraphics

EXTENDING ARCGIS SERVER WITH SERVER-SIDE LIBRARIES

A RecordSet object is a collection of rows that
are not mapped to a physical table in a data-

base. You can use record sets to create in-
memory tables and rows without writing them

to a physical table. The objects and interfaces
associated with record sets can be found in the

GeoDatabase object library. To learn more about
geodatabase objects, see the online developer

documentation.

The objects and interfaces used for creating and
working with graphic elements can be found in

the Carto object library. To learn more about
carto objects, see the online developer documen-

tation.

Chapter7.pmd 1/25/2005, 6:02 PM470

Chapter 7 • Developer scenarios • 471

Set pResClass.Stats = psumRS

Set sumVegetationType = pResClass

The code for your sumVegetationType function is now complete. The next section
will define the helper functions that the sumVegetationType calls.

Implementing helper functions
As described above, the sumVegetationType function makes use of two helper
functions to create a fill symbol (newFillS) and to copy the contents of a dictio-
nary object to a record set (sumRS). You will now implement these helper func-
tions in your clsVegUtils class.

The newFillS function creates and returns a new SimpleFillSymbol object. This fill
symbol is a hollow fill symbol with a red outline.

1. To define the newFills function, add the following code to your clsVegUtils
class:
Private Function newFillS() As ISimpleFillSymbol

 Dim pSLS As ISimpleLineSymbol

 Set pSLS = New SimpleLineSymbol

 Dim pcolor As IRgbColor

 Set pcolor = New RgbColor

 pcolor.Red = 255

 pcolor.Green = 0

 pcolor.Blue = 0

 pSLS.Color = pcolor

 pSLS.Style = esriSLSSolid

 pSLS.Width = 2

 Dim pSFS As ISimpleFillSymbol

 Set pSFS = New SimpleFillSymbol

 pSFS.Outline = pSLS

 pSFS.Style = esriSFSHollow

 Set newFillS = pSFS

End Function

The sumRS function is a little more involved. This function takes a dictionary
object as an argument, and returns a record set. The function creates a new record
set with a field for the sSummaryField unique values and a field for the total area.
It then loops through the keys and items in the dictionary and creates a row in the
record set for each key/item pair.

2. Add the following code to your clsVegUtils class:
Private Function sumRS(dict As Scripting.Dictionary) As IRecordSet

 ' Create the new record set.

 Dim pNewRs As IRecordSet

 Set pNewRs = New Recordset

 Dim prsInit As IRecordSetInit

 Set prsInit = pNewRs

 Dim pFields As IFields

EXTENDING ARCGIS SERVER WITH SERVER-SIDE LIBRARIES

The objects and interfaces used for creating
symbols and colors can be found in the Display

object library. To learn more about display
objects, see the online developer documentation.

Chapter7.pmd 1/25/2005, 6:02 PM471

472 • ArcGIS Server Administrator and Developer Guide

 Dim pFieldsEdit As IFieldsEdit

 Dim pField As IField

 Dim pFieldEdit As IFieldEdit

 Set pFields = New Fields

 Set pFieldsEdit = pFields

 pFieldsEdit.FieldCount = 2

 Set pField = New Field

 Set pFieldEdit = pField

 With pFieldEdit

 .Name = "Type"

 .Type = esriFieldTypeString

 .Length = 50

 End With

 Set pFieldsEdit.Field(0) = pField

 Set pField = New Field

 Set pFieldEdit = pField

 With pFieldEdit

 .Name = "Area"

 .Type = esriFieldTypeDouble

 End With

 Set pFieldsEdit.Field(1) = pField

 prsInit.CreateTable pFields

 ' Add all the area/type pairs.

 Dim pIC As ICursor

 Set pIC = prsInit.Insert

 Dim pRowBuf As IRowBuffer

 Set pRowBuf = prsInit.CreateRowBuffer

 Dim keys As Variant

 Dim items As Variant

 keys = dict.keys

 items = dict.items

 Dim i As Long

 For i = LBound(keys) To UBound(keys)

 pRowBuf.Value(0) = keys(i)

 pRowBuf.Value(1) = items(i)

 pIC.InsertRow pRowBuf

 Next i

 Set sumRS = pNewRs

End Function

EXTENDING ARCGIS SERVER WITH SERVER-SIDE LIBRARIES

The objects and interfaces associated with record
sets, fields, and cursors can be found in the

GeoDatabase object library. To learn more about
geodatabase objects, see the online developer

documentation.

Chapter7.pmd 1/25/2005, 6:02 PM472

Chapter 7 • Developer scenarios • 473

Compiling and registering the utility COM DLL
Now that the coding for the utility COM object is complete, you need to compile
it into a DLL.

1. Click File, then click Make VegUtilities.dll.

2. In the Make Project dialog box, click OK.

3. Fix any errors.

Set the binary compatibility for the component:

4. Click Project, then click VegUtilities Properties.

5. Click the Component tab.

6. Click the Binary Compatibility option and browse for VegUtilities.dll.

7. Click OK.

8. Recompile the DLL by following Steps 1 to 3.

Both your Web server and your GIS server’s server object container machines
need to have this COM DLL copied and registered on their system. The DLL
must be registered on the Web servers that the Web application will run on so
that it has the correct types to work with the utility COM object’s proxies. If the
machine on which you developed this utility COM object is also the machine that
hosts your server object and is the machine on which you will develop the Web
application, then the above will automatically register it.

Part 2: Creating the Web application
Now that you have developed your COM object that includes your coarse-grained
method call, you can build your Web application to make use of it. In this ex-
ample, you will use the MapViewer template project that is installed as part of
the ArcGIS Server Application Developer Framework’s SDK to provide some
basic mapping functionality, and you will extend this template with your own
functionality.

The first step is to create the new project.

Creating a new project
1. Start Visual Studio .NET.

2. Click File, click New, then click Project.

3. In the New Project dialog box, under Project Types, click the
ArcGIS Server Projects category, then the Visual C# category.
Under Templates, click MapViewer Web Application.

4. For the Web application name, type “http://localhost/
VegetationWebApp”.

5. Click OK. This will create a new project that contains all of the
functionality included in the MapViewer template.

EXTENDING ARCGIS SERVER WITH SERVER-SIDE LIBRARIES

Rather than copying the actual COM object onto
the Web server machine, you can generate a
remote server file when compiling the Visual

Basic project. Because the object actually runs
within the GIS server, the Web server needs only

the object’s proxies to work with it.

The New Project dialog box

Chapter7.pmd 1/25/2005, 6:02 PM473

474 • ArcGIS Server Administrator and Developer Guide

Setting the necessary properties on the Web controls
The template includes a Map control, an OverviewMap control, and an Impersonation
control. All require properties to be set, specifically the GIS server name, the
MapServer object that the map and overview map controls will use, and the user
account that the Web application will run as for the impersonation control.

1. In the Solution Explorer, double-click Default.aspx. This will open the Web
form in design mode.

2. On the Web form, click the Map1 map control.

3. In the Properties for the map control, type the name of the GIS server for the
host property, then click the ServerObject dropdown and click Yellowstone
for the server object.

4. On the Web form, click the OverviewMap1 control.

The overview map can use the same or a different server object to display the
current extent of the map in the map control. In this case, you will use the same
map as the map control.

5. In the Properties for the overview map control, type the name of the GIS
server for the host property, then click the ServerObject dropdown arrow, and
click Yellowstone for the server object.

6. On the Web form, click the Impersonation1 control.

7. In the Properties for the impersonation control, click the Identity property
and click the Browse button. This will open the identity dialog box.

8. Type the username, password, and domain for the account that your Web
application will run as, then click OK.

Adding the SumVeg tool
This application allows the user to identify a point to buffer by clicking the map
on the map control. To allow the user to do this, you will add a new tool to the
toolbar control’s tool collection and a text box for the user to specify the buffer
distance.

The first step is to add to your Web form the text box that the user will type the
buffer distance into.

1. Click the Design tab to return to the Web form design mode.

2. In the Microsoft Visual Studio .NET toolbox, click the Web Forms tab to
display the Web Forms tools.

3. In the toolbox, click Label and drag a label onto the form next to the button.

4. In the label’s properties, type Distance (meters): for the Text property.

5. In the toolbox, click TextBox and drag a text box onto the form to the right
of the label.

6. In the TextBox’s properties, type “10000” for the Text property and
“txtDistance” for the ID property.

EXTENDING ARCGIS SERVER WITH SERVER-SIDE LIBRARIES

The Impersonation control’s identity dialog box

For your Web application to successfully connect
to the GIS server, the account you specify in the

impersonation control’s properties must be a
member of the ArcGIS Server users group on the
GIS server. Since the Impersonation control sets

impersonation at the Web page level, there is an
impersonation control on both the Default.aspx

page and the Identify.aspx page.

The Map control’s properties

If the Yellowstone map server object is not listed,
verify the server object is started.

Chapter7.pmd 1/25/2005, 6:02 PM474

Chapter 7 • Developer scenarios • 475

7. In the toolbox, click DataGrid and drag a data grid onto the form below the
other controls.

8. In the DataGrid’s properties, type “grdResults” for the ID property.

Now you will add the tool to your toolbar that will actually let users click a point
on the map. Before adding the tool to the toolbar, you must create a new class
that implements the IMapServerToolAction interface and defines the functionality
for the tool.

Create the SumVeg class
The first step is to add the new class to the project.

1. In the Solution Explorer, right-click the VegetationApp project, click Add,
then click Add New Item.

EXTENDING ARCGIS SERVER WITH SERVER-SIDE LIBRARIES

The VegetationWebApp application in the Visual
Studio .NET IDE

The Solution Explorer

Chapter7.pmd 1/25/2005, 6:02 PM475

476 • ArcGIS Server Administrator and Developer Guide

2. In the Add New Item dialog box, under Templates, click Class.

3. For the name, type “SumVeg.cs”.

4. Click Open.

This will add a new class (SumVeg) to your project and will open
the code for the class with some autogenerated code.

Adding additional references for the SumVeg class
The Web application template includes references to a collection
of ESRI assemblies. However, the functionality that you will add
to the SumVeg class will require additional ESRI assemblies. These
assemblies were installed when you install the ArcGIS Server .NET
Application Developer Framework.

In addition to these ESRI assemblies, you also need to add a reference to your
custom COM DLL that you created in Part 1. To add references to these assem-
blies and the COM DLL, do the following:

1. In the Solution Explorer, right-click References and click Add
Reference.

2. In the Add Reference dialog box, double-click the following assem-
bly:

 ESRI.ArcGIS.System

3. Click the COM tab.

4. Click Browse and click VegUtilities.dll.

5. Click OK.

Notice this will automatically add the following additional references
to ESRI COM Object Libraries:

• esriCarto

• esriGeodatabase

• esriGeometry

• esriSystem

6. Add using statements for the assemblies you will use in this class. At the top
of the code window, add the following using statements:
using ESRI.ArcGIS.Server;

using ESRI.ArcGIS.Server.WebControls;

using ESRI.ArcGIS.Server.WebControls.Tools;

using ESRI.ArcGIS.Geometry;

using ESRI.ArcGIS.Geodatabase;

using ESRI.ArcGIS.Carto;

using ESRI.ArcGIS.esriSystem;

using System.Web.UI.WebControls;

using VegUtilities;

EXTENDING ARCGIS SERVER WITH SERVER-SIDE LIBRARIES

The Add New Item dialog box

The Add Reference dialog box

Chapter7.pmd 1/25/2005, 6:02 PM476

Chapter 7 • Developer scenarios • 477

Implementing the SumVeg class
Now you are ready to implement the SumVeg class that contains the code to
execute when the map is clicked by the user. Since this class is a map server tool
action, it must implement the IMapServerToolAction interface.

1. Change the following line:
public class SumVeg

to:
public class SumVeg : IMapServerToolAction

2. In the Class View window, expand the class list to the Bases and Interfaces of
the SumVeg class.

3. Right-click the IMapServerToolAction interface, click Add, then click Implement
Interface.

Visual Studio stubs out the members of IMapServerToolAction in the code window
automatically, bracketing the stubs within a region named IMapServerToolAction
Members.

The IMapServerToolAction has a single method to implement called ServerAction.
This method is where you will put the code to execute when the user clicks the
map. The following code will be added to your class:
#region IMapServerToolAction Members

public void ServerAction(ToolEventArgs args)

{

 // TODO: Add SumVeg.ServerAction implementation

}

#endregion

The remainder of the code will be added to this method.

To create the utility COM object in the server and execute its function, you need
to get a server context from the server. You will be getting a point from the map
server and will be ultimately adding graphics to the map. Since objects work
better together when they are in the same context, you will get the map server’s
context from the map control’s WebMap object and create the ArcObjects you
will use within that context. Since the Yellowstone map server object is a pooled
server object, the WebMap will take care of releasing the context for you when it
goes out of scope. You will scope the use of the WebMap within a Using block.

The args object passed into the ServerAction method includes a reference to the
map control.

4. Add the following code to your ServerAction method:
if (args.Control is ESRI.ArcGIS.Server.WebControls.Map)

{

 ESRI.ArcGIS.Server.WebControls.Map mapctl = args.Control as
ESRI.ArcGIS.Server.WebControls.Map;

 using (WebMap webMap = mapctl.CreateWebMap())

 {

 }

}

EXTENDING ARCGIS SERVER WITH SERVER-SIDE LIBRARIES

The class view

Chapter7.pmd 1/25/2005, 6:02 PM477

478 • ArcGIS Server Administrator and Developer Guide

You need to get a reference to the WebMap’s server context and map server
object. You will then use the IMapServerObjects interface to access the map
server’s fine-grained ArcObjects to get a reference to the first layer in the map
(this is the layer whose feature class you will query in this application).

5. Add the following lines of code to your using block:
IServerContext sc = webMap.ServerContext;

IMapServer map = webMap.MapServer;

IMapServerObjects mapobj = map as IMapServerObjects;

IMap fgmap= mapobj.get_Map(map.DefaultMapName);

IFeatureLayer fl = fgmap.get_Layer(0) as IFeatureLayer;

The first argument to the sumVegetation function in your clsVegResults class is the
feature class to perform the query against. In this case, you will use the feature
class from the first layer in the map, obtained from the code above.

6. Add the following line of code to your using block:
IFeatureClass fc = fl.FeatureClass;

The second argument to the function is the point. You will get the screen coordi-
nates of where on the map control the user clicked from the ServerAction
method’s args object. The WebMap includes a method to convert the screen
coordinates to an ESRI Point object. You will use this point object when you call
the COM function.

7. Add the following line of code to your Using block:
PointEventArgs pargs = args as PointEventArgs;

IPoint pt = webMap.ToMapPoint(pargs.ScreenPoint.X, pargs.ScreenPoint.Y);

The last two arguments to the function are the distance to buffer the point
(double) and the name of the field on the feature class on which to summarize
the areas of the polygons. The distance was input by the user into the txtDistance
text box on the Web form. You will use the Page property of the map control to
get a reference to the page and text box controls and to convert the Text property
of the control into a double.

The field name will be hard coded to be “PRIMARY_”.

8. Add the following lines of code to your using block:
System.Web.UI.WebControls.TextBox txb =
mapctl.Page.FindControl("txtDistance") as
System.Web.UI.WebControls.TextBox;

double dDist = Convert.ToDouble(txb.Text);

string fldName = "PRIMARY_";

Now you have all of the arguments needed to call the sumVegetation function you
created in Part 1 of this scenario: the input feature class (fc), the point (pt), the
distance to buffer (dDist), and the field to total the areas on (fldName). To call
this function, you need to create an instance of the utility COM object in the
map server’s context.

You will do this by using the CreateObject method and specifying the progID of
the COM object. Once you have created the object, you can call the method that
returns a clsVegResults object.

EXTENDING ARCGIS SERVER WITH SERVER-SIDE LIBRARIES

The objects and interfaces associated with
working with a map can be found in the Carto
object library. To learn more about map objects,

see the online developer documentation.

Use the CreateObject method when you need
to create an object for use in your application.
ArcGIS Server applications should not use New
to create ArcObjects but should always create

objects by calling CreateObject on
IServerContext. CreateObject will return a

proxy to the object that is in the server context.
Your application can make use of the proxy as if

the object were created locally within its process.
To learn more about working with objects in

server contexts, see Chapter 4, ‘Developing
ArcGIS Server applications’, and the online

developer documentation.

Chapter7.pmd 1/25/2005, 6:02 PM478

Chapter 7 • Developer scenarios • 479

9. Add the following lines of code to your using block:
VegUtilities.clsVegUtils veg = sc.CreateObject("VegUtilities.clsVegUtils")
as VegUtilities.clsVegUtils;

VegUtilities.clsVegResults vegres = veg.sumVegetationType(ref fc,ref
pt,ref dDist, ref fldName);

As described in Part 1, the clsVegResults class has two properties:

resGraphics: a collection of graphics of the clipped polygons to draw on the map.

Stats: a record set of vegetation type, total area pairs.

The next section of code takes these results and makes use of them by adding the
graphics collection to the WebMap’s map description and displaying the contents
of the record set in a data grid on the Web form.

Because the map server object you are using is pooled and the application is
stateless, you do not want to add the result graphics directly to the map using its
GraphicsContainer object, as this would change the state of the map server object.
To draw the graphics on the map, you will add them to the WebMap’s copy of the
map description. When you do this, the graphics will be drawn and saved by the
WebMap as part of the map description in session state for you. Once you add
the graphics to the map description, you will ask the WebMap to redraw itself
using its Refresh method, which will reflect the changes you have made to the
map description.

10. Add the following lines of code to your using block:
IGraphicElements ge = vegres.get_ResGraphics() as IGraphicElements;

IMapDescription md = webMap.MapDescription;

md.CustomGraphics = ge;

webMap.Refresh();

Finally, you will display the contents of the Stats record set from the clsVegResults
object in the data grid you added to the Web form (grdResults). To do this, you
could get the record set object from the clsVegResults object, then open a cursor
on the record set. However, this would mean that you would be making a num-
ber of remote calls to loop through the record set and get the properties for each
row. If the record set has a large number of rows, these remote calls can cause
the same performance problem that you tried to avoid by creating the utility
COM object.

The WebMap has a convenience method called ConvertRecordSetToDataSet that
converts the record set to a .NET DataSet object using a single remote call. Once
you have a .NET dataset, you can bind the grdResults grid control to the dataset.

11. Add the following lines of code to your using block:
IRecordSet rs = vegres.get_Stats() as IRecordSet;

System.Data.DataSet rsDataset = webMap.ConvertRecordSetToDataSet(rs,
false, false);

System.Web.UI.WebControls.DataGrid resGrid =
mapctl.Page.FindControl("grdResults") as
System.Web.UI.WebControls.DataGrid;

resGrid.DataSource = rsDataset;

resGrid.DataBind();

EXTENDING ARCGIS SERVER WITH SERVER-SIDE LIBRARIES

The results class’s ResGraphics property returns
a GraphicElements collection. The MapServer’s

MapDescription object allows you to add
graphics to a map at draw time. The

MapDescription takes those graphics as a
GraphicElements collection. This is an example
of how you can write your utility COM object to
best satisfy the requirements of an ArcGIS Server

application.

The Converter convenience class also has a
ToDataset method for converting record sets to

.NET datasets, independent of a Web control.
The Converter object is in the

ESRI.ArcGIS.Server.WebControls assembly.

By compiling the project, this allows you to pick
MapView.NewConservationPlan for the

ServerToolActionClass in the Toolbar
CollectionEditor.

Chapter7.pmd 1/25/2005, 6:02 PM479

480 • ArcGIS Server Administrator and Developer Guide

Now that the class is defined, you must compile your project to add your new
SumVeg class to the .NET assembly list.

1. Click Build, then click Build Solution.

2. Fix any errors.

Adding the Summarize Vegetation tool to the toolbar
Now that you have implemented your class, you will add the tool to your toolbar.
The template includes a toolbar control that already has a number of tools
(Zoom In, Zoom Out, Pan, Identify, and so forth); you will add a tool that will
allow the user to click a point on the map and execute the code in the SumVeg
class.

Before adding the tool, you will need to copy a set of images that you will use for
the tool in the toolbar. Copy the following image files from
<install_location>\DeveloperKit\Samples\Data\ServerData\Yellowstone to
your application’s Images folder (this will be
c:\inetpub\wwwroot\VegetationWebApp\Images):

• click_point.gif

• click_pointU.gif

• click_pointD.gif

1. In the Solution Explorer, click Default.aspx to open the Web form in design
mode.

2. Click the toolbar control.

3. In the properties for the toolbar control, click the ToolbarItemsCollection
property and click the Browse button. This will open the ToolbarItem Collec-
tion Editor.

4. Click the Add dropdown, then click Tool. This will add a new tool to the
toolbar collection.

5. Click the Name property for the new tool and type
“tbSummarizeVegetation” for the name.

6. Click the Text property and type “Summarize vegetation”
for the text.

7. Click the ToolTip property and type “Summarizes vegeta-
tion types within a buffer” for the tooltip.

8. Click the ClientToolAction property dropdown list and
click Point.

9. Click the ServerToolActionAssembly property and type
“VegetationWebApp” for the assembly name.

10. Click the ServerToolActionClass property dropdown list
and click VegetationWebApp.SumVeg for the class (this is
the class you just created).

11. Click the DefaultImage property and type
“Images\click_point.gif ” for the default image.

EXTENDING ARCGIS SERVER WITH SERVER-SIDE LIBRARIES

The MapViewer template’s toolbar already
contains tools and commands for navigating the
map (Zoom In, Zoom Out, Pan) and for identify-

ing features in the map.

The Toolbar control’s properties

The ClientToolAction specifies what code is
executed in the client (the Web browser). In this

case, JavaScript for drawing a polygon on the
map control is the client tool action.

The ServerToolAction is the code in the server
that is executed when the client tool action has
completed. In this case, the server tool action is

defined by the NewConservationPlan class.

The ToolbarItem Collection Editor dialog box

Chapter7.pmd 1/25/2005, 6:02 PM480

Chapter 7 • Developer scenarios • 481

12. Click the HoverImage property and type “Images\click_pointU.gif ” for the
hover image.

13. Click the SelectedImage property and type “Images\click_pointD.gif ” for the
selected image.

14. Click OK. This will add the new tool to your toolbar.

Your Web application is now ready to be tested. Compile the project (Build/Build
Solution) and fix any errors.

Test the Web application
If you run the Web application from within Visual Studio, it will open a browser
and connect to the application’s startup page (Default.aspx).

1. Click Debug, then click Start.

2. On the browser that opens, click the Summarize vegetation button.

3. Click on the map.

All the polygons within 10,000 meters of your point (clipped to the buffer) will
draw in red on the map, and the total area of each vegetation type within that
buffer will be displayed in the grid.

You can experiment by changing the buffer distance and clicking other locations
on the map.

EXTENDING ARCGIS SERVER WITH SERVER-SIDE LIBRARIES

The new tool that you add through the
ToolbarItem Collection Editor will appear on the

toolbar.

Chapter7.pmd 1/25/2005, 6:02 PM481

482 • ArcGIS Server Administrator and Developer Guide

DEPLOYMENT

Presumably you developed this Web application using your development Web
server. To deploy this Web application on your production Web server, you can
use the built-in Visual Studio .NET tools to copy the project.

1. In the Solution Explorer, click the VegetationWebApp project.

2. Click Project, then click Copy Project.

3. In the Copy Project dialog box, specify the location on your Web server to
copy the project to.

4. Click OK.

In addition to copying the project, you must copy and register your
VegUtilities.dll COM object on both your Web server and the GIS server’s server
object container machines.

ADDITIONAL RESOURCES

This scenario includes functionality and programming techniques covering a
number of different aspects of ArcObjects, the ArcGIS Server API, .NET appli-
cation templates, and Web controls.

You are encouraged to read Chapter 4, ‘Developing ArcGIS Server applications’,
to get a better understanding of core ArcGIS Server programming concepts such
as stateful versus stateless server application development. Chapter 4 also covers
concepts and programming guidelines for working with server contexts and
ArcObjects running within those contexts, as well as discussion on extending the
GIS server as demonstrated in this scenario.

This scenario makes use of a Web application template and the ArcGIS Server
.NET ADF Web controls to provide the majority of the user interface for this
Web application. To learn more about this Web application template and other
template applications that are included with the .NET ADF, see Chapter 5,
‘Developing Web applications with .NET’. Chapter 5 also includes detailed
descriptions and examples of using the .NET Web controls, including the map
and toolbar Web controls that you made use of while programming this Web
application. If you are unfamiliar with ASP.NET Web development, it’s also
recommended that you refer to your .NET developer documentation to become
more familiar with Web application development.

ArcGIS Server applications exploit the rich GIS functionality of ArcObjects.
This application is no exception. It includes the use of ArcObjects to work with
the components of a MapServer, buffer and clip geometries, query a geodatabase,
and create graphics. To learn more about these aspects of ArcObjects, refer to the
online developer documentation on the Carto, Display, GeoDatabase, and Geom-
etry object libraries.

EXTENDING ARCGIS SERVER WITH SERVER-SIDE LIBRARIES

Chapter7.pmd 1/25/2005, 6:02 PM482

Server library

ArcGIS Server is fundamentally an object server that manages a set of GIS server

objects. These server objects are software objects that serve a GIS resource such

as a map or a locator. Developers make use of server objects in their applications.

Server objects are ArcObjects. ArcObjects is a collection of software objects that

make up the foundation of ArcGIS. The Server library contains a set of ArcObjects

that you use to create, manage, and work with these objects. The Server library

also contains ArcObjects for administering the GIS server itself.

 Topics covered include:

• using ArcObjects to perform tasks related to ArcGIS Server • connecting to the

GIS server • getting and creating objects in the server

• working with and managing objects in the server • getting and administering the

properties of the GIS server and its collection of server objects

A

AppendixA.pmd 1/25/2005, 6:07 PM483

484 • ArcGIS Server Administrator and Developer Guide

GISSERVERCONNECTION CLASS

GISServer-
Connection

IGISServerConnection

The GISServerConnection class provides connections to a GIS server over a LAN.

IGISServerConnection contains one method for connecting to the GIS server. You
call the Connect method and provide the name or IP address of the machine on
which the server object manager is running.

Once connected to the GIS server, IGISServerConnection has properties that hand
out references to the ServerObjectManager and the ServerObjectAdmin for making

use of server objects and administering server objects, respec-
tively.

To successfully connect to the GIS server using
GISServerConnection, the user account running the application
must be a member of the agsusers group on the GIS server. If
the account running the application is not a member of this
group, the Connect method on IGISServerConnection will return an
error.

If the user account running the application is a member of the
agsadmin users group on the GIS server, the ServerObjectAdmin
property on IGISServerConnection can be used to get a reference
on the ServerObjectAdmin. If the user account running the appli-
cation is not in the agsadmin users group, the ServerObjectAdmin
property will return an error.

The following code is an example of how to use the
GISServerConnection to connect to a GIS server running on a
machine “melange” and print out the names and types of the
server object configurations configured on the server:
 Dim IGISServerConnection As IGISServerConnection

 Set IGISServerConnection = New GISServerConnection

 IGISServerConnection.Connect "melange"

 Dim pServerObjectManager As IServerObjectManager

 Set pServerObjectManager = pGISServerConnection.ServerObjectManager

 Dim pEnumConfigInfo As IEnumServerObjectConfigurationInfo

 Set pEnumConfigInfo = pServerObjectManager.GetConfigurationInfos

 Dim pConfigInfo As IServerObjectConfigurationInfo

 Set pConfigInfo = pEnumConfigInfo.Next

 Do Until pConfigInfo Is Nothing

 Debug.Print pConfigInfo.Name & ": " & pConfigInfo.TypeName

 Set pConfigInfo = pEnumConfigInfo.Next

 Loop

 IGISServerConnection : IUnknown Provides access to members that connect to a GIS server.

ServerObjectAdmin:
IServerObjectAdmin

Gets the server object admin for the connected GIS server.

Connects to the GIS server specified by the machineName.

ServerObjectManager:
IServerObjectManager

Gets the server object manager for the connected GIS server.

Connect (in machine:Name: String)

The GISServerConnection class provides
connections to a GIS server over a LAN and

hands out references to the server’s
ServerObjectManager and

ServerObjectAdmin.

` `

GIS Server

agsusers
Cal

Liz

agsadmin
Amelie

Application running as Amelie
can connect with access to
ServerObjectManager and

ServerObjectAdmin.

Application running as Fred;
connection is refused.

Application running as Cal
can connect with access
to ServerObjectManager.

Internet

When applications make connections to the GIS
server, they are authenticated against the

agsusers and agsadmin users groups on the GIS
server.

AppendixA.pmd 1/25/2005, 6:07 PM484

Appendix A • Server library • 485

SERVER CONSUMER OBJECTS

When developing applications that connect to a GIS server, you need to be able
to access objects running in the server and create objects in the server for your
application’s use. If the user your application runs as is a member of the agsusers
user group on the GIS server, then that application will be able to connect to the
GIS server using the GISServerConnection object and can get a reference to the set
of objects that provide the ability for the application to make use of ArcObjects
running in the server.

Provides information
about server object
configurations to users
without administrative
privileges to the GIS
server.

Provides information
about server object
types to users without
administrative privileges
to the GIS server.

Provides information
about server directories
to users without
administrative privileges
to the GIS server.

The GISServerConnection object
for connecting to the GIS server
and getting the ServerObjectManager
and the ServerObjectAdmin.

Creates ServerContext,
ServerObjectConfigurationInfo,
and ServerObjectTypeInfo objects.

The ServerContext object used
for working with ArcObjects
in the GIS server.

The ServerObject
object which runs
within a server
context in the
GIS server.

1 1

1

*

1 *

1

*

ServerObject

GISServer-
ConnectionIGISServer-

Connection

ServerContext
IServerContext

ServerObject-
Manager

IServerObjectManager

ServerObject-
Configuration-

Info

IServerObject-
ConfigurationInfo

ServerObject-
TypeInfo

IServerTypeInfo

Server-
DirectoryInfo

IServer-
DirectoryInfo

Geocode-
ServerMapServer

Server Consumer Objects

AppendixA.pmd 1/25/2005, 6:07 PM485

486 • ArcGIS Server Administrator and Developer Guide

SERVEROBJECTMANAGER CLASS

ServerObject-
Manager

IServerObjectManager

 IServerObjectManager : IUnknown Provides access to properties of, and members to work
with, a GIS server's server object manager.

CreateServerContext (in configName:
String, in TypeName: String) :
IServerContext

Gets a reference to a server context. The server context can be based
on a specified server object configuration or can be an empty server
context if no server object configuration is specified.

GetConfigurationInfo (in Name: String,
in TypeName: String) :
IServerObjectConfigurationInfo

Gets the information for server object configuration with the specified
 Name and TypeName.

GetConfigurationInfos:
IEnumServerObjectConfigurationInfo

An enumerator over all the GIS server's configuration infos.

GetServerDirectoryInfos:
IEnumServerDirectoryInfo

An enumerator over all the GIS server's directory infos.

GetTypeInfos:
IEnumServerObjectTypeInfo

An enumerator over all the GIS server's type infos.

The ServerObjectManager class provides access to information about the GIS server
to nonadministrators and creates ServerContexts for use by applications. Any
application that runs as a user account in the agsusers user group on the GIS
server can use the IGISServerConnection interface to connect to the GIS server and
to get a reference to the ServerObjectManager.

Use the IServerObjectManager interface when your application connects to the GIS
server to use and create server objects. The IServerObjectManager interface has the
necessary methods for an application to get the collection of server object con-
figurations, server object types, and server directories configured in the server as
ServerObjectConfigurationInfo, ServerObjectTypeInfo, and ServerDirectoryInfo objects,
respectively.

The CreateServerContext method on IServerObjectManager is used to get a reference
to a context on the server. A context is a process managed by the server within
which a server object runs. You can use CreateServerContext to create a context
based on a server object configuration, or you can create empty contexts solely
for the purpose of creating ArcObjects on the fly within the server.

When using CreateServerContext to create a context based on a server object
configuration, if the server object configuration is pooled, you may get a refer-
ence to a context that is already created and running in the server. When you
have completed using that context, it is important to release it explicitly by
calling the ReleaseContext method on IServerContext to return it to the pool. When
using CreateServerContext to create a context based on a non-pooled server object
configuration, or when creating an empty context, a new context is created on
the server. You still need to call ReleaseContext when you are finished using it, and
the context is destroyed on the server.

The following code is an example of how to connect to the GIS server “me-
lange”, create a server context based on the RedlandsMap server object configura-
tion, get a reference to the RedlandsMap MapServer object running in the context,
and print its DefaultMapName property. Note the call to ReleaseContext when the
use of the context is complete:
 Dim pGISServerConnection As IGISServerConnection

 Set pGISServerConnection = New GISServerConnection

 pGISServerConnection.Connect "melange"

 Dim pServerObjectManager As IServerObjectManager

 Set pServerObjectManager = pGISServerConnection.ServerObjectManager

The ServerObjectManager class provides
methods for getting information about the GIS

server and for creating server contexts for use by
an application.

AppendixA.pmd 1/25/2005, 6:07 PM486

Appendix A • Server library • 487

 Dim pServerContext As IServerContext

 Set pServerContext =
pServerObjectManager.CreateServerContext("RedlandsMap", "MapServer")

 Dim pServerObject As IServerObject

 Set pServerObject = pServerContext.ServerObject

 Dim pMapServer As IMapServer

 Set pMapServer = pServerObject

 Debug.Print pMapServer.DefaultMapName

 pServerContext.ReleaseContext

The following code is an example of how to create an empty server context and,
within that context, create a new polygon and print its area. Note the call to
ReleaseContext when the use of the context is complete:
 Dim pGISServerConnection As IGISServerConnection

 Set pGISServerConnection = New GISServerConnection

 pGISServerConnection.Connect "melange"

 Dim pServerObjectManager As IServerObjectManager

 Set pServerObjectManager = pGISServerConnection.ServerObjectManager

 Dim pServerContext As IServerContext

 Set pServerContext = pServerObjectManager.CreateServerContext("", "")

 ' Create a new polygon in the server context.

 Dim pGonColl As IPointCollection

 Set pGonColl = pServerContext.CreateObject("esriGeometry.Polygon")

 ' Create the points in the server context.

 Dim pPoint(4) As IPoint

 Dim i As Long

 For i = 0 To 3

 Set pPoint(i) = pServerContext.CreateObject("esriGeometry.Point")

 Next

 pPoint(0).PutCoords 0, 0

 pPoint(1).PutCoords 10, 0

 pPoint(2).PutCoords 10, 10

 pPoint(3).PutCoords 0, 10

 'Add the points to the polygon

 pGonColl.AddPoints 4, pPoint(0)

 Dim pArea As IArea

 Set pArea = pGonColl

 Debug.Print pArea.Area

 pServerContext.ReleaseContext

SERVEROBJECTMANAGER CLASS

AppendixA.pmd 1/25/2005, 6:07 PM487

488 • ArcGIS Server Administrator and Developer Guide

SERVERCONTEXT CLASS

A ServerContext is a reserved space within the server dedicated to a set of running
objects. GIS server objects also reside in a server context. When developing
applications with ArcGIS Server, all ArcObjects that your application creates and
uses reside within a server context. To obtain a server object, you actually get a
reference to its context, then get the server object from the context.

You get a ServerContext by calling the CreateServerContext method on
IServerObjectManager.

IServerContext contains methods for creating and managing objects running within
the ServerContext. You can get at the server object running within a server context
using the ServerObject property on IServerContext.

The following code is an example of creating a server context and getting a
reference to the MapServer server object running in the server context.
Dim IServerContext as IServerContext

Set IServerContext =
pServerObjectManager.CreateServerContext("RedlandsMap","MapServer")

Dim pMapServer as IMapServer

Set pMapServer = pServerContext.ServerObject

You can also create empty server contexts. You can use an empty context to
create ArcObjects on the fly within the server to do ad hoc GIS processing. The
following code is an example of creating an empty server context.
Dim IServerContext as IServerContext

Set IServerContext = pServerObjectManager.CreateServerContext("","")

Dim pWorkspaceFactory as IWorkspaceFactory

Set pWorkspaceFactory =
pServerContext.CreateObject("esriDataSourcesGDB.SdeWorkspaceFactory")

All ArcObjects that your application uses should be created within a server
context using the CreateObject method on IServerContext. Also, objects that are
used together should be in the same context. For example, if you create a Point
object to use in a spatial selection to query features in a feature class, the point
should be in the same context as the feature class.

 IServerContext : IUnknown Provides access to members for managing a server context
 and the objects running within that server context.

ServerObject: IServerObject The map or geocode server object running in the server context.

CreateObject (in CLSID: String) :
IUnknown Pointer

Create an object in the server context whose type is specified by
 the CLSID.

GetObject (in Name: String) : IUnknown
Pointer

Get a reference to an object in the server context's object dictionary
 by its Name.

LoadObject (in str: String) : IUnknown
Pointer

Create an object in the server context from a string that was created
 by saving an object using SaveObject.

ReleaseContext Release the server context back to the server so it can be used by
another client (if pooled) or so it can be destroyed (if nonpooled).

Remove (in Name: String) Remove an object from the server context's object dictionary.
RemoveAll Remove all objects from the server context's object dictionary.
SaveObject (in obj: IUnknown Pointer) :

String
Save an object in the server context to a string.

SetObject (in Name: String, in obj:
IUnknown Pointer)

Add an object running in the server context to the context's object
 dictionary.

ServerContextIServerContext

The ServerContext class provides access to a
context in the GIS server and provides methods
for creating and managing objects within that

context.

AppendixA.pmd 1/25/2005, 6:07 PM488

Appendix A • Server library • 489

ArcGIS Server applications should not use New to create ArcObjects but should
always create objects by calling CreateObject on IServerContext:

Incorrect:
Dim pPoint as IPoint

Set pPoint = New Point

Correct:
Dim pPoint as IPoint

Set pPoint = pServerContext.CreateObject("esriGeometry.Point")

When your application is finished working with a server context, it must release
it back to the server by calling the ReleaseContext method. If you allow the con-
text to go out of scope without explicitly releasing it, it will remain in use and be
unavailable to other applications until it is garbage collected. Once a context is
released, the application can no longer make use of any objects in that context.
This includes both objects that you may have obtained from the context or
objects that you created in the context.
Dim IServerContext as IServerContext

Set IServerContext =
pServerObjectManager.CreateServerContext("RedlandsMap","MapServer")

Dim pMapServer as IMapServer

Set pMapServer = pServerContext.ServerObject

' Do something with the object.

pContext.ReleaseContext

The IServerContext interface has a number of methods for helping you manage the
objects you create within server contexts. The following is a description of how
and when you would use these methods.

Use the CreateObject method when you need to create an object for use in your
application.
Dim pPointCollection as IPointCollection

Set pPointCollection = pServerContext.CreateObject("esriGeometry.Polygon")

CreateObject will return a proxy to the object that is in the server context. Your
application can make use of the proxy as if the object were created locally within
its process. If you call a method on the proxy that hands back another object,
that object will actually be in the server context and your application will be
handed back a proxy to that object. In the above example, if you get a point
from the point collection using IPointCollection::Point, the point returned will be in
the same context as the point collection.

If you add a point to the point collection using IPointCollection::AddPoint, the
point should be in the same context as the point collection.
Dim pPointCollection as IPointCollection

Set pPointCollection = pServerContext.CreateObject("esriGeometry.Polygon")

Dim pPoint as IPoint

Set pPoint = pServerContext.CreateObject("esriGeometry.Point")

pPoint.X = 1

pPoint.Y = 1

pPointCollection.AddPoint pPoint

SERVERCONTEXT CLASS

A proxy object is a local representation of a
remote object. The proxy object controls access
to the remote object by forcing all interaction

with the remote object to be via the proxy
object. The supported interfaces and methods on
a proxy object are the same as those supported

by the remote object. You can make method calls
on, and get and set properties of, a proxy object
as if you were working directly with the remote

object.

The objects and interfaces used for creating and
working with geometries can be found in the
Geometry object library. To learn more about

geometry objects, see the online developer
documentation.

Garbage collection is the process by which .NET
and Java reclaim memory from objects that are
created by applications. Garbage collection will

happen based on memory allocations being
made. When garbage collection occurs is when

objects that are not referenced are actually
cleaned up, which may be some time after they

go out of the scope of your application.

AppendixA.pmd 1/25/2005, 6:07 PM489

490 • ArcGIS Server Administrator and Developer Guide

Also, you should not directly use objects in a server context with local objects in
your application and vice versa. You can indirectly use objects or make copies of
them. For example, if you have a Point object in a server context, you can get its
x,y properties and use them with local objects or use them to create a new local
point. Don’t directly use the point in the server context as, for example, the
geometry of a local graphic element object.

Consider the following examples. In each example, assume that objects with
Remote in their names are objects in a server context as in:
Dim pRemotePoint as IPoint

Set pRemotePoint = pServerContext.CreateObject("esriGeometry.Point")

while objects with Local in their names are objects created locally as in:
Dim pLocalPoint as IPoint

Set pLocalPoint = New Point

You can’t set a local object to a remote object:
' This is incorrect.

Set pLocalPoint = pRemotePoint

' This is also incorrect.

Set pLocalElement.Geometry = pRemotePoint

Do not set a local object, or a property of a local object, to be an object obtained
from a remote object:
' This is incorrect.

Set pLocalPoint = pRemotePointCollection.Point(0)

When calling a method on a remote object, don’t pass in local objects as param-
eters:
' This is incorrect.

Set pRemoteWorkspace = pRemoteWorkspaceFactory.Open(pLocalPropertySet,0)

You can get simple data types (double, long, string, and so forth) that are passed
by value from a remote object and use them as properties of a local object as in:
' This is OK.

pLocalPoint.X = pRemotePoint.X

pLocalPoint.Y = pRemotePoint.Y

SetObject and GetObject allow you to store references to objects in the server
context. A context contains a dictionary that you can use as a convenient place to
store objects that you create within the context. Note that this dictionary is itself
valid only as long as you hold on to the server context, and it is emptied when
you release the context. You can use this dictionary to share objects created
within a context between different parts of your application that have access to
the context.

SERVERCONTEXT CLASS

AppendixA.pmd 1/25/2005, 6:07 PM490

Appendix A • Server library • 491

SERVERCONTEXT CLASS

SetObject adds objects to the dictionary, and GetObject retrieves them. An object
that is set in the context will be available until it is removed (by calling Remove or
RemoveAll) or until the context is released.
Dim pPointCollection as IPointCollection

Set pPointCollection = pServerContext.CreateObject("esriGeometry.Polygon")

pServerContext.SetObject "myPoly", pPointCollection

Dim pPoly as IPolygon

set pPoly = pServerContext.GetObject("myPoly")

Use the Remove and RemoveAll methods to remove objects from a context that
have been set using SetObject. Once an object is removed, a reference can no
longer be made to it using GetObject. Note that if you do not explicitly call Re-
move or RemoveAll, you can still not get references to objects set in the context
after the context has been released.
pServerContext.Remove "myPoly"

The SaveObject and LoadObject methods allow you to serialize objects in the server
context to strings, then deserialize them back into objects. Any object that sup-
ports IPersistStream can be saved and loaded using these methods. These methods
allow you to copy objects between contexts. For example, if you use a
GeocodeServer object to locate an address, then you want to draw the point that
GeocodeAddress returns on your map, you need to copy the point into your
MapServer’s context.
Dim pServerContext As IServerContext

Set pServerContext = pSOM.CreateServerContext("RedlandsMap", "MapServer")

Dim pServerContext2 As IServerContext

Set pServerContext2 = pSOM.CreateServerContext("RedlandsGeocode",
"GeocodeServer")

Dim pGCServer As IGeocodeServer Set pGCServer =
pServerContext2.ServerObject

Dim pPropertySet As IPropertySet

Set pPropertySet = pServerContext2.CreateObject("esriSystem.PropertySet")

pPropertySet.SetProperty "Street", "380 New York St"

Dim pResults As IPropertySet

Set pResults = pGCServer.GeocodeAddress(pPropertySet, Nothing)

Dim pPoint As IPoint Set pPoint = pResults.GetProperty("Shape")

' Copy the Point to the Map's server context.

Dim sPoint As String sPoint = pServerContext2.SaveObject(pPoint)

Dim pPointCopy As IPoint Set pPointCopy =
pServerContext.LoadObject(sPoint)

A PropertySet is a generic class that is used to
hold any set of properties. A PropertySet’s
properties are stored as name/value pairs.

Examples for the use of a property set are to
hold the properties required for opening an SDE

workspace or geocoding an address. To learn
more about PropertySet objects, see the online

developer documentation.

A server context contains an object dictionary
that serves as a convenient place for you to

store references to commonly used objects. Use
the SetObject and GetObject methods on

IServerContext to work with the object
dictionary.

myWorkspace

myPoint

myProperties

(other)

esriGeodatabase.Workspace

esriGeometry.Point

esriSystem.PropertySet

AppendixA.pmd 1/25/2005, 6:07 PM491

492 • ArcGIS Server Administrator and Developer Guide

Another important use of these methods is to manage state in your application
while making stateless use of a pooled server object. A good example of this is in

a mapping application. The initial session state for all users is the
same and is equal to the map description for the map server
object. Each user can then change map description properties
such as the extent and layer visibility, which need to be main-
tained in the user’s session state. The application does this by
saving a serialized map description as part of each user’s session
state. Using the serialized string representation allows the appli-
cation to take advantage of the standard session state manage-
ment facilities of the Web server. The application uses the
LoadObject and SaveObject methods to reconstitute the session’s
map description whenever it needs to make edits to it in re-
sponse to user changes or whenever it needs to pass the map
descriptor to the map server object for drawing the map accord-
ing to the user’s specifications.

SERVERCONTEXT CLASS

It is possible to write a stateful application that
makes stateless use of server objects in the GIS

server by maintaining aspects of application state
such as the extent of the map, layer visibility,

and application-added graphics using the
application’s state.

Server object

GIS Server

Client application Client application Client application

This diagram illustrates the use of SaveObject and LoadObject to copy objects between server contexts:

1. The client application gets or creates an object within a server context.

2. The application uses the SaveObject method on the object’s context to serialize the object as a string that is held in the application’s session state.

3. The client application gets a reference to another server context and calls the LoadObject method, passing in the string created by SaveObject. LoadObject
creates a new instance of the object in the new server context.

1

GIS Server

2 3
Client application

proxy

Server
context

Server
context

GIS Server

Client application

proxy

Server
context

Server
context

GIS Server

Client application

proxy proxy

Server
context

Server
context

"abc"

AppendixA.pmd 1/25/2005, 6:07 PM492

Appendix A • Server library • 493

A ServerObject is a coarse-grained ArcObjects component—that is, a high-level
object that simplifies the programming model for doing certain operations and
hides the fine-grained ArcObjects that do the work. Server objects support
coarse-grained interfaces that support methods that do large units of work, such
as “draw a map”, or “geocode a set of addresses”. ServerObjects also have SOAP
interfaces, which makes it possible to expose server objects as Web services that
can be consumed by clients across the Internet.

ArcGIS Server has two ServerObjects: MapServer and GeocodeServer.

IServerObject is an interface supported by all server objects such as the MapServer
and GeocodeServer. The IServerObject interface is returned as the ServerObject prop-
erty on IServerContext.

The IServerObject interface has properties to indicate the name and type of the
server object configuration that created the server object. You can query interface
for interfaces supported by the server object type, such as IMapServer for a
MapServer object or IGeocodeServer for a GeocodeServer object.

The following code shows how to connect to a GIS server, create a server con-
text based on a server object configuration, and use the ServerObject property to
get the IServerObject interface on the server context’s server object:
 Dim pGISServerConnection As IGISServerConnection

 Set pGISServerConnection = New GISServerConnection

 pGISServerConnection.Connect "padisha"

 Dim pSOM As IServerObjectManager

 Set pSOM = pGISServerConnection.ServerObjectManager

 Dim pContext As IServerContext

 Set pContext = pSOM.CreateServerContext("MyMapServer", "MapServer")

 Dim pServerObject As IServerObject

 Set pServerObject = pContext.ServerObject

 Dim pMapServer As IMapServer

 Set pMapServer = pServerObject

 ' Do something with the mapserver.

 pContext.ReleaseContext

SERVEROBJECT CLASS

ServerObjectIServerObject

 IServerObject : IUnknown Provides access to properties of a map or geocode
 server object.

ConfigurationName: String Name of the server object configuration that defines the server object.
TypeName: String Type of the server object (MapServer or GeocodeServer).

A ServerObject is a coarse-grained ArcObjects
component that runs in a server context.

MapServer

IMapServer
IMapServerData

IMapServerInit
IMapServerLayout

IMapServerObjects
IMessageHandler
IObjectConstruct
IRequestHandler

The MapServer object is a coarse-grained server
object that provides access to the contents of a
map document and methods for querying and

drawing the map.

The GeocodeServer object is a coarse-grained
server object that provides access to an address

locator and methods for single address and batch
geocoding.

Geocode-
Server

IGeocodeServer-
Objects

IGeocodeServer

IInitGeocodeServer
IMessageHandler
IObjectConstruct
IRequestHandler

AppendixA.pmd 1/25/2005, 6:07 PM493

494 • ArcGIS Server Administrator and Developer Guide

THE INFO CLASSES

The Server object library’s Info classes provide read-only access to users and
developers who are not administrators to the properties of server directories,
server types, and server object configurations. These properties are necessary for
developing applications using the GIS server.

Each Info class has a corresponding class that is only accessible to administrators
(users in the agsadmin users group) and that exposes the properties of the Info
object with read/write access as well as additional properties.

A ServerDirectoryInfo object is an Info object that describes the properties of a
server directory.

The GIS server manages a set of server directories. A server directory is a location
on a file system that the GIS server is configured to clean up files it writes. The
ServerDirectoryInfo class gives users and developers who are not administrators
access to the list of server directories and the set of their properties that are
necessary for programming applications that use them as locations to write out-
put. You can get information about server directories using the
GetServerDirectoryInfos method on IServerObjectManager to get the
IServerDirectoryInfo interface.

Files in a server directory can be cleaned based on file age or based on when the
file was last accessed. The maximum file age or time since last accessed is a prop-
erty of a server directory. If the CleaningMode is esriDCAbsolute, then all files
created by the GIS server that are older than the maximum age are automatically
cleaned up by the GIS server. If the CleaningMode is esriDCSliding, then all files
created by the GIS server that have not been accessed for a duration defined by
maximum age are automatically cleaned up by the GIS server.

Note that when creating files in a server directory, they must be prefixed with
“_ags_” to be cleaned up by the GIS server. Any files in a server directory not
prefixed with “_ags_” will not be cleaned up.

IServerDirectoryInfo provides read-only access to a subset of the server directory’s
properties. These properties include:

Path: the physical path of the directory in disk

URL: the URL of the virtual directory corresponding to the physical directory

Description: the description of the server directory

CleaningMode: indicates whether the directory is cleaned by file age, by last ac-
cessed, or if its contents are not cleaned up

 IServerDirectoryInfo : IUnknown Provides access to properties of a server output directory.

CleaningMode:
esriServerDirectoryCleaningMode

The mode by which the files in the server directory are cleaned (by
age, by size, or none).

Description: String The description of the server directory.
MaxFileAge: Long The maximum age (in seconds) a file can be in the server directory

before it is deleted, if the cleaning mode is by file age.
Path: String The path of the output directory.
URL: String The URL of the virtual directory that maps to the physical directory as

described by the Path property.

Server-
DirectoryInfo

IServerDirectory-
Info

AppendixA.pmd 1/25/2005, 6:07 PM494

Appendix A • Server library • 495

MaxFileAge: indicates the maximum age or the maximum time since last accessed
that files can be in the server directory before they are cleaned up

The properties listed above are those necessary for developers of server applica-
tions to make use of the various GIS servers’ server directories.

The following code shows how to list the server directories of a GIS server using
the ServerDirectoryInfo class:
Dim pSC As IGISServerConnection

Set pSC = New GISServerConnection

pSC.Connect "padisha"

Dim pSOM As IServerObjectManager

Set pSOM = pSC.ServerObjectManager

Dim pEnumSDirInfo As IEnumServerDirectoryInfo

Set pEnumSDirInfo = pSOM.GetServerDirectoryInfos

Dim pSDirInfo As IServerDirectoryInfo

Set pSDirInfo = pEnumSDirInfo.Next

Do Until pSDirInfo Is Nothing

 Debug.Print pSDirInfo.Path

 Set pSDirInfo = pEnumSDirInfo.Next

Loop

A ServerObjectConfigurationInfo object is an Info object that describes the properties
of a server object configuration.

The GIS server manages a set of server objects running across one or more host
(container) machines. How those server objects are configured and run is defined
by a set of server object configurations. The ServerObjectConfigurationInfo class
gives users and developers who are not administrators access to the list of server
object configurations and the set of their properties that are necessary for pro-
gramming applications with them. You can get information about server object
configurations using the GetConfigurationInfos method on IServerObjectManager to
get the IServerObjectConfigurationInfo interface. Note that the GetConfigurationInfos
method returns only server object configurations that are started.

IServerObjectConfigurationInfo provides read-only access to a subset of the server
object configuration’s properties. These properties include:

Name: the name of the server object configuration

TypeName: the type of server object configuration (for example, MapServer,
GeocodeServer)

Description: the description of the server object configuration

THE INFO CLASSES

 IServerObjectConfigurationInfo :
IUnknown

Provides access to properties of a server object configuration.

Description: String Description of the server object configuration.
IsPooled: Boolean Indicates whether the server objects defined by this configuration

 are pooled.
Name: String Name of the server object configuration.
TypeName: String Type of the server object configuration (MapServer or GeocodeServer).

ServerObject-
Configuration-

Info

IServerObject-
ConfigurationInfo

The ServerObjectConfigurationInfo class
provides read-only access to some of the

properties of a server object configuration.

AppendixA.pmd 1/25/2005, 6:07 PM495

496 • ArcGIS Server Administrator and Developer Guide

IsPooled: indicates whether the server objects described by this configuration are
pooled or non-pooled.

The properties listed above are those necessary for developers of server applica-
tions to make use of the various server objects configured on the GIS server.

The following example shows how to connect to a GIS server and use the
IServerObjectConfigurationInfo interface to print out the name and type of all the
server object configurations:
Dim pGISServerConnection As IGISServerConnection

Set pGISServerConnection = New GISServerConnection

pGISServerConnection.Connect "melange"

Dim pSOM As IServerObjectManager

Set pSOM = pGISServerConnection.ServerObjectManager

Dim pEnumSOCInfo As IEnumServerObjectConfigurationInfo

Set pEnumSOCInfo = pSOM.GetConfigurationInfos

Dim pSOCInfo As IServerObjectConfigurationInfo

Set pSOCInfo = pEnumSOCInfo.Next

Do Until pSOCInfo Is Nothing

 Debug.Print pSOCInfo.Name & ": " & pSOCInfo.TypeName

 Set pSOCInfo = pEnumSOCInfo.Next

Loop

A ServerObjectTypeInfo object is an Info object that describes the properties of a
server object type.

The ServerObjectTypeInfo class gives users and developers who are not administra-
tors access to the list of server object types and the set of their properties that
are necessary for programming applications with them. You can get information
about server object types using the GetTypeInfos method on IServerObjectManager
to get the IServerObjectTypeInfo interface.

IServerObjectTypeInfo provides read-only access to a subset of the server object
type’s properties. These properties include:

Name: the name of the server object type (for example, MapServer,
GeocodeServer)

Description: the description of the server object type

THE INFO CLASSES

 IServerObjectTypeInfo : IUnknown Provides access to properties of a server object type.

Description: String Description of the server object type.
Name: String Name of the server object type.

ServerObject-
TypeInfo

IServerObjectTypeInfo

The ServerObjectTypeInfo class provides read-
only access to some of the properties of a server

object type.

AppendixA.pmd 1/25/2005, 6:07 PM496

Appendix A • Server library • 497

When developing applications that connect to a GIS server for the purposes of
administering the GIS server and its server objects, you need to have access to the
objects for administering these aspects of the GIS server. If the user your appli-
cation runs as is a member of the agsadmin users group on the GIS server, then
that application will be able to connect to the GIS server using the
GISServerConnection object and can get a reference to the set of objects that
provide the ability for the application to administrate the GIS server and its
server objects.

Applications that make use of ArcObjects running in the server do not require
access to the administration objects.

The GISServerConnection object
for connecting to the GIS server
and getting the ServerObjectManager
and the ServerObjectAdmin.

Reports the status of a
server object configuration.

Administrates the GIS server.

Defines the properties
and behavior for server
object types supported
by the GIS server.

Defines the properties
and behavior for server
objects running in
the GIS server.

Defines the properties
for a machine that can
host server objects
managed by the GIS
server.

Defines the properties
and behavior of a server
directory.

1

*

1 *

1 *

1

*

GISServer-
ConnectionIGISServer-

Connection

ServerObject-
Admin

IServerStatistics
IServerObjectAdmin

ServerObject-
Configuration

IServerObject-
Configuration

ServerMachine
IServerMachine

ServerObject-
Configuration-

Status

IServerObject-
ConfigurationStatus

Server-
Directory

IServerDirectory

ServerObject-
Type

IServerObjectType

Statistics-
Results

Server Administration Objects

AppendixA.pmd 1/25/2005, 6:07 PM497

498 • ArcGIS Server Administrator and Developer Guide

SERVEROBJECTADMIN CLASS

ServerObject-
Admin

IServerObjectAdmin
IServerStatistics

The ServerObjectAdmin class administers a GIS server. Any application that runs as
a user account in the agsadmin users group on the GIS server can use the
IGISServerConnection interface to connect to the GIS server and to get a reference
to the ServerObjectAdmin. If the user account is not part of the agsadmin users
group, the ServerObjectAdmin property on IGISServerConnection will return an error.
Applications that are running as accounts that can connect to the server but are
not part of the agsadmin users group can use the ServerObjectManager property on
IGISServerConnection to get a reference on the ServerObjectManager.

Use ServerObjectAdmin to administer both the set of server object configurations
and types associated with the server as well as to administer aspects of the server
itself. The following administration functionality of the GIS server is provided by
ServerObjectAdmin:

Administer server object configurations:

• Add and delete server object configurations.

• Update a server object configuration’s properties.

• Start, stop, and pause server object configurations.

• Report the status of a server object configuration.

• Get all server object configurations and their properties.

• Get all server object types and their properties.

Administer aspects of the server itself:

• Add and remove server container machines.

• Get all server container machines.

• Add and remove server directories.

• Get all server directories.

• Configure the server’s logging properties.

• Get statistics about events in the server.

The ServerObjectAdmin class provides
methods for administering the GIS server and its

server objects.

AppendixA.pmd 1/25/2005, 6:07 PM498

Appendix A • Server library • 499

You can use IServerObjectAdmin to administer either the server’s set of server
object configurations and server object types or aspects of the server itself, such
as the list of machines that may host server objects.

If your application is connecting to the server to make use of objects in the
server, use the IServerObjectManager interface.

ADMINISTERING SERVER OBJECT CONFIGURATIONS

The AddConfiguration method will add a ServerObjectConfiguration to your GIS
server. A new ServerObjectConfiguration can be created using the CreateConfiguration
method. Use the IServerObjectConfiguration interface to set the various properties
of the configuration, then use the AddConfiguration method on IServerObjectAdmin
to add the new configuration to the GIS server.

Once a configuration is added to the server, you can use StartConfiguration to make
it available for applications to use.

The following code shows how to connect to the GIS server called “melange”
and use the CreateConfiguration, AddConfiguration, and StartConfiguration methods to
create a new geocode server object configuration, add it to the server, and make
it available for use:

SERVEROBJECTADMIN CLASS

 IServerObjectAdmin : IUnknown Provide access to members that administer the GIS server.

Properties: IPropertySet The logging properties for the GIS server.

AddConfiguration (in config:
IServerObjectConfiguration)

Adds a server object configuration (created with CreateConfiguration)
to the GIS server.

AddMachine (in machine:
IServerMachine)

Adds a host machine (created with CreateMachine) to the GIS server.

AddServerDirectory (in pSD:
IServerDirectory)

Adds a server directory (created with CreateServerDirectory) to the
 GIS server.

CreateConfiguration:
IServerObjectConfiguration

Creates a new server object configuration.

CreateMachine: IServerMachine Creates a new host machine.
CreateServerDirectory: IServerDirectory Creates a new server directory.
DeleteConfiguration (in Name: String, in

TypeName: String)
Deletes a server object configuration from the GIS server.

DeleteMachine (in machineName:
String)

Deletes a host machine from the GIS server, making it unavailable to
host server objects.

DeleteServerDirectory (in Path: String) Deletes a server directory such that its cleanup is no longer managed
by the GIS server. It does not delete the physical directory from disk.

GetConfiguration (in Name: String, in
TypeName: String) :
IServerObjectConfiguration

Get the server object configuration with the specified Name
 and TypeName.

GetConfigurations:
IEnumServerObjectConfiguration

An enumerator over all the server object configurations.

GetConfigurationStatus (in Name:
String, in TypeName: String) :
IServerObjectConfigurationStatus

Get the configuration status for a server object configuration with the
specified Name and TypeName.

GetMachine (in Name: String) :
IServerMachine

Get the host machine with the specified Name.

GetMachines: IEnumServerMachine An enumerator over all the GIS server's host machines.
GetServerDirectories:

IEnumServerDirectory
An enumerator over the GIS server's output directories.

GetServerDirectory (in Path: String) :
IServerDirectory

Get the server directory with the specified Path.

GetTypes: IEnumServerObjectType An enumerator over all the server object types.
PauseConfiguration (in Name: String, in

TypeName: String)
Makes the configuration unavailable to clients for processing requests,

but does not shut down running instances of server objects or
interrupt requests in progress.

StartConfiguration (in Name: String, in
TypeName: String)

Starts a server object configuration and makes it available to clients
for processing requests.

StopConfiguration (in Name: String, in
TypeName: String)

Stops a server object configuration and shuts down any running
instances of server objects defined by the configuration.

UpdateConfiguration (in config:
IServerObjectConfiguration)

Updates the properties of a server object configuration.

UpdateMachine (in machine:
IServerMachine)

Updates the properties of a host machine.

UpdateServerDirectory (in pSD:
IServerDirectory)

Updates the properties of a server directory.

AppendixA.pmd 1/25/2005, 6:07 PM499

500 • ArcGIS Server Administrator and Developer Guide

Dim pGISServerConnection As IGISServerConnection

Set pGISServerConnection = New GISServerConnection

pGISServerConnection.Connect "melange"

Dim pServerObjectAdmin As IServerObjectAdmin

Set pServerObjectAdmin = pGISServerConnection.ServerObjectAdmin

' Create the new configuration.

Dim pConfiguration As IServerObjectConfiguration

Set pConfiguration = pServerObjectAdmin.CreateConfiguration

pConfiguration.Name = "California"

pConfiguration.TypeName = "GeocodeServer"

Dim pProps As IPropertySet

Set pProps = pConfiguration.Properties

pProps.SetProperty "LocatorWorkspacePath",
"\\melange\Geocoding\California"

pProps.SetProperty "Locator", "California"

pProps.SetProperty "SuggestedBatchSize", "500"

pConfiguration.IsPooled = True

pConfiguration.MinInstances = 1

pConfiguration.MaxInstances = 1

pConfiguration.WaitTimeout = 10

pConfiguration.UsageTimeout = 120

' Add the configuration to the server.

pServerObjectAdmin.AddConfiguration pConfiguration

The UpdateConfiguration method will update the ServerObjectConfiguration that is
specified when the method is called. You can use the GetConfiguration or
GetConfigurations methods on IServerObjectAdmin to get a reference to the
ServerObjectConfiguration you want to update.

Note that the server object configuration must be stopped before you call
UpdateConfiguration. You can use StopConfiguration to stop the server object con-
figuration.

The following code shows how to connect to the GIS server called “melange”
and use GetConfiguration to get a ServerObjectConfiguration, change its MinInstances
property, then update the configuration using the UpdateConfiguration method:
Dim pGISServerConnection As IGISServerConnection

Set pGISServerConnection = New GISServerConnection

pGISServerConnection.Connect "melange"

Dim pServerObjectAdmin As IServerObjectAdmin

Set pServerObjectAdmin = pGISServerConnection.ServerObjectAdmin

Dim pConfig as IServerObjectConfiguration

Set pConfig = pServerObjectAdmin.GetConfiguration ("RedlandsMap",
"MapServer")

SERVEROBJECTADMIN CLASS

AppendixA.pmd 1/25/2005, 6:07 PM500

Appendix A • Server library • 501

pConfig.MinInstances = 3

pServerObjectAdmin.UpdateConfiguration pConfig

Use DeleteConfiguration to delete a server object configuration from your GIS
server. Note: To call DeleteConfiguration, the server object configuration must be
stopped. If it is not stopped, then DeleteConfiguration will return an error.

The following code shows how to stop, then delete a server object configuration
called RedlandsMap:
Dim pGISServerConnection As IGISServerConnection

Set pGISServerConnection = New GISServerConnection

pGISServerConnection.Connect "melange"

Dim pServerObjectAdmin As IServerObjectAdmin

Set pServerObjectAdmin = pGISServerConnection.ServerObjectAdmin

pServerObjectAdmin.StopConfiguration "RedlandsMap", "MapServer"

pServerObjectAdmin.DeleteConfiguration "RedlandsMap", "MapServer"

The GetConfigurations method returns an enumeration of all the server object
configurations that are configured in the GIS server.

The following code shows how to connect to the GIS server named “melange”
and print the name and type of all its server object configurations.
Dim pGISServerConnection As IGISServerConnection

Set pGISServerConnection = New GISServerConnection

pGISServerConnection.Connect "melange"

Dim pServerObjectAdmin As IServerObjectAdmin

Set pServerObjectAdmin = pGISServerConnection.ServerObjectAdmin

Dim pEnumSOC As IEnumServerObjectConfiguration

Set pEnumSOC = pServerObjectAdmin.GetConfigurations

Dim pSOC As IServerObjectConfiguration

Set pSOC = pEnumSOC.Next

Do Until pSOC Is Nothing

 Debug.Print pSOC.Name & ": " & pSOC.TypeName

 Set pSOC = pEnumSOC.Next

Loop

The GetConfigurationStatus method will return a ServerObjectConfigurationStatus
object for the specified server object configuration. You can use
IServerObjectConfigurationStatus to get information such as the number of instances
of that configuration that are running and the number in use.

SERVEROBJECTADMIN CLASS

AppendixA.pmd 1/25/2005, 6:07 PM501

502 • ArcGIS Server Administrator and Developer Guide

IServerObjectConfigurationStatus also provides information as to the startup status
of the configuration.

You can use IServerObjectConfigurationStatus to monitor server object configuration
usage. For example, you can use the InstanceInUseCount to determine if any in-
stances of the configuration are in use before stopping the configuration.

The following code demonstrates using GetConfigurationStatus and the
InstancesInUse property to verify no instances of a configuration are in use before
stopping it:
Dim pGISServerConnection As IGISServerConnection

Set pGISServerConnection = New GISServerConnection

pGISServerConnection.Connect "melange"

Dim pServerObjectAdmin As IServerObjectAdmin

Set pServerObjectAdmin = pGISServerConnection.ServerObjectAdmin

Dim pSOCStatus As IServerObjectConfigurationStatus

Set pSOCStatus = pServerObjectAdmin.GetConfigurationStatus("RedlandsMap",
"MapServer")

If pSOCStatus.InstanceInUseCount = 0 Then

 pServerObjectAdmin.StopConfiguration "MyMapServer", "RedlandsMap"

End If

The GetTypes method returns an enumeration of the server object types that are
installed in the GIS server. By default, the MapServer and GeocodeServer object
types are installed in the server.

The StartConfiguration method will start the server object configuration and make
it available for use by clients. When a server object configuration is started, if it is
a pooled configuration, the minimum number of server objects as described by
the configuration will be preloaded. The StartConfiguration method will complete
only when all the server object instances have been created to satisfy the mini-
mum.

The StopConfiguration method stops a server object configuration. Stopping a
server object configuration both makes the server object configuration unusable
by clients (calls to CreateServerObject referencing the configuration will fail) and
shuts down any of the configurations running server objects. If any of those
objects are in use and executing requests, they will be interrupted and shut down.

 IServerObjectConfigurationStatus :
 IUnknown

Provides access to properties of a server object
 configuration's status to administrators.

InstanceCount: Long Number of instances of server objects for a particular configuration
that are currently running in the GIS server.

InstanceInUseCount: Long Number of running instances of server objects for a particular
configuration that are currently in use by clients of the GIS server.

Status: esriConfigurationStatus Status of the server object configuration. This status indicates whether
the server object configuration is started, stopped, paused, etc.

ServerObject-
Configuration-

Status

IServerObject-
ConfigurationStatus

SERVEROBJECTADMIN CLASS

The ServerObjectConfigurationStatus class
provides information about the status of a server

object configuration.

AppendixA.pmd 1/25/2005, 6:07 PM502

Appendix A • Server library • 503

You should stop a configuration when you need to change its properties such as
the pooling model or recycling model. Use the StartConfiguration method to restart
the configuration.

If you want to stop the configuration without interrupting clients that are mak-
ing use of server objects, you can pause the configuration using PauseConfiguration
and wait until such a time that all server object usage has ended, then call
StopConfiguration to stop the configuration.

The PauseConfiguration method will pause the server object configuration. Pausing
the configuration does not interrupt any requests that are being executed by
instances of server objects managed by that configuration. A paused server ob-
ject, however, will refuse future requests.

You should pause server objects if you want to lock requests from being pro-
cessed, but you want requests in process to complete. Once all objects are no
longer in use, you can perform necessary operations (database maintenance,
stopping the server object configuration to changes properties, and so forth). Use
GetConfigurationStatus and IServerObjectConfigurationStatus to determine if any
server objects are in use.

Use the StartConfiguration method to cancel pause on the server object configura-
tion.

ADMINISTERING SERVER MACHINES

ArcGIS Server is a distributed system. Server objects managed by the GIS server
can run on one or more host machines. A machine that can host server objects
must have the Server Object Container installed on it, and the machine must be
added to the list of host machines managed by the server object manager.

Use the AddMachine method to add new host machines to your GIS server. Once
a machine has been added to the GIS server, as new server object instances are
created, the server object manager will make use of the new machine.

Use the CreateMachine method to create a new server machine that you can pass
as an argument to the AddMachine method to add new host machines to your GIS
server.

The following code shows how to use the CreateMachine and AddMachine methods
to add a machine to your GIS server:
Dim pGISServerConnection As IGISServerConnection

Set pGISServerConnection = New GISServerConnection

pGISServerConnection.Connect "melange"

Dim pServerObjectAdmin As IServerObjectAdmin

Set pServerObjectAdmin = pGISServerConnection.ServerObjectAdmin

Dim pServerMachine As IServerMachine

Set pServerMachine = pServerObjectAdmin.CreateMachine

pServerMachine.Name = "callum"

pServerObjectAdmin.AddMachine pServerMachine

SERVEROBJECTADMIN CLASS

AppendixA.pmd 1/25/2005, 6:07 PM503

504 • ArcGIS Server Administrator and Developer Guide

Use the GetMachines method to retrieve the names of the machines that have
been added to the server to host server objects.

The DeleteMachine method removes a machine from the machines that can host
server objects for the GIS server. When you delete a machine, any instances of
server objects that are running on that machine will be shut down and replaced
with instances running on the GIS server’s other host machines.

ADMINISTERING SERVER DIRECTORIES

You can use IServerObjectAdmin to add and remove server directories from the
GIS server. Both server objects and server applications typically need to write
either temporary data or result data to some location for it to be delivered or
presented to the end user. For example, a map server object’s ExportMapImage
method can create an image file that is then displayed on a Web application.
These files are typically transient and temporary by nature. For example, when a
map server writes an image to satisfy a request from a Web application, that
image is needed only for the time it takes to display it on the Web application. An
application that creates check-out personal geodatabases for download would
provide a finite amount of time during which that geodatabase is created and
when it can be downloaded.

Because server applications support many user sessions, these output files can
accumulate and need to be periodically cleaned up. The server provides the capa-
bility to automatically clean up these output files if they are written to one of
the server’s output directories.

Use the CreateServerDirectory method to create a new server directory that you can
pass as an argument to the AddServerDirectory method to add new server directo-
ries to your GIS server. Once you have added the server directory, you can config-
ure your server objects and server applications to make use of the server direc-
tory.

Note: Server directories must be accessible by all host machines configured in the
GIS server.

The following code shows how to use the CreateServerDirectory and
AddServerDirectory methods to add a directory to your GIS server:
Dim pGISServerConnection As IGISServerConnection

Set pGISServerConnection = New GISServerConnection

pGISServerConnection.Connect "melange"

Dim pServerObjectAdmin As IServerObjectAdmin

Set pServerObjectAdmin = pGISServerConnection.ServerObjectAdmin

Dim pSDir As IServerDirectory

Set pSDir = pServerObjectAdmin.CreateServerDirectory

pSDir.CleaningMode = esriSDCByFileAge

pSDir.Description = "Default output directory"

pSDir.Path = "\\melange\serveroutput"

pSDir.URL = http://melange/serveroutput

SERVEROBJECTADMIN CLASS

AppendixA.pmd 1/25/2005, 6:07 PM504

Appendix A • Server library • 505

pSDir.MaxFileAge = 100

pSOM.AddServerDirectory pSDir

The UpdateServerDirectory method will update the ServerDirectory that is specified
when the method is called. You can use the GetServerDirectory or
GetServerDirectories methods on IServerObjectAdmin to get a reference to the
ServerDirectory you want to update.

The UpdateServerDirectory is useful for modifying the cleanup mode (CleaningMode)
and cleanup schedule.

The following code shows how to connect to the GIS server called “melange”
and use the GetServerDirectory method to get a ServerDirectory, change its
MaxFileAge property, then update the directory using the UpdateServerDirectory
method:
Dim pGISServerConnection As IGISServerConnection

Set pGISServerConnection = New GISServerConnection

pGISServerConnection.Connect "padisha"

Dim pServerObjectAdmin As IServerObjectAdmin

Set pServerObjectAdmin = pGISServerConnection.ServerObjectAdmin

Dim pSDir As IServerDirectory

Set pSDir =
pServerObjectAdmin.GetServerDirectory("\\melange\serveroutput")

pSDir.MaxFileAge = 200

pServerObjectAdmin.UpdateServerDirectory pSDir

The DeleteServerDirectory method removes a directory from the set of directories
managed by the GIS server. The DeleteServerDirectory method will not affect the
physical directory.

When a server directory is removed with this method, the GIS server will no
longer manage the cleanup of output files written to that directory. Applications
or server objects that are configured to write their output to the physical direc-
tory that is referenced by the server directory will continue to work, but the files
they write will not be cleaned up by the server.

ADMINISTERING SERVER LOGGING AND TIME-OUT PROPERTIES

The Properties property on IServerObjectAdmin returns the properties for the GIS
server. The properties are for the GIS server’s logging and for server object cre-
ation time-out.

The GIS server logs its activity, including server object configuration startup,
shutdown, server context creation and shutdown, and errors generated through
any failed operation or request in the GIS server.

You can control the logging properties through the PropertySet returned by Proper-
ties. The following is a description of the logging properties:

LogPath: this is the path to the location on disk to which log files are written. By
default, the LogPath is <install location>\log.

SERVEROBJECTADMIN CLASS

AppendixA.pmd 1/25/2005, 6:07 PM505

506 • ArcGIS Server Administrator and Developer Guide

LogSize: this is the size to which a single log file can grow (in MB) before a new
log file is created. By default, the LogSize is 10.

LogLevel: this is a number between 0 and 5 that indicates the level of detail that
the server logs. By default, the LogLevel is 3. The following is a description of
each log level:

0 (None): No logging

1 (Error): Serious problems that require immediate attention

2 (Warning): Problems that require attention

3 (Normal): Common administrative messages of the server

4 (Detailed): Common messages from user use of the server, including server
objects

5 (Debug): Verbose messages to aid in troubleshooting

All aspects of logging can be changed when the GIS server is running. When they
are changed, the server will immediately use the new logging settings.

The following example shows how to use the Properties property on
IServerObjectAdmin to modify the logging properties of the GIS server:
Dim pGISServerConnection As IGISServerConnection

Set pGISServerConnection = New GISServerConnection

pGISServerConnection.Connect "melange"

Dim pServerObjectAdmin As IServerObjectAdmin

Set pServerObjectAdmin = pGISServerConnection.ServerObjectAdmin

Dim pLogProps As IPropertySet

Set pLogProps = pServerObjectAdmin.Properties

pLogProps.SetProperty "LogPath", "c:\ServerLogs"

pLogProps.SetProperty "LogLevel", 5

pServerObjectAdmin.Properties = pLogProps

Server object creation may hang for a variety of reasons. To prevent this from
adversely affecting the GIS server, it has a ConfigurationStartTimeout property that
defines the maximum time in seconds a server object instance has to initialize
itself before its creation is cancelled.

