ArcGIS®° Engine Developer Guide

ArcGIS° 9.0

PUBLISHED BY
ESRI
380 NewYork Street
Redlands, California 92373-8100

Copyright © 2004 ESRI
All Rights Reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of
ESRI.This work is protected under United States copyright law and the
copyright laws of the given countries of origin and applicable intemational
laws, treaties, and/or conventions. No part of this work may be
reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying or recording, or by any information
storage or retrieval system, except as expressly permitted in writing by
ESRI. All requests should be sent to Attention: Contracts Manager, ESRI,
380 New York Street, Redlands, California 92373-8100, USA.

The information contained in this document is subject to change without
notice.

ContributingWriters
Euan Cameron, Chris Davies, Rob Elkins, Kylie Evans, Anne Frankland,
Shelly Gill, Sean Jones,Allan Laframboise, Glenn Meister; Dan O'Neill,
Rohit Singh, Steve Van Esch, Zhigian Yu

U.S. Government Restricted/Limited Rights

Any software, documentation, and/or data delivered hereunder is
subject to the terms of the License Agreement. In no event shall
the U.S. Government acquire greater than RESTRICTED/LIMITED
RIGHTS. At a minimum, use, duplication, or disclosure by the
U.S. Government is subject to restrictions as set forth in FAR
§52.227-14 Alternates |, Il, and Il JUN 1987); FAR §52.227-19
(JUN 1987) and/or FAR §12.211/12212 (Commercial Technical
Data/Computer Software); and DFARS §252.227-7015
(NOV 1995) (Technical Data) and/or DFARS §227.7202
(Computer Software), as applicable. Contractor/Manufacturer is ESRI,
380 New York Street, Redlands, California 92373-8100, USA.

ESRI, ArcView, ArclMS, SDE, the ESRI globe logo, ArcObjects, ArcGlIS,
ArcMap, ArcCatalog, ArcScene, Arcinfo, ArcEditor,ArcGlobe,
StreetMap,ArcReader, ArcToolbox, 3D Analyst, ArcSDE, GIS by ESR,
the ArcGIS logo, and www.esri.com, and @esri.com are trademarks,
registered trademarks, or service marks of ESRI in the United States,
the European Community, or certain other jurisdictions.

Other companies and products mentioned herein are trademarks or
registered trademarks of their respective trademark owners.

Contents

CHAPTER I: INTRODUCING ArRcGIS ENGINE |

ArcGIS 9 overview 2

Overview of ArcGIS Engine 6

Who can use ArcGIS Engine? 10

ArcGIS Engine capabilities 12

Getting started 16

Using this book 18

Developer resources 19
CHAPTER 2: ARcGIS SOFTWARE ARCHITECTURE 21

ArcGIS software architecture 22

ArcGIS application programming interfaces 27

ArcGIS Engine libraries 30
CHAPTER 3: DEVELOPING WITH ARcGIS CONTROLScccovieiiiiecnennen 39

What are the ArcGIS Controls? 40

Working with the ArcGIS Controls 41

MapControl and PagelayoutControl 44

GlobeControl and SceneControl 45

ReaderControl 46

TOCControl and ToolbarControl 47

Building applications with the ToolbarControl 48

Building applications without the ToolbarControl 53
CHAPTER 4: DEVELOPER ENVIRONMENTS 55

The Microsoft Component Object Model 56

Developing with ArcObjects 68

The Visual Basic environment 77

The Visual Basic development environment 90

Visual C++ 97

.NET application programming interface 139

Java application programming interface 175

C++ application programming interface 189
CHAPTER 5: LICENSING AND DEPLOYMENT 213

ArcGIS license options 214

Standalone executable license initialization 215

Deploying ArcGIS Engine Runtime 225

Authorizing your ArcGIS Engine application 236

CHAPTER 6: DEVELOPER SCENARIOS

Building applications with ActiveX

Building applications with visual JavaBeans

Building applications with Windows Controls
Building a command line Java application

Building a command line C++ application

APPENDIX A: READING THE OBJECT MODEL DIAGRAMS

Interpreting the object model diagrams

APPENDIX B: ARcGIS DEVELOPER RESOURCES

240
262
288

331

ArcGIS Software Developer Kit

ArcGIS Developer Online Website

GLOSSARY

350
353

iv * ArcGIS Engine Developer Guide

239

349

355

Introducing
ArcGIS Engine

ESRI® ArcGIS® Engine is a platform for building custom stand-alone geographic
information systems (GIS) applications which support multiple application
programming interfaces (APIs), include advanced GIS functionality, and are built

using industry standards.