SERVEROBJECTADMIN CLASS

A PropertySet is a generic class that is used to
hold any set of properties. A PropertySet’s
properties are stored as name/value pairs.

Examples for the use of a property set are to
hold the properties required for opening an SDE

workspace or geocoding an address. To learn
more about PropertySet objects, see the online

developer documentation.

AppendixA.pmd 1/25/2005, 6:07 PM506

Appendix A • Server library • 507

GETTING STATISTICS ABOUT EVENTS IN THE SERVER

As the GIS server creates and destroys server objects, handles client requests, and
so on, statistics about these events are logged in the GIS server’s logs. In addition
to the log, statistics are also kept in memory and can be queried using the
IServerStatistics interface.

You can query the GIS server for statistics on the following events described by
esriServerStatEvent:

You can query these events using the statistical functions described by
esriServerStatFunction:

• esriSSFCount

• esriSSFMinimum

• esriSSFMaximum

• esriSSFSum

• esriSSFSumSquares

• esriSSFMean

• esriSSFStandardDeviation

Note: For esriSSEContextCreationFailed, esriSSEContextCreationTimeout,
esriSSEContextUsageTimeout, and esriSSEServerObjectCreationFailed, the only rel-

SERVEROBJECTADMIN CLASS

ArcCatalog provides administrators with a user
interface for querying the GIS server’s statistics.

Value Description
esriSSEContextCreated A client made a call to CreateServerContext on

IServerObjectManager and got a reference to a server context.
esriSSEContextCreationFailed CreateServerContext failed due to an error. Errors will be logged in

the GIS server's log files.
esriSSEContextCreationTimeout CreateServerContext timed out because there were no available

server objects for the requested configuration for a duration longer
than the server object configuration's WaitTimeout.

esriSSEContextReleased A client released the server context by calling ReleaseServerContext.
The time measured is the time the client held on to the context (the
time between when it called CreateServerContext and received a
reference to the server context) and the time it was released.

esriSSEContextUsageTimeout A client did not release the server context by calling
ReleaseServerContext before the context's server object
configuration's UsageTimeout was reached.

esriSSEServerObjectCreated A new server object was created. This can happen when a pooled
configuration is started and the object pool is populated, when a
server object is recycled, or in response to a call to
CreateServerContext. The time measured is the time to create
the server.

esriSSEServerObjectCreationFailed The creation of a new server object instance failed due to an error.
Errors will be logged in the GIS server's log files.

 IServerStatistics : IUnknown Provides access to members that report statistics for a GIS
server to administrators.

GetAllStatisticsForTimeInterval (in
event: esriServerStatEvent, in period:
esriServerTimePeriod, in index: Long,
in length: Long, in Name: String, in
Type: String, in machine: String) :
IStatisticsResults

Gets a set of statistics, such as count, min, max, or mean, for an event
(such as context usage time) for a specified time period.

GetSpecificStatisticForTimeIntervals (in
event: esriServerStatEvent, in function:
esriServerStatFunction, in period:
esriServerTimePeriod, in index: Long,
in length: Long, in Name: String, in
Type: String, in machine: String) :
IDoubleArray

Gets a specific statistic (such as total count of server contexts
created) for a specified time period.

Reset Clears out the currently gathered statistics.

AppendixA.pmd 1/25/2005, 6:07 PM507

508 • ArcGIS Server Administrator and Developer Guide

evant statistical function is esriSSFCount, as these events do not have time associ-
ated with them. The other functions reflect the statistics of the elapsed time
associated with the event.

While the GIS server’s logs maintain a record of all events in the server, the set
of statistics that are in memory and that can be queried are accumulated summa-
ries of time slices since the GIS server was started. The granularity of these time
slices is more coarse the further back in time you go. These statistics can be que-
ried for the following time intervals:

• By second for the current minute

• By minute for the current hour

• By hour for the current day

• By day for events that happened previous to the current day

Each time period is an accumulated total of the statistics for that time period.
For example, if you query the total number of requests to create server contexts
for the last 30 days, you would get statistics from now to the beginning of the
day 30 days ago (not to the current time on that day). This is because the in-
memory statistics have been combined for that entire day.

This means that you may actually get statistics for a longer period that you speci-
fied in your query. When you query the GIS server for statistics, you can use the
IServerTimeRange interface to get a report of the actual time period that your
query results reflect.

The IServerStatistics interface has methods for querying a specific statistical func-
tion for an event or for querying all statistical functions for an event.

Use the GetSpecificStatisticForTimeIntervals method to query the GIS server for a
specific statistic for an event at discrete time intervals. For example, you can use
this method to get the count of all server contexts that were created for each
minute of the last hour.

Use the GetAllStatisticsForTimeInterval to query the GIS server for all statistics for
an event. For example, you can use this method to get the sum, mean, and so
forth, of server contexts usage time for the last two days.

These methods can be used to query based on the events occurring in the server as
a whole (that is, across all machines) or for those occurring on a specific machine.
In addition, these methods can be used to query based on the events using all
server objects or for events on a particular server object.

You specify the time interval for which you want to query using an index of time
periods relative to the current time based on the time period described by
esriServerTimePeriod. The index argument to the GetSpecificStatisticForTimeIntervals
and GetAllStatisticsForTimeInterval methods describe the index of the time period
to start from, and the length argument describes the number of time periods to
query.

SERVEROBJECTADMIN CLASS

AppendixA.pmd 1/25/2005, 6:07 PM508

Appendix A • Server library • 509

For example, to query for all statistics in the last two hours, specify a time period
of esriSTPHour, an index of 0, and a length of 2.

To query for all statistics since the server started, specify a time period of
esriSTPNone, an index of 0, and a length of 1.

If you are unsure of the actual time period that the results of your query reflect,
use the IServerTimeRange interface to get a report of the actual time period that
your query results reflect.

Use the Reset method to clear the statistics in memory.

The following code shows how to query the GIS server for statistics on the create
context event for all host machines and all configurations since the GIS server
was started. It also demonstrates the usage of the IServerTimeRange interface to
report the actual time the statistics represent:
Dim pGISServerConnection As IGISServerConnection

Set pGISServerConnection = New GISServerConnection

pGISServerConnection.Connect "melange"

Dim pServerStats As IServerStatistics

Set pServerStats = pGISServerConnection.ServerObjectAdmin

Dim pStatsRes As IStatisticsResults

Dim pSTR As IServerTimeRange

Set pStatsRes =
pServerStats.GetAllStatisticsForTimeInterval(esriSSEContextCreated,
esriSTPNone, 0, 1, "", "", "")

Set pSTR = pStatsRes

Debug.Print pStatsRes.Count & ": " & pSTR.StartTime & " to " &
pSTR.EndTime

The following code shows the same query but for statistics for only the last two
hours:
Dim pGISServerConnection As IGISServerConnection

Set pGISServerConnection = New GISServerConnection

pGISServerConnection.Connect "melange"

Dim pServerStats As IServerStatistics

Set pServerStats = pGISServerConnection.ServerObjectAdmin

Dim pStatsRes As IStatisticsResults

Dim pSTR As IServerTimeRange

SERVEROBJECTADMIN CLASS

 IServerTimeRange : IUnknown Provides access to members that report the actual time
 range for GIS server statistics reported by
 IServerStatistics to administrators.

EndTime: Date The end time for the period that the statistics represent.
StartTime: Date The start time for the period that the statistics represent.

AppendixA.pmd 1/25/2005, 6:07 PM509

510 • ArcGIS Server Administrator and Developer Guide

Set pStatsRes =
pServerStats.GetAllStatisticsForTimeInterval(esriSSEContextCreated,
esriSTPHour, 0, 2, "", "", "")

Set pSTR = pStatsRes

Debug.Print pStatsRes.Count & ": " & pSTR.StartTime & " to " &
pSTR.EndTime

The following code shows the query for statistics since the server started for only
the Yellowstone map server object:
Dim pGISServerConnection As IGISServerConnection

Set pGISServerConnection = New GISServerConnection

pGISServerConnection.Connect "melange"

Dim pServerStats As IServerStatistics

Set pServerStats = pGISServerConnection.ServerObjectAdmin

Dim pStatsRes As IStatisticsResults

Dim pSTR As IServerTimeRange

Set pStatsRes =
pServerStats.GetAllStatisticsForTimeInterval(esriSSEContextCreated,
esriSTPNone, 0, 1, "Yellowstone", "MapServer", "")

Set pSTR = pStatsRes

Debug.Print pStatsRes.Count & ": " & pSTR.StartTime & " to " &
pSTR.EndTime

The following code shows the query for the count of server contexts created for
each minute in the last 60 minutes for all host machines and all server objects:
Dim pGISServerConnection As IGISServerConnection

Set pGISServerConnection = New GISServerConnection

pGISServerConnection.Connect "melange"

Dim pServerStats As IServerStatistics

Set pServerStats = pGISServerConnection.ServerObjectAdmin

Dim dr As IDoubleArray

Set dr =
pServerStats.GetSpecificStatisticForTimeIntervals(esriSSEContextCreated,
esriSSFCount, esriSTPMinute, 0, 60, "", "", "")

For i = 0 To dr.Count - 1

 Debug.Print dr.Element(i)

Next i

SERVEROBJECTADMIN CLASS

AppendixA.pmd 1/25/2005, 6:07 PM510

Appendix A • Server library • 511

SERVEROBJECTCONFIGURATION CLASS

The ServerObjectConfiguration class describes the configuration for a server object
that is managed by the GIS server. ServerObjectConfigurations can be added, re-
moved, and modified by users or developers who are members of the agsadmin
users group and, therefore, have administrator privileges on the GIS server.

The administrator-level properties of ServerObjectConfiguration are:

• Properties

• RecycleProperties

• MinInstances

• MaxInstances

• IsolationLevel

• StartupType

• WaitTimeout

• UsageTimeout

A read-only subset of properties of a ServerObjectConfiguration are available to
nonadministrators via the GISServerConnectionInfo object. These nonadministrator
level properties are:

• Name

• TypeName

• Description

• IsPooled

The IServerObjectConfiguration interface is a read/write interface on a server object
configuration that allows administrators to configure new server object configu-
rations to add to the server, update existing server object configurations, and
view the configuration properties of a server object configuration.

 IServerObjectConfiguration : IUnknown Provides access to members that control the behavior and
 properties of a server object configuration
 to administrators.

Description: String Description of the server object configuration.
IsolationLevel: esriServerIsolationLevel The isolation level of the server objects defined by the server object

configuration.
IsPooled: Boolean Indicates whether the server objects defined by this configuration

 are pooled.
MaxInstances: Long The maximum number of server object instances for a server object

configuration.
MinInstances: Long The minimum number of server object instances for a pooled server

object configuration.
Name: String Name of the server object configuration.
Properties: IPropertySet Initialization parameters and properties for the server objects created

by the server object configuration.
RecycleProperties: IPropertySet The recycling properties for the server object configuration.
StartupType: esriStartupType The startup type for this server object configuration. Startup type

describes whether the server object configuration is started when
the server object manager service is started for the GIS server.

TypeName: String Type of the server object configuration (MapServer or GeocodeServer).
UsageTimeout: Long Maximum time (in seconds) a client can hold on to an instance of a

server object for this server object configuration before releasing it
back to the server. It is the maximum time allowed between calling
CreateServerContext and ReleaseServerContext.

WaitTimeout: Long Maximum time (in seconds) a client will wait for an instance of a
server object for this server object configuration using the
CreateServerContext method on IServerObjectManager before
timing out.

ServerObject-
Configuration

IServerObject-
Configuration

The ServerObjectConfiguration class describes
the configuration for a server object that is

managed by the GIS server.

AppendixA.pmd 1/25/2005, 6:07 PM511

512 • ArcGIS Server Administrator and Developer Guide

If you use IServerObjectConfiguration to modify any of a configuration’s properties,
you must call UpdateConfiguration on IServerObjectAdmin for those changes to be
reflected in the server.

The following code shows how to connect to the GIS server “melange” and use
the IServerObjectConfiguration interface to set the properties of a new server object
configuration created and added to the server with the CreateConfiguration and
AddConfiguration methods on IServerObjectAdmin to create a new geocode server
object configuration and add it to the server:
Dim pGISServerConnection As IGISServerConnection

Set pGISServerConnection = New GISServerConnection

pGISServerConnection.Connect "melange"

Dim pServerObjectAdmin As IServerObjectAdmin

Set pServerObjectAdmin = pGISServerConnection.ServerObjectAdmin

' Create the new configuration.

Dim pConfiguration As IServerObjectConfiguration

Set pConfiguration = pServerObjectAdmin.CreateConfiguration

pConfiguration.Name = "California"

pConfiguration.TypeName = "GeocodeServer"

Dim pProps As IPropertySet

Set pProps = pConfiguration.Properties

pProps.SetProperty "LocatorWorkspacePath",
"\\melange\Geocoding\California"

pProps.SetProperty "Locator", "California"

pProps.SetProperty "SuggestedBatchSize", "500"

pConfiguration.IsPooled = True

pConfiguration.MinInstances = 1

pConfiguration.MaxInstances = 1

pConfiguration.WaitTimeout = 10

pConfiguration.UsageTimeout = 120

' Add the configuration to the server.

pServerObjectAdmin.AddConfiguration pConfiguration

Use the IsolationLevel property to get the server object isolation, or set it for a new
configuration or to update an existing configuration.

Server objects can have either high isolation (esriServerIsolationLevelHigh) or low
isolation (esriIsolationLevelLow). Each instance of a server object with high isola-
tion runs in a dedicated process on the server that it does not share with other
server objects. Instances of server objects with low isolation may share the same
process with other server object instances of the same configuration.

Use the IsPooled property to indicate if the server objects created by this server
object configuration are pooled or non-pooled.

Server objects can be either pooled or non-pooled. Pooled server objects can be
shared across multiple sessions and applications and are held on to by an applica-

SERVEROBJECTCONFIGURATION CLASS

AppendixA.pmd 1/25/2005, 6:07 PM512

Appendix A • Server library • 513

SERVEROBJECTCONFIGURATION CLASS

tion for the duration of a single request. Pooled server objects are meant for
applications that make stateless use of those objects.

Non-pooled server objects are dedicated to a single application session and are
held on to for the duration of an application session. Non-pooled server objects
are not shared between application sessions and are meant for applications that
make stateful use of those objects.

When StartConfiguration is called on a server object configuration whose IsPooled
property is true, a set of server objects will be preloaded based on the
MinInstances property of the server object configuration.

When StartConfiguration is called on a server object configuration whose IsPooled
property is false, no server objects are preloaded. Server objects are loaded and
initialized when an application gets one from the server using CreateServerContext.

The MaxInstances property indicates the maximum number of server objects that
can be running and handle requests at any one time. If the maximum number of
server objects are running and busy, additional requests will be queued until a
server object becomes free.

For a pooled server object, the MaxInstances represents the maximum simulta-
neous requests that can be processed by the server object configuration. For a
non-pooled server object, the MaxInstances represents the maximum number of
simultaneous application users of that particular server object configuration.

The MaxInstances property must be greater than 0 and greater than the
MinInstances property.

The MinInstances property applies to only pooled server object configurations. It
represents the number of server object instances that are preloaded when the
server object configuration is started. The GIS server will ensure that the mini-
mum number of instances are always running within the server for a given con-
figuration.

When there are more simultaneous requests than server object instances running,
additional server object instances will be started until MaxInstances is reached.

Non-pooled server object configurations always have a MinInstances property of
0.

The MinInstances property must be less than the MaxInstances property.

The Name property in combination with the TypeName property is used to iden-
tify a server object configuration in methods such as GetConfiguration,
UpdateConfiguration, and StartConfiguration.

Name is case sensitive and can have a maximum of 120 characters. Names can
contain only the following characters:

A–Z

a–z

0–9

_ (underscore)

- (minus)

AppendixA.pmd 1/25/2005, 6:07 PM513

514 • ArcGIS Server Administrator and Developer Guide

The TypeName property indicates the type of server object that this configuration
creates and runs. Examples are MapServer and GeocodeServer.

Server objects that are defined by server object configurations have a collection
of initialization parameters and properties associated with them. An example of
an initialization parameter is the map document associated with a MapServer
object. An example of a property is the batch geocode size for a GeocodeServer
object.

You can get these properties and change them using the Properties property on the
server object configuration. The Properties property returns an IPropertySet. Use
GetProperty and SetProperty on IPropertySet to get and set these properties. If you
change these properties, you must call UpdateConfiguration to change them in the
server object configuration.

You also use the Properties property to get a reference on the PropertySet for a new
server object configuration to set its properties before adding it to the server by
calling AddConfiguration.

The following code shows how to connect to the GIS server “melange” and use
the CreateConfiguration, AddConfiguration, and StartConfiguration methods to create a
new geocode server object configuration, add it to the server, and make it avail-
able for use. Note how the Properties property is called to get a reference to the
server object configuration’s properties.
Dim pGISServerConnection As IGISServerConnection

Set pGISServerConnection = New GISServerConnection

pGISServerConnection.Connect "melange"

Dim pServerObjectAdmin As IServerObjectAdmin

Set pServerObjectAdmin = pGISServerConnection.ServerObjectAdmin

' Create the new configuration.

Dim pConfiguration As IServerObjectConfiguration

Set pConfiguration = pServerObjectAdmin.CreateConfiguration

pConfiguration.Name = "California"

pConfiguration.TypeName = "GeocodeServer"

Dim pProps As IPropertySet

Set pProps = pConfiguration.Properties

pProps.SetProperty "LocatorWorkspacePath",
"\\melange\Geocoding\California"

pProps.SetProperty "Locator", "California"

pProps.SetProperty "SuggestedBatchSize", "500"

pConfiguration.IsPooled = True

pConfiguration.MinInstances = 1

pConfiguration.MaxInstances = 1

Dim pRecProps As IPropertySet

Set pRecProps = pConfiguration.RecycleProperties

pRecProps.SetProperty "StartTime", "00:00"

pRecProps.SetProperty "Interval", "3600"

SERVEROBJECTCONFIGURATION CLASS

A PropertySet is a generic class that is used to
hold any set of properties. A PropertySet’s
properties are stored as name/value pairs.

Examples for the use of a property set are to
hold the properties required for opening an SDE

workspace or geocoding an address. To learn
more about PropertySet objects, see the online

developer documentation.

AppendixA.pmd 1/25/2005, 6:07 PM514

Appendix A • Server library • 515

' Add the configuration to the server.

pServerObjectAdmin.AddConfiguration pConfiguration

' Start the configuration.

pServerObjectAdmin.StartConfiguration pConfiguration.Name,
pConfiguration.TypeName

Recycling allows for server objects that have become unusable to be destroyed
and replaced with fresh server objects and to reclaim resources taken up by stale
server objects.

Pooled server objects are typically shared between multiple applications and users
of those applications. Through reuse, a number of things can happen to a server
object to make them unavailable for use by applications. For example, an applica-
tion may incorrectly modify a server object’s state, or an application may incor-
rectly hold a reference to a server object, making it unavailable to other applica-
tions or sessions. In some cases, a server object may become corrupted and unus-
able.

Recycling allows you to keep the pool of server objects fresh and cycle out stale
or unusable server objects.

You can get the recycling properties and change them using the RecyclingProperties
property on the server object configuration. The RecyclingProperties property
returns an IPropertySet. Use GetProperty and SetProperty on IPropertySet to get and set
these properties. If you change these properties, you must call UpdateConfiguration
to change them in the server object configuration.

The properties associated with recycling are:

• StartTime: the time at which the recycling interval is initialized. The time
specified is in 24-hour notation. For example, to set the start time at
2:00 p.m., the StartTime property would be 14:00.

• Interval: the time between recycling operations in seconds. For example, to
recycle the configuration every hour, this property would be set to 3600.

The StartupType indicates if the configuration is automatically started
(esriSTAutomatic) when the server object manager Windows service is started.
Server object configurations that are not configured to start up automatically
(esriSTManual) must be started manually using ArcCatalog or by calling the
StartConfiguration method on IServerObjectAdmin.

The amount of time it takes between a client requesting a server object (using the
CreateServerContext method on IServerObjectManager) and getting a server object is
called the wait time. A server object can be configured to have a maximum wait
time by specifying the WaitTimeout property on IServerObjectConfiguration. If a
client’s wait time exceeds the maximum wait time for a server object, then the
request will time out.

The WaitTimeout property is in seconds.

Once a client gets a reference to a server object, it can hold on to that server
object as long as desired before releasing it. The amount of time between when a
client gets a reference to a server object and when it is released is the usage time.

SERVEROBJECTCONFIGURATION CLASS

A PropertySet is a generic class that is used to
hold any set of properties. A PropertySet’s
properties are stored as name/value pairs.

Examples for the use of a property set are to
hold the properties required for opening an SDE

workspace or geocoding an address. To learn
more about PropertySet objects, see the online

developer documentation.

AppendixA.pmd 1/25/2005, 6:07 PM515

516 • ArcGIS Server Administrator and Developer Guide

To ensure that clients don’t hold references to server objects for too long (for
example, they don’t correctly release server objects), a server object can be con-
figured to have a maximum usage time by specifying the UsageTimeout property on
IServerObjectConfiguration. If a client holds on to a server object longer than the
maximum usage time, then the server object is automatically released and the
client will lose the reference to the server object.

The UsageTimeout is in seconds.

SERVEROBJECTCONFIGURATION CLASS

AppendixA.pmd 1/25/2005, 6:07 PM516

Appendix A • Server library • 517

SERVERMACHINE CLASS

The ServerMachine class is used to define a machine that can host server objects
managed by the GIS server.

ArcGIS Server is a distributed system. Server objects managed by the GIS server
can run on one or more host machines. A machine that can host server objects
must have the Server Object Container installed on it, and the machine must be
added to the list of host machines managed by the Server Object Manager.

IServerMachine allows you to configure the properties of a machine to add it to
the GIS server. You must set the Name property for the machine, which will be
the name of the machine on the network. The description is optional.

Use the AddMachine method to add new machines to your GIS server. All server
objects configured in the GIS server can run on any of the host machines, so all
host machines must have access to the necessary data and output directories used
by all the server objects.

The following code shows how to use the IServerMachine interface and
AddMachine method to add a machine to your GIS server:
Dim pGISServerConnection As IGISServerConnection

Set pGISServerConnection = New GISServerConnection

pGISServerConnection.Connect "melange"

Dim pServerObjectAdmin As IServerObjectAdmin

Set pServerObjectAdmin = pGISServerConnection.ServerObjectAdmin

Dim pServerMachine As IServerMachine

Set pServerMachine = pServerObjectAdmin.CreateMachine

pServerMachine.Name = "callum"

pServerObjectAdmin.AddMachine pServerMachine

ServerMachineIServerMachine

 IServerMachine : IUnknown Provides access to members that control the behavior and
 properties of a server host machine to administrators.

Description: String The description of the host machine.
Name: String The name of the machine that can host server objects for the

 GIS server.

The ServerMachine class is used to define a
machine that can host server objects managed

by the GIS server.

AppendixA.pmd 1/25/2005, 6:08 PM517

518 • ArcGIS Server Administrator and Developer Guide

SERVEROBJECTTYPE CLASS

The ServerObjectType class defines the type of a server object. The type of server
object configuration and, therefore, server objects that can be created on a GIS
server, is one of a defined set of server object types that a GIS server can sup-
port. By default, the supported types are MapServer and GeocodeServer. The server
object configuration type defines the types of server object instances that a
particular server object configuration starts up and provides to applications to
make use of.

The ServerObjectType also defines the set of properties associated with a particular
server object configuration that must be specified when creating the configura-
tion. For example, a MapServer requires a map document, while a GeocodeServer
requires a locator.

You must be connected to the GIS server as an administrator to access ServerType
objects. A read-only subset of properties of a ServerObjectType is available to
nonadministrators via the ServerObjectTypeInfo object.

The IServerObjectType interface is a read/write interface on a server object type
that allows administrators to configure new server object types to add to the
server, update existing server object types, and view the properties of a server
object type.

 IServerObjectType : IUnknown Provides access to members that control the behavior and
 properties of a server object type to administrators.

CLSID: String The GUID of the COM class corresponding to the server object type.
Description: String Description of the server object type.
Name: String Name of the server object type.

ServerObject-
Type

IServerObjectType

The ServerObjectType class defines the type of
a server object.

AppendixA.pmd 1/25/2005, 6:08 PM518

Appendix A • Server library • 519

SERVERDIRECTORY CLASS

The ServerDirectory class defines the properties of a server directory. A server
directory is a location on a file system that the GIS server is configured to clean
up files that it writes. By definition, a server directory can be written to by all
container machines.

The GIS server hosts and manages server objects and other ArcObjects for use in
applications. In many cases, the use of those objects requires writing output to
files. For example, when a map server object draws a map, it writes images to
disk on the server machine. Other applications may write their own data; for
example, an application that checks out data from a geodatabase may write the
check-out personal geodatabase to disk on the server.

Typically, these files are transient and need only be available to the application for
a short time, for example, the time for the application to draw the map or the
time required to download the check-out database. As applications do their work
and write out data, these files can accumulate quickly. The GIS server will auto-
matically clean up its output if that output is written to a server directory.

Files in a server directory can be cleaned based on file age or based on when the
file was last accessed. The maximum file age or time since last accessed is a prop-
erty of a server directory. If the CleaningMode is esriDCAbsolute, then all files
created by the GIS server that are older than the maximum age are automatically
cleaned up by the GIS server. If the CleaningMode is esriDCSliding, then all files
created by the GIS server that have not been accessed for a duration defined by
maximum age are automatically cleaned up by the GIS server.

Note that when creating files in a server directory, they must be prefixed with
“_ags_” to be cleaned up by the GIS server. Any files in a server directory not
prefixed with “_ags_” will not be cleaned up.

The IServerDirectory interface allows you to configure the properties of a server
directory to add it to the GIS server. You must set the Path, CleaningMode, and
MaxFileAge (if cleaning mode is absolute or sliding) properties for the server
directory, which will be the directories’ path on disk. The Description and URL
properties are optional.

The URL property is the virtual directory that corresponds to the physical direc-
tory specified by the Name property. Server objects, such as a map server object,
can use the Name property to write their output files to a directory where they
will be cleaned up and can pass back to clients the URL for the location of the
files they write. Clients (for example, Web applications) will then not require
direct access to the physical directory.

Use the AddServerDirectory method on IServerObjectAdmin to add the new server
directory to your GIS server.

ServerDirectoryIServerDirectory

The ServerDirectory class defines the proper-
ties of a server directory.

 IServerDirectory : IUnknown Provides access to members that control the behavior and
properties of a server output directory to administrators.

CleaningMode:
esriServerDirectoryCleaningMode

The mode by which the files in the server directory are cleaned (by
age, by size, or none).

Description: String The description of the server directory.
MaxFileAge: Long The maximum age (in seconds) a file can be in the server directory

before it is deleted, if the cleaning mode is by file age.
Path: String The path of the server directory.
URL: String The URL of the virtual directory that maps to the physical directory as

described by the Path property.

AppendixA.pmd 1/25/2005, 6:08 PM519

AppendixA.pmd 1/25/2005, 6:08 PM520

Configuration
and log files

The ArcGIS Server manages a set of files that are written by the server object

manager. These files can be grouped into two categories: log files and

configuration files.

Understanding the structure of these files and how to use them will be critical for

an ArcGIS Server administrator.

This appendix gives a description of the structure and content for both the log

and configuration files, including details of how to interpret and use them.

B

AppendixB.pmd 1/25/2005, 6:09 PM521

522 • ArcGIS Server Administrator and Developer Guide

ARCGIS SERVER LOG FILES

The ArcGIS Server logs events that occur in the server, and any errors associated
with those events, to log files. Events such as when server objects are started,
when server contexts are created, and when machines are added to the server are
some of the examples of events logged by the server.

The server object manager (SOM) is the centralized logging mechanism for
ArcGIS server. Through the SOM, all events that occur within the SOM, events
that occur in server object containers (SOCs), and their contained objects are
logged by the SOM.

The logs are actually a pair of files: an XML file and a .dat file. The XML file
contains the <log> tags, and the .dat file contains the messages that are con-
stantly being appended. You can open the XML file in any XML aware tool to
view the messages in the .dat file.

By default, these log files are written to <install_location>\log on the SOM
machine. Each time the SOM service starts, a new log file is created, and the
server will continue to write messages to that log until it reaches the maximum
log size. Once the log file exceeds the maximum size, it is retired and a new log
file is created. By default, the maximum log size is 10 megabytes.

Log messages can vary in their level of severity from “error”, which indicates a
problem that requires immediate attention, to “detailed”, which is a common
message generated through regular use of the server. The messages that are logged
are defined by the log level that is set in the server. The following are the ArcGIS
Server’s logging levels:

0 (None): No logging

1 (Error): Serious problems that require immediate attention are logged.

2 (Warning): Problems that require attention and errors are logged.

3 (Normal): Common administrative messages of the server, warnings, and
errors are logged.

4 (Detailed): Common messages from user use of the server, including server
objects, normal messages, warnings, and errors are logged.

5 (Debug): Verbose messages to aid in troubleshooting; detailed messages, nor-
mal messages, warnings, and errors are logged.

By default, the log level of the server is set to level 3 (Normal), meaning messages
whose severity is Error, Warning, or Normal will be logged. All messages whose
level is Detailed or Debug are not logged.

The log location, maximum log size, and logging level can be changed at any time
using either ArcCatalog or the server API. Changes made will be reflected imme-
diately in the server. The log properties can also be modified by editing the
Server.cfg configuration file. In that case, the changes will not be reflected until
the SOM is stopped and restarted.

ArcCatalog Server Properties page General tab

AppendixB.pmd 1/25/2005, 6:09 PM522

Appendix B • Configuration and log files • 523

USING THE LOG FILES

Log files are an important tool for monitoring and troubleshooting problems with
your GIS server. GIS server administrators will monitor the server’s statistics and
use the statistics to help determine when they need to consult the log files. The
GIS server’s statistics give general information about the state of the GIS server
and whether errors have been occurring. The statistics are available to server
administrators through ArcCatalog.

Through both the GIS server’s statistics and reports from users of the system,
administrators will be confronted with errors and other problems occurring in the
system. The log files provide the information to identify what the errors are and,
through the information in the log, infer what to investigate to solve the prob-
lem.

For example, an administrator may view the server statistics and note that there
were a number of errors associated with creating new server objects in the server.
By further examining the statistics, the problem area can be narrowed down to a
particular server object container machine. The information in the log file can
then be used to determine what errors have been logged and to discover, for
example, that the server object container machine on which the errors were
occurring did not have access to the output directory. Using this information, the
administrator can rectify the directory access problem, then use statistics and the
log files to determine if the error occurs again.

The log files also serve as a history of the statistics and events that occur over
time in the server. The server’s statistics are in memory and are accumulated
summaries of time slices since the GIS server started. The granularity of these
time slices is more coarse the further back in time you go. Statistics are also
cleared when the server is stopped. The GIS server’s logs maintain a record of all
events in the server and are not deleted when the server is stopped.

READING THE LOG FILES

The information contained in the log file messages has a consistent structure.
Understanding this structure is important when interpreting the information in
the log files.

Log message structure
Loggable messages are generated by many subsystems of ArcGIS Server. Messages
are generated as a result of SOM startup and administrative and user usage. Each
message has a target that can be either “Server” or a server object. Server-targeted
messages log events associated with the core functionality of the SOM, while
server object messages log events associated with a specific server object configu-
ration and instances of that server object configuration.

Independent of target, all loggable messages have six explicit properties: time,
level, code, target, thread, and message. The time is the time at which the logged
event occurred. The level is the level of detail of the message in relation to other
messages (as described above, the levels are: Error, Warning, Normal, Detailed,
and Debug). The code is the result code associated with the message. The target is
either “Server” or the name of a server object configuration associated with the
message. Thread is the SOM process thread that generated the message. Finally,

ARCGIS SERVER LOG FILES

ArcCatalog Server Properties page Statistics tab

AppendixB.pmd 1/25/2005, 6:09 PM523

524 • ArcGIS Server Administrator and Developer Guide

message is the human-readable description of the logged event that includes the
process and thread IDs of the container processes where the object that gener-
ated the message is running and the server object container machine on which
that process is running (if applicable).

The message may contain any error description that comes from the server object
itself, such as an error indicating that it cannot write its output.

Additional properties that may be included with certain messages include machine
and elapsed. Machine indicates the server object container machine for which the
event occurred. For example, the sever may log an error that a server context for
a particular server object configuration could not be created on a particular
machine. Only those messages that apply to statistics that are recorded for a
specific machine will include a machine property.

The elapsed property is the time it took for the event that is being logged to
complete. For example, the create server object event has an elapsed time to
indicate the amount of time it took to create the server object instance.

The following is an example of a typical log message. This log message indicates
that an instance of the Yellowstone map server object was created on the server
object container machine “padisha”, and it took 2.443 seconds to create the
object.
<Msg time="2003-10-31T14:36:05"

level="Detailed"

code="4004"

target="Yellowstone.MapServer"

machine="padisha"

thread="2936"

elapsed="2.443">

Server Object instance is successfully created on machine padisha.

</Msg>

Message targets
As described above, the targets for the log messages can be Server or a server
object. Messages associated with server objects have the name and type of the
server object as the target property. For example, the Yellowstone map server
object will appear as Yellowstone.MapServer.

There are two additional targets that will appear in the log that are internal server
object configurations. While the administrator does not manage these configura-
tions directly, errors may still occur with them that need to be dealt with.

The internal server objects are SDM.ServerDirectoryManager and Engine.
SDM.ServerDirectoryManager is the object that cleans files from the GIS server’s
server directories. An instance of the SDM.ServerDirectoryManager is created
when the SOM starts. Each time a directory is cleaned, this instance of
SDM.ServerDirectoryManager does the cleaning for all server directories. Any
errors it encounters are reported. Errors that are typically reported by
SDM.ServerDirectoryManager include the inability to access a directory it needs
to clean.

ARCGIS SERVER LOG FILES

AppendixB.pmd 1/25/2005, 6:09 PM524

Appendix B • Configuration and log files • 525

Each time a server directory is created or removed, the
SDM.ServerDirectoryManager is stopped and restarted.

The Engine.Engine server object represents the empty server context configura-
tion. When a client asks to create an empty context, the Engine.Engine configu-
ration creates one for the client.

ARCGIS SERVER LOG FILES

Code Meaning Target Comments
1000 Add machine failed Server Error logged if you attempt to add a new server container

machine that does not exist or cannot be found by
the SOM.

1001 Remove machine failed Server Error logged if removing a machine fails.
1002 Illegal configuration name Server Error logged when you attempt to add a server object

configuration whose name contains illegal characters.
1003 Load server object

 configuration failed
Server Error logged when the server cannot load a server object

configuration, for example, if the server object
configuration file is corrupt or contains invalid values.

1004 Add server object
 configuration failed

Server Error logged when adding a new server object
configuration fails, for example, if you attempt to add a
server object configuration with the same name and type
as an existing server object configuration.

1005 Delete server object
 configuration failed

Server Error logged when deleting a server object configuration
fails, for example, if you attempt to delete a server object
configuration that does not exist.

1006 Stopped server object
 configuration failed

Server
object

Error logged when stopping a server object configuration
fails, for example, if you attempt to stop a server object
configuration that is already stopped.

1007 Pause server object
 configuration failed

Server
object

Error logged when pausing a server object configuration
fails, for example, if you attempt to pause a stopped or
already paused server object configuration.

1008 Start server object
 configuration failed

Server
object

Error logged when starting a server object configuration
fails, for example, if you attempt to start an already started
configuration, or none of the minimum instances could
be started.

1010 Server object type not found Server Error logged when a server object configuration is trying to
use a server object type that is not registered with the
server. The registered types are MapServer
and GeocodeServer.

1012 Failed to load the server
 configuration file

Server Error logged when the Server.cfg cannot be read on SOM
startup, for example, if the SOM startup encounters a
corrupted Server.cfg or if Server.cfg contains
invalid values.

1013 Failed to create a server
 context

Server
object

Errors logged if the server fails to create a server context
for a client, for example, if the client asks the server to
create a context for a server object configuration that does
not exist.

1014 Failed to create a server
 container process

Server
object

Error logged if the server failed to create a new container
process on one of the server object container machines.

1015 Failed to create a thread in a
 container process

Server
object

Error logged if the server failed to create a new thread in a
container process on one of the server object
container machines.

1016 Failed to create a server
 object in a container
 process thread

Server
object

Error logged if an instance of a server object failed to
create on a server object container machine. Look at the
message for more specific error information.

1017 Container process crashed Server
object

Error logged if a container process containing server
objects for the target server object configuration crashes.
If this is a pooled server object, the server will create a
new process and server objects to repopulate the pool.

1018 Server directory has invalid
 path

Server Error logged if a server directory has an invalid path.

1019 Add server directory failed Server Error logged if the addition of a server directory failed. This
can happen if you attempt to add a server directory if one
already exists.

1020 Delete server directory failed Server Error logged if the deletion of a server directory failed. This
can happen if you attempt to delete a server directory that
does not exist.

1021 Update server directory failed Server Error logged if the update of a server directory failed. This
can happen if you attempt to update a server directory
that does not exist.

1022 Server object types file not
 found

Server Error logged if the server object types file cannot be found
when the SOM starts. The server object types file is
<install_location>\bin\ServerTypes.txt

1023 Server object type not
 registered

Server Error logged if the server object types file is empty. The
server object types file is
<install_location>\bin\ServerTypes.txt

AppendixB.pmd 1/25/2005, 6:09 PM525

526 • ArcGIS Server Administrator and Developer Guide

ARCGIS SERVER LOG FILES

Log codes
The codes are numbered based on the following:

0–5999: Messages that are generated and written by the SOM.

6000 and greater: Messages that are generated by the server object components
themselves (MapServer, GeocodeServer, SDM.ServerDirectoryManager,
Engine.Engine).

Code Meaning Target Comments
2000 Server object container

 machine not found
Server Message logged if the SOM attempts to create a new

container process or thread on a machine that it can’t find.
This error will typically occur if the machine becomes
unavailable (due to a network problem) while the SOM
is running.

2001 Server object container
 machine exists

Server Message logged when you attempt to add a server object
container machine that has already been added to the
GIS server.

2002 Server object configuration
 exists

Server Message logged when you attempt to add a new server
object configuration with the same name and type as an
existing server object configuration.

2003 Server object configuration is
 not found

Server Message logged when a client requests a server object
configuration that does not exist.

2006 The minimum and maximum
 instance values are invalid

Server When adding or updating server object configuration,
minimum or maximum instances specified are invalid, for
example, a minimum that is larger than the maximum.

2007 A server context’s usage
 time-out was exceeded

Server
object

A client held onto a server object for longer than its usage
time-out, and the server automatically released it.

2008 A server object’s creation
 time-out was exceeded

Server
object

An instance of a server object took longer to create than
the creation time-out, and the server cancelled the creation.

2009 Server configuration not found Server Message logged if while the SOM is running, it cannot
read the Server.cfg file.

2010 Server configuration contains
 an invalid parameter

Server Message logged if the SOM encounters invalid tags or
values when reading the Server.cfg file.

2011 A server directory was not
 found

Server Message logged if you attempt to find or delete a server
directory that does not exist.

2012 Server directory exists Server Message logged if you attempt to add a new server
directory that already exists.

Code Meaning Target Comments
4000 Container process created Server

object
This message is logged each time a container process for
the target server object configuration is started on a
server object container machine.

4001 Thread created in a container
 process

Server
object

This message is logged each time a thread is created in a
container process for the target server object configuration.

4002 Container process removed Server
object

This message is logged each time a container process for
the target server object configuration is removed from a
server object container machine.

4003 Thread removed from a
 container process

Server
object

This message is logged each time a thread is removed
from a container process for the target server
object configuration.

4004 Server object created in a
 server container thread

Server
object

This message is logged each time an instance of a server
object is created in a thread within a container process for
the target server object configuration. The elapsed time
logged is the amount of time taken to create the
server object.

4006 Server context created Server
object

This message is logged any time a client calls
CreateServerContext for the target server object
configuration. The elapsed time is the wait time between
the call to CreateServerContext and when the client
receives the server context.

4007 Server context released Server
object

This message is logged any time a client calls
ReleaseContext for a context created for the target server
object configuration. The elapsed time is the usage time
between when the client’s call to CreateServerContext is
completed and when the client is released.

4008 Recycling started Server
object

Message logged when the target server object
configuration recycling is started.

4009 Recycle next object Server
object

Message logged when an instance of the target server
object configuration is recycled.

AppendixB.pmd 1/25/2005, 6:09 PM526

Appendix B • Configuration and log files • 527

ARCGIS SERVER LOG FILES

Code Meaning Target Comments
3000 Server object container

 machine added
Server Message logged when the user adds a new server object

container machine to the GIS server.
3001 Server object container

 machine deleted
Server Message logged when the user removes a server object

container machine from the GIS server.
3002 Server object configuration

 load begin
Server Message logged for each server object configuration

when the SOM starts.
3003 Server object configuration

 add begin
Server Message logged when the server attempts to add a

server object configuration. This event occurs when you
either add a new or update an existing server
object configuration.

3004 Server object configuration
 delete begin

Server Message logged when the server attempts to delete a
server object configuration. This event occurs when you
either delete or update a server object configuration.

3005 Server object configuration
 stop begin

Server Message logged when the server attempts to stop a
server object configuration.

3006 Server object configuration
 pause begin

Server Message logged when the server attempts to pause a
server object configuration.

3007 Server object configuration
 start begin

Server Message logged when the server attempts to start a
server object configuration. This message is not logged
when server object configurations are started during
SOM startup.

3008 Server object configuration
 loaded

Server This message is logged for each server object
configuration that was successfully loaded on starting the
SOM. This message is logged after a message with code
3002. If the load failed, an error with code 1003 is logged.

3009 Server object configuration
 added

Server Message logged when the SOM starts and successfully
adds the SDM (ServerDirectoryManager) and internal
Engine server object configurations.

3010 Server object configuration
 deleted

Server Message logged when a server object configuration
is deleted.

3011 Server object configuration
 stopped

Server
object

Message logged when a server object configuration
is stopped.

3012 Server object configuration
 paused

Server
object

Message logged when a server object configuration
is paused.

3013 Server object configuration
 started

Server
object

Message logged when a server object configuration
is started. Note that a successful start may occur after
errors have been logged.

3014 Server object manager
 started

Server Message logged when the SOM has successfully started.
Note that a successful start may occur after errors have
been logged.

3015 Server object manager
 stopped

Server Message logged when the SOM is stopped. No additional
messages will be added to a log file after this message.

3016 Server configuration loaded Server Message logged when the SOM starts and the
information in Server.cfg is successfully loaded.

3017 Server directory added Server Message logged when a new server directory is added
to the server.

3018 Server directory updated Server This message is logged when the properties of a server
directory are updated.

3019 Server directory deleted Server Message logged when a server directory is deleted from
the server.

Some codes can apply to messages of different levels, for example, a message
with a code may be an error for one event, while it may be a warning for another
event. These tables summarize the log codes, their meaning, and the applicable
targets.

AppendixB.pmd 1/25/2005, 6:09 PM527

528 • ArcGIS Server Administrator and Developer Guide

ARCGIS SERVER CONFIGURATION FILES

The ArcGIS administrator manages the various configuration properties of both
the GIS server and its collection of server objects. All of these properties are
maintained by the server in a collection of configuration files. These configura-
tion files are read by the SOM when its started, and they define such things as the
set of server object container machines, the output directories, the server object
configurations, their pooling model, and so on.

The properties of the server itself are maintained in a file called Server.cfg, while
the properties of each of the server’s server object configurations are maintained
in files called <server object configuration name>.<server object type>.cfg. For
example, the configuration file for the map server object configuration called
Yellowstone would be Yellowstone.MapServer.cfg.

These configuration files are in XML and are located in the
<install_location>\cfg folder on the SOM machine. When properties of the
server and its configurations are set or modified using ArcCatalog, these changes
are reflected in both the GIS server and the appropriate configuration file. Devel-
opers can also change these properties using the server API to update the server’s
properties and to create, update, and delete the server’s configurations.

The server’s configuration files can also be modified manually using a text editor.
Unlike using ArcCatalog or the server API, any changes made to the server’s
configuration files manually are not reflected in the server until it is restarted.
While this appendix documents the structure of these files, it is recommended
that you use ArcCatalog or the server API to create and modify their contents,
which is done indirectly though modifying the server’s properties.

The remainder of this appendix details the content and use of the server configu-
ration files.

THE SERVER.CFG CONFIGURATION FILE

The server’s properties are maintained in the Server.cfg configuration file. The
contents of this file are read when the SOM is started. The server will report a
successful start once this file has been successfully read and any initialization
detailed in it completed. If there are errors in the file, the SOM will log an error
and attempt to start using default values for the missing or invalid properties.

When the SOM is installed on a machine, the Server.cfg file does not exist.
Server.cfg is created after the SOM is started, and either a server object container
machine or a server directory is added to the GIS server.

The following is an example of a Server.cfg file for a GIS server with a single
container machine (padisha) and a single output directory (\\padisha\images),
whose logging level is 3.
<Server>

 <ServerMachines>

 <Machine>

 <Name>padisha</Name>

 <Description>Server container machine 1</Description>

 </Machine>

 </ServerMachines>

 <ServerDirectories>

AppendixB.pmd 1/25/2005, 6:09 PM528

Appendix B • Configuration and log files • 529

 <Directory>

 <Path>\\padisha\images</Path>

 <URL>http://padisha/images</URL>

 <Description>default output location</Description>

 <Cleaning>sliding</Cleaning>

 <MaxFileAge>600</MaxFileAge>

 </Directory>

 </ServerDirectories>

 <Properties>

 <LogPath>C:\Program Files\ArcGIS\log\</LogPath>

 <LogSize>10</LogSize>

 <LogLevel>3</LogLevel>

 <ConfigurationStartTimeout>300</ConfigurationStartTimeout>

 <EngineContextTimeout>600</EngineContextTimeout>

 </Properties>

</Server>

ARCGIS SERVER CONFIGURATION FILES

The IServerObjectAdmin interface provides the
methods and properties for updating the GIS

server’s properties and, therefore, the contents of
Server.cfg.

 IServerObjectAdmin : IUnknown Provide access to members that administer the GIS server.

Properties: IPropertySet The logging properties for the GIS server.

AddConfiguration (in config:
IServerObjectConfiguration)

Adds a server object configuration (created with CreateConfiguration)
to the GIS server.

AddMachine (in machine:
IServerMachine)

Adds a host machine (created with CreateMachine) to the GIS server.

AddServerDirectory (in pSD:
IServerDirectory)

Adds a server directory (created with CreateServerDirectory) to the
 GIS server.

CreateConfiguration:
IServerObjectConfiguration

Creates a new server object configuration.

CreateMachine: IServerMachine Creates a new host machine.
CreateServerDirectory: IServerDirectory Creates a new server directory.
DeleteConfiguration (in Name: String, in

TypeName: String)
Deletes a server object configuration from the GIS server.

DeleteMachine (in machineName:
String)

Deletes a host machine from the GIS server, making it unavailable to
host server objects.

DeleteServerDirectory (in Path: String) Deletes a server directory such that its cleanup is no longer managed
by the GIS server. It does not delete the physical directory from disk.

GetConfiguration (in Name: String, in
TypeName: String) :
IServerObjectConfiguration

Get the server object configuration with the specified Name
 and TypeName.

GetConfigurations:
IEnumServerObjectConfiguration

An enumerator over all the server object configurations.

GetConfigurationStatus (in Name:
String, in TypeName: String) :
IServerObjectConfigurationStatus

Get the configuration status for a server object configuration with the
specified Name and TypeName.

GetMachine (in Name: String) :
IServerMachine

Get the host machine with the specified Name.

GetMachines: IEnumServerMachine An enumerator over all the GIS server's host machines.
GetServerDirectories:

IEnumServerDirectory
An enumerator over the GIS server's output directories.

GetServerDirectory (in Path: String) :
IServerDirectory

Get the server directory with the specified Path.

GetTypes: IEnumServerObjectType An enumerator over all the server object types.
PauseConfiguration (in Name: String, in

TypeName: String)
Makes the configuration unavailable to clients for processing requests,

but does not shut down running instances of server objects or
interrupt requests in progress.

StartConfiguration (in Name: String, in
TypeName: String)

Starts a server object configuration and makes it available to clients
for processing requests.

StopConfiguration (in Name: String, in
TypeName: String)

Stops a server object configuration and shuts down any running
instances of server objects defined by the configuration.

UpdateConfiguration (in config:
IServerObjectConfiguration)

Updates the properties of a server object configuration.

UpdateMachine (in machine:
IServerMachine)

Updates the properties of a host machine.

UpdateServerDirectory (in pSD:
IServerDirectory)

Updates the properties of a server directory.

AppendixB.pmd 1/25/2005, 6:09 PM529

530 • ArcGIS Server Administrator and Developer Guide

Server.cfg tags
The following are the tags, their meanings, and example values in a Server.cfg file.

<ServerMachines>

The list of server object container machines. This tag contains <Machine>
subtags for each server machine.

<Machine>
A server object container machine. This tag contains two subtags: <Name> and
<Description>.

<Name>
A string that represents the name of the server object container machine. If this
tag is missing, the rest of the <Machine> tag is ignored. On start, the SOM does
not validate that the value of this tag is a valid server object container machine.
If it’s invalid, errors will be logged as the SOM attempts to create server objects
on it.

The machine names must be unique. Duplicate machines will be ignored.

<Description>
An optional string that describes the server object container machine.

The following is an example of the <ServerMachine> tag, <Machine> tag, and
its subtags.
<ServerMachines>

 <Machine>

 <Name>padisha</Name>

 <Description>Server container machine 1</Description>

 </Machine>

 <Machine>

 <Name>melange</Name>

 <Description>Server container machine 2</Description>

 </Machine>

</ServerMachines>

<ServerDirectories>

The list of server directories. This tag contains <Directory> subtags for each
server directory.

<Directory>
A server directory. This tag contains the required subtag <Path> and a number of
optional subtags.

<Path>
A string that represents the path of the server directory. This property is required
and must be unique per server. Directories with duplicate <Path> tags will be
ignored. Note, however, that if a single location has multiple paths—for ex-
ample, two shares with different names—the SOM will not recognize those as
being the same directory.

ARCGIS SERVER CONFIGURATION FILES

The ArcCatalog ArcGIS Server Properties page
Hosts tab

The ArcCatalog ArcGIS Server Properties page
Directories tab

AppendixB.pmd 1/25/2005, 6:09 PM530

Appendix B • Configuration and log files • 531

<URL>
An optional string that represents the URL of a virtual directory that points to
the physical location specified in the <Path> tag. The URL will be in URL form
as in http://padisha/images.

<Description>
An optional string that is a description of the server directory.

<Cleaning>
An optional string that specifies the server directory’s cleaning mode. Valid values
are “off ”, “sliding”, or “absolute”. If <Cleaning> is “off ”, then the server will
not clean up its files in the directory. If <Cleaning> is “sliding”, then the server
will delete files for which the time specified by the <MaxFileAge> tag has
elapsed since they were last accessed. If <Cleaning> is “absolute”, then the server
will delete files for which the time specified by the <MaxFileAge> tag has
elapsed since they were created. If this tag is missing, the default value is “slid-
ing”.

<MaxFileAge>
An optional integer (greater than 0) that represents the amount of time in sec-
onds that needs to elapse since files were last accessed (sliding) or were created
(absolute) before they are deleted. If this tag is missing, the default is 10.

The following is an example of the <ServerDirectory> tag, <Directory> tag, and
its subtags.
<ServerDirectories>

 <Directory>

 <Path>\\padisha\images</Path>

 <URL>http://padisha/images</URL>

 <Description>default output location</Description>

 <Cleaning>sliding</Cleaning>

 <MaxFileAge>600</MaxFileAge>

 </Directory>

 <Directory>

 <Path>\\melange\ServerOutput</Path>

 <URL>http://melange/ServerOutput</URL>

 <Description>large file location</Description>

 <Cleaning>absolute</Cleaning>

 <MaxFileAge>6000</MaxFileAge>

 </Directory>

</ServerDirectories>

<Properties>

The list of properties of the GIS server, including the logging properties and
server object creation time-out. All the subtags of Properties are optional.

<LogPath>
An optional string representing the path to the location on disk that log files are
written. The default is <install_location>\log. Note, the GIS server account
must have write access to this location.

ARCGIS SERVER CONFIGURATION FILES

AppendixB.pmd 1/25/2005, 6:09 PM531

532 • ArcGIS Server Administrator and Developer Guide

<LogSize>
An optional integer representing the size to which a single log file can grow (in
MB) before a new log file is created. The default is 10.

<LogLevel>
An optional integer that indicates the level of detail that the server logs. The
levels are:

0 (None): No logging

1 (Error): Serious problems that require immediate attention are logged.

2 (Warning): Problems that require attention and errors are logged.

3 (Normal): Common administrative messages of the server, warnings, and
errors are logged.

4 (Detailed): Common messages from user use of the server, including server
objects, normal messages, warnings, and errors are logged.

5 (Debug): Verbose messages to aid in troubleshooting, detailed messages, nor-
mal messages, warnings, and errors are logged.

The default log level is 3.

<ConfigurationStartTimeout>
An optional integer that represents the time in seconds that the GIS server will
wait for a server object instance to start. If a server object takes longer to start
than <ConfigurationTimeout>, then it will time out and an error will be logged.
The default time-out is 300.

<EngineContextTimeout>
An optional integer that represents the maximum amount of time in seconds a
client can hold on to an empty server context before it is automatically released.
The default is 600.

The following is an example of the <Properties> tag and its subtags.
<Properties>

 <LogPath>C:\Program Files\ArcGIS\log\</LogPath>

 <LogSize>10</LogSize>

 <LogLevel>3</LogLevel>

 <ConfigurationStartTimeout>300</ConfigurationStartTimeout>

 <EngineContextTimeout>600</EngineContextTimeout>

</Properties>

THE SERVER OBJECT CONFIGURATION FILES

The properties of server object configurations are maintained in a file for each
server object configuration. A GIS server’s set of configurations is defined by the
list of configuration files in the cfg directory. When a new configuration is added
to the GIS server, a new file is created. When a configuration is deleted, its file is
deleted from the cfg directory.

A MapServer server object configuration will have a file called
<configuration_name>.MapServer.cfg, and a GeocodeServer server object con-
figuration will have a file named <configuration_name>.GeocodeServer.cfg.

ARCGIS SERVER CONFIGURATION FILES

ArcCatalog Server Properties page General tab

AppendixB.pmd 1/25/2005, 6:09 PM532

Appendix B • Configuration and log files • 533

For example, a GIS server that has map server objects called USA, Redlands, and
Yellowstone and geocode server objects named Portland and USAStreets would
have the following files in its cfg directory:
Portland.GeocodeServer.cfg

Redlands.MapServer.cfg

Server.cfg

USA.MapServer.cfg

USAStreets.GeocodeServer.cfg

Yellowstone.MapServer.cfg

It’s possible to add a configuration to the GIS server by manually creating a
configuration file in the cfg directory, and it’s possible to delete a configuration by
deleting its file from the cfg directory. In both cases, the new or deleted configu-
ration will not be recognized by the server until the SOM is restarted. If the
SOM encounters a corrupted configuration file, the SOM will log a warning and
ignore the configuration.

The following is an example of a server object configuration file for a MapServer:
<ServerObjectConfiguration>

 <Description>Map server containing vegetation data for Yellowstone
National Park</Description>

 <Properties>

 <FilePath>D:\ArcGIS_Server_Data\DocDevScenarioData\Yellowstone\Yellowstone.mxd</
FilePath>

 <OutputDir>\\padisha\images</OutputDir>

 <VirtualOutputDir>http://padisha/images</VirtualOutputDir>

 <MaxRecordCount>500</MaxRecordCount>

 <MaxBufferFeatures>100</MaxBufferFeatures>

 <MaxImageWidth>2048</MaxImageWidth>

 <MaxImageHeight>2048</MaxImageHeight>

 </Properties>

 <Recycling>

 <StartTime>00:00</StartTime>

 <Interval>36000</Interval>

 </Recycling>

 <IsPooled>true</IsPooled>

 <MinInstances>2</MinInstances>

 <MaxInstances>4</MaxInstances>

 <WaitTimeout>60</WaitTimeout>

 <UsageTimeout>600</UsageTimeout>

 <Isolation>high</Isolation>

 <StartupType>automatic</StartupType>

</ServerObjectConfiguration>

ARCGIS SERVER CONFIGURATION FILES

AppendixB.pmd 1/25/2005, 6:09 PM533

534 • ArcGIS Server Administrator and Developer Guide

Server object configuration tags
The following are the tags, their meanings, and example values in a server object
configuration file.

<Description>

An optional string that is the description of the server object configuration.

<Properties>

The list of properties of the server object configuration. The subtags are proper-
ties specific to the server object configuration type. For MapServer configura-
tions, the subtags are <FilePath>, <OutputDir>, <VirtualOutputDir>. For
GeocodeServer configurations, the subtags are <Locator>,
<LocatorWorkspacePath>, <LocatorWorkspaceConnectionString>, and
<SuggestedBatchSize>.

<FilePath>
A string representing the path to the map document (.mxd) or published map
document (.pmf) that the MapServer will serve.

<OutputDir>
A string that represents the path to a location on the file system to which the
MapServer will write its output. When ArcCatalog creates a new MapServer
configuration, this property is copied from the server directory’s path that the
user specifies. If you want the MapServer’s output to be cleaned by the GIS
server, this path should be a path to a server directory.

<VirtualOutputDir>
A string that represents the URL of the virtual directory that points to the
physical location specified in the <OutputDir> tag. When ArcCatalog creates a
new MapServer configuration, this property is copied from the server directory’s
URL that the user specifies.

 IServerObjectConfiguration : IUnknown Provides access to members that control the behavior and
 properties of a server object configuration
 to administrators.

Description: String Description of the server object configuration.
IsolationLevel: esriServerIsolationLevel The isolation level of the server objects defined by the server object

configuration.
IsPooled: Boolean Indicates whether the server objects defined by this configuration

 are pooled.
MaxInstances: Long The maximum number of server object instances for a server object

configuration.
MinInstances: Long The minimum number of server object instances for a pooled server

object configuration.
Name: String Name of the server object configuration.
Properties: IPropertySet Initialization parameters and properties for the server objects created

by the server object configuration.
RecycleProperties: IPropertySet The recycling properties for the server object configuration.
StartupType: esriStartupType The startup type for this server object configuration. Startup type

describes whether the server object configuration is started when
the server object manager service is started for the GIS server.

TypeName: String Type of the server object configuration (MapServer or GeocodeServer).
UsageTimeout: Long Maximum time (in seconds) a client can hold on to an instance of a

server object for this server object configuration before releasing it
back to the server. It is the maximum time allowed between calling
CreateServerContext and ReleaseServerContext.

WaitTimeout: Long Maximum time (in seconds) a client will wait for an instance of a
server object for this server object configuration using the
CreateServerContext method on IServerObjectManager before
timing out.

The IServerObjectConfiguration interface
provides the methods and properties for setting

a server object configuration’s properties and,
therefore, the contents of the configuration files.

ARCGIS SERVER CONFIGURATION FILES

The ArcCatalog Server Object Properties page
General tab

AppendixB.pmd 1/25/2005, 6:09 PM534

Appendix B • Configuration and log files • 535

<MaxRecordCount>
An integer that represents the maximum number of result records returned by the
following methods on the map server:

• QueryFeatureData

• Find

• Identify

<MaxBufferCount>
An integer that represents the maximum number of features that can be buffered
by the map server at draw time per layer.

<MaxImageWidth>
An integer representing the maximum width (in pixels) of images the map server
will export.

<MaxImageHeight>
An integer representing the maximum height (in pixels) of images the map server
will export.

<ConnectionCheckInterval>
An integer representing the number of seconds the MapServer or GeocodeServer
will wait before checking if ArcSDE servers that have become unavailable are
once again available. Once the ArcSDE server is available, the MapServer or
GeocodeServer instance will be replaced to repair the connection to the ArcSDE
server. By default, this property is not included in the .cfg file and this time is
300 seconds. You can add this tag to the .cfg file to modify this time. You can
disable this behavior by specifying a value of 0.

The following is an example of the <Properties> tag and its subtags for a
MapServer configuration.
<Properties>

 <FilePath>\\padisha\ArcGIS_Server_Data\Yellowstone.mxd</FilePath>

 <OutputDir>\\padisha\images</OutputDir>

 <VirtualOutputDir>http://padisha/images</VirtualOutputDir>

 <MaxRecordCount>500</MaxRecordCount>

 <MaxBufferCount>100</MaxBufferCount>

 <MaxImageWidth>2048</MaxImageWidth>

 <MaxImageHeight>2048</MaxImageHeight>

</Properties>

<Locator>
A string that represents the name of the locator for the GeocodeServer.

<LocatorWorkspacePath>
A required string for file-based locators that represents the path to the location
on disk where the locator file is stored.

<LocatorWorkspaceConnectionString>
A required string for ArcSDE software-based locators that represents the connec-
tion string to the ArcSDE database.

ARCGIS SERVER CONFIGURATION FILES

The ArcCatalog Server Object Properties page
Parameters tab for a MapServer object

The ArcCatalog Server Object Properties page
Parameters tab for a GeocodeServer object

AppendixB.pmd 1/25/2005, 6:09 PM535

536 • ArcGIS Server Administrator and Developer Guide

<SuggestedBatchSize>
An integer that represents the number of records that will be located at a time
for batch geocoding.

<MaxResultSize>
An integer that represents the maximum number of result records returned by the
FindAddressCandidates method on the geocode server:

<MaxBatchSize>
An integer that represents the maximum number of records that can be input
into the geocode server’s GeocodeAddresses method.

The following is an example of the <Properties> tag and its subtags for a
GeocodeServer configuration whose locator is an ArcSDE locator.
<Properties>

 <Locator>GDB.Portland</Locator>

 <LocatorWorkspaceConnectionString>

 ENCRYPTED_PASSWORD=0002c06e3bc49d6412c06c1baa554d00;

 SERVER=doug;

 INSTANCE=5151;

 USER=gdb;

 VERSION=SDE.DEFAULT

 </LocatorWorkspaceConnectionString>

 <SuggestedBatchSize>1000</SuggestedBatchSize>

 <MaxResultSize>500</MaxResultSize>

 <MaxBatchSize>1000</MaxBatchSize>

</Properties>

<Recycling>

The list of recycling properties of the server object configuration. This tag con-
tains subtags <Start> and <Interval>. Note: If the <Recycling> tag is missing,
or any of its subtags are invalid, recycling will be switched off for the configura-
tion.

<Start>
A required string that represents the recycling start time, which is the time at
which recycling is initialized. The time specified is in 24-hour notation. For
example, to set the start time at 2:00 p.m., the StartTime property would be
14:00.

<Interval>
A required integer that defines the time between recycling operations in seconds.
For example, to recycle the configuration every hour, this property would be set
to 3600.

The following is an example of the <Recycling> tag and its subtags.
<Recycling>

 <StartTime>00:00</StartTime>

 <Interval>36000</Interval>

</Recycling>

ARCGIS SERVER CONFIGURATION FILES

The ArcCatalog Server Object Properties page
Pooling tab

The ArcCatalog Server Object Properties page
Processes tab

AppendixB.pmd 1/25/2005, 6:09 PM536

Appendix B • Configuration and log files • 537

<MinInstances>

An integer specifying the minimum number of instances for the server object’s
object pool. The default is 0.

<MaxInstances>

An integer specifying the maximum number of server object instances that can be
running at any time. The default is 0.

<WaitTimeout>

An optional integer specifying the maximum amount of time in seconds allowed
between a client requesting a server object and getting a server object. The de-
fault is 60.

<UsageTimeout>

An optional integer specifying the maximum amount of time in seconds a client
can hold onto a server object before it is automatically released. The default is
600.

<IsPooled>

A required string indicating whether the server objects created by this configura-
tion are pooled (true) or not pooled (false).

<Isolation>

A required string indicating if the configuration’s server object has high isolation
(high) or low isolation (low).

<StartupType>

An optional string that specifies if the configuration is started by the SOM when
the SOM starts, or if it needs to be manually started by an administrator. The
valid values are “automatic” or “manual”. The default is “automatic”.

The following are examples of these tags:
<IsPooled>true</IsPooled>

<MinInstances>2</MinInstances>

<MaxInstances>4</MaxInstances>

<WaitTimeout>60</WaitTimeout>

<UsageTimeout>600</UsageTimeout>

<Isolation>high</Isolation>

<StartupType>automatic</StartupType>

ARCGIS SERVER CONFIGURATION FILES

AppendixB.pmd 1/25/2005, 6:09 PM537

AppendixB.pmd 1/25/2005, 6:09 PM538

539

Developing
applications

with EJBs

This chapter includes a discussion and exercise for developers who wish to build

Enterprise JavaBeans (EJBs) that make use of the ArcGIS Server API. It will take a

close look at some key concepts concerning EJBs and present a simple

development scenario demonstrating the integration of this important enterprise

technology with powerful GIS capabilities, found within the ArcGIS Server.

C

AppendixC.pmd 1/25/2005, 6:09 PM539

540 • ArcGIS Server Administrator and Developer Guide

ENTERPRISE JAVABEANS AND ARCGIS SERVER

Enterprise JavaBeans are Java components that live and operate within a Java 2
Platform, Enterprise Edition (J2EE) application server, a server that provides the
EJBs with all of the essential services that allow them to perform and scale to
appropriate standards for mission critical, industrial-strength, and highly secure
enterprise infrastructures.

EJBs are pure Java components, designed and written to the J2EE EJB specifica-
tion. This specification ensures that EJBs abide by a standard set of rules, en-
abling them to be portable across all J2EE-based application servers and across all
operating systems that support the Java platform.

As part of the specification, EJBs must not make native calls into native libraries,
such as Windows DLLs or UNIX shared objects. This is especially critical in the
case of the ArcGIS Server architecture, since ArcObjects, the library of compo-
nents that make up ArcGIS, is highly “native” in nature, whether it be native to
Windows or to UNIX.

Another equally important restriction for EJBs is that they are not allowed to
create or manage threads. Because thread management can often be complex and
platform-specific, the J2EE container better handles this implementation detail.
This becomes a key issue when properly programming EJB applications to work
with ArcGIS Server.

So why are EJBs important? While there are many advantages provided by the use
of EJBs and J2EE for hosting enterprise systems, the focus here is on two of the
main benefits.

First, EJBs and J2EE are important because they adhere to tested and proven
computing standards. This is key for interoperability and portability of enterprise
applications. No matter what the specific business process the EJB is performing,
everyone can be sure that other EJBs from various providers, running either
locally or remotely, will work together in an enterprise system because they
adhere to the same rules and standards. They are built in pure Java, which, in
itself, is a standard computing platform and language. The application servers that
host these various EJBs and EJB containers are designed and built to the J2EE
standard as well. This ensures that EJBs can be ported from one application
server environment to another without too much overhead and without any
rewriting or recompiling of source code.

Second, EJB technology enables development of business objects and system-
level services as separate and distinct entities among the various members of an
enterprise maintenance staff. The J2EE architecture decouples the many tiers of
its application configuration in such a way that all the members of an enterprise
development team are free to focus on their specific roles and tasks, without any
dependency on the system architecture. An EJB programmer can focus solely on
the business logic, or main process, that the EJB will be responsible for perform-
ing. The EJB programmer will not need to be concerned with writing code to
handle transaction management, threading, object pooling, security, or scaling of
that EJB. In fact, the EJB specification prohibits this. These concerns are the
responsibility of the application server designers and vendors who build these
services, using standard APIs for transaction management, database connectivity,
security, scaling, and so on.

AppendixC.pmd 1/25/2005, 6:09 PM540

Appendix C • Developing applications with EJBs • 541

ENTERPRISE JAVABEANS AND ARCGIS SERVER

For a comprehensive listing of J2EE rules and restrictions for EJBs, go to
http://java.sun.com/blueprints/qanda/ejb_tier/restrictions.html.

So how do ArcGIS Java programmers build EJBs that utilize the ArcGIS plat-
form? They do so through the use of a very important J2EE specification feature:
the J2EE Connector architecture (JCA).

THE J2EE CONNECTOR ARCHITECTURE

Since EJBs are pure Java objects and ArcObjects components are not, a bridge is
required that allows Java objects to make calls into nonnative libraries, such as
those that compose ArcObjects.

J2EE provides a connector architecture specification for this kind of integration
between heterogeneous enterprise information systems (EIS). The JCA specifica-
tion allows EIS vendors—for instance, ESRI—to provide a standard resource
adapter to handle communications with their EIS.

For more information regarding the Java Connector architecture, go to
http://java.sun.com/j2ee/connector/index.jsp.

JAVA ADF RESOURCE ADAPTER

The Java Application Developer Framework (ADF) includes a resource adapter
specifically implemented to connect any J2EE-compliant application server to
ArcObjects. Because this resource adapter conforms to the JCA specification, it
can be plugged into any compliant application server and used to connect to
ArcGIS Server. EJBs can work with instances of the ArcGIS SOM through a
connection to the resource adapter. Through the SOM, EJBs can obtain refer-
ences to other ArcGIS Server objects.

The diagram below illustrates how the adapter handles the object “brokering”
between EJBs and ArcObjects components. In the
diagram, J-Integra JCACOM represents the Common
Client Interface (CCI), or the classes and interfaces
that produce connection factory objects and con-
nection objects. They connect to the J-Integra
runtime libraries, which handle all of the plumbing
required for accessing and “bridging” server objects
from the ArcGIS Server to the EJBs running in the
application server. Some of the key system-level
processes that are handled by the J-Integra runtime
for the EJBs are the creation and management of
threads, as previously mentioned, as well as opening
and managing socket connections. The explicit use
of socket objects for network communication is
also prohibited from within EJBs.

ArcGIS Server

Application Server

ArcObjects COM Components

Web Container EJB Container
Resource Adapter

J-Integra JCACOM

J-Integra Runtime

JSP
Servlet

MapEJB

AppendixC.pmd 1/25/2005, 6:09 PM541

542 • ArcGIS Server Administrator and Developer Guide

ENTERPRISE JAVABEANS AND ARCGIS SERVER

The model diagram below shows the J-Integra CCI implementation classes and
their relationships. The important pieces here are the ConnectionFactory and
Connection interfaces. The factory produces connection objects that can be
obtained both locally and remotely.

The intrinsycjca.rar file
The resource adapter included with the ADF is bundled into a single resource
archive (RAR), intrinsycjca.rar. This archive contains all of the classes and inter-
faces that conform to the JCA specification, enabling connections to ArcObjects
from the application server.

It also contains the J-Integra runtime libraries and the ArcObjects Java proxy
classes that represent and marshall requests to and from ArcObjects native ob-
jects. The contents and structure of the intrinsycjca.rar are:

• intrinsycjca.jar—Contains the implementing classes of the CCI, enabling
connections and connection pooling to take place between the J2EE applica-
tion server and ArcGIS Server containers

• jintegra.jar—Contains all J-Integra runtime objects

• META-INF/ra.xml—A configuration file, also known as a deployment
descriptor, which provides information to the J2EE application server de-
scribing how to deploy the resource adapter

The intrinsycjca.rar file contains everything that an ArcGIS EJB application will
need for deployment and runtime. The deployment procedures for the adapter
itself will depend on the specifics of the application server on which it is being
deployed. Each application server vendor will provide procedures for deploying
resource adapters. In the next section, the developer scenario will walk you
through the deployment of a resource adapter.

J-Integra
JCACOM

Indexed-
Record

ResultSet

MapRecord

Interaction-
SpecInteraction

Record-
Factory

Record

Connection-
Factory

Connection

Local-
Transaction

AppendixC.pmd 1/25/2005, 6:09 PM542

Appendix C • Developing applications with EJBs • 543

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

The scenario in this section presents some basic mapping functionality, managed
by an EJB, that is exposed through a simple Web application. In addition, the
scenario illustrates EJBs consuming a MapService in a “back-end” application
server environment. Again, the JCA resource adapter is the critical piece making
this EJB to ArcGIS Server relationship possible.

PROJECT DESCRIPTION

In this scenario, you will create a Web application for your client that presents a
map with some basic tools for zooming in and out. Requests made from a
JavaServer Pages (JSP) Web application to a stateless EJB result in a map image
being returned from a MapService, running in ArcGIS Server.

You can find the sample in:
<install_location>\DeveloperKit\Samples\Developer_Guide_Scenarios\
ArcGIS_Server\Application_EJB

DESIGN

The core of this application is a stateless EJB that performs map retrievals from a
MapServer object, running in ArcGIS Server. Implementing the EJB, called
StatelessMapImageBean, as a stateless session will provide better overall perfor-
mance and flexibility. Stateless session beans are not tied to any one client and can
be shared between many. The EJB container creates a pool of identical stateless
session beans and distributes them to handle incoming client requests. As soon as
a business method on an EJB is finished, the bean is placed back in the EJB
containers pool, becoming available for reuse by another client. The reuse of
stateless session beans enables a small number of beans to handle a large number
of concurrent clients, allowing the bean to scale better. Stateless session beans
also enable a looser coupling between the client and the bean. Since a client is not
tied to one specific bean containing state, the client can be of many types, includ-
ing Web services.

In the scenario, StatelessMapImageBean will include methods for zooming and
panning a map. Since the bean is stateless, the client must maintain a certain level
of map state that can be passed back to the StatelessMapImageBean for process-
ing. The following example uses the serialized map and image description strings
returned from the map’s associated MapServer object to provide that state. Each
method of the StatelessMapImageBean returns a java.util.Hashtable, which
contains properties representing the current state of the map.

The java.util.Hashtable holds the URL of the newly generated map image in a
property called mapurl. In addition, java.util.Hashtable contains MapDescription
and ImageDescription properties that hold serialized string values returned from the
assigned MapServer object. The MapDescription and ImageDescription strings are
passed so that current map state is maintained within the client and not within the
EJB.

All method calls on the EJB sample return java.util.Hashtables; this reduces the
amount of network traffic from the levels that would occur if individual method
calls were used to return a single property.

AppendixC.pmd 1/25/2005, 6:09 PM543

544 • ArcGIS Server Administrator and Developer Guide

REQUIREMENTS

To work through this scenario, you must have ArcGIS Server, ArcGIS Server Java
ADF, and ArcGIS Desktop installed and running. The Java ADF installation
provides two critical archive files that are required for building and deploying an
EJB for ArcGIS Server: intrinsycjca.jar and intrinsycjca.rar. These must be present
on the same machine that the application server and EJB application are running
on.

All EJBs must live and operate within a J2EE-compliant application server. Such
application servers vary widely in levels of complexity, availability, scalability,
performance, and cost. This simple exercise deploys your EJB application to
IBM’s WebSphere Application Server v5.0. However, you can choose any applica-
tion server available to you, including the free J2EE 1.3.1 reference implementa-
tion, which can be downloaded from http://java.sun.com/j2ee/sdk_1.3/index.html.

You must have a MapServer object configured and running on your ArcGIS
Server. It can use any map document (.mxd) available to you.

In ArcCatalog, create a connection to your GIS server and use the
Add Server Object command to create a new server object. For
example:

Name: Portland.

Type: MapServer.

Description: This is a service that will produce a map of my favorite
part of the world.

Map document: < path to your .mxd document >.

Output directory: Choose from the output directories configured in
your server.

Pooling: The EJB application makes stateless use of the server
object.

Accept the defaults for the pooling model (pooled server object with minimum
instances = 2, maximum instances = 4).

Accept the defaults for the remainder of the configuration properties.

After creating the server object, start it and right-click it to verify that it is cor-
rectly configured and that the map properties are displayed. Refer to Chapter 3,
‘Administering an ArcGIS Server’, for more information on how to use
ArcCatalog to connect to your server and create new server objects.

Once your server object is configured and running, you can begin to code your
EJB and client application.

The following ArcObjects—Java packages are used in this example:

• com.esri.arcgis.carto

• com.esri.arcgis.server

To obtain GIS server objects from within an EJB, the implementation classes
provided in the JCA-compliant resource adapter are needed. These classes are
found in the com.intrinsyc.jca package, archived in intrinsycjca.jar.

Server object properties dialog box

The Add Server Object wizard

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:09 PM544

Appendix C • Developing applications with EJBs • 545

The development environment does not require any ArcGIS licensing; however,
connecting to a server and using a MapServer object does require that the GIS
server be licensed to run ArcObjects in the server. None of the packages used
require an extension license.

In this scenario, you can use the development tool of your choice. The steps
assume that you are using your favorite text editor or IDE to write your source
code but won’t reference any specific vender product for tools and/or wizards.
The building and deployment of the end product depends on the various tools
and application servers you choose to host your EJB implementation. For demon-
stration purposes, the scenario uses Ant as the build tool and IBM’s WebSphere
Application Server v5.0 for deployment.

IMPLEMENTATION

The first step in this walkthrough is for you to write a relatively simple EJB that
will produce a map image from ArcGIS Server.

Creating the StatelessMapImageBean EJB
As mentioned earlier, this EJB will provide a simple zooming function for a map.
Since it is a type of session bean, the StatelessMapImageBean must implement the
javax.ejb.SessionBean interface.

1. Use the skeleton code below, in a text editor or IDE, to create the
StatelessMapImageBean class.
package com.esri.arcgis.samples.ejb;

import javax.ejb.SessionBean;

import javax.ejb.EJBException;

import javax.ejb.SessionContext;

import com.esri.arcgis.samples.ejb.value.RgbColor;

import com.esri.arcgis.samples.ejb.value.Envelope;

import com.esri.arcgis.samples.ejb.LocalTransaction;

import com.esri.arcgis.samples.ejb.XAResource;

import com.esri.arcgis.geometry.IEnvelope;

import com.esri.arcgis.geometry.IPoint;

public class StatelessMapImageBean implements javax.ejb.SessionBean {

private javax.ejb.SessionContext m_context;

private com.intrinsyc.jca.ConnectionFactory m_connectionFactory;

private com.intrinsyc.jca.Connection m_connection;

private com.intrinsyc.jca.JintConnectionRequestInfo
m_connectionRequestInfo;

private java.lang.Object m_serverConnectionObject;

private com.esri.arcgis.server.ServerConnection m_serverConnection;

private com.esri.arcgis.server.IServerContext m_serverContext;

private com.esri.arcgis.carto.IMapServer m_mapServer;

private com.esri.arcgis.carto.IMapServerInfo m_mapServerInfo;

private com.esri.arcgis.carto.IMapDescription m_mapDescription;

private com.esri.arcgis.carto.IGraphicElements m_graphicElements;

private com.esri.arcgis.carto.IImageType m_imageType;

private com.esri.arcgis.carto.IImageDisplay m_imageDisplay;

private com.esri.arcgis.carto.IImageDescription m_imageDescription;

private com.esri.arcgis.carto.IMapImage m_mapImage;

Use your favorite text editor or IDE to write
your source code.

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:09 PM545

546 • ArcGIS Server Administrator and Developer Guide

private String m_mapDescriptionString;

private String m_imageDescriptionString;

private String m_arcServerHostName;

private String m_arcServerHostDomain;

private String m_arcServerHostUserName;

private String m_arcServerHostPassword;

private String m_mapServerName;

public void ejbActivate() {

}

public void ejbPassivate() {

}

public void ejbRemove() {

}

public void ejbCreate() {

}

public void setSessionContext(SessionContext sessionContext) throws
EJBException{

}

2. Before constructing the zooming function, you need to create a connection to
the resource adapter. In the body of the ejbCreate method, create a JCA
ConnectionFactory object.
javax.naming.Context initialContext, paramEnv;

try{

initialContext = new javax.naming.InitialContext();

paramEnv = (javax.naming.Context)initialContext.lookup("java:comp/
env");

 this.m_arcServerHostName =
(String)paramEnv.lookup("ArcServerHostName");

 this.m_arcServerHostDomain =
(String)paramEnv.lookup("ArcServerDomainName");

 this.m_arcServerHostUserName =
(String)paramEnv.lookup("ArcServerHostUserName");

 this.m_arcServerHostPassword =
(String)paramEnv.lookup("ArcServerHostPassword");

this.m_mapServerName = (String)paramEnv.lookup("MapServerName");

m_connectionFactory =
(com.intrinsyc.jca.ConnectionFactory)initialContext.lookup("intrinsycjca");

}catch(Exception exception){

m_connectionFactory = null;

throw new Exception("JCA Lookup Failed: " + exception);

}

3. Continuing in this method, create an instance of JintConnectionRequestInfo. This
contains the necessary parameters for connecting to the ArcGIS Server.
XAResource xaResource = new XAResource();

LocalTransaction localTransaction = new LocalTransaction();

The paramEnv context provides
the EJB with the ArcGIS Server specific param-

eters needed to connect to a specific ArcGIS
Server. The parameter strings are located in the
ejb-jar.xml deployment descriptor for this bean,
which will be discussed and defined later in the

exercise.

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:09 PM546

Appendix C • Developing applications with EJBs • 547

m_connectionRequestInfo = new com.intrinsyc.jca.
JintConnectionRequestInfo("localhost",
this.m_arcServerHostDomain, this.m_arcServerHostUserName,
this.m_arcServerHostPassword, "", xaResource,
localTransaction);

4. Obtain a JCA connection from the ConnectionFactory, passing along the
JintConnectionRequestInfo object.
try{

m_connection = (com.intrinsyc.jca.Connection)m_connection
Factory.getConnection(m_connectionRequestInfo);

java.util.Vector params = new java.util.Vector();

 params.add(this.m_arcServerHostName);

5. Once successfully connected to the JCA, use the connection to obtain the
ServerConnection object from ArcGIS Server itself. Once this server object is
created, initialize the server by creating an instance of ServerInitializer.
 if(m_connection != null){

 m_serverConnectionObject =
m_connection.getObject("com.esri.arcgis.server.ServerConnection",

params, this.m_arcServerHostDomain,
this.m_arcServerHostUserName, this.m_arcServerHostPassword);

 if((m_serverConnectionObject != null) &&
(m_serverConnectionObject instanceof
com.esri.arcgis.server.ServerConnection)){

 com.esri.arcgis.system.ServerInitializer
serverInitializer = new com.esri.arcgis.system.ServerInitializer();

 serverInitializer.setDefault(this.m_arcServerHostDomain,
this.m_arcServerHostUserName,

 this.m_arcServerHostPassword);

 serverInitializer.setThreadDefault(
this.m_arcServerHostDomain, this.m_arcServerHostUserName,

 this.m_arcServerHostPassword);

 serverInitializer.trackObjectsInCurrentThread();

 m_serverConnection =
(com.esri.arcgis.server.ServerConnection)m_serverConnectionObject;

}

}

 }

 catch(Exception exception){

 System.out.println("MapBean initialization failed: " +
exception.getMessage());

 }

 }

All of the connection initialization will happen upon creation of the EJB
instance.

The references to the classes
xaResource and localTransaction are required.

These classes implement standard J2EE
interfaces for transaction management. As the

scope of this scenario is limited, this will not be
discussed in more detail. However, these

implementation classes are required for this
sample. If desired, you can find their source files
in the sample’s JAR file, ejbsample.jar, located

in <install_location>\DeveloperKit\Samples\
Developer_Guide_Scenarios\ArcGIS_Server\

Application_EJB.

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:09 PM547

548 • ArcGIS Server Administrator and Developer Guide

The body of your ejbCreate method should now appear as follows:
public void ejbCreate(){

 javax.naming.Context initialContext, paramEnv;

 try{

 initialContext = new javax.naming.InitialContext();

 paramEnv =
(javax.naming.Context)initialContext.lookup("java:comp/env");

 this.m_arcServerHostName =
(String)paramEnv.lookup("ArcServerHostName");

 this.m_arcServerHostDomain =
(String)paramEnv.lookup("ArcServerDomainName");

 this.m_arcServerHostUserName =
(String)paramEnv.lookup("ArcServerHostUserName");

 this.m_arcServerHostPassword =
(String)paramEnv.lookup("ArcServerHostPassword");

this.m_mapServerName =
(String)paramEnv.lookup("MapServerName");

 m_connectionFactory =
(com.intrinsyc.jca.ConnectionFactory)initialContext.lookup("intrinsycjca");

 }

 catch(Exception exception){

 m_connectionFactory = null;

 throw new Exception("JCA Lookup Failed: " + exception);

 }

 XAResource xaResource = new XAResource();

 LocalTransaction localTransaction = new LocalTransaction();

 m_connectionRequestInfo = new
com.intrinsyc.jca.JintConnectionRequestInfo(

 "localhost", this.m_arcServerHostDomain,
this.m_arcServerHostUserName, this.m_arcServerHostPassword,

 "", xaResource, localTransaction);

 try{

 m_connection =
(com.intrinsyc.jca.Connection)m_connectionFactory.getConnection(
m_connectionRequestInfo);

 java.util.Vector params = new java.util.Vector();

 params.add(this.m_arcServerHostName);

 if(m_connection != null){

 m_serverConnectionObject =
m_connection.getObject("com.esri.arcgis.server.ServerConnection",

params, this.m_arcServerHostDomain,
this.m_arcServerHostUserName, this.m_arcServerHostPassword);

 if((m_serverConnectionObject != null) &&
(m_serverConnectionObject instanceof
com.esri.arcgis.server.ServerConnection)){

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:09 PM548

Appendix C • Developing applications with EJBs • 549

 com.esri.arcgis.system.ServerInitializer
serverInitializer = new com.esri.arcgis.system.ServerInitializer();

 serverInitializer.setDefault(this.m_arcServerHostDomain,

this.m_arcServerHostUserName, this.m_arcServerHostPassword);

 serverInitializer.setThreadDefault(
this.m_arcServerHostDomain, this.m_arcServerHostUserName,
this.m_arcServerHostPassword);

 serverInitializer.trackObjectsInCurrentThread();

 m_serverConnection =
(com.esri.arcgis.server.ServerConnection)m_serverConnectionObject;

 }

 }

 }

 catch(Exception exception){

 System.out.println("MapBean initialization failed: " +
exception.getMessage());

 }

 }

Accessing a MapServer through the ServerConnection object
Now that you have connected to ArcGIS Server, you need to get some objects
that will produce a map image that can be passed to the EJB client code. The
client application itself will be addressed later in the scenario.

Having already created an instance of the ServerConnection object, you are now
able to obtain an instance of a SOM from an ArcGIS Server. To do so, you must
first connect to an ArcGIS Server host. Once connected to the host, you can
create an instance of a SOM. Through the SOM, you can, in turn, create an
instance of a ServerContext for a particular MapServer by specifying the
MapServer name and MapServer type. From the ServerContext, you now have
the ability to obtain objects pertaining to the associated ArcGIS Server from the
SOM. In the following steps, you will add code to the EJB that performs these
tasks.

1. Define a new public method called getMap, with a signature that takes all the
parameters specific to ArcGIS Server for obtaining a map image. This method
exports an image from the MapServer object that is accessible, through a
URL, to any client application. The method will return a java.util.Hashtable,
which will be used for maintaining the state of the requested map.
public java.util.Hashtable getMap(String mapServerHost, String
mapServerName, String mapName, int width, int height, double dpi, int
imageFormat, int imageReturnType) throws Exception{

 try{

 initMap(mapServerHost, mapServerName, mapName, width,
height, dpi, imageFormat, imageReturnType);

The code includes a call to another method, initMap. This will be defined and
discussed shortly.

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:09 PM549

550 • ArcGIS Server Administrator and Developer Guide

2. Create a java.util.Hashtable. This collection holds objects representing the
parameters essential for maintaining the current map state.

 java.util.Hashtable hTable = new java.util.Hashtable(3);

3. Next, you need to export an image from the MapServer object. This is
achieved by calling the object’s exportMapImage method. MapDescription and
ImageDescription objects that are passed to the exportMapImage method enable
the MapServer to generate an image based on the object description param-
eters held within the Hashtable. The exportMapImage method returns an image,
from which you can get a URL.
m_mapImage = m_mapServer.exportMapImage(m_mapDescription,
m_imageDescription);

hTable.put("MAPURL", m_mapImage.getURL());

m_mapDescriptionString = m_serverContext.saveObject(m_mapDescription);

m_imageDescriptionString =
m_serverContext.saveObject(m_imageDescription);

hTable.put("MAPDESCRIPTION", m_mapDescriptionString);

hTable.put("IMAGEDESCRIPTION", m_imageDescriptionString);

com.esri.arcgis.geometry.IEnvelope currentExtent =
m_mapDescription.getMapArea().getExtent();

com.esri.arcgis.samples.ejb.value.Envelope envelope = new
com.esri.arcgis.samples.ejb.value.Envelope();

envelope.setMinX(currentExtent.getXMin());

envelope.setMaxX(currentExtent.getXMax());

envelope.setMinY(currentExtent.getYMin());

envelope.setMaxY(currentExtent.getYMax());

hTable.put("EXTENT", envelope);

hTable.put("MAPUNITS", String.valueOf(m_mapServerInfo.getMapUnits()));

return hTable;

}

catch(Exception exception){

 throw new Exception("getMap failed: " + exception.getMessage());

 }

}

4. Define the private method connectServer. The connectServer method obtains the
SOM reference. Once this reference is made, a ServerContext is retrieved and,
within this context, server objects can be obtained for direct use within the
EJB.
private void connectServer(String mapServerHost, String mapServerName,

 String mapDescription, String imageDescription)
throws MapServerConnectionException{

5. Next, connect to the ArcGIS Server host and get the server object manager.
try{

m_serverConnection.connect(mapServerHost);

 com.esri.arcgis.server.IServerObjectManager serverObjectManager =
m_serverConnection.getServerObjectManager();

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:09 PM550

Appendix C • Developing applications with EJBs • 551

6. Create a ServerContext within which your objects will work.
m_serverContext =

serverObjectManager.createServerContext(mapServerName, "MapServer");

7. Instantiate the MapDescription and ImageDescription objects. Again, these are
used to maintain the state of the map and will eventually be stored in a
Hashtable.

if(mapDescription != null && imageDescription != null){

m_mapDescription = new com.esri.arcgis.carto.IMapDescriptionProxy(
m_serverContext.loadObject(mapDescription));

m_imageDescription = new
com.esri.arcgis.carto.IImageDescriptionProxy(
m_serverContext.loadObject(imageDescription));

}

 m_mapServer = new com.esri.arcgis.carto.IMapServerProxy(
m_serverContext.getServerObject());

 }

 catch(Exception exception){

throw new MapServerConnectionException(exception.getMessage());

 }

 }

8. Define the first initMap private method. This signature will be called when
getMap is called for the first time. In this step, you will call connectServer and
initialize the map properties. Later in the exercise, this method will be over-
loaded for use during zoom in and zoom out actions.
private void initMap(String mapServerHost, String mapServerName, String
mapName, int width, int height, double dpi, int imageFormat, int
imageReturnType) throws Exception{

try{

 if(this.m_arcServerHostName.length() > 0 &&
this.m_mapServerName.length() > 0){

 connectServer(m_arcServerHostName, m_mapServerName, null, null);

 }

 else{

connectServer(mapServerHost, mapServerName, null, null);

 }

9. Now that the MapDescription and ImageDescription references have been made
through the server object manager in the connectServer method, get the actual
objects from the server using the appropriate method calls on the
IMapServerInfo object.
com.esri.arcgis.carto.IMapServerObjects mapServerObjects = new
com.esri.arcgis.carto.IMapServerObjectsProxy(m_mapServer);

if(mapName == null){

m_mapServerInfo = new
com.esri.arcgis.carto.IMapServerInfoProxy(m_mapServer.getServerInfo(
m_mapServer.getDefaultMapName()));

}

 else{

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:09 PM551

552 • ArcGIS Server Administrator and Developer Guide

m_mapServerInfo = new
com.esri.arcgis.carto.IMapServerInfoProxy(m_mapServer.getServerInfo(mapName));

}

m_mapDescription = new
com.esri.arcgis.carto.IMapDescriptionProxy(m_mapServerInfo.
getDefaultMapDescription());

m_graphicElements = new
com.esri.arcgis.carto.IGraphicElementsProxy(m_serverContext.createObject(
"esricarto.GraphicElements"));

if(m_graphicElements.getCount() > 0){

 m_graphicElements.removeAll();

}

10. Set properties to the MapDescription and ImageDescription objects.
m_imageType = new
com.esri.arcgis.carto.IImageTypeProxy(m_serverContext.createObject(
"esricarto.ImageType"));

m_imageType.setFormat(imageFormat);

m_imageType.setReturnType(imageReturnType);

m_imageDisplay = new
com.esri.arcgis.carto.IImageDisplayProxy(m_serverContext.createObject(
"esricarto.ImageDisplay"));

m_imageDisplay.setHeight(height);

m_imageDisplay.setWidth(width);

m_imageDisplay.setDeviceResolution(dpi);

m_imageDescription = new
com.esri.arcgis.carto.IImageDescriptionProxy(m_serverContext.createObject(
"esricarto.ImageDescription"));

m_imageDescription.setType(m_imageType);

m_imageDescription.setDisplay(m_imageDisplay);

11. Since the bean in this example is a stateless session bean, you need to pass
serialized versions of the MapDescription and ImageDescription objects back to
the requesting client. The code below serializes the current state of the
MapDescription and ImageDescription objects. Once serialized, this information
can be stored within the Hashtable in this format.
m_mapDescriptionString = m_serverContext.saveObject(m_mapDescription);

m_imageDescriptionString =
m_serverContext.saveObject(m_imageDescription);

}

catch(Exception exception){

throw new Exception("Error in initMap: " + exception.getMessage());

 }

 }

12. As mentioned earlier, you can now overload the initMap method by defining a
different signature; this time, you pass in the MapDescription and

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:09 PM552

Appendix C • Developing applications with EJBs • 553

ImageDescription that were created and serialized for state management above.
This feature will be called when the zoom in and zoom out functions are
invoked. The body of this method should be familiar to you.
private void initMap(String mapServerHost, String mapServerName, String
mapDescription, String imageDescription) throws Exception{

try{

if(this.m_arcServerHostName.length() > 0 &&
this.m_mapServerName.length() > 0){

connectServer(m_arcServerHostName, m_mapServerName, mapDescription,
imageDescription);

}

else{

connectServer(mapServerHost, mapServerName, mapDescription,
imageDescription);

}

com.esri.arcgis.carto.IMapServerObjects mapServerObjects = new
com.esri.arcgis.carto.IMapServerObjectsProxy(m_mapServer);

if(m_mapDescription.getCustomGraphics() != null){

m_graphicElements = m_mapDescription.getCustomGraphics();

}

else{

m_graphicElements = new
com.esri.arcgis.carto.IGraphicElementsProxy(m_serverContext.createObject(
"esricarto.GraphicElements"));

}

m_mapServerInfo = new
com.esri.arcgis.carto.IMapServerInfoProxy(m_mapServer.getServerInfo(
m_mapServer.getDefaultMapName()));

m_imageType = new
com.esri.arcgis.carto.IImageTypeProxy(m_imageDescription.getType());

m_imageDisplay = new
com.esri.arcgis.carto.IImageDisplayProxy(m_imageDescription.getDisplay());

m_mapDescriptionString =
m_serverContext.saveObject(m_mapDescription);

m_imageDescriptionString =
m_serverContext.saveObject(m_imageDescription);

 }

 catch(Exception msce){

 throw new Exception("Error in initMap: " +
msce.getMessage());

 }

 }

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:09 PM553

554 • ArcGIS Server Administrator and Developer Guide

Zooming and recentering the map image extent
Now that you have taken care of all the connection plumbing for both the JCA
and the server object manager, you are ready to program the EJB for interacting
with the map itself.

Most mapping functions are accomplished through the IMapServer interface. You
will add the zoomMap method to zoom in and out on the map. Pixel coordinate
values and a zoom factor are passed to the method, resulting in a change to the
extent of the map. The toMapPoints method on the MapServer object is used to
convert the pixel coordinates to database coordinates. This method returns a
collection of IPoint objects, which are converted database coordinates drawn
from the x and y pixel coordinates contained in the current MapDescription and
ImageDescription objects. Current map envelopes are recentered by passing one of
the newly created IPoint objects to the Envelope object’s centerAt method. Once the
map extent has been recentered, the map envelope can now be expanded to the
zoom factor parameter. To zoom out from the current extent, the parameter will
be a double of 1.5 or greater. Conversely, to zoom in on the map, the parameter
will be a double value less than 1.0.

1. Define and write a public zoomMap method. This will return the Hashtable of
stateful parameters that was discussed in the previous section.
public java.util.Hashtable zoomMap(String mapServerHost, String
mapServerName, String mapDescription, String imageDescription, int
pixelX, int pixelY, double factor) throws Exception{

try{

 this.initMap(mapServerHost, mapServerName, mapDescription,
imageDescription);

2. Add the x and y pixel integers to the respective long arrays.
com.esri.arcgis.system.ILongArray longArrayX = new
com.esri.arcgis.system.ILongArrayProxy(
m_serverContext.createObject("esrisystem.LongArray"));

 longArrayX.add(pixelX);

com.esri.arcgis.system.ILongArray longArrayY = new
com.esri.arcgis.system.ILongArrayProxy(m_serverContext.createObject(
"esrisystem.LongArray"));

 longArrayY.add(pixelY);

3. The toMapPoints method returns an IPointsCollection. You only need to get the
first IPoint in the collection. This coordinate provides the center point of the
new map to be retrieved from the server.
com.esri.arcgis.geometry.IPointCollection points =

m_mapServer.toMapPoints(m_mapDescription, m_imageDisplay, longArrayX,
longArrayY);

IPoint point = points.getPoint(0);

4. Get the current map extent as an envelope and expand or shrink it by the
specified factor.
IEnvelope env = m_mapDescription.getMapArea().getExtent();

env.centerAt(point);

env.expand(factor,factor,true);

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:09 PM554

Appendix C • Developing applications with EJBs • 555

com.esri.arcgis.carto.IMapExtent mapExtent = new

com.esri.arcgis.carto.IMapExtentProxy(m_serverContext.createObject(
"esricarto.MapExtent"));

mapExtent.setExtent(env);

com.esri.arcgis.carto.IMapArea mapArea = new
com.esri.arcgis.carto.IMapAreaProxy(mapExtent);

m_mapDescription.setMapArea(mapArea);

java.util.Hashtable hTable = new java.util.Hashtable(3);

m_mapImage = m_mapServer.exportMapImage(m_mapDescription,
m_imageDescription);

hTable.put("MAPURL", m_mapImage.getURL());

m_mapDescriptionString = m_serverContext.saveObject(m_mapDescription);

m_imageDescriptionString =
m_serverContext.saveObject(m_imageDescription);

hTable.put("MAPDESCRIPTION", m_mapDescriptionString);
hTable.put("IMAGEDESCRIPTION", m_imageDescriptionString);

com.esri.arcgis.geometry.IEnvelope currentExtent =
m_mapDescription.getMapArea().getExtent();

com.esri.arcgis.samples.ejb.value.Envelope envelope = new
com.esri.arcgis.samples.ejb.value.Envelope();

 envelope.setMinX(currentExtent.getXMin());

 envelope.setMaxX(currentExtent.getXMax());

 envelope.setMinY(currentExtent.getYMin());

 envelope.setMaxY(currentExtent.getYMax());

hTable.put("EXTENT", envelope);

 return hTable;

 }

 catch(Exception exception){

 throw new Exception("Error in zoomMap: " +
exception.getMessage());

 }

 }

Releasing JCA and ArcGIS Server resources
At this point, it is evident that some critical and essential connection object
references to the ArcGIS Server and the JCA resource adapter have been made.
These references will continue, even after the application server takes the EJB
out of scope, unless the references are explicitly removed from your code.

Both resource connections are required to be closed when the EJB is removed
from the container. Add the following code to the ejbRemove method to close the
connections as required.
 try{

m_serverContext.removeAll();

 m_serverContext.releaseContext();

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:09 PM555

556 • ArcGIS Server Administrator and Developer Guide

m_connection.closeConnection();

 m_connection.releaseObject(m_serverConnectionObject);

 m_connection.close();

 }

 catch(Exception exception){

 System.out.println(exception.getMessage());

 }

Creating home and remote interfaces for StatelessMapImageEJB
The home and remote interfaces are responsible for creating remote instances of
EJBs and exposing the beans’ methods to clients remotely. The home interface for
your bean needs to contain one method for creating an instance of it.

1. Create the home interface. This will accompany the StatelessMapImageBean
class in the same package. The code you need for this interface is given below.
package com.esri.arcgis.samples.ejb;

import javax.ejb.EJBHome;

import javax.ejb.CreateException;

import javax.ejb.RemoveException;

import java.rmi.RemoteException;

import javax.ejb.Handle;

public interface StatelessMapImageHome extends javax.ejb.EJBHome {

 public com.esri.arcgis.samples.ejb.StatelessMapImage create()throws
CreateException, RemoteException;

}

2. Create the remote interface. This, too, will accompany the
StatelessMapImageBean class in the same package.
package com.esri.arcgis.samples.ejb;

import com.esri.arcgis.samples.ejb.value.Envelope;

import java.rmi.RemoteException;

public interface StatelessMapImage extends javax.ejb.EJBObject {

 public java.util.Hashtable getMap(String mapServerHost, String
mapServerName, String mapName, int width, int height, double dpi, int
imageFormat, int imageReturnType) throws RemoteException, Exception;

 public java.util.Hashtable zoomMap(String mapServerHost, String
mapServerName, String mapDescription, String imageDescription, int
pixelX, int pixelY, double factor) throws RemoteException, Exception;

}

There are many more functions that can be used by the EJB to manipulate the
map with which you are working. However, this scenario just examines the
essentials; other important tasks are needed to complete this application.

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:09 PM556

Appendix C • Developing applications with EJBs • 557

Creating the ejb-jar.xml
EJBs are typically deployed as EJB modules to J2EE application servers in the
form of JAR files. The EJB module contains the compiled classes for the bean
and an ejb-jar.xml file. Later in the exercise, you will create a META-INF direc-
tory that will contain this file. J2EE application servers read the ejb-jar.xml file
for specific instructions on how to deploy the included beans.

1. Create the ejb-jar.xml file and begin it by adding the following:
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

 <enterprise-beans>

2. The next part of the file describes the bean and its expected behavior in the
EJB container. In this case, you need to tell the application server that the EJB
is a session bean and is stateless and that transaction management will be
delegated to the application server’s own mechanism.
<session>

<display-name>StatelessMapImageEJB</display-name>

<ejb-name>StatelessMapImageEJB</ejb-name>

<home>com.esri.arcgis.samples.ejb.StatelessMapImageHome</home>

<remote>com.esri.arcgis.samples.ejb.StatelessMapImage</remote>

<ejb-class>com.esri.arcgis.samples.ejb.StatelessMapImageBean</ejb-
class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

3. Next, the descriptor defines some runtime arguments for the EJB to reference.
Each entry requires an <env-entry-value>. These include the appropriate
string values for the host, domain, username, password, and MapServer name
for the machine serving as the ArcGIS Server. Many application servers are
sensitive to unpopulated values. In this case, all of the values below are
essential for this EJB to work as expected. Some example values are provided
below. Edit them for your specific site.
<env-entry>

<description>Name of host where ArcGIS Server is running</
description>

 <env-entry-name>ArcServerHostName</env-entry-name>

 <env-entry-type>java.lang.String</env-entry-type>

 <env-entry-value>YourArcGISServerHostName</env-entry-value>

</env-entry>

<env-entry>

<description>Domain of host where ArcGIS Server is running</
description>

<env-entry-name>ArcServerDomainName</env-entry-name>

<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>YourArcGISServerDomainName</env-entry-value>

</env-entry>

<env-entry>

<description>ArcGIS Server host machines available system logon
username</description>

Some J2EE application servers may require an
additional, vendor-specific XML deployment

descriptor, along with the ejb-jar.xml file.

Use an XML editor if you need to validate the
format of the ejb-jar.xml file.

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

The <env-entry-value> parameter text must be
edited to match the appropriate names, domain,

username, and password for your ArcGIS Server
and the MapServer object you are using.

AppendixC.pmd 1/25/2005, 6:09 PM557

558 • ArcGIS Server Administrator and Developer Guide

<env-entry-name>ArcServerHostUserName</env-entry-name>

<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>YourArcGISServerSystemUserName </env-entry-value>

</env-entry>

<env-entry>

<description>ArcGIS Server host machines available system logon
password</description>

<env-entry-name>ArcServerHostPassword</env-entry-name>

<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>YourArcGISServerSystemPassword</env-entry-value>
</env-entry>

<env-entry>

<description>Name of MapServer to access</description>

<env-entry-name>MapServerName</env-entry-name>

<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>YourMapServerName</env-entry-value>

</env-entry>

</session>

</enterprise-beans>

4. Finish editing the descriptor with this section of text.
 <assembly-descriptor>

<container-transaction>

<method>

 <ejb-name>StatelessMapImageEJB</ejb-name>

 <method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

 </assembly-descriptor>

</ejb-jar>

Creating the client application
Since the goal of this exercise is to demonstrate how ArcGIS Server objects are
created and used inside an EJB container through the connection pooling and
connection objects of the JCA, the client application you create to be used with
the EJB is a simple one. The client JSP code simply obtains and displays an image
from the MapServer, through the EJB container, and allows you to zoom in and
out on that map image.

1. Write a simple JSP page called “default.jsp”. Begin by setting up the JSP page
and HTML essentials.
<%@page contentType="text/html"%>

<html>

<head><title>JSP Page</title></head>

<body>

<%

%>

Zoom In

Zoom Out

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

There are many tools and IDEs available that
generate Web applications containing default JSP

pages. Any of these can be used for this
exercise.

AppendixC.pmd 1/25/2005, 6:09 PM558

Appendix C • Developing applications with EJBs • 559

</body>

</html>

The HTML links for Zoom In and Zoom Out will call the application again,
telling it what zoom action to take on the map. You will see how to handle this
shortly.

2. Inside the JSP directives (<% %>), write the scriptlet code that looks up the
EJB home interface and obtains a reference to the EJB itself. This code is used
the first time the JSP page is accessed. Once the reference is obtained, call the
getMap method to return the Hashtable of map parameters. Remember that
the actual map URL, which is what will be displayed in this page, is stored
inside the returned Hashtable, just as you programmed the EJB to do. The
StatelessMapImage reference is stored in the JSP session with the keyword
“MAP”. “MyServerHost” and “MyMapServer” need to be changed to reflect a
valid host name and MapServer.
<%

 com.esri.arcgis.samples.ejb.StatelessMapImage m_map;

 java.lang.String mapDescription;

 java.lang.String imageDescription;

 java.lang.String mapurl;

 if(session.getAttribute("MAP") == null){

try{

javax.naming.InitialContext initContext = new
javax.naming.InitialContext();

Object mapObj = initContext.lookup("StatelessMapImageEJB");

com.esri.arcgis.samples.ejb.StatelessMapImageHome mapHome =

 (com.esri.arcgis.samples.ejb.StatelessMapImageHome)mapObj;

m_map = mapHome.create();

java.util.Hashtable hTable =
m_map.getMap("MyServerHost","MyMapServer", null, 400, 400,96.0,1,0);

mapurl = hTable.get("MAPURL").toString();

out.println("");

session.setAttribute("MAP",m_map);

 session.setAttribute("MD",hTable.get("MAPDESCRIPTION").toString());

 session.setAttribute("ID",hTable.get("IMAGEDESCRIPTION").toString());

 }catch(Exception exception){

 out.println(exception.getMessage());

 }

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

Edit “MyServerHost” and “MyMapServer” to
reflect a valid host name and MapServer.

AppendixC.pmd 1/25/2005, 6:09 PM559

560 • ArcGIS Server Administrator and Developer Guide

3. If the session contains the attribute “MAP”, then you have already initialized
the EJB. Write the following code to zoom in on the map. On the mapObj
object, call the zoomMap method, using the MapDescription and ImageDescription
information to help you with the current state of the map extent.
}else{

java.util.Hashtable ht =
(java.util.Hashtable)session.getAttribute("HT");

m_map = (com.esri.arcgis.samples.ejb.StatelessMapImage)
session.getAttribute("MAP");

mapDescription = session.getAttribute("MD").toString();

imageDescription = session.getAttribute("ID").toString();

String action = request.getParameter("mapaction");

if(action.equals("zoomin")){

java.util.Hashtable hTable = m_map.zoomMap(
"MyServerHost","MyMapServer", mapDescription, imageDescription,
200,200,0.5);

mapurl = hTable.get("MAPURL").toString();

session.setAttribute("MD",hTable.get("MAPDESCRIPTION").toString());

 session.setAttribute("ID",hTable.get("IMAGEDESCRIPTION").toString());

 }

4. Next, write similar code to zoom out from the map.
else if(action.equals("zoomout")){

java.util.Hashtable hTable = m_map.zoomMap(
"MyServerHost","MyMapServer", mapDescription, imageDescription,
200,200,1.5);

mapurl = hTable.get("MAPURL").toString();

session.setAttribute("MD",hTable.get("MAPDESCRIPTION").toString());

 session.setAttribute("ID",hTable.get("IMAGEDESCRIPTION").toString());

}

5. You may have a map reference already in the JSP session, without a specified
map action. As such, the following retrieves the initial map with the getMap
method.

else{

java.util.Hashtable hTable = m_map.getMap("MyServerHost",
"MyMapServer", null, 400, 400,96.0,1,0);

mapurl = hTable.get("MAPURL").toString();

session.setAttribute("MD",hTable.get("MAPDESCRIPTION").toString());

 session.setAttribute("ID",hTable.get("IMAGEDESCRIPTION").toString());

 }

6. Now that you have the map URL, write code to print the map image to
HTML format.
out.println("");

%>

The client code, although not an elegant or scalable approach, is now complete

Edit “MyServerHost” and “MyMapServer” to
reflect a valid host name and MapServer.

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

Edit “MyServerHost” and “MyMapServer” to
reflect a valid host name and MapServer.

Edit “MyServerHost” and “MyMapServer” to
reflect a valid host name and MapServer.

AppendixC.pmd 1/25/2005, 6:09 PM560

Appendix C • Developing applications with EJBs • 561

and will sufficiently demonstrate the process. The final step in the client creation
process is to build a folder structure for the application.

7. Create the following directory structure, \mapapp\WEB-INF\classes. Copy
your default.jsp file to the mapapp folder. Create a Web application descriptor
file named “web.xml” and add it into the WEB-INF folder. For your applica-
tion, the web.xml is defined as follows.
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<display-name>MapTester</display-name>

<session-config>

<session-timeout>30</session-timeout>

</session-config>

<welcome-file-list>

<welcome-file>default.jsp</welcome-file>

</welcome-file-list>

<ejb-ref>

<ejb-ref-name>StatelessMapImageEJB</ejb-ref-name>

<ejb-ref-type>Session</ejb-ref-type>

<home>com.esri.arcgis.samples.ejb.StatelessMapImageHome</
home>

<remote>com.esri.arcgis.samples.ejb.StatelessMapImage</
remote>

</ejb-ref>

<distributable>false</distributable>

</web-app>

Now that the structure is in place, the entire application folder structure can be
packaged into a Web archive (WAR) file. This occurs during the build process,
shown later in this discussion.

Building the application with Ant
Ant is a Java-based tool that can be used to compile and execute any kind of
program on any target OS. It is similar to the standard UNIX tool called “make”,
which is often used by experienced C programmers. Ant utilizes a build file,
typically named “build.xml”, that tells it what to create and build. The build file,
in XML format, uses XML tags, with attributes and subtags defining the details
of work to be accomplished, to trigger different actions, commonly referred to as
“targets”. A target is a set of tasks you want to execute. When starting Ant, you
can select which targets you want to execute. When no target is given, the
project’s default is used. For example, your source code needs to be compiled; the
compiled classes need to be archived into JAR files; and finally, the JAR files need
to be copied to a specific file system location. There are three targets here that
need to be executed in a particular order. Ant will resolve these target dependen-
cies for you, so that if target JAR is called first, it will execute target BUILD,
then it will proceed to execute JAR.

Your build project should be arranged in the directory structure that the targets

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:09 PM561

562 • ArcGIS Server Administrator and Developer Guide

can utilize. The EJB source code, deployment descriptors, and client Web applica-
tion need to be arranged in the directory structure outlined below.

1. Create a workspace that contains the following items:

Copy the ejb-jar.xml descriptor file into both the ejb-jar and META-INF folders.
These will be archived into a deployable EJB JAR file
by the Ant build.

Copy the source code for the StatelessMapImageBean
that you created earlier into the src folder.

Copy the entire mapapp folder and its files (default.jsp)
and subfolders (WEB-INF) into the webapps folder.
The build process will bundle this entire directory into
a WAR file.

The build.xml file is the Ant project you will write in
the next step.

2. Verify that the AGSDEVKITHOME and J2EE_HOME system environment
variables have been set and are pointing to valid locations.

3. Write the Ant build.xml script. The first section of the script sets some vari-
ables to be used for directory locations and necessary JAR files.
<?xml version="1.0" encoding="UTF-8"?>

<project basedir="." default="all" name="EJBSample">

 <property environment="env"/>

 <property name="engine.home" value="${env.AGSDEVKITHOME}" />

 <property name="root.dir" location="${basedir}"/>

 <property name="src.dir" location="src"/>

 <property name="build.dir" location="build"/>

 <property name="dist.dir" location="${build.dir}/dist"/>

 <property name="class.dir" location="${build.dir}/classes"/>

 <property name="war.mapapp.name" value="MapApp-war"/>

 <property name="ejb.name" value="MapEJB"/>

 <property name="webapps.dir" location="webapps" />

 <property name="webapp.subdir.mapapp" value="mapapp" />

 <property name="webxml" value="WEB-INF/web.xml" />

 <property name="meta.inf" location="META-INF" />

 <property name="arcgis.java.dir" location="${engine.home}/../java"/
>

 <property name="arcgis.java.subdir" value="opt"/>

 <property name="jintegra.jar" location="${arcgis.java.dir}/
jintegra.jar"/>

 <property name="intrinsycjca.jar" location="${arcgis.java.dir}/
intrinsycjca.jar"/>

 <property name="j2ee.jar" location="${env.J2EE_HOME}/lib/j2ee.jar"/>

 <property name="arcgis_engine.jar" location="${arcgis.java.dir}/
${arcgis.java.subdir}/arcobjects.jar"/>

 <path id="compile.classpath">

 <pathelement location="${j2ee.jar}"/>

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

There are no stringent rules for creating a build
structure in this manner; however, this structure

will be easiest for this exercise.

See the ArcGIS Server Installation Guide for
details on setting these variables correctly.

AppendixC.pmd 1/25/2005, 6:09 PM562

Appendix C • Developing applications with EJBs • 563

 <pathelement location="${intrinsycjca.jar}"/>

 <pathelement location="${jintegra.jar}"/>

 <pathelement location="${arcgis_engine.jar}"/>

 </path>

4. Next, define the following target names and dependencies.

• all • clean

• validate-engine • init

• compile • make-war

• ejbjar

The target named “all” will process all targets in order.
 <target name="all" depends="ejbjar" description="build everything">

 </target>

 <target name="clean" description="clean all build products">

 <delete dir="${build.dir}" />

 </target>

 <target name="validate-engine">

 <condition property="engine.available">

 <and>

 <isset property="env.AGSDEVKITHOME" />

 </and>

 </condition>

 <fail message="Missing Dependencies: AGSDEVKITHOME environment
variable not correctly set" unless="engine.available"/>

 </target>

 <target name="init" depends="validate-engine">

 <tstamp/>

 <mkdir dir="${build.dir}"/>

 <mkdir dir="${dist.dir}"/>

 <mkdir dir="${class.dir}"/>

 </target>

 <target name="compile" depends="clean, init">

 <javac srcdir="${src.dir}" destdir="${class.dir}">

 <classpath refid="compile.classpath" />

 </javac>

 </target>

 <target name="make-war" depends="compile" if="webapps.dir">

 <war destfile="${dist.dir}/${war.mapapp.name}.war"
webxml="${webapps.dir}/${webapp.subdir.mapapp}/${webxml}">

 <fileset dir="${webapps.dir}/${webapp.subdir.mapapp}" />

<classes dir="${class.dir}" includes="**/
StatelessMapImage.class, **/StatelessMapImageHome.class" />

 </war>

 </target>

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:09 PM563

564 • ArcGIS Server Administrator and Developer Guide

 <target name="ejbjar" depends="make-war" description="Builds the ejb-
jar file">

 <copy todir="${class.dir}/META-INF">

<fileset dir="${meta.inf}" />

 </copy>

 <jar destfile="${dist.dir}/${ejb.name}.jar"
basedir="${class.dir}" />

 </target>

</project>

Now you are ready to build the EJB and client applications.

5. Open a command prompt and navigate to the location of the build.xml file
you just created. If you have properly configured your AGSDEVKITHOME
system environment variable and included $AGSDEVKITHOME/tools/ant/
bin to your system path, you can type “arcgisant all” to begin the build. Ant
will identify the build.xml and begin executing the “all” target. You will see
the following output in your console.
C:\arcdev\ArcServerEJBDocSample>arcgisant all

Buildfile: build.xml

clean:

validate-engine:

init:

 [mkdir] Created dir: C:\arcdev\ArcServerEJBDocSample\build

 [mkdir] Created dir: C:\arcdev\ArcServerEJBDocSample\build\dist

 [mkdir] Created dir: C:\arcdev\ArcServerEJBDocSample\build\classes

compile:

 [javac] Compiling 7 source files to
C:\arcdev\ArcServerEJBDocSample\build\classes

make-war:

 [war] Building war:
C:\arcdev\ArcServerEJBDocSample\build\dist\MapApp-war.war

 [war] Warning: selected war files include a WEB-INF/web.xml which
will be ignored (please use webxml attribute to war task)

ejbjar:

 [copy] Copying 1 file to
C:\arcdev\ArcServerEJBDocSample\build\classes\META-INF

 [jar] Building jar:
C:\arcdev\ArcServerEJBDocSample\build\dist\MapEJB.jar

all:

BUILD SUCCESSFUL

Total time: 4 seconds

C:\arcdev\ArcServerEJBDocSample>

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:09 PM564

Appendix C • Developing applications with EJBs • 565

The console information highlights the various tasks performed by Ant. First, the
./build/dist and ./build/classes folders were created. Next, the EJB source code
was compiled and the classes copied to ./build/classes. Then, the webapp was
packaged into a WAR file and copied to ./build/dist. Finally, the EJB archive was
created and copied to the ./build/dist folder.

As a result, you should now have two archive files: the EJB jar, named
MapEJB.jar, and the MapApp-war.war, which is the Web archive containing the
client application. These archives are now ready for deployment into any J2EE-
compliant application server. Remember, you will also need to deploy the
intrinsycjca.rar archive to the same application server to which you deploy this
sample application. This will be demonstrated in the next section using the
WebSphere Application Server.

Deploying the EJB, the JCA resource adapter, and the client
This scenario demonstrates the deployment process using the WebSphere 5.0
Application Server as the EJB container on a Windows platform. Every J2EE-
compliant application server will require similar steps for deploying EJB modules,
Web applications, and resource adapters.

1. Open the WebSphere 5.0 Application Assembly Tool. From the Start menu
click Programs, then IBM WebSphere Application Server. When the Welcome
dialog box appears, choose Application on the New tab and click OK.

2. Change the name of the application to “MapApplication.ear” and click Apply.

The next step is to add the necessary pieces to the enterprise archive.

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

Enterprise Application Archives, or .ear files,
contain all of the files and resources comprising

an entire EJB application; these include Web
applications, deployment descriptors, and the

EJBs themselves. The .ear file provides a single
deployable entity for a complete enterprise

application.

AppendixC.pmd 1/25/2005, 6:09 PM565

566 • ArcGIS Server Administrator and Developer Guide

3. Right-click the EJB Modules node and click Import. Browse to the location
of your newly created MapEJB.jar file and click Open.

4. When the Confirm values dialog box appears, click OK and accept the default
values.

5. Expand the EJB Modules node and highlight the Environment Entries node
of the StatelessMapImageEJB. Verify the default values for each of the envi-
ronment entries listed below. These are the same values as those you entered in
the ejb-jar.xml file.

ArcServerDomainName: Domain name of the host where
ArcGIS Server is running.

ArcServerHostName: Host name of the ArcGIS Server
machine.

ArcServerHostUserName: Authorized username for the host
ArcGIS Server machine.

ArcServerHostPassword: Password for the username.

MapServerName: Name of the MapServer object to access,
running on the ArcServerHostName.

6. Next, deploy the JCA resource adapter to the application server. Right-click
the Resource References node and choose New.

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:09 PM566

Appendix C • Developing applications with EJBs • 567

Edit the settings as indicated here.

Name: Name of the Resource Adapter.

Type: Type of resource.

Authentication: Type of authentication to use.

Sharing Scope: Set to Sharable.

7. Click the Bindings tab and type “intrinsycjca” as the JNDI name value. Click
Apply to set the assigned values and Cancel to close the dialog box.

8. Right-click the Web Modules node and click Import. Browse to the location
of the deployable Web application WAR file that you have just created and
click Open. If the Select Module dialog box appears, select MapTester, then
click OK.

9. Set the Context root value to “/mapapp” and click OK.

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:09 PM567

568 • ArcGIS Server Administrator and Developer Guide

10. Save the enterprise application by clicking the Save button. In the Save dialog
box, enter a unique filename with the .ear file extension. Next, click the
Generate code for deployment button on the toolbar. This creates an enter-
prise application archive file.

11. In the Deployed module location text box, type the path to the location of
your newly created .ear file. This is the enterprise application that will be
deployed. Click Generate Now.

12. Once the code generation has completed successfully, click Close and close the
Application Assembly tool.

Now that you have created the enterprise archive file, you are ready to perform
the deployment to the WebSphere server.

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:09 PM568

Appendix C • Developing applications with EJBs • 569

13. Open the WebSphere Administrative Console.

14. Deploy the intrinsycjca resource adapter to the application server. Open the
Resources node and click the Resource Adapters link. Click Install RAR.
Browse to the location of the intrinsycjca.rar file, <install_location>/java,
click Open, and click Next. Click OK to accept the defaults. The intrinsycjca
RAR is now listed as an available resource adapter.

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:09 PM569

570 • ArcGIS Server Administrator and Developer Guide

15. After installing the intrinsycjca resource adapter in the WebSphere Adminis-
trative Console, click the intrinsycjca resource adapter link to view its proper-
ties. Scroll to the bottom of the properties page and choose the J2C Connec-
tion Factories link to create a new connection factory.

16. Click the New button to create a new connection factory. Name the connec-
tion factory “intrinsycjca”, assign “intrinsycjca” as the JNDI name, and click
Apply. Verify that the new configurations have been saved to the master
configuration.

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:10 PM570

Appendix C • Developing applications with EJBs • 571

There is now an entry for a connection factory named “intrinsycjca”.

17. Click the Environment node, then click the Shared Libraries link. At this
point, you need to add the ArcGIS JARs to the application server’s class path.
Click the New button to create a new library category. Type “ArcServer” as
the name and add the full pathnames to jintegra.jar, arcobjects.jar, and
intrinsycjca.jar in the Classpath section of the form. Click Apply and click
OK. Note that these libraries will be available to all applications deployed on
the server.

18. Click the Application node, then click the Install New Application link.
Browse to the location of the Deployed_ArcServerApplication.ear file and
click OK. Click Next.

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:10 PM571

572 • ArcGIS Server Administrator and Developer Guide

19. Accept the defaults of the next step.

20. Check the Pre-compile JSP check box and click Next.

21. Enter “StatelessMapImageEJB” for the JNDI name value and click Next.

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:10 PM572

Appendix C • Developing applications with EJBs • 573

22. Enter “StatelessMapImageEJB” for the Web application EJB reference. Click
Next for all other steps through summary, then click Finish. The enterprise
application installation summary will be shown at the end of the installation.
Click the Save to Master Configuration link to save the installation settings,
then click Save.

Testing the client application
Open the Enterprise Applications view, click the MapApplication.ear entry, and
click the Start button. The EJB has now been deployed and is ready to be ac-
cessed by the client Web application. To start the Web application, browse to
http://localhost:9080/mapapp.

ADDITIONAL RESOURCES

This scenario includes functionality and programming techniques covering a few
aspects of ArcObjects and the ArcGIS Server API.

You are encouraged to read Chapter 4 of this book, ‘Developing ArcGIS Server
applications,’ to get a better understanding of core ArcGIS Server programming
concepts and programming guidelines for working with server contexts and
ArcObjects running within those contexts.

ArcGIS Server applications exploit the rich GIS functionality of ArcObjects.
This application is no exception. To learn more about these aspects of
ArcObjects, refer to ArcGIS Developer Help.

EJBS AND ARCGIS SERVER—A DEVELOPER SCENARIO

AppendixC.pmd 1/25/2005, 6:10 PM573

AppendixC.pmd 1/25/2005, 6:10 PM574

575

Developer
environmentsD

ArcObjects is based on Microsoft’s Component Object Model. End users of ArcGIS

applications don’t necessarily have to understand COM, but if you’re a developer

intent on developing applications based on ArcObjects or extending the existing

ArcGIS applications using ArcObjects, an understanding of COM is a requirement

even if you plan to use the .NET or Java API and not COM specifically. The level

of understanding required depends on the depth of customization or development

you want to undertake.

This appendix does not cover the entire COM environment; however, it provides

both Visual Basic and Visual C++® developers with sufficient knowledge to be

effective in using ArcObjects. Later sections of the appendix detail how .NET and

Java developers work with ArcObjects. There are many coding tips and guidelines

that should make your work with ArcObjects more effective.

AppendixD.pmd 1/25/2005, 6:12 PM575

576 • ArcGIS Server Administrator and Developer Guide

THE MICROSOFT COMPONENT OBJECT MODEL

Before discussing COM specifically, it is worth considering the wider use of soft-
ware components in general. There are a number of factors driving the motivation
behind software components, but the principal one is the fact that software devel-
opment is a costly and time-consuming venture.

In an ideal world, it would be possible to write a piece of code once and reuse it
again and again using a variety of development tools, even in circumstances that
the original developer did not foresee. Ideally, changes to the code’s functionality
made by the original developer could be deployed without requiring existing users
to change or recompile their code.

Early attempts at producing reusable chunks of code revolved around the creation
of class libraries, usually developed in C++. These early attempts suffered from
several limitations, notably difficulty of sharing parts of the system (it is difficult to
share binary C++ components—most attempts have only shared source code),
problems of persistence and updating C++ components without recompiling, lack
of good modeling languages and tools, and proprietary interfaces and customization
tools.

To counteract these and other problems, many software engineers have adopted
component-based approaches to system development. A software component is a
binary unit of reusable code.

Several different but overlapping standards have emerged for developing and
sharing components. For building interactive desktop applications, Microsoft’s
COM is the de facto standard. On the Internet, JavaBeans is viable technology. At
a coarser grain appropriate for application-level interoperability, the Object
Management Group (OMG) has specified the common object request broker
architecture (CORBA).

To understand COM—and, therefore, all COM-based technologies—it’s impor-
tant to realize that it isn’t an object-oriented language but a protocol, or standard.
COM is more than just a technology; it is a methodology of software develop-
ment. COM defines a protocol that connects one software component, or mod-
ule, with another. By making use of this protocol, it’s possible to build reusable
software components that can be dynamically interchanged in a distributed
system.

COM also defines a programming model known as interface-based programming.
Objects encapsulate the manipulation methods and the data that characterizes each
instantiated object behind a well-defined interface. This promotes structured and
safe system development, since the client of an object is protected from knowing
any details of how a particular method is implemented. COM doesn’t specify how
an application should be structured. As an application programmer working with
COM, language, structure, and implementation details are left up to you.

COM does specify an object model and programming requirements that enable
COM objects to interact with other COM objects. These objects can be within a
single process, in other processes, or even on remote machines. They can be
written in other languages and may have been developed in different ways. That
is why COM is referred to as a binary specification or standard—it is a standard
that applies after a program has been translated to binary machine code.

ESRI chose COM as the component technology
for ArcGIS because it is a mature technology that

offers good performance, many of today’s
development tools support it, and there is a

multitude of third-party components that can be
used to extend the functionality of ArcObjects.

The key to the success of components is that
they implement, in a practical way, many of the

object-oriented principles now commonly
accepted in software engineering. Components
facilitate software reuse because they are self-

contained building blocks that can easily be
assembled into larger systems.

AppendixD.pmd 1/25/2005, 6:12 PM576

Appendix D • Developer environments • 577

COM allows these objects to be reused at a binary level, meaning that third-party
developers do not require access to source code, header files, or object libraries to
extend the system, even at the lowest level.

COMPONENTS, OBJECTS, CLIENTS, AND SERVERS

Different texts use the terms components, objects, clients, and servers to mean
different things. (To add to the confusion, various texts refer to the same thing
using all these terms.) Therefore, it is worthwhile to define some terminology.

COM is a client/server architecture. The server (or object) provides some func-
tionality, and the client uses that functionality. COM facilitates the communica-
tion between the client and the object. An object can, at the same time, be a
server to a client and a client of some other object’s services.

Client
VBApp.exe

Client/Server
ArcMap.exe

Server
Map.dll

The client and its servers can exist in the same process or in a different process
space. In-process servers are packaged in DLL form, and these DLLs are loaded
into the client’s address space when the client first accesses the server. Out-of-
process servers are packaged in executables (EXE) and run in their own address
space. COM makes the differences transparent to the client.

When creating COM objects, the developer must be aware of the type of server
that the objects will reside in, but if the creator of the object has implemented
them correctly, the packaging does not affect the use of the objects by the client.

There are pros and cons to each method of packaging that are symmetrically
opposite. DLLs are faster to load into memory, and calling a DLL function is
faster. EXEs, on the other hand, provide a more robust solution (if the server
fails, the client will not crash), and security is better handled since the server has
its own security context.

In a distributed system, EXEs are more flexible, and it does not matter if the
server has a different byte ordering from the client. The majority of ArcObjects
servers are packaged as in-process servers (DLLs). Later, you will see the perfor-
mance benefits associated with in-process servers.

In a COM system, the client, or user of functionality, is completely isolated from
the provider of that functionality, the object. All the client needs to know is that
the functionality is available; with this knowledge, the client can make method
calls to the object and expect the object to honor them. In this way, COM is said
to act as a contract between client and object. If the object breaks that contract,
the behavior of the system will be unspecified. In this way, COM development is
based on trust between the implementer and the user of functionality.

In the ArcGIS applications, there are many objects that provide, via their inter-
faces, thousands of properties and methods. When you use the ESRI object
libraries, you can assume that all these properties and interfaces have been fully
implemented, and if they are present on the object diagrams, they are there to
use.

Objects are instances of COM classes that
make services available for use by a client.

Hence, it is normal to talk of clients and objects
instead of clients and servers. These objects are
often referred to as COM objects and compo-

nent objects. This book will refer to them simply
as objects.

Client and server

COM+ server

MyComputer

process space

YourComputer

process space

Objects inside an out-of-process server are
accessed by COM-supplied proxy objects, which
make access transparent to the client. The COM

runtime handles the remoting layer.

COM
objects

yourEXE

server

myEXE

client

Objects inside an out-of-process server are
accessed by COM-supplied proxy objects, which

make access transparent to the client.

MyComputer

process space process space

COM out-of-process server

COM
object

s

myEXE

client

proxy
object

yourEXE

server

proxy
object

MyComputer

process space

Objects inside an in-process server are accessed
directly by their clients.

COM in-process server

myDLL
COM

objects

client

yourDLL

server

THE MICROSOFT COMPONENT OBJECT MODEL

AppendixD.pmd 1/25/2005, 6:12 PM577

578 • ArcGIS Server Administrator and Developer Guide

CLASS FACTORY

Within each server, there is an object called a class factory that the COM runtime
interacts with to instantiate objects of a particular class. For every corresponding
COM class, there is a class factory. Normally, when a client requests an object
from a server, the appropriate class factory creates a new object and passes out
that object to the client.

SINGLETON OBJECTS

Although this is the normal implementation, it is not the only implementation
possible. The class factory can also create an instance of the object the first time
and, with subsequent calls, pass the same object to clients. This type of imple-
mentation creates what is known as a singleton object since there is only one
instance of the object per process.

GLOBALLY UNIQUE IDENTIFIERS

A distributed system potentially has thousands of interfaces, classes, and servers,
all of which must be referenced when locating and binding clients and objects
together at runtime. Clearly, using human-readable names would lead to the
potential for clashes; hence, COM uses GUIDs, 128-bit numbers that are virtually
guaranteed to be unique in the world. It is possible to generate 10 million GUIDs
per second until the year 5770 A.D., and each one would be unique.

The COM API defines a function that can be used to generate GUIDs; in addi-
tion, all COM-compliant development tools automatically assign GUIDs when
appropriate. GUIDs are the same as Universally Unique Identifiers (UUIDs),
defined by the Open Group’s Distributed Computing Environment (DCE) speci-
fication. Below is a sample GUID in registry format.
 {E6BDAA76-4D35-11D0-98BE-00805F7CED21}

COM CLASSES AND INTERFACES

Developing with COM means developing using interfaces, the so-called interface-
based programming model. All communication between objects is made via their
interfaces. COM interfaces are abstract, meaning there is no implementation
associated with an interface; the code associated with an interface comes from a
class implementation. The interface sets which requests can be made of an object
that chooses to implement the interface.

How an interface is implemented differs among objects. Thus, the objects inherit
the type of interface, not its implementation, which is called type inheritance.
Functionality is modeled abstractly with the interfaces and implemented within a
class implementation. Classes and interfaces are often referred to as the “what”
and “how” of COM. The interface defines what an object can do, and the class
defines how it is done.

COM classes provide the code associated with one or more interfaces, thus encap-
sulating the functionality entirely within the class. Two classes can have the same
interface, but they may implement them quite differently. By implementing these
interfaces in this way, COM displays classic object-oriented polymorphic behav-
ior. COM does not support the concept of multiple inheritance; however, this is
not a shortcoming since individual classes can implement multiple interfaces. See
the diagram to the lower left on polymorphic behavior.

THE MICROSOFT COMPONENT OBJECT MODEL

Class
factory A

IClassFactory

IUnknown

COM
object A

InterfaceA

IUnknown

COM
object B

InterfaceB

IUnknown

COM
object B

InterfaceB

IUnknown

Class
factory B

IClassFactory

IUnknown

A server is a binary file that contains all the
code required by one or more COM classes. This
includes both the code that works with COM to
instantiate objects into memory and the code to

perform the methods supported by the objects
contained within the server.

GUIDGEN.EXE is a utility that ships with
Microsoft’s Visual Studio and provides an easy-to-

use user interface for generating GUIDs. It can
be found in the directory <VS Install

Dir>\Common\Tools.

The acronym GUID is commonly pronounced
“gwid”.

AppendixD.pmd 1/25/2005, 6:12 PM578

Appendix D • Developer environments • 579

Access-
Workspace-

Factory

Workspace-
Factory

Workspace

This is a simplified portion of the geodatabase
object model showing type inheritance among
abstract classes, coclasses, and instantiation of

classes.

Within ArcObjects are three types of classes that the developer must be aware of:
abstract classes, coclasses, and classes. An abstract class cannot be created; it is
solely a specification for instances of subclasses (through type inheritance).
ArcObjects Dataset and Geometry classes are examples of abstract classes. An
object of type Geometry cannot be created, but an object of type Polyline can.
This Polyline object, in turn, implements the interfaces defined within the Geom-
etry base class, hence any interfaces defined within object-based classes are acces-
sible from the coclass.

A coclass is a publicly creatable class. In other words, it is possible for COM to
create an instance of that class and give the resultant object to the client to use
the services defined by the interfaces of that class. A class cannot be publicly
created, but objects of this class can be created by other objects within
ArcObjects and given to clients to use.

To the left is a diagram that illustrates the polymorphic behavior exhibited in
COM classes when implementing interfaces. Notice that both the Human and
Parrot classes implement the ITalk interface. The ITalk interface defines the
methods and properties, such as StartTalking, StopTalking, or Language, but clearly
the two classes implement these differently.

INSIDE INTERFACES

COM interfaces are how COM objects communicate with each other. When
working with COM objects, the developer never works with the COM object
directly but gains access to the object via one of its interfaces. COM interfaces
are designed to be a grouping of logically related functions. The virtual functions
are called by the client and implemented by the server; in this way, an object’s
interfaces are the contract between the client and object. The client of an object
is holding an interface pointer to that object. This interface pointer is referred to
as an opaque pointer since the client cannot gain any knowledge of the imple-
mentation details within an object or direct access to an object’s state data. The
client must communicate through the member functions of the interface. This
allows COM to provide a binary standard through which all objects can effec-
tively communicate.

Interfaces allow developers to model functionality abstractly. Visual C++ devel-
opers see interfaces as collections of pure virtual functions, while Visual Basic
developers see interfaces as collections of properties, functions, and subroutines.

The concept of the interface is fundamental in COM. The COM Specification
(Microsoft, 1995) emphasizes these four points when discussing COM interfaces:

• An interface is not a class. An interface cannot be instantiated by itself since it
carries no implementation.

• An interface is not an object. An interface is a related group of functions and
is the binary standard through which clients and objects communicate.

THE MICROSOFT COMPONENT OBJECT MODEL

This diagram shows how common behavior,
expressed as interfaces, can be shared among
multiple objects, animals in this example, to

support polymorphism.

Human
IBirth

ITalk

IWalk

IDeath

Parrot
IBirth

ITalk

IWalk

IFly

IDeath

Dog
IBirth

IWalk

IDeath

Classes

Interfaces

IBirth

ITalk

IWalk

IFly

IDeath

AppendixD.pmd 1/25/2005, 6:12 PM579

580 • ArcGIS Server Administrator and Developer Guide

• Interfaces are strongly typed. Every interface has its own interface identifier,
thereby eliminating the possibility of a collision between interfaces of the
same human-readable name.

• Interfaces are immutable. Interfaces are never versioned. Once defined and
published, an interface cannot be changed.

Once an interface has been published, it is not possible to change the external
signature of that interface. It is possible at any time to change the implementa-
tion details of an object that exposes an interface. This change may be a minor
bug fix or a complete reworking of the underlying algorithm; the clients of the
interface do not care since the interface appears the same to them. This means
that when upgrades to the servers are deployed in the form of new DLLs and
EXEs, existing clients need not be recompiled to make use of the new function-
ality. If the external signature of the interface is no longer sufficient, a new
interface is created to expose the new functions. Old or deprecated interfaces are
not removed from a class to ensure all existing client applications can continue to
communicate with the newly upgraded server. Newer clients will have the choice
of using the old or new interfaces.

THE IUNKNOWN INTERFACE

All COM interfaces derive from the IUnknown interface, and all COM objects
must implement this interface. The IUnknown interface performs two tasks: it
controls object lifetime and provides runtime type support. It is through the
IUnknown interface that clients maintain a reference on an object while it is in
use—leaving the actual lifetime management to the object itself.

Object lifetime is controlled with two methods, AddRef and Release, and an
internal reference counter. Every object must have an implementation of
IUnknown to control its own lifetime. Anytime an interface pointer is created or
duplicated, the AddRef method is called, and when the client no longer requires
this pointer, the corresponding Release method is called. When the reference
count reaches zero, the object destroys itself.

Clients also use IUnknown to acquire other interfaces on an object. QueryInterface is
the method that a client calls when another interface on the object is required.
When a client calls QueryInterface, the object provides an interface and calls
AddRef. In fact, it is the responsibility of any COM method that returns an
interface to increment the reference count for the object on behalf of the caller.
The client must call the Release method when the interface is no longer needed.
The client calls AddRef explicitly only when an interface is duplicated.

When developing a COM object, the developer must obey the rules of
QueryInterface. These rules dictate that interfaces for an object are symmetrical,
transitive, and reflexive and are always available for the lifetime of an object. For
the client this means that, given a valid interface to an object, it is always valid to
ask the object, via a call to QueryInterface, for any other interface on that object
including itself. It is not possible to support an interface and later deny access to
that interface, perhaps because of time or security constraints. Other mechanisms

THE MICROSOFT COMPONENT OBJECT MODEL

The name IUnknown came from a 1988
internal Microsoft paper called Object Archi-
tecture: Dealing with the Unknown – or –

Type Safety in a Dynamically Extensible Class
Library.

An interface’s permanence is not restricted to
simply its method signatures but extends to its

semantic behavior as well. For example, an
interface defines two methods, A and B, with no

restrictions placed on their use. It breaks the
COM contract if at a subsequent release

Method A requires that Method B be executed
first. A change like this would force possible

recompilations of clients.

AppendixD.pmd 1/25/2005, 6:12 PM580

Appendix D • Developer environments • 581

Since IUnknown is fundamental to all COM
objects, in general there are no references to

IUnknown in any of the ArcObjects documenta-
tion and class diagrams.

Smart pointers are a class-based smart type and
are covered in detail later in this appendix.

The method QueryInterface is often referred
to by the abbreviation QI.

must be used to provide this level of functionality. Some classes support the
concept of optional interfaces. Depending on the coclass, they may optionally
implement an interface; this does not break this rule since the interface is either
always available or always not available on the class.

When requested for a particular interface, the QueryInterface method can return an
already assigned piece of memory for that requested interface, or it can allocate a
new piece of memory and return that. The only case when the same piece of
memory must be returned is when the IUnknown interface is requested. When
comparing two interface pointers to see if they point to the same object, it is
important that a simple comparison not be performed. To correctly compare two
interface pointers to see if they are for the same object, they both must be que-
ried for their IUnknown interface, and the comparison must be performed on the
IUnknown pointers. In this way, the IUnknown interface is said to define a COM
object’s identity.

It’s good practice in Visual Basic to call Release explicitly by assigning an interface
equal to Nothing to release any resources it’s holding. Even if you don’t call Re-
lease, Visual Basic will automatically call it when you no longer need the object—
that is, when it goes out of scope. With global variables, you must explicitly call
Release. In Visual Basic, the system performs all these reference-counting opera-
tions for you, making the use of COM objects relatively straightforward.

In C++, however, you must increment and decrement the reference count to
allow an object to correctly control its own lifetime. Likewise, the QueryInterface
method must be called when asking for another interface. In C++ the use of
smart pointers simplifies much of this. These smart pointers are class based and,
hence, have appropriate constructors, destructors, and overloaded operators to
automate much of the reference counting and query interface operations.

INTERFACE DEFINITION LANGUAGE

Microsoft Interface Definition Language (MIDL) is used to describe COM objects
including their interfaces. This MIDL is an extension of the Interface Definition
Language (IDL) defined by the DCE, where it was used to define remote procedure
calls between clients and servers. The MIDL extensions include most of the Object
Definition Language (ODL) statements and attributes. ODL was used in the early
days of OLE automation for the creation of type libraries.

TYPE LIBRARY

A type library is best thought of as a binary version of an IDL file. It contains a
binary description of all coclasses, interfaces, methods, and types contained within a
server or servers.

There are several COM interfaces provided by Microsoft that work with type
libraries. Two of these interfaces are ITypeInfo and ITypeLib. By utilizing these
standard COM interfaces, various development tools and compilers can gain
information about the coclasses and interfaces supported by a particular library.

To support the concept of a language-independent development set of compo-
nents, all relevant data concerning the ArcObjects libraries is shipped inside type
libraries. There are no header files, source files, or object files supplied or needed
by external developers.

THE MICROSOFT COMPONENT OBJECT MODEL

The rules of QueryInterface dictate that
interfaces of an object are reflexive, symmetrical,

and transitive. It is always possible, holding a
valid interface pointer on an object, to get any

other interface on that object.

MIDL is commonly referred to as IDL.

The IDL defines the public interface that
developers use when working with ArcObjects.

When compiled, the IDL creates a type library.

AppendixD.pmd 1/25/2005, 6:12 PM581

582 • ArcGIS Server Administrator and Developer Guide

server
class

outbound interface
inbound interface

client
class

interfaceinterface
interface

In the diagrams in this book and the ArcObjects
object model diagrams, outbound interfaces are

depicted with a solid circle on the interface jack.

INBOUND AND OUTBOUND INTERFACES

Interfaces can be either inbound or outbound. An inbound interface is the most
common kind—the client makes calls to functions within the interface contained
on an object. An outbound interface is one in which the object makes calls to the
client—a technique analogous to the traditional callback mechanism.

There are differences in the ways these interfaces are implemented. The implementer
of an inbound interface must implement all functions of the interface; failure to do
so breaks the contract of COM. This is also true for outbound interfaces. If you use
Visual Basic, you don’t have to implement all functions present on the interface
since it provides stub methods for the methods you don’t implement. On the other
hand, if you use C++, you must implement all the pure virtual functions to compile
the class.

Connection points is a specific methodology for working with outbound COM
interfaces. The connection point architecture defines how the communication
between objects is set up and taken down. Connection points are not the most
efficient way of initializing bidirectional object communication, but they are in
common use because many development tools and environments support them.

Dispatch event interfaces
There are some objects within ArcObjects that support two outbound event
interfaces that look similar to the methods they support. Examples of two such
interfaces are the IDocumentEvents and the IDocumentEventsDisp. The “Disp” suffix
denotes a pure dispatch interface. These dispatch interfaces are used by VBA when
dealing with certain application events such as loading documents. A VBA program-
mer works with the dispatch interfaces, while a developer using another develop-
ment language uses the nonpure dispatch interface. Since these dispatch event
interfaces are application specific, consult the ArcGIS Developer Help for more
details on using the interface.

Default interfaces
Every COM object has a default interface that is returned when the object is
created if no other interface is specified. All the objects within the ESRI object
libraries have IUnknown as their default interface, with a few exceptions.

The default interface of the Application object for both ArcCatalog and ArcMap is
the IApplication interface. These uses of non-IUnknown default interfaces are a
requirement of Visual Basic for Applications and are found on the ArcMap and
ArcCatalog application-level objects.

This means that variables that hold interface pointers must be declared in a
certain way. For more details, see the coding sections later in this appendix. When
COM objects are created, any of the supported interfaces can be requested at
creation time.

THE MICROSOFT COMPONENT OBJECT MODEL

The reason for making IUnknown the default
interface is because the VB object browser hides

information for the default interface. The fact
that it hides IUnknown is not important for VB

developers.

AppendixD.pmd 1/25/2005, 6:12 PM582

Appendix D • Developer environments • 583

IDispatch interface
COM supports three types of binding:
• Late. This is where type discovery is left until runtime. Method calls made by

the client but not implemented by the object will fail at execution time.
• ID. Method IDs are stored at compile time, but execution of the method is

still performed through a higher-level function.
• Custom vTable (early). Binding is performed at compile time. The client can

then make method calls directly into the object.
The IDispatch interface supports late- and ID-binding languages. The IDispatch
interface has methods that allow clients to ask the object what methods it sup-
ports.

Assuming the required method is supported, the client executes the method by
calling the IDispatch::Invoke method. This method, in turn, calls the required
method and returns the status and any parameters back to the client on comple-
tion of the method call.

Clearly, this is not the most efficient way to make calls on a COM object. Late
binding requires a call to the object to retrieve the list of method IDs; the client
must then construct the call to the Invoke method and call it. The Invoke method
must then unpack the method parameters and call the function.

All these steps add significant overhead to the time it takes to execute a method.
In addition, every object must have an implementation for IDispatch, which
makes all objects larger and adds to their development time.

ID binding offers a slight improvement over late binding in that the method IDs
are cached at compile time, which means the initial call to retrieve the IDs is not
required. However, there is still significant call overhead because the
IDispatch::Invoke method is still called to execute the required method on the
object.

Early binding, often referred to as custom vTable binding, does not use the
IDispatch interface. Instead, a type library provides the required information at
compile time to allow the client to know the layout of the server object. At
runtime, the client makes method calls directly into the object. This is the fastest
method of calling object methods and also has the benefit of compile-time type
checking.

Objects that support both IDispatch and custom vTable are referred to as dual
interface objects. The object classes within the ESRI object libraries do not
implement the IDispatch interface; this means that these object libraries cannot be
used with late-binding scripting languages, such as JavaScript or VBScript, since
these languages require that all COM servers accessed support the IDispatch
interface.

Careful examination of the ArcGIS class diagrams indicates that the Application
objects support IDispatch because there is a requirement in VBA for the IDispatch
interface.

THE MICROSOFT COMPONENT OBJECT MODEL

Binding is the term given to the process of
matching the location of a function given a

pointer to an object.

Custom vTable binding 825,000 20,000

Late binding 22,250 5,000

Binding type
In process

DLL
Out of process

DLL

This table shows the number of function calls
that can be made per second on a typical

Pentium® III machine.

vTable

vTable

GetTypeInfoCount

GetTypeInfo

GetIDsOfNames

Invoke

Name

Document

StatusBar

QueryInterface

AddRef

Release

QueryInterface

AddRef

Release

Name

Description

AreaOfInterest

Custom - Map

Dual - Application

IUnknown

IMap

IUnknown

IDispatch

IApplication

These diagrams summarize the custom and
IDispatch interfaces for two classes in

ArcObjects. The layout of the vTable displays the
differences. It also illustrates the importance of
implementing all methods—if one method is

missing, the vTable will have the wrong layout,
and hence, the wrong function pointer would be

returned to the client, resulting in a system
crash.

AppendixD.pmd 1/25/2005, 6:12 PM583

584 • ArcGIS Server Administrator and Developer Guide

All ActiveX® controls support IDispatch. This means it is possible to use the
various ActiveX controls shipped with ArcObjects to access functionality from
within scripting environments.

INTERFACE INHERITANCE

An interface consists of a group of methods and properties. If one interface
inherits from another, then all the methods and properties in the parent are
directly available in the inheriting object.

The underlying principle here is interface inheritance, rather than the implementa-
tion inheritance you may have seen in languages such as SmallTalk and C++. In
implementation inheritance, an object inherits actual code from its parent; in
interface inheritance, it’s the definitions of the methods of the object that are
passed on. The coclass that implements the interfaces must provide the imple-
mentation for all inherited interfaces.

Implementation inheritance is not supported in a heterogeneous development
environment because of the need to access source and header files. For reuse of
code, COM uses the principles of aggregation and containment. Both of these are
binary-reuse techniques.

AGGREGATION AND CONTAINMENT

For a third-party developer to make use of existing objects, using either contain-
ment or aggregation, the only requirement is that the server housing the contained
or aggregated object is installed on both the developer and target release ma-
chines. Not all development languages support aggregation.

The simplest form of binary reuse is containment. Containment allows modifica-
tion of the original object’s method behavior but not the method’s signature.
With containment, the contained object (inner) has no knowledge that it is
contained within another object (outer). The outer object must implement all the
interfaces supported by the inner. When requests are made on these interfaces,
the outer object simply delegates them to the inner. To support new functionality,
the outer object can either implement one of the interfaces without passing the
calls on or implement an entirely new interface in addition to those interfaces
from the inner object.

COM aggregation involves an outer object that controls which interfaces it
chooses to expose from an inner object. Aggregation does not allow modification
of the original object’s method behavior. The inner object is aware that it is being
aggregated into another object and forwards any QueryInterface calls to the outer
(controlling) object so the object as a whole obeys the laws of COM.

To the clients of an object using aggregation, there is no way to distinguish which
interfaces the outer object implements and which interfaces the inner object
implements.

Custom features make use of both containment and aggregation. The developer
aggregates the interfaces where no customizations are required and contains those
that are to be customized. The individual methods on the contained interfaces can
then either be implemented in the customized class, thus providing custom function-
ality, or the method call can be passed to the appropriate method on the contained
interface.

THE MICROSOFT COMPONENT OBJECT MODEL

Interfaces that directly inherit from an interface
other than IUnknown cannot be implemented

in VB.

COM
aggregation

class

interface1

method3
method4

interface2

IUnknown

IUnknown

class

method1
method2

COM
containment

feature

interface2

method7
method8

interface4

IUnknown

IUnknown

class

method1
method2

method5
method6

interface3

method3
method4

interface1

Custom
feature

class

interface1

method3
method4

interface2

IUnknown (inner)

IUnknown (controlling)

class

method1
method2

child class

parent class

AppendixD.pmd 1/25/2005, 6:13 PM584

Appendix D • Developer environments • 585

Aggregation is important in this case since there are some hidden interfaces defined
on a feature that cannot be contained.

Visual Basic 6 does not support aggregation, so it can’t be used to create custom
features.

THREADS, APARTMENTS, AND MARSHALLING

A thread is a process flow through an application. There are potentially many
threads within Windows applications. An apartment is a group of threads that
works with contexts within a process. With COM+, a context belongs to one
apartment. There are potentially many types of contexts; security is an example
of a type of context. Before successfully communicating with each other, objects
must have compatible contexts.