This chapter will introduce you, the developer, to the ArcGIS Engine developer kit
and the ArcGIS Engine Runtime, discussing how to use it and its different

components.

Topics covered in this chapter include:
* an overview of ArcGIS 9 ¢ introduction to ArcGIS Engine * ArcGIS Engine

users * capabilities of ArcGIS Engine ¢ a description of this book

ARcGIS 9 OVERVIEW

Developers wishing to customize ArcGIS Desktop
applications or work with ArcGIS Server should
refer to the ArcGIS Desktop Developer
Guide and the ArcGIS Server Administrator
and Developer Guide.

ArcGIS
Clients

ArcGIS provides a scalable framework for implementing GIS for a single user or
for many users on desktops and servers. This book focuses on building and de-
ploying custom applications using ArcGIS Engine. It will be of greatest use to
developers who want to embed mapping and GIS functionality in custom appli-
cations. It provides an overview of ArcGIS Engine, its components, and the
possibilities ArcGIS Engine offers developers who wish to build and deploy
custom GIS applications and solutions. In addition, several scenarios are used to
illustrate, with code examples, the various types of applications that can be
developed with ArcGIS Engine.

AN OVERVIEW OF ArcGIS 9

ArcGIS 9 is an integrated family of GIS software products for building a com-
plete GIS. It is based on a common library of shared GIS software components
called ArcObjects. ArcGIS 9 consists of four key parts:

e ArcGIS Desktop—an integrated suite of advanced GIS applications.

* ArcGIS Engine—embeddable GIS component libraries for building custom
applications using multiple application programming interfaces.

e ArcGIS Server—a platform for building server-side GIS applications in enter-
prise and Web computing frameworks. Used for building both Web services
and Web applications.

e ArcIMS—GIS Web server to publish maps, data, and metadata through open
Internet protocols.

\

Browser

Components o] ' A‘rcfoibje‘cts i K) y i
ArcIMS ArcGIS Server
Application
e ArcSDE
Data

2 « ArcGIS Engine Developer Guide

ARcGIS 9 OVERVIEW

Each of the GIS frameworks also includes the ArcSDE® gateway, an interface for
managing geodatabases in numerous relational database management systems
(RDBMS).

ArcGIS is a platform for building geographic information systems. ArcGIS 9
extends the system with major new capabilities in the areas of geoprocessing, 3D
visualization, and developer tools. Two new products, ArcGIS Engine and
ArcGIS Server, are introduced at this release, making ArcGIS a complete system
for application and server development.

There is a wide range of possibilities when developing with ArcGIS. Developers
can:

» Configure/Customize ArcGIS applications such as ArcMap™ and
ArcCatalog™.

* Extend the ArcGIS architecture and data model.

* Embed maps and GIS functionality in other applications with ArcGIS Engine.
* Build and deploy custom desktop applications with ArcGIS Engine.

e Build Web services and applications with ArcGIS Server.

The ArcGIS system is built and extended using software components called
ArcObjects™. ArcObjects includes a wide vatiety of programmable components
ranging from fine-grained objects, such as individual geometry objects, to coarse-
grained objects, such as a map
object that can be used to interact
with existing ArcMap documents.
These components aggregate com-
prehensive GIS functionality for
developers.

ArcGIS 9 has a common developer
i experience across all ArcGIS prod-
ucts (Engine, Server, and Desktop).
You, as a developer, can work with
ArcObjects using standard pro-
gramming frameworks to extend
ArcGIS Desktop, build custom
applications with ArcGIS Engine,
and to implement enterprise GIS
applications using ArcGIS Server.

] As noted previously, this book

ArCO bJ ects focuses on building and deploying
custom applications using ArcGIS
Engine. If you wish to customize
ArcGIS Desktop applications or
work with ArcGIS Server, refer to
the AnGIS Desktgp Developer Guide
and the AreGIS Server Administrator
and Developer Guide.

Chapter | * Introducing ArcGIS Engine * 3

ARcCGIS 9 OVERVIEW

ArcGIS
Clients

The ArcGIS system is available in a number of programming frameworks includ-
ing: C++, COM, .NET, and Java™.

Each of the ArcGIS product atrchitectures built with ArcObjects represents
alternative application development containers for GIS software developers,
including desktops, embeddable engines, and servers.

ArcGIS Mobile GIS
Engine Applications

Components

Data

4 + ArcGIS Engine Developer Guide

Numerous
File-based
data types

R RN O BEE
- FQrcEr‘ine L | . Kt&ls“é’/er.
" D \{P*Jpgr Kit % . -ie_vdpper‘it*.
PR T TP
AT ka "e ‘ L -)

ArcGIS Desktop includes a series of Windows® desktop application frameworks
(for example, applications for map, catalog, toolbox, and globes) with user inter-
face components. ArcGIS Desktop is available at three functional levels (Arc-
View®, ArcEditor™, and ArcInfo™) and can be customized and extended using
the ArcGIS Desktop developer kit.

The software developer kit (SDK) for ArcGIS Desktop is included with Arc-
View, ArcEditor, and ArcInfo and supports the COM and NET programming
frameworks. Many developers apply the Desktop SDK to add extended func-
tions, new GIS tools, custom user interfaces, and full extensions for improving
professional GIS productivity of the ArcGIS Desktop applications.

ArcGIS Server defines and implements a set of standard GIS Web services (for
example, mapping, data access, data access, geocoding, and so on) as well as
supporting enterprise-level application development based on ArcObjects for the
server.

ARcGIS 9 OVERVIEW

The ArcGIS Server developer kit enables developers to build central GIS servers
to host GIS functions that are accessed by many users, perform back office pro-
cessing on large central GIS databases, build and deliver GIS Web applications,
and to perform distributed GIS computing;

ArcGIS Engine, the focus of this guide, is a simple, application-neutral program-
ming environment for ArcObjects. Its SDK provides a series of embeddable
ArcGIS components that are used outside of the ArcGIS Desktop application
framework (for example, mapping objects are managed as a part of ArcGIS
Engine, rather than in ArcMap). Using the ArcGIS Engine developer kit, devel-
opers can build focused GIS solutions with simple interfaces to access any set of
ArcGlIS Engine and its developer kit will be . . . L .
discussed in more detail later in this chapter and GIS functions or embed GIS logic in existing user applications in order to deploy
throughout this book. GIS to broad groups of users.

Chapter | * Introducing ArcGIS Engine * 5

OVERVIEW OF ARCGIS ENGINE

ArcGIS Engine is a complete library of embeddable GIS components for
developers to build custom applications. Using ArcGIS Engine, you can
embed GIS functions into
existing applications, including
Microsoft® Office products
ArcGIS Engine developer kit and Runtime used like Word and Excel. and build
to build and deploy a custom solution to many S
focused custom applications
that deliver advanced GIS
e] systems to many users. ArcGIS
- Engine consists of a software

2 development kit and a re-
distributable runtime provid-
----- i ing the platform for all ArcGIS
applications.

The five parts of ArcGIS Engine
are outlined below:

1. Base Services—The core GIS
ArcObjects required for

(\ almost any GIS application
Runtime such as feature geometry and
Options display.

>/_\< 2. Data Access—ArcGIS Engine provides access to a wide variety of raster and

Developer vector formats including the power and flexibility of the geodatabase.
Components 3. Map Presentation—ArcObjects for map creation and display with symbology,

labeling, and thematic mapping capabilities including custom applications.

?

. Developer Components—High-level user interface controls for rapid applica-
Map tion development and a comprehensive help system for effective development.

Presentation 5. Runtime Options—ArcGIS Engine Runtime is deployable with the standard

functionality or with additional options for advanced functionality.

)

Data Each of these parts, except runtime options, is made available through the
ArcGIS Engine SDK The ArcGIS Engine Runtime and its Options, although
integral factors in the development of a custom GIS application, specifically
involve application deployment, and so are considered separately.