COM supports two types of apartments: single-threaded apartments and
multithreaded apartments (MTA). COM+ supports the additional thread-neutral
apartment (TNA). A process can have any number of STAs; each process creates
one STA called the main apartment. Threads that are created as apartments are
placed in an STA. All user interface code is placed in an STA to prevent deadlock
situations. A process can only have one MTA. A thread that is started as
multithreaded is placed in the MTA. The TNA has no threads permanently associ-
ated with it; rather, threads enter and leave the apartment when appropriate.

In-process objects have an entry in the registry, the ThreadingModel, that informs
the COM service control manager (SCM) into which apartment to place the
object. If the object’s requested apartment is compatible with the creator’s apart-
ment, the object is placed in that apartment; otherwise, the SCM will find or
create the appropriate apartment. If no threading model is defined, the object
will be placed in the main apartment of the process. The ThreadingModel registry
entry can have the following values:

• Apartment. Object must be executed within the STA. Normally used by UI
objects.

• Free. Object must be executed within the MTA. Objects creating threads are
normally placed in the MTA.

• Both. Object is compatible with all apartment types. The object will be cre-
ated in the same apartment as the creator.

• Neutral. Objects must execute in the TNA. Used by objects to ensure there is
no thread switch when called from other apartments. This is only available
under COM+.

Marshalling enables a client to make interface function calls to objects in other
apartments transparently. Marshalling can occur between COM apartments on
different machines, between COM apartments in different process spaces, and
between COM apartments in the same process space (STA to MTA, for example).
COM provides a standard marshaller that handles function calls that use automa-
tion-compliant data types (see table below). Nonautomation data types can be
handled by the standard marshaller as long as proxy stub code is generated; other-
wise, custom marshalling code is required.

THE MICROSOFT COMPONENT OBJECT MODEL

Although an understanding of apartments and
threading is not essential in the use of

ArcObjects, basic knowledge will help you
understand some of the implications with certain

development environments highlighted later in
this appendix.

Apartments

process space
Thread
neutral

apartment

Single threaded apartment
(main apartment)

Single threaded apartment

Single threaded apartment

Multithreaded apartment

Think of the SCM (pronounced scum) as the
COM runtime environment. The SCM interacts
with objects, servers, and the operating system
and provides the transparency between clients

and the objects with which they work.

AppendixD.pmd 1/25/2005, 6:13 PM585

586 • ArcGIS Server Administrator and Developer Guide

unsigned char

Boolean

Type

8-bit unsigned data item

Data item that can have the value True or False

Description

float

double

32-bit IEEE floating-point number

64-bit IEEE floating-point number

long

int

32-bit signed integer

Signed integer, whose size is system dependent

BSTR

short

Length-prefixed string

16-bit signed integer

DATE

CURRENCY

64-bit, floating-point fractional number of days since Dec 30, 1899

8-byte, fixed-point number

Typedef enum myenum

SCODE

Signed integer, whose size is system dependent

For 16-bit systems - Built-in error that corresponds to VT_ERROR

Interface IUnknown *

Interface IDispatch *

Pointer to an interface that does not derive from IDispatch

Pointer to the IDispatch interface

Coclass Typename *

dispinterface Typename *

Pointer to a coclass name (VT_UNKNOWN)

Pointer to an interface derived from IDispatch

SAFEARRAY(TypeName)

[oleautomation] interface Typename *

TypeName is any of the above types. Array of these types

Pointer to an interface that derives from IDispatch

Decimal

TypeName*

96-bit unsigned binary integer scaled by a variable power of 10. A decimal data
type that provides a size and scale for a number (as in coordinates)

TypeName is any of the above types. Pointer to a type

COMPONENT CATEGORY

Component categories are used by client applications to find all COM classes of a
particular type that are installed on the system efficiently. For example, a client
application may support a data export function in which you can specify the
output format—a component category could be used to find all the data export
classes for the various formats. If component categories are not used, the applica-
tion has to instantiate each object and interrogate it to see if it supports the
required functionality, which is not a practical approach. Component categories
support the extensibility of COM by allowing the developer of the client applica-
tion to create and work with classes that belong to a particular category. If at a
later date a new class is added to the category, the client application need not be
changed to take advantage of the new class; it will automatically pick up the new
class the next time the category is read.

COM AND THE REGISTRY

COM makes use of the Windows system registry to store information about the
various parts that compose a COM system. The classes, interfaces, DLLs, EXEs,

type libraries, and so forth, are all assigned unique identifiers
(GUIDs) that the SCM uses when referencing these components.
To see an example of this, run regedit, then open
HKEY_CLASSES_ROOT. This opens a list of all the classes
registered on the system.

COM makes use of the registry for a number of housekeeping
tasks, but the most important and most easily understood is
the use of the registry when instantiating COM objects into
memory. In the simplest case, that of an in-process server, the
steps are as follows:

1. Client requests the services of a COM object.

THE MICROSOFT COMPONENT OBJECT MODEL

ESRI keys in the Windows system registry

AppendixD.pmd 1/25/2005, 6:13 PM586

Appendix D • Developer environments • 587

2. SCM looks for the requested objects registry entry by searching on the class ID
(a GUID).

3. DLL is located and loaded into memory. The SCM calls a function within the
DLL called DllGetClassObject, passing the desired class as the first argument.

4. The class object normally implements the interface IClassFactory. The SCM
calls the method CreateInstance on this interface to instantiate the appropriate
object into memory.

5. Finally, the SCM asks the newly created object for the interface that the client
requested and passes that interface back to the client. At this stage, the SCM
drops out of the equation, and the client and object communicate directly.

From the above sequence of steps, it is easy to imagine how changes in the
object’s packaging (DLL versus EXE) make little difference to the client of the
object. COM handles these differences.

AUTOMATION

Automation is the technology used by individual objects or entire applications to
provide access to their encapsulated functionality via a late-bound language.
Commonly, automation is thought of as writing macros, where these macros can
access many applications for a task to be done. ArcObjects, as already stated, does
not support the IDispatch interface; hence, it cannot be used alone by an automa-
tion controller.

THE MICROSOFT COMPONENT OBJECT MODEL

The function DllGetClassObject is the function
that makes a DLL a COM DLL. Other functions,

such as DllRegisterServer and
DllUnregisterServer, are nice to have but not
essential for a DLL to function as a COM DLL.

AppendixD.pmd 1/25/2005, 6:13 PM587

588 • ArcGIS Server Administrator and Developer Guide

DEVELOPING WITH ARCOBJECTS

ArcGIS applications are built using ArcObjects and can be developed via several
APIs. These include COM (VB, VC++, Mainwin), .NET (VB.NET and C#), Java,
and C++. Some APIs are more suitable than others for developing certain appli-
cations. This is briefly discussed later, but you should also read the appropriate
developer guide for the product you are working with for more information and
recommendations on which API to use.

The subsequent sections of this appendix cover some general guidelines and
considerations when developing with ArcObjects regardless of the API. Some of
the more common API languages each have a section describing the development
environment, programming techniques, resources, and other issues you must
consider when developing with ArcObjects.

CODING STANDARDS

Each of the language-specific sections begins with a section on coding standards
for that language. These standards are used internally at ESRI and are followed by
the samples that ship with the software.

To understand why standards and guidelines are important, consider that in any
large software development project, there are many backgrounds represented by
the team members. Each programmer has personal opinions concerning how code
should look and be built. If each programmer engineers code differently, it be-
comes increasingly difficult to share work and ideas. On a successful team, the
developers adapt their coding styles to the tone set by the group. Often, this
means adapting one’s code to match the style of existing code in the system.

Initially, this may seem burdensome, but adopting a uniform programming style
and set of techniques invariably increases software quality. When all the code in a
project conforms to a standard set of styles and conventions, less time is wasted
learning the particular syntactic quirks of individual programmers, and more time
can be spent reviewing, debugging, and extending the code. Even at a social level,
uniform style encourages team-oriented, rather than individualist, outlooks—
leading to greater team unity, productivity, and ultimately, better software.

GENERAL CODING TIPS AND RESOURCES

This section on general coding tips will benefit all developers working with
ArcObjects no matter what language they are using. Code examples are shown in
VBA, however.

Class diagrams
Getting help with the object model is fundamental to successfully working with
ArcObjects. Appendix E, ‘Reading the object model diagrams’, provides an
introduction to the class diagrams and shows many of the common routes
through objects. The class diagrams are most useful if viewed in the early learn-
ing process in printed form. This allows developers to appreciate the overall
structure of the object model implemented by ArcObjects. When you are com-
fortable with the overall structure, the PDF files included with the software
distribution can be more effective to work with. The PDF files are searchable;
you can use the Search dialog box in Acrobat Reader to find classes and interfaces
quickly.

For simplicity, some samples will not follow the
coding standards. For example, it is recom-

mended that when coding in Visual Basic, all
types defined within an ESRI object library are

prefixed with the library name, for example,
esriGeometry.IPolyline. This is only done in

samples in which a name clash will occur.
Omitting this text makes the code easier to
understand for developers new to ArcObjects.

AppendixD.pmd 1/25/2005, 6:13 PM588

Appendix D • Developer environments • 589

Object browsers
In addition to the class diagram PDF files, the type library information can be
viewed using a number of object browsers, depending on your development
platform.

Visual Basic and .NET have built-in object browsers; OLEView (a free utility
from Microsoft) also displays type library information. The best object viewer to
use in this environment is the ESRI object viewer. This object viewer can be used
to view type information for any type library that you reference within it. Infor-
mation on the classes and interfaces can be displayed in Visual Basic, Visual C++,
or object diagram format. The object browsers can view coclasses and classes but
cannot be used to view abstract classes. Abstract classes are only viewable on the
object diagrams, where their use is solely to simplify the models.

Java and C++ developers should refer to the ArcObjects—Javadoc™ or the
ArcGIS Developer Help.

Component help
All interfaces and coclasses are documented in the component help file. Ulti-
mately, this will be the help most commonly accessed when you get to know the
object models better.

For Visual Basic and .NET developers, this is a compiled HTML file that can be
viewed by itself or when using an IDE. If the cursor is over an ESRI type when
the F1 key is pressed, the appropriate page in the ArcObjects Class Help in the
ArcGIS Developer Help system is displayed in the compiled HTML viewer.

For Java and C++ developers, refer to ArcObjects—Javadoc or the ArcGIS
Developer Help.

Code wizards
There are a number of code generation wizards available to help with the cre-
ation of boilerplate code in Visual Basic, Visual C++, and .NET. Although these
wizards are useful in removing the tediousness in common tasks, they do not
excuse you as the developer from understanding the underlying principles of the
generated code. The main objective should be to read the accompanying docu-
mentation and understand the limitations of these tools.

Indexing of collections
All collection-like objects in ArcObjects are zero based for their indexing. This is
not the case with all development environments; Visual Basic has both zero- and
one-based collections. As a general rule, if the collection base is not known,
assume that the collection base is zero. This ensures that a runtime error will be
raised when the collection is first accessed (assuming the access of the collection
does not start at zero). Assuming a base of one means the first element of a zero-
based collection would be missed and an error would only be raised if the end of
the collection were reached when the code is executed.

DEVELOPING WITH ARCOBJECTS

This graph shows the performance benefits of
accessing a collection using an enumerator as

opposed to the elements index. As expected, the
graph shows a classic power trend line (y=cxb).

AppendixD.pmd 1/25/2005, 6:13 PM589

590 • ArcGIS Server Administrator and Developer Guide

Accessing collection elements
When accessing elements of a collection sequentially, it is best to use an enumera-
tor interface. This provides the fastest method of walking through the collection.
The reason for this is that each time an element is requested by index, internally
an enumerator is used to locate the element. Hence, if the collection is looped
over getting each element in turn, the time taken increases exponentially (y=cxb).

Enumerator use
When requesting an enumerator interface from an object, the client has no idea
how the object has implemented this interface. The object may create a new
enumerator, or it may decide for efficiency to return a previously created enu-
merator. If a previous enumerator is passed to the client, the position of the
element pointer will be at the last accessed element. To ensure that the enumera-
tor is at the start of the collection, the client should reset the enumerator before
use.

Error handling
All methods of interfaces, in other words, methods callable from other objects,
should handle internal errors and signify success or failure via an appropriate
HRESULT. COM does not support passing exceptions out of interface method
calls. COM supports the notion of a COM exception. A COM exception utilizes
the COM error object by populating it with relevant information and returning an
appropriate HRESULT to signify failure. Clients, on receiving the HRESULT,
can then interrogate the COM Error object for contextual information about the
error. Languages, such as Visual Basic, implement their own form of exception
handling. For more information, see the specific section in this appendix for the
language with which you are developing.

Notification interfaces
There are a number of interfaces in ArcObjects that have no methods. These are
known as notification interfaces. Their purpose is to inform the application
framework that the class that implements them supports a particular set of
functionality. For instance, the application framework uses these interfaces to
determine if a menu object is a root-level menu (IRootLevelMenu) or a context
menu (IShortcutMenu).

Client-side storage
Some ArcObjects methods expect interface pointers to point to valid objects
prior to making the method call. This is known as client storage since the client
allocates the memory needed for the object before the method call. Suppose you
have a polygon, and you want to obtain its bounding box. To do this, use the
QueryEnvelope method on IPolygon. If you write the following code:
 Dim pEnv As IEnvelope

 pPolygon.QueryEnvelope pEnv

you’ll get an error because the QueryEnvelope method expects you (the client) to
create the Envelope. The method will modify the envelope you pass in and return
the changed one back to you. The correct code follows:

DEVELOPING WITH ARCOBJECTS

Exception handling is language specific, and since
COM is language neutral, exceptions are not

supported.

AppendixD.pmd 1/25/2005, 6:13 PM590

Appendix D • Developer environments • 591

 Dim pEnv As IEnvelope

 Set pEnv = New Envelope

 pPolygon.QueryEnvelope pEnv

How do you know when to create and when not to create? In general, all meth-
ods that begin with “Query”, such as QueryEnvelope, expect you to create the
object. If the method name is GetEnvelope, then an object will be created for you.
The reason for this client-side storage is performance. When it is anticipated that
the method on an object will be called in a tight loop, the parameters need only
be created once and simply populated. This is faster than creating new objects
inside the method each time.

Property by value and by reference
Occasionally, you will see a property that can be set by value or by reference,
meaning that it has both a put_XXX and a putref_XXX method. On first appear-
ance, this may seem odd—Why does a property need to support both? A Visual
C++ developer sees this as simply giving the client the opportunity to pass own-
ership of a resource over to the server (using the putref_XXX method). A Visual
Basic developer will see this as quite different; indeed, it is likely because of the
Visual Basic developer that both By Reference and By Value are supported on the
property.

To illustrate this, assume there are two text boxes on a form, Text1 and Text2.
With a propput, it is possible to do the following in Visual Basic:
 Text1.text = Text2.text

It is also possible to write this:
 Text1.text = Text2

or this:
 Text1 = Text2

All these cases make use of the propput method to assign the text string of text
box Text2 to the text string of text box Text1. The second and third cases work
because no specific property is stated, so Visual Basic looks for the property with
a DISPID of 0.

This all makes sense assuming that it is the text string property of the text box
that is manipulated. What happens if the actual object referenced by the variable
Text2 is to be assigned to the variable Text1? If there were only a propput method,
it would not be possible; hence, the need for a propputref method. With the
propputref method, the following code will achieve the setting of the object
reference:
 Set Text1 = Text2

Initializing outbound interfaces
When initializing an outbound interface, it is important to only initialize the
variable if the variable does not already listen to events from the server object.
Failure to follow this rule will result in an infinite loop.

As an example, assume there is a variable ViewEvents that has been dimensioned
as:
 Private WithEvents ViewEvents As Map

DEVELOPING WITH ARCOBJECTS

DISPIDs are unique IDs given to properties and
methods for the IDispatch interface to effi-

ciently call the appropriate method using the
Invoke method.

Notice the use of the “Set”.

AppendixD.pmd 1/25/2005, 6:13 PM591

592 • ArcGIS Server Administrator and Developer Guide

To correctly sink this event handler, you can write code within your initialization
routines like this:
 set ViewEvents = MapControl1.Map

Notice in the above code the use of the Is keyword to check for object identity.

DATABASE CONSIDERATIONS

When programming against the database, there are a number of rules that must
be followed to ensure that the code will be optimal. These rules are detailed
below.

If you are going to edit data programmatically, that is, not use the editing tools in
ArcMap, you need to follow these rules to ensure that custom object behavior,
such as network topology maintenance or triggering of custom feature-defined
methods, is correctly invoked in response to the changes your application makes
to the database. You must also follow these rules to ensure that your changes are
made within the multiuser editing (long transaction) framework.

Edit sessions
Make all changes to the geodatabase within an edit session, which is bracketed
between StartEditing and StopEditing method calls on the IWorkspaceEdit interface
found on the Workspace object.

This behavior is required for any multiuser update of the database. Starting an
edit session gives the application a state of the database that is guaranteed not to
change, except for changes made by the editing application.

In addition, starting an edit session turns on behavior in the geodatabase such that
a query against the database is guaranteed to return a reference to an existing
object in memory if the object was previously retrieved and is still in use.

This behavior is required for correct application behavior when navigating be-
tween a cluster of related objects while making modifications to objects. In other
words, when you are not within an edit session, the database can create a new
instance of a COM object each time the application requests a particular object
from the database.

Edit operations
Group your changes into edit operations, which are bracketed between the
StartEditOperation and StopEditOperation method calls on the IWorkspaceEdit inter-
face.

You may make all your changes within a single edit operation if so required. Edit
operations can be undone and redone. If you are working with data stored in
ArcSDE, creating at least one edit operation is a requirement. There is no addi-
tional overhead to creating an edit operation.

Recycling and nonrecycling cursors
Use nonrecycling search cursors to select or fetch objects that are to be updated.
Recycling cursors should only be used for read-only operations, such as drawing
and querying features.

DEVELOPING WITH ARCOBJECTS

AppendixD.pmd 1/25/2005, 6:13 PM592

Appendix D • Developer environments • 593

Nonrecycling cursors within an edit session create new objects only if the object
to be returned does not already exist in memory.

Fetching properties using query filters
Always fetch all properties of the object; query filters should always use “*”. For
efficient database access, the number of properties of an object retrieved from
the database can be specified. For example, drawing a feature requires only the
OID and the Shape of the feature; hence, the simpler renderers only retrieve these
two columns from the database. This optimization speeds up drawing but is not
suitable when editing features.

If all properties are not fetched, then object-specific code that is triggered may
not find the properties that the method requires. For example, a custom feature
developer might write code to update attributes A and B whenever the geometry
of a feature changes. If only the geometry was retrieved, then attributes A and B
would be found to be missing within the OnChanged method. This would cause
the OnChanged method to return an error, which would cause the Store to return
an error and the edit operation to fail.

Marking changed objects
After changing an object, mark the object as changed (and ensure that it is up-
dated in the database) by calling Store on the object. Delete an object by calling
the Delete method on the object. Set versions of these calls also exist and should
be used if the operation is being performed on a set of objects to ensure optimal
performance.

Calling these methods guarantees that all necessary polymorphic object behavior
built into the geodatabase is executed (for example, updating of network topol-
ogy or updating of specific columns in response to changes in other columns in
ESRI-supplied objects). It also guarantees that developer-supplied behavior is
correctly triggered.

Updating and inserting cursors
Never use update cursors or insert cursors to update or insert objects into object
and feature classes in an already-loaded geodatabase that has active behavior.

Update and insert cursors are bulk cursor APIs for use during initial database
loading. If used on an object or feature class with active behavior, they will
bypass all object-specific behavior associated with object creation, such as topol-
ogy creation, and with attribute or geometry updating, such as automatic recalcu-
lation of other dependent columns.

Shape and ShapeCopy geometry property
Make use of a Feature object’s Shape and ShapeCopy properties to optimally re-
trieve the geometry of a feature. To better understand how these properties relate
to a feature’s geometry, refer to the diagram to the left to see how features com-
ing from a data source are instantiated into memory for use within an application.

Features are instantiated from the data source using the following sequence:

1. The application requests a Feature object from a data source by calling the
appropriate geodatabase API method calls.

DEVELOPING WITH ARCOBJECTS

AppendixD.pmd 1/25/2005, 6:13 PM593

594 • ArcGIS Server Administrator and Developer Guide

2. The geodatabase makes a request to COM to create a vanilla COM object of
the desired COM class (normally this class is esriGeoDatabase.Feature).

3. COM creates the Feature COM object.

4. The geodatabase gets attribute and geometry data from a data source.

5. The vanilla Feature object is populated with appropriate attributes.

6. The Geometry COM object is created, and a reference is set in the Feature
object.

7. The Feature object is passed to the application.

8. The Feature object exists in the application until it is no longer required.

USING A TYPE LIBRARY

Since objects from ArcObjects do not implement IDispatch, it is essential to make
use of a type library for the compiler to early-bind to the correct data types. This
applies to all development environments; although, for Visual Basic, Visual C++,
and .NET, there are wizards that help you set this reference.

The type libraries required by ArcObjects are located within the ArcGIS install
folder. For example, the COM type libraries can be found in the COM folder
while the .NET Interop assemblies are within the DotNet folder. Many different
files can contain type library information including EXEs, DLLs, OLE custom
controls (OCXs), and object libraries.

COM DATA TYPES

COM objects talk via their interfaces, and hence, all data types used must be
supported by IDL. IDL supports a large number of data types; however, not all
languages that support COM support these data types. Because of this,
ArcObjects does not make use of all the data types available in IDL but limits the
majority of interfaces to the data type supported by Visual Basic. The following
table shows the data types supported by IDL and their corresponding types in a
variety of languages.

charboolean unsigned char unsupported

charbyte unsigned char unsupported

charsmall char unsupported

shortshort short Integer

intlong long Long

longhyper __int64 unsupported

floatfloat float Single

doubledouble double Double

charchar unsigned char unsupported

shortwchar_t wchar_t Integer

intenum enum Enum

Interface Ref.Interface Pointer Interface Pointer Interface Ref.

ms.com.VariantVARIANT VARIANT Variant

java.lang.StringBSTR BSTR String

[true/false]VARIANT_BOOL short (-1/0) Boolean

IDL Microsoft C++ Visual Basic JavaLanguage

Base types

Extended
types

DEVELOPING WITH ARCOBJECTS

Application

DatabaseCOM

7

Geodatabase API

8

5

6

2 4

3

7

1

The diagram above clearly shows that the
Feature, which is a COM object, has another

COM object for its geometry. The Shape
property of the feature simply passes the

IGeometry interface pointer to this geometry
object to the caller that requested the shape.

This means that if more than one client
requested the shape, all clients point to the

same geometry object. Hence, this geometry
object must be treated as read-only. No changes
should be performed on the geometry returned

from this property, even if the changes are
temporary. Anytime a change is to be made to a

feature’s shape, the change must be made on
the geometry returned by the ShapeCopy
property, and the updated geometry should

subsequently be assigned to the Shape property.

AppendixD.pmd 1/25/2005, 6:13 PM594

Appendix D • Developer environments • 595

Note the extended data types at the bottom of the table: VARIANT, BSTR, and
VARIANT_BOOL. Although it is possible to pass strings using data types such as
char and wchar_t, these are not supported in languages such as Visual Basic. Visual
Basic uses BSTRs as its text data type. A BSTR is a length-prefixed wide charac-
ter array in which the pointer to the array points to the text contained within it
and not the length prefix. Visual C++ maps VARIANT_BOOL values onto 0
and –1 for the False and True values, respectively. This is different from the
normal mapping of 0 and 1. Hence, when writing C++ code, be sure to use the
correct macros—VARIANT_FALSE and VARIANT_TRUE—not False and
True.

USING COMPONENT CATEGORIES

Component categories are used extensively in ArcObjects so developers can
extend the system without requiring any changes to the ArcObjects code that will
work with the new functionality.

ArcObjects uses component categories in two ways. The first requires classes to
be registered in the respective component category at all times—for example,
ESRI Mx Extensions. Classes, if present in that component category, have an
object that implements the IExtension interface and is instantiated when the
ArcMap application is started. If the class is removed from the component cat-
egory, the extension will not load, even if the map document (.mxd file) is refer-
encing that extension.

The second use is when the application framework uses the component category
to locate classes and display them to a user to allow some user customization to
occur. Unlike the first method, the application remembers (inside its map docu-
ment) the objects being used and will subsequently load them from the map
document. An example of this is the commands used within ArcMap. ArcMap
reads the ESRI Mx Commands category when the Customization dialog box is
displayed to the user. This is the only time the category is read. Once the user
selects a command and adds it to a toolbar, the map document is used to deter-
mine what commands should be instantiated. Later, when debugging in Visual
Basic is covered in ‘The Visual Basic 6 development environment’ section of this
appendix, you’ll see the importance of this.

Now that you’ve seen two uses of component categories, you will see how to get
your classes registered into the correct component category. Development envi-
ronments have various levels of support for component categories; ESRI pro-
vides two ways of adding classes to a component category. The first can only be
used for commands and command bars that are added to either ArcMap or
ArcCatalog. Using the Add From File button on the Customize dialog box
(shown on the left), it is possible to choose a server. All classes in that server are
then added to either the ESRI Gx Commands or the ESRI Mx Commands,
depending on the application being customized. Although this utility is useful, it
is limited since it adds all the classes found in the server. It is not possible to
remove classes, and it only supports two of the many component categories
implemented within ArcObjects.

Distributed with ArcGIS applications is a utility application called the Compo-
nent Category Manager, shown below. This small application allows you to add

DEVELOPING WITH ARCOBJECTS

AppendixD.pmd 1/25/2005, 6:13 PM595

596 • ArcGIS Server Administrator and Developer Guide

and remove classes from any of the component categories on your system, not
just ArcObjects categories. Expanding a category displays a list of classes in the
category. You can then use the Add Object button to display a checklist of all the
classes found in the server. You check the required classes, and these checked
classes are then added to the category.

Using these ESRI tools is not the only method of interacting with component
categories. During the installation of the server on the target user’s machine, it is
possible to add the relevant information to the registry using a registry script.
Below is one such script. The first line tells Windows for which version of
regedit this script is intended. The last line, starting with “[HKEY_LOCAL_”,
executes the registry command; all the other lines are comments in the file.
REGEDIT4

; This Registry Script enters coclasses into their appropriate Component
Category

; Use this script during installation of the components

; Coclass: Exporter.ExportingExtension

; CLSID: {E233797D-020B-4AD4-935C-F659EB237065}

; Component Category: ESRI Mx Extensions

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{E233797D-020B-4AD4-935C-
F659EB237065}\Implemented Categories\{B56A7C45-83D4-11D2-A2E9-080009B6F22B}]

The last line in the code above is one continuous line in the script.

The last method is for the self-registration code of the server to add the relevant
classes within the server to the appropriate categories. Not all development
environments allow this to be set up. Visual Basic has no support for component
categories, although there is an add-in that allows this functionality. See the
sections on Visual Basic developer add-ins and Active Template Library (ATL)
later in this appendix.

DEVELOPING WITH ARCOBJECTS

The Customize dialog box in ArcMap and
ArcCatalog

The Component Category Manager

AppendixD.pmd 1/25/2005, 6:13 PM596

Appendix D • Developer environments • 597

The tables below summarize suggested naming
standards for the various elements of your Visual

Basic projects.

cls

frm

Prefix

Class

Form

Module Type

prj

bas

Project

Standard

Name your modules according to the overall
function they provide; do not leave any with

default names (such as “Form1”, “Class1”, or
“Module1”). In addition, prefix the names of

forms, classes, and standard modules with three
letters that denote the type of module, as shown

in the table above.

cbo

chk

Prefix

Combo box

Check box

Control Type

cdl

cmd

Common dialog

Command button

fra

frm

Frame

Form

grd

gph

Grid

Graph

iml

img

Image list

Image

lst

lbl

List box

Label

map

lvw

Map control

List view

mnu

msk

Menu

Masked edit

opt

ole

Option button

OLE client

pbr

pic

Progress bar

Picture box

srl

rtf

Scroll bar

Rich text box

sbr

sld

Status bar

Slider

txt

tab

Text box

Tab strip

tbr

tmr

Tool bar

Timer

tvwTree view

As with modules, name your controls according
to the function they provide; do not leave them

with default names since this leads to decreased
maintainability. Use the three-letter prefixes

above to identify the type of control.

USER INTERFACE STANDARDS

Consider preloading forms to increase the responsiveness of your application. Be
careful not to preload too many (preloading three or four forms is fine).

Use resource files (.res) instead of external files when working with bitmap files,
icons, and related files.

Make use of constructors and destructors to set variable references that are only
set when the class is loaded. These are the VB functions: Class_Initialize and
Class_Terminate or Form_Load and Form_Unload. Set all variables to Nothing when
the object is destroyed.

Make sure the tab order is set correctly for the form. Do not add scroll bars to the
tabbing sequence; it is too confusing.

Add access keys to those labels that identify controls of special importance on the
form (use the TabIndex property).

Use system colors where possible instead of hard-coded colors.

Variable declaration
• Always use Option Explicit (or turn on Require Variable Declaration in the VB

Options dialog box). This forces all variables to be declared before use and,
thereby, prevents careless mistakes.

• Use Public and Private to declare variables at module scope and Dim in local
scope. (Dim and Private mean the same at Module scope; however, using Private
is more informative.) Do not use Global anymore; it is available only for
backward compatibility with VB 3.0 and earlier.

• Always provide an explicit type for variables, arguments, and functions.
Otherwise, they default to Variant, which is less efficient.

• Only declare one variable per line unless the type is specified for each variable.

This line causes count to be declared as a Variant, which is likely to be unintended.
 Dim count, max As Long

This line declares both count and max as Long, the intended type.
 Dim count As Long, max As Long

These lines also declare count and max as Long and are more readable.
 Dim count As Long

 Dim max As Long

Parentheses
Use parentheses to make operator precedence and logic comparison statements
easier to read.
 Result = ((x * 24) / (y / 12)) + 42

 If ((Not pFoo Is Nothing) And (Counter > 200)) Then

Order of conditional determination
Visual Basic, unlike languages such as C and C++, performs conditional tests on
all parts of the condition, even if the first part of the condition is False. This

THE VISUAL BASIC 6 ENVIRONMENT

AppendixD.pmd 1/25/2005, 6:13 PM597

598 • ArcGIS Server Administrator and Developer Guide

Use the following notation for naming variables
and constants:

[<libraryName.>][<scope_>]<type><name>

<name> describes how the variable is used or
what it contains. The <scope> and <type>

portions should always be lowercase, and the
<name> should use mixed case.

stdole

esriGeometry

Library Name

<empty>

Standard OLE COM Library

ESRI Object Library

Library

Simple variable data type

<libraryName>

g

c

Prefix

m

<empty>

public variable defined in a class form or
standard module

constant within a form or class

Variable scope

private variable defined in a class or form

local variable

<scope>

Boolean

Data Type

byte or unsigned char

function

handle

int (integer)

long

a pointer

string

b

Prefix

by

fn

h

i

l

p

s

doubled

<type>

means you must not perform conditional tests on objects and interfaces that had
their validity tested in an earlier part of the conditional statement.
 ' The following line will raise a runtime error if pFoo is NULL.

 If ((Not pFoo Is Nothing) And (TypeOf pFoo.Thing Is IBar)) then

 End If

 ' The correct way to test this code is

 If (Not pFoo Is Nothing) Then

 If (TypeOf pFoo.Thing Is IBar) Then

 ' Perform action on IBar thing of Foo.

 End If

 End If

Indentation
Use two spaces or a tab width of two for indentation. Since there is always only
one editor for VB code, formatting is not as critical an issue as it is for C++ code.

Default properties
Avoid using default properties except for the most common cases. They lead to
decreased legibility.

Intermodule referencing
When accessing intermodule data or functions, always qualify the reference with
the module name. This makes the code more readable and results in more effi-
cient runtime binding.

Multiple property operations
When performing multiple operations against different properties of the same
object, use a With … End With statement. It is more efficient than specifying the
object each time.
 With frmHello

 .Caption = "Hello world"

 .Font = "Playbill"

 .Left = (Screen.Width - .Width) / 2

 .Top = (Screen.Height - .Height) / 2

 End With

Arrays
For arrays, never change Option Base to anything other than zero, which is the
default. Use LBound and UBound to iterate over all items in an array.
 myArray = GetSomeArray

 For i = LBound(myArray) To UBound(myArray)

 MsgBox cstr(myArray(i))

 Next I

THE VISUAL BASIC 6 ENVIRONMENT

AppendixD.pmd 1/25/2005, 6:13 PM598

Appendix D • Developer environments • 599

Bitwise operators
Since And, Or, and Not are bitwise operators, ensure that all conditions using
them test only for Boolean values, unless, of course, bitwise semantics are what is
intended.
 If (Not pFoo Is Nothing) Then

 ' Valid Foo do something with it

 End If

Type suffixes
Refrain from using type suffixes on variables or function names, such as myString$
or Right$(myString), unless they are needed to distinguish 16-bit from 32-bit num-
bers.

Ambiguous type matching
For ambiguous type matching, use explicit conversion operators, such as CSng,
CDbl, and CStr, instead of relying on VB to pick which one will be used.

Simple image display
Use an ImageControl rather than a PictureBox for simple image display. It is much
more efficient.

Error handling
Always use On Error to ensure fault-tolerant code. For each function that does
error checking, use On Error to jump to a single error handler for the routine that
deals with all exceptional conditions that are likely to be encountered. After the
error handler processes the error—usually by displaying a message—it should
proceed by issuing one of the recovery statements shown on the table to the left.

Error handling in Visual Basic is not the same as general error handling in COM
(see the section ‘Working with HRESULTs’ in this appendix).

Event functions
Refrain from placing more than a few lines of code in event functions to prevent
highly fractured and unorganized code. Event functions should simply dispatch to
reusable functions elsewhere.

Memory management
To ensure efficient use of memory resources, the following points should be
considered:

• Unload forms regularly. Do not keep many forms loaded but invisible since
this consumes system resources.

• Be aware that referencing a form-scoped variable causes the form to be
loaded.

• Set unused objects to Nothing to free up their memory.

• Make use of Class_Initialize and Class_Terminate to allocate and destroy
resources.

Exit Sub

Recovery
Statement

Raise

Resume

Resume
Next

Frequency

usually

often

rarely

very rarely

Meaning

Function failed, pass control
back to caller

Raise a new error code in
the caller's scope

Error condition removed,
reattempt offending
statement

Ignore error and continue
with next statement

THE VISUAL BASIC 6 ENVIRONMENT

Recovery statements issued by error handlers

AppendixD.pmd 1/25/2005, 6:13 PM599

600 • ArcGIS Server Administrator and Developer Guide

While Wend constructs
Avoid While … Wend constructs. Use the Do While … Loop or Do Until ... Loop
instead because you can conditionally branch out of this construct.
 pFoos.Reset

 Set pFoo = pFoos.Next

 Do While (Not pFoo Is Nothing)

 If (pFoo.Answer = "Done") Then Exit Loop

 Set pFoo = pFoos.Next

 Loop

The Visual Basic Virtual Machine
The Visual Basic Virtual Machine (VBVM) contains the intrinsic Visual Basic
controls and services, such as starting and ending a Visual Basic application,
required to successfully execute all Visual Basic developed code.

The VBVM is packaged as a DLL that must be installed on any machine wanting
to execute code written with Visual Basic, even if the code has been compiled to
native code. If the dependencies of any Visual Basic compiled file are viewed,
the file msvbvm60.dll is listed; this is the DLL housing the Virtual Machine.

For more information on the services provided by the VBVM, see the sections
‘Interacting with the IUnknown interface’ and ‘Working with HRESULTs’ in this
appendix.

Interacting with the IUnknown interface
The section ‘The Microsoft Component Object Model’ in this appendix contains a
lengthy overview of the IUnknown interface and how it forms the basis on which
all of COM is built. Visual Basic hides this interface from developers and per-
forms the required interactions (QueryInterface, AddRef, and Release function calls)
on the developer’s behalf. It achieves this because of functionality contained
within the VBVM. This simplifies development with COM for many developers,
but to work successfully with ArcObjects, you must understand what the VBVM
is doing.

Visual Basic developers are accustomed to dimensioning variables as follows:
 Dim pColn as New Collection 'Create a new collection object.

 PColn.Add "Foo", "Bar" 'Add element to collection.

It is worth considering what is happening at this point. From a quick inspection
of the code, it appears that the first line creates a collection object and gives the
developer a handle on that object in the form of pColn. The developer then calls a
method on the object Add. Earlier in the appendix you learned that objects talk
via their interfaces, never through a direct handle on the object itself. Remember,
objects expose their services via their interfaces. If this is true, something isn’t
adding up.

What is actually happening is some “VB magic” performed by the VBVM and
some trickery by the Visual Basic Editor (VBE) in the way that it presents objects
and interfaces. The first line of code instantiates an instance of the collection
class, then assigns the default interface for that object, _Collection, to the variable
pColn. It is this interface, _Collection, that has the methods defined on it. Visual

The VBVM was called the VB Runtime in earlier
versions of the software.

THE VISUAL BASIC 6 ENVIRONMENT

AppendixD.pmd 1/25/2005, 6:13 PM600

Appendix D • Developer environments • 601

Basic has hidden the interface-based programming to simplify the developer
experience. This is not an issue if all the functionality implemented by the object
can be accessed via one interface, but it is an issue when there are multiple inter-
faces on an object that provides services.

VBE backs this up by hiding default interfaces from the IntelliSense completion
list and the object browser. By default, any interfaces that begin with an under-
score, “_”, are not displayed in the object browser (to display these interfaces,
turn Show Hidden Member on, although this will still not display default inter-
faces).

You have already learned that the majority of ArcObjects have IUnknown as their
default interface and that Visual Basic does not expose any of IUnknown’s meth-
ods, namely, QueryInterface, AddRef, and Release. Assume you have a class Foo that
supports three interfaces, IUnknown (the default interface), IFoo, and IBar. This
means that if you were to dimension the variable pFoo as below, the variable pFoo
would point to the IUnknown interfaces.
 Dim pFoo As New Foo ' Create a new Foo object.

 pFoo.??????

Since Visual Basic does not allow direct access to the methods of IUnknown, you
would immediately have to QI for an interface with methods on it that you can
call. Because of this, the correct way to dimension a variable that will hold
pointers to interfaces is as follows:
 Dim pFoo As IFoo ' Variable will hold pointer to IFoo interface.

 Set pFoo = New Foo ' Create Instance of Foo object and QI for IFoo.

Now that you have a pointer to one of the object’s interfaces, it is an easy matter
to request from the object any of its other interfaces.
 Dim pBar as IBar 'Dim variable to hold pointer to interface.

 Set pBar = pFoo 'QI for IBar interface.

By convention, most classes have an interface with the same name as the class
with an “I” prefix; this tends to be the interface most commonly used when
working with the object. You are not restricted to which interface you request
when instantiating an object. Any supported interface can be requested; hence,
the code below is valid.
 Dim pBar as IBar

 Set pBar = New Foo 'CoCreate Object.

 Set pFoo = pBar 'QI for interface.

Objects control their own lifetime, which requires clients to call AddRef anytime
an interface pointer is duplicated by assigning it to another variable and to call
Release anytime the interface pointer is no longer required. Ensuring that there are
a matching number of AddRefs and Releases is important, and fortunately, Visual
Basic performs these calls automatically. This ensures that objects do not “leak”.
Even when interface pointers are reused, Visual Basic will correctly call release on
the old interface before assigning the new interface to the variable. The following
code illustrates these concepts; note the reference count on the object at the
various stages of code execution.

THE VISUAL BASIC 6 ENVIRONMENT

AppendixD.pmd 1/25/2005, 6:13 PM601

602 • ArcGIS Server Administrator and Developer Guide

Private Sub VBMagic()

 ' Dim a variable to the IUnknown interface on the simple object.

 Dim pUnk As IUnknown

 ' Co Create simpleobject asking for the IUnknown interface.

 Set pUnk = New SimpleObject 'refCount = 1

 ' QI for a useful interface.

 ' Define the interface.

 Dim pMagic As ISimpleObject

 ' Perform the QI operation.

 Set pMagic = punk 'refCount = 2

 ' Dim another variable to hold another interface on the object.

 Dim pMagic2 As IAnotherInterface

 ' QI for that interface.

 Set pMagic2 = pMagic 'refCount = 3

 ' Release the interface pointer.

 Set pMagic2 = Nothing 'refCount = 2

 ' Release the interface

 Set pMagic = Nothing 'refCount = 1

 ' Now reuse the pUnk variable - what will VB do for this?

 Set pUnk = New SimpleObject 'refCount = 1, then 0, then 1

 ' Let the interface variable go out of scope and let VB tidy up.

End Sub'refCount = 0

Often interfaces have properties that are actually pointers to other interfaces.
Visual Basic allows you to access these properties in a shorthand fashion by
chaining interfaces together. For instance, assume that you have a pointer to the
IFoo interface, and that interface has a property called Gak that is an IGak inter-
face with the method DoSomething. You have a choice on how to access the
DoSomething method. The first method is the long-handed way.
 Dim pGak as IGak

 Set pGak = pFoo 'Assign IGak interface to local variable.

 pGak.DoSomething 'Call method on IGak interface.

Alternatively, you can chain the interfaces and accomplish the same thing on one
line of code.
 pFoo.Gak.DoSomething 'Call method on IGak interface.

When looking at the sample code, you will see both methods. Normally, the
former method is used on the simpler samples, as it explicitly tells you what
interfaces are being worked with. More complex samples use the shorthand
method.

See the Visual Basic Magic sample in the server
guide samples on disk for this code. You are

encouraged to run the sample and use the code.
This object also uses an ATL C++ project to

define the SimpleObject and its interfaces; you
are encouraged to look at this code to learn a

simple implementation of a C++ ATL object.

THE VISUAL BASIC 6 ENVIRONMENT

AppendixD.pmd 1/25/2005, 6:13 PM602

Appendix D • Developer environments • 603

This technique of chaining interfaces together can always be used to get the value
of a property, but it cannot always be used to set the value of a property. Inter-
face chaining can only be used to set a property if all the interfaces in the chain
are set by reference. For instance, the code below would execute successfully.
 MapControl1.Map.Layers(0).Name = "Foo"

The above example works because both the Layer of the Map and the Map of the
map control are returned by reference. The lines of code below would not work
since the Extent envelope is set by value on the active view.
 MapControl1.ActiveView.Extent.Width = 32

The reason that this does not work is that the VBVM expands the interface chain
to get the end property. Because an interface in the chain is dealt with by value,
the VBVM has its own copy of the variable, not the one chained. To set the
Width property of the extent envelope in the above example, the VBVM must
write code similar to this:
 Dim pActiveView as IActiveView

 Set pActiveView = MapControl1.ActiveView

 Dim pEnv as IEnvelope

 Set pEnv = pActiveView.Extent ' This is a get by value.

 PEnv.Width = 32 ' The VBVM has set its copy of the Extent and not

 ' the copy inside the ActiveView.

For this to work, the VBVM requires the extra line below.
 pActiveView.Extent = pEnv ' This is a set by value.

Accessing ArcObjects
You will now see some specific uses of the create instance and query interface
operations that involve ArcObjects. To use an ArcGIS object in Visual Basic or
VBA, you must first reference the ESRI library that contains that object. If you
are using VBA inside ArcMap or ArcCatalog, most of the common ESRI object
libraries are already referenced for you. In standalone Visual Basic applications or
components, you will have to manually reference the required libraries.

You will start by identifying a simple object and an interface that it supports. In
this case, you will use a Point object and the IPoint interface. One way to set the
coordinates of the point is to invoke the PutCoords method on the IPoint interface
and pass in the coordinate values.
 Dim pPt As IPoint

 Set pPt = New Point

 pPt.PutCoords 100, 100

The first line of this simple code fragment illustrates the use of a variable to hold
a reference to the interface that the object supports. The line reads the IID for
the IPoint interface from the ESRI object library. You may find it less ambiguous
(as per the coding guidelines), particularly if you reference other object libraries
in the same project, to precede the interface name with the library name, for
example:
 Dim pPt As esriGeometry.IPoint

THE VISUAL BASIC 6 ENVIRONMENT

To find out what library an ArcObjects compo-
nent is in, review the object model diagrams in

the developer help or use the LibraryLocator tool
in your developer kit tools directory.

IID is short for interface identifier, a GUID.

AppendixD.pmd 1/25/2005, 6:13 PM603

604 • ArcGIS Server Administrator and Developer Guide

That way, if there happens to be another IPoint referenced in your project, there
won’t be any ambiguity as to which one you are referring to.

The second line of the fragment creates an instance of the object or coclass, then
performs a QI operation for the IPoint interface that it assigns to pPt.

With a name for the coclass as common as Point, you may want to precede the
coclass name with the library name, for example:
 Set pPt = New esriGeometry.Point

The last line of the code fragment invokes the PutCoords method. If a method
can’t be located on the interface, an error will be shown at compile time.

Working with HRESULTs
So far, you have seen that all COM methods signify success or failure via an
HRESULT that is returned from the method; no exceptions are raised outside the
interface. You have also learned that Visual Basic raises exceptions when errors
are encountered. In Visual Basic, HRESULTs are never returned from method
calls, and to confuse you further when errors do occur, Visual Basic throws an
exception. How can this be? The answer lies with the Visual Basic Virtual Ma-
chine. It is the VBVM that receives the HRESULT; if this is anything other than
S_OK, the VBVM throws the exception. If it was able to retrieve any worth-
while error information from the COM error object, it populates the Visual Basic
Err object with that information. In this way, the VBVM handles all HRESULTs
returned from the client.

When implementing interfaces in Visual Basic, it is good coding practice to raise
an HRESULT error to inform the caller that an error has occurred. Normally, this
is done when a method has not been implemented.
 ' Defined in module

 Const E_NOTIMPL = &H80004001 'Constant that represents HRESULT

 'Added to any method not implemented

 On Error GoTo 0

 Err.Raise E_NOTIMPL

You must also write code to handle the possibility that an HRESULT other than
S_OK is returned. When this happens, an error handler should be called and the
error dealt with. This may mean simply notifying the user, or it may mean auto-
matically dealing with the error and continuing with the function. The choice
depends on the circumstances. Below is a simple error handler that will catch any
error that occurs within the function and report it to the user. Note the use of
the Err object to provide the user with some description of the error.
Private Sub Test()

 On Error GoTo ErrorHandler

 ' Do something here.

 Exit Sub ' Must exit sub here before error handler

ErrorHandler:

 Msgbox "Error In Application – Description " & Err.Description

End Sub

A QI is required since the default interface of
the object is IUnknown. Since the pPt variable

was declared as type IPoint, the default
IUnknown interface was QI’d for the IPoint

interface.

THE VISUAL BASIC 6 ENVIRONMENT

Coclass is an abbreviation of component object
class.

This is the compilation error message shown
when a method or property is not found on an

interface.

AppendixD.pmd 1/25/2005, 6:13 PM604

Appendix D • Developer environments • 605

Working with properties
Some properties refer to specific interfaces in the ESRI object library, and other
properties have values that are standard data types such as strings, numeric ex-
pressions, and Boolean values. For interface references, declare an interface
variable and use the Set statement to assign the interface reference to the prop-
erty. For other values, declare a variable with an explicit data type or use Visual
Basic’s Variant data type. Then, use a simple assignment statement to assign the
value to the variable.

Properties that are interfaces can be set either by reference or by value. Properties
that are set by value do not require the Set statement.
 Dim pEnv As IEnvelope

 Set pEnv = pActiveView.Extent 'Get extent property of view.

 pEnv.Expand 0.5, 0.5, True 'Shrink envelope.

 pActiveView.Extent = pEnv 'Set By Value extent back on IActiveView.

 Dim pFeatureLayer as IfeatureLayer

 Set pFeatureLayer = New FeatureLayer 'Create New Layer.

 Set pFeatureLayer.FeatureClass = pClass 'Set ByRef a class into layer.

As you might expect, some properties are read-only, others are write-only, and
still others are read/write. All the object browsers and the ArcObjects Class Help
(found in the ArcGIS Developer Help system) provide this information. If you
attempt to use a property and either forget or misuse the Set keyword, Visual
Basic will fail the compilation of the source code with a “method or data mem-
ber not found” error message. This error may seem strange since it may be given
for trying to assign a value to a read-only property. The reason for the message is
that Visual Basic is attempting to find a method in the type library that maps to
the property name. In the above examples, the underlying method calls in the
type library are put_Extent and putref_FeatureClass.

Working with methods
Methods perform some action and may or may not return a value. In some in-
stances, a method returns a value that’s an interface; for example, in the code
fragment below, TrackCircle returns an IPolygon interface:
 dim pCircle as IPolygon

 set pCircle = MapControl1.TrackCircle

In other instances, a method returns a Boolean value that reflects the success of
an operation or writes data to a parameter; for example, the IsActive method of
IActiveView returns a value of true if the map is active.

Be careful not to confuse the idea of a Visual Basic return value from a method
call with the idea that all COM methods must return an HRESULT. The VBVM
is able to read type library information and set up the return value of the VB
method call to be the appropriate parameter of the COM method.

Working with events
Events let you know when something has occurred. You can add code to respond
to an event. For example, a command button has a Click event. You add code to
perform some action when the user clicks the control. You can also add events

THE VISUAL BASIC 6 ENVIRONMENT

AppendixD.pmd 1/25/2005, 6:13 PM605

606 • ArcGIS Server Administrator and Developer Guide

that certain objects generate. VBA and Visual Basic let you declare a variable with
the keyword WithEvents. WithEvents tells the development environment that the
object variable will be used to respond to the object’s events. This is sometimes
referred to as an “event sink”. The declaration must be made in a class module or
a form. Here’s how you declare a variable and expose the events of an object in
the Declarations section:
 Private WithEvents m_pViewEvents as Map

Visual Basic only supports one outbound interface (marked as the default out-
bound interface in the IDL) per coclass. To get around this limitation, the
coclasses that implement more than one outbound interface have an associated
dummy coclass that allows access to the secondary outbound interface. These
coclasses have the same name as the outbound interface they contain, minus the I.
 Private WithEvents m_pMapEvents as MapEvents

Once you’ve declared the variable, search for its name in the Object combo box
at the top left of the code window. Then, inspect the list of events to which you
can attach code in the Procedure/Events combo box at the top right of the code
window.

Not all procedures of the outbound event interface need to be stubbed out, as
Visual Basic will stub out any unimplemented methods. This is different from
inbound interfaces, in which all methods must be stubbed out for compilation to
occur.

Before the methods are called, the hookup between the event source and sink
must be made. This is done by setting the variable that represents the sink to the
event source.
 Set m_pMapEvents = MapControl1.Map

Pointers to valid objects as parameters
Some ArcGIS methods expect interfaces for some of their parameters. The
interface pointers passed can point to an instanced object before the method call
or after the method call is completed.

For example, if you have a polygon (pPolygon) whose center point you want to
find, you can write code as follows:
 Dim pArea As IArea

 Dim pPt As IPoint

 Set pArea = pPolygon ' QI for IArea on pPolygon.

 Set pPt = pArea.Center

You don’t need to create pPt because the Center method creates a Point object for
you and passes back a reference to the object via its IPoint interface. Only meth-
ods that use client-side storage require you to create the object prior to the
method call.

Passing data between modules
When passing data between modules it is best to use accessor and mutator func-
tions that manipulate some private member variable. This provides data encapsu-
lation, which is a fundamental technique in object-oriented programming. Public
variables should never be used.

THE VISUAL BASIC 6 ENVIRONMENT

AppendixD.pmd 1/25/2005, 6:13 PM606

Appendix D • Developer environments • 607

For instance, you might have decided that a variable has a valid range of 1–100.
If you were to allow other developers direct access to that variable, they could
set the value to an illegal value. The only way of coping with these illegal values
is to check them before they get used. This is both error prone and tiresome to
program. The technique of declaring all variables as private member variables of
the class and providing accessor and mutator functions for manipulating these
variables will solve this problem.

In the example below, these properties are added to the default interface of the
class. Notice the technique used to raise an error to the client.
Private m_lPercentage As Long

Public Property Get Percentage() As Long

 Percentage = m_lPercentage

End Property

Public Property Let Percentage(ByVal lNewValue As Long)

 If (lNewValue >= 0) And (lNewValue <= 100) Then

 m_lPercentage = lNewValue

 Else

 Err.Raise vbObjectError + 29566, "MyProj.MyObject", _

 "Invalid Percentage Value. Valid values (0 -> 100)"

 End If

End Property

When you write code to pass an object reference from one form, class, or module
to another, for example:
 Private Property Set PointCoord(ByRef pPt As IPoint)

 Set m_pPoint = pPt

 End Property

your code passes a pointer to an instance of the IPoint interface. This means that
you are only passing the reference to the interface, not the interface itself; if you
add the ByVal keyword (as follows), the interface is passed by value.
 Private Property Let PointCoord(ByVal pPt As IPoint)

 Set m_pPoint = pPt

 End Property

In both of these cases the object pointed to by the interfaces is always passed by
reference. To pass the object by value, a clone of the object must be made, and
that clone is passed.

Using the TypeOf keyword
To check whether an object supports an interface, you can use Visual Basic’s
TypeOf keyword. For example, given the first layer in a map control, you can test
whether it is a CAD layer using the following code:
 Dim pUnk As IUnknown

 Dim pCadLayer As ICadLayer

 Set pUnk = MapControl1.Layer(0)

THE VISUAL BASIC 6 ENVIRONMENT

AppendixD.pmd 1/25/2005, 6:13 PM607

608 • ArcGIS Server Administrator and Developer Guide

 If TypeOf pUnk Is ICadLayer Then

 Set pCadLayer = pUnk

 'do something with the layer

 End If

Using the Is operator
If your code requires you to compare two interface reference variables, you can
use the Is operator. Typically, you can use the Is operator in the following circum-
stances:

• To check if you have a valid interface. For example, see the following code:
 Dim pPt As IPoint

 Set pPt = New Point

 If (Not pPt Is Nothing) Then 'a valid pointer?

 ...' do something with pPt

 End If

• To check if two interface variables refer to the same actual object. Imagine
that you have two interface variables of type IPoint, pPt1, and pPt2. Are they
pointing to the same object? If they are, then pPt1 Is pPt2.

The Is keyword works with the COM identity of an object. Below is an example
that illustrates the use of the Is keyword when finding out if a certain method on
an interface returns a copy of or a reference to the same real object.

In the following example, the Extent property on a map (IMap) returns a copy,
while the ActiveView property on a MapControl always returns a reference to the
real object.
 Dim pEnv1 As IEnvelope

 Dim pEnv2 As IEnvelope

 Dim pActiveView1 As IActiveView

 Dim pActiveView2 As IActiveView

 Set pEnv 1 = MapControl1.ActiveView.Extent

 Set pEnv2 = MapControl1.ActiveView.Extent

 Set pActiveView1 = MapControl1.ActiveView

 Set pActiveView2 = MapControl1.Active View

 'Extent returns a copy.

 'so pEnv1 is pEnv2 returns false

 MsgBox pEnv1 Is pEnv2

 'ActiveView returns a reference so,

 'ActiveView1 is ActiveView2 returns true

 MsgBox pActiveView1 Is pActiveView2

Iterating through a collection
In your work with ArcObjects, you’ll discover that, in many cases, you’ll be
working with collections. You can iterate through these collections with an
enumerator. An enumerator is an interface that provides methods for traversing a

THE VISUAL BASIC 6 ENVIRONMENT

AppendixD.pmd 1/25/2005, 6:13 PM608

Appendix D • Developer environments • 609

list of elements. Enumerator interfaces typically begin with IEnum and have two
methods: Next and Reset. Next returns the next element in the set and advances
the internal pointer, and Reset resets the internal pointer to the beginning.

Here is some VB code that loops through the selected features (IEnumFeature) in a
map control.
 Dim pEnumFeat As IEnumFeature

 Dim pFeat As IFeature

 Set pEnumFeat = MapControl1.Map.FeatureSelection

 Set pFeat = pEnumFeat.Next

 Do While (Not pFeat Is Nothing)

 Debug.Print pFeat.Value(pFeat.Fields.FindField("state_name"))

 Set pFeat = pEnumFeat.Next

 Loop

Some collection objects, the Visual Basic Collection being one, implement a
special interface called _NewEnum. This interface, because of the _ prefix, is
hidden, but Visual Basic developers can still use it to simplify iterating through a
collection. The Visual Basic For Each construct works with this interface to
perform the Reset and Next steps through a collection.
 Dim pColn as Collection

 Set pColn = GetCollection()' Collection returned from some function

 Dim thing as Variant ' VB uses methods on _NewEnum to step through

 For Each thing in pColn ' an enumerator.

 MsgBox Cstr(thing)

 Next

THE VISUAL BASIC 6 ENVIRONMENT

Enumerators can support other methods, but
these two methods are common among all

enumerators.

AppendixD.pmd 1/25/2005, 6:13 PM609

610 • ArcGIS Server Administrator and Developer Guide

THE VISUAL BASIC 6 DEVELOPMENT ENVIRONMENT

The previous section of this appendix focused primarily on how to write code in
the VBA development environment embedded within the ArcGIS Desktop
applications. This section focuses on particular issues related to creating ActiveX
DLLs that can be added to the applications and writing external standalone
applications using the Visual Basic development environment.

CREATING COM COMPONENTS

Most developers use Visual Basic to create a COM component that works with
ArcMap or ArcCatalog. Earlier in this appendix you learned that since the ESRI
applications are COM clients—their architecture supports the use of software
components that adhere to the COM specification—you can build components
with different languages including Visual Basic. These components can then be
added to the applications easily. For information about packaging and deploying
COM components that you’ve built with Visual Basic, see the last section of this
appendix.

This section is not intended as a Visual Basic tutorial; rather, it highlights aspects
of Visual Basic that you should know to be effective when working with
ArcObjects.

In Visual Basic you can build a COM component that will work with ArcMap or
ArcCatalog by creating an ActiveX DLL. This section will review the rudimentary
steps involved. Note that these steps are not all-inclusive. Your project may
involve other requirements.

1. Start Visual Basic. In the New Project dialog box, create an ActiveX DLL
Project.

2. In the Properties window, make sure that the Instancing property for the
initial class module and any other class modules you add to the Project is set to
5—MultiUse.

3. Reference the ESRI Object Libraries that you will require.

4. Implement the required interfaces. When you implement an interface in a class
module, the class provides its own versions of all the public procedures speci-
fied in the type library of the interface. In addition to providing mapping
between the interface prototypes and your procedures, the Implements state-
ment causes the class to accept COM QueryInterface calls for the specified
interface ID. You must include all the public procedures involved. A missing
member in an implementation of an interface or class causes an error. If you
don’t put code in one of the procedures in a class you are implementing, you
can raise the appropriate error (Const E_NOTIMPL = &H80004001). That
way, if someone else uses the class, they’ll understand that a member is not
implemented.

5. Add any additional code that’s needed.

6. Establish the Project Name and other properties to identify the component. In
the Project Properties dialog box, the project name you specify will be used as
the name of the component’s type library. It can be combined with the name
of each class the component provides to produce unique class names (these
names are also called ProgIDs). These names appear in the Component Cat-
egory Manager. Save the project.

The ESRI VB Add-In interface implementer can
be used to automate Steps 3 and 4.

AppendixD.pmd 1/25/2005, 6:13 PM610

Appendix D • Developer environments • 611

7. Compile the DLL.

8. Set the component’s Version Compatibility to binary. As your code evolves, it’s
good practice to set the components to Binary Compatibility so, if you make
changes to a component, you’ll be warned that you’re breaking compatibility.
For additional information, see the ‘Binary compatibility mode’ help topic in
the Visual Basic online help.

9. Save the project.

10. Make the component available to the application. You can add a component
to a document or template by clicking the Add from file button in the Cus-
tomize dialog box’s Commands tab. In addition, you can register a component
in the Component Category Manager.

IMPLEMENTING INTERFACES

You implement interfaces differently in Visual Basic depending on whether they
are inbound or outbound interfaces. An outbound interface is seen by Visual
Basic as an event source and is supported through the WithEvents keyword. To
handle the outbound interface, IActiveViewEvents, in Visual Basic (the default
outbound interface of the Map class), use the WithEvents keyword and provide
appropriate functions to handle the events.
 Private WithEvents ViewEvents As Map

 Private Sub ViewEvents_SelectionChanged()

 ' User changed feature selection update my feature list form

 UpdateMyFeatureForm

 End Sub

Inbound interfaces are supported with the Implements keyword. However, unlike
the outbound interface, all the methods defined on the interface must be stubbed
out. This ensures that the vTable is correctly formed when the object is instanti-
ated. Not all of the methods have to be fully coded, but the stub functions must
be there. If the implementation is blank, an appropriate return code should be
given to any client to inform them that the method is not implemented (see the
section ‘Working with HRESULTs’ in this appendix). To implement the
IExtension interface, code similar to below is required. Note that all the methods
are implemented.
Private m_pApp As IApplication

Implements IExtension

 Private Property Get IExtension_Name() As String

 IExtension_Name = "Sample Extension"

End Property

Private Sub IExtension_Startup(ByRef initializationData As Variant)

 Set m_pApp = initializationData

End Sub

Private Sub IExtension_Shutdown()

 Set m_pApp = Nothing

End Sub

THE VISUAL BASIC 6 DEVELOPMENT ENVIRONMENT

Visual Basic automatically generates the
necessary GUIDs for the classes, interfaces, and

libraries. Setting binary compatibility forces VB to
reuse the GUIDs from a previous compilation of

the DLL. This is essential since ArcMap stores
the GUIDs of commands in the document for

subsequent loading.

AppendixD.pmd 1/25/2005, 6:13 PM611

612 • ArcGIS Server Administrator and Developer Guide

After the applicable ESRI object libraries are
referenced, all the types contained within them

are available in Visual Basic. IntelliSense will also
work with the contents of the object libraries.

SETTING REFERENCES TO THE ESRI OBJECT LIBRARIES

The principal difference between working with the VBA development environ-
ment embedded in the applications and working with Visual Basic is that the
latter environment requires that you load the appropriate object libraries so that
any object variables that you declare can be found. If you don’t add the refer-
ence, you’ll get the error message to the left. In addition, the global variables
ThisDocument and Application are not available to you.

Adding a reference to an object library
Depending on what you want your code to do, you may need to add several ESRI
object and extension libraries. You can determine what library an object belongs
to by reviewing the object model diagrams in the developer help or by using the
LibraryLocator tool located in the tools directory of your developer kit.

To display the References dialog box in which you can set the references you
need, select References in the Visual Basic Project menu.

After you set a reference to an object library by selecting the check box next to its
name, you can find a specific object and its methods and properties in the object
browser.

If you are not using any objects in a referenced library, you should clear the check
box for that reference to minimize the number of object references Visual Basic
must resolve, thus reducing the time it takes your project to compile. You should
not remove a reference for an item that is used in your project.

You can’t remove the “Visual Basic for Applications” and “Visual Basic objects
and procedures” references because they are necessary for running Visual Basic.

REFERRING TO A DOCUMENT

Each VBA project (Normal, Project, TemplateProject) has a class called
ThisDocument, which represents the document object. Anywhere you write code
in VBA you can reference the document as ThisDocument. Further, if you are
writing your code in the ThisDocument code window, you have direct access to all
the methods and properties on IDocument. This is not available in Visual Basic.
You must first get a reference to the Application, then the document. When adding
both extensions and commands to ArcGIS applications, a pointer to the
IApplication interface is provided.
Implements IExtension

Private m_pApp As IApplication

Private Sub IExtension_Startup(ByRef initializationData As Variant)

 Set m_pApp = initializationData ' Assign IApplication.

End Sub

Implements ICommand

Private m_pApp As IApplication

Private Sub ICommand_OnCreate(ByVal hook As Object)

 Set m_pApp = hook ' QI for IApplication.

End Sub

THE VISUAL BASIC 6 DEVELOPMENT ENVIRONMENT

AppendixD.pmd 1/25/2005, 6:13 PM612

Appendix D • Developer environments • 613

Singletons are objects that only support one
instance of the object. These objects have a class

factory that ensures that anytime an object is
requested, a pointer to an already existing object

is returned.

Now that a reference to the application is in an IApplication pointer member
variable, the document and, hence, all other objects can be accessed from any
method within the class.
 Dim pDoc as IDocument

 Set pDoc = m_pApp.Document

 MsgBox pDoc.Name

GETTING TO AN OBJECT

In the previous example, navigating around the objects within ArcMap was a
straightforward process since a pointer to the Application object, the root object
of most of the ArcGIS application’s objects, was passed to the object via one of
its interfaces. This, however, is not the case with all interfaces that are imple-
mented within the ArcObjects application framework. There are cases when you
may implement an object that exists within the framework and there is no possi-
bility to traverse the object hierarchy from that object. This is because few ob-
jects support a reference to their parent object (the IDocument interface has a
property named Parent that references the IApplication interface). To give develop-
ers access to the application object, there is a singleton object that provides a
pointer to the running application object. The code below illustrates its use.
 Dim pAppRef As New AppRef

 Dim pApp as IApplication

 Set pApp = pAppRef

You must be careful to ensure that this object is only used where the implementa-
tion will always only run within ArcMap and ArcCatalog. For instance, it would
not be a good idea to make use of this function from within a custom feature
since that would restrict what applications could be used to view the feature
class.

RUNNING ARCMAP WITH A COMMAND-LINE ARGUMENT

You can start ArcMap from the command line and pass it an argument that is
either the pathname of a document (.mxd) or the pathname of a template
(.mxt). In the former case, ArcMap will open the document; in the latter case,
ArcMap will create a new document based on the template specified.

You can also pass an argument and create an instance of ArcMap by supplying
arguments to the Win32 API’s ShellExecute function or Visual Basic’s Shell func-
tion as follows:
 Dim ret As Variant

 ret = Shell("C:\Program Files\arcgis\bin\arcmap.exe _

 C:\Program Files\arcgis\bin\templates\LetterPortrait.mxt", vbNormalFocus)

By default, Shell runs other programs asynchronously. This means that ArcMap
might not finish executing before the statements following the Shell function are
executed.

To execute a program and wait until it is terminated, you must call three Win32
API functions. First, call the CreateProcessA function to load and execute
ArcMap. Next, call the WaitForSingleObject function, which forces the operating
system to wait until ArcMap has been terminated. Finally, when the user has
terminated the application, call the CloseHandle function to release the
application’s 32-bit identifier to the system pool.

THE VISUAL BASIC 6 DEVELOPMENT ENVIRONMENT

In Visual Basic, it is not possible to determine
the command line used to start the application.

There is a sample on disk that provides this
functionality. It can be found at <ArcGIS Devel-

oper Kit install>\samples\COM
Techniques\Command Line.

AppendixD.pmd 1/25/2005, 6:13 PM613

614 • ArcGIS Server Administrator and Developer Guide

DEBUGGING VISUAL BASIC CODE

Visual Basic has a debugger integrated into its development environment. This is
in many cases a valuable tool when debugging Visual Basic code; however, in
some cases it is not possible to use the VB debugger. The use of the debugger and
these special cases are discussed below.

Running the code within an application
It is possible to use the Visual Basic debugger to debug your ArcObjects software-
based source code even when ActiveX DLLs are the target server. The applica-
tion that will host your DLL must be set as the Debug application. To do this,
select the appropriate application, ArcMap.exe, for instance, and set it as the Start
Program in the Debugging Options of the Project Properties.

Using commands on the Debug toolbar, ArcMap can be started and the DLL
loaded and debugged. Break points can be set, lines stepped over, functions
stepped into, and variables checked. Moving the line pointer in the left margin
can also set the current execution line.

Visual Basic debugger issues
In many cases, the Visual Basic debugger will work without any problems; how-
ever, there are two problems when using the debugger that is supplied with
Visual Basic 6. Both of these problems exist because of the way that Visual Basic
implements its debugger.

Normally when running a tool within ArcMap, the DLL is loaded into ArcMap
address space, and calls are made directly into the DLL. When debugging, this is
not the case. Visual Basic makes changes to the registry so that the class identifier
(CLSID) for your DLL does not point to your DLL but, instead, points to the
Visual Basic Debug DLL (VB6debug.dll). The Debug DLL must then support all
the interfaces implemented by your class on the fly. With the VB Debug DLL
loaded into ArcMap, any method calls that come into the DLL are forwarded to
Visual Basic, where the code to be debugged is executed. The two problems with
this are caused by the changes made to the registry and the cross-process space
method calling. When these restrictions are first encountered, it can be confusing
since the object works outside the debugger until it hits a line of problem code.

Since the method calls made from ArcMap to the custom tool are across apart-
ments, there is a requirement for the interfaces to be marshalled. This marshalling
causes problems in certain circumstances. Most data types can be automatically
marshalled by the system, but there are a few that require custom code because
the standard marshaller does not support the data types. If one of these data
types is used by an interface within the custom tool and there is no custom mar-
shalling code, the debugger will fail with an “Interface not supported” error.

The registry manipulation also breaks the support for component categories. Any
time there is a request on a component category, the category manager within
COM will be unable to find your component because, rather than asking whether
your DLL belongs to the component category, COM is asking whether the VB
debugger DLL belongs to the component category, and it doesn’t. What this

THE VISUAL BASIC 6 DEVELOPMENT ENVIRONMENT

AppendixD.pmd 1/25/2005, 6:13 PM614

Appendix D • Developer environments • 615

means is that anytime a component category is used to automate the loading of a
DLL, the DLL cannot be debugged using the Visual Basic debugger.

This causes problems for many of the ways to extend the framework. The most
common way to extend the framework is to add a command or tool. Previously,
it was discussed how component categories were used in this instance. Remember
the component category was only used to build the list of commands in the
dialog box. This means that if the command to be debugged is already present on
a toolbar, the Visual Basic debugger can be used. Hence, the procedure for debug-
ging Visual Basic objects that implement the ICommand interface is to ensure that
the command is added to a toolbar when ArcMap is executed standalone and,
after saving the document, load ArcMap through the debugger.

In some cases, such as extensions and property pages, it is not possible to use the
Visual Basic debugger. If you have access to the Visual C++ debugger, you can
use one of the options outlined below. Fortunately, there are a number of ESRI
Visual Basic Add-ins that make it possible to track down the problem quickly and
effectively. The add-ins, described in ArcGIS Developer Help in the section
‘Visual Basic Developer Add-ins’, provide error log information including line and
module details. A sample output from an error log is given below; note the call
stack information along with line numbers.
Error Log saved on : 8/28/2000 - 10:39:04 AM

Record Call Stack Sequence - Bottom line is error line.

 chkVisible_MouseUp C:\Source\MapControl\Commands\frmLayer.frm Line : 196

 RefreshMap C:\Source\MapControl\Commands\frmLayer.frm Line : 20

Description

 Object variable or With block variable not set

Alternatives to the Visual Basic debugger
If the Visual Basic debugger and add-ins do not provide enough information, the
Visual C++ debugger can be used, either on its own or with C++ ATL wrapper
classes. The Visual C++ debugger does not run the object to be debugged out of
process from ArcMap, which means that none of the above issues apply. Common
debug commands are given in the Visual C++ section ‘Debugging tips in Devel-
oper Studio’. Both of the techniques below require the Visual Basic project to be
compiled with debug symbol information.

The Visual C++ debugger can work with this symbolic debug information and
the source files.

Visual C++ debugger
It is possible to use the Visual C++ debugger directly by attaching to a running
process that has the Visual Basic object to be debugged loaded and setting a break
point in the Visual Basic file. When the line of code is reached, the debugger will
halt execution and step you into the source file at the correct line. The required
steps are as follows:

1. Start an appropriate application such as ArcMap.exe.

2. Start Microsoft Visual C++.

THE VISUAL BASIC 6 DEVELOPMENT ENVIRONMENT

Create debug symbol information using the
Create Symbolic Debug Info option on the

Compile tab of the Project Properties dialog box.

AppendixD.pmd 1/25/2005, 6:13 PM615

616 • ArcGIS Server Administrator and Developer Guide

3. Attach to the ArcMap process using the Menu options Build > Start Debug >
Attach to process.

4. Load the appropriate Visual Basic Source file into the Visual C++ debugger
and set the break point.

5. Call the method within ArcMap.

No changes can be made to the source code within the debugger, and variables
cannot be inspected, but code execution can be viewed and altered. This is often
sufficient to determine what is wrong, especially with logic-related problems.

ATL wrapper classes
Using the ATL, you can create a class that implements the same interfaces as the
Visual Basic class. When you create the ATL object, you create the Visual Basic
object. All method calls are then passed to the Visual Basic object for execution.
You debug the contained object by setting a break point in the appropriate C++
wrapper method, and when the code reaches the break point, the debugger is
stepped into the Visual Basic code. For more information on this technique, look
at the ATL debugger sample in the Developer Samples of the ArcGIS Developer
Help system.

THE VISUAL BASIC 6 DEVELOPMENT ENVIRONMENT

AppendixD.pmd 1/25/2005, 6:13 PM616

Appendix D • Developer environments • 617

VISUAL C++

Developing in Visual C++ is a large and complex subject, as it provides a much
lower level of interaction with the underlying Windows APIs and COM APIs
when compared to other development environments.

While this can be a hindrance for rapid application development, it is the most
flexible approach. A number of design patterns, such as COM aggregation and
singletons, that are possible in Visual C++ are not possible in Visual Basic 6. By
using standard class libraries, such as ATL, the complex COM plumbing code can
be hidden. However, it is still important to have a thorough understanding of the
underlying ATL COM implementation.

The documentation in this section is based on Microsoft Visual C++ version 6
and provides some guidance for ArcGIS development in this environment. With
the release of Visual Studio C++ .NET, (also referred to as VC7), many new
enhancements are available to the C++ developer. While VC7 can work with the
managed .NET environment, and it is possible to work with the ArcGIS .NET
API, this will only add overhead to access the underlying ArcGIS COM objects.
So for the purposes of ArcGIS development in VC7, it is recommended to work
the “traditional” way—that is, directly with the ArcGIS COM interfaces and
objects.

With the addition of the Visual C# .NET language, it is worth considering
porting Visual C++ code to this environment and using the ArcGIS .NET API.
The syntax of C# is not unlike C++, but the resulting code is generally simpler
and more consistent.

This section is intended to serve two main purposes:

• To familiarize you with general Visual C++ coding style and debugging, begin-
ning with a discussion on ATL

• To detail specific usage requirements and recommendations for working with
the ArcObjects programming platform in Visual C++

WORKING WITH ATL

This section cannot cover all the topics that a developer working with ATL
should know to be effective, but it will serve as an introduction to ATL. ATL
helps you implement COM objects and saves typing, but it does not excuse you
from knowing C++ and how to develop COM objects.

ATL is the recommended framework for implementing COM objects. The ATL
code can be combined with Microsoft Foundation Class Library (MFC) code,
which provides more support for writing applications. An alternative to MFC is
the Windows Template Library (WTL), which is based on the ATL template
methodology and provides many wrappers for window classes and other applica-
tion support for ATL. WTL is available for download from Microsoft; at the time
of writing, version 7.1 is the latest and can be used with Visual C++ version 6
and Visual C++ .NET.

ATL in brief
ATL is a set of C++ template classes designed to be small, fast, and extensible,
based loosely on the Standard Template Library (STL). STL provides generic
template classes for C++ objects, such as vectors, stacks, and queues. ATL also

There are many enhancements to ATL in VC7.
Some of the relevant changes are covered in the

section ‘ATL in Visual C++ .NET’ later in this
appendix.

AppendixD.pmd 1/25/2005, 6:13 PM617

618 • ArcGIS Server Administrator and Developer Guide

VISUAL C++

provides a set of wizards that extends the Visual Studio development environ-
ment. These wizards automate some of the tedious plumbing code that all ATL
projects must have. The wizards include, but are not limited to, the following:

• Application—Used to initialize an ATL C++ project.

• Object—Used to create COM objects. Both C++ and IDL code are generated,
along with the appropriate code to support the creation of the objects at
runtime.

• Property—Used to add properties to interfaces.

• Method—Used to add methods to interfaces; both the Property and Method
wizards require you to know some IDL syntax.

• Interface Implementation—Used to implement stub functions for existing
interfaces.

• Connection Point Implement—Used to implement outbound events’ inter-
faces.

Typically, these are accessed by a right-click on a project, class, or interface in
Visual Studio Workspace/Class view.

ATL provides base classes for implementing COM objects as well as implementa-
tions for some of the common COM interfaces, including IUnknown, IDispatch,
and IClassFactory. There are also classes that provide support for ActiveX controls
and their containers.

ATL provides the required services for exposing ATL-based COM objects includ-
ing registration, server lifetime, and class objects.