Access

)

Base ArcGIS ENGINE SOFTWARE DEVELOPER KIT
Services The ArcGIS Engine developer kit is a component-based software development
\) product for building and deploying custom GIS and mapping applications. The

Components of ArcGIS Engine ArcGIS Engine developer kit is not an end user product, but rather a toolkit for
application developers. It can be used to build basic map viewers or comprehen-
sive and dynamic GIS editing tools. With the ArcGIS Engine developer kit, you,
as a developer, have an unprecedented flexibility for creating customized inter-
faces for maps. You can use one of several APIs to create unique applications or
combine ArcGIS Engine components with other software components to realize
a synergistic relationship between maps and the information that users manage.

6 * ArcGIS Engine Developer Guide

OVERVIEW OF ARcGIS ENGINE

Chapter 3, ‘Developing with ArcGIS Controls’,
discusses each of these visual components in

Il Park Yiewer

= /& a
kA 4 O o MO G

detail.

@ e

Using ArcGIS Engine, the map itself can be either an incidental element within
or the central component of an application. If, for example, the focus of your
application is a database with information about businesses, ArcGIS Engine can
enable the application to display a form with a map highlighting the business
location of interest when your user performs a query on the database.

The ArcGIS Engine developer kit provides access to a large collection of GIS
components, or ArcObjects, that fall into the categories discussed earlier—base
services, data access, and map presentation. The fourth part of ArcGIS Engine
that was discussed, developer components, is also included in the SDK. These are
value-added developer controls for creating a high-quality map user interface. The
following ArcGIS Controls, or visual components, are provided to assist with
application development:

* MapControl
PagelLayoutControl

* SceneControl

* GlobeControl

* ToolbarControl

* TOCControl

* ReaderControl

¢ Collection of commands, tools, and menus for use with the ToolbarControl

=]
=l £ Layers
Urban Forest:
Bl W Traffic Lights

&

El ¥ Street Lights

=

B ¥ roads
]

B ¥ Schools
[}

B ¥ Parks

=)
=] Buildings

=
B I Parcels
[}
Land Use
[zoning

City Park Search

Name Mayl
ParkID |'®

New Map | Save Map | Find |

AnArcGlIS Engine Controls-based application

Chapter | * Introducing ArcGIS Engine * 7

OVERVIEW OF ARcGIS ENGINE

ArcGIS ENGINE RUNTIME

The final component of ArcGIS Engine is its runtime options. All applications
built with the ArcGIS Engine SDK require the ArcGIS Engine Runtime, with
appropriate level of license, in order to execute successfully. The ArcGIS Engine
Runtime is the platform on which ArcGIS Desktop is built; this allows users of
ArcGIS Desktop applications to execute custom Engine-based applications, if
permitted by the ArcGIS Engine application developer. There are multiple
ArcGIS Engine Runtime Options ranging from standard to enterprise options.

Standard ArcGIS Engine functionality

Map interaction
Map creation
Map analysis

Developer controls
Developer technologies

ArcGIS Engine Standard Functionality

Data creation (shapefile and personal geodatabase)

The standard Engine Runtime provides the core function-
ality of all ArcGIS applications. This level of ArcGIS
Engine Runtime provides the ability to work with several
different raster and vector formats. Map presentation and
creation along with the ability to explore features by
performing a wide range of spatial or attribute searches.

Data creation
Data management

Geodatabase Update Runtime Option

This level also makes available basic data creation, editing
of shapefiles and simple personal geodatabases, and GIS
analysis.

Spatial
3D
StreetMap USA

ArcGIS Engine Runtime deployment options

The availability of the different levels of function-
ality is controlled by a software authorization file
that can be configured by the end user or the
developer of the application. For more details on
deploying and configuring the ArcGIS Engine
Runtime, refer to Chapter 5, Licensing and
deployment’.

8 ¢ ArcGlIS Engine Developer Guide

Other ArcGIS Engine Runtime Options

Geodatabase Update Option

The Geodatabase Update Option for the ArcGIS Engine

Runtime adds the ability to create and update a multiuser

enterprise geodatabase. This includes the ability to work

with schemas and versioned geodatabases. The Geodata-
base Update Option unlocks the ArcGIS Engine Runtime with the necessary
ArcObjects to run custom solutions. These solutions include applications that
deal with GIS data automation and compilation and the construction and mainte-
nance of geodatabase features. The Geodatabase Update Option provides the
ability to programmatically create geodatabase behaviors such as topologies,
subtypes, and geometric networks.