These template classes build a hierarchy that sandwiches your class. These inherit-
ances are shown to the left. The CComxxxThreadModel class supports thread-safe
access to global, instance, and static data. The CComObjectRootEx class provides
the behavior for the IUnknown methods. The interfaces at the second level repre-
sent the interfaces that the class will implement; these come in two varieties. The
IXxxImpl interface contains ATL-supplied interfaces that also include an imple-
mentation; the other interfaces have pure virtual functions that must be fully
implemented within your class. The CComObject class inherits your class; this class
provides the implementation of the IUnknown methods along with the object
instantiation and lifetime control.

ATL and DTC
Along with smart types, covered later in this appendix, Direct-To-COM (DTC)
provides some useful compiler extensions you can use when creating ATL-based
objects. The functions __declspec and __uuidof are two such functions, but the
most useful is the #import command.

COM interfaces are defined in IDL, then compiled by the Microsoft IDL com-
piler (MIDL.exe). This results in the creation of a type library and header files.
The project uses these files automatically when compiling software that refer-
ences these interfaces. This approach is limited in that, when working with
interfaces, you must have access to the IDL files. As a developer of ArcGIS, you
only have access to the ArcGIS type library information contained in .olb and
.ocx files. While it is possible to engineer a header file from a type library, it is a

CComObject<CMyObject>

CMyObject

CComObjectRootEx<>

IMyInt2

IMyIntIXxxImpl

CComXxxThreadModel

The hierarchical layers of ATL

A more detailed discussion on Direct-To-COM
follows in the section ‘Direct-To-COM smart

types’.

AppendixD.pmd 1/25/2005, 6:13 PM618

Appendix D • Developer environments • 619

VISUAL C++

tedious process. The #import command automates the creation of the necessary
files required by the compiler. Since the command was developed to support
DTC, when using it to import ArcGIS type libraries, there are a number of
parameters that must be passed so the correct import takes place. For further
information on this process, see the later section ‘Importing ArcGIS type librar-
ies’.

Handling errors in ATL
It is possible to just return an E_FAIL HRESULT code to indicate the failure
within a method; however, this does not give the caller any indication of the
nature of the failure. There are a number of Windows-standard HRESULTs
available, for example, E_INVALIDARG (one or more arguments are invalid)
and E_POINTER (invalid pointer). These error codes are listed in the Windows
header file winerror.h. Not all development environments have comprehensive
support for HRESULT; Visual Basic clients often see error results as “Automation
Error—Unspecified Error”. ATL provides a simple mechanism for working with
the COM error information object that can provide an error string description, as
well as an error code.

When creating an ATL object, the Object wizard has an option to support
ISupportErrorInfo. If you toggle the option on, when the wizard completes, your
object will implement the interface ISupportErrorInfo, and a method will be added
that looks something like this:
STDMETHODIMP MyClass::InterfaceSupportsErrorInfo(REFIID riid)

{

static const IID* arr[] =

{

&IID_IMyClass,

};

for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++)

{

if (InlineIsEqualGUID(*arr[i], riid))

return S_OK;

}

return S_FALSE;

}

It is now possible to return rich error messages by calling one of the ATL error
functions. These functions even work with resource files to ensure easy interna-
tionalization of the message strings.

// Return a simple string

AtlReportError(CLSID_MyClass, _T("No connection to Database."),
IID_IMyClass, E_FAIL);

// Get the Error Text from a resource string

AtlReportError(CLSID_MyClass, IDS_DBERROR, IID_IMyClass, E_FAIL,
_Module.m_hInstResource);

To extract an error string from a failed method, use the Windows function
GetErrorInfo. This is used to retrieve the last IErrorInfo object on the current
thread and clears the current error state.

Although Visual C++ does support an exception
mechanism (try ... catch), it is not recommended

to mix this with COM code. If an exception
unwinds out of a COM interface, there is no

guarantee the client will be able to catch this,
and the most likely result is a crash.

AppendixD.pmd 1/25/2005, 6:13 PM619

620 • ArcGIS Server Administrator and Developer Guide

VISUAL C++

Linking ATL code
One of the primary purposes of ATL is to support the creation of small, fast
objects. To support this, ATL gives the developer a number of choices when
compiling and linking the source code. Choices must be made about how to link
or dynamically access the C runtime (CRT) libraries, the registration code, and the
various ATL utility functions. If no CRT calls are made in the code, this can be
removed from the link. If CRT calls are made and the linker switch
_ATL_MIN_CRT is not removed from the link line, the following error will be
generated during the build:
LIBCMT.lib(crt0.obj) : error LNK2001: unresolved external symbol _main

ReleaseMinSize/History.dll : fatal error LNK1120: 1 unresolved externals

Error executing link.exe.

When compiling a debug build, there will probably not be a problem; however,
depending on the code written, there may be problems when compiling a release
build. If you receive this error either remove the CRT calls or change the linker
switches.

If the utilities code is dynamically loaded at runtime, you must ensure that the
appropriate DLL (ATL.dll) is installed and registered on the user’s system. The
ArcGIS 9 runtime installation will install ATL.dll. The table below shows the
various choices and the related linker switches.

Utilities Registrar

Debug static dynamic

RelMinSize
dynamic dynamic

RelMinDepend
static static

CRT

yes

no

no

Symbols

_ATL_MIN_CRT
_ATL_DLL

_ATL_MIN_CRT
_ATL_STATIC_REGISTRY

By default, there are build configurations for ANSI and Unicode builds. A com-
ponent that is built with ANSI compilation will run on Windows 9.x; however,
considering that ArcGIS is only supported on Unicode operating systems
(Windows NT®, Windows 2000, and Windows XP), these configurations are
redundant. To delete a configuration in Visual Studio, click Build > Configura-
tions. Then delete Win32 Debug, Win32 Release MinSize, and Win32 Release
MinDependency.

Registering a COM component
The ATL project wizard generates the standard Windows entry points for regis-
tration. This code will register the DLL’s type library and execute a registry script
file (.rgs) for each COM object within the DLL. Additional C++ code to perform
other registration tasks can be inserted into these functions.
STDAPI DllRegisterServer(void)

{

// registers object in .rgs, typelib and all interfaces in typelib

// TRUE instructs the type library to be registered

return _Module.RegisterServer(TRUE);

}

STDAPI DllUnregisterServer(void)

{

AppendixD.pmd 1/25/2005, 6:13 PM620

Appendix D • Developer environments • 621

VISUAL C++

return _Module.UnregisterServer(TRUE);

}

ATL provides a text file format, .rgs, that is parsed by the ATL’s registrar compo-
nent when a DLL is registered and unregistered. The .rgs file is built into a DLL
as a custom resource. The file can be edited to add additional registry entries and
contains ProgID, ClassID, and component category entries to place in the registry.
The syntax describes keys, values, names, and subkeys to be added to or removed
from the registry. The format can be summarized as follows:
[NoRemove | ForceRemove | val] Name | [= s 'Value' | d ' Value' | b 'Value']

{

.. optional subkeys for the registry

}

NoRemove signifies that the registry key should not be removed on unregistration.
ForceRemove will ensure the key and subkeys are removed before registering the
new keys. The s, d, and b values indicate string (enclosed with apostrophes),
double word (32-bit integer value), and binary registry values. A typical registra-
tion script is shown below.
HKCR

{

SimpleObject.SimpleCOMObject.1 = s 'SimpleCOMObject Class'

{

CLSID = s '{2AFFC10E-ECFB-4697-8B3D-0405650B7CFB}'

}

SimpleObject.SimpleCOMObject = s 'SimpleCOMObject Class'

{

CLSID = s '{2AFFC10E-ECFB-4697-8B3D-0405650B7CFB}'

CurVer = s 'SimpleObject.SimpleCOMObject.1'

}

NoRemove CLSID

{

ForceRemove {2AFFC10E-ECFB-4697-8B3D-0405650B7CFB} = s 'SimpleCOMObject
Class'

{

ProgID = s 'SimpleObject.SimpleCOMObject.1'

VersionIndependentProgID = s 'SimpleObject.SimpleCOMObject'

InprocServer32 = s '%MODULE%'

{

val ThreadingModel = s 'Apartment'

}

'TypeLib' = s '{855DD226-5938-489D-986E-149600FEDD63}'

'Implemented Categories'

{

{7DD95801-9882-11CF-9FA9-00AA006C42C4}

}

}

}

}

NoRemove CLSID ensures the registry key CLSID is never removed. COM objects
register their ProgIDs and GUIDs below this subkey, so its removal would result

AppendixD.pmd 1/25/2005, 6:13 PM621

622 • ArcGIS Server Administrator and Developer Guide

VISUAL C++

in a serious corruption of the registry. InprocServer32 is the standard COM mecha-
nism that relates a component GUID to a DLL; ATL will insert the correct
module name using the %MODULE% variable. Other entries under the GUID
specify the ProgID, threading model, and type library to use with this component.

To register a COM coclass into a component category, there are two approaches.
The recommended approach is illustrated above: place GUIDs for component
categories beneath an Implemented Categories key, which in turn is under the
GUID of the coclass. The second approach is to use ATL macros in an objects
header file: BEGIN_CATEGORY_MAP, IMPLEMENTED_CATEGORY, or
END_CATEGORY_MAP. However, these macros do not correctly remove
registry entries as explained in Microsoft Developer Network (MSDN) article
Q279459 BUG: ‘Component Category Registry Entries Not Removed in ATL
Component’. A header file is supplied with the GUIDs of all the component
categories used by ArcGIS; this is available in \Program Files\ArcGIS\include\
CatIDs\ArcCATIDs.h.

Debugging ATL code
In addition to the standard Visual Studio facilities, ATL provides a number of
debugging options with specific support for debugging COM objects. The output
of these debugging options is displayed in the Visual C++ Output window. The
QueryInterface call can be debugged by setting the symbols _ATL_DEBUG_QI,
AddRef, and Release calls, with the symbol _ATL_DEBUG_INTERFACES, and
leaked objects can be traced by monitoring the list of leaked interfaces at termi-
nation time when the _ATL_DEBUG_INTERFACES symbol is defined. The
leaked interfaces list has entries like the following:
 INTERFACE LEAK: RefCount = 1, MaxRefCount = 3, {Allocation = 10}

On its own, this does not tell you much apart from the fact that one of your
objects is leaking because an interface pointer has not been released. However,
the Allocation number allows you to automatically break when that interface is
obtained by setting the m_nIndexBreakAt member of the CComModule at server
startup. This in turn calls the function DebugBreak to force the execution of the
code to stop at the relevant place in the debugger. For this to work, the program
flow must be the same.
extern "C"

BOOL WINAPI DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID /
lpReserved/)

{

if (dwReason == DLL_PROCESS_ATTACH)

{

_Module.Init(ObjectMap, hInstance, &LIBID_HISTORYLib);

DisableThreadLibraryCalls(hInstance);

_Module.m_nIndexBreakAt = 10;

}

else if (dwReason == DLL_PROCESS_DETACH)

{

_Module.Term();

}

return TRUE;

}

If the GUID of a component is changed during
development or the type library name is

changed, then it is important to keep the .rgs
content consistent with these changes; otherwise,
the registry will be incorrect and object creation

can fail.

AppendixD.pmd 1/25/2005, 6:13 PM622

Appendix D • Developer environments • 623

VISUAL C++

Boolean types
Historically, ANSI C did not have a Boolean data type and used int value instead,
where 0 represents false and nonzero represents true. However, the bool data
type has now become part of ANSI C++. COM APIs are language independent
and define a different Boolean type, VARIANT_BOOL. In addition, Win32 API
uses a different bool type. It is important to use the correct type at the appropri-
ate time. The following table summarizes their usage:

Type True Value False Value Where Defined When to Use

bool false (0)true (1) Defined by
compiler

This is an intrinsic compiler type so there is
more potential for the compiler to optimize
use. This type can also be promoted to
an int value. Expressions (e.g., i!=0) return
a type of Bool. Typically used for class
member variables and local variables.

BOOL (int) TRUE (1) FALSE (0) Windows Data
Type (defined in

windef.h)

Used with Windows API functions, often as
a return value to indicate success or failure.

Used in COM APIs for Boolean values. Also
used within VARIANT types; if the VARIANT
type is VT_BOOL, then the VARIANT value
(boolVal) is populated with a
VARIANT_BOOL. Take care to convert a
bool class member variable to the correct
VARIANT_BOOL value. Often the
conditional test "hook - colon" operator is
used. For example where bRes is defined
as a bool, then to set a result type:
*pVal = bRes ? VARIANT_TRUE :
VARIANT_FALSE;

VARIANT_BOOL
(16bit short)

VARIANT_
TRUE (-1)

VARIANT_
FALSE (0)

COM Boolean
values (wtypes.h)

String types
Considering that strings (sequences of text characters) are a simple concept, they
have unfortunately become a complex and confusing topic in C++. The two main
reasons for this confusion are the lack of C++ support for variable length strings
combined with the requirement to support ANSI and Unicode character sets
within the same code. As ArcGIS is only available on Unicode platforms, it may
simplify development to remove the ANSI requirements.

The C++ convention for strings is an array of characters terminated with a 0.
This is not always good for performance when calculating lengths of large strings.
To support variable length strings, the character arrays can be dynamically allo-
cated and released on the heap, typically using malloc and free or new and delete.
Consequently, a number of wrapper classes provide this support; CString defined
in MFC and WTL is the most widely used. In addition, for COM usage the BSTR
type is defined and the ATL wrapper class CComBSTR is available.

To allow for international character sets, Microsoft Windows migrated from an
8-bit ANSI character string (8-bit character) representation (found on
Windows 95, Windows 98, and Windows Me platforms) to a 16-bit Unicode
character string (16-bit unsigned short). Unicode is synonymous with wide char-
acters (wchar_t). In COM APIs, OLECHAR is the type used and is defined to be
wchar_t on Windows. Windows operating systems, such as Windows NT,
Windows 2000, and Windows XP, natively support Unicode characters. To allow
the same C++ code to be compiled for ANSI and Unicode platforms, compiler
switches are used to change Windows API functions (for example,
SetWindowText) to resolve to an ANSI version (SetWindowTextA) or a Unicode
version (SetWindowTextW). In addition, character-independent types (TCHAR

AppendixD.pmd 1/25/2005, 6:13 PM623

624 • ArcGIS Server Administrator and Developer Guide

VISUAL C++

defined in tchar.h) were introduced to represent a character; on an ANSI build
this is defined to be a char, and on a Unicode build this is a wchar_t, a typedef
defined as unsigned short. To perform standard C string manipulation, there are
typically three different definitions of the same function; for example, for a case-
insensitive comparison, strcmp provides the ANSI version, wcscmp provides the
Unicode version, and _tcscmp provides the TCHAR version. There is also a fourth
version, _mbscmp, which is a variation of the 8-bit ANSI version that will inter-
pret multibyte character sequences (MBCS) within the 8-bit string.
// Initialize some fixed length strings

char* pNameANSI = "Bill"; // 5 bytes (4 characters plus a terminator)

wchar_t* pNameUNICODE = L"Bill"; // 10 bytes (4 16-bit characters plus a
16-bit terminator)

TCHAR* pNameTCHAR = _T("Bill"); // either 5 or 10 depending on compiler
settings

COM APIs represent variable length strings with a BSTR type; this is a pointer to
a sequence of OLECHAR characters, which is defined as Unicode characters and
is the same as a wchar_t. A BSTR must be allocated and released with the
SysAllocString and SysFreeString Windows functions. Unlike C strings, they can
contain embedded zero characters, although this is unusual. The BSTR also has a
count value, which is stored four bytes before the BSTR pointer address. The
CComBSTR wrappers are often used to manage the lifetime of a string.

Do not pass a pointer to a C style array of Unicode characters (OLECHAR or
wchar_t) to a function expecting a BSTR. The compiler will not raise an error as
the types are identical. However, the function receiving the BSTR can behave
incorrectly or crash when accessing the string length, which will be random
memory values.
ipFoo->put_WindowTitle(L"Hello"); // This is bad!
ipFoo->put_WindowTitle(CComBSTR(L"Hello")); // This correctly initializes

and passes a BSTR

ATL provides conversion macros to switch strings between ANSI (A), TCHAR
(T), Unicode (W), and OLECHAR (OLE). In addition, the types can have a
const modifier (C). These macros use the abbreviations shown in brackets with a
“2” between them. For example, to convert between OLECHAR (such as an
input BSTR) to const TCHAR (for use in a Windows function), use the OLE2CT
conversion macro. To convert ANSI to Unicode, use A2W. These macros require
the USES_CONVERSION macro to be placed at the top of a method; this will
create some local variables that are used by the conversion macros. When the
source and destination character sets are different and the destination type is not
a BSTR, the macro allocates the destination string on the call stack (using the
_alloca runtime function). It’s important to realize this especially when using
these macros within a loop; otherwise the stack may grow large and run out of
stack space.

STDMETHODIMP CFoo::put_WindowTitle(BSTR bstrTitle)

{

USES_CONVERSION;

if (::SysStringLen(bstrTitle) == 0)

return E_INVALIDARG;

::SetWindowText(m_hWnd, OLE2CT(bstrTitle));

To check if two CComBSTR strings are different,
do not use the not equal (“!=”) operator. The

“==” operator performs a case-sensitive compari-
son of the string contents; however, “!=” will

compare pointer values and not the string
contents, typically returning false.

AppendixD.pmd 1/25/2005, 6:13 PM624

Appendix D • Developer environments • 625

VISUAL C++

return S_OK;

}

Implementing noncreatable classes
Noncreatable classes are COM objects that cannot be created by CoCreateInstance.
Instead, the object is created within a method call of a different object, and an
interface pointer to the noncreatable class is returned. This type of object is
found in abundance in the geodatabase model. For example, FeatureClass is
noncreatable and can only be obtained by calling one of a number of methods;
one example is the IFeatureWorkspace::OpenFeatureClass method.

One advantage of a noncreatable class is that it can be initialized with private
data using method calls that are not exposed in a COM API. Below is a simplified
example of returning a noncreatable object:

// Foo is a cocreatable object.

IFooPtr ipFoo;

HRESULT hr = ipFoo.CreateInstance(CLSID_Foo);

// Bar is a noncreatable object, cannot use
 // ipBar.CreateInstance(CLSID_Bar).

IBarPtr ipBar;

// Use a method on Foo to create a new Bar object.

hr = ipFoo->CreateBar(&ipBar);

ipBar->DoSomething();

The steps required to change a cocreatable ATL class into a noncreatable class are
shown below:

1. Add “noncreatable” to the IDL file’s coclass attributes.
[

uuid(DCB87952-0716-4873-852B-F56AE8F9BC42),

noncreatable

]

coclass Bar

{

[default] interface IUnknown;

interface IBar;

};

2. Change the class factory implementation to fail any cocreate instance of the
noncreatable class. This happens via ATL’s object map in the main DLL
module.
BEGIN_OBJECT_MAP(ObjectMap)

OBJECT_ENTRY(CLSID_Foo, CFoo) // Creatable object

OBJECT_ENTRY_NON_CREATEABLE(CLSID_Bar, CBar) // Noncreatable object

END_OBJECT_MAP()

3. Optionally, the registry entries can be removed. First, remove the registry
script for the object from the resources (Bar.rgs in this example). Then change
the class definition DECLARE_REGISTRY_RESOURCEID(IDR_BAR) to
DECLARE_NO_REGISTRY().

4. To create the noncreatable object inside a method, use the CComObject
template to supply the implementation of CreateInstance.

AppendixD.pmd 1/25/2005, 6:13 PM625

626 • ArcGIS Server Administrator and Developer Guide

VISUAL C++

// Get NonCreatable object Bar (implementing IBar) from COM object Foo.

STDMETHODIMP CFoo::CreateBar(IBar **pVal)

{

if (pVal==0) return E_POINTER;

// Smart pointer to noncreatable object Bar

IBarPtr ipBar = 0;

// C++ Pointer to Bar, with ATL template to supply CreateInstance
implementation

CComObject<CBar>* pBar = 0;

HRESULT hr = CComObject<CBar>::CreateInstance(&pBar);

if (SUCCEEDED(hr))

{

// Increment the ref count from 0 to 1 to protect the object

// from being released in any initialization code.

pBar->AddRef();

// Call C++ methods (not exposed to COM) to initialize the Bar object.

pBar->InitialiseBar(10);

// QI to IBar and hold a smart pointer reference to the object Bar.

hr = pBar->QueryInterface(IID_IBar, (void**)&ipBar);

pBar->Release();

}

// Return IBar pointer to the caller.

*pVal = ipBar.Detach();

return S_OK;

}

ATL in Visual C++ .NET
Visual C++ version 6 is used for the majority of this help. However, with the
release of Visual C++ .NET, there are enhancements and changes that are rel-
evant to the ArcGIS ATL developer. Some of these are summarized below:

Attribute-based programming—This is a major change introduced in VC7.
Attributes are inserted in the source code enclosed in square brackets—for ex-
ample, [coclass]. Attributes are designed to simplify COM programming and
.NET framework common language runtime development. When you include
attributes in your source files, the compiler works with provider DLLs to insert
code or modify the code in the generated object files. There are attributes that aid
in the creation of .idl files, interfaces, type libraries, and other COM elements. In
the IDE, attributes are supported by the wizards and by the Properties window.
The ATL wizards make extensive use of attributes to inject the ATL boilerplate
code into the class. Consequently, typical COM coclass header files in VC7 con-
tain much less ATL code than at VC6. As IDL is generated from attributes, there
is typically no .idl file present in COM projects as before, and the .idl file is gener-
ated at compile time.

AppendixD.pmd 1/25/2005, 6:13 PM626

Appendix D • Developer environments • 627

VISUAL C++

Build configurations—There are only two default build configurations in VC7;
these are ANSI Debug- and Release-based builds. As ArcGIS is only available on
Unicode platforms, it is recommended to change these by modifying the project
properties. The general project properties page has an option for Character Set.
Change this from Use Multi-Byte Character Set to Use Unicode Character Set.

Character conversion macros—The character conversion macros
(USES_CONVERSION, W2A, W2CT, and so forth) have improved alternative
versions. These no longer allocate space on the stack, so they can be used in loops
without running out of stack space. The USES_CONVERSION macro is also no
longer required. These macros are now implemented as classes and begin with a
“C”—for example, CW2A, CW2CT.

Safe array support—This is available with CComSafeArray and
CComSafeArrayBound classes.

Module level global—The module-level global CComModule _module has
been split into a number of related classes, for example, CAtlComModule and
CAtlWinModule. To retrieve the resource module instance, use the following
code: _AtlBaseModule.GetResourceInstance();

String support—General variable length string support is now available through
CString in ATL. This is defined in the header files atlstr.h and cstringt.h. If ATL
is combined with MFC, this defaults to MFC’s CString implementation.

Filepath handling—A collection of related functions for processing the com-
ponents of filepaths is available through the CPath class defined in atlpath.h.

ATLServer—This is a new selection of ATL classes designed for writing Web
applications, XML Web services, and other server applications.

#import issues—When using #import, a few modifications are required. For
example, the #import of esriSystem requires an exclude or rename of GetObject,
and the #import of esriGeometry requires an exclude or rename of ISegment.

ATL REFERENCES

The MSDN provides a wealth of documentation, articles, and samples that are
installed with Visual Studio products. ATL reference documentation for Visual
Studio version 6 is under:

MSDN Library - October 2001 / Visual Tools and Languages / Visual Studio 6.0
Documentation / Visual C++ Documentation / Reference / Active Template Library

Additional documentation is also available on the MSDN Web site at
http://www.msdn.microsoft.com.

You may also find the following books to be useful:

Grimes, Richard. ATL COM Programmer’s Reference. Chicago: Wrox Press Inc.,
1988.

Grimes, Richard. Professional ATL COM Programming. Chicago: Wrox Press Inc.,
1988.

Grimes, Richard, Reilly Stockton, Alex Stockton, and Julian Templeman. Begin-
ning ATL 3 COM Programming. Chicago: Wrox Press Inc., 1999.

AppendixD.pmd 1/25/2005, 6:13 PM627

628 • ArcGIS Server Administrator and Developer Guide

VISUAL C++

King, Brad, and George Shepherd. Inside ATL. Redmond, WA: Microsoft Press,
1999.

Rector, Brent, Chris Sells, and Jim Springfield. ATL Internals. Reading, MA:
Addison–Wesley, 1999.

SMART TYPES

Smart types are objects that behave as types. They are C++ class implementations
that encapsulate a data type, wrapping it with operators and functions that make
working with the underlying type easier and less error prone. When these smart
types encapsulate an interface pointer, they are referred to as smart pointers. Smart
pointers work with the IUnknown interface to ensure that resource allocation and
deallocation are correctly managed. They accomplish this by various functions,
construct and destruct methods, and overloaded operators. There are numerous
smart types available to the C++ programmer. The two main smart types covered
here are Direct-To-COM and Active Template Library.

Smart types can make the task of working with COM interfaces and data types
easier, since many of the API calls are moved into a class implementation; how-
ever, they must be used with caution and never without a clear understanding of
how they are interacting with the encapsulated data type.

Direct-To-COM smart types
The smart type classes supplied with DTC are known as the Compiler COM
Support Classes and consist of:

• _com_error—This class represents an exception condition in one of the COM
support classes. This object encapsulates the HRESULT and the IErrorInfo
COM exception objects.

• _com_ptr_t—This class encapsulates a COM interface pointer. See below for
common uses.

• _bstr_t—This class encapsulates the BSTR data type. The functions and opera-
tors on this class are not as rich as the ATL CComBSTR smart type; hence, this
is not normally used.

• _variant_t—This class encapsulates the VARIANT data type. The functions
and operators on this class are not as rich as the ATL CComVariant smart type;
hence, this is not normally used.

To define a smart pointer for an interface, you can use the macro
_COM_SMARTPTR_TYPEDEF like this:

_COM_SMARTPTR_TYPEDEF(IFoo, __uuidof(IFoo));

The compiler expands this as follows:
typedef _com_ptr_t< _com_IIID<IFoo, __uuidof(IFoo)> > IFooPtr;

Once declared, it is simply a matter of declaring a variable as the type of the
interface and appending Ptr to the end of the interface. Below are some common
uses of this smart pointer that you will see in the numerous C++ samples.
// Get a CLSID GUID constant.

extern "C" const GUID __declspec(selectany) CLSID_Foo = \

 {0x2f3b470c,0xb01f,0x11d3,{0x83,0x8e,0x00,0x00,0x00,0x00,0x00,0x00}};

AppendixD.pmd 1/25/2005, 6:13 PM628

Appendix D • Developer environments • 629

VISUAL C++

// Declare Smart Pointers for IFoo, IBar, and IGak interfaces.

_COM_SMARTPTR_TYPEDEF(IFoo, __uuidof(IFoo));

_COM_SMARTPTR_TYPEDEF(IBar, __uuidof(IBar));

_COM_SMARTPTR_TYPEDEF(IGak, __uuidof(IGak));

STDMETHODIMP SomeClass::Do()

{

 // Create Instance of Foo class and QueryInterface (QI) for IFoo interface.

 IFooPtr ipFoo;

 HRESULT hr = ipFoo.CreateInstance(CLSID_Foo);

 if (FAILED(hr)) return hr;

 // Call method on IFoo to get IBar.

 IBarPtr ipBar;

 hr = ipFoo->get_Bar(&ipBar);

 if (FAILED(hr)) return hr;

 // QI IBar interface for IGak interface.

 IGakPtr ipGak(ipBar);

 // Call method on IGak.

 hr = ipGak->DoSomething();

 if (FAILED(hr)) return hr;

 // Explicitly call Release().

 ipGak = 0;

 ipBar = 0;

 // Let destructor call IFoo's Release.

 return S_OK;

}

One of the main advantages of using the DTC smart pointers is that they are
automatically generated from the #import compiler statement for all interface
and coclass definitions in a type library. For more details on this functionality, see
the later section ‘Importing ArcGIS type libraries’.

It is possible to create an object implicitly in a DTC smart pointer’s constructor,
for example:
IFooPtr ipFoo(CLSID_Foo)

However, this will raise a C++ exception if there is an error during object cre-
ation—for example, if the DLL containing the object implementation was
accidentally deleted. This exception will typically be unhandled and cause a crash.
A more robust approach is to avoid exceptions in COM, call CreateInstance
explicitly, and handle the failure code, for example:
IFooPtr ipFoo;
HRESULT hr = ipFoo.CreateInstance(CLSID_Foo);
if (FAILED(hr))

return hr; // Return object creation failure code to caller.

AppendixD.pmd 1/25/2005, 6:13 PM629

630 • ArcGIS Server Administrator and Developer Guide

VISUAL C++

Active Template Library smart types
ATL defines various smart types, as seen in the list below. You are free to com-
bine both the ATL and DTC smart types in your code. However, it is typical to
use the DTC for smart pointers, as they are easily generated by importing type
libraries. For BSTR and VARIANT types, the ATL versions for CComBSTR and
CComVariant are typically used.

ATL smart types include:

• CComPtr—encapsulates a COM interface pointer by wrapping the AddRef and
Release methods of the IUnknown interface

• CComQIPtr—encapsulates a COM interface and supports all three methods of
the IUnknown interface: QueryInterface, AddRef, and Release

• CComBSTR—encapsulates the BSTR data type

• CComVariant—encapsulates the VARIANT data type

• CRegKey—provides methods for manipulating Windows registry entries

• CComDispatchDriver—provides methods for getting and setting properties and
calling methods through an object’s IDispatch interface

• CSecurityDescriptor—provides methods for setting up and working with the
Discretionary Access Control List (DACL)

This section examines the first four smart types and their uses. The example code
below, written with ATL smart pointers, looks like the following:
// Get a CLSID GUID constant.

extern "C" const GUID __declspec(selectany) CLSID_Foo = \

 {0x2f3b470c,0xb01f,0x11d3,{0x83,0x8e,0x00,0x00,0x00,0x00,0x00,0x00}};

STDMETHODIMP SomeClass::Do ()

{

 // Create Instance of Foo class and QI for IFoo interface.

 CComPtr<IFoo> ipFoo;

 HRESULT hr = CoCreateInstance(CLSID_Foo, NULL, CLSCTX_INPROC_SERVER,
IID_IFoo, (void **)&ipFoo);

 if (FAILED(hr)) return hr;

 // Call method on IFoo to get IBar.

 CComPtr<IBar> ipBar;

 HRESULT hr = ipFoo->get_Bar(&ipBar);

 if (FAILED(hr)) return hr;

 // IBar interface for IGak interface

 CComQIPtr<IGak> ipGak(ipBar);

 // Call method on IGak.

 hr = ipGak->DoSomething();

 if (FAILED(hr)) return hr;

 // Explicitly call Release().

 ipGak = 0;

The equality operator (“==”) may have different
implementations when used during smart

pointer comparisons. The COM specification
states object identification is performed by

comparing the pointer values of IUnknown. The
DTC smart pointers will perform necessary QI
and comparison when using the “==” operator.

However, the ATL smart pointers will not do
this, so you must use the ATL IsEqualObject

method.

AppendixD.pmd 1/25/2005, 6:13 PM630

Appendix D • Developer environments • 631

VISUAL C++

 ipBar = 0;

 // Let destructor call Foo's Release.

 return S_OK;

}

The most common smart pointer seen in the Visual C++ samples is the DTC type.
In the examples below, which illustrate the BSTR and VARIANT data types, the
DTC pointers are used. When working with CComBSTR, use the text mapping
L“” to declare constant OLECHAR strings. CComVariant derives directly from
the VARIANT data type, meaning that there is no overloading with its implemen-
tation, which in turn simplifies its use. It has a rich set of constructors and func-
tions that make working with VARIANTs straightforward; there are even meth-
ods for reading and writing from streams. Be sure to call the Clear method before
reusing the variable.
 ipFoo->put_Name(CComBSTR(L"NewName"));

 if FAILED(hr)) return hr;

 // Create a VT_I4 variant (signed long).

 CComVariant vValue(12);

 // Change its data type to a string.

 hr = vValue.ChangeType(VT_BSTR);

 if (FAILED(hr)) return hr;

Some method calls in IDL are marked as being optional and take a variant param-
eter. However, in Visual C++, these parameters still have to be supplied. To
signify that a parameter value is not supplied, a variant is passed specifying an
error code or type DISP_E_PARAMNOTFOUND:
 CComBSTR documentFilename(L"World.mxd");

 CComVariant noPassword;

 noPassword.vt = VT_ERROR;

 noPassword.scode = DISP_E_PARAMNOTFOUND;

 HRESULT hr = ipMapControl->LoadMxFile(documentFilename, noPassword);

When working with CComBSTR and CComVariant, the Detach function releases
the underlying data type from the smart type so it can be used when passing a
result as an [out] parameter of a method. The use of the Detach method with
CComBSTR is shown below:
STDMETHODIMP CFoo::get_Name(BSTR* name)

{

 if (name==0) return E_POINTER;

 CComBSTR bsName(L"FooBar");

 *name = bsName.Detach();

}

CComVariant myVar(ipSmartPointer) will result in a variant type of Boolean
(VT_BOOL) and not a variant with an object reference (VT_UNKNOWN) as
expected. It is better to pass unambiguous types to constructors, that is, types
that are not themselves smart types with overloaded cast operators.

CComVariant(VARIANT_TRUE) will create a
short integer variant (type VT_I2) and not a

Boolean variant (type VT_BOOL) as expected.
You can use CComVariant(true) to create a

Boolean variant.

AppendixD.pmd 1/25/2005, 6:13 PM631

632 • ArcGIS Server Administrator and Developer Guide

VISUAL C++

// Perform QI if IUnknown.
IUnknownPtr ipUnk = ipSmartPointer;
// Ensure IUnknown* constructor of CComVariant is used.
CComVariant myVar2(ipUnk.GetInterfacePtr());

A common practice with smart pointers is to use Detach to return an object from
a method call. When returning an interface pointer, the COM standard is to
increment reference count of the [out] parameter inside the method implementa-
tion. It is the caller’s responsibility to call Release when the pointer is no longer
required. Consequently, care must be taken to avoid calling Detach directly on a
member variable. A typical pattern is shown below:
STDMETHODIMP CFoo::get_Bar(IBar **pVal)

{

 if (pVal==0) return E_POINTER;

 // Constructing a local smart pointer using another smart pointer

 // results in an AddRef (if pointer is not 0).

 IBarPtr ipBar(m_ipBar);

 // Detach will clear the local smart pointer, and the

 // interface is written into the output parameter.

 *pVal = ipBar.Detach();

 // This can be combined into one line

 // *pVal = IBarPtr(m_ipBar).Detach();

 return S_OK;

}

The above pattern has the same result as the following code; note that a condi-
tional test for a zero pointer is required before AddRef can be called. Calling
AddRef (or any method) on a zero pointer will result in an access violation
exception and typically crash the application:
STDMETHODIMP CFoo::get_Bar(IBar **pVal)

{

 if (pVal==0) return E_POINTER;

 // Copy the interface pointer (no AddRef) into the output parameter.

 *pVal = m_ipBar;

 // Make sure interface pointer is nonzero before calling AddRef.

 if (*pVal)

 *pVal->AddRef();

 return S_OK;

}

When using a smart pointer to receive an object from an [out] parameter on a
method, use the smart pointer “&” dereference operator. This will cause the
previous interface pointer in the smart pointer to be released. The smart pointer is
then populated with the new [out] value. The implementation of the method will

AppendixD.pmd 1/25/2005, 6:13 PM632

Appendix D • Developer environments • 633

VISUAL C++

have already incremented the object reference count. This will be released when
the smart pointer goes out of scope:
 {

 IFooPtr ipFoo1, ipFoo2;

 ipFoo1.CreateInstance(CLSID_Foo);

 ipFoo2.CreateInstance(CLSID_Foo);

 // Initialize ipBar Smart pointer from Foo1.

 IBarPtr ipBar;

 ipFoo1->get_Bar(&ipBar);

 // The "&" dereference will call Release on ipBar.

 // ipBar is then repopulated with a new instance of IBar.

 ipFoo2->get_Bar(&ipBar);

 }

 // ipBar goes out of scope, and the smart pointer destructor calls Release.

Naming conventions

Type names
All type names (class, struct, enum, and typedef) begin with an uppercase letter and
use mixed case for the rest of the name:
 class Foo : public CObject { . . .};

 struct Bar { . . .};

 enum ShapeType { . . . };

 typedef int* FooInt;

Typedefs for function pointers (callbacks) append Proc to the end of their names.
 typedef void (*FooProgressProc)(int step);

Enumeration values all begin with a lowercase string that identifies the project; in
the case of ArcObjects, this is esri, and each string occurs on a separate line:
 typedef enum esriQuuxness

 {

 esriQLow,

 esriQMedium,

 esriQHigh

 } esriQuuxness;

Function names
Name functions using the following conventions:

• For simple accessor and mutator functions, use Get<Property> and
Set<Property>:

 int GetSize();

 void SetSize(int size);

• If the client is providing storage for the result, use Query<Property>:
 void QuerySize(int& size);

• For state functions, use Set<State> and Is<State> or Can<State>:
 bool IsFileDirty();

AppendixD.pmd 1/25/2005, 6:13 PM633

634 • ArcGIS Server Administrator and Developer Guide

VISUAL C++

 void SetFileDirty(bool dirty);

 bool CanConnect();

• Where the semantics of an operation are obvious from the types of argu-
ments, leave type names out of the function names.
 Instead of:

 AddDatabase(Database& db);

 consider using:
 Add(Database& db);

 Instead of:
 ConvertFoo2Bar(Foo* foo, Bar* bar);

 consider using:
 Convert(Foo* foo, Bar* bar)

• If a client relinquishes ownership of some data to an object, use
Give<Property>. If an object relinquishes ownership of some data to a
client, use Take<Property>:

 void GiveGraphic(Graphic* graphic);

 Graphic* TakeGraphic(int itemNum);

• Use function overloading when a particular operation works with different
argument types:

 void Append(const CString& text);

 void Append(int number);

Argument names
Use descriptive argument names in function declarations. The argument name
should clearly indicate what purpose the argument serves:
 bool Send(int messageID, const char* address, const char* message);

DEBUGGING TIPS IN DEVELOPER STUDIO

Visual C++ comes with a feature-rich debugger. These tips will help you get the
most from your debugging session.

Backing up after failure
When a function call has failed and you’d like to know why (by stepping into
it), you don’t have to restart the application. Use the Set Next Statement
command to reposition the program cursor back to the statement that failed
(right-click the statement to bring up the debugging context menu). Then step
into the function.

Edit and Continue
Visual Studio 6 allows changes to source code to be made during a debugging
session. The changes can be recompiled and incorporated into the executing code
without stopping the debugger. There are some limitations to the type of changes
that can be made; in this case, the debug session must be restarted. This feature is
enabled by default; the settings are available in the Settings command of the
project menu. Click the C/C++ tab, then choose General from the Category
dropdown list. In the Debug info dropdown list, click Program Database for Edit
and Continue.

Here are some suggestions for a naming
convention. These help identify the variables’

usage and type and thus reduce coding errors.
This is an abridged Hungarian notation:

[<scope>_]<type><name>

c

m

Prefix

g

<empty>

Static class member (including constants)

Instance class members

Variable scope

Globally static variable

local variable or struct or public class
member

<type>

Boolean

Data Type

byte or unsigned char

short used as size

DWORD, double word or unsigned long

int (integer)

long

a pointer

string

function

handle

ASCIIZ null-terminated string

WORD unsigned int

short used as coordinates

b

Prefix

by

cx/cy

dw

i

l

p

s

fn

h

sz

w

x, y

doubled

floatf

smart pointerip

<name> describes how the variable is used or
what it contains. The <scope> and <type>

portions should always be lowercase, and the
<name> should use mixed case:

m_hWnd

Variable Name

ipEnvelope

m_pUnkOuter

c_isLoaded

g_pWindowList

a handle to HWND

Description

a smart pointer to a COM interface

a pointer to an object

a static class member

a global pointer to an object

AppendixD.pmd 1/25/2005, 6:13 PM634

Appendix D • Developer environments • 635

VISUAL C++

Unicode string display
To set your debugger options to display Unicode strings, click the Tools menu,
click Options, click Debug, then check the Display Unicode Strings check box.

Variable value display
Pause the cursor over a variable name in the source code to see its current
value. If it is a structure, click the Eyeglasses icon or press Shift+F9 to bring up
the QuickWatch dialog box or drag and drop it into the Watch window.

Undocking windows
If the Output window (or any docked window, for that matter) seems too
small to you, try undocking it to make it a real window by right-clicking it and
toggling the Docking View item.

Conditional break points
Use conditional break points when you need to stop at a break point only once
some condition is reached—for instance, when a for loop reaches a particular
counter value. To do so, set the break point normally, then bring up the
Breakpoints window (Ctrl+B or Alt+F9). Select the specific break point you just
set and click the Condition button to display a dialog box in which you specify
the break point condition.

Preloading DLLs
You can preload DLLs that you want to debug before executing the program.
This allows you to set break points up front rather than waiting until the DLL
has been loaded during program execution. To do this, click Project, click Set-
tings, click Debug, click Category, then click Additional DLLs. Then, click in the
list area to add any DLLs you want to preload.

Changing display formats
You can change the display format of variables in the QuickWatch dialog box or
in the Watch window using the formatting symbols in the following table.

d, i

Symbol

signed decimal integer

Format

0xF000F065

Value

-268373915

Displays

u unsigned decimal integer 0x0065 101

o unsigned octal integer 0xF065 0170145

x, X hexadecimal integer 61541 0x0000F065

l, h long or short prefix for d, I, u, o, x, X 00406042, hx 0x0C22

f signed floating-point 3./2. 1.500000

e signed scientific notation 3./2. 1.500000e+00

g e or f, whichever is shorter 3./2. 1.5

c single character 0x0065 'e'

s string 0x0012FDE8 "Hello"

su Unicode string "Hello"

hr string 0 S_OK

To use a formatting symbol, type the variable name followed by a comma and the
appropriate symbol. For example, if var has a value of 0x0065, and you want to
see the value in character form, type “var,c” in the Name column of the Watch
window. When you press Enter, the character format value appears: var,c = ‘e’.

AppendixD.pmd 1/25/2005, 6:13 PM635

636 • ArcGIS Server Administrator and Developer Guide

VISUAL C++

Likewise, assuming that hr is a variable holding HRESULTs, view a human-
readable form of the HRESULT by typing “hr,hr” in the Name column.

You can use the formatting symbols shown in the following table to format the
contents of memory locations.

ma

Symbol

mw

mu

64 ASCII characters

Format

8 words

2-byte characters (Unicode)

0x0012ffac
.4...0...".0W&..
.....1W&.0.:W..1
...."..1.JO&.1.2
.."..1...0y....1

Value

0x0012ffac
34B3 00CB 3084 8094
22FF 308A 2657 0000

0x0012fc60
8478 77f4 ffff ffff
0000 0000 0000 0000

m
16 bytes in hex, followed by 16 ASCII
characters

0x0012ffac
B3 34 CB 00 84 30 94 80
FF 22 8A 30 57 26 00 00 .4...0....".0W&..

mb
16 bytes in hex, followed by 16 ASCII
characters

0x0012ffac
B3 34 CB 00 84 30 94 80
FF 22 8A 30 57 26 00 00 .4...0...".0W&..

md 4 double-words
0x0012ffac
00CB34B3 80943084 308A22FF 00002657

With the memory location formatting symbols, you can type any value or expres-
sion that evaluates a location. To display the value of a character array as a string,
precede the array name with an ampersand, &yourname. A formatting character
can also follow an expression:
• rep+1,x
• alps[0],mb
• xloc,g
• count,d
To watch the value at an address or the value to which a register points, use the
BY, WO, or DW operators:
• BY returns the contents of the byte pointed at.
• WO returns the contents of the word pointed at.
• DW returns the contents of the doubleword pointed at.
Follow the operator with a variable, register, or constant. If the BY, WO, or DW
operator is followed by a variable, then the environment watches the byte, word,
or doubleword at the address contained in the variable.

You can also use the context operator { } to display the contents of any location.

To display a Unicode string in the Watch window or the QuickWatch dialog box,
use the su format specifier. To display data bytes with Unicode characters in the
Watch window or the QuickWatch dialog box, use the mu format specifier.

AppendixD.pmd 1/25/2005, 6:13 PM636

Appendix D • Developer environments • 637

VISUAL C++

Keyboard shortcuts
There are numerous keyboard shortcuts that make working with the Visual
Studio Editor faster. Some of the more useful keyboard shortcuts follow.

The text editor uses many of the standard shortcut keys used by Windows
applications such as Word. Some specific source code editing shortcuts are listed
below.

Correctly indent selected code based on surrounding lines.

Action

Find the matching brace.

Display list of members.

Complete the word, once the number of letters entered allows the editor to recognize it. Useful when
completing function and variable names.

Indents selection one tab stop to the right.

Indents selection one tab to the left.

Alt+F8

Shortcut

Ctrl+]

Ctrl+J

Ctrl+Spacebar

Tab

Shift+Tab

Below is a table of common keyboard shortcuts used in the debugger.

Add or remove breakpoint from current line.

Action

Remove all breakpoints.

Disable breakpoints.

Display auto window and move cursor into it.

Display call stack window and move cursor into it.

Display locals window and move cursor into it.

Display auto window and move cursor into it.

End debugging session.

Execute code one statement at a time, stepping into functions.

Execute code one statement at a time, stepping over functions.

Restart a debugging session.

Resume execution from current statement to selected statement.

Run the application.

Run the application without the debugger.

Set the next statement.

Stop execution.

F9

Shortcut

Ctrl+Shift+F9

Ctrl+F9

Ctrl+Alt+A

Ctrl+Alt+C

Ctrl+Alt+L

Ctrl+Alt+A

Shift+F5

F11

F10

Ctrl+Shift+F5

Ctrl+F10

F5

Ctrl+F5

Ctrl+Shift+F10

Ctrl+Break

AppendixD.pmd 1/25/2005, 6:13 PM637

638 • ArcGIS Server Administrator and Developer Guide

VISUAL C++

Loading the following shortcuts can greatly increase your productivity with the
Visual Studio development environment.

Close a menu or dialog box, cancel an operation in progress, or place focus in the current document window.

Action

Create a new file.

Create a new project.

Cycle through the MDI child windows one window at a time.

Display the auto window and move the cursor into it.

Display the call stack window and move the cursor into it.

Display the document outline window and move the cursor into it.

Display the find window.

Display the find window. If there is no current Find criteria, put the word under your cursor in the find box.

Display the immediate window and move the cursor into it. Not available if you are in the text editor window.

Display the locals window and move the cursor into it.

Display the output window and move the cursor into it

Display the project explorer window and move the cursor into it.

Display the properties window and move the cursor into it.

Open a file.

Open a project.

Print all or part of the document.

Save all of the files, projects, or documents.

Select all.

Save the current document or selected item or items.

Esc

Shortcut

Ctrl+Shift+N

Ctrl+N

Ctrl+F6 or
Ctrl+Tab

Ctrl+Alt+A

Ctrl+Alt+C

Ctrl+Alt+T

Ctrl+H

Ctrl+F

Ctrl+Alt+I

Ctrl+Alt+L

Ctrl+Alt+O

Ctrl+Alt+J

Ctrl+Alt+P

Ctrl+Shift+O

Ctrl+O

Ctrl+P

Ctrl+Shift+S

Ctrl+S

Ctrl+A

Navigating through online Help topics
Right-click a blank area of a toolbar to display a list of all the available
toolbars. The Infoviewer toolbar contains up and down arrows that allow you
to cycle through help topics in the order in which they appear in the table of
contents. The left and right arrows cycle through help topics in the order that
you visited them.

IMPORTING ARCGIS TYPE LIBRARIES

To reference ArcGIS interfaces, types, and objects, you will need to import the
definitions into Visual C++ types. The #import command automates the creation
of the necessary files required by the compiler. The #import was developed to
support Direct-To-COM. When importing ArcGIS library types, there are a
number of parameters that must be passed.
#pragma warning(push)

#pragma warning(disable : 4192) /* Ignore warnings for types that are
 duplicated in win32 header files. */

#pragma warning(disable : 4146) /* Ignore warnings for use of minus on
 unsigned types. */

#import "\Program Files\ArcGIS\com\esriSystem.olb"

/* Type library to generate C++ wrappers. */ \

 raw_interfaces_only, /* Don't add raw_ to method names. */ \

 raw_native_types, /* Don't map to DTC smart types. */ \

 no_namespace, /* Don't wrap with C++ name space. */ \

 named_guids, /* Named guids and declspecs. */ \

 exclude("OLE_COLOR", "OLE_HANDLE", "VARTYPE")

/* Exclude conflicting types. */

#pragma warning(pop)

AppendixD.pmd 1/25/2005, 6:13 PM638

Appendix D • Developer environments • 639

VISUAL C++

The main use of #import is to create C++ code for interface definitions and
GUID constants (LIBID, CLSID, and IID) and to define smart pointers. The
exclude (OLE_COLOR, OLE_HANDLE, VARTYPE) is required because
Windows defines these to be unsigned longs, which conflicts with the ArcGIS
definition of long—this was required to support Visual Basic as a client of
ArcObjects, since Visual Basic has no support for unsigned types. There are no
issues with excluding these.

You can view the code generated by #import in the type library header (.tlh) files,
which are similar in format to a .h file. You may also find a type library imple-
mentation (.tli) file, which corresponds to a .cpp file. These files can be large but
are only regenerated when the type libraries change.

There are many type libraries at ArcGIS 9 for different functional areas. You can
start by importing those that contain the definitions you require. However,
#import does not automatically include all other definitions that the imported
type library requires. For example, when importing the type library esriGeometry,
it will contain references to types that are defined in esriSystem, so esriSystem
must be imported before esriGeometry.

A complete list of library dependencies can be found in the Overview topic for
each library.

Choosing the minimum set of type libraries helps reduce compilation time, al-
though this is not always significant. Here are some steps to help determine the
minimum number of type libraries required:

1. Do a compilation and look at the “missing type definition” errors generated
from code, for example, ICommand not found.

2. Place a #import statement for the library you need a reference for into your
stdafx.h file. Use the LibraryLocator utility or component help to assist in this
task.

3. Compile the project a second time.

4. The compiler will issue errors for types it cannot resolve in the imported type
libraries; these are typically type definitions, such as WKSPoint or interfaces
that are inherited into other interfaces. For example, if working with geom-
etry objects such as points, start by importing esriGeometry. The compiler will
issue various error messages such as:
c:\temp\sample\debug\esrigeometry.tlh(869) : error C2061: syntax error :

identifier 'WKSPoint'

Looking up the definition of WKSPoint, you see it is defined in esriSystem.
Therefore, importing esriSystem before esriGeometry will resolve all these
issues.

Below is a typical list of imports for working with the ActiveX controls.
#pragma warning(push)

#pragma warning(disable : 4192) /* Ignore warnings for types that are
duplicated in win32 header files. */

#pragma warning(disable : 4146) /* Ignore warnings for use of minus on
unsigned types. */

AppendixD.pmd 1/25/2005, 6:13 PM639

640 • ArcGIS Server Administrator and Developer Guide

VISUAL C++

#import "C:\Program Files\ArcGIS\com\esriSystem.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids, exclude("OLE_COLOR",
"OLE_HANDLE", "VARTYPE")

#import "C:\Program Files\ArcGIS\com\esriSystemUI.olb"
raw_interfaces_only, raw_native_types, no_namespace, named_guids

#import "C:\Program Files\ArcGIS\com\esriGeometry.olb"
raw_interfaces_only, raw_native_types, no_namespace, named_guids

#import "C:\Program Files\ArcGIS\com\esriDisplay.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "C:\Program Files\ArcGIS\com\esriOutput.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "C:\Program Files\ArcGIS\com\esriGeoDatabase.olb"
raw_interfaces_only, raw_native_types, no_namespace, named_guids

#import "C:\Program Files\ArcGIS\com\esriCarto.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

// Some of the Engine controls

#import "C:\Program Files\ArcGIS\bin\TOCControl.ocx" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "C:\Program Files\ArcGIS\bin\ToolbarControl.ocx"
raw_interfaces_only, raw_native_types, no_namespace, named_guids

#import "C:\Program Files\ArcGIS\bin\MapControl.ocx" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "C:\Program Files\ArcGIS\bin\PageLayoutControl.ocx"
raw_interfaces_only, raw_native_types, no_namespace, named_guids

// Additionally for 3D controls

#import "C:\Program Files\ArcGIS\com\esri3DAnalyst.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "C:\Program Files\ArcGIS\com\esriGlobeCore.olb" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "C:\Program Files\ArcGIS\bin\SceneControl.ocx" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import "C:\Program Files\ArcGIS\bin\GlobeControl.ocx" raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#pragma warning(pop)

A similar issue arises when writing IDL that contains definitions from other type
libraries. In this situation, use importlib just after the library definition. For
example, writing an external command for ArcMap would require you to create a
COM object implementing ICommand. This definition is in esriSystemUI and is
imported into the IDL as follows:
 library WALKTHROUGH1CPPLib

 {

 importlib("stdole32.tlb");

 importlib("stdole2.tlb");

 importlib("C:\Program Files\ArcGIS\com\esriSystemUI.olb");

 coclass ZoomIn

 {

 [default] interface IUnknown;

 interface ICommand;

 }

 };

AppendixD.pmd 1/25/2005, 6:13 PM640

Appendix D • Developer environments • 641

VISUAL C++

ATL AND THE ACTIVEX CONTROLS

This section covers how to use ATL to add controls to a dialog box. Although
ATL is focused on providing COM support, it also supplies some useful Windows
programming wrapper classes. One of the most useful is CWindow, a wrapper
around a window handle (HWND). The method names on CWindow correspond
to the Win32 API functions. For example:
HWND buttonHWnd = GetDlgItem(IDC_BUTTON1); // Get window handle of

 button.

CWindow myButtonWindow(buttonHWnd); // Attach window handle
 to CWindow class.

myButtonWindow.SetWindowText(_T("Button Title")); // Win32 function to
 change button caption

CWindow is a generic wrapper for all window handles, so for specific Windows
messages to Windows common controls, such as buttons, tree views, or edit
boxes, one approach is to send window messages directly to the window, for
example:
// Set button to be checked (pushed in or checkmarked, depending on button style)

myButtonWindow.SendMessage(BM_SETCHECK, BST_CHECKED);

However, there are some wrapper classes for these standard window common
controls in a header file atlcontrols.h. This is available as part of an ATL sample
ATLCON supplied in MSDN. See the article ‘HOWTO: Using Class Wrappers to
Access Windows Common Controls in ATL’, available for download from
Microsoft. This header file is an early version of Windows Template Libraries
(WTL).

The Visual Studio Resource Editor can be used to design and position Windows
common controls and ActiveX controls on a dialog box. To create and manipulate
the dialog box, a C++ class is typically created that inherits from CAxDialogImpl.
This class provides the plumbing to create and manage the ActiveX control on a
window. The ATL wizard can be used to supply the majority of the boilerplate
code. The steps to create a dialog box and add an ActiveX control in an ATL
project are discussed below.

1. Click the menu command Insert/New ATL Object.

2. Click the Miscellaneous category, then click the Dialog object.

3. A dialog box resource and a class inheriting from CAxDialogImpl will be
added to your project.

4. Right-click the dialog box in Resource view and click Insert ActiveX Control.
This will display a list of available ActiveX controls.

5. Double-click a control in the list to add that control to the dialog box.

For a general discussion of ATL, see the earlier
section ‘ATL in brief ’.

AppendixD.pmd 1/25/2005, 6:13 PM641

642 • ArcGIS Server Administrator and Developer Guide

VISUAL C++

6. Right-click the control and click Properties to set the control’s design-time
properties.

Accessing a control on a dialog box through a COM interface
To retrieve a handle to the control that is hosted on a form, use the GetDlgControl
ATL method that is inherited from CAxDialogImpl to take a resource ID and
return the underlying control pointer:
ITOCControlPtr ipTOCControl;

GetDlgControl(IDC_TOCCONTROL1, IID_ITOCControl, (void**) &ipTOCControl);

ipTOCControl->AboutBox();

Listening to events from a control
The simplest way to add events is to use the class wizard. Right-click the control
and choose Events. Next, click the resource ID of the control, then click the
event (for example, OnMouseDown). Next click Add Handler. Finally, ensure the
dialog box begins listening to events by adding AtlAdviseSinkMap(this,TRUE) to
OnInitDialog. To finish listening to events, add a message handler for OnDestroy and
add a call to AtlAdviseSinkMap(this, FALSE).

Creating a control at runtime
The CAxWindow class provides a mechanism to create and host ActiveX controls
in a similar manner to any other window class. This may be desirable if the parent
window of the control is also created at runtime.
AtlAxWinInit();

CAxWindow wnd;

//m_hWnd is the parent window handle.

//rect is the size of ActiveX control in client coordinates.

//IDC_MYCTL is a unique ID to identify the controls window.

RECT rect = {10,10,400,300};

wnd.Create(m_hWnd, rect, _T("esriReaderControl.ReaderControl"),
WS_CHILD|WS_VISIBLE, 0, IDC_MYCTL);

Make sure dialog boxes that host ActiveX
controls inherit from CAxDialogImpl and not

CDialogImpl. If this mistake is made, the
DoModal method of the dialog box simply exits

with no obvious cause.

Make sure applications that use Windows
common controls, such as treeview, correctly call
InitCommonControlsEx to load the window

class. Otherwise, the class will not function
correctly.

Make sure applications using COM objects call
CoInitialize. This initializes COM in the

application. Without this call, any CoCreate calls
will fail.

For a detailed discussion on handling events in
ATL, see the later section ‘Handling COM events

in ATL’.

AppendixD.pmd 1/25/2005, 6:13 PM642

Appendix D • Developer environments • 643

VISUAL C++

Setting the buddy control property
The ToolbarControl and TOCControl need to be associated with a “buddy”
control on the dialog box. This is typically performed in the OnInitDialog windows
message handler of a dialog box.
LRESULT CEngineControlsDlg::OnInitDialog(UINT uMsg, WPARAM wParam, LPARAM
lParam, BOOL& bHandled)

{

 // Get the Control's interfaces into class member variables.

 GetDlgControl(IDC_TOOLBARCONTROL, IID_IToolbarControl, (void **)
&m_ipToolbarControl);

 GetDlgControl(IDC_TOCCONTROL, IID_ITOCControl, (void **) &m_ipTOCControl);

 GetDlgControl(IDC_PAGELAYOUTCONTROL, IID_IPageLayoutControl, (void **)
&m_ipPageLayoutControl);

 // Connect to the controls.

 AtlAdviseSinkMap(this, TRUE);

 // Set buddy controls.

 m_ipTOCControl->SetBuddyControl(m_ipPageLayoutControl);

 m_ipToolbarControl->SetBuddyControl(m_ipPageLayoutControl);

 return TRUE;

}

Known limitations of Visual Studio C++ Resource Editor and ArcGIS
ActiveX controls

Disabled buddy property on property page
In Visual Studio C++ you cannot set the buddy property of the TOCControl and
the ToolbarControl through the General property page. Visual C++ does not
support controls finding other controls at design time. However, this step can be
performed in code in the OnInitDialog method.

ToolbarControl not resized to the height of one button
In other environments (Visual Basic 6, .NET) the ToolbarControl will automati-
cally resize to be one button high. However, in Visual Studio C++ 6 it can be any
size. In MFC and ATL, the ActiveX host classes do not allow controls to deter-
mine their own size.

Design-time property pages disappearing when displaying context-sensitive
help
When viewing the controls property page at design time, right-clicking and click-
ing What’s This? will cause the help tip to display; however, the property pages
will then close. This is a limitation of the Visual Studio floating windows com-
bined with the floating tip window from HTML help. Clicking the Help button
provides the same text for the whole property page.

MFC AND THE ACTIVEX CONTROLS

There are many choices for how to work with ArcGIS ActiveX controls in Visual
C++, the first of which is what framework to use to host the controls (for
example, ATL or MFC). A second decision is where the control will be hosted

AppendixD.pmd 1/25/2005, 6:13 PM643

644 • ArcGIS Server Administrator and Developer Guide

VISUAL C++

(dialog, MDI application, and so forth). This section discusses MFC and hosting
the control on a dialog box.

Creating an MFC dialog box-based application
If you do not have a dialog box in your application or component, here are the
steps to create an MFC dialog box application.

1. Launch Visual Studio C++ 6 and click New.

2. Click the Projects tab and choose MFC AppWizard (exe). Enter the project
name and location and click OK.

3. For Step 1 of the wizard: From the radio buttons, change the application type
to Dialog Based. Click Next.

4. For Step 2 of the wizard: The default project features are fine, although you
can uncheck AboutBox to simplify the application. Ensure that the option to
support ActiveX controls is checked. Click Next.

5. For Step 3 of the wizard: The default settings on this page are fine. The MFC
DLL is shared. Click Next.

6. For Step 4 of the wizard: This shows you what the wizard will generate. Click
Finish.

You should now have a simple dialog box-based application. In the resource view,
you will see “TODO: Place Dialog Controls Here”. You can place buttons, list
boxes, and so forth, in this dialog box. The dialog box can also host ActiveX
controls; there are two approaches to doing this, as discussed below. You can also
compile and run this application.

Hosting controls on an MFC dialog box and accessing them using
IDispatch
1. Right-click the MFC dialog box and click Insert ActiveX control.

2. Double-click a control from the list box. The control
appears on the dialog box with a default size.

3. Size and position the control as required.

4. Repeat Steps 1 through 3 for each control.

5. You can right-click the control and choose Properties to
set the control’s design-time properties.

6. To access the control in code, you will need ArcGIS
interface definitions for IMapControl, and so on. To do
this, use the #import command in your stdafx.h file. See
the section ‘Importing ArcGIS type libraries’ on how to
do this.

7. MFC provides control hosting on a dialog box; this will
translate Windows messages, such as WM_SIZE, into
appropriate control method calls. However, to be able to
make calls on a control, there are a few steps you must
perform to go from a resource ID to a controls interface.
The following code illustrates setting the TOCControl’s
buddy to be the MapControl:

Inserting ActiveX controls on a dialog box in
Visual Studio C++ design time. The TOCControl
and MapControl have been added to the dialog

box. The ToolbarControl is next.

AppendixD.pmd 1/25/2005, 6:13 PM644

Appendix D • Developer environments • 645

VISUAL C++

// Code to set the Buddy property of the TOCControl to be the MapControl.

// Get a pointer to the PageLayoutControl and TOCControl

IPageLayoutControlPtr ipPageLayoutControl;

GetDlgControl(IDC_PAGELAYOUTCONTROL1, IID_IPageLayoutControl, (void**)
&ipPageLayoutControl);

ITOCControlPtr ipTOCControl;

GetDlgControl(IDC_TOCCONTROL1, IID_ITOCControl, (void**) &ipTOCControl);

// Get the IDispatch of the PageLayoutControl.

IDispatchPtr ipBuddyDisp = ipPageLayoutControl;

// Set the TOCControls Buddy to the map control.

ipTOCControl->putref_Buddy(ipBuddyDisp);

8. To catch events from the controls, double-click the control on the form and
supply the name of a method to be called. By default, the wizard will add an
extra word “On” to the beginning of the event handler. Remove this to avoid
the event handler’s name from becoming “OnOnMouseDownMapcontrol1”.
The wizard will then automatically generate the necessary MFC sink map
macros to listen to events.

Adding controls to an MFC dialog box using IDispatch wrappers
As all ActiveX controls support IDispatch, the following is the typical approach to
add an ActiveX control to an MFC project:

1. Click Project, click Add, then click Components and
Controls.

2. Click Registered ActiveX Controls.

3. Double-click to select a control (for example, ESRI
TOCControl), then click OK to insert a component.
Click OK to generate wrappers. This will add an icon for
the control to the Controls toolbar in Visual Studio.

4. Additional source files are added to your project (for
example, toccontrol.cpp and toccontrol.h). These files
contain a wrapper class (for example, CTOCControl) to
provide methods and properties to access the control.
This class will invoke the control through the IDispatch
calling mechanism. Note that IDispatch does incur some
performance overhead to package parameters when
making method and property calls. The wrapper class
inherits from an MFC CWnd class that hosts an ActiveX
control.

5. Repeat Steps 1 through 4 to add each control to the
project’s Controls toolbar.

6. Choose a control from the Controls toolbar and drag it onto the dialog box.

7. Right-click the control and click Properties. This will allow design-time
properties to be set on the control. Note: In Visual Studio C++, you cannot
set the buddy property of the TOCControl and the ToolbarControl.

The design environment showing the
TOCControl, MapControl, and ToolbarControl has

been added to the Controls toolbar and to the
dialog box.

AppendixD.pmd 1/25/2005, 6:13 PM645

646 • ArcGIS Server Administrator and Developer Guide

VISUAL C++

This environment does not support controls finding other controls at design
time. However, this step can be performed in code using the OnInitDialog
method.
// Note no addref performed with GetControlUnknown, so no need to release
// this pointer.

LPUNKNOWN pUnk = m_mapcontrol.GetControlUnknown();

LPDISPATCH pDisp =

0;pUnk->QueryInterface(IID_IDispatch, (void **) &pDisp);

// Set TOCControls buddy to be MapControl.

m_toccontrol.SetRefBuddy(pDisp);

pDisp->Release();

8. Right-click the control and choose Class Wizard to launch the class wizard.
Click the Member Variables tab and click the resource ID corresponding to the
control to give the control a member variable name. The dialog box class
member variable can now be used to invoke methods and properties on the
control.

9. To catch control events, click the Message Maps tab of the Class wizard and
choose the resource ID of the control. In the list of messages, click the event
to catch—for example, OnBeginLabelEdit. Double-click this event and a
handler for it will be added to your dialog box class. By default, the wizard
will add an extra word, “On”, to the beginning of the event handler. Remove
this to avoid the event handler name, becoming
OnOnBeginLabelEditToccontrol1.

Do not use the method GetIDispatch (inher-
ited from MFC’s CCmdTarget) on the wrapper

classes; it is intended for objects implementing
IDispatch and not the wrapper classes that are

calling IDispatch. Instead, to get a control’s
IDispatch, use

m_mapcontrol.GetControlUnknown
followed by QueryInterface to IDispatch. See

the above example of setting the buddy property.

Visual Studio C++ Class Wizard. Adding member
variables to the dialog box for the ActiveX

controls.

AppendixD.pmd 1/25/2005, 6:13 PM646

Appendix D • Developer environments • 647

VISUAL C++

HANDLING COM EVENTS IN ATL

Below is a summary of terminology used here when discussing COM events in
Visual C++ and ATL.

Inbound interface—This is the normal case where a COM object implements a
predefined interface.

Outbound interface—This is an interface of methods that a COM object will
fire at various times. For example, the Map coclass will fire an event on the
IActiveViewEvents in response to changes in the map.

Event source—The source COM object will fire events to an outbound inter-
face when certain actions occur. For example, the Map coclass is a source of
IActiveViewEvents and will fire the IActiveViewEvents::ItemAdded event when a
new layer is added to the map. The source object can have any number of clients,
or event sink objects, listening to events. Also, a source object may have more
than one outbound interface; for example, the Map coclass also fires events on an
IMapEvents interface. An event source will typically declare its outbound inter-
faces in IDL with the [source] tag.

Event sink—A COM object that listens to events is said to be a “sink” for
events. The sink object implements the outbound interface; this is not always
advertised in the type libraries because the sink may listen to events internally. An
event sink typically uses the connection point mechanism to register its interest in the
events of a source object.

Connection point—COM objects that are the source of events typically use the
connection point mechanism to allow sinks to hook up to a source. The connec-
tion point interfaces are the standard COM interfaces IConnectionPointContainer and
IConnectionPoint.

Fire event—When a source object needs to inform all the sinks of a particular
action, the source is said to “fire” an event. This results in the source iterating all
the sinks and making the same method call on each. For example, when a layer is
added to a map, the Map coclass is said to fire the ItemAdded event. So all the
objects listening to the Map’s outbound IActiveViewEvents interface will be called
on their implementation of the ItemAdded method.

Advise and unadvise events—To begin receiving events, a sink object is said
to “advise” a source object that it needs to receive events. When events are no
longer required, the sink will unadvise the source.

The ConnectionPoint mechanism
The source object implements the IConnectionPointContainer interface to allow sinks
to query a source for a specific outbound interface. The following steps are
performed to begin listening to an event. ATL implements this with the AtlAdvise
method.

1. The sink will QI the source object’s IConnectionPointContainer and call
FindConnectionPoint to supply an interface ID for outbound interfaces. To be
able to receive events, the sink object must implement this interface.

2. The source may implement many outbound interfaces and will return a pointer
to a specific connection point object implementing IConnectionPoint to repre-
sent one outbound interface.

AppendixD.pmd 1/25/2005, 6:13 PM647

648 • ArcGIS Server Administrator and Developer Guide

VISUAL C++

3. The sink calls IConnectionPoint::Advise,
passing a pointer to its own IUnknown
implementation. The source will store
this with any other sinks that may be
listening to events. If the call to Advise
was successful, the sink will be given an
identifier—a simple unsigned long value,
called a cookie—to give back to the
source at a later point when it no longer
needs to listen to events.

The connection is now complete; methods will be called on any listening sinks by
the source. The sink will typically hold on to an interface pointer to the source, so
when a sink has finished listening it can be released from the source object by
calling IConnectionPoint::Unadvise. This is implemented with AtlUnadvise.

IDispatch events versus pure COM events
An outbound interface can be a pure dispatch interface. This
means instead of the source calling directly onto a method in a
sink, the call is made via the IDispatch::Invoke mechanism. The
IDispatch mechanism has a performance overhead to package
parameters compared to a pure vtable COM call. However, there
are some situations where this must be used. ActiveX controls
must implement their default outbound interface as a pure
IDispatch interface; for example, IMapControlEvents2 is a pure
dispatch interface. Also, Microsoft Visual Basic 6 can only be a
source of pure IDispatch events. The connection point mecha-
nism is the same as for pure COM mechanisms, the main differ-
ence being in how the events are fired.

ATL provides some macros to assist with listening to IDispatch
events; this is discussed on MSDN under ‘Event Handling and
ATL’. There are two templates available, IDispEventImpl and
IDispEventSimpleImpl, that are discussed in the following sec-
tions.

Using IDispEventImpl to listen to events
The ATL template IDispEventImpl will use a type library to “crack” the IDispatch
calls and process the arguments into C++ method calls. The Visual Studio Class
wizard can provide this mechanism automatically when adding an ActiveX con-
trol to a dialog box. Right-click the control and click Events. In the Class wizard,
choose the resource ID of the control, choose the event, then click Add Handler.

The following code illustrates the event handling code added by the wizard, with
some modifications to ensure advise and unadvise are performed.
#pragma once

#include "resource.h" // Main symbols

#include <atlhost.h>

//

Connection point mechanism for hooking source
to sink objects

There is a bug in the wizard: it does not add
the advise and unadvise code to the dialog box.

To fix this issue, add a message handler for
OnDestroy. Then in the OnInitDialog handler,

call AtlAdviseSinkMap with a TRUE second
parameter to begin listening to events. Place a
corresponding call to AtlAdviseSinkMap (with

FALSE as the second parameter) in the
OnDestroy handler. This is discussed further in

the MSDN article ‘BUG: ActiveX Control Events
Are Not Fired in ATL Dialog (Q190530)’.

Visual Studio C++ Class Wizard. Adding event
handler to an ActiveX control on a dialog box.

AppendixD.pmd 1/25/2005, 6:13 PM648

Appendix D • Developer environments • 649

VISUAL C++

// CMyDialog

class CMyDialog :

 public CAxDialogImpl<CMyDialog>,

 public IDispEventImpl<IDC_MAPCONTROL1, CMyDialog>

{

 public

enum { IDD = IDD_MYDIALOG };

BEGIN_MSG_MAP(CMyDialog)

 MESSAGE_HANDLER(WM_INITDIALOG, OnInitDialog)

 // Add a handler to ensure event unadvise occurs.

 MESSAGE_HANDLER(WM_DESTROY, OnDestroy)

 COMMAND_ID_HANDLER(IDOK, OnOK)

 COMMAND_ID_HANDLER(IDCANCEL, OnCancel)

END_MSG_MAP()

 LRESULT OnInitDialog(UINT uMsg, WPARAM wParam, LPARAM lParam, BOOL&
bHandled)

 {

 // Calls IConnectionPoint::Advise() for each control on the dialog box
 // with sink map entry

 AtlAdviseSinkMap(this, TRUE);

 return 1; // Let the system set the focus.

 }

 LRESULT OnDestroy(UINT uMsg, WPARAM wParam, LPARAM lParam, BOOL& bHandled)

 {

 // Calls IConnectionPoint::Unadvise() for each control on the dialog box
 // with sink map entry

 AtlAdviseSinkMap(this, FALSE);

 return 0;

 }

 LRESULT OnOK(WORD wNotifyCode, WORD wID, HWND hWndCtl, BOOL& bHandled)

 {

 EndDialog(wID);

 return 0;

 }

 LRESULT OnCancel(WORD wNotifyCode, WORD wID, HWND hWndCtl, BOOL& bHandled)

 {

 EndDialog(wID);

 return 0;

 }

 // ATL callback from SinkMap entry

 VOID __stdcall OnMouseDownMapcontrol1(LONG button, LONG shift, LONG x,
LONG y, DOUBLE mapX, DOUBLE mapY)

AppendixD.pmd 1/25/2005, 6:13 PM649

650 • ArcGIS Server Administrator and Developer Guide

VISUAL C++

 {

 MessageBox(_T("MouseDown!"));

 }

BEGIN_SINK_MAP(CMyDialog)

 // Make sure the Event Handlers have __stdcall calling convention.

 // The 0x1 is the Dispatch ID of the OnMouseDown method.

 SINK_ENTRY(IDC_MAPCONTROL1, 0x1, OnMouseDownMapcontrol1)

END_SINK_MAP()

};

Using IDispEventSimpleImpl to listen to events
As the name of this template suggests, it is a simpler version of IDispEventImpl.
The type library is no longer used to turn the IDispatch arguments into a C++
method call. While this may be a simpler implementation, it now requires the
developer to supply a pointer to a structure describing the format of the event
parameters. This structure is typically placed in the .cpp file. For example, here is
the structure describing the parameters of an OnMouseDown event for the
MapControl:
_ATL_FUNC_INFO g_ParamInfo_MapControl_OnMouseDown =

{

 CC_STDCALL, // Calling convention

 VT_EMPTY, // Return type

 6, // Number of arguments

 {VT_I4, VT_I4, VT_I4, VT_I4, VT_R8, VT_R8} // VariantArgument types

};

The header file now inherits from IDispEventSimpleImpl and uses a different
macro, SINK_ENTRY_INFO, in the SINK_MAP. Also, the events interface ID is
required; #import can be used to define this symbol. Note that a dispatch inter-
face is normally prefixed with DIID instead of IID.
#pragma once

#include "resource.h" // Main symbols

#include <atlhost.h>

// reference to structure defining event parameters

extern _ATL_FUNC_INFO g_ParamInfo_MapControl_OnMouseDown;

//

// CMyDialog2

class CMyDialog2 :

 public CAxDialogImpl<CMyDialog2>,

 public IDispEventSimpleImpl<IDC_MAPCONTROL1, CMyDialog2,
&DIID_IMapControlEvents2>

{

public:

// Message handler code removed, it is the same as CMyDialog using
IDispEventSimple

The following issues with events are documented
on the MSDN Knowledge Base when using

IDispEventImpl. Fixes to ATL code are shown in
MSDN for these issues; however, it is not always

desirable to modify or copy ATL header files. In
this case, the IDispEventSimpleImpl can be

used instead.
BUG: Events Fail in ATL Containers when Enum

Used as Event Parameter (Q237771)
BUG: IDispEventImpl Event Handlers May Give

Strange Values for Parameters (Q241810)

See the ‘Importing ArcGIS type libraries’ section
earlier in this appendix for an explanation of

#import.

AppendixD.pmd 1/25/2005, 6:13 PM650

Appendix D • Developer environments • 651

VISUAL C++

BEGIN_SINK_MAP(CMyDialog2)

 // Make sure the Event Handlers have __stdcall calling convention.

 // The 0x1 is the Dispatch ID of the OnMouseDown method.

 SINK_ENTRY_INFO(IDC_MAPCONTROL1, // ID of event source

DIID_IMapControlEvents2, // interface to listen to

0x1, // dispatch ID of MouseDown

OnMapControlMouseDown, // method to call when event arrives

&g_ParamInfo_MapControl_OnMouseDown) // parameter info for method call

END_SINK_MAP()

};

Listening to more than one IDispatch event interface on a COM
object
If a single COM object needs to receive events from more than one IDispatch
source, then this can cause compiler issues with ambiguous definitions of the
DispEventAdvise method. This is not normally a problem in a dialog box, as
AtlAdviseSinkMap will handle all the connections. The ambiguity can be avoided
by introducing different typedefs each time IDispEventSimpleImpl is inherited. The
following example illustrates a COM object called CListen, which is a sink for
dispatch events from a MapControl and a PageLayoutControl.
#pragma once

#include "resource.h" // Main symbols

// This is the parameter information

extern _ATL_FUNC_INFO g_ParamInfo_MapControl_OnMouseDown;

extern _ATL_FUNC_INFO g_ParamInfo_PageLayoutControl_OnMouseDown;

//

// Define some typedefs of the dispatch template.

//

class CListen; // Forward definition

typedef IDispEventSimpleImpl<0, CListen, &DIID_IMapControlEvents2>

 IDispEventSimpleImpl_MapControl;

typedef IDispEventSimpleImpl<1, CListen, &DIID_IPageLayoutControlEvents>

 IDispEventSimpleImpl_PageLayoutControl;

//

// CListen

class ATL_NO_VTABLE CListen :

 public CComObjectRootEx<CComSingleThreadModel>,

 public CComCoClass<CListen,&CLSID_Listen>,

 public IDispEventSimpleImpl_MapControl,

 public IDispEventSimpleImpl_PageLayoutControl,

 public IListen

{

AppendixD.pmd 1/25/2005, 6:13 PM651

652 • ArcGIS Server Administrator and Developer Guide

VISUAL C++

public:

 CListen()

 {

 }

DECLARE_REGISTRY_RESOURCEID(IDR_LISTEN)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CListen)

 COM_INTERFACE_ENTRY(IListen)

END_COM_MAP()

// Associated source and dispatchID to a method call

BEGIN_SINK_MAP(CListen)

 SINK_ENTRY_INFO(0, // ID of event source

DIID_IMapControlEvents2, // Interface to listen to

 0x1, // Dispatch ID to receive

 OnMapControlMouseDown, // Method to call when event arrives
 &g_ParamInfo_MapControl_OnMouseDown) // parameter info for

 // method call

 SINK_ENTRY_INFO(1,

 DIID_IPageLayoutControlEvents,

 0x1,

 OnPageLayoutControlMouseDown,

 &g_ParamInfo_PageLayoutControl_OnMouseDown)

END_SINK_MAP()

// IListen

public:

 STDMETHOD(SetControls)(IUnknown* pMapControl, IUnknown*
pPageLayoutControl);

 STDMETHOD(Clear)();

private:

 void __stdcall OnMapControlMouseDown(long button, long shift, long x, long
y, double mapX, double mapY);

 void __stdcall OnPageLayoutControlMouseDown(long button, long shift, long
x, long y, double pageX, double pageY);

 IUnknownPtr m_ipUnkMapControl;

 IUnknownPtr m_ipUnkPageLayoutControl;

};

The implementation of CListen contains the following code to start listening to
the controls; the typedef avoids the ambiguity of the DispEventAdvise implemen-
tation.
 // Start listening to the MapControl.

 IUnknownPtr ipUnk = pMapControl;

 HRESULT hr = IDispEventSimpleImpl_MapControl::DispEventAdvise(ipUnk);

AppendixD.pmd 1/25/2005, 6:13 PM652

Appendix D • Developer environments • 653

VISUAL C++

 if (SUCCEEDED(hr))

 m_ipUnkMapControl = ipUnk; // Store pointer to MapControl for Unadvise.

 // Start listening to the PageLayoutControl.

 ipUnk = pPageLayoutControl;

 hr = IDispEventSimpleImpl_PageLayoutControl::DispEventAdvise(ipUnk);

 if (SUCCEEDED(hr))

 m_ipUnkPageLayoutControl = ipUnk; // Store pointer to PageLayoutControl
// for Unadvise.

The implementation of CListen also contains the following code to UnAdvise
and stop listening to the controls.
 // Stop listening to the MapControl.

 if (m_ipUnkMapControl!=0)

 IDispEventSimpleImpl_MapControl::DispEventUnadvise(m_ipUnkMapControl);

 m_ipUnkMapControl = 0;

 if (m_ipUnkPageLayoutControl!=0)

 IDispEventSimpleImpl_PageLayoutControl::DispEventUnadvise(m_ipUnkPageLayoutControl);

 m_ipUnkPageLayoutControl= 0;

Creating a COM events source
For an object to be a source of events, it will need to provide an implementation
of IConnectionPointContainer and a mechanism to track which sinks are listening to
which IConnectionPoint interfaces. ATL provides this through the
IConnectionPointContainerImpl template. In addition, ATL provides a wizard to
generate code to fire IDispatch events for all members of a given dispatch events
interface. Below are the steps to modify an ATL COM coclass to support a con-
nection point:

1. First ensure that your ATL coclass has been compiled at least once. This will
allow the wizard to find an initial type library.

2. In Class view, right-click the COM object and click Implement Connection
Point.

3. Either use a definition of events from the IDL in the project or click Add
Typelib to browse for another definition.

4. Check the outbound interface to be implemented in the coclass.

AppendixD.pmd 1/25/2005, 6:13 PM653

654 • ArcGIS Server Administrator and Developer Guide

VISUAL C++

5. Clicking OK will modify your ATL class and generate the proxy classes in a
header file, with a name ending in CP, for firing events.

If the wizard fails to run, use the following example, which illustrates a
coclass that is a source of ITOCControlEvents, a pure dispatch interface.
#pragma once

#include "resource.h" // Main symbols

#include "TOCControlCP.h" // Include generated connection point class
 // for firing events.

//

// CMyEventSource

class ATL_NO_VTABLE CMyEventSource :

public CComObjectRootEx<CComSingleThreadModel>,

public CComCoClass<CMyEventSource,&CLSID_MyEventSource>,

public IMyEventSource,

public CProxyITOCControlEvents< CMyEventSource >, // Generated
 // ConnectionPoint class

public IConnectionPointContainerImpl< CMyEventSource > // Implementation
 // of Connection point Container

{

public:

CMyEventSource()

{

}

DECLARE_REGISTRY_RESOURCEID(IDR_MYEVENTSOURCE)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CMyEventSource)

COM_INTERFACE_ENTRY(IMyEventSource)

COM_INTERFACE_ENTRY(IConnectionPointContainer) // Allow QI to this
 // interface.

END_COM_MAP()

AppendixD.pmd 1/25/2005, 6:13 PM654

Appendix D • Developer environments • 655

VISUAL C++

// List of available connection points

BEGIN_CONNECTION_POINT_MAP(CMyEventSource)

CONNECTION_POINT_ENTRY(DIID_ITOCControlEvents)

END_CONNECTION_POINT_MAP()

};

The connection point class (TOCControlEventsCP.h in the above example) contains
code to fire an event to all sink objects on a connection point.

There is one method in the class for each event beginning “Fire”. Each method
will build a parameter list of variants to pass as an argument to the dispatch
Invoke method. Each sink is iterated, and a pointer to the sink is stored in a
vector m_vec member variable inherited from IConnectionPointContainerImpl. Note
that m_vec can contain pointers to zero; this must be checked before firing the
event.
template <class T>

class CProxyITOCControlEvents : public IConnectionPointImpl<T,
&DIID_ITOCControlEvents, CComDynamicUnkArray>

{

public:

 VOID Fire_OnMouseDown(LONG button, LONG shift, LONG x, LONG y)

 {

 // Package each of the parameters into an IDispatch argument list.

 T* pT = static_cast<T*>(this);

 int nConnectionIndex;

 CComVariant* pvars = new CComVariant[4];

 int nConnections = m_vec.GetSize();

 // Iterate each sink object.

 for (nConnectionIndex = 0; nConnectionIndex < nConnections;
nConnectionIndex++)

 {

 pT->Lock();

 CComPtr<IUnknown> sp = m_vec.GetAt(nConnectionIndex);

 pT->Unlock();

 IDispatch* pDispatch = reinterpret_cast<IDispatch*>(sp.p);

 // Note m_vec can contain 0 entries so it is important to check for
// this.

 if (pDispatch != NULL)

 {

 // Build up the argument list.

 pvars[3] = button;

 pvars[2] = shift;

 pvars[1] = x;

 pvars[0] = y;

 DISPPARAMS disp = { pvars, NULL, 4, 0 };

 // Fire the dispatch method, 0x1 is the DispatchId for MouseDown.

 pDispatch->Invoke(0x1, IID_NULL, LOCALE_USER_DEFAULT,
DISPATCH_METHOD, &disp, NULL, NULL, NULL);

 }

AppendixD.pmd 1/25/2005, 6:13 PM655

656 • ArcGIS Server Administrator and Developer Guide

VISUAL C++

 }

 delete[] pvars; // Clean up the parameter list.

 }

 VOID Fire_OnMouseUp(LONG button, LONG shift, LONG x, LONG y)

 {

 // ... Other events

To fire an event from the source, call Fire_OnMouseDown when required.

A similar approach can be used for firing events to a pure COM (non-IDispatch)
interface. The wizard will not generate the connection point class, so this must be
written by hand; the following example illustrates a class that will fire an
ITOCBuddyEvents::ActiveViewReplaced event; ITOCBuddyEvents is a pure COM,
non-IDispatch interface. The key difference is that there is no need to package
the parameters; a direct method call can be made.
template < class T >

class CProxyTOCBuddyEvents : public IConnectionPointImpl< T,
&IID_ITOCBuddyEvents, CComDynamicUnkArray >

{

 // This class based on the ATL-generated connection point class.

public:

 void Fire_ActiveViewReplaced(IActiveView* pNewActiveView)

 {

 T* pT = static_cast< T* >(this);

 int nConnectionIndex;

 int nConnections = this->m_vec.GetSize();

 for (nConnectionIndex = 0; nConnectionIndex < nConnections;
nConnectionIndex++)

 {

 pT->Lock();

 CComPtr< IUnknown > sp=this->m_vec.GetAt(nConnectionIndex);

 pT->Unlock();

 ITOCBuddyEvents* pTOCBuddyEvents = reinterpret_cast< ITOCBuddyEvents*
>(sp.p);

 if (pTOCBuddyEvents)

 pTOCBuddyEvents->ActiveViewReplaced(pNewActiveView);

 }

 }

};

IDL declarations for an object that supports events
When an object is exported to a type library, the event interfaces are declared by
using the [source] tag against the interface name. For example, an object that fires
ITOCBuddyEvents declares:
[source] interface ITOCBuddyEvents;

If the outbound interface is a dispatch events interface, dispinterface is used in-
stead of interface. In addition, a coclass can have a default outbound interface;
this is specified with the [default] tag. Default interfaces are identified by some
design environments (for example, Visual Basic 6). Following is the declaration
for the default outbound events interface:
[default, source] dispinterface IMyEvents2;

AppendixD.pmd 1/25/2005, 6:13 PM656

Appendix D • Developer environments • 657

VISUAL C++

Event circular reference issues
After a sink has performed an advise on the source, there is typically a COM
circular reference. This occurs because the source has an interface pointer to a
sink to fire events; this keeps the sink alive. Similarly, a sink object has a pointer
back to the source so it can perform the unadvise at a later point. This keeps the
source alive. Therefore, these two objects will never be released and may cause
substantial memory leaks. There are a number of ways to tackle this issue:

• Ensure advise and unadvise are made on a method or Windows message that is
guaranteed to happen in pairs and is independent of an object’s life cycle. For
example, in a coclass that is also receiving Windows messages, use the
Windows messages OnCreate (WM_CREATE) and OnDestroy
(WM_DESTROY) to advise and unadvise.

• If an ATL dialog box class needs to listen to events, one approach is to make
the dialog box a private COM class and implement the events interface di-
rectly on the dialog box. ATL allows this without much extra coding. This
approach is illustrated below. The dialog box class creates a CustomizeDialog
coclass and listens to ICustomizeDialogEvents. The OnInitDialog and OnDestroy
methods (corresponding to Windows messages) are used to advise and
unadvise on CustomizeDialog.
class CEngineControlsDlg :

public CAxDialogImpl<CEngineControlsDlg>,

public CComObjectRoot, // Make Dialog Class a COM Object as well.

public ICustomizeDialogEvents // Implement this interface directly on
 // this object.

CEngineControlsDlg() : m_dwCustDlgCookie(0) {} // Initialize cookie for
 // event listening.

 // ... Event handlers and other standard dialog code has been removed ...

BEGIN_COM_MAP(CEngineControlsDlg)

COM_INTERFACE_ENTRY(ICustomizeDialogEvents) // Make sure QI works for
 // this event interface.

END_COM_MAP()

// ICustomizeDialogEvents implementation to receive events on this
// dialog box.

STDMETHOD(OnStartDialog)();

STDMETHOD(OnCloseDialog)();

ICustomizeDialogPtr m_ipCustomizeDialog; // The source of events

DWORD m_dwCustDlgCookie; // Cookie for
 // CustomizeDialogEvents

}

The dialog box needs to be created like a noncreatable COM object, rather
than on the stack as a local variable. This allocates the object on the heap and
allows it to be released through the COM reference counting mechanism.
// Create dialog class on the heap using ATL CComObject template.

CComObject<CEngineControlsDlg> *myDlg;

CComObject<CEngineControlsDlg>::CreateInstance(&myDlg);

AppendixD.pmd 1/25/2005, 6:13 PM657

658 • ArcGIS Server Administrator and Developer Guide

VISUAL C++

myDlg->AddRef(); // Keep dialog box alive until you're done with it.

myDlg->DoModal(); // Launch the dialog box; when method returns, dialog
 // box has exited.

myDlg->Release(); // Typically, the refcount now goes to 0 and frees the
 dialog object.

• Implement an intermediate COM object for use by the sink; this is sometimes
called a listener or event helper object. This object typically contains no imple-
mentation but simply uses C++ method calls to forward events to the sink
object. The listener has its reference count incremented by the source, but the
sink’s reference count is unaffected. This breaks the cycle, allowing the sink’s
reference count to reach 0 when all other references are released. As the sink
executes its destructor code, it instructs the listener to unadvise and release
the source.

An alternative to using C++ pointers to communicate between listener and sink
is to use an interface pointer that is a weak reference. That is, the listener con-
tains a COM pointer to the sink but does not increment the sink’s reference
count. It is the responsibility of the sink to ensure that this pointer is not ac-
cessed after the sink object has been released.

AppendixD.pmd 1/25/2005, 6:13 PM658

Appendix D • Developer environments • 659

.NET APPLICATION PROGRAMMING INTERFACE

WHAT IS THE .NET FRAMEWORK?

The .NET Framework is an integral Windows component that supports building
and running the next generation of applications and XML Web services. The
.NET Framework is designed to fulfill the following objectives:

• Provide a consistent object-oriented programming environment whether
object code is stored and executed locally, executed locally but Internet-
distributed, or executed remotely.

• Provide a code execution environment that minimizes software deployment
and versioning conflicts.

• Provide a code execution environment that guarantees safe execution of code,
including code created by an unknown or semitrusted third party.

• Provide a code execution environment that eliminates the performance prob-
lems of scripted or interpreted environments.

• Make the developer experience consistent across widely varying types of
applications, such as Windows-based applications and Web-based applications.

• Build all communication on industry standards to ensure that code based on
the .NET Framework can integrate with any other code.

The .NET Framework has two main components: the common language runtime
and the .NET Framework class library. The common language runtime is the
foundation of the .NET Framework. You can think of the runtime as an agent
that manages code at execution time, providing core services, such as memory
management, thread management, and remoting, while also enforcing strict type
safety and other forms of code accuracy that ensure security and robustness. In
fact, the concept of code management is a fundamental principle of the runtime.
Code that targets the runtime is known as managed code, while code that does
not target the runtime is known as unmanaged code.

The class library, the other main component of the .NET Framework, is a com-
prehensive, object-oriented collection of reusable types that you can use to
develop applications ranging from traditional command-line or graphical user
interface applications to applications based on the latest innovations provided by
ASP.NET, such as Web Forms and XML Web services.

The .NET Framework can be hosted by unmanaged components that load the
common language runtime into their processes and initiate the execution of
managed code, thereby creating a software environment that can exploit both
managed and unmanaged features. The .NET Framework not only provides
several runtime hosts but also supports the development of third-party runtime
hosts.

For example, ASP.NET hosts the runtime to provide a scalable, server-side
environment for managed code. ASP.NET works directly with the runtime to
enable ASP.NET applications and XML Web services, both of which are dis-
cussed later in this topic.

Internet Explorer is an example of an unmanaged application that hosts the
runtime (in the form of a MIME type extension). Using Internet Explorer to
host the runtime enables you to embed managed components or Windows Forms
controls in HTML documents. Hosting the runtime in this way makes managed

This section, ‘What is the .NET Framework?’,
summarizes the Microsoft overview of the .NET

Framework available online as part of the
MSDN Library. The complete text is available at

http://www.msdn.microsoft.com/library/
default.asp?url=/library/en-us/cpguide/html/

cpovrintroductiontonetframeworksdk.asp.

AppendixD.pmd 1/25/2005, 6:13 PM659

660 • ArcGIS Server Administrator and Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

mobile code (similar to Microsoft ActiveX controls) possible, but with significant
improvements that only managed code can offer, such as semitrusted execution
and secure isolated file storage.

The following sections describe the main components and features of the .NET
Framework in greater detail.

Features of the common language runtime
The common language runtime manages memory, thread execution, code execu-
tion, code safety verification, compilation, and other system services. These
features are intrinsic to the managed code that runs on the common language
runtime.

Regarding security, managed components are awarded varying degrees of trust,
depending on a number of factors that includes their origin, such as the Internet,
enterprise network, or local computer. This means that a managed component
might or might not be able to perform file access operations, registry access
operations, or other sensitive functions, even if it is being used in the same active
application.

The runtime enforces code access security. For example, users can trust that an
executable embedded in a Web page can play an animation onscreen or sing a song
but cannot access their personal data, file system, or network. The security fea-
tures of the runtime thus enable legitimate Internet-deployed software to be
exceptionally feature rich.

The runtime also enforces code robustness by implementing a strict type-and-
code-verification infrastructure called the common type system (CTS). The CTS
ensures that all managed code is self-describing. The various Microsoft and third-
party language compilers generate managed code that conforms to the CTS. This
means that managed code can consume other managed types and instances, while
strictly enforcing type fidelity and type safety.

In addition, the managed environment of the runtime eliminates many common
software issues. For example, the runtime automatically handles object layout and
manages references to objects, releasing them when they are no longer being used.
This automatic memory management resolves the two most common application
errors: memory leaks and invalid memory references.

The runtime also accelerates developer productivity. For example, programmers
can write applications in their development language of choice, yet take full
advantage of the runtime, the class library, and components written in other
languages by other developers. Any compiler vendor who chooses to target the
runtime can do so. Language compilers that target the .NET Framework make
the features of the .NET Framework available to existing code written in that
language, greatly easing the migration process for existing applications.

While the runtime is designed for the software of the future, it also supports
software of today and yesterday. Interoperability between managed and
unmanaged code enables developers to continue to use necessary COM compo-
nents and DLLs.

The runtime is designed to enhance performance. Although the common language
runtime provides many standard runtime services, managed code is never inter-

AppendixD.pmd 1/25/2005, 6:13 PM660

Appendix D • Developer environments • 661

.NET APPLICATION PROGRAMMING INTERFACE

preted. A feature called just-in-time (JIT) compiling enables all managed code to
run in the native machine language of the system on which it is executing. Mean-
while, the memory manager removes the possibilities of fragmented memory and
increases memory locality-of-reference to further increase performance.

Finally, the runtime can be hosted by high-performance, server-side applications,
such as Microsoft SQL Server™ and Internet Information Services (IIS). This
infrastructure enables you to use managed code to write your business logic, while
still enjoying the superior performance of the industry’s best enterprise servers
that support runtime hosting.

.NET Framework class library
The .NET Framework class library is a collection of reusable types that tightly
integrate with the common language runtime. The class library is object oriented,
providing types from which your own managed code can derive functionality.
This not only makes the .NET Framework types easy to use but also reduces the
time associated with learning new features of the .NET Framework. In addition,
third-party components can integrate seamlessly with classes in the .NET Frame-
work.

For example, the .NET Framework collection classes implement a set of inter-
faces that you can use to develop your own collection classes. Your collection
classes will blend seamlessly with the classes in the .NET Framework.

As you would expect from an object-oriented class library, the .NET Framework
types enable you to accomplish a range of common programming tasks, including
string management, data collection, database connectivity, and file access. In
addition to these common tasks, the class library includes types that support a
variety of specialized development scenarios. For example, you can use the .NET
Framework to develop the following types of applications and services:

• Console applications

• Windows GUI applications (Windows Forms)

• ASP.NET applications

• XML Web services

• Windows services

For example, the Windows Forms classes are a comprehensive set of reusable
types that vastly simplify Windows GUI development. If you write an ASP.NET
Web Form application, you can use the Windows Forms classes.

Client application development
Client applications are the closest to a traditional style of application in Win-
dows-based programming. These are the types of applications that display win-
dows or forms on the desktop, enabling a user to perform a task. Client applica-
tions include applications such as word processors and spreadsheets as well as
custom business applications such as data entry and reporting tools. Client appli-
cations usually employ windows, menus, buttons, and other GUI elements, and
they likely access local resources, such as the file system, and peripherals such as
printers.

AppendixD.pmd 1/25/2005, 6:13 PM661

662 • ArcGIS Server Administrator and Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

Another kind of client application is the traditional ActiveX control (now re-
placed by the managed Windows Forms control) deployed over the Internet as a
Web page. This application is much like other client applications: it is executed
natively, has access to local resources, and includes graphical elements.

In the past, developers created such applications using C or C++ in conjunction
with the Microsoft Foundation Classes or with a rapid application development
(RAD) environment such as Microsoft Visual Basic. The .NET Framework
incorporates aspects of these existing products into a single, consistent develop-
ment environment that drastically simplifies the development of client applica-
tions.

The Windows Forms classes contained in the .NET Framework are designed to
be used for GUI development. You can easily create command windows, buttons,
menus, toolbars, and other screen elements with the flexibility necessary to
accommodate shifting business needs.

For example, the .NET Framework provides simple properties to adjust visual
attributes associated with forms. In some cases, the underlying operating system
does not support changing these attributes directly, and in these cases the .NET
Framework automatically re-creates the forms. This is one of many ways in
which the .NET Framework integrates the developer interface, making coding
simpler and more consistent.

Unlike ActiveX controls, Windows Forms controls have semitrusted access to a
user’s computer. This means that binary or natively executing code can access
some of the resources on the user’s system, such as GUI elements and limited file
access, without being able to access or compromise other resources. Because of
code access security, many applications that once needed to be installed on a user’s
system can now be safely deployed through the Web. Your applications can imple-
ment the features of a local application while being deployed like a Web page.

Server application development
Server-side applications in the managed world are implemented through runtime
hosts. Unmanaged applications host the common language runtime, which allows
your custom managed code to control the behavior of the server. This model
provides you with all the features of the common language runtime and class
library while gaining the performance and scalability of the host server.

Server-side managed code
ASP.NET is the hosting environment that enables developers to use the .NET
Framework to target Web-based applications. However, ASP.NET is more than a
runtime host; it is a complete architecture for developing Web sites and Internet-
distributed objects using managed code. Both Web Forms and XML Web services
use IIS and ASP.NET as the publishing mechanism for applications, and both
have a collection of supporting classes in the .NET Framework.

AppendixD.pmd 1/25/2005, 6:13 PM662

Appendix D • Developer environments • 663

.NET APPLICATION PROGRAMMING INTERFACE

XML Web services, an important evolution in Web-based technology, are distrib-
uted, server-side application components similar to common Web sites. However,
unlike Web-based applications, XML Web services components have no UI and
are not targeted for browsers such as Internet Explorer and Netscape Navigator.

Instead, XML Web services consist of reusable
software components designed to be consumed
by other applications, such as traditional client
applications, Web-based applications, or even
other XML Web services. As a result, XML Web
services technology is rapidly moving application
development and deployment into the highly
distributed environment of the Internet.

If you have used earlier versions of Active Server Pages (ASP) technology, you
will immediately notice the improvements that ASP.NET and Web Forms offer.
For example, you can develop Web Forms pages in any language that supports the
.NET Framework. In addition, your code no longer needs to share the same file
with your HTTP text (although it can continue to do so if you prefer). Web
Forms pages execute in native machine language because, like any other managed
application, they take full advantage of the runtime. In contrast, unmanaged ASP
pages are always scripted and interpreted. ASP.NET pages are faster, more func-
tional, and easier to develop than unmanaged ASP pages because they interact
with the runtime like any managed application.

The .NET Framework also provides a collection of classes and tools to aid in
development and consumption of XML Web services applications. XML Web
services are built on standards, such as SOAP, a remote procedure-call protocol;
XML, an extensible data format; and WSDL, the Web Services Description
Language. The .NET Framework is built on these standards to promote
interoperability with non-Microsoft solutions.

For example, the Web Services Description Language tool included with the
.NET Framework SDK can query an XML Web service published on the Web,
parse its WSDL description, and produce C# or Visual Basic source code that
your application can use to become a client of the XML Web service. The source
code can create classes derived from classes in the class library that handle all the
underlying communication using SOAP and XML parsing. Although you can use
the class library to consume XML Web services directly, the Web Services De-
scription Language tool and the other tools contained in the SDK facilitate your
development efforts with the .NET Framework.

If you develop and publish your own XML Web service, the .NET Framework
provides a set of classes that conform to all the underlying communication stan-
dards, such as SOAP, WSDL, and XML. Using those classes enables you to focus
on the logic of your service, without concerning yourself with the communica-
tions infrastructure required by distributed software development.

Finally, like Web Forms pages in the managed environment, your XML Web
service will run with the speed of native machine language using the scalable
communication of IIS.

This diagram illustrates a basic network schema
with managed code running in different server

environments. Servers, such as IIS and SQL
Server, can perform standard operations while

your application logic executes the managed
code.

AppendixD.pmd 1/25/2005, 6:13 PM663

664 • ArcGIS Server Administrator and Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

INTEROPERATING WITH COM

Code running under the .NET Framework’s control is called managed code;
conversely, code executing outside the .NET Framework is termed unmanaged
code. COM is one example of unmanaged code. The .NET Framework interacts
with COM via a technology known as COM Interop.

For COM Interop to work, the Common Language Runtime (CLR) requires
metadata for all the COM types. This means that the COM type definitions
normally stored in the type libraries need to be converted to .NET metadata. This
is easily accomplished with the Type Library Importer utility (tlbimp.exe), which
ships with the .NET Framework SDK. This utility generates interop assemblies
containing the metadata for all the COM definitions in a type library. Once
metadata is available, .NET clients can seamlessly create instances of COM types
and call its methods as though they were native .NET instances.

Primary interop assemblies
Primary interop assemblies (PIAs) are the official, vendor-supplied, .NET type
definitions for interoperating with underlying COM types. Primary interop assem-
blies are strongly named by the COM library publisher to guarantee uniqueness.

ESRI provides primary interop assemblies for all the ArcObjects type libraries
that are implemented with COM. ArcGIS .NET developers should only use these
primary interop assemblies that are installed in the Global Assembly Cache (GAC)
during install if version 1.1 of the .NET Framework is detected. ESRI only
supports the interop assemblies that ship with ArcGIS. You can identify a valid
ESRI assembly by its public key (8FC3CC631E44AD86).

COM wrappers
The .NET runtime provides wrapper classes to make both managed and

unmanaged clients believe
they are communicating
with objects within their
respective environment.
When managed clients call
a method on a COM
object, the runtime creates
a runtime callable wrapper
(RCW) that handles the
marshalling between the
two environments. Simi-
larly, the .NET runtime
creates COM-callable
wrappers for the reverse

case, COM clients communicating with .NET components. The illustration above
outlines this process.

Exposing .NET components to COM
When creating .NET components that COM clients will make use of, follow the
guidelines listed below to ensure interoperability.

The ArcGIS installation program also installs the
Microsoft Stdole.dll PIA, providing interop for

OLE font and picture classes, which are used by
some ESRI libraries.

AppendixD.pmd 1/25/2005, 6:13 PM664

Appendix D • Developer environments • 665

.NET APPLICATION PROGRAMMING INTERFACE

• Avoid using parameterized constructors.

• Avoid using static methods.

• Define event source interfaces in managed code.

• Include HRESULTs in user-defined exceptions.

• Supply GUIDs for types that require them.

• Expect inheritance differences.

For more information, review ‘Interoperating with Unmanaged Code’ in the
MSDN help collection.

Performance considerations
COM Interop clearly adds a new layer of overhead to applications, but the over-
all cost of interoperating between COM and .NET is small and often unnotice-
able. However, the cost of creating wrappers and having them marshall between
environments does add up; if you suspect COM Interop is the bottleneck in your
application’s performance, try creating a COM worker class that wraps all the
chatty COM calls into one function that managed code can invoke. This improves
performance by limiting the marshalling between the two environments.

COM to .NET type conversion
Generally speaking, the type library importer imports types with the same name
they originally had in COM. All imported types are additionally added to a
namespace that has the following naming convention: ESRI.ArcGIS plus the
name of the library. For example, the namespace for the Geometry library is
ESRI.ArcGIS.Geometry. All types are identified by their complete namespace and
type name.

Classes, interfaces, and members
All COM coclasses are converted to managed classes; the managed classes have
the same name as the original with ‘Class’ appended. For example, the Point
coclass is PointClass.

All classes also have an interface with the same name as the coclass that corre-
sponds to the default interface for the coclass. For example, the PointClass has a
Point interface. The type library importer adds this interface so clients can register
event sinks.

The .NET classes also have class members that .NET supports, but COM does
not. Each member of each interface the class implements is added as a class
member. Any property or method a class implements can be accessed directly
from the class rather than having to cast to a specific interface. Since interface
member names are not unique, name conflicts are resolved by adding the interface
name and an underscore as a prefix to the name of each conflicting member.
When member names conflict, the first interface listed with the coclass remains
unchanged.

Properties in C# that have by-reference or multiple parameters are not supported
with the regular property syntax. In these cases, it is necessary to use the accessor

AppendixD.pmd 1/25/2005, 6:13 PM665

666 • ArcGIS Server Administrator and Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

methods instead. The following code excerpt shows an example.
 ILayer layer = mapControl.get_Layer(0);

 MessageBox.Show(layer.Name);

Events
The type library importer creates several types that enable managed applications
to sink to events fired by COM classes. The first type is a delegate that is named
after the event interface plus an underscore followed by the event name, then the
word EventHandler. For example, the SelectionChanged event defined on the
IActiveViewEvents interface has the following delegate defined:
IActiveViewEvents_SelectionChangedEventHandler. The importer also creates an
event interface with an ‘_Event’ suffix added to the end of the original interface
name. For example, IActiveViewEvents generates IActiveViewEvents_Event. Use the
event interfaces to set up event sinks.

Non-OLE automation-compliant types
COM types that are not OLE automation compliant generally do not work in
.NET. ArcGIS contains a few noncompliant methods, and these cannot be used
in .NET. However, in most cases, supplemental interfaces have been added that
have the offending members rewritten compliantly. For example, when defining
an envelope via a point array, you can’t use IEnvelope::DefineFromPoints; instead,
you must use IEnvelopeGEN::DefineFromPoints.
[VB.NET]

Dim pointArray(1) As IPoint

pointArray(0) = New PointClass

pointArray(1) = New PointClass

pointArray(0).PutCoords(0, 0)

pointArray(1).PutCoords(100, 100)

Dim env As IEnvelope

Dim envGEN As IEnvelopeGEN

env = New EnvelopeClass

envGEN = New EnvelopeClass

'Won't compile

'env.DefineFromPoints(2, pointArray)

'Doesn't work

env.DefineFromPoints(2, pointArray(0))

'Works

envGEN.DefineFromPoints(pointArray)

[C#]

IPoint[] pointArray = new IPoint[2];

pointArray[0] = new PointClass();

pointArray[1] = new PointClass();

pointArray[0].PutCoords(0,0);

pointArray[1].PutCoords(100,100);

AppendixD.pmd 1/25/2005, 6:13 PM666

Appendix D • Developer environments • 667

.NET APPLICATION PROGRAMMING INTERFACE

IEnvelope env = new EnvelopeClass();

IEnvelopeGEN envGEN = new EnvelopeClass();

// Won't compile

env.DefineFromPoints(3, ref pointArray);

// Doesn't work

env.DefineFromPoints(3, ref pointArray[0]);

// Works

envGEN.DefineFromPoints(ref pointArray);

Class Interfaces
Class interfaces are created to help VB programmers transition to .NET; they are
also commonly used in code produced by the Visual Basic .NET Upgrade Wizard
or the code snippet converter in Visual Studio .NET.

However, it is generally recommended that you avoid using the class interfaces in
the ESRI interop assemblies, as they may change in future versions of ArcGIS.
This section explains a little more about class interfaces.

In Visual Basic 6, the details of default interfaces were hidden from the user, and
a programmer could instantiate a variable and access the members of its default
interface without performing a specific QI for that interface; for example, the
VB 6 code below instantiates the StdFont class and sets a variable equal to the
default interface (IStdFont) of that class:
[VB 6.0]

Dim fnt As New Stdole.StdFont

However, .NET does not provide this same ability. To allow VB developers a
more seamless introduction to .NET, the type library importer in .NET adds ‘class
interfaces’ to each interop assembly, allowing COM objects to be used with this
same syntax inside .NET. When an object library is imported, a class interface
RCW is created for each COM class; the name of the class interface is the same as
the COM class—for example, Envelope.

All the members of the default interface of the COM class are added to this class
interface; also, if the COM class has a source interface (is the source of events),
then the class interface will also include all the events of this interface, which
helps a programmer to link up events.

A second RCW is created that represents the underlying COM class; the name of
this is the same as the COM class with a suffix of ‘Class’, for example,
EnvelopeClass. The class interface is linked to the class by an attribute, which
indicates the class to which it belongs. This attribute is recognized by the .NET
compilers, which allow a programmer to instantiate a class by using its class
interface.

The exception is classes that have a default interface of IUnknown or IDispatch,
which are never exposed on RCW classes as the members are called internally by
the .NET Framework runtime. In this case, the next implemented interface is
exposed on the class interface instead. As most ArcObjects define IUnknown as
their default interface, this affects most ArcObjects classes. For example, the

AppendixD.pmd 1/25/2005, 6:13 PM667

668 • ArcGIS Server Administrator and Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

Point COM class in the esriGeometry object library lists the IPoint interface as its
first implemented interface. In .NET, this class is accessed by using the Point class
interface, which inherits the IPoint interface, and the PointClass class.

The code below shows that by declaring a variable type as a Point class interface,
that variable can be used to access the IPoint::PutCoords method from this class
interface.
[VB.NET]

Dim thePt As ESRI.ArcGIS.Geometry.Point = New ESRI.ArcGIS.Geometry.Point()

thePt.PutCoords(10,8)

[C#]

ESRI.ArcGIS.Geometry.Point thePt = newESRI.ArcGIS.Geometry.Point();

thePt.PutCoords(10,8);

The inherited interface of a class interface is not guaranteed to remain the same
between versions of ArcGIS and, therefore, it is recommended that you avoid
using the above syntax.

You can view these types in the VB .NET Object Browser. Notice that using
Visual Basic .NET, PointClass is not shown by default but can be made visible by
selecting the Show Hidden Members option. In the C# Object Browser, you can
see more clearly the class interface Point and its inherited interface IPoint and the
class PointClass.

.NET PROGRAMMING TECHNIQUES AND CONSIDERATIONS

This section contains several programming tips and techniques to help developers
who are moving to .NET.

Casting between interfaces (QueryInterface)
.NET uses casting to jump from one interface to another interface on the same
class. In COM this is called QueryInterface. VB.NET and C# cast differently.

VB.NET
There are two types of casts, implicit and explicit. Implicit casts do not require
additional syntax, whereas explicit casts require cast operators.

geometry = point 'Implicit cast

geometry = CType(point, IGeometry) 'Explicit cast

When casting between interfaces, it is perfectly acceptable to use implicit casts
because there is no chance of data loss as there is when casting between numeric
types. However, when casts fail, an exception (System.InvalidCastException) is
thrown; to avoid handling unnecessary exceptions, it’s best to test if the object
implements both interfaces beforehand. The recommended technique is to use the
TypeOf keyword, which is a comparison clause that tests whether an object is
derived from or implements a particular type, such as an interface. The example
below performs an implicit conversion from an IPoint to an IGeometry only if at
runtime it is determined that the Point class implements IGeometry.

Dim point As New PointClass

Dim geometry As IGeometry

If (TypeOf point Is IGeometry) Then

geometry = point

End If

AppendixD.pmd 1/25/2005, 6:13 PM668

Appendix D • Developer environments • 669

.NET APPLICATION PROGRAMMING INTERFACE

If you prefer using the Option Strict On statement to restrict implicit conver-
sions, use the CType function to make the cast explicit. The example below adds
an explicit cast to the code sample above.

Dim point As New PointClass

Dim geometry As IGeometry

If (TypeOf point Is IGeometry) Then

geometry = CType(point, IGeometry)

End If

C#
In C#, the best method for casting between interfaces is to use the as operator.
Using the as operator is a better coding strategy than a straight cast because it
yields a null on a conversion failure rather than raising an exception.

The first line of code below is a straight cast. This is acceptable practice if you
are absolutely certain the object in question implements both interfaces; if the
object does not implement the interface you are attempting to get a handle to,
.NET will throw an exception. A safer model to use is the as operator, which
returns a null if the object cannot return a reference to the desired interface.

IGeometry geometry = point; // Straight cast

IGeometry geometry = point as IGeometry; // As operator

The example below shows how to handle the possibility of a returned null inter-
face handle.

IPoint point = new PointClass();

IGeometry geometry = point;

IGeometry geometry = point as IGeometry;

if (geometry != null)

{

Console.WriteLine(geometry.GeometryType.ToString());

}

Binary compatibility
Most existing ArcGIS Visual Basic 6 developers are familiar with the notion of
binary compatibility. This compiler flag in Visual Basic ensures that components
maintain the same GUID each time they are compiled. When this flag is not set, a
new GUID is generated for each class every time the project is compiled. This has
the adverse side effect of having to then re-register the components in their
appropriate component categories.

To keep from having the same problem in .NET, you can use the GUIDAttribute
class to manually specify a GUID for a class. Explicitly specifying a GUID guar-
antees that it will never change. If you do not specify a GUID, the type library
exporter will automatically generate one when you first export your components
to COM and, although the exporter is meant to keep using the same GUIDs on
subsequent exports, it’s not guaranteed to do so.

The example below shows a GUID attribute being applied to a class.
[VB.NET]

<GuidAttribute("9ED54F84-A89D-4fcd-A854-44251E925F09")> _

Public Class SampleClass

'

AppendixD.pmd 1/25/2005, 6:13 PM669

670 • ArcGIS Server Administrator and Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

End Class

[C#]

[GuidAttribute("9ED54F84-A89D-4fcd-A854-44251E925F09")]

Public class SampleClass

{

//

}

Events
An event is a message sent by an object to signal the occurrence of an action. The
action could be caused by user interaction, such as a mouse click, or it could be
triggered by some other program logic. The object that raises (triggers) the event
is called the event sender. The object that captures the event and responds to it is
called the event receiver.

In event communication, the event sender class does not know which object or
method will receive (handle) the events it raises. What is needed is an intermedi-
ary (or pointer-like mechanism) between the source and the receiver. The .NET
Framework defines a special type (<Delegate>) that provides the functionality
of a function pointer.

A delegate is a class that can hold a reference to a method. Unlike other classes, a
delegate class has a signature, and it can hold references only to methods that
match its signature. A delegate is thus equivalent to a type-safe function pointer
or a callback.

To consume an event in an application, you must provide an event handler (an
event-handling method) that executes program logic in response to the event and
register the event handler with the event source. The event handler must have the
same signature as the event delegate. This process is referred to as event wiring.

The ArcObjects code excerpt below shows a custom ArcMap command wiring up
to the Map object’s selection changed event. For simplicity, the event is wired up
in the OnClick event.
[VB.NET]

'Can't use WithEvents because the outbound interface is not the

'default interface.

'IActiveViewEvents is the sink event interface.

'SelectionChanged is the name of the event.

'IActiveViewEvents_SelectionChangedEventHandler is the delegate name.

'Declare the delegate.

Private SelectionChanged As IActiveViewEvents_SelectionChangedEventHandler

Private m_mxDoc As IMxDocument

Public Overloads Overrides Sub OnCreate(ByVal hook As Object)

Dim app As IApplication

app = hook

m_mxDoc = app.Document

AppendixD.pmd 1/25/2005, 6:13 PM670

Appendix D • Developer environments • 671

.NET APPLICATION PROGRAMMING INTERFACE

End Sub

Public Overrides Sub OnClick()

Dim map As Map

map = m_mxDoc.FocusMap

'Create an instance of the delegate and add it to SelectionChanged event.

SelectionChanged = New
IActiveViewEvents_SelectionChangedEventHandler(AddressOf OnSelectionChanged)

AddHandler map.SelectionChanged, SelectionChanged

End Sub

'Event handler

Private Sub OnSelectionChanged()

MessageBox.Show("Selection Changed")

End Sub

[C#]

// IActiveViewEvents is the sink event interface.

// SelectionChanged is the name of the event.

// IActiveViewEvents_SelectionChangedEventHandler is the delegate name.

IActiveViewEvents_SelectionChangedEventHandler m_selectionChanged;

private ESRI.ArcGIS.ArcMapUI.IMxDocument m_mxDoc;

public override void OnCreate(object hook)

{

IApplication app = hook as IApplication;

m_mxDoc = app.Document as IMxDocument;

}

public override void OnClick()

{

IMap map = m_mxDoc.FocusMap;

// Create a delegate instance and add it to SelectionChanged event.

m_selectionChanged = new
IActiveViewEvents_SelectionChangedEventHandler(SelectionChanged);

((IActiveViewEvents_Event)map).SelectionChanged += m_selectionChanged;

}

// Event handler

private void SelectionChanged()

{

MessageBox.Show("Selection changed");

}

Error handling
The error handling construct in Visual Studio .NET is known as structured
exception handling. The constructs used may be new to Visual Basic users but
should be familiar to users of C++ or Java.

AppendixD.pmd 1/25/2005, 6:13 PM671

672 • ArcGIS Server Administrator and Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

Structured exception handling is straightforward to implement, and the same
concepts are applicable to either VB.NET or C#. VB.NET allows backward
compatibility by also providing unstructured exception handling via the familiar
OnError GoTo statement and Err object, although this model is not discussed in
this section.

Exceptions
Exceptions are used to handle error conditions in Visual Studio .NET. They
provide information about the error condition.

An exception is an instance of a class that inherits from the System.Exception
base class. Many different types of exception classes are provided by the .NET
Framework, and it is also possible to create your own exception classes. Each
type extends the basic functionality of the System.Exception class by allowing
further access to information about the specific type of error that has occurred.

An instance of an Exception class is created and thrown when the .NET Frame-
work encounters an error condition. You can deal with exceptions by using the
Try, Catch, Finally construct.

Try, Catch, Finally
This construct allows you to catch errors that are thrown within your code. An
example of this construct is shown below. An attempt is made to rotate an
envelope, which throws an error.
[VB.NET]

Dim env As IEnvelope = New EnvelopeClass()

env.PutCoords(0D, 0D, 10D, 10D)

Dim trans As ITransform2D = env

trans.Rotate(env.LowerLeft, 1D)

Catch ex As System.Exception

MessageBox.Show("Error: " + ex.Message)

' Perform any tidy up of code.

End Try

[C#]

{

IEnvelope env = new EnvelopeClass();

env.PutCoords(0D, 0D, 10D, 10D);

ITransform2D trans = (ITransform2D) env;

trans.Rotate(env.LowerLeft, 1D);

}

catch (System.Exception ex)

{

MessageBox.Show("Error: " + ex.Message);

}

{

// Perform any tidy up of code.

}

AppendixD.pmd 1/25/2005, 6:13 PM672

Appendix D • Developer environments • 673

.NET APPLICATION PROGRAMMING INTERFACE

You place a try block around code that may fail. If the application throws an
error within the Try block, the point of execution will switch to the first Catch
block.

The Catch block handles a thrown error. The application executes the Catch
block when the Type of a thrown error matches the Type of error specified by
the Catch block. You can have more than one Catch block to handle different
kinds of errors. The code shown below checks first if the exception thrown is a
DivideByZeroException.
[VB.NET]

...

Catch divEx As DivideByZeroException

' Perform divide by zero error handling.

Catch ex As System.Exception

' Perform general error handling.

...

[C#]

...

catch (DivideByZeroException divEx)

{

// Perform divide by zero error handling.

}

catch (System.Exception ex)

{

// Perform general error handling.

}

...

If you do have more than one Catch block, note that the more specific exception,
Types, should precede the general System.Exception, which will always succeed
the type check.

The application always executes the Finally block, either after the Try block
completes or after a Catch block, if an error was thrown. The Finally block
should, therefore, contain code that must always be executed, for example, to
clean up resources such as file handles or database connections.

If you do not have any cleanup code, you do not need to include a Finally block.

Code without exception handling
If a line of code not contained in a Try block throws an error, the .NET runtime
searches for a Catch block in the calling function, continuing up the call stack
until a Catch block is found.

If no Catch block is specified in the call stack, the exact outcome may depend on
the location of the executed code and the configuration of the .NET runtime.
Therefore, it is advisable to include at least a Try, Catch, Finally construct for all
entry points to a program.

Errors from COM components
The structured exception handling model differs from the HRESULT model used
by COM. C++ developers can easily ignore an error condition in an HRESULT if

AppendixD.pmd 1/25/2005, 6:13 PM673

674 • ArcGIS Server Administrator and Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

they want; in Visual Basic 6, however, an error condition in an HRESULT popu-
lates the Err object and raises an error.

The .NET runtime’s handling of errors from COM components is somewhat
similar to the way COM errors were handled at VB6. If a .NET program calls a
function in a COM component (through the COM interop services) and returns
an error condition as the HRESULT, the HRESULT is used to populate an
instance of the COMException class. This is then thrown by the .NET runtime,
where you can handle it in the usual way, by using a Try, Catch, Finally block.

Therefore, it is advisable to enclose all code that may raise an error in a COM
component within a Try block with a corresponding Catch block to catch a
COMException. Below is the first example rewritten to check for an error from a
COM component.
[VB.NET]

Dim env As IEnvelope = New EnvelopeClass()

env.PutCoords(0D, 0D, 10D, 10D)

Dim trans As ITransform2D = env

trans.Rotate(env.LowerLeft, 1D)

Catch COMex As COMException

If (COMex.ErrorCode = -2147220984) Then

MessageBox.Show("You cannot rotate an Envelope")

MessageBox.Show _

("Error " + COMex.ErrorCode.ToString() + ": " + COMex.Message)

End If

Catch ex As System.Exception

MessageBox.Show("Error: " + ex.Message)

...

[C#]

{

IEnvelope env = new EnvelopeClass();

env.PutCoords(0D, 0D, 10D, 10D);

ITransform2D trans = (ITransform2D) env;

trans.Rotate(env.LowerLeft, 1D);

}

catch (COMException COMex)

{

if (COMex.ErrorCode == -2147220984)

MessageBox.Show("You cannot rotate an Envelope");

MessageBox.Show ("Error " + COMex.ErrorCode.ToString() + ": " +
COMex.Message);

}

catch (System.Exception ex)

{

MessageBox.Show("Error: " + ex.Message);

}

...

The COMException class belongs to the System.Runtime.InteropServices
namespace. It provides access to the value of the original HRESULT via the

AppendixD.pmd 1/25/2005, 6:13 PM674

Appendix D • Developer environments • 675

.NET APPLICATION PROGRAMMING INTERFACE

ErrorCode property, which you can test to find out which error condition
occurred.

Throwing errors and the exception hierarchy
If you are coding a user interface, you may want to attempt to correct the error
condition in code and try the call again. Alternatively, you may want to report the
error to the users to let them decide which course of action to take; you can
make use of the Message property of the Exception class to identify the problem.

However, if you are writing a function that is only called from other code, you
may want to deal with an error by creating a specific error condition and propa-
gating this error to the caller. You can do this using the Throw keyword.

To throw the existing error to the caller function, write your error handler using
the Throw keyword, as shown below.
[VB.NET]

Catch ex As System.Exception

...

[C#]

catch (System.Exception ex)

{

 throw;

}

...

If you want to propagate a different or more specific error back to the caller, you
should create a new instance of an Exception class, populate it appropriately, and
throw this exception back to the caller. The example shown below uses the
ApplicationException constructor to set the Message property.
[VB.NET]

Catch ex As System.Exception

 Throw New ApplicationException _

 ("You had an error in your application")

...

[C#]

catch (System.Exception ex)

{

 throw new ApplicationException("You had an error in your application");

}

...

If you do this, however, the original exception is lost. To allow complete error
information to be propagated, the Exception class includes the InnerException
property. This property should be set to equal the caught exception, before the
new exception is thrown. This creates an error hierarchy. Again, the example
shown below uses the ApplicationException constructor to set the InnerException
and Message properties.
[VB.NET]

Catch ex As System.Exception

Dim appEx As System.ApplicationException = _

AppendixD.pmd 1/25/2005, 6:13 PM675

676 • ArcGIS Server Administrator and Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

New ApplicationException("You had an error in your application", ex)

Throw appEx

...

[C#]

catch (System.Exception ex)

{

System.ApplicationException appEx =

new ApplicationException("You had an error in your application", ex);

throw appEx;

}

...

In this way, the function that eventually deals with the error condition can access
all the information about the cause of the condition and its context.

If you throw an error, the application will execute the current function’s Finally
clause before control is returned to the calling function.

System.__ComObject and casting to strongly typed RCWs
Sometimes you may find that casting a variable fails when you think it should
succeed (the solution is often to declare variables as interface Types and avoid the
use of class types, for example, use IStyleGallery rather than StyleGalleryClass).
You may also have come across the System.__ComObject type and wonder where
it comes from. This topic should help you to understand these issues; in particu-
lar, you may encounter problems when attempting to create the AppRef class in
.NET—this issue is related to the System.__ComObject wrapper and is also
covered below.

Types and Runtime Callable Wrappers
In .NET, each class, interface, enumeration, and so on, is described by its Type.
The Type class, which is part of the .NET Framework, holds information about
the data and function members of a datatype. When you create a new COM
object in .NET via interop, you get a reference to your object that is wrapped in a
strongly typed runtime callable wrapper (RCW). A RCW is a wrapper that can
hold a reference to a COM object inside a .NET application.

To understand what this means, look at the following code extract; a variable
called sym is declared as the ISimpleMarkerSymbol interface Type and is then set to
a new SimpleMarkerSymbolClass. Then the Type of the variable sym is retrieved
and written to the debug window. If you were to run this code, you would find
that the Type of sym is SimpleMarkerSymbolClass, as you might expect; the vari-
able holds a reference to the ISimpleMarkerSymbol interface of the
SimpleMarkerSymbolClass RCW.
[C#]

ESRI.ArcGIS.Display.ISimpleMarkerSymbol sym = new
ESRI.ArcGIS.Display.SimpleMarkerSymbolClass();

Debug.WriteLine(sym.GetType().FullName);

[Visual Basic .NET]

Dim sym As ESRI.ArcGIS.Display.ISimpleMarkerSymbol = New
ESRI.ArcGIS.Display.SimpleMarkerSymbolClass

Debug.WriteLine(CType(sym, Object).GetType.FullName)

AppendixD.pmd 1/25/2005, 6:13 PM676

Appendix D • Developer environments • 677

.NET APPLICATION PROGRAMMING INTERFACE

In a different coding situation, you may get a reference to a RCW from another
property or method. For example, in the similar code below, the Symbol property
of a renderer (ISimpleRenderer interface) is retrieved, where the renderer uses a
single SimpleMarkerSymbol to draw.
[C#]

ESRI.ArcGIS.Display.ISimpleMarkerSymbol sym = rend.Symbol as
ESRI.ArcGIS.Display.ISimpleMarkerSymbol;

Debug.WriteLine(sym.GetType().FullName);

[Visual Basic .NET]

Dim sym As ESRI.ArcGIS.Display.ISimpleMarkerSymbol = rend.Symbol

Debug.WriteLine(CType(sym, Object).GetType.FullName)

Although you might expect to get the same output as before, you will actually
find that the reported Type of sym is System.__ComObject.

The System.__ComObject Type
The difference between the two excerpts of code above is that in the first you
create the symbol using the New (or new) keyword and the Type
SimpleMarkerSymbolClass. When the code is compiled, the exact Type of the
variable is discovered by the compiler using Reflection, and metadata about that
Type is stored in the compiled code. When the code runs, the runtime then has all
the information (the metadata) that describes the exact Type of the variable.

However, in the second example, you set the sym variable from the Symbol
property of the ISimpleRenderer interface. When this code is compiled, the only
metadata that the compiler can find is that the Symbol property returns an
ISymbol reference; the Type of the actual class of object cannot be discovered.
Although you can perform a cast to get the ISimpleMarkerSymbol interface of the
sym variable (or any other interface that the symbol implements), the .NET
runtime does not have the metadata required at runtime to discover exactly what
the Type of the variable is. In this case, when you access the Symbol property, the
.NET runtime wraps the COM object reference in a generic RCW called
System.__ComObject. This is a class internal to the .NET Framework that can be
used to hold a reference to any kind of COM object; its purpose is to act as the
RCW for an unknown Type of COM object.

Casting
Looking again at the second example, even if you actually know the exact Type
of class to which you have a reference, the .NET runtime still does not have the
metadata required to cast the variable to a strongly typed RCW; this can be seen
in the following code, as attempting a cast to the SimpleMarkerSymbolClass Type
would fail.
[C#]

// The following line would result in sym2 being null as the cast would
fail.

ESRI.ArcGIS.Display.SimpleMarkerSymbolClass sym2 = sym as
ESRI.ArcGIS.Display.SimpleMarkerSymbolClass;

[Visual Basic .NET]

' The following line would result in a runtime error as the implicit cast
would fail.

Dim sym2 As ESRI.ArcGIS.Display.SimpleMarkerSymbol = sym

AppendixD.pmd 1/25/2005, 6:13 PM677

678 • ArcGIS Server Administrator and Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

However, as the System.__ComObject class is specifically designed to work with
COM objects, it is always able to perform a QI to any COM interfaces that are
implemented by an object. Therefore, casting to specific interfaces (as long as they
are implemented on the object) will be successful.
[C#]

ESRI.ArcGIS.Display.ISimpleMarkerSymbol sym3 = sym as
ESRI.ArcGIS.Display.ISimpleMarkerSymbol;

[Visual Basic .NET]

Dim sym3 As ESRI.ArcGIS.Display.ISimpleMarkerSymbol = sym

Singletons and System.__ComObject

In the examples above, a strongly typed RCW is created when you instantiate the
COM object by using the ‘new’ keyword, whereas if the object is preexisting, the
Type of the RCW is the generic System.__ComObject. Sometimes when you use
the ‘new’ keyword to instantiate a COM object, you are actually getting a refer-
ence to an object that already exists—this happens when you attempt to instanti-
ate a singleton class that has previously been instantiated. The .NET framework is
unable to wrap in a strongly typed RCW an instance of an object that has previ-
ously been wrapped in the generic System.__ComObject RCW. If your code has
encountered such a situation, you may receive an error such as

‘Unable to cast object of type System.__ComObject to type <Typename>’.
[C#]

ESRI.ArcGIS.Display.IStyleGallery sg = new
ESRI.ArcGIS.Framework.StyleGalleryClass();

[Visual Basic .NET]

Dim sg As ESRI.ArcGIS.Display.IStyleGallery = = New
ESRI.ArcGIS.Framework.StyleGalleryClass

This error may occur even though you have declared your variable using the
interface name rather than the class name, as shown above. The problem occurs
because when your code instantiates an object, the .NET runtime first attempts
to wrap the object in the strongly typed class Type (the Type stated after the new
keyword) before attempting a cast to the interface type. The cast to the strongly
typed RCW cannot succeed as the COM object has previously been wrapped in
the generic System.__ComObject wrapper. This may occur in situations beyond
your control. For example, other ArcObjects tools written in .NET from other
third parties may wrap an object in the generic wrapper, causing your code to fail.

The solution is to use the Activator class (as shown below) to safely wrap single-
ton objects in a strongly typed RCW when you first get a reference to them.
Additionally, you should generally always declare variables holding RCWs using an
interface rather than a class Type.

Using the Activator class to create singletons
If you use the CreateInstance method of the Activator class instead of the new
keyword to instantiate singletons, you can avoid such errors, as the Activator is
able to get the required metadata to perform the cast.
[C#]

Type t = Type.GetTypeFromProgID("esriFramework.StyleGallery");

System.Object obj = Activator.CreateInstance(t);

IStyleGallery sg = obj as IStyleGallery;

AppendixD.pmd 1/25/2005, 6:13 PM678

Appendix D • Developer environments • 679

.NET APPLICATION PROGRAMMING INTERFACE

[Visual Basic .NET]

Dim t As Type = Type.GetTypeFromProgID("esriFramework.StyleGallery")

Dim obj As System.Object = Activator.CreateInstance(t)

Dim pApp As ESRI.ArcGIS.Display.IStyleGallery = obj

You can use this technique to instantiate the AppRef class—remember, however,
that the AppRef class can only be created within an ArcGIS application. (The
Type is the generic System.__ComObject RCW.)
[C#]

Type t = Type.GetTypeFromProgID("esriFramework.AppRef");

System.Object obj = Activator.CreateInstance(t);

ESRI.ArcGIS.Framework.IApplication pApp = obj as
ESRI.ArcGIS.Framework.IApplication;

[Visual Basic .NET]

Dim t As Type = Type.GetTypeFromProgID("esriFramework.AppRef")

Dim obj As System.Object = Activator.CreateInstance(t)

Dim pApp As ESRI.ArcGIS.Framework.IApplication = obj

For more information about RCWs and interop, you may wish to refer to the
book by Adam Nathan, .NET and COM—The Complete Interoperability Guide, Sams
Publishing, 2002.

Working with resources

Using strings and embedded images directly (no localization)
If your customization does not support localization now and you do not intend
for it to support localization later, you can use strings and images directly without
the need for resource files. For example, strings can be specified and used directly
in your code:
[VB.NET]

Me.TextBox1.Text = "My String"

[C#]

this.textBox1.Text = "My String";

Image files (BMPs, JPEGs, PNGs, and so forth) can be embedded in your assem-
bly as follows:

1. Right-click the project in the Solution Explorer, click Add, then click Add
Existing Item.

2. In the Add Existing Item dialog box, browse to your image file and click
Open.

3. In the Solution Explorer, select the image file you just added, then press F4 to
display its properties.

4. Set the Build Action property to Embedded Resource.

AppendixD.pmd 1/25/2005, 6:13 PM679

680 • ArcGIS Server Administrator and Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

Now you can reference the image in your code. For example, the following
code creates a bitmap object from the first embedded resource in the assembly:

[VB.NET]

Dim res() As String = GetType(Form1).Assembly.GetManifestResourceNames()

If (res.GetLength(0) > 0)

Dim bmp As System.Drawing.Bitmap = New System.Drawing.Bitmap(_

GetType(Form1).Assembly.GetManifestResourceStream(res(0)))

...

[C#]

string[] res = GetType().Assembly.GetManifestResourceNames();

if (res.GetLength(0) > 0)

{

System.Drawing.Bitmap bmp = new System.Drawing.Bitmap(

GetType().Assembly.GetManifestResourceStream(res[0]));

 ...

Creating resource files
Before attempting to provide localized resources, you should ensure you are
familiar with the process of creating resource files for your .NET projects. Even
if you do not intend to localize your resources, you can still use resource files
instead of using images and strings directly, as described above.

Visual Studio .NET projects use an XML-based file format to contain managed
resources. These XML files have the extension .resx and can contain any kind of
data (images, cursors, and so forth) as long as the data is converted to ASCII
format. RESx files are compiled to .resources files, which are binary representa-
tions of the resource data. Binary .resources files can be embedded by the com-
piler into either the main project assembly or a separate satellite assembly that
contains only resources.

The following options are available to create your resource files. Each is discussed
below.

• Creating a .resx file for string resources

• Creating resource files for image resources

• Compiling a .resx file into a .resources file

AppendixD.pmd 1/25/2005, 6:13 PM680

Appendix D • Developer environments • 681

.NET APPLICATION PROGRAMMING INTERFACE

Creating a .resx file for string resources
If all you need to localize is strings—not images or cursors—you can use Visual
Studio .NET to create a new .resx file that will be compiled automatically into a
.resources module embedded in the main assembly.

1. Right-click the project name in the Solution Explorer, click Add, then click
Add New Item.

2. In the Add New Item dialog box, click Assembly Resource File.

3. Open the new .resx file in Visual Studio, and add name–value pairs for the
culture-specific strings in your application.

4. When you compile your project, the .resx file will be compiled into a
.resources module inside your main assembly.

Creating resource files for image resources
The process of adding images, icons, or cursors to a resources file in .NET is more
complex than creating a file containing only string values, because the tools
currently available in the Visual Studio .NET IDE can only be used to add string
resources.

However, a number of sample projects are available with the Visual Studio .NET
Framework SDK that can help you work with resource files. One such sample is
the Resource Editor (ResEditor).

The ResEditor sample can be used to add images, icons, imagelists, and strings to
a resource file. The tool cannot be used to add cursor resources. Files can be
saved as either .resx or .resources files.

A list of tools useful for working with resources
can be found in the Microsoft .NET Framework

documentation.

Additional information on the ResEditor sample
can be found in the Microsoft .NET Framework

documentation.

AppendixD.pmd 1/25/2005, 6:13 PM681

682 • ArcGIS Server Administrator and Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

Creating resource files programmatically
You can create XML .resx files containing resources programmatically by using
the ResXResourceWriter class (part of the .NET framework). You can create
binary .resources files programmatically by using the ResourceWriter class (also part
of the .NET framework). These classes will allow more flexibility to add the
kind of resources you require.

These classes may be particularly useful if you want to add resources that cannot
be handled by the .NET Framework SDK samples and tools, for example, cur-
sors. The basic usage of the two classes is similar: first, create a new resource
writer class specifying the filename, then add resources individually by using the
AddResource method.

The code below demonstrates how you could create a new .resx file using the
ResXResourceWriter class and add a bitmap and cursor to the file.
[VB.NET]

Dim img As System.Drawing.Image = CType(New
System.Drawing.Bitmap("ABitmap.bmp"), System.Drawing.Image)

Dim cur As New System.Windows.Forms.Cursor("Pencil.cur")

Dim rsxw As New System.Resources.ResXResourceWriter("en-AU.resx")

rsxw.AddResource("MyBmp_jpg", img)

rsxw.AddResource("Mycursor_cur", cur)

rsxw.Close()

[C#]

System.Drawing.Image img = (System.Drawing.Bitmap) new
System.Drawing.Bitmap("ABitmap.bmp");

System.Windows.Forms.Cursor cur = new
System.Windows.Forms.Cursor("Pencil.cur");

The ResEditor sample is provided by Microsoft
as source code. You must build the sample first if
you want to create resource files using this tool.

You can find information on building the SDK
samples under the SDK subdirectory of your

Visual Studio .NET installation.

AppendixD.pmd 1/25/2005, 6:13 PM682

Appendix D • Developer environments • 683

.NET APPLICATION PROGRAMMING INTERFACE

System.Resources.ResXResourceWriter rsxw = new
System.Resources.ResXResourceWriter("en-GB.resx");

rsxw.AddResource("MyBmp_jpg", img);

rsxw.AddResource("Mycursor_cur", cur);

rsxw.Close();

The PanTool developer sample (Samples\Map Analysis\Tools) includes a script—
MakeResources—that shows you how to use the ResXResourceWriter class to
write bitmaps, cursor files, and strings into a .resx file. It also shows you how to
read from a .resx file using the ResXResourceReader class. The sample includes a
.resx file that holds a bitmap, two cursors, and three strings.

Compiling a .resx file into a .resources file
XML-based .resx files can be compiled to binary .resources files either by using
the Visual Studio IDE or the ResX Generator (ResXGen) sample in the tutorial.

• Any .resx file included in a Visual Studio project will be compiled to a
.resources module when the project is built. See the ‘Using resources with
localization’ section below for more information on how multiple resource
files are used for localization.

• You can convert a .resx file into a .resources file independently of the build
process using the .NET Framework SDK command resgen, for example:
resgen PanToolCS.resx PanToolCS.resources

Using resources with localization
This section explains how you can localize resources for your customizations.

How to use resources with localization
In .NET, a combination of a specific language and country/region is called a
culture. For example, the American dialect of English is indicated by the string
“en-US”, and the Swiss dialect of French is indicated by “fr-CH”.

If you want your project to support various cultures (languages and dialects), you
should construct a separate .resources file containing culture-specific strings and
images for each culture.

When you build a .NET project that uses resources, .NET embeds the default
.resources file in the main assembly. Culture-specific .resources files are compiled
into satellite assemblies (using the naming convention <Main Assembly
Name>.resources.dll) and placed in subdirectories of the main build directory.
The subdirectories are named after the culture of the satellite assembly they
contain. For example, Swiss–French resources would be contained in an fr-CH
subdirectory.

When an application runs, it automatically uses the resources contained in the
satellite assembly with the appropriate culture. The appropriate culture is deter-
mined from the Windows settings. If a satellite assembly for the appropriate
culture cannot be found, the default resources (those embedded in the main
assembly) will be used instead.

The following sections give more information on creating your own .resx and
.resources files.

More information on the ResXGen can be found
in the Microsoft .NET Framework documenta-

tion.

AppendixD.pmd 1/25/2005, 6:13 PM683

684 • ArcGIS Server Administrator and Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

Embedding a default .resources file in your project
1. Right-click the project name in the Solution Explorer, click Add, then click

Add Existing Item to navigate to your .resx or .resources file.

2. In the Solution Explorer, choose the file you just added and press F4 to
display its Properties.

3. Set the Build Action property to Embedded Resource.

This will ensure that your application always has a set of resources to fall back
on if there isn’t a resource DLL for the culture your application runs in.

Creating .resources.dll files for cultures supported by your project
1. First, ensure you have a default .resx or .resources file in your project.

2. Take the default .resx or .resources file and create a separate localized file for
each culture you want to support.

• Each file should contain resources with the same Names; the Value of each
resource in the file should contain the localized value.

• Localized resource files should be named according to their culture, for
example, <BaseName>.<Culture>.resx or
<BaseName>.<Culture>.resources.

3. Add the new resource files to the project, ensuring each one has its Build
Action set to Embedded Resource.

4. Build the project.

The compiler and linker will create a separate satellite assembly for each
culture. The satellite assemblies will be placed in subdirectories under the
directory holding your main assembly. The subdirectories will be named by
culture, allowing the .NET runtime to locate the resources appropriate to the
culture in which the application runs.

The main (default) resources file will be embedded in the main assembly.

Assembly versioning and redirection
When new ArcGIS libraries are installed onto a machine, the corresponding
primary interop assemblies (PIA) are updated as well to ensure that the available
PIAs always correspond to the current libraries.

.NET applications that are built using a specific version of a strongly named
assembly will attempt to bind to the same version of that assembly at runtime
because a strong name includes the version number of the assembly.

To allow applications that bind to ArcGIS assemblies to find the new PIAs
without the need for developers to recompile against these new versions, ArcGIS
installs publisher policy files for each PIA. A publisher policy file is an assembly
that redirects the assembly binding process to use a new assembly version. These
policy files are installed to the general assembly cache (GAC) alongside the ESRI
PIAs.

For example, you will find the policy file policy.9.0.ESRI.ArcGIS.System.dll,
which redirects all assembly binding calls for the ESRI.ArcGIS.System.dll PIA
from all 9.0 and service pack assembly versions to the new current assembly
version.

The Visual Basic .NET and C# flavors of the Pan
Tool developer sample illustrate how to localize

resources for German language environments.
The sample can be found in the Developer

Samples\ArcMap\Commands and Tools\Pan Tool
folder. Strictly speaking, the sample only requires

localized strings, but the images have been
changed for the “de” culture as well, to serve as

illustration.

A batch file named buildResources.bat has been
provided in the Pan Tool sample to create the
default .resources files and the culture-specific

satellite assemblies.

AppendixD.pmd 1/25/2005, 6:13 PM684

Appendix D • Developer environments • 685

.NET APPLICATION PROGRAMMING INTERFACE

ARCGIS DEVELOPMENT USING .NET

Using .NET, you can customize the ArcGIS applications, create standalone
applications that use ESRI’s types, and extend ESRI’s types. For example, you
can create a custom tool for ArcMap, a standalone application that uses the
MapControl, or a custom layer. This section discusses several key issues related to
developing with ArcGIS and .NET.

Registering .NET components with COM
Extending ArcGIS applications with custom .NET components requires register-
ing the components in the COM registry and exporting the .NET assemblies to a
type library (TLB). When developing a component, there are two ways to per-
form this task: you can use the RegAsm utility that ships with the .NET Frame-
work SDK or Visual Studio .NET, which has a Register for COM Interop com-
piler flag.

The example below shows an EditTools assembly being registered with COM.
The /tlb parameter specifies that a type library should also be generated, and the
/codebase option indicates that the path to the assembly should be included in
the registry settings. Both of these parameters are required when extending the
ArcGIS applications with .NET components.
regasm EditTools.dll /tlb:EditTools.tlb /codebase

Visual Studio .NET performs this same operation automatically if you set the
Register for COM Interop compiler flag; this is the simplest way to perform the
registration on a development machine. To check a project’s settings, click Project
Properties from the Project menu, then look at the Build property under Configu-
ration Properties. The last item, Register for COM Interop, should be set to True.

Registering .NET classes in COM component categories
Much of the extensibility of ArcGIS relies on COM component categories. In
fact, most custom ArcGIS components must be registered in component catego-
ries appropriate to their intended context and function for the host application to
make use of their functionality. For example, all ArcMap commands and tools
must be registered in the ESRI Mx Commands component category. There are a
few different ways you can register a .NET component in a particular category,
but before doing so, the .NET components must be registered with COM. See the
‘Registering .NET components with COM’ section above for details.

Customize dialog box
Custom .NET ArcGIS commands and tools can quickly be added to toolbars via
the Add From File button on the Customize dialog box. In this case, you simply
have to browse for the TLB and open it. The ArcGIS framework will automati-
cally add the classes you select in the type library to the appropriate component
category.

Categories utility
Another option is to use the Component Categories Manager (Categories.exe). In
this case you select the desired component category in the utility, browse for your
type library, and choose the appropriate class.

AppendixD.pmd 1/25/2005, 6:13 PM685

686 • ArcGIS Server Administrator and Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

COMRegisterFunction
The final and recommended solution is to add code to your .NET classes that will
automatically register them in a particular component category whenever the
component is registered with COM. The .NET Framework contains two at-
tribute classes (ComRegisterFunctionAttribute and ComUnregisterFunctionAttribute)
that allow you to specify methods that will be called whenever your component
is being registered or unregistered. Both methods are passed the CLSID of the
class currently being registered, and with this information you can write code
inside the methods to make the appropriate registry entries or deletions. Register-
ing a component in a component category requires that you also know the com-
ponent category’s unique ID (CATID).

The code excerpt below shows a custom ArcMap command that automatically
registers itself in the MxCommands component category whenever the .NET
assembly in which it resides is registered with COM.

public sealed class AngleAngleTool: BaseTool

{

[ComRegisterFunction()]

static void Reg(String regKey)

{

Microsoft.Win32.Registry.ClassesRoot.CreateSubKey(regKey.
Substring(18)+ "\\Implemented Categories\\" + "{B56A7C42-83D4-11D2-A2E9-
080009B6F22B}");

 }

 [ComUnregisterFunction()]

 static void Unreg(String regKey)

 {

 Microsoft.Win32.Registry.ClassesRoot.DeleteSubKey(regKey.Substring(18)+
"\\Implemented Categories\\" + "{B56A7C42-83D4-11D2-A2E9-080009B6F22B}");

 }

To simplify this process, ESRI provides classes for each component category
ArcGIS exposes with static functions to register and unregister components. Each
class knows the GUID of the component category it represents, so registering
custom components is greatly simplified. For more details on using these classes,
see the ‘Working with the ESRI .NET component category classes’ section below.

Simplifying your code using the ESRI.ArcGIS.Utility assembly
Part of the ArcGIS Developer Kit includes a number of .NET utility classes that
facilitate .NET development by taking advantage of a few .NET capabilities
including object inheritance and static functions.

Working with the ESRI .NET base classes
ESRI provides two abstract base classes (BaseCommand and BaseTool) to help you
create new custom commands and tools for ArcGIS. The classes are abstract
classes (marked as MustInherit in Visual Basic .NET), which means that although
the class may contain some implementation code, it cannot itself be instantiated
directly and can only be used by being inherited by another class. Both base classes
are defined in the ESRI.ArcGIS.Utility assembly and belong to the
ESRI.ArcGIS.Utility.BaseClasses namespace.

AppendixD.pmd 1/25/2005, 6:13 PM686

Appendix D • Developer environments • 687

.NET APPLICATION PROGRAMMING INTERFACE

These base classes simplify the creation of custom commands and tools by pro-
viding a default implementation for each of the members of ICommand and ITool.
Instead of stubbing out each member and providing implementation code, you
only have to override the members that your custom command or tool requires.
The exception is ICommand::OnCreate; this member must be overridden in your
derived class.

Using these base classes is the recommended way to create commands and tools
for ArcGIS applications in .NET languages. You can create similar COM classes
from first principles; however, you should find the base class technique to be a
quicker, simpler, less error-prone method of creating commands and tools.

Syntax
Both base classes have an overloaded constructor, allowing you to quickly set
many of the properties of a command or tool, such as Name and Category, via
constructor parameters.

The overloaded BaseCommand constructor has the following signature:
[VB.NET]

Public Sub New(_

ByVal bitmap As System.Drawing.Bitmap _

ByVal caption As String _

ByVal category As String _

ByVal helpContextId As Integer _

ByVal helpFile As String _

ByVal message As String _

ByVal name As String _

ByVal tooltip As String)

[C#]

public BaseCommand(

System.Drawing.Bitmap bitmap,

string caption,

string category,

int helpContextId,

string helpFile,

string message,

string name,

string toolTip,

);

The overloaded BaseTool constructor has the following signature:
[VB.NET]

Public Sub New(_

ByVal bitmap As System.Drawing.Bitmap _

ByVal caption As String _

ByVal category As String _

ByVal cursor As System.Windows.Forms.Cursor _

ByVal helpContextId As Integer _

ByVal helpFile As String _

ByVal message As String _

ByVal name As String _

AppendixD.pmd 1/25/2005, 6:13 PM687

688 • ArcGIS Server Administrator and Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

ByVal tooltip As String _

)

[C#]

public BaseTool(

System.Drawing.Bitmap bitmap,

string caption,

string category,

System.Windows.Forms.Cursor cursor,

int helpContextId,

string helpFile,

string message,

string name,

string toolTip,

);

Inheriting the base classes
You can use these parameterized constructors when you write your new classes,
for example, as shown below for a new class called PanTool that inherits the
BaseTool class.
[VB.NET]

Public Sub New()

MyBase.New(Nothing, "Pan", "My Custom Tools", _

System.Windows.Forms.Cursors.Cross, 0, "", "Pans the map.",
"PanTool", "Pan")

End Sub

[C#]

public PanTool() : base (null,"Pan", "My Custom Tools",

System.Windows.Forms.Cursors.Cross, 0, "","Pans the map.", "PanTool",
"Pan")

{

 ...

}

Setting base class members directly
As an alternative to using the parameterized constructors, you can set the mem-
bers of the base class directly.

The base classes expose their internal member variables to the inheritor class, one
per property, so you can directly access them in your derived class. For example,
instead of using the constructor to set the Caption or overriding the Caption
function, you can set the m_caption class member variable declared in the base
class.
[VB.NET]

Public Sub New()

MyBase.New()

MyBase..m_bitmap = New
System.Drawing.Bitmap([GetType]().Assembly.GetManifestResourceStream("Namespace.Pan.bmp"))

MyBase..m_cursor = System.Windows.Forms.Cursors.Cross

MyBase..m_category = "My Custom Tools"

AppendixD.pmd 1/25/2005, 6:13 PM688

Appendix D • Developer environments • 689

.NET APPLICATION PROGRAMMING INTERFACE

MyBase..m_caption = "Pan"

MyBase..m_message = "Pans the map."

MyBase..m_name = "PanTool"

MyBase..m_toolTip = "Pan"

End Sub

[C#]

public PanTool()

{

base.m_bitmap = new
System.Drawing.Bitmap(GetType().Assembly.GetManifestResourceStream("Namespace.Pan.bmp"));

base.m_cursor = System.Windows.Forms.Cursors.Cross;

base.m_category = "My Custom Tools";

base.m_caption = "Pan";

base.m_message = "Pans the map.";

base.m_name = "PanTool";

base.m_toolTip = "Pan";

}

Overriding members
When you create custom commands and tools that inherit a base class, you will
more than likely need to override a few members. When you override a member
in your class, the implementation code that you provide for that member will be
executed instead of the default member implementation inherited from the base
class. For example, the OnClick method in the BaseCommand has no implementa-
tion code at all, as OnClick will not do anything by default. This may be suitable
for a tool but is probably not for a command.

To override any member, you can right-click the member of the base class in the
Solution Explorer window, click Add, then click Override to stub out the mem-
ber as overridden. Note that if you right-click the member of the underlying
interface (ICommand or ITool) instead of the base class member, the overridden
member will not include the overrides keyword, and the method will instead be
shadowed.
[VB.NET]

Public Overrides Sub OnClick()

' Your OnClick

End Sub

[C#]

public override void OnClick()

{

// Your OnClick

}

Alternatively, to override a member of the base class, click Overrides from the
dropdown list on the right on the Code Window Wizard bar, then choose the
member you want to override from the left dropdown list. This will stub out the
member as overridden.

AppendixD.pmd 1/25/2005, 6:13 PM689

690 • ArcGIS Server Administrator and Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

What do the base classes do by default?
The table below shows the base class members that have a significant base class
implementation, along with a description of that implementation. Override these
members when the base class behavior is not consistent with your customization.
For example, Enabled is set to True by default; if you want your custom com-
mand enabled only when a specific set of criteria has been met, you must over-
ride this property in your derived class.

Member Description

ICommand::Bitmap The given bitmap is made transparent based on the
pixel value at position 1,1. The bitmap is null until
set by the derived class.

ICommand::Category If null, sets the category "Misc."

ICommand::Checked Set to False.

ICommand::Enabled Set to True.

ITool::OnContextMenu Set to False.

ITool::Deactivate Set to True.

Working with the ESRI .NET component category classes
To help register .NET components in COM component categories, ESRI provides
the ESRI.ArcGIS.Utility.CATIDs namespace, which has classes that represent
each of the ArcGIS component categories. Each class knows its CATID and
exposes static methods (Register and Unregister) for adding and removing com-
ponents. Registering your component becomes as easy as adding COM registration
methods with the appropriate attributes and passing the received CLSID to the
appropriate static method.

The example below shows a custom Pan tool that registers itself in the ESRI Mx
Commands component category. Notice in this example that
MxCommands.Register and MxCommands.Unregister are used instead of
Microsoft.Win32.Registry.ClassesRoot.CreateSubKey and
Microsoft.Win32.Registry.ClassesRoot.DeleteSubKey.
[VB.NET]

Public NotInheritable Class PanTool

Inherits BaseTool

<ComRegisterFunction()> _

Public Shared Sub Reg(ByVal regKey As [String])

MxCommands.Register(regKey)

End

<ComUnregisterFunction()> _

Public Shared Sub Unreg(ByVal regKey As [String])

MxCommands.Unregister(regKey)

End Sub

[C#]

public sealed class PanTool : BaseTool

{

[ComRegisterFunction()]

static void Reg(string regKey)

{

AppendixD.pmd 1/25/2005, 6:13 PM690

Appendix D • Developer environments • 691

.NET APPLICATION PROGRAMMING INTERFACE

MxCommands.Register(regKey);

}

[ComUnregisterFunction()]

static void Unreg(string regKey)

{

MxCommands.Unregister(regKey);

}

Working with OLE StdFont and StdPicture classes
Some ArcObjects libraries make use of classes and interfaces defined within the
standard OLE libraries from Microsoft. To use these members within .NET, you
should add to your project a reference to the Stdole.dll primary interop assembly,
which is included as part of the .NET support during an ArcGIS installation.
This PIA allows you to define StdFont and StdPicture classes, for example:
[C#]

stdole.IFontDisp fnt = (stdole.IFontDisp) new stdole.StdFontClass();

fnt.Name = "Arial";

fnt.Size = 20.0F;

ESRI.ArcGIS.Display.TextSymbol textSym = new
 ESRI.ArcGIS.Display.TextSymbolClass();

textSym.Font = fnt;

[Visual Basic .NET]

Dim fnt As stdole.IFontDisp = New stdole.StdFontClass()

fnt.Name = "Arial"

fnt.Size = 20.0

Dim textSym As ESRI.ArcGIS.Display.TextSymbol = New
 ESRI.ArcGIS.Display.TextSymbolClass()

textSym.Font = fnt

Sometimes, however, you may have an existing .NET Font, Bitmap, or Icon class
that you wish to convert to use as a Font or Picture in an ESRI method. The
ESRI.ArcGIS.Utility.COMSupport namespace, which is part of the
ESRI.ArcGIS.Utility.dll assembly, provides the OLE class, which may help you to
perform such conversions.

Note that these members depend on the System.Windows.Forms.AxHost class
and as such are only suitable for use within a project that has a reference to the
System.Windows.Forms.dll assembly.

Below you can find the syntax information for the members of the
ESRI.ArcGIS.Utility.COMSupport.OLE class—these are static (shared in
VB.NET) members and, therefore, can be called without the need to instantiate
the OLE class.

GetIFontDispFromFont: This method can be used to convert an existing .NET
System.Drawing.Font object into an Stdole.StdFont object.
[C#]

 public static object GetIFontDispFromFont (System.Drawing.Font font)

[Visual Basic .NET]

AppendixD.pmd 1/25/2005, 6:13 PM691

692 • ArcGIS Server Administrator and Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

 Public Shared GetIFontDispFromFont (ByVal font As System.Drawing.Font) As
Object

GetIPictureDispFromBitmap: This method can be used to convert an existing
.NET System.Drawing.Bitmap object into an Stdole.StdPicture object.
[C#]

 public static object GetIPictureDispFromBitmap (System.Drawing.Bitmap bitmap)

[Visual Basic .NET]

 Public Shared GetIPictureDispFromBitmap (ByVal bitmap As
 System.Drawing.Bitmap) As Object

GetIPictureDispFromIcon: This method can be used to convert an existing
.NET System.Drawing.Icon object into an Stdole.StdPicture object.
[C#]

 public static object GetIPictureDispFromIcon (System.Drawing.Icon icon)

[Visual Basic .NET]

 Public Shared GetIPictureDispFromIcon (ByVal icon As System.Drawing.Icon)
As Object

Below are some examples of using the members of the OLE class.
[C#]

System.Drawing.Font dotNetFont = new System.Drawing.Font("Castellar", 25.0F);

ESRI.ArcGIS.Display.ITextSymbol textSym = new
ESRI.ArcGIS.Display.TextSymbolClass() as ESRI.ArcGIS.Display.ITextSymbol;

textSym.Font =
ESRI.ArcGIS.Utility.COMSupport.OLE.GetIFontDispFromFont(dotNetFont) as
stdole.IFontDisp;

System.Drawing.Bitmap dotNetBmp = new
System.Drawing.Bitmap(@"C:\Temp\MyBitmap.bmp");

ESRI.ArcGIS.Display.IPictureMarkerSymbol bmpSym = new
ESRI.ArcGIS.Display.PictureMarkerSymbolClass() as
ESRI.ArcGIS.Display.IPictureMarkerSymbol;

bmpSym.Picture =
ESRI.ArcGIS.Utility.COMSupport.OLE.GetIPictureDispFromBitmap(dotNetBmp) as
stdole.IPictureDisp;

System.Drawing.Icon dotNetIcon = new
System.Drawing.Icon(@"C:\Temp\MyIcon.ico");

ESRI.ArcGIS.MapControl.IMapControlDefault map = this.axMapControl1.Object
as ESRI.ArcGIS.MapControl.IMapControlDefault;

map.MouseIcon =
ESRI.ArcGIS.Utility.COMSupport.OLE.GetIPictureDispFromIcon(dotNetIcon) as
stdole.IPictureDisp;

map.MousePointer =
ESRI.ArcGIS.SystemUI.esriControlsMousePointer.esriPointerCustom;

[Visual Basic .NET]

Dim dotNetFont As New System.Drawing.Font("Castellar", 25.0F)

Dim textSym As ESRI.ArcGIS.Display.ITextSymbol = New
ESRI.ArcGIS.Display.TextSymbolClass

textSym.Font =
ESRI.ArcGIS.Utility.COMSupport.OLE.GetIFontDispFromFont(dotNetFont)

AppendixD.pmd 1/25/2005, 6:13 PM692

Appendix D • Developer environments • 693

.NET APPLICATION PROGRAMMING INTERFACE

Dim dotNetBmp As System.Drawing.Bitmap = New
System.Drawing.Bitmap("C:\Temp\MyBitmap.bmp")

Dim bmpSym As ESRI.ArcGIS.Display.IPictureMarkerSymbol = New
ESRI.ArcGIS.Display.PictureMarkerSymbolClass

bmpSym.Picture =
ESRI.ArcGIS.Utility.COMSupport.OLE.GetIPictureDispFromBitmap(dotNetBmp)

Dim dotNetIcon As System.Drawing.Icon = New
System.Drawing.Icon("C:\Temp\MyIcon.ico")

Dim map As ESRI.ArcGIS.MapControl.IMapControlDefault =
Me.AxMapControl1.Object

map.MouseIcon =
ESRI.ArcGIS.Utility.COMSupport.OLE.GetIPictureDispFromIcon(dotNetIcon)

map.MousePointer =
ESRI.ArcGIS.SystemUI.esriControlsMousePointer.esriPointerCustom

Shutting down ArcGIS .NET applications
To help unload COM references in .NET applications, the AOUninitialize class
provides the static (shared in VB.NET) function Shutdown. This class is part of
the ESRI.ArcGIS.Utility.COMSupport namespace in the ESRI.ArcGIS.Utility.dll
assembly.

For more information on shutting down ArcGIS .NET applications, see ‘Releas-
ing COM References’ in this chapter.
[C#]

ESRI.ArcGIS.Utility.COMSupport.AOUninitialize.Shutdown();

[Visual Basic .NET]

ESRI.ArcGIS.Utility.COMSupport.AOUninitialize.Shutdown()

Extending the server
When using .NET to create a COM object for use in the GIS server, there are
some specific guidelines you need to follow to ensure that you can use your object
in a server context and that it will perform well in that environment. The guide-
lines below apply specifically to COM objects you create to run within the server.

• You must explicitly create an interface that your COM class implements.
Unlike Visual Basic 6, .NET will not create an implicit interface for your
COM class that you can use when creating the object in a server context.

• Your COM class should be marshalled using the Automation marshaller. You
specify this by adding AutomationProxyAttribute to your class with a value of
true.

• Your COM class should generate a dual class interface. You specify this by
adding ClassInterfaceAttribute to your class with a value of
ClassInterfaceType.AutoDual.

• To ensure that your COM object performs well in the server, it must inherit
from ServicedComponent, which is in the System.EnterpriseServices assembly.
This is necessary due to the current COM interop implementation of the
.NET Framework.

For more details and an example of a custom Server COM object written in
.NET, see Chapter 4, ‘Developing ArcGIS Server applications’.

AppendixD.pmd 1/25/2005, 6:13 PM693

694 • ArcGIS Server Administrator and Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

Releasing COM references

ArcGIS Engine and ArcGIS Desktop applications
An unexpected crash may occur when a standalone application attempts to shut
down. For example, an application hosting a MapControl with a loaded map
document will crash on exit. The crashes result from COM objects hanging
around longer than expected. To avoid crashes, all COM references must be
unloaded prior to shutdown. To help unload COM references, a static Shutdown
function has been added to the ESRI.ArcGIS.Utility assembly. The following
code excerpt shows the function in use.
[VB.NET]

Private Sub Form1_Closing(ByVal sender As Object, ByVal e As
System.ComponentModel.CancelEventArgs) Handles MyBase.Closing

 ESRI.ArcGIS.Utility.COMSupport.AOUninitialize.Shutdown()

End Sub

[C#]

private void Form1_Closing(object sender, CancelEventArgs e)

{

ESRI.ArcGIS.Utility.COMSupport.AOUninitialize.Shutdown();

}

The AOUninitialize.Shutdown function handles most of the shutdown problems in
standalone applications, but you may still experience problems as there are COM
objects that require explicit releasing; in these cases, call
System.Runtime.InteropServices.Marshal.ReleaseComObject to decrement the reference
count, allowing the application to terminate cleanly. The StyleGallery is one such
object, and the following example documents how to handle references to this
class.
[VB.NET]

Dim styleGallery As IStyleGallery

styleGallery = New StyleGalleryClass

MessageBox.Show(styleGallery.ClassCount)

Marshal.ReleaseComObject(styleGallery)

[C#]

IStyleGallery sg = new StyleGalleryClass() as IStyleGallery;

MessageBox.Show(sg.ClassCount.ToString());

Marshal.ReleaseComObject(sg);

Working with geodatabase cursors in ArcGIS Server
Some objects that you can create in a server context may lock or use resources
that the object frees only in its destructor. For example, a geodatabase cursor may
acquire a shared schema lock on a file-based feature class or table on which it is
based or may hold on to an SDE stream.

While the shared schema lock is in place, other applications can continue to query
or update the rows in the table, but they cannot delete the feature class or modify
its schema. In the case of file-based data sources, such as shapefiles, update
cursors acquire an exclusive write lock on the file, which will prevent other
applications from accessing the file for read or write. The effect of these locks is
that the data may be unavailable to other applications until all of the references
on the cursor object are released.

AppendixD.pmd 1/25/2005, 6:13 PM694

Appendix D • Developer environments • 695

In the case of SDE data sources, the cursor holds on to an SDE stream, and if
the application has multiple clients, each may get and hold on to an SDE stream,
eventually exhausting the maximum allowable streams. The effect of the number
of SDE streams exceeding the maximum is that other clients will fail to open
their own cursors to query the database.

Because of the above reasons, it’s important to ensure that your reference to any
cursor your application opens is released in a timely manner. In .NET, your refer-
ence on the cursor (or any other COM object) will not be released until garbage
collection kicks in. In a Web application or Web service servicing multiple con-
current sessions and requests, relying on garbage collection to release references
on objects will result in cursors and their resources not being released in a timely
manner.

To ensure a COM object is released when it goes out of scope, the WebControls
assembly contains a helper object called WebObject. Use the ManageLifetime
method to add your COM object to the set of objects that will be explicitly
released when the WebObject is disposed. You must scope the use of WebObject
within a Using block. When you scope the use of WebObject within a using block,
any object (including your cursor) that you have added to the WebObject using the
ManageLifetime method will be explicitly released at the end of the using block.

The following example demonstrates this coding pattern:
[VB.NET]

Private Sub doSomething_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles doSomething.Click

Dim webobj As WebObject = New WebObject

Dim ctx As IServerContext = Nothing

Try

Dim serverConn As ServerConnection = New ServerConnection("doug", True)

Dim som As IServerObjectManager = serverConn.ServerObjectManager

ctx = som.CreateServerContext("Yellowstone", "MapServer")

Dim mapsrv As IMapServer = ctx.ServerObject

Dim mapo As IMapServerObjects = mapsrv

Dim map As IMap = mapo.Map(mapsrv.DefaultMapName)

Dim flayer As IFeatureLayer = map.Layer(0)

Dim fClass As IFeatureClass = flayer.FeatureClass

Dim fcursor As IFeatureCursor = fClass.Search(Nothing, True)

webobj.ManageLifetime(fcursor)

Dim f As IFeature = fcursor.NextFeature()

Do Until f Is Nothing

' Do something with the feature.

f = fcursor.NextFeature()

Loop

Finally

ctx.ReleaseContext()

webobj.Dispose()

.NET APPLICATION PROGRAMMING INTERFACE

AppendixD.pmd 1/25/2005, 6:13 PM695

696 • ArcGIS Server Administrator and Developer Guide

End Try

End Sub

[C#]

private void doSomthing_Click(object sender, System.EventArgs e)

{

using (WebObject webobj = new WebObject())

{

ServerConnection serverConn = new ServerConnection("doug",true);

IServerObjectManager som = serverConn.ServerObjectManager;

IServerContext ctx =
som.CreateServerContext("Yellowstone","MapServer");

IMapServer mapsrv = ctx.ServerObject as IMapServer;

IMapServerObjects mapo = mapsrv as IMapServerObjects;

IMap map = mapo.get_Map(mapsrv.DefaultMapName);

IFeatureLayer flayer = map.get_Layer(0) as IFeatureLayer;

IFeatureClass fclass = flayer.FeatureClass;

IFeatureCursor fcursor = fclass.Search(null, true);

webobj.ManageLifetime(fcursor);

IFeature f = null;

while ((f = fcursor.NextFeature()) != null)

{

// Do something with the feature.

}

ctx.ReleaseContext();

}

}

The WebMap, WebGeocode, and WebPageLayout objects also have a ManageLifetime
method. If you are using, for example, a WebMap and scope your code in a using
block, you can rely on these objects to explicitly release objects you add with
ManageLifetime at the end of the using block.

Deploying .NET ArcGIS customizations
All ArcGIS Engine and Desktop customizations require an ArcGIS installation on
all client machines. The ArcGIS installation must include the ESRI primary
interop assemblies, which the setup program installs in the global assembly cache.
For example, deploying a standalone GIS application that only requires an
ArcGIS Engine license requires an ArcGIS Engine installation on all target ma-
chines.

Standalone applications
Deploying standalone applications to either ArcGIS Engine or Desktop clients
involves copying over the executable to the client machine. Copying over the
executable can be as simple as using xcopy or more involved such as creating a
custom install or setup program. Note that aside from the ArcGIS primary

.NET APPLICATION PROGRAMMING INTERFACE

Note that .NET Support is a separate option in
the ArcGIS installation; this needs to be selected
during installation on both the development and

target machines for .NET customizations to
succeed. If you did not install .NET Support

originally, you can run the installation program
again and choose the Modify option to add

features to your ArcGIS installation.

AppendixD.pmd 1/25/2005, 6:13 PM696

Appendix D • Developer environments • 697

interop assemblies and the .NET Framework assemblies, all dependencies must
also be packaged and deployed.

ArcGIS components
Components that extend the ArcGIS applications are trickier to deploy than
standalone applications because they must be registered with COM and in specific
component categories. As discussed earlier, implementing COMRegisterFunction
and COMUnregisterFunctions facilitates deployment by providing self category
registration, but this only occurs when the components are registered.

There are two techniques for registering components with COM. One option is to
run the register assembly utility (RegAsm.exe) that ships with the .NET Frame-
work SDK. This is typically not a viable solution as client machines may or may
not have this utility and it’s difficult to automate. The second and recommended
approach is to add an automatic registration step to a custom setup or install
program.

The key to creating a custom install program that both deploys and registers
components is the System.Runtime.InteropServices.RegistrationServices class. This class
has the RegisterAssembly and UnregisterAssembly members, which register and
unregister managed classes with COM. These are the same functions the RegAsm
utility uses. Using these functions inside a custom installer class along with a
setup program is the complete solution.

The basic steps below outline the creation of a deployable solution. Note: The
steps assume you are starting with a solution that already contains a project with
at least one COM-enabled class.

1. In Visual Studio .NET, add a new Installer Class and name it accordingly.

Override the Install and Uninstall functions that are implemented in the
Installer base class and use the RegistrationServices class’s RegisterAssembly and
UnregisterAssembly methods to register the components. Make sure you use the
SetCodeBase flag; this indicates that the code base key for the assembly should
be set in the registry.

.NET APPLICATION PROGRAMMING INTERFACE

AppendixD.pmd 1/25/2005, 6:13 PM697

698 • ArcGIS Server Administrator and Developer Guide

[VB.NET]

Public Overrides Sub Install(ByVal stateSaver As
System.Collections.IDictionary)

 MyBase.Install(stateSaver)

 Dim regsrv As New RegistrationServices

 regsrv.RegisterAssembly(MyBase.GetType().Assembly,
AssemblyRegistrationFlags.SetCodeBase)

End Sub

Public Overrides Sub Uninstall(ByVal savedState As
System.Collections.IDictionary)

 MyBase.Uninstall(savedState)

 Dim regsrv As New RegistrationServices

 regsrv.UnregisterAssembly(MyBase.GetType().Assembly)

 End Sub

End Class

[C#]

public override void Install(IDictionary stateSaver)

{

 base.Install (stateSaver);

 RegistrationServices regSrv = new RegistrationServices();

 regSrv.RegisterAssembly(base.GetType().Assembly,
AssemblyRegistrationFlags.SetCodeBase);

}

public override void Uninstall(IDictionary savedState)

{

 base.Uninstall (savedState);

 RegistrationServices regSrv = new RegistrationServices();

 regSrv.UnregisterAssembly(base.GetType().Assembly);

}

2. Add a setup program to your solution.

a. In the Solution Explorer, right-click the new project and click Add >
Project Output. Choose the project you want to deploy and choose Primary
output.

.NET APPLICATION PROGRAMMING INTERFACE

AppendixD.pmd 1/25/2005, 6:13 PM698

Appendix D • Developer environments • 699

b. From the list of detected dependencies that is regenerated, remove all
references to ESRI primary interop assemblies (for example,
ESRI.ArcGIS.System) and stdole.dll. The only items typically left in the list
are your TLB and Primary output from <AssemblyName><Version>,
which represent the DLL or EXE you are compiling.

c. The final steps involve associating the custom installation steps configured
in the new installer class with the setup project. To do this, right-click the
setup project in the Solution Explorer and click View Custom Actions.

d. In the resulting view, right-click the Install folder and click Add Custom
Action. Double-click the Application folder, then double-click the Primary
output from the <AssemblyName><Version> item. This step associates the
custom install function created earlier with the setup’s custom install ac-
tion.

e. Repeat the last step for the setup’s uninstall.

3. Finally, rebuild the entire solution to generate the setup executable file. Run-
ning the executable on a target machine installs the components and registers
them with COM. The COMRegisterFunction routines then register the compo-
nents in the appropriate component categories.

ArcGIS Server deployments
To deploy Web applications developed on a development server to product
production servers, use the built-in Visual Studio .NET tools.
1. In the Solution Explorer, click your project.
2. Click the Project menu, then click Copy Project.
3. In the Copy Project dialog box, specify the deployment location.
4. Click OK.
In addition to copying the project, you must copy and register any related DLLs
containing custom COM objects onto your Web server and all the GIS server’s
server object container (SOC) machines.

.NET APPLICATION PROGRAMMING INTERFACE

AppendixD.pmd 1/25/2005, 6:13 PM699

700 • ArcGIS Server Administrator and Developer Guide

The ArcGIS API for the Java platform is a programming interface that
interoperates with ArcObjects and is specifically designed to target Java develop-
ers. Java technology is both a platform and an object-oriented programming
language developed by Sun Microsystems that comes in three versions and con-
sists of two components:

Versions:

• Java 2 Platform, Standard Edition (J2SE)

• Java 2 Platform, Enterprise Edition (J2EE)

• Java 2 Platform, Micro Edition (J2ME)

Components:

• Java Virtual Machine (JVM)—Java runtime and client/server compilers

• Java API—Suite of core, integration, and user interface toolkits

The Java language is important because it is an open standard. All implementa-
tions of the programming language must meet the specifications provided for the
JVM. This enables applications to run on any hardware platforms that host the
JVM.

PLATFORM CONFIGURATION

This section will describe all the necessary configurations needed to be productive
with the Java API including class path and environment settings.

Java Developer Kit
To develop with ArcObjects using the ArcGIS API for Java, you must have the
Java 2 Platform Standard Software Developer Kit (J2SDK) installed. All of your
J2SDK tools are located in the install directory. You can either explicitly invoke
them from that directory or add it to your PATH environment variable. Adding
the directory to your PATH variable involves two steps:

1. Create a new environment variable named JAVA_HOME.
JAVA_HOME=[path to JDK install directory]

For example:
JAVA_HOME=c:\j2sdk

2. Edit the PATH variable to include the bin directory of JAVA_HOME.
PATH=...;%JAVA_HOME%\bin

To compile server-based applications, such as servlets and EJBs, you will also
need to install and include the Java 2 Enterprise Edition toolkit in your class
path. Java application servers generally provide this, or you can get the reference
implementation provided by Sun Microsystems.

ArcGIS Server
The ArcGIS API for Java can be used to develop server-based applications such
as client/server style applications, Web applications, Enterprise Java Beans (EJB),
and Web Services. To develop ArcGIS server applications you must have success-
fully installed ArcGIS Server. In addition, depending on the type of application,
you may also need a Servlet Engine or Application Server. Refer to the scenarios

JAVA APPLICATION PROGRAMMING INTERFACE

Setting the JAVA_HOME variable is not
absolutely necessary; however, some Java IDEs

and Java tools require it be set.

The PATH environment variable is a list of
directory paths for executables such as javac,

java, and javadoc. When an executable is
specified without a path, this variable is used to

help locate that executable.

AppendixD.pmd 1/25/2005, 6:13 PM700

Appendix D • Developer environments • 701

in Chapter 7, ‘Developer scenarios’, and the installed samples to learn more about
developing one of these server-based applications.

To configure your environment on Solaris and Linux, source one of the
init_server helper scripts that are found in the ArcGIS installation directory. If
you use C-shell, source init_server.csh. If you use bash or bourne shell, source
init_server.sh.

Class path
For any application development with Java, the set of dependent JAR files needs
to be in the classpath. Include the JAR files in your compilation environment by
using the -classpath option, by adding them as libraries in your IDE, or by what-
ever other method is appropriate for your development environment. For Web
applications they should be under the WEB-INF/lib folder.

The first required file is jintegra.jar, which is found in [ArcGIS_install_location]/
arcgis/java on Solaris and Linux and in [ArcGIS_install_location]\ArcGIS\java
on Windows. Additionally, your application will require other dependent
arcgis_xxx.jar files. The exact list of files will be determined by the ArcObjects
libraries your application uses. These files can be found in the same directory as
jintegra.jar. The list of arcgis_xxx.jar files required by your application can be-
come fairly long. To simplify things, the opt subdirectory of the java directory
includes a convenience JAR named arcobjects.jar. This JAR contains most of the
ArcObjects class files from the arcgis_xxx JARs.

When developing Enterprise Java Beans (EJB), the Java Connector Architecture
(JCA) JAR files in addition to arcobjects.jar and jintegra.jar need to be added.
These files— intrinsycjca.rar and intrinsycjca.jar—are found in the same directory
as jintegra.jar.

If you are using the Java ADF Web controls, additional files need to be in the
classpath. Use the Web application at [ArcGIS_install_location]/java/
webcontrols. This Web application has all the necessary files in the correct loca-
tion.

ANT
The ArcGIS API for Java includes numerous sample applications and server
templates, each of which is delivered with ANT scripts. A version of ANT
(1.5.3) is included with the install, and it is named arcgisant.

The included ANT scripts require certain additional environment settings:

• AGSDEVKITHOME should point to your ArcGIS installation directory. For
example:
 AGSDEVKITHOME = C:\ArcGIS\DeveloperKit

This environment variable is already set by the install for Windows users. Solaris
and Linux developers should source one of the setenv_serverdevkit helper scripts
that are found in the location [ArcGIS_install_location]/arcgis/developerkit. If
you use C-shell, source setenv_serverdevkit.csh. If you use bash or bourne shell,
source setenv_serverdevkit.sh.

JAVA APPLICATION PROGRAMMING INTERFACE

AppendixD.pmd 1/25/2005, 6:13 PM701

702 • ArcGIS Server Administrator and Developer Guide

To use ANT scripts from the command line, you must include ANT’s bin direc-
tory in your path. For example:
PATH=...;% AGSDEVKITHOME %\tools\ant\bin

JRE
The ArcGIS Engine and Server developer kits include a version of the Java
Runtime Environment (JRE). This enables you to run any ArcGIS Java applica-
tion as long as all the necessary settings described above are local to the runtime.
You will notice the necessary .dll files in the bin directory and the necessary .jar
files in the library extension directory. All you need to do to get started with this
runtime environment is ensure that the bin directory is added to your PATH
environment variable:
PATH=...;\ArcGIS\java\jre\bin

JAVA PROGRAMMING TECHNIQUES

This section provides you with some fundamental concepts of the Java program-
ming language. It assumes you understand general programming concepts but are
relatively new to Java.

Features of the Java Virtual Machine
The JVM specification provides a platform-independent, abstract computer for
executing code. The JVM knows nothing about the Java language; instead, it
understands a particular binary format, the class file that contains instructions in
the form of bytecodes. The Java Virtual Machine specification provides an envi-
ronment that both compiles and interprets programs. The compiler takes a .java
file, produces a series of bytecodes, and stores them in a .class file; the Java
interpreter executes the bytecodes stored in the .class file.

Each implementation of the JVM interacts with the operating system. The JVM
handles such things as memory allocation, garbage collection, and security moni-
toring.

Java Native Interfaces
Even though Java programs are designed to run on multiple platforms, there may
be times where the standard Java class library doesn’t support platform-depen-
dent features needed by a particular application or a Java program needs to imple-
ment a lower-level program and have the Java program call it. The JNI is a stan-
dard cross-platform programming interface provided by the Java language. It
enables you to write Java programs that can operate with applications and librar-
ies written in other programming languages, such as C or C++. This is the tech-
nology used to bridge native ArcObjects with the ArcGIS API for Java.

To initialize your Java environment for native usage of ArcObjects, every ArcGIS
Engine—Java application must call the static initializeEngine method on the
EngineInitializer class. This should be the first call you do, even before AoInitialize.
public static void main(String[] args){

 /* always initialize ArcGIS Engine for native usage */

 EngineInitializer.initializeEngine();

 ...

}

JAVA APPLICATION PROGRAMMING INTERFACE

To see how the initializeEngine method is used
as the first call, refer to the Java developer

samples in ArcGIS Developer Help.

AppendixD.pmd 1/25/2005, 6:13 PM702

Appendix D • Developer environments • 703

ARCGIS DEVELOPMENT USING JAVA

This section is intended for developers using the Java SDK for ArcGIS Engine.
The SDK provides interoperability with ArcObjects, allowing a developer to
access ArcObjects as though they were Java objects. The API is not limited to any
specific Java Virtual Machine or platform and uses standard Java Native Interface
to access ArcObjects. The ArcGIS API for Java exposes the complete functional-
ity of ArcObjects via Java classes and interfaces, which allows Java developers to
write once, run anywhere, and benefit from ArcObjects component reuse. The
ArcGIS API for Java provides proxy classes that are generated from ArcObjects
components type libraries, which allow interoperability with the underlying
components. These proxy classes expose ArcObjects properties, methods, and
events via their Java equivalents.

Import directives
Java import statements allow fully qualified class names to be shortened to their
simple names. The code snippets in the following sections use simple class names
and assume the corresponding import statements are in effect:
import com.esri.arcgis.system.beans.reader.*;

import com.esri.arcgis.system.datasourcesfile.*;

import com.esri.arcgis.system.*;

import com.esri.arcgis.system.geodatabase.*;

import com.esri.arcgis.system.geometry.*;

Multiplatform development
For multiplatform compatibility, the data and pathnames you use must be in all
lowercase letters. You will encounter problems if any letters are uppercase.

Interfaces
Native ArcObjects uses an interface-based programming model. The concept of
an interface is fundamental to ArcObjects and emphasizes four points:

1. An interface is not a class.

2. An interface is not an object.

3. Interfaces are strongly typed.

4. Interfaces are immutable.

ArcObjects interfaces are abstract, meaning there is no implementation associated
with an interface. Objects use type inheritance; the code associated with an
interface comes from the class implementation.

This model shares some features of the Java interface model. An interface in the
Java language is a specification of methods that an object declares it implements.
A Java interface does not include instance variables or implementation code.

The ArcGIS API for Java has two objects for every ArcObjects interface: a
corresponding interface and an interface proxy class. The interface is named in the
ArcObjects style, prefixed with an I. The interface proxy class appends the term
proxy to the name. An example of this mapping is provided below:

JAVA APPLICATION PROGRAMMING INTERFACE

AppendixD.pmd 1/25/2005, 6:13 PM703

704 • ArcGIS Server Administrator and Developer Guide

ArcObjects Interface

interface IArea : IUnknown
public class IAreaProxy implements IArea{}

Java Representation

public interface IArea{}

The proxy classes are used internally by the ArcGIS API for Java to provide
implementation to respective interfaces. An application developer should never
use the default constructor of these classes as it holds no implementation.
ArcObjects requires developers to go through an interface to access objects. The
Java language does not use this model; subsequently, the ArcGIS API for Java has
two ways of accessing objects—by interface or by class.
/* use the class implementing IPoint */

IPoint iPoint = new com.esri.arcgis.geometry.Point();

/* access object through class */

Point cPoint = new Point();

You cannot access objects through the default interface proxy class:
IPointProxy proxyPoint = new IPointProxy(); // incorrect usage

This will be discussed in more depth in subsequent sections.

ArcObjects interfaces are immutable and subsequently never versioned. An
interface is never changed once it is defined and published. When an interface
requires additional methods, the API defines a new interface by the same name
with a version number appended to it as described in the following table.

interface IGeometry2 : IGeometry

interface IGeometry3 : IGeometry2

interface IGeometry4 : IGeometry3

ArcObjects Interface

interface IGeometry : IUnknown
public interface IGeometry2 extends IGeometry{}

public interface IGeometry3 extends IGeometry2{}

public interface IGeometry4 extends IGeometry3{}

Java Representation
public interface IGeometry{}

Classes
In the ArcObjects model, classes provide the implementation of the defined
interfaces. ArcObjects provides three types of classes: abstract classes, classes, and
coclasses. These class types can be distinguished through the object model diagrams
provided in ArcGIS Developer Help. It is important to be familiar with them
before you begin to use the three class types.

In ArcObjects, an abstract class cannot be used to create new objects and are
absent in the ArcGIS API for Java. These classes are specifications in ArcObjects
for instances of subclasses through type inheritance. An abstract class enumerates
what interfaces are to be implemented by the implementing subclass but does not
provide an implementation to those interfaces. For each abstract class in
ArcObjects there are subclasses that provide the implementation.

A class cannot be publicly created in ArcObjects; however, objects of this class
type can be created as a property of another class or instantiated by objects from
another class. In the ArcGIS API for Java, the default constructor normally used
to create a class is undefined for ArcObjects classes.
/* the constructor for FeatureClass() is unsupported*/

FeatureClass fc = new FeatureClass(); // incorrect usage

The following example illustrates this behavior while stepping you through the
process of opening a feature class.

JAVA APPLICATION PROGRAMMING INTERFACE

AppendixD.pmd 1/25/2005, 6:13 PM704

Appendix D • Developer environments • 705

IWorkspaceFactory wf = new ShapefileWorkspaceFactory();

IFeatureWorkspace fw = new
IFeatureWorkspaceProxy(wf.openFromFile("\\path\\to\\data", 0));

/* Create a Feature Class from FeatureWorkspace. */

IFeatureClass fc = fw.openFeatureClass("featureclass name");

In ArcObjects, a coclass is a publicly creatable class. This means that you can
create your own objects merely by declaring a new object as shown below:
/* Create an Envelope from the Envelope coclass. */

Envelope env = new Envelope();

Structs
A structure defines a new data type made up of elements called members. Java
does not have structures as complex data types. The Java language provides this
functionality through classes; you can simply declare a class with the appropriate
instance variables. For each structure in ArcObjects, there is a representative Java
class with publicly declared instance variables matching the structure members as
outlined below.

 double x

 double y

 double z

}

ArcObjects Struct

struct WKSPointZ

 public double x;

 public double y;
 public double z;

}

Java Representation

public class _WKSPointZ {

You can work with these classes like any other class in Java:
_WKSPointZ pt = new _WKSPointZ();

pt.x = 2.23;

pt.y = -23.14;

pt.z = 4.85;

System.out.println(pt.x + " " + pt.y + " " + pt.z);

Enumerations
Java 2 SDK prior to version 5 did not have enum types. To emulate enumerations
in Java, a class or interface must be created that holds constants. For each enu-
meration in native ArcObjects, there is a Java interface with publicly declared
static integers representing the enumeration value.

 esriXAxis = 0

 esriYAxis = 1

 esriZAxis = 2
}

ArcObjects Struct
enum esri3DAxis

 public static final int esriXAxis = 0;
 public static final int esriYAxis = 1;

 public static final int esriZAxis = 2;

}

Java Representation

public interface esri3DAxis {

You can now refer to the esriXAxis constant using the following notation:
esri3DAxis.esriXAxis;

Variants
The variant data type can contain a wide array of subtypes. With variants all
types can be contained within a single type variant. Everything in the Java pro-

JAVA APPLICATION PROGRAMMING INTERFACE

AppendixD.pmd 1/25/2005, 6:13 PM705

706 • ArcGIS Server Administrator and Developer Guide

gramming language is an object. Even primitive data types can be encapsulated
inside objects if required. Every class in Java extends java.lang.Object; conse-
quently, methods in ArcObjects that take variants as parameters can be passed any
object type in the ArcGIS API for Java.

Calling methods with “variant” objects as parameters
For methods that take variants as parameters, any object types can be passed, as
all objects derive from java.lang.Object. As this is considered a “widening cast”, an
explicit cast to Object is not needed. If you want to pass primitives as parameters
to methods, when variants are required, the corresponding primitive wrapper
class can be used.

Using methods that return variants
When using variant objects returned by methods, explicitly “downcast” those
objects to the corresponding wrapper object. For example, if expecting a String,
downcast to java.lang.String; if expecting a short, downcast to short’s wrapper
class, that is, java.lang.Short, as shown in the code below:
ICursor spCursor = spTable.ITable_search(spQueryFilter, false);

/*Iterate over the rows*/

IRow spRow = spCursor.nextRow();

while (spRow != null) {

Short ID = (Short) (spRow.getValue(1));

String name = (String) (spRow.getValue(2));

Short baseID = (Short) (spRow.getValue(3));

 System.out.println("ID="+ ID +"\t name="+ name +"\tbaseID="+ baseID);

/* Move to the next row.*/

spRow = spCursor.nextRow();

}

IRowBuffer is a superinterface of IRow and defines the getValue(int) method as:
public Object getValue(int index)

 throws IOException,

 AutomationException

The value of the field with the specified index.

Parameters:

index - The index (in)

Returns:

return value. A Variant

The return value is an Object, specified by the javadoc as “variant”. Therefore, the
value can be downcasted to String or Short, depending on their type in the
geodatabase being queried.

Casting
ArcObjects follows an interface-based programming style. Many methods use
interface types as parameters and have interfaces as return values. When the
return value of a method is an interface type, the method returns an object
implementing that interface. When a method takes an interface type as parameter,
it can take in any object implementing that interface. This style of programming

JAVA APPLICATION PROGRAMMING INTERFACE

AppendixD.pmd 1/25/2005, 6:13 PM706

Appendix D • Developer environments • 707

has the advantage that the same method can work with many different object
types, provided they all implement the said interface.

For example, the IFeature.getShape method returns an object implementing
IGeometry. The object returned could potentially be any one of the following
classes that implement IGeometry: BezierCurve, CircularArc, EllipticArc, Enve-
lope, GeometryBag, Line, MultiPatch, Multipoint, Path, Point, Polygon, Polyline,
Ray, Ring, Sphere, TriangleFan, Triangles, or TriangleStrip.

Casting is used to convert between types. There are three types of potential casts
you, as a developer, may be tempted to use with the Java API:
1. Interface to concrete class casting
2. Interface cross-casting
3. Interface downcasting
It is important to understand that objects returned from methods within
ArcObjects can behave differently than objects implicitly defined in your code
because the object reference is not held in the JVM.

If you have a method, doSomeProcessingOnPolygon(Polygon p), that operates only on
Polygon objects, and you want to pass the object obtained as a result of
IFeature.getShape, you need a way to convert the “type” of the object from
IGeometry to Polygon. In Java, this is done using a class cast operation:
/* incorrect usage: will give ClassCastException */

Polygon poly = (Polygon)geom;

However, if you use the same code with the ArcGIS API for Java, you will get a
ClassCastException. The reason for the exception is that the ‘geom’ object refer-
ence is actually a reference to the native ArcObjects component. As a conse-
quence of the interoperability between Java and the native ArcObjects compo-
nents, the logic of casting this object reference to the Polygon object resides in the
constructor of the Polygon object and not in the JVM.

Every class in the ArcGIS API for Java has a constructor that takes in a single
object as a parameter. This constructor can create the corresponding object using
the reference to the ArcObjects component. Therefore, to achieve the equivalent
of a class casting when using the ArcGIS API for Java, use the ‘object construc-
tor’ of the class being casted to.
Polygon poly = new Polygon(geom);

The following code illustrates the object constructor being used to cast the geom
object to a Polygon:
IFeature feature = featureClass.getFeature(i);

IGeometry geom = feature.getShape();

if (geom.getGeometryType() == esriGeometryType.esriGeometryPolygon){

 /*Note: "Polygon p = (Polygon) geom;" will give ClassCastException*/

 Polygon poly = new Polygon(geom);

 doSomeProcessingOnPolygon(poly);

}

The polygon object poly thus constructed will implement all interfaces imple-
mented by the Polygon class. Consequently, you can call methods belonging to any
of the implemented interfaces on the poly object.

JAVA APPLICATION PROGRAMMING INTERFACE

AppendixD.pmd 1/25/2005, 6:13 PM707

708 • ArcGIS Server Administrator and Developer Guide

You could write all your code using the object constructors alone, but there are
times when it might be better to cast an object implementing a particular inter-
face, not to a class type, but to another interface implemented by that object.

Continuing the previous example, suppose you want to use the
doSomeProcessingOnPolygon(Polygon p) method not only on Polygon objects but on
other objects implementing IArea, such as Envelope and Ring. You could write a
generic doSomeProcessingOnArea(IArea area) method that works on all objects
implementing IArea. As Polygon, Envelope, and Ring objects all implement the IArea
interface, you could pass in those objects to this generic method, thereby prevent-
ing the need to write additional methods for each object type, such as
doSomeProcessingOnEnvelope(Envelope env) and doSomeProcessingOnRing(Ring ring). To
accomplish this, you would need to cast from the IGeometry type to the IArea
type. In Java, this is typically done using interface cross-casting.
/* incorrect usage: will give ClassCastException */

IArea area = (IArea) geom ;

However, for the same reason noted in the class cast above, such a cast would fail
with a ClassCastException. To be able to cast to the ArcObjects interface, you will
need to use the interface proxy classes discussed earlier in this section. In the
ArcGIS API for Java, you achieve the equivalent of an interface cross-casting by
using the InterfaceProxy of the interface being casted to.
IArea area = new IAreaProxy(geom);

The following code shows the use of an InterfaceProxy class to cross-cast the geom
object to IArea:
IFeature feature = featureClass.getFeature(i);

IGeometry geom = feature.getShape();

/*Note: "IArea area = (IArea) geom;" will give ClassCastException*/

IArea area = new IAreaProxy(geom);

doSomeProcessingOnArea(area);

Using the IAreaProxy class as shown in the code above allows you to access the
object through its IArea interface so that it can then be passed to a method that
takes an argument of type IArea. Thus, in this particular example, one method
can deal with three different object types. However, only methods belonging to
the IArea interface will be valid for the area object. To call other methods of the
object, you will need to either class-cast to the appropriate object type using its
object constructor or get a reference to the other interfaces using the
InterfaceProxy classes.

Instanceof
The instanceof operator in Java allows a developer to determine if its first operand
is an instance of its second.
operand1 instanceof operand2

You can use instanceof in ArcObjects when the logic behind the type is held in
Java. You cannot use instanceof when the type is held in ArcObjects, as the logic
of determining whether an object is an instance of a specified type resides in the
constructors of that object type and not the JVM.
 Point point = new Point();

 point.putCoords(10, 10);

JAVA APPLICATION PROGRAMMING INTERFACE

AppendixD.pmd 1/25/2005, 6:13 PM708

Appendix D • Developer environments • 709

 if(point instanceof IGeometry){

 System.out.println(" point is a IGeometry");

 geom = point;

 }

 if(point instanceof IClone){

 System.out.println(" point is a IClone");

 }

The above code works since the type information is held in Java for Point.Java.
When you construct a Point object, a proxy class for each implemented interface is
also constructed. This allows you to use instanceof on any of these types. Develop-
ers would have access to any methods on Point implementing the IGeometry or
IClone interfaces.

This is backwards compatible as well:
 if(geom instanceof Polyline){

 System.out.println(" geom is a Polyline");

 }

 else if(geom instanceof Point){

 System.out.println(" geom is a Point");

 pnt = (IPoint)geom; // allowable cast as the type is held in JVM

 }

Since a direct cast of the geom object into Point was created, the geom object is of
type Point and instanceof can be used to check this information. However, since
the type information was known before it was checked above, it is not extremely
useful. What would be useful is to apply the above logic on methods that return
objects of superinterfaces.

Consider the IWorkspaceFactory.openFromFile method, which returns an IWorkspace.
Since the object returned is a Java object that implements IWorkspace, you cannot
check if the returned object is of any of the known implementing classes that
implement IWorkspace. In this case, to check for type information, you should call
a method on the returned object that is expected. If the method does not throw
an exception, it is of that type. This occurs because the logic on this object is
declared at runtime and is held inside the underlying ArcObjects component.
 RasterWorkspaceFactory rasterWkspFactory = new RasterWorkspaceFactory();

 IWorkspace wksp = rasterWkspFactory.openFromFile(aPath, 0);

 if(wksp instanceof RasterWorkspace){

 /*code does not execute as logic is in ArcObjects*/

 System.out.println(" wksp is a RasterWorkspace");

 rasWksp = (RasterWorkspace)wksp;

 }

 else{

 try{

 rasWksp = (RasterWorkspace)wksp;

 rasWksp.openRasterDataset(aRaster);

 }catch(Exception e){

 /*code executes if wksp is not a RasterWorkspace*/

JAVA APPLICATION PROGRAMMING INTERFACE

AppendixD.pmd 1/25/2005, 6:13 PM709

710 • ArcGIS Server Administrator and Developer Guide

 System.out.println(" wksp is not a RasterWorkspace");

 }

 }

Methods that take out parameters
ArcObjects provides many methods that return more than one value. The ArcGIS
API for Java requires sending single element arrays as parameters to such meth-
ods. Basically, you pass in single element arrays of the object that you want to be
returned, and ArcObjects fills in the first elements of those arrays with the return
value. Upon returning from the method call, the first element of the array con-
tains the value that has been set during the method call. One such method that
you will be using in this section is the toMapPoint of IARMap interface. Take a
look at the javadoc of this method:
public void toMapPoint(int x,

 int y,

 double[] xCoord,

 double[] yCoord)

throws IOException,

 AutomationException

Converts a point in device coordinates (typically pixels) to coordinates in
map units.

Converts the x and y screen coordinates supplied in pixels to x and y map
coordinates. The returned map coordinates will be in MapUnits.

Parameters:

x - The x (in)

y - The y (in)

xCoord - The xCoord (in/out: use single element array)

yCoord - The yCoord (in/out: use single element array)

Notice that the parameters xCoord and yCoord are marked as “in/out: use single
element array”. To use this method, the first two parameters are the x and y
coordinates in pixel units. The next two parameters are actually used to get return
values from the method call. You pass in single-dimensional single element double
arrays:

double [] dXcoord = {0.0};

double [] dYcoord = {0.0};

When the method call completes, you can query the values of dXcoord[0] and
dYcoord[0]. These values will be modified by the method and will actually refer to
the x and y coordinates in map units. A practical example of this method call is
to update the status bar with the current map coordinates as the mouse moves
over the control.
public void updateStatusBar(

IARControlEventsOnMouseMoveEvent params,

IARControl arControl,

JLabel statusLabel) throws IOException {

/*

* Create two single-dimension arrays of type double to serve as

* "out" parameters in a call to toMapPoint.

*/

JAVA APPLICATION PROGRAMMING INTERFACE

AppendixD.pmd 1/25/2005, 6:13 PM710

Appendix D • Developer environments • 711

double[] dXcoord = {0.0};

double[] dYcoord = {0.0};

int screenX = params.getX();

int screenY = params.getY();

IARMap arMap = arControl.getARPageLayout().getFocusARMap();

arMap.toMapPoint(screenX, screenY, dXcoord, dYcoord);

statusLabel.setText("Map x,y: " + dXcoord[0] + ", " + dYcoord[0]);

}

The ArcGIS API for Java will not allow developers to populate an array with a
superclass type, even when it has been cast to a superclass type. Consider the
following Java example:
Integer[] integers = { new Integer(0), new Integer(1), new Integer(2)};

Object[] integersAsObjects = (Object[])integers;

integersAsObjects[0] = new Object();

The above is not allowed and will cause an ArrayStoreException. Consider the
following ArcObjects example:
Polyline[] polyline = {new Polyline()};

tin.interpolateShape(breakline, polyline, null);

Polyline firstPolyLine = polyline[0];

The above is not allowed and will cause the same ArrayStoreException as the
earlier example. Take a look at the interpolateShape method of ISurface and analyze
what is going on here.
public void interpolateShape(IGeometry pShape,

 IGeometry[] ppOutShape,

 Object pStepSize)

throws IOException,

 AutomationException

 Parameters:

 pShape - A reference to a com.esri.arcgis.geometry.IGeometry (in)

 ppOutShape - A reference to a com.esri.arcgis.geometry.IGeometry
 (out: use single element array)

 pStepSize - A Variant (in, optional, pass null if not required)

 Throws:

 IOException - If there are communications problems.

 AutomationException - If the remote server throws an exception.

IGeometry is a superinterface to IPolyline, and the Polyline class implements both
interfaces. In the first attempt you tried to send a single element Polyline array into
a method that requires an in/out IGeometry parameter. This causes an
ArrayStoreException, as ArcObjects is attempting to populate an IPolyline array
with an IGeometry object, attempting to place a superclass type into a subclass
array. The correct way to use this method is outlined below:
/*Set up the array and call the method*/

IGeometry[] geoArray = {new Polyline()};

tin.interpolateShape(breakline, geoArray, null);

/* "Cast" the first array element as a Polyline - this is

 * the equivalent of calling QueryInterface on IGeometry

 */

IPolyline firstPolyLine = new IPolylineProxy(geoArray[0]);

JAVA APPLICATION PROGRAMMING INTERFACE

AppendixD.pmd 1/25/2005, 6:13 PM711

712 • ArcGIS Server Administrator and Developer Guide

Non-OLE automation-compliant types
A few ArcObjects types are not OLE automation-compliant. They contain meth-
ods that do not work in the ArcGIS API for Java. The API addresses each of
these situations in one of two ways:

1. Supplemental interfaces have been added that have the offending methods
overwritten in an automation-compliant way. These new interfaces are named
by appending them with the letters “GEN”, implying that they are generic for
all supported APIs. In these cases, the noncompliant interface is deprecated
with a link to the appropriate GEN interface. In the following example,
“somePoints” is an array of Point with two Point objects in it.
 /* Not automation compatible - throws exception */

 IEnvelope env = new Envelope();

 env.defineFromPoints(2, somePoints[0]);

 /* Automation compatible */

 IEnvelopeGEN envGEN = new Envelope();

 envGEN.defineFromPoints(somePoints);

2. A singleton utility class implements bridge interfaces. Since each utility class
can handle methods from multiple noncompliant interfaces, there is no naming
convention for the utility classes. The bridge interfaces handle the effort of
converting between noncompliant and compliant methods. In these cases, the
noncompliant methods are deprecated, with a link to the appropriate bridge
method in the utility class. To call the bridge method, simply pass in the
noncompliant object as the first argument. In this example,
myPointCollection4 is an instance of IPointCollection4, and
somePointStructures is an array of WKSPointZ objects with four objects in
it.
 /* Not automation compatible - throws exception */

 myPointCollection4.addWKSPointZs (4, somePointStructures[0]);

 /* Automation compatible */

 GeometryEnvironment geomEnv = new GeometryEnvironment();

 geomEnv.addWKSPointZs(myPointCollection4, somePointStructures);

Using visual beans
The ArcGIS API for Java provides a set of reusable components as prebuilt
pieces of software code designed to provide graphical functions. As a visual beans
developer, you only need to write code to “buddy” them into your ArcGIS En-
gine application. The use of beans creates a bridge between Java and the ActiveX
controls provided by ArcGIS. These visual components are Java Swing compo-
nents that contain heavyweight AWT components. They conform to the
JavaBeans component architecture, allowing them to be used as drag-and-drop
components for designing Java GUIs in JavaBean-compatible IDEs. To success-
fully use the ArcGIS Java Beans, the static initializer
EngineInitializer.initializeVisualBeans must be the first method call in the Main.
Due to the initialization dependencies of the ArcGIS Engine SDK for Java, your
application is not guaranteed to function properly if usage of
EngineInitializer.initializeVisualBeans is not correct.

JAVA APPLICATION PROGRAMMING INTERFACE

AppendixD.pmd 1/25/2005, 6:13 PM712

Appendix D • Developer environments • 713

Mixing heavyweight and lightweight components
One of the primary goals of the Swing architecture was that it be based on the
existing AWT architecture. This allows developers to mix both kinds of compo-
nents in the same application. When using the ArcObjects—JavaBeans with
Swing components, care should be taken while mixing the heavyweight and
lightweight components. For guidelines, refer to the article ‘Mixing heavy and
light components’ at http://java.sun.com/products/jfc/tsc/articles/mixing/.

If using Swing components, disable lightweight popups where the option is
available, using code similar to:
 jComboBox.setLightWeightPopupEnabled(false);

 jPopupMenu.setLightWeightPopupEnabled(false);

Listening to events
All ArcObjects—JavaBeans are capable of firing events. For instance, the
arControl bean fires the following events:
void onAction(IARControlEventsOnActionEvent theEvent)

void onAfterScreenDraw(IARControlEventsOnAfterScreenDrawEvent theEvent)

void onBeforeScreenDraw(IARControlEventsOnBeforeScreenDrawEvent theEvent)

void onCurrentViewChanged(IARControlEventsOnCurrentViewChangedEvent
theEvent)

void onDocumentLoaded(IARControlEventsOnDocumentLoadedEvent theEvent)

void onDocumentUnloaded(IARControlEventsOnDocumentUnloadedEvent
theEvent)

void onDoubleClick(IARControlEventsOnDoubleClickEvent theEvent)

void onFocusARMapChanged(IARControlEventsOnFocusARMapChangedEvent
theEvent)

void onKeyDown(IARControlEventsOnKeyDownEvent theEvent)

void onKeyUp(IARControlEventsOnKeyUpEvent theEvent)

void onMouseDown(IARControlEventsOnMouseDownEvent theEvent)

void onMouseMove(IARControlEventsOnMouseMoveEvent theEvent)

void onMouseUp(IARControlEventsOnMouseUpEvent theEvent)

To add and remove listeners for the events, the beans have methods of the form
addXYZEventListener and removeXYZEventListener. Adapter classes are provided as
a convenience for creating listener objects.

public void addIARControlEventsListener(IARControlEvents theListener)
throws IOException

public void removeIARControlEventsListener(IARControlEvents
theListener)

throws IOException

The following code uses an anonymous inner class with the
IARControlEventsAdapter to add event listeners for onDocumentLoaded and
onDocumentUnloaded events to the arControl object:

arControl = new ARControl();

...

/*wire up the events for arControl*/

arControl.addIARControlEventsListener(new IARControlEventsAdapter(){

public void onDocumentLoaded(IARControlEventsOnDocumentLoadedEvent evt)
throws IOException{

JAVA APPLICATION PROGRAMMING INTERFACE

AppendixD.pmd 1/25/2005, 6:13 PM713

714 • ArcGIS Server Administrator and Developer Guide

JAVA APPLICATION PROGRAMMING INTERFACE

/*set the statusbar text to point to the currently loaded document*/
java.awt.EventQueue.invokeLater(

new Runnable() {

public void run() {

statusLabel.setText(

" Document filename: "+ arControl.getDocumentFilename());

}

}

);

}

public void onDocumentUnloaded(

IARControlEventsOnDocumentUnloadedEvent evt) throws IOException{

/*set the statusbar text to empty string*/

java.awt.EventQueue.invokeLater(

new Runnable() {

public void run() {

statusLabel.setText("");

}

}

);

}

});

It is worthwhile to note that the events fired by the beans are custom events for
which the listeners are provided as part of the ArcGIS API for Java. Adding
listeners from the java.awt.event package, such as MouseListener, to the beans will
not be helpful as the JavaBeans do not fire those events. Instead, you could use
similar events, such as onMouseDown, onMouseUp, and onMouseMove, provided by
the corresponding event listener, which in the case of arControl is
IARControlEvents.

In addition, these custom events are not fired from within Java’s event dispatch
thread. Whenever you wish to change the state of a pure Java GUI component
from within one of these events, be sure to do so via java.awt.EventQueue’s
invokeLater method. On the other hand, the ArcGIS components do not run in
Java’s event dispatch thread. Because of this, you can change their state directly
from within any of the custom ArcGIS events. For example, you could call
Map.refresh from within an ITransformEventsListener without using invokeLater.

AppendixD.pmd 1/25/2005, 6:13 PM714

715

Reading the
object model

diagramsE

The ArcObjects object model diagrams (OMDs) are an important

supplement to the information you receive in object browsers. This appendix

describes the diagram notation used throughout this book and in the object

model diagrams that are accessed through ArcGIS Developer Help.

AppendixE.pmd 1/25/2005, 6:15 PM715

716 • ArcGIS Server Administrator and Developer Guide

OBJECT MODEL KEY

Types of Classes

An abstract class cannot be used to create new objects, it is a
specification for instances of subclasses (through type
inheritance.)

A coclass can directly create objects by declaring a new object.

A class cannot directly create objects, but objects of a class can
be created as a property of another class or instantiated by
objects from another class.

Types of Relationships

Associations represent relationships between classes. They
have defined multiplicities at both ends.

Type inheritance defines specialized classes of objects that
share properties and methods with the superclass and have
additional properties and methods. Note that interfaces in
superclasses are not duplicated in subclasses.

Instantiation specifies that one object from one class has a
method with which it creates an object from another class.

Composition is a relationship in which objects from the "whole"
class control the lifetime of objects from the "part" class.

An N-ary association specifies that more than two classes are
associated. A diamond is placed at the intersection of the
association branches.

A Multiplicity is a constraint on the number of objects that can
be associated with another object. Association and composition
relationships have multiplicities on both sides. This is the notation
for multiplicities:

 1 - One and only one (if none shown, one is implied)

 0..1 - Zero or one

 M..N - From M to N (positive integers)

 * or 0..* - From zero to any positive integer

 1..* - From one to any positive integer

Object model key

Interface key

Property Get
Property Put
Property Get/Put
Property Put by Reference

Function
Event function

AbstractClass

Type inheritance

Instantiation

Association

Composition

1..*
Multiplicity

Class

Inbound interface

Outbound interface

Interface:Inherited interface

Properties

Methods

Inbound interface

Outbound interface

Interface:Inherited interface

Properties

Methods

CoClass
Inbound interface

Outbound interface

Interface:Inherited interface

Properties

Methods

Special Interfaces

(Optional) represents interfaces that are inherited by some subclasses
but not all. The subclasses list the optional interfaces they implement.

(Instance) represents interfaces that are only on specific instances of
the class.

(<classname>) indicates the name of the helper class required to
support this event interface in Visual Basic.

The diagram notation used in this book and the ArcObjects object model dia-
grams is based on the Unified Modeling Language (UML) notation, an industry
diagramming standard for object-oriented analysis and design, with some modifi-
cations for documenting COM-specific constructs.

The object model diagrams are an important supplement to the information you
receive in object browsers. Your development environment, Visual Basic or other,
lists all of the classes and members but doesn’t show the structure or relation-
ships of those classes. These diagrams complete your understanding of the
ArcObjects components.

Object model diagram key showing the types of
ArcObjects and the relationships between them.

You can access the object model diagrams from
the ArcGIS Developer Help system's contents

pane by clicking Library Reference, the library of
choice, and the Object Model Diagram link; or

from their file location, by default
<install_location>\DeveloperKit\Diagrams.

AppendixE.pmd 1/25/2005, 6:15 PM716

Appendix E • Reading the object model diagrams • 717

There are three types of classes shown in the UML diagrams: abstract classes,
coclasses, and classes.

abstract
class

class

Type
inheritance

Instantiation

Association

Composition

1..*

Multiplicity

coclass

A coclass represents objects that you can directly create using the object declara-
tion syntax in your development environment. In Visual Basic, this is written
with the Dim pFoo As New FooObject syntax.

Dim pWSName as iworkspacename 'Declare the interface you will use to
 access the object

Set pwsname = new workspacename 'Creates a new instance of the
 WorkSpaceName class

Dim pPoint as iPoint

Set pPoint = new Point

Dim pGeometry as iGeometry

Set pGeometry = new Point

A class can’t directly create new objects, but objects of a class can be created as a
property of another class or by functions from another class.
Dim pName as IName

Dim pFeatClass As IFeatureClass

Set pFeatClass = pName.Open

An abstract class can’t be used to create new objects; it is a specification for sub-
classes. For example, a “line” could be an abstract class for “primary line” and
“secondary line” classes. Abstract classes are important for developers who want
to create a subclass of their own; they show which interfaces are required and
which are optional for the type of class they are implementing. Required inter-
faces must be implemented on any subclass of the abstract class to ensure the
new class behaves correctly in the ArcObjects system.

Dim pGeometry as IGeometry

Set pGeometry = New Point

If typeof pGeometry is IGeometry the

 Msgbox "This is a Geometry object"

End if

RELATIONSHIPS

Among abstract classes, coclasses, and classes, there are several types of class
relationships possible—associations, type inheritance, instantiation, composition,
and n-ary associations.

Associations

Associations represent relationships between classes. They have defined multiplici-
ties at both ends.

CLASSES AND RELATIONSHIPS

The example discussed here—primary and
secondary line classes that each meet the

specification of the abstract line class—is an
illustration of type inheritance. Type inheritance

is discussed in detail later in this appendix.

To keep the object model diagrams as simple
and usable as possible, only key relationships, or

associations, are shown.

AppendixE.pmd 1/25/2005, 6:15 PM717

718 • ArcGIS Server Administrator and Developer Guide

A multiplicity is a constraint on the number of objects that can be associated with
another object. This is the notation for multiplicities:

1—One and only one. Showing this multiplicity is optional; if none is shown, “1”
is implied.

0..1—Zero or one.

M..N—From M to N (positive integers).

* or 0..*—From zero to any positive integer.

1..*—From one to any positive integer.

Type inheritance

Type inheritance defines specialized classes that share properties and methods with the
superclass and have additional properties and methods.

Line

Primary
line

Secondary
line

This diagram shows that a primary line (creatable class) and secondary line
(creatable class) are types of a line (abstract class).

Instantiation

Instantiation specifies that one object from one class has a method with which it
creates an object from another class.

TransformerPole

A pole object might have a method to create a transformer object.

Composition

Composition is a stronger form of aggregation in which objects from the “whole”
class control the lifetime of objects from the “part” class.

CrossarmPole
1..*

A pole contains one or many crossarms. In this design, a crossarm can’t be re-
cycled when the pole is removed. The pole object controls the lifetime of the
crossarm object.

CLASSES AND RELATIONSHIPS

1..*

1..*Owner Land parcel

In this diagram, an owner can own one or many
land parcels, and a land parcel can be owned by

one or many owners.

AppendixE.pmd 1/25/2005, 6:15 PM718

Appendix E • Reading the object model diagrams • 719

N-ary association

An n-ary association specifies that more than two classes are associated. A diamond
is placed at the intersection of the association branches.

ICursor

Cursor

IQueryFilter
IPersistStream

esriClone.IClone
(esriSystem)

QueryFilter

ISelectionSet

SelectionSet
ISelectionSet2

IQueryFilter

CLASSES AND RELATIONSHIPS

AppendixE.pmd 1/25/2005, 6:15 PM719

720 • ArcGIS Server Administrator and Developer Guide

Interfaces are the access points for development with COM objects. There are
inbound interfaces, which expose the properties and methods of a class, and
outbound interfaces, which allow the class to interact with other classes.

CoClass
Inbound interface

Outbound interface

Interface:Inherited interface

Properties

Methods

INTERFACE INHERITANCE

Since interfaces in ArcObjects are COM interfaces, they all inherit from
IUnknown, the basis for COM itself. In addition, as illustrated in the diagrams,
some interfaces inherit from other ArcObjects interfaces. If one interface is
inherited by another interface, then the members of the initial interface are also
members of the inheriting interface. For example, since IPoint inherits from
IGeometry, the members of the IGeometry interface are also members of the IPoint
interface. This inheritance allows you to access the IPoint interface and use the
members of IGeometry directly, without needing to query interface to the
IGeometry interface.

Interface inheritance is used extensively to add functionality to existing inter-
faces. Although the rules of COM dictate that an interface signature, once de-
ployed, can’t change, a new interface can be created that inherits from the origi-
nal interface. For example, the IEditor2 interface extends the IEditor interface
with additional members.

INBOUND INTERFACES

Some inbound interfaces are shown on the diagrams with special notations that
provide information in addition to the usual list of members.

Interfaces defined in other libraries

If the interface name is prefixed with a library name, such as esriSystem.IName,
then the interface is inherited from a library other than the one implementing it.
The library name reflects the library in which the interface is defined. In the
column at left, the Name abstract class, an object in the GeoDatabase library, is
shown. As shown by the library name prefix, the interface implemented by Name
is actually defined in the System library.

Optional interfaces

Some interfaces can be inherited optionally by other classes. For example, ab-
stract classes can have optional interfaces that may be included or excluded from
its subclasses. These are designated by the prefix (Optional). If you are creating
your own GxView class, you don’t need to implement the IGxViewPrint interface
to be a GxView class; however, you do need to implement the IGxView interface.

As a developer, if you intend to utilize an optional interface, you must verify that
the interface was implemented by the object with which you are working. At-
tempts to access an optional interface that is not implemented will produce the

INTERFACES AND MEMBERS

A detailed discussion of COM and the
IUnknown interface can be found in ‘The

Microsoft Component Object Model’ section of
Appendix D, ‘Developer environments’.

The Name abstract class and the interface it
implements

IGeometry inherits from IUnknown, and in
turn, IPoint inherits from IGeometry.

The GxView abstract class includes a number of
interfaces that implement optionally.

IGxView
(optional) esri-

Catalog.IGx-
CatalogEvents
(optional) esri-

Catalog.IGx-
SelectionEvents

(optional) IGx-
ViewPrint

GxView

Name
esriSystemName

Geometry
IGeometry

IClone
IGeometry : IUnknown

Properties

Methods

Point
IPoint IPoint : IGeometry

Properties

Methods

ISupportErrorInfo

AppendixE.pmd 1/25/2005, 6:15 PM720

Appendix E • Reading the object model diagrams • 721

error message “Run-time error ‘13’ ; Type mismatch”.
Dim pGxApp As IGxApplication

Set pGxApp = Application

Dim pGxV As IGxView

Set pGxV = pGxApp.TreeView

'Optional interface for GxViews

Dim pGxVP As IGxViewPrint

'Attempting to QI to this will result in a runtime error

Set pGxVP = pGxV

Interfaces implemented in select instances

Some classes have been designed to have varying implementations instead of
having multiple classes that inherit from a single base or abstract class. In these
cases, certain interfaces are implemented in select instances. For example, the
RasterDataset class can be instantiated by different Workspace classes depending on
the type of data being accessed. When file-based data is used to instantiate a
RasterDataset class, the ITemporaryDataset interface is implemented; however, if
ArcSDE software-based data is used to instantiate the RasterDataset class, the
IRasterPyramid2 interface isn’t implemented.

Interfaces that are implemented in select instances are designated with the prefix
(Instance). Attempts to access a selected instance interface that hasn’t been
implemented will produce a “Run-time error ‘13’ ; Type mismatch”.

 Dim pWsFact As IWorkspaceFactory

 Dim pWs As IRasterWorkspace

 Dim pRasterDataset As IRasterDataset

 'Open the workspace

 Set pWsFact = New RasterWorkspaceFactory

 Set pWs = pWsFact.OpenFromFile("D:\data\canada", 0)

 'Open the raster dataset

 Set pRasterDataset = pWs.OpenRasterDataset("Dem")

 'Test if interface is implemented before QI

 Dim pTempDS As ITemporaryDataset

 If TypeOf pRasterDataset Is ITemporaryDataset Then

 Set pTempDS = pRasterDataset

 End If

OUTBOUND INTERFACES

Outbound interfaces, also known as event interfaces, provide notification when a
certain event occurs. Interaction with the members of an outbound interface
requires that another object exists to catch the event occurrences; this is com-
monly referred to as an event sink. Event sinks have code that responds when
certain events occur, an editing operation, for example. In Visual Basic, the
creation of classes that will act as sinks to an outbound interface requires that the
outbound interface declaration include the name of the class that implements the
interface.

Private WithEvents EditEvents as Editor

Although the object variable has been declared with the class that will be raising
the events, it points to nothing. The object variable must be initialized using the

INTERFACES AND MEMBERS

The RasterDataset class and the interfaces it
implements when instantiated by file-based and

ArcSDE-software based data

esriGeoDatabase.-
IRasterDataset

esriGeoDatabase.-
IRasterDataset2

esriGeoDatabase.-
IRasterDatasetEdit

IRasterBand-
Collection

IRasterPyramid
ISaveAs

(Instance-File)
ITemporaryDataset

(Instance-File)
IWorldFileExport

(Instance-DB)
IRasterPyramid2

RasterDataset

AppendixE.pmd 1/25/2005, 6:15 PM721

722 • ArcGIS Server Administrator and Developer Guide

INTERFACES AND MEMBERS

Editor class contains several outbound inter-
faces.

Interface key

Property Get
Property Put
Property Get/Put
Property Put by Reference

Function
Event function

Set statement linking it to the existing Editor object.
Public Sub SetEvents()

 Dim pID as New UID

 pID = "esriEditor.Editor"

 Set m_pEditor = Application.FindExtensionByCLSID(pID)

 Set EditEvents = m_pEditor

Secondary outbound interfaces (nondefault)

When a class implements more than one outbound event, the secondary interface
name is preceded by a classname, (EditEvents2)IEditEvents2, for example, where
the classname indicates the name of a Helper class. The Helper class is an artifi-
cial coclass that solves the Visual Basic problem with multiple outbound inter-
faces on an object. When working with a nondefault outbound interface for
EditEvents2 in Visual Basic 6, declare the variable as follows:

Private WithEvents pEditEvents2 as EditEvents2

INTERFACE MEMBERS

The members of an interface include its properties, which specify the state of an
object and its methods, which perform some action.

Properties are designated as read-only (get), write-only (put), or read–write (get/
put). In addition, the value of a property may be a simple data type; a long for the
x-value of a point object; or another class, such as a coordinate system class
(GeographicCoordinateSystem, for example) for the SpatialReference property.

Each property on the diagram is listed with the data type required or returned.
The symbolization and syntax of properties that can be set with an object will
vary based on whether the property is put by value (put) or put by reference. If
ObjectG is assigned to a property by value on ObjectM, then ObjectG is con-
tained within ObjectM. When an object is passed by reference, an association is
formed between the two objects. This is advantageous because an object can be
reused in many associations, using less memory space.

Dim psphere As ISphere

Set psphere = New Sphere

Dim ppoint As IPoint

Set ppoint = New point

psphere.Center = ppoint

Dim pspatref As ISpatialReference

Set pspatref = New GeographicCoordinateSystem

'This won't compile

'psphere.SpatialReference = pspatref

Set psphere.SpatialReference = pspatref

Properties and their symbols

IActiveViewEvents
IAttributeTransfer-

Type
IEditEvents

(EditEvents2)
IEditEvents2

(EditEvents3)
IEditEvents3
IEdit Layers

Editor

AppendixE.pmd 1/25/2005, 6:15 PM722

Appendix E • Reading the object model diagrams • 723

In this example, the abstract
class Name implements the
IName interface; its inheritance
relationship to all other name
objects indicates that they each
implement the IName interface
as well. Although neither the
FeatureClassName nor
WorkspaceName coclass shows
the IName interface in the
diagrams, you know it is there
because of this inheritance. The
Open method on the IName
interface is used to instantiate
the FeatureClass object. This

usage guarantees that the new FeatureClass object is properly created and in-
cludes all necessary information.

The case below illustrates its importance clearly: opening a shapefile dataset to
extract a feature class is not as simple as just reading the database records.

Dim pwrkspc As IWorkspaceName

Set pwrkspc = New WorkspaceName

pwrkspc.PathName = "D:\data\canada"

pwrkspc.WorkspaceFactoryProgID = _
"esriDataSourcesFile.shapefileworkspacefactory.1"

'***

Dim pdatasetname As IDatasetName

Set pdatasetname = New FeatureClassName

pdatasetname.Name = "Canada.dbf"

Set pdatasetname.WorkspaceName = pwrkspc

Dim pname As IName

Set pname = pdatasetname

Dim pfeatclass As IFeatureClass

Set pfeatclass = pname.Open

''Check FeatureType property to ensure you have a featureclass object

MsgBox pfeatclass.FeatureType

An association is shown in the code above where the WorkspaceName object was
set to the WorkspaceName property of the FeatureClassName object. As noted
earlier, for simplicity’s sake, many of the associations in ArcObjects aren’t drawn
on the diagrams. In fact, this association between the WorkspaceName and
FeatureClassName classes isn’t shown on the GeoDatabase library object model
diagram; however, it can be seen in the IName interface detail for the
WorkspaceName property since the symbol used is a Property Put by Reference.
Since the WorkspaceName class is being held as a reference and not in a composi-
tion relationship, the object’s lifespan will not be controlled by the
FeatureClassName object. If you were to use the code below to set the
FeatureClassName object to nothing, the WorkspaceName class would still exist.

Set pfeatclass = Nothing

If Not pwrkspc Is Nothing Then

 MsgBox "Object still exists"

End If

PUTTING IT TOGETHER—AN EXAMPLE

The Name abstract class, WorkspaceName and
Tablename coclasses, and FeatureClass objects

and their relationships

*

*

Name
esriSystemName

IWorkspaceName
(optional) IDatabaseCompact

IWorkspaceName2
Workspace-

Name

IFeatureClassName
ITopologyClassName FeatureClass-

Name

IFeatureClass

FeatureClass

AppendixE.pmd 1/25/2005, 6:15 PM723

AppendixE.pmd 1/25/2005, 6:15 PM724

725

ConConConConConvvvvvererererertingtingtingtingting
personalpersonalpersonalpersonalpersonal

geodatabasesgeodatabasesgeodatabasesgeodatabasesgeodatabasesF

There are two kinds of geodatabases: personal geodatabases and multiuser geodatabases.

Multiuser geodatabases are also known as ArcSDE-based geodatabases. While ArcGIS Server

is supported on UNIX, these platforms do not support the use of personal geodatabases

(*.mdb). Your personal geodatabases must be converted to an ArcSDE geodatabase or a

supported file-based format, such as shapefiles, coverages, or raster data, before you can use

that data to serve a map on Solaris or Linux.

ArcCatalog allows you to copy data from a personal geodatabase and paste it to an ArcSDE

geodatabase. You can copy entire feature datasets or individual feature classes, raster

catalogs, or individual rasters and tables. For every feature dataset, feature class, raster

catalog, or individual raster or table you copy and paste, the result is an equivalent feature

class, raster catalog, and individual raster or table in the destination geodatabase with all the

features or records from the source data.

This appendix describes the steps involved in this process as well as the procedure to convert

a personal geodatabase to a file-based shapefile, coverage, or individual raster.

AppendixF.pmd 1/25/2005, 6:15 PM725

726 • ArcGIS Server Administrator and Developer Guide

COPYING A PERSONAL GEODATABASE AS AN ARCSDE
GEODATABASE

1. Open ArcCatalog.

2. In the tree view or contents view, browse to the location where the personal
geodatabase (*.mdb) is stored. If the file is located on a UNIX machine, you
should have access to that file from Windows and have sufficient permissions
for reading the data.

3. Select the personal geodatabase to be copied. Right-click the feature dataset,
feature class, raster data, and table you want to copy.

4. Click Copy.

5. Right-click the ArcSDE geodatabase you want to copy the data to.

6. Click Paste. A dialog box appears that indicates what data is being copied. Any
name conflicts are automatically resolved and highlighted in red.

You can also copy and paste data by clicking the
data in the ArcCatalog tree or contents view,

dragging it to another location, and dropping it.

To copy a geometric network or a topology class
and all the participating feature classes, copy and

paste the network or topology class only. This
will copy all the participating feature classes

along with it. You cannot copy and paste
individual feature classes participating in a

network or topology.

CONVERTING DATA FOR USE WITH THE GIS SERVER ON UNIX

AppendixF.pmd 1/25/2005, 6:15 PM726

Appendix F • Converting personal geodatabases • 727

CONVERTING DATA FOR USE WITH THE GIS SERVER ON UNIX

7. Type over the target name to change any of the resolved names.

8. If you want to control how the new feature classes and tables are created and
stored, click a keyword and choose a new one from the dropdown list.

9. Click OK to copy the data into new feature classes and tables.

10. To allow edits to an ArcSDE-based MapServer server object (for example, in
the Extending a Web Application Template (Java) on Linux or Solaris), the
feature dataset must be versioned. Right-click on the newly created Feature
Dataset in ArcCatalog and choose Register As Versioned from the dropdown
context menu.

EXPORTING FROM A PERSONAL GEODATABASE FEATURE
DATASET OR FEATURE CLASS TO A SHAPEFILE OR COVERAGE

1. Open ArcCatalog. (This step is not required if the data is converted to an
ArcSDE Feature class.)

2. In the Catalog tree or contents view, browse to the location where the per-
sonal geodatabase (*.mdb) is stored. If the file is located on a UNIX machine,
you should have access to that file from Windows and have sufficient permis-
sions for reading the data.

3. Right-click the personal geodatabase to be exported. Click Export and To
Shapefile (Multiple) or To Coverage depending on your preference.

This will export all feature classes contained in the personal geodatabase. To
export tables, select the tables to be exported and click the option To dBase
(multiple).

AppendixF.pmd 1/25/2005, 6:15 PM727

728 • ArcGIS Server Administrator and Developer Guide

CONVERTING DATA FOR USE WITH THE GIS SERVER ON UNIX

4. A dialog box appears that indicates what data is being copied. Enter the
location of output directory where the shapefiles or coverages will be created.

As this data is to be used with ArcGIS Server on UNIX/Linux, be aware that
the name of the data and path to the data should be all lowercase.

AppendixF.pmd 1/25/2005, 6:15 PM728

Appendix F • Converting personal geodatabases • 729

CONVERTING DATA FOR USE WITH THE GIS SERVER ON UNIX

5. Click OK to copy the data into shapefile or coverage features and .dbf tables.

EXPORTING FROM PERSONAL GEODATABASE RASTER DATA TO A
FILE-BASED RASTER FORMAT

ArcCatalog can be used to convert personal geodatabase raster data into a TIFF,
ERDAS IMAGINE, ESRI Grid, or MrSID raster format.

1. Open ArcCatalog. (This step is not required if the data is converted to
ArcSDE raster.)

2. In the Catalog tree or contents view, browse to the location where the per-
sonal geodatabase (*.mdb) is stored. If the file is located on a UNIX machine,
you should have access to that file from Windows and have sufficient permis-
sions for reading the data.

3. Right-click the personal geodatabase raster to be exported. Click Export and
click Raster To Different Format for TIFF, ERDAS IMAGINE, and ESRI
Grid formats (choose Export and Raster to MrSID for exporting to MrSID
imagery).

AppendixF.pmd 1/25/2005, 6:15 PM729

730 • ArcGIS Server Administrator and Developer Guide

4. A dialog box appears that indicates the input raster and an option to choose
the output directory where the output raster will be created. Choose the
output folder name, filename for raster data, and extension. Depending on the
extension of the filename (*.img, *.tif), an ERDAS IMAGINE or TIFF image
will be created. When the extension is left blank, an ESRI grid file will be
created.

Updating links to data in an ArcMap document

1. Open the map document in ArcMap.

2. For the layer that requires update in data path, open the layer properties dialog
box (right-click the layer and click Properties). Use the Set Data Source
button on the Source tab of the layer’s Properties dialog box and choose the
desired ArcSDE feature, shapefile, or coverage data. If using shapefile or
coverage data, make sure the data path and filenames are all in lowercase.

3. Repeat step 2 for each layer.

4. Save the map document.

If using relative paths to data, then the map is ready to serve with ArcGIS
Server. Fully qualified UNIX paths to the data are also supported. For addi-
tional information on updating Windows paths to UNIX, refer to the topic
‘Data and cross-platform development’ in ArcGIS Developer Help.

For information on related topics, see ‘How to convert geodatabase annotation
to coverage annotation’, ‘Copying feature datasets, classes, and tables to another
geodatabase’, and ‘Exporting raster formats’ in the ArcGIS Desktop Help.

CONVERTING DATA FOR USE WITH THE GIS SERVER ON UNIX

AppendixF.pmd 1/25/2005, 6:15 PM730

GlossaryG

The following is a glossary of common terms used throughout this

book. While it is not meant to be a comprehensive list, it should

provide you with a quick reference to ArcGIS Server software-specific

terminology.

Glossary.pmd 1/25/2005, 6:16 PM731

732 • ArcGIS Server Administrator and Developer Guide

GLOSSARY

abstract class

Active Server Pages

Active Template Library

add-in

ADF

ADF runtime

apartment

API

application programming
interface

application Web service

ArcGIS Server Web service

arcgisant

ArcObjects

ASCII

ASP

A specification for subclasses that is often shown on object model diagrams to
help give structure to the diagram. An abstract class is not defined in a type
library and cannot be instantiated.
A Microsoft server-side scripting environment that can be used to create and run
dynamic, interactive Web server applications, which are typically coded in
JavaScript or VBScript. An ASP file contains not only the text and HTML tags
that standard Web documents contain, but also commands written in a scripting
language, which can be carried out on the server.

A set of C++ template classes, designed to be small, fast, and extensible.

An extension to a development environment that performs a custom task. ESRI
provides various developer add-ins as part of the ArcGIS developer kit.

Application Developer Framework. The set of custom Web controls and tem-
plates that can be used to build Web applications that communicate with a GIS
server. ArcGIS Server includes an ADF for both .NET and Java.
The components required to run an application built with the ADF. See also ADF.

A group of threads, working within a process, that work within the same con-
text. See also MTA, STA, thread, TNA.
See application programming interface.

A set of routines, protocols, and tools that application developers use to build or
customize a program or set of programs. APIs make it easier to develop a pro-
gram by providing building blocks for a preconstructed interface instead of
requiring direct programming of a device or piece of software. They also guaran-
tee that all programs using a common API will have similar interfaces. APIs can
be built for programming languages such as C, COM, Java, and so on.

A Web service that solves a particular problem, for example, a Web service that
finds all of the hospitals within a certain distance of an address. An application
Web service can be implemented using the native Web service framework of a
Web server, for example, an ASP.NET Web service (WebMethod) or Java Web
service (Axis).

A Web service processed and executed from within an ArcGIS server. Each Web
service is a distinct HTTP endpoint (URL). Administrators can expose
MapServer and GeocodeServer objects as generic ArcGIS Server Web services for
access across the Internet. See also Web service catalog.

The command, provided with the Java ADF, that starts the Apache Ant tool that
builds and deploys Web applications. See also ADF.

A library of software components that make up the foundation of ArcGIS.
ArcGIS Desktop, ArcGIS Engine, and ArcGIS Server are all built on top of the
ArcObjects libraries.

American Standard Code for Information Interchange. The de facto standard for
the format of text files in computers and on the Internet. Each alphabetic,
numeric, or special character is represented with a 7-bit binary number (a string
of seven 1s and 0s). ASCII defines 128 possible characters.
See Active Server Pages.

Glossary.pmd 1/25/2005, 6:16 PM732

Appendix G • Glossary • 733

GLOSSARY

ASP.NET

assembly

ATL

authentication

.bat file

big endian

binary

by value

C++

Cascading Style Sheets

CASE

class

A programming framework built on the Common Language Runtime (CLR) that
can be used on a server to build Web applications in any programming language
supported by .NET. See also Active Server Pages.

A package of software and its associated resources. Typically, an ArcGIS Win32
assembly will include executables and DLLs, object libraries, registry files, and
help files for a unit of software. A .NET assembly is a unit of software built
with a .NET language that uses the .NET Framework and the CLR to execute.

See Active Template Library.

The process of obtaining identification credentials, such as a name and password,
from a user and validating those credentials against some authority. If the creden-
tials are valid, the entity that submitted the credentials is considered an authenti-
cated identity. Authentication can be used to determine whether an entity has
access to a given resource.

Sometimes referred to as a batch file, a file that contains commands that can be
run in a command window. It is used to perform repetitive tasks and to run
scheduled commands.
A computer hardware architecture in which, within a multibyte numeric repre-
sentation, the most significant byte has the lowest address and the remaining
bytes are encoded in decreasing order of significance. See also little endian.
Any file format for digital data encoded as a sequence of bits (1s and 0s) but not
consisting of a sequence of printable characters (ASCII format). The term is
often used for executable machine code such as a DLL or EXE file that contains
information that can be directly loaded or executed by the computer.

A way of passing a parameter to a function such that a temporary copy of the
value of the parameter is created. The function makes changes to this temporary
copy, which is discarded after the function exits. If the parameter is a reference
to an underlying object, any changes made to the underlying object will be pre-
served after the function exits.

A common object-oriented programming language, with many different imple-
mentations designed for different platforms.

A standard for defining the layout or presentation of an HTML or XML docu-
ment. Style information includes font size, background color, text alignment, and
margins. Multiple stylesheets may be applied to “cascade” over previous style
settings, adding to or overriding them. The World Wide Web Consortium (W3C)
maintains the CSS standard. See also World Wide Web Consortium.

Computer-aided software engineering. A category of software that provides a
development environment for programming teams. CASE systems offer tools to
automate, manage, and simplify the development process. Complex tasks that
often require many lines of code are simplified with CASE user interfaces and
code generators.

A template for a type of object in an object-oriented programming language. A
class may be considered to be a set of objects that share a common structure and
behavior.

Glossary.pmd 1/25/2005, 6:16 PM733

734 • ArcGIS Server Administrator and Developer Guide

class identifier

client

cloning

CLR

CLSID

coclass

COM

COM contract

COM interface

COM-compliant language

command

command bar

command line

component

component category

Component Category
Manager

Component Object Model

computer-aided software
engineering

A COM term referring to the globally unique number that is used by the system
registry and the COM framework to identify a particular coclass. See also GUID.

An application, computer, or device in a client/server model that makes requests
to a server.

The process of creating a new instance of a class with the same state as an exist-
ing instance.

Common Language Runtime. The execution engine for .NET Framework appli-
cations, providing services such as code loading and execution and memory
management.

See class identifier.

A template for an object that can be instantiated in memory.

See Component Object Model.

The COM requirement that interfaces, once published, cannot be altered.

A grouping of logically related virtual functions, implemented by a server object,
allowing a client to interact with the server object. Interfaces form the basis of
COM’s communication between objects and the basis of the COM contract.

A language that can be used to create COM components.

Any class in an ArcGIS system that implements the ICommand interface and can,
therefore, be added to a menu or toolbar in an ArcGIS application.

A toolbar, menu bar, menu, or context menu in an ArcGIS application.

An onscreen interface in which the user types in commands at a prompt. In
geoprocessing, any tool added to the ArcToolbox™ window can be run from the
command line.
A binary unit of code that can be used to create COM objects.

A section of the registry that can be used to categorize classes by their functional-
ity. Component categories are used extensively in ArcGIS to allow extensibility
of the system.

An ArcGIS utility program (Categories.exe) that can be used to view and manipu-
late component category information.

A binary standard that enables software components to interoperate in a net-
worked environment regardless of the language in which they were developed.
Developed by Microsoft, COM technology provides the underlying services of
interface negotiation, life cycle management (determining when an object can be
removed from a system), licensing, and event services (putting one object into
service as the result of an event that has happened to another object). The
ArcGIS system is created using COM objects.

See CASE.

GLOSSARY

Glossary.pmd 1/25/2005, 6:16 PM734

Appendix G • Glossary • 735

container account

container process

Content Standard for Digital
Geospatial Metadata

control

control points

creation time

CSDGM

CSS

custom

data type

database management system

database support

DBMS

DCOM

debug

deeply stateful application

default interface

The operating system account that server object container processes run as, which
is specified by the GIS server postinstallation utility. Objects running in a server
container process have the same access rights to system resources as the container
account.

A process in which one or more server objects is running. Container processes run
on SOC machines and are started and shut down by the SOM.

A publication authored by the Federal Geographic Data Committee (FGDC) that
specifies the information content of metadata for a set of digital geospatial data.
The purpose of the standard is to provide a common set of terminology and
definitions for concepts related to the metadata. All U.S. government agencies
(federal, state, and local) that receive federal funds to create metadata must
follow this standard.

A component with a user interface. In ArcGIS, the term often refers to the
MapControl, PageLayoutControl, TOCControl, ToolbarControl, or
ArcReaderControl, which are parts of ArcGIS Engine.

See control.

The time it takes to initialize an instance of a server object when server objects
are created in the GIS server either as a result of the server starting or in response
to a request for a server object by a client.

See Content Standard for Digital Geospatial Metadata.

See Cascading Style Sheets.

Functionality provided or created by a party who is not the original software
developer.
The attribute of a variable, field, or column in a table that determines the kind
of data it can store. Common data types include character, integer, decimal,
single, double, and string.

A set of computer programs that organizes the information in a database accord-
ing to a conceptual schema and provides tools for data input, verification, stor-
age, modification, and retrieval.

The proprietary database platforms supported by a program or component.

See database management system.

Distributed Component Object Model. Extends COM to support communication
among objects on different computers on a network.

A command that puts the address standardizer into debugging mode.

An application that uses the GIS server to maintain application state by changing
the state of a server object or its related objects. Deeply stateful applications
require non-pooled server objects.

When a COM object is created, the interface that is returned automatically if no
other interface is specified. Most ArcObjects classes specify IUnknown as the
default interface.

GLOSSARY

Glossary.pmd 1/25/2005, 6:16 PM735

736 • ArcGIS Server Administrator and Developer Guide

deployment

developer sample

development environment

device context

display

DLL

dockable window

dynamic link library

early binding

EJB

EMF

Enterprise JavaBeans

EOBrowser

event handling

executable file

extension

Federal Geographic Data
Committee

The installation of a component or application to a target machine.

A sample contained in the ArcGIS Developer Help system.

A software product used to write, compile, and debug components or applica-
tions.

Represents a surface that can be drawn to, for example, a screen, bitmap, or
printer. In ArcGIS, the Display abstract class is used to abstract a device context.

Often used to refer to subclasses of the Display abstract class. For example,
“when drawing to the display” means when drawing to any of the display
coclasses; “the display pipeline” refers to the sequence of calls made when draw-
ing occurs.
See dynamic link library.

A window that can exist in a floating state or be attached to the main application
window.

A type of file that stores shared code to be used by multiple programs (a code
library). Programs access the shared code by linking to the .dll file when they run,
a process referred to as dynamic linking. A .dll file must be registered for other
programs to locate it. See also register.

A technique that an application uses to access an object. In early binding, an
object’s properties and methods are defined from a class, instead of being checked
at runtime as in late binding. This difference often gives early binding perfor-
mance benefits over late binding. See also late binding.

See Enterprise JavaBeans.

Enhanced Metafile. A spool file format used in printing by the Windows operat-
ing system.

The server-side component architecture for the J2EE platform. EJB enables
development of distributed, transactional, secure, and portable Java applications.

An ArcGIS utility application that can be used to investigate the contents of
object libraries.

Sinking an event interface raised by another class.

A binary file containing a program that can be implemented or run. Executable
files are designated with a .exe extension.

In ArcGIS, an optional software module that adds specialized tools and function-
ality to ArcGIS Desktop. ArcGIS Network Analyst and ArcGIS Business Analyst
are examples of ArcGIS extensions.

An organization established by the United States Federal Office of Management
and Budget responsible for coordinating the development, use, sharing, and
dissemination of surveying, mapping, and related spatial data. The committee is
comprised of representatives from federal and state government agencies,
academia, and the private sector. The FGDC defines spatial data metadata stan-
dards for the United States in its Content Standard for Digital Geospatial
Metadata and manages the development of the National Spatial Data Infrastruc-
ture (NSDI).

GLOSSARY

Glossary.pmd 1/25/2005, 6:16 PM736

Appendix G • Glossary • 737

FGDC

framework

GDB

GDI

GeocodeServer

geodatabase

geometry

geoprocessing tool

GIS server

GUID

hexadecimal

HKCR

HRESULT

IDE

IDispatch

IDL

See Federal Geographic Data Committee.

The existing ArcObjects components that comprise the ArcGIS system.

See geodatabase.

Graphical Device Interface. A standard for representing graphical objects and
transmitting them to output devices, such as a monitor. GDI generally refers to
the Windows GDI API.
An ArcGIS Server software component that provides programmatic access to an
address locator and performs single and batch address matching. It is designed for
use in building Web services and Web applications using ArcGIS Server.
An object-oriented data model introduced by ESRI that represents geographic
features and attributes as objects and the relationships between objects but is
hosted inside a relational database management system. A geodatabase can store
objects, such as feature classes, feature datasets, nonspatial tables, and relation-
ship classes.

The measures and properties of points, lines, and surfaces. In a GIS, geometry is
used to represent the spatial component of geographic features. An ArcGIS
geometry class is one derived from the Geometry abstract class to represent a
shape, such as a polygon or point.

An ArcGIS tool that can create or modify spatial data, including analysis func-
tions (overlay, buffer, slope), data management functions (add field, copy, re-
name), or data conversion functions.
The components of ArcGIS Server that host and run server objects. A GIS server
consists of a server object manager and one or more server object containers.

Globally unique identifier. A string used to uniquely identify an interface, class,
type library, or component category. See also class identifier.

A number system using base 16 notation.

HKEY_CLASSES_ROOT registry hive. A Windows registry root key that points
to the HKEY_LOCAL_MACHINE\Software\Classes registry key. It displays
essential information about OLE and association mappings to support drag-and-
drop operations, Windows shortcuts, and core aspects of the Windows user
interface.

A 32-bit integer returned from any member of a COM interface indicating suc-
cess or failure, often written in hexadecimal notation. An HRESULT can also
give information about the error that occurred when calling a member of a COM
interface. Visual Basic translates HRESULTS into errors; Visual C++ developers
work directly with HRESULT values.

See integrated development environment.

A generic COM interface that has methods allowing clients to ask which members
are supported. Classes that implement IDispatch can be used for late binding and
ID binding.

See Interface Definition Language.

GLOSSARY

Glossary.pmd 1/25/2005, 6:16 PM737

738 • ArcGIS Server Administrator and Developer Guide

IID

impersonation

implement

inbound interface

inheritance

in-process

integrated development
environment

Interface Definition Language

IUnknown

JavaServer Faces

JavaServer Pages

JavaServer Pages Standard
Tag Library

JSF

JSP

JSTL

late binding

Interface identifier. A string that provides the unique name of an interface. An
IID is a type of globally unique identifier. See also GUID.

A process by which a Web application assumes the identity of a particular user
and thus gains all the privileges to which that user is entitled.

Regarding an interface, to provide code for each of the members of an interface
(the interface is defined separately).

An interface implemented by a class, on which a client can call members. See also
outbound interface.

In object-oriented programming, the means to derive new classes or interfaces
from existing classes or interfaces. New classes or interfaces contain all the meth-
ods and properties of another class or interface, plus additional methods and
properties. Inheritance is one of the defining characteristics of an object-oriented
system.

Within the process space of a client application, a class contained in a DLL is in-
process, as objects are loaded into the process space of the client EXE. A compo-
nent contained in a separate EXE is out-of-process. See also out-of-process.

A software development tool for creating applications, such as desktop and Web
applications. IDEs blend user interface design and layout tools with coding and
debugging tools, which allows a developer to easily link functionality to user
interface components.
A language used to define COM interfaces. The Microsoft implementation of
IDL may be referred to as MIDL or Microsoft IDL.
All COM interfaces inherit from the IUnknown interface, which controls object
lifetime and provides runtime type support.
A framework for building user interfaces for Java Web applications. JSF is de-
signed to ease the burden of writing and maintaining applications that run on a
Java application server and render their user interfaces back to a target client.
A Java technology that enables rapid development of platform-independent Web-
based applications. JSP separates the user interface from content generation,
enabling designers to change the overall page layout without altering the underly-
ing dynamic content.

A Java technology that encapsulates core functionality common to many Web-
based applications as simple tags. JSTL includes tags for structural tasks such as
iteration and conditionals, manipulation of XML documents, internationalization
and locale-sensitive formatting, and SQL.
See JavaServer Faces.

See JavaServer Pages.

See JavaServer Pages Standard Tag Library.

A technique that an application uses for determining data type at runtime using
the IDispatch interface, rather than when the code is compiled. Late binding is
generally used by scripting languages. See also early binding.

GLOSSARY

Glossary.pmd 1/25/2005, 6:16 PM738

Appendix G • Glossary • 739

LIBID

library

license

little endian

macro

map document

MapServer

marshalling

members

memory leak

MTA

network

object

Object Definition Language

Library identifier. A type of GUID consisting of a unique string assigned to a
type library. See also GUID.

In object-oriented programming, a generic, platform-independent term indicating
a logical grouping of classes. ArcGIS is composed of approximately 50 libraries.
Although the term library refers to a conceptual grouping of ArcGIS types,
libraries do have multiple representations on disk: one per development environ-
ment. In COM, OLBs contain all the type information; in .NET, assemblies
contain the type information; and in Java, JAR files contain the type information.

The grant to a party of the right to use a software package or component.

A computer hardware architecture in which, within a multibyte numeric repre-
sentation, the least significant byte has the lowest address and the remaining bytes
are encoded in increasing order of significance. See also big endian.
A computer program, usually a text file, containing a sequence of commands that
are executed as a single command. Macros are used to perform commonly used
sequences of commands or complex operations.

In ArcMap, the file that contains one map; its layout; and its associated layers,
tables, charts, and reports. Map documents can be printed or embedded in other
documents. Map document files have a .mxd extension.
An ArcGIS Server software component that provides programmatic access to the
contents of a map document on disk and creates images of the map contents
based on user requests. It is designed for use in building map-based Web services
and Web applications using ArcGIS Server.
The process that enables communication between a client object and server
object in different apartments of the same process, between different processes,
or between different processes on different machines by specifying how function
calls and parameters are to be passed over these boundaries.

Refers collectively to the properties and methods, or functions, of an interface or
class.

When an application or component allocates a section of memory and does not
free the memory when finished with it, it is said to have a memory leak; the
memory cannot then be used by any other application.
Multiple threaded apartment. An apartment that can have multiple threads
running. A process can only have one MTA. See also apartment, STA, thread,
TNA.
1. A set of edge, junction, and turn elements and the connectivity between them,
also known as a logical network. In other words, an interconnected set of lines
representing possible paths from one location to another. A city streets layer is an
example of a network. 2. In computing, a group of computers that share soft-
ware, data, and peripheral devices, as in a LAN or WAN.

In object-oriented programming, an instance of the data structure and behavior
defined by a class.

Similar to Interface Definition Language but used to define the objects contained
in an object library. See also Interface Definition Language, object library.

GLOSSARY

Glossary.pmd 1/25/2005, 6:16 PM739

740 • ArcGIS Server Administrator and Developer Guide

A binary file that stores information about a logical collection of COM objects
and their properties and methods in a form that is accessible to other applications
at runtime. Using a type library, an application or browser can determine which
interfaces an object supports and invoke an object’s interface methods.

A graphical representation of the types in a library and their relationships.

The process of precreating a collection of instances of classes, such that the
instances can be shared between multiple application sessions at the request level.
Pooling objects allows the separation of potentially costly initialization and
acquisition of resources from the actual work the object does. Pooled objects are
used in a stateless manner.

A programming model in which developers define the data type of a data struc-
ture as well as the functions, or types of operations, that can be applied to the
data structure. Developers can also create relationships between objects. For
example, objects can inherit characteristics from other objects.

See OLE custom control.

See Object Definition Language.

Open Geodata Interoperability Specification. A specification, developed by the
Open Geospatial Consortium, Inc., to support interoperability of GIS systems in
a heterogeneous computing environment.

See object library.

Object Linking and Embedding. A distributed object system and protocol from
Microsoft that allows applications to exchange information. Applications using
OLE can create compound documents that link to data in other applications. The
data can be edited from the document without switching between applications.
Based on the Component Object Model, OLE allows the development of reus-
able objects that are interoperable across multiple applications.

Also known as an ActiveX control, an OLE custom control is contained in a file
with the extension .ocx. The ArcGIS controls are ActiveX controls.

A utility, available as part of Microsoft Visual Studio, that can be used to view
type information stored in a type library or object library or inside a DLL.

An interface implemented by a class, on which that object can make calls to its
clients; analogous to a callback mechanism. See also inbound interface.

Within the process space of a client application, a component contained in an
EXE is out-of-process; instantiated classes are loaded into the process space of
the EXE in which they are defined rather than into that of the client. See also in-
process.

Portable Document Format. A proprietary file format from Adobe that creates
lightweight text-based, formatted files for distribution to a variety of operating
systems.
A measure of the speed at which a computer system works. Factors affecting
performance include availability, throughput, and response time.

object library

object model diagram

object pooling

object-oriented programming

OCX

ODL

OGIS

OLB

OLE

OLE custom control

OLE View

outbound interface

out-of-process

PDF

performance

GLOSSARY

Glossary.pmd 1/25/2005, 6:16 PM740

Appendix G • Glossary • 741

The process by which information indicating the current state of an object is
written to a storage medium such as a file on disk. In ArcObjects, persistence is
achieved via the standard COM interfaces IPersist and IPersistStream or the
ArcObjects interface IPersistVariant.

See data type.

A generic term often referring to the operating system of a machine. May also
refer to a programming language or development environment, such as COM,
.NET, or Java.

An additional read-only data source provided by either ESRI or a third-party
developer. It may be a data source forming part of the core ArcObjects or an
extension.
See Published Map File.

A string value, stored in the system registry, identifying a class by library and class
name, for example, esriCarto.FeatureLayer. The ProgID registry key also contains
the human-readable name of a class, the current version number of the class, and
a unique class identifier. ProgIDs are used in VB object instantiation. See also
class identifier, IID.

A user interface component that provides access to change the properties of an
object or objects.

A local representation of a remote object, supporting the same interfaces as the
remote object. All interaction with the remote object from the local process is
forced via the proxy object. A local object makes calls on the members of a proxy
object as if it were working directly with the remote object.
A file exported by the Publisher extension that can be read by ArcReader. Pub-
lisher Map Files end with a .pmf extension.

A client may request a reference to a different interface on an object by calling
the QueryInterface method of the IUnknown interface.

A spatial data model that defines space as an array of equally sized cells arranged
in rows and columns. Each cell contains an attribute value and location coordi-
nates. Unlike a vector structure, which stores coordinates explicitly, raster coordi-
nates are contained in the ordering of the matrix. Groups of cells that share the
same value represent geographic features. See also vector.

The process by which objects in an object pool are replaced by new instances of
objects. Recycling allows for objects that have become unusable to be destroyed
and replaced with fresh server objects and to reclaim resources taken up by stale
server objects.

A pointer to an object, interface, or other item allocated in memory. COM objects
keep a running total of the references to themselves via the IUnknown interface
methods AddRef and Release.
A utility, part of the Windows operating system, that allows you to view and edit
the system registry.

To add information about a component to the system registry, generally per-
formed using RegSvr32.

persistence

pixel type

platform

plug-in data source

PMF

ProgID

property page

proxy object

Published Map File

query interface

raster

recycling

reference

Regedit

register

GLOSSARY

Glossary.pmd 1/25/2005, 6:16 PM741

742 • ArcGIS Server Administrator and Developer Guide

Stores information about system configuration for a Windows machine. COM
uses the registry extensively, storing details of COM components including
ProgIDs and ClassIDs, file location of the binary code, marshalling information,
and categories in which they participate.
A file containing information in Windows Registry format. Double-clicking a .reg
file in Windows will enter the information in the file to the system registry. Often
used to register components to component categories.
A Windows utility that can add information about a component to the system
registry. A component must be registered before it can be used.

To reinstantiate an object and its state from persisted storage.

To draw to a display. The conversion of the geometry, coloring, texturing, light-
ing, and other characteristics of an object into a display image.

The host that provides the services required for compiled code to execute. The
Service Control Manager is effectively the runtime environment for COM. The
Visual Basic Virtual Machine (VBVM) is the runtime environment that runs
Visual Basic code.

A system that does not show negative effects when its size or complexity grows
greater.

Service Control Manager. An administrative tool that enables the creation and
modification of system services. It effectively serves as the runtime environment
for COM.

A set of instructions in plain text, usually stored in a file and interpreted, or
compiled, at runtime. In geoprocessing, scripts can be used to automate tasks,
such as data conversion, or generate geodatabases and can be run from their
scripting application or added to a toolbox. Geoprocessing scripts can be written
in any COM-compliant scripting language, such as Python, JScript, or VBScript.

A form of persistence, in which an object is written out in sequence to a target,
usually a stream. See also persistence.

1. A computer in a network that is used to provide services, such as access to files
or e-mail routing, to other computers in the network. Servers may also be used to
host Web sites or applications that can be accessed remotely. 2. An item that
provides functionality to a client—for example, a COM component or object to a
user application using components or to a database client utility using a database
on a server machine.
The operating system account that the server object manager service runs as. The
server account is specified by the GIS server postinstallation utility.

A space on the GIS server where a server object and its associated objects are
running. A server context runs within a server container process. A developer gets
a reference to a server object through the server object’s server context and can
create other objects within a server object’s context.

A location on a file system used by a GIS server for temporary files that are
cleaned up by the GIS server.

registry

registry file

RegSvr32

rehydrate

render

runtime environment

scalable

SCM

script

serialization

server

server account

server context

server directory

GLOSSARY

Glossary.pmd 1/25/2005, 6:16 PM742

Appendix G • Glossary • 743

A coarse-grained object that manages and serves a GIS resource, such as a map or
a locator. A server object is a high-level object that simplifies the programming
model for doing certain operations and hides the fine-grained ArcObjects that do
the work. Server objects also have SOAP interfaces, which makes it possible to
expose server objects as Web services that can be consumed by clients across the
Internet.

Describes whether server objects share processes with other server objects. Server
objects with high isolation run dedicated processes, whereas server objects with
low isolation share processes with other server objects of the same type.
Defines what a server object’s initialization parameters are and what methods and
properties it exposes to developers. At ArcGIS 9.0, there are two server object
types: MapServer and GeocodeServer.
The process by which a Web application maintains information across a sequence
of requests by the same client to the same Web application.

An application that uses the session state management capabilities of a Web
server to maintain application state and makes stateless use of server objects in
the GIS server. Shallowly stateful applications can use pooled server objects.

A class for which there can only be one instance in any process.

A Visual C++ class implementation that encapsulates an interface pointer, pro-
viding operators and functions that can make working with the underlying type
easier and less error prone.

Simple Object Access Protocol. An XML-based protocol developed by
Microsoft/Lotus/IBM for exchanging information between peers in a decentral-
ized, distributed environment. SOAP allows programs on different computers to
communicate independently of an operating system or platform by using the
World Wide Web’s HTTP and XML as the basis of information exchange. SOAP
is now a W3C specification. See also XML, World Wide Web Consortium.

Server object container. A process in which one or more server objects is running.
SOC processes are started and shut down by the SOM. The SOC processes run on
the GIS server’s container machines. Each container machine is capable of host-
ing multiple SOC processes. See also SOM.

Server object manager. A Windows service or UNIX daemon that manages the
set of server objects that are distributed across one or more server object con-
tainer machines. When an application makes a connection to an ArcGIS Server
over a LAN, it is making a connection to the SOM. See also SOC.

See Structured Query Language.

Single threaded apartment. An apartment that only has a single thread. User
interface code is usually placed in an STA. See also apartment, MTA, thread,
TNA.
An application that runs by itself, not within an ArcGIS application.

The current data contained by an object.

server object

server object isolation

server object type

session state

shallowly stateful application

singleton

smart pointer

SOAP

SOC

SOM

SQL

STA

standalone application

state

GLOSSARY

Glossary.pmd 1/25/2005, 6:16 PM743

744 • ArcGIS Server Administrator and Developer Guide

An operation that makes changes to an object or one of its associated objects—for
example, removing a layer from a map. See also stateless operation.

An object that stores no state data in between member calls.

An operation that does not make changes to an object—for example, drawing a
map. See also stateful operation.

A mode of data delivery in which objects provide data storage. Stream objects
can contain any type of data in any internal structure. See also persistence.

A syntax for defining and manipulating data from a relational database. Devel-
oped by IBM in the 1970s, SQL has become an industry standard for query
languages in most relational database management systems.

Scene Document. A document saved by ArcScene™ that has the extension .sxd.

The process of automatically updating certain elements of a metadata file.

A computer to which an application is deployed.

A process flow through an application. An application can have many threads.
See also apartment, MTA, STA, TNA.

Thread neutral apartment. An apartment that has no threads permanently associ-
ated with it; threads enter and leave the apartment as required. See also apart-
ment, MTA, STA, thread.

A command that requires interaction with the user interface before an action is
performed. For example, with the Zoom In tool, you must click or draw a box
over the geographic data or map before it is redrawn at a larger scale. Tools can be
added to any toolbar.
A kind of inheritance in which an interface may inherit from a parent interface.
A client may call the child interface as if it were the parent, as all the same mem-
bers are supported.
A collection of information about classes, interfaces, enumerations, and so on,
that is provided to a compiler for inclusion in a component. Type libraries are also
used to allow features, such as IntelliSense, to function correctly. Type libraries
usually have the extension .tlb.

User interface. The portion of a computer’s hardware and software that facili-
tates human interaction. The UI includes items that can be displayed on screen,
and interacted with by using the keyboard, mouse, video, printer, and data cap-
ture.

Unified Modeling Language. A graphical language for object modeling. See also
CASE.

Uniform Resource Locator. A standard format for the addresses of Web sites. A
URL looks like this: www.esri.com. The first part of the address indicates what
protocol to use, while the second part specifies the IP address or the domain
name where the Web site is located.

The amount of time between when a client gets a reference to a server object and
when the client releases it.

stateful operation

stateless

stateless operation

stream

Structured Query Language

SXD

synchronization

target computer

thread

TNA

tool

type inheritance

type library

UI

UML

URL

usage time

GLOSSARY

Glossary.pmd 1/25/2005, 6:16 PM744

Appendix G • Glossary • 745

A COM object that encapsulates a large number of fine-grained ArcObjects
method calls and exposes a single coarse-grained method call. Utility COM ob-
jects are installed on a GIS server and called by server applications to minimize
the round-trips between the client application and the GIS server. See also Com-
ponent Object Model.

A data type that can contain any kind of data.

Visual Basic. A programming language developed by Microsoft based on an ob-
ject-oriented form of the BASIC language and intended for application develop-
ment. Visual Basic runs on Microsoft Windows platforms.

Visual Basic for Applications. The embedded programming environment for
automating, customizing, and extending ESRI applications, such as ArcMap and
ArcCatalog. It offers the same tools as Visual Basic in the context of an existing
application. A VBA program operates on objects that represent the application
and can be used to create custom symbols, workspace extensions, commands,
tools, dockable windows, and other objects that can be plugged in to the ArcGIS
framework.

Visual Basic Virtual Machine. The runtime environment used by Visual Basic code
when it runs.
1. A coordinate-based data model that represents geographic features as points,
lines, and polygons. Each point feature is represented as a single coordinate pair,
while line and polygon features are represented as ordered lists of vertices. At-
tributes are associated with each feature, as opposed to a raster data model,
which associates attributes with grid cells. 2. Any quantity that has both magni-
tude and direction. See also raster.

A directory name, used as a URL, that corresponds to a physical directory on a
Web server.

A Microsoft implementation of the C++ language, which is used in the Microsoft
application Visual Studio, producing software that can be used on Windows
machines.

See World Wide Web Consortium.

The amount of time it takes between a client requesting and receiving a server
object.

An application created and designed specifically to run over the Internet.

A file that contains a user interface as well as all the code and necessary files to
use as a starting point for creating a new customized Web application. ArcGIS
Server contains a number of Web application templates.
The visual component of a Web form that executes its own action on the server.
Web controls are designed specifically to work on Web forms and are similar in
appearance to HTML elements.
Based on ASP.NET technology, Web forms allow the creation of dynamic Web
pages in a Web application. Web forms present their user interface to a client in a
Web browser or other device but generally execute their actions on the server.

utility COM object

variant

VB

VBA

VBVM

vector

virtual directory

Visual C++

W3C

wait time

Web application

Web application template

Web control

Web form

GLOSSARY

Glossary.pmd 1/25/2005, 6:16 PM745

746 • ArcGIS Server Administrator and Developer Guide

A computer that manages Web documents, Web applications, and Web services
and makes them available to the rest of the world.

A software component accessible over the World Wide Web for use in other
applications. Web services are built using industry standards such as XML and
SOAP and thus are not dependent on any particular operating system or program-
ming language, allowing access through a wide range of applications.
A collection of ArcGIS Server Web services. A Web service catalog is itself a
Web service with a distinct endpoint (URL) and can be queried to obtain the list
of Web services in the catalog and their URLs. See also ArcGIS Server Web
service.

An organization that develops standards for the World Wide Web and promotes
interoperability between Web technologies, such as browsers. Members from
around the world contribute to standards for XML, XSL, HTML, and many other
Web-based protocols.

Web Service Description Language. The standard format for describing the meth-
ods and types of a Web service, expressed in XML.

See XML Metadata Interchange.

Extensible Markup Language. Developed by the World Wide Web Consortium,
XML is a standard for designing text formats that facilitate the interchange of
data between computer applications. XML is a set of rules for creating standard
information formats using customized tags and sharing both the format and the
data across applications.

A standard produced by the Object Management Group that specifies how to
store a UML model in an XML file. ArcGIS can read models in XMI files.

Extensible Style Language. A set of standards for defining XML document
presentation and transformation. An XSL stylesheet may contain information
about how to display tagged content in an XML document, such as font size,
background color, and text alignment. An XSL stylesheet may also contain XSLT
code that describes how to transform the tagged content in an XML document
into an output document with another format. The World Wide Web Consortium
maintains the XSL standards. See also XML, World Wide Web Consortium.

Extensible Style Language Transformations. A language for transforming the
tagged content in an XML document into an output document with another
format. An XSL stylesheet contains the XSLT code that defines each transforma-
tion to be applied. Transforming a document requires the original XML docu-
ment, an XSL document containing XSLT code, and an XSLT parser to execute
the transformations. The World Wide Web Consortium maintains the XSLT
standard. See also XML, XSL, World Wide Web Consortium.

Web server

Web service

Web service catalog

World Wide Web Consortium

WSDL

XMI

XML

XML Metadata Interchange

XSL

XSLT

GLOSSARY

Glossary.pmd 1/25/2005, 6:16 PM746

Index • 747

Index

A

Abstract class 579
defined 732

Accessing OMDs 716
Action method

map control and 284
Active Server Pages. See also ASP

ASP.NET 733
defined 732

Active Template Library. See ATL
ActiveX DLL 610–611
AddRef method. See IUnknown interface
AddResource method 682
Address locator 41, 369, 386
Address matching

example 378, 393
Geocode control 311
GeocodeConnection component 223

ADF. See Application Developer Framework
Administrator

GIS server API 498
of GIS server 10

Aggregation. See COM: aggregation
Agsadmin

adding users to 53
described 46
GISServerConnection class 85, 484
Web applications and 161, 258

Ags.data package 264
Ags.faces.event package 264
AGSGeocodeResource class 266
AGSGeocodeResult class 312
AGSGeocodeResults class 312

binding to data table 313
AGSMapResource class 266
AGSServerConnection class 116
Agsusers

adding users to 54
described 46
GISServerConnection class 85, 484
Web applications and 161, 258

Ags.util package 264
AGSWebContext class 265, 268

example 353
session state 111

AGSWebGeocode class 266, 311
AGSWebIdentifyResults class 266, 317

AGSWebMap class 266, 277
example 353

AGSWebNorthArrow class 305
AGSWebOverview class 295
AGSWebPageLayout class 290

accessing objects 290
AGSWebScaleBar class 308
AGSWebToc class 298
American Standard Code for Information Interchange. See

ASCII
Ant 561. See also Arcgisant command

defined 236
AoInitialize function 702
AOUninitialize function 694
Apartment 585–586

defined 732
API. See also ArcGIS Server: API

defined 732
Application Developer Framework

defined 3, 732
described 14
Java

components 228
resource adapter 541

.NET 135
components 136

runtime 5, 16
components 16
defined 732

template 15
Web control 15

Application object 612
Application programming interface. See API
ApplyDescriptions method 272
ArcCatalog

as administration tool 10, 49
configuring a proxy server 68
running under a different account 56
Web service catalog 145, 241

ArcGIS Desktop
ArcGIS Server, accessing 8, 39
ArcObjects and 28
defined 2
extension

defined 736
ArcGIS Developer Help system

defined 21
ArcGIS Engine

ArcObjects and 28
defined 2

ArcGIS Server
add-ins

defined 732
ESRI Align Controls With Tab Index 23
ESRI Automatic References 23

Index.pmd 1/25/2005, 6:20 PM747

748 • ArcGIS Server Administrator and Developer Guide

ESRI Code Converter 23
ESRI Command Creation Wizard 23
ESRI Compile and Register 23
ESRI Component Category Registrar 23
ESRI ErrorHandler Generator 23
ESRI ErrorHandler Remover 23
ESRI GUID Generator 23
ESRI Interface Implementer 23
ESRI Line Number Generator 23
ESRI Line Number Remover 23

API 75
architecture 33
ArcObjects and 28
components 5, 35
defined 2
developer kit 6

samples 21
developer tools

Component Categories Manager 22
Fix Registry Utility 22
GUID Tool 22
Library Locator 22

extensions
3D 12
Network Analyst 13
Spatial 12

object library
3DAnalyst 83
Carto 80
DataSourcesFile 80
DataSourcesGDB 80
DataSourcesOleDB 80
DataSourcesRaster 80
Display 79
GeoAnalyst 83
GeoDatabase 79
GeoDatabaseDistributed 80
Geometry 77
GISClient 79
GlobeCore 83
Java Web controls 83
Location 81
.NET Web controls 83
NetworkAnalysis 81
Output 79
Server 79
Spatial Analyst 83
System 77
SystemUI 77

platforms 5
programming languages 5
SOAP toolkit 33
users 7
Web service

described 116

ArcGIS Server administrators group. See Agsadmin
ArcGIS Server users group. See Agsusers
ArcGIS Software Developer Kit

defined 21
Arcgisant command

build
described 236
example 237

defined 732
deploy

example 237
Arcgis_webapps.properties file

ApplicationProperties class and 264
defined 238

ArcIMS
defined 2

ArcMap
starting programmatically 613

ArcObjects
categories

base services 29
data access 29
map analysis 29
map presentation 29

compatibility
between releases 31

Component Object Model 28
creating in server context 105
defined 3, 732
described 28
developing with

coding standards 588
COM data types 594
database considerations 592
general coding tips and resources 588
using a type library 594
using component categories 595

framework
defined 737

modularity 29
platform support 31
scalability 30
server context and 104
used in

ArcGIS Desktop 28
ArcGIS Engine 28
ArcGIS Server 28

Web application, accessing from 151, 167, 251, 271
Web service, accessing from 368, 385

ArControl object 713
ArcSDE 721
ArcSDE connection 160, 257
ASCII

defined 732
ASP 663. See also Active Server Pages: defined

Index.pmd 1/25/2005, 6:20 PM748

Index • 749

Assembly
defined 733

ATL 616
defined 732, 733
hierarchical layers of

illustrated 618
Authentication

defined 161, 258, 733

B

BaseCommand class 686, 687
BaseTool class 686, 687
.bat file

defined 733
Big endian

defined 733
Binary

defined 733
Binding 583
Bookmark 442
BSTR 595
Buffer Selection template 139, 230
By value

defined 733

C

C runtime. See CRT
C++. See also Visual C++

defined 733
Callback mechanism 582
Carto library 80
Cascading Style Sheet

attributes 238
defined 733
described 240
editing 240
mapviewer.css file 238
webcontrols.css file 238

CASE
defined 733

CAxWindow class 642
CCI 541
CComObject class 618
CComObjectRootEx class 618
CComSafeArray class 627
CComSafeArrayBound class 627
CComxxxThreadModel class 618
Class factory. See COM: class factory
Class identifier. See also CLSID; GUID

defined 734
Classes 578

defined 733
types of 717

Clear method 631

Client
defined 734

Client/Server architecture 577
ClientActionArgs class 281, 292
Cloning

defined 734
CLR 664. See also .NET: Common Language Runtime (CLR)
CLSID 614, 686. See also Class identifier
Coclass 579

defined 734
Coding standards 588. See also Visual Basic: coding

guidelines; Visual C++: coding guidelines
COM

Active Template Library. See ATL
aggregation 584–585
background 576–577
class. See Classes
class factory 578
client 577
client storage 590
containment 584–585
contract

defined 734
defined 734
described 576–587
Direct-To-COM. See DTC
DLL 577
EXE 577
instantiating features 594
instantiating objects 586
interface. See also Interface

defined 734
marshalling 585
server 577

COM interfaces
described 579–580

COM-compliant language
defined 734

COMException class 674
Command

defined 734
Command bar

defined 734
Command button

defined 231
example 248

Command line
defined 734

Common Client Interface. See CCI
Common Language Runtime. See CLR
Common object request broker architecture. See CORBA
Common type system. See CTS
Common.properties file 237
Common.xsl file 238
Component

defined 734

Index.pmd 1/25/2005, 6:20 PM749

750 • ArcGIS Server Administrator and Developer Guide

Component category 586, 595–596, 611
defined 734

Component Category Manager 595
defined 734

Component Object Model. See COM; Microsoft Compo-
nent Object Model

Composition
described 718
example 718

ComRegisterFunctionAttribute class 686
ComUnregisterFunctionAttribute class 686
Configuration file

server 528
server object 532

Connection interface (JCA) 542
ConnectionFactory class (JCA) 542
Container account 47

defined 735
privileges 47

Container machine. See Server object container
Container process 36. See also Server object container

defined 735
Containment. See COM: containment
Content Standard for Digital Geospatial Metadata

defined 735
Context control

described 265
ContextTag class 265
Control

defined 735
Convenience class

described 140
Converter class

example 338
CORBA 576
Coverage 160, 257
CPath class 627
CreateObject class 106
Creation time. See Server object: creation time
CRT 620
CSDGM. See Content Standard for Digital Geospatial

Metadata
CSS. See Cascading Style Sheet
CTS 660
Cursor

insert 593
recycling 592
releasing 95, 375
update 593

Custom
defined 735

Custom feature 584
CWnd class 645

D

Data
accessing from GIS server 58, 160, 257
ArcSDE connection 160, 257
editing

Web application 323, 345
pathname to 160, 257

Data objects 231
Data package 264
Data types 594

defined 735
Database

management system
defined 735

support
defined 735

Dataset class 579
DataSourcesFile library 80
DataSourcesGDB library 80
DataSourcesOleDB library 80
DataSourcesRaster library 80
DBMS. See Database: management system
DCE 578, 581
DCOM

defined 735
Debugging. See Visual Basic: debugging; Visual C++:

debugging
defined 735

Deeply stateful application
defined 735
described 92
example 323, 345
Web, and the 101

Default.xml file
defined 238
example 292

Delete method 593
Denial of service 130
Deployment

defined 736
Detach method 631
Developer kit 6, 14

samples 21
Developer sample

defined 736
Developer tools

Component Categories Manager 22
Fix Registry Utility 22
GUID Tool 22
Library Locator 22

Developing with ArcObjects
coding standards 588
COM data types 594
database considerations 592

Index.pmd 1/25/2005, 6:20 PM750

Index • 751

general coding tips and resources 588
using a type library 594
using component categories 595

Development environment
defined 736

Device context
defined 736
display

defined 736
Dispatch event

interface 582
Dispatch interface 582
DispEventAdvise method 651
Display library 79
Distributed Component Object Model. See DCOM
DLL 580, 587, 610–611

defined 736
Dockable window

defined 736
DTC 618
Dynamic Link Library. See DLL

E

Early binding
defined 736

Edit operations 592
Editing

data
Web application 323, 345

Editing rules for geodatabase integrity 592–594
Editor class 722
Editor coclass 592
EIS. See Enterprise information system
EJB. See Enterprise JavaBeans
Ejb-jar.xml file 557
EMF

defined 736
EngineInitializer class 702
Enhanced metafile. See EMF: defined
Enterprise information system 541
Enterprise JavaBeans

application server 544
client application 558
defined 736
deploying 565
deployment descriptor 546
described 540
Home interface 556
Java ADF and 228
Remote interface 556

Enumerator interfaces 590, 608, 609
Envelope coclass 590
EOBrowser

defined 736

Equal interval classification 139, 230
Err object 604
Error handling 590, 599, 604
Error message codes 526
Error object 590
ESRI Support Center 25
Event handling 591–592, 605–606

defined 736
Events

map control 182
overview map control 198
page layout control 192
table of contents control 205
toolbar control 214

Exception class 672
Exception handling. See Error handling
Executable file

defined 736
Extensible Markup Language

default.xml file 238
example 292

Extensible Stylesheet Language
Common.xsl file 238
described 239
editing 239
variables 238

F

Faces.component package 263
Faces.event package 263
Faces.renderkit.xml package 263
FacesServlet 248
Faces.taglib package 263
Faces.validator package 263
Feature

COM instantiation of 594
editing shape of 593

Feature coclass 593
Federal Geographic Data Committee. See FGDC
FGDC

defined 736
Fine-grained ArcObjects. See ArcObjects

G

GAC 664
Garbage collection 88
GDB. See Geodatabase
GDI. See Graphical device interface
GeoAnalyst library 83
Geocode control

address
finding 311

Index.pmd 1/25/2005, 6:20 PM751

752 • ArcGIS Server Administrator and Developer Guide

described 310
interacting with 312
results

binding to data table 313
GeocodeConnection component

address
finding 223
mapping 224

described 223
GeocodeRenderer class 310
GeocodeServer 40, 41, 87, 378, 393

as Web service 116, 369, 386
limiting capabilities 169, 259

batch size 41
defined 737

GeocodeTag class 310
Geocoding template 138, 230
Geodatabase

defined 737
editing rules 592–594

GeoDatabase library 79, 720
GeoDatabaseDistributed library 80
Geometry

defined 737
Geometry class 579
Geometry library 77
Geoprocessing tool

defined 737
Get 722
Get/Put 722
GetEnvelope method 591
GIS resource 41
GIS server

accessing 46, 161, 258
administrator 10, 498
configuring

overview 17
connecting to

GISServerConnection class 84
Internet server 56
local server 56
through proxy server 68

container machine
adding 57, 65, 503
removing 66, 503

controlling access to 52
cursor

releasing 375
using 95

defined 35, 737
denial of service 130
described 35
extending 121
limiting queries

addresses matched 64, 130

features buffered 64, 130
image size 64, 132
records retrieved 64, 130

log file
codes 526
location 67, 505, 522
message level 68, 506, 522

monitoring performance 62
performance tuning 121

example 464
scalability 103
security 46, 85
server directory 36, 66, 109, 494, 504, 530
server object

adding to 17, 58
deleting from 61
described 87
lifetime 89
pausing 62
starting 62
stopping 62

statistics
for server 68, 507
for server object 63

GISClient library 79, 116
GISServerConnection class 84, 484
Global Assembly Cache. See GAC
Global.asax file 166, 216
Globally unique identifier. See GUID
GlobeCore library 83
Graphical device interface

defined 737
Graphical user interface. See GUI
GUI 662
GUID 578, 586

defined 737
GUIDAttribute class 669
GxView abstract class 720
GxView class 720

H

Hexadecimal
defined 737

HKCR
defined 737

HRESULT 604
defined 737

Human class 579

I

IActiveViewEvents interface 611, 647, 666
IAGSServerConnection interface 116
IApplication interface 582, 612, 613

Index.pmd 1/25/2005, 6:20 PM752

Index • 753

IArea interface 708
IAreaProxy class 708
IARMap interface 710
IClassFactory interface 587, 618
IClone interface 709
ICommand interface 615, 640, 687, 689
IDE 589, 626
Identifies interface 590
Identify results control

described 316
interacting with 318

IdentifyResultsRenderer class 316
IdentifyResultsTag class 316
Identity

described 47
IDispatch interface 583–584, 591

defined 737
IDL 581, 594–596
IDocument interface 612, 613
IDocumentEvents interface 582
IDocumentEventsDisp interface 582
IEditor interface 720
IEditor2 interface 720
IEnumFeature interface 609
IExtension interface 595, 611
IGeocodeServer interface 87
IGeometry interface 668, 709, 720
IGISServerConnection interface 84, 484
IGxView interface 720
IGxViewPrint interface 720
IID

defined 738
IIS 661
IMap interface 608
IMapLayerInfo interface 157
IMapServer interface 88, 156, 167, 271
IMapServerObjects interface 167, 326, 353
IMapServerToolAction interface 337, 475
IMapToolAction interface 279, 360
Impersonation

defined 161, 258, 738
described 47, 162, 259
identity 162
web.config 162

Impersonation control
described 215
example 325
life cycle 217
session state 216
using 144, 162

Implement
defined 738

In-process
defined 738

Inbound interface

defined 738
Inheritance

defined 738
described 718
example 718
interface inheritance 584
type inheritance. See Type inheritance

Instantiation
described 718
example 718

Integrated development environment. See also IDE
defined 738

Interface
default 582, 601

defined 735
deprecated 580
described 578–580
notification interface 590
optional 580
outbound 582, 591–592, 606, 611
Visual Basic and 600–603

Interface Definition Language. See IDL
defined 738

Interface identifier. See IID: defined
InterfaceProxy class 708
Internet Information Services. See IIS
Internet server

and proxy server 68
connecting to 56

Intrinsicjca.rar file 542
Invoke method 583
IPageLayoutToolAction interface 288
IPoint interface 603, 604, 606, 607, 608, 720
IPolygon interface 590
IRasterPyramid2 interface 721
IRootLevelMenu interface 590
Is keyword 592, 608
IServerContext interface 104, 326, 488
IServerDirectory interface 504, 519
IServerDirectoryInfo interface 109, 494
IServerMachine interface 503, 517
IServerObject interface 493
IServerObjectAdmin interface 85, 499, 529
IServerObjectConfiguration interface 511, 534
IServerObjectConfigurationInfo interface 495
IServerObjectConfigurationStatus interface 502
IServerObjectManager interface 85, 104, 376, 392, 486
IServerObjectType interface 518
IServerObjectTypeInfo interface 496
IServerStatistics interface 507
IServerTimeRange interface 508
IShortcutMenu interface 590
Isolation

high 44
low 44

Index.pmd 1/25/2005, 6:20 PM753

754 • ArcGIS Server Administrator and Developer Guide

server object 44
ISupportErrorInfo interface 619
ITalk interface 579
ItemAdded method 647
ITemporaryDataset interface 721
ITool interface 687
IUnknown interface 580–581, 582, 600–603

defined 738
IUnknown methods 618
IWorkspaceEdit interface 592
IXxxImpl interface 618

J

J2EE 700. See also Java 2 Platform, Enterprise Edition
J2EE Connector Architecture 541

dereferencing resources 555
resource adapter 541

deploying 565
J2ME 700
J2SDK 700
J2SE 700
Java 576

template 229
Java 2 Platform, Enterprise Edition. See also J2EE

application server 540
Connector Architecture 541
container 540

Java 2 Platform, Micro Edition. See J2ME
Java 2 Platform, Standard Edition. See J2SE
Java 2 Platform Standard Software Developer Kit. See J2SDK
Java API

ArcGIS development 703
platform configuration 700
programming techniques 702

Java Archive files. See JAR
Java Native Interface. See JNI
Java Runtime Environment. See JRE
Java Virtual Machine. See JVM
JavaScript 583

map control 179
page layout control 189

JavaServer Faces
defined 738
described 236
tag

dataTable 313
outputText 269
view 246

JavaServer Pages
defined 738
Java ADF and 228
tag

context 265

htmlBase 248
map 274

JavaServer Pages Standard Tag Library 247
defined 738

JCA resource adapter 541
JinitConnectionRequestInfo class 546
J-Integra 541
JIT 661
JRE 702
JSF. See JavaServer Faces
JSP. See JavaServer Pages
JSTL 247
Just-in-time. See JIT
JVM 702

L

Late binding
defined 738

LIBID
defined 739

Library
defined 739

License
defined 739

Listener
actionListener tag 282
defined 231
map control and 282
page layout control and 293

Little endian
defined 739

Local server
connecting to 56

Location library 81
Locator. See Address locator
Log file

codes 526
described 522
entry 523
location 67, 505, 522
message level 68, 506, 522
statistics from 523

M

Macro
defined 739

Managed_context_attributes.xml file 266
ManageLifetime method 695, 696
Map class 175, 611
Map control

action method 284
described 174, 274
events 182

Index.pmd 1/25/2005, 6:20 PM754

Index • 755

example 325
interacting with

tool 278
toolbar 177
ToolItems 177

JavaScript 179
life cycle 182
listener 282
MapClientToolAction enumeration 179
MapToolItem class 175
MIME data 176
session state 181

Map document 41, 160, 257
defined 739

Map object 670
Map Viewer template 137, 229

extending 322, 344, 463
MapClientToolAction enumeration 179
MapDescription class 99, 167, 271

example 417, 452
MapEventArgs class 274
MapRenderer class 274
MapServer 40, 41, 87

as Web service 116, 119
limiting capabilities 169, 259

defined 739
example 464

MapServer coclass 167, 271
MapTag class 274
MapToolItem class 175
Mapviewer.css file 238
Marshalling. See also COM: marshalling

defined 739
MaxBatchSize 64
MaxBufferFeatures 64
MaxImageHeight 64
MaxImageWidth 64
MaxRecordCount 64
MaxResultsSize 64
MBCS 624
Members

defined 739
Memory leak

defined 739
Message codes 526
MFC 617
Microsoft Component Object Model

aggregation and containment 584
ArcObjects and 28
automation 587
class factory 578
COM and the registry 586
COM classes and interfaces 578
component category 586
components, objects, clients, and servers 577

creating an object 466
described 576
globally unique identifiers 578
inbound and outbound interfaces 582
inside interfaces 579
Interface Definition Language 581
interface inheritance 584
IUnknown interface 580
objects

managing lifetime 95
releasing 95

singleton objects 578
threads, apartments, and marshalling 585
type library 581

Microsoft Foundation Class Library. See MFC
Microsoft Interface Definition Language. See IDL
Microsoft Visual Studio .NET 135

namespace 173
templates 137

MIME data 66, 176, 186, 220, 222
Model-View-Controller pattern

described 275–278
MTA 585

defined 739
Multibyte character sequences. See MBCS
Multiplicity

described 718
example 718

Multithreaded apartment. See MTA

N

Name abstract class 720
Namespace 173
Natural breaks classification 139, 230
.NET

assembly
defined 733

Common Language Runtime
defined 734

NET API
.NET Framework

described 659
.NET programming techniques and considerations 668
ArcGIS development using .NET 685
interoperating with COM 664

Network
defined 739

Network Analyst extension 13
NetworkAnalysis library 81
Non-pooled server object

described 41
example 323, 345

North arrow control
character index 218, 305

Index.pmd 1/25/2005, 6:20 PM755

756 • ArcGIS Server Administrator and Developer Guide

described 218, 304
font 218, 305
life cycle 220
MIME data 220
session state 220

NorthArrow class 218
NorthArrowRenderer class 304
NorthArrowTag class 304
Notification interface 590

O

Object
defined 739

Object browser utility 589
Object Definition Language. See also IDL

defined 739
Object dictionary

described 108, 490
Object library. See also OLB; Type library

defined 740
Object Management Group. See OMG
Object model

Web control 172, 262
Object model diagram

defined 740
Object pooling

defined 740
Object-oriented programming

defined 740
Objects

described 577
OCX 594
OGIS

defined 740
OLE

defined 740
OLE automation. See Microsoft Component Object Model:

automation
OLE custom control. See OCX

defined 740
OLE View

defined 740
OMD key 716
OMG 576
OnChanged method 593
OnClick method 689
OnDestroy method 657
OnInitDialog method 643, 646
Open Group's Distributed Computing Environment. See

DCE
Out-of-process

defined 740
Outbound interface. See also Interface: outbound

defined 740
illustrated 582

Output directory. See Server directory
Output library 79
Overview control 295

events
OVClick 297
OVDragUp 297

interacting with 297
Overview map control

area of interest 196
described 194
events 198
example 325
extent 195
life cycle 197
session state 196

OverviewEventArgs class 295
OverviewRenderer class 295
OverviewTag class 295

P

Page layout control
described 184, 288
events 192
interacting with

tool 291
toolbar 187
ToolItems 188

JavaScript 189
life cycle 192
listener 293
MIME data 186
PageClientToolAction enumeration 189
PageToolItem class 185
session state 191
WebPageLayout class 184

Page Layout template 138, 229
PageClientToolAction enumeration 189
PageDescription class 167, 271
PageLayout class 185
PageLayoutRenderer class 288
PageLayoutTag class 288
PageToolItem class 185
PanTool class 688
Parrot class 579
PDC 37, 55
PDF

defined 740
Performance

defined 740
Persistence

defined 741
PIA 664
Pixel type

defined 741

Index.pmd 1/25/2005, 6:20 PM756

Index • 757

Platform
defined 741

Plug-in data source
defined 741

Point class 668, 707
Point coclass 603, 604, 606
Polygon class 707
Polyline class 707, 711
Polymorphism 579
Pooled server object

described 41
Pooling

described 41
scalability 43
stateful vs. stateless application 91

Primary Domain Controller. See PDC
Primary interop assemblies. See PIA
ProgID 478, 610, 621, 622

defined 741
Programmable identifier. See ProgID
Programming language

supported by ArcGIS Server 5
Property by reference 591, 603, 605
Property by value 591, 605
Property page

defined 741
Propput method 591
Propputref method 591
Proxy object 106

defined 741
Proxy server 68
Published Map File (.pmf) 41

defined 741
Put 722
Put by reference 722
Put by value 722

Q

QI. See QueryInterface method
Quantile classification 139, 230
Query interface

defined 741
Query performance 593
QueryEnvelope method 590
QueryInterface method 580–581

R

RAD 662
Rapid application development. See RAD
Raster

defined 741
RasterDataset class 721
RCW 664
Recycling

defined 741
server object 45

Reference
defined 741

Regedit 596
defined 741

Register
defined 741

RegisterAssembly method 697
Registry 586, 596

defined 742
regedit. See Regedit
script 596

Registry file
defined 742

RegSvr32
defined 742

Rehydrate
defined 742

Release method. See IUnknown interface
ReloadDescriptions method 272
Render

defined 742
ResourceWriter class 682
ResXResourceReader class 683
ResXResourceWriter class 683
Ring object 708
Runas 56
Runtime callable wrapper. See RCW
Runtime environment

defined 742

S

Scalable
defined 742

Scale bar control
described 221, 307
divisions 222
life cycle 222
MIME data 222
session state 222
subdivisions 222

ScaleBar class 221
ScaleBarRenderer class 307
ScaleBarTag class 307
SCM 585, 586

defined 742
Script

defined 742
Search template 138, 229
Security

GIS server 46, 85, 161, 258
Web application 46, 161, 258

Serialization 491

Index.pmd 1/25/2005, 6:20 PM757

758 • ArcGIS Server Administrator and Developer Guide

defined 742
Server

defined 742
described 578

Server account 47
defined 742

Server context
ArcObjects and 104
copying objects between 107
creating 486

empty 105, 488
defined 742
dereferencing JCA resources 555
discussed 104
example

deeply stateful application 323, 345
garbage collection and 88
getting

described 104
object

lifetime 89
loading 108, 491
managing 111
proxy 106
saving 108, 491

object dictionary
described 108, 490
example 326, 351

releasing
described 104
in Session_End 166
non-pooled object 165
pooled object 164
ServerContext class 88, 489

session state and 101
Web application and 163

Server control. See Web control
Server directory

adding 66, 504
defined 742
deleting 505
deleting files in 66, 109, 531
described 36
in Server.cfg 530
ServerDirectory class 519
ServerDirectoryInfo class 494
virtual directory 67

Server library 79
Server object

accessing 87
adding

described 17
example 324, 346
many 61
one 58

configuration file 532
tags 534

configuring 40, 511
creation time 43

defined 735
defined 33, 743
deleting 61
described 40, 87
garbage collection and 88
getting statistics 63
GIS resource 41
isolation

described 44
high 44
low 44

lifetime 89
limiting

image size 132
queries 130

non-pooled 41
organizing 160, 257
pausing 62
pooled 41
pooling

described 41
scalability 43

recycling
described 45

serialization 99, 491
SOAP and 40
starting 62
stateful vs. stateless use 91
stopping 62
type 41, 518

GeocodeServer 40, 41, 87, 378, 393
MapServer 40, 41, 87

usage time 43
using 87
wait time 43

Server object container
account 47
adding to SOM 57, 65, 503
defined 36
identity 47
in Server.cfg 530
log file 522
process 36
removing from SOM 66, 503

Server object isolation
defined 743

Server object manager
account 47
configuration file

server 528
server object 532

described 36

Index.pmd 1/25/2005, 6:20 PM758

Index • 759

identity 47
log file 522

Server object type
defined 743

Server.cfg
described 528
tags 530

ServerConnection class 156
example 84, 376

ServerContext class 104, 488
ServerDirectory class 519
ServerDirectoryInfo class 494
ServerMachine class 517
ServerObject class 493
ServerObjectAdmin class 484, 498
ServerObjectConfiguration class 511
ServerObjectConfigurationInfo class 494
ServerObjectConfigurationStatus class 502
ServerObjectManager class 104, 486
ServerObjectType class 518
ServerObjectTypeInfo class 494
Service control manager. See SCM
ServletRequest interface 269
Session state

defined 743
impersonation control 216
managing 111
map control 181
North arrow control 220
overview map control 196
page layout control 191
saving objects in 99, 101, 492
scale bar control 222
table of contents control 204
toolbar control 213

Set 605
Set Next Statement command 634
Shallowly stateful application

defined 91, 743
on the Web 97

Shapefile 160, 257
Singleton

defined 743
Singleton objects 578, 613
Smart pointer

defined 743
SOAP

defined 743
request 116
server object and 40
toolkit 33

SOC. See also Server object container
defined 743

SOM. See also Server object manager
defined 743

Spatial Analyst library 83
Spatial extension 12
STA

defined 743
Standalone application

defined 743
Standard Template Library. See STL
StartEditing method 592
StartEditOperation method 592
State

defined 743
Stateful operation

defined 744
Stateless

defined 744
Stateless operation

defined 744
StatelessMapImageBean class 543
Statistics

for server 68, 507
for server object 63
in log file 523

STL 617
StopEditing method 592
StopEditOperation method 592
Stream

defined 744
Structured Query Language

defined 744
SXD

defined 744
Synchronization

defined 744
System library 77
System.Exception class 672
SystemUI library 77

T

TabIndex property 597
Table of contents control

automatic postback 201, 301
described 199, 298
events 205
layer drawing 201, 302
life cycle 205
navigating tree 202, 299
populating 203
removing check box 203
session state 204

Tag libraries
ArcGIS Web controls 247
JSF core 247
JSF standard 247
JSTL 247

Index.pmd 1/25/2005, 6:20 PM759

760 • ArcGIS Server Administrator and Developer Guide

Target computer
defined 744

Technical support
ESRI Support Center 25
training course 25

Template
Buffer selection 139, 230
contents of Java 238
creating Web application 144, 237
described 15
extending 322, 344
Geocoding 138, 230
Map Viewer 137, 229
Page Layout 138, 229
Search 138, 229
Thematic 139, 230
Web service catalog 140, 230

Thematic template 139, 230
ThisDocument object 612
Thread 585

defined 744
Thread-neutral apartment. See TNA
ThreadingModel registry entry

values of 585
TLB 685
TNA 585

defined 744
Toc control. See Table of contents control
TocClass class 200
TocNodeContent class 300
TocRenderer class 298
TocTag class 298
ToMapPoint method 710
Tool

adding 279
client-side action 278
defined 231, 744
example 248
server-side action 278

Toolbar class 208
Toolbar control

adding 148, 328
buddy control 208
described 207
events 214
grouping 209
items

adding 328
command 149, 209, 212
separator 209
space 209
tool 149, 208, 210

life cycle 213
session state 213
style 212

ToolEventArgs class 180
ToolItemCollection class 279, 291
Type inheritance 578

defined 744
Type library 581, 594, 603, 612. See also TLB

defined 744
TypeOf keyword 607

U

UI
defined 744

UIComponentTag class 263
UML 716, 717

defined 744
Unicode 635, 636
Unified Modeling Language. See UML
Universally unique identifier. See GUID
UNIX

as ArcGIS Server platform 5
UnregisterAssembly method 697
URL

defined 744
Usage time

defined 744
Util package 264
Utility COM object

defined 745

V

Variant
defined 745

VB. See also Visual Basic
defined 745

VBA. See also Visual Basic for Applications
defined 745

VBE 600–601
VBScript 583
VBVM. See also Visual Basic: Virtual Machine

defined 745
Vector

defined 745
VectorEventArgs class

example 338
Virtual directory 67

defined 745
Visual Basic 717

arrays 598
coding guidelines 597–609
coding standards

ambiguous type matching 599
arrays 598
bitwise operators 599
default properties 598
indentation 598

Index.pmd 1/25/2005, 6:20 PM760

Index • 761

intermodule referencing 598
multiple property operations 598
order of conditional determination 597–598
parentheses 597
type suffixes 599
variable declaration 597
while wend constructs 600

collection object 609
collections 608
creating COM components 610
data types 595
debugging 614–616

with ATL helper object 616
with Visual C++ 615

error handling 599
event handling 605
getting handle to application 612–614
implementing interfaces 611
interfaces and 600–603
Is keyword 608
Magic example 602
memory management 599
methods 605
parameters 606
passing data between modules 606–607
PictureBox 599
starting ArcMap 613
TypeOf keyword 607
variables

Option Explicit 597
Private 597
Public 597

Virtual Machine 600, 603, 604. See also VBVM
Visual Basic 6 development environment

debugging Visual Basic code 614
described 610
getting to an object 613
implementing interfaces 611
referring to a document 612
running ArcMap with a command-line argument 613
setting references to the ESRI object libraries 612

Visual Basic 6 environment
creating COM components 610
described 597
user interface standards 597

Visual Basic Editor. See VBE
Visual Basic for Applications 582
Visual C++

Active Template Library. See ATL
ATL and the ActiveX controls 641
ATL references 627
coding guidelines 633–634
coding standards

argument names 634
function names 633
type names 633

data types 595
debugging 634–658
debugging tips in Developer Studio 634
defined 745
handling COM events in ATL 647
importing ArcGIS type libraries 638
MFC and the ActiveX controls 643
naming conventions 633
smart types 628
working with ATL 617

Visual Studio .NET. See Microsoft Visual Studio .NET
vTable 583, 611

W

Wait time
defined 745

Web application
ArcObjects, accessing in 151, 167, 251, 271
creating

with Java 344
with .NET 135, 322, 463

deeply stateful 101
defined 92
example 323, 345

defined 745
examples of 7
from template 144, 237, 322, 344
GIS server, accessing 161, 258
performance tuning 464
scalability 103
security 46, 161, 258
server context and 163
server object 160, 257
shallowly stateful 97

defined 91
template

defined 745
Web browser

defined 35
Web control

defined 745
described

Java 231
.NET 140

object model 172, 262
server context and 111
session state and 111

Web form
defined 745

Web server
defined 35, 746
described 37

Web service
application 732
ArcGIS Server 732

Index.pmd 1/25/2005, 6:20 PM761

762 • ArcGIS Server Administrator and Developer Guide

client application
Java 435
.NET 402

creating
Java 385
.NET 368

defined 746
described 114
limiting capabilities 169, 259
programming 114
security 46
URL 118, 403, 437
WSDL 114, 403, 436

Web service catalog
connecting to 56
consuming

with Java 435
with .NET 402

creating 145, 241
defined 746
described 55
example

list of services 411, 445
service description 411, 445

limiting capabilities 169, 259
referencing in

Java 438
.NET 405

URL 403, 437
Web Service Catalog template

described 140, 230
Web Service Description Language 114, 403, 436
WebApplication class 267
Web.config file 162
WebContext class 265, 268

accessing objects through
286, 294, 297, 303, 309, 314, 319

ServletRequest interface 269
WebContextInitialize interface 267
WebContextObserver interface 267
Webcontrols.css file 238
WebGeocode class

Geocode control 311
releasing COM object 97
server context 164

WebGeocode object 696
WebIdentifyResults class 317
WebLifecycle class

example 352
WebLifecycle interface

activate
defined 270

maintaining 270
passivate

defined 270

WebMap class
ArcObjects, accessing 151
example 96
map control 150, 174, 277
non-pooled object 150
overview map control 194
pooled object 150
releasing COM object 97
server context 164
session state 111

WebMap object 696
WebNorthArrow class 304
WebObject class

described 95
releasing COM object 95, 375

WebOverview class 295
WebPageLayout class

page layout control 184, 289
releasing COM object 97
server context 164

WebPageLayout object 696
WebScaleBar class 307
WebSession class 266, 267
WebToc class

table of contents control 199, 299
Windows Template Library. See WTL
Workspace coclass 592
World Wide Web Consortium

defined 746
WSDL. See also Web Service Description Language

defined 746
WTL 617

X

XML. See also Extensible Markup Language
defined 746

XML Metadata Interchange
defined 746

XSL. See also Extensible Stylesheet Language
defined 746

XSLT
defined 746

Index.pmd 1/25/2005, 6:20 PM762

	ArcGIS Server Administrator and Developer Guide
	Contents
	1 Introducing ArcGIS Server
	ArcGIS 9 developer overview
	ArcGIS Server overview
	ArcGIS Server users
	ArcGIS Server capabilities
	ArcGIS Server developer kits
	Getting started
	Using this book
	ArcGIS developer resources

	2 The ArcGIS Server architecture
	ArcGIS software architecture
	The ArcGIS Server architecture
	The ArcGIS Server system
	Server objects
	ArcGIS Server security, impersonation, and identity

	3 Administering an ArcGIS Server
	Getting started
	Setting up and connecting to a GIS server
	Adding and removing server objects
	Managing server objects
	Managing the server

	4 Developing ArcGIS Server applications
	Programming ArcGIS Server applications
	ArcGIS Server APIs
	Connecting to the GIS server
	Programming with server objects
	Managing application session state
	Working with server contexts
	Web controls and the server API
	Programming Web services
	ArcGIS Server application performance tuning
	Putting it all together: Best practices

	5 Developing Web applications with .NET
	The ArcGIS Server Application Developer Framework
	An overview of templates and Web controls
	Building your first Web applications
	Guidelines for creating your own Web applications
	More about Web controls
	Map control
	Page layout control
	Overview map control
	Toc control
	Toolbar control
	Impersonation control
	North arrow control
	Scale bar control
	GeocodeConnection component

	6 Developing Web applications with Java
	The ArcGIS Server Application Developer Framework
	An overview of the templates and Web controls
	Building your first Web applications
	Guidelines for creating your own Web applications
	More about Web controls
	Context control
	Map control
	Page layout control
	Overview control
	Toc control
	North arrow control
	Scale bar control
	Geocode control
	Identify results control

	7 Developer scenarios
	Extending a Web application template (.NET)
	Extending a Web application template (Java)
	Developing an application Web service (.NET)
	Developing an application Web service (Java)
	Developing an ArcGIS Server Web Service client (.NET)
	Developing an ArcGIS Server Web service client (Java)
	Extending ArcGIS Server with server-side libraries

	A Server library
	GISServerConnection class
	Server Consumer Objects
	ServerObjectManager class
	ServerContext class
	ServerObject class
	The Info classes

	Server Administration Objects
	ServerObjectAdmin class
	ServerObjectConfiguration class
	ServerMachine class
	ServerObjectType class
	ServerDirectory class

	B Configuration and log files
	ArcGIS Server log files
	ArcGIS Server configuration files

	C Developing applications with EJBs
	Enterprise JavaBeans and ArcGIS Server
	EJBs and ArcGIS Server--A developer scenario

	D Developer environments
	The Microsoft Component Object Model
	Developing with ArcObjects
	The Visual Basic 6 environment
	The Visual Basic 6 development environment
	Visual C++

	.NET application programming interface
	Java application programming interface

	E Reading the object model diagrams
	Object model key
	Classes and relationships
	Interfaces and members
	Putting it together--An example

	F Converting data in a personal geodatabase for use with the GIS Server on UNIX
	Converting data for use with the GIS Server on UNIX

	Glossary
	Index