ArcGIS Engine developers with access to an RDBMS via ArcSDE are able to
build and deploy multiuser editing applications to endusers that have the ArcGIS
Engine Runtime with the Geodatabase Update Option installed and configured.

Other ArcGIS Engine options

Three additional runtime options are available for the ArcGIS Engine Runtime:

1. Spatial Option—The ArcGIS Engine Spatial Option provides a powerful set
of functions that allow applications to create, query, and analyze cell-based
raster data. This type of analysis allows your user to derive information about
their data, identify spatial relationships, find suitable locations, and calculate
the accumulated cost of traveling from one point to another. Other advanced
applications that this runtime option supports include the calculation of slope,
aspect, and contours against digital elevation models.

2. 3D Option—The 3D Option for ArcGIS Engine Runtime enables the visual-
ization of data in 3D. This option supplements standard ArcGIS Engine with
the components for viewing a surface from multiple viewpoints and determin-

OVERVIEW OF ARCGIS ENGINE

ing what is visible from a chosen location. The SceneControl and
GlobeControl provide the interface for viewing multiple layers of 3D and
global data for visualizing data, creating surfaces, and analyzing surfaces.

3. StrectMap™ USA Option—The StreetMap Runtime Option provides street-
level mapping, address matching, and basic routing for the United States.
StreetMap layers automatically manage, label, and draw features such as local
landmarks, streets, parks, water bodies, and other features resulting in rich
cartographic street network for the US. All data is provided in a compressed
format on CD—ROM.

Chapter | * Introducing ArcGIS Engine * 9

WHo cAN USE ARcGIS ENGINE?

An application built in Java using the
GlobeControl

10 * ArcGIS Engine Developer Guide

Many users require focused, lightweight access to GIS. They need much less than
a complete GIS application such as ArcView, yet require access to sophisticated
GIS logic in their applications. In cases where users need focused, customized
access to GIS, ArcGIS Engine provides a lower-cost, lightweight option.

STAND-ALONE APPLICATION DEVELOPERS

There are many potential users of GIS-enhanced applications who are not GIS
professionals and are just not equipped to take advantage of the comprehensive
tools available on the market without a steep learning curve. In order to provide
spatial solutions to non-GIS users, developers need the ability to build domain
specific, easy-to-use applications that can incorporate the power of a comprehen-
sive GIS system into a user-friendly experience. These applications, if built from
scratch, can be an overwhelming development effort and may not be time or cost
effective.

You can use the ArcGIS Engine developer kit to successfully build stand-alone
applications. There is a wide variety of types of applications that can be built,
ranging from graphical user interface (GUI) applications to command line, batch
driven applications. GUI applications will make use of the extensive ArcGIS
Controls exposed in the developer kit. These controls include everything you need
to build a sophisticated front end application. You can leverage your chosen API
to integrate the ArcGIS Controls with other third-party components and create a
unique user interface for your custom ArcGIS Engine application.

S E ~ ¥ B~ QSR %D E[N

ArcGIS DESKTOP USERS

ArcMap, one of the ArcGIS Desktop applications, is an excellent way to create
data and author maps for use in custom applications. The MapControl and
PagelLayoutControl provided with ArcGIS Engine can work with the map docu-
ments created in ArcMap. The SceneControl and GlobeControl can display docu-

WHo cAN USE ARcGIS ENGINE?

ments authored in the ArcScene™ and ArcGlobe™ applications. Using the ArcGIS
Desktop applications to create and manage maps used in custom applications can
save you a lot of development and effort. ArcGIS Desktop also provides tools to
build and manage geodatabases, shapefiles, and other forms of spatial data.

The underlying components of ArcGIS Desktop are the same ArcObjects compo-
nents that make up ArcGIS Engine. This allows every ArcGIS Desktop user the
ability to run ArcGIS Engine applications. You can develop and deploy Engine-
based applications to ArcGIS Desktop users or extend ArcToolbox™ with a
custom toolset built with the ArcGIS Engine developer kit.

ARCGIS SERVER USERS

ArcGIS Server administrators can provide server objects and Web services to
ArcGIS Engine applications. This allows the integration of desktop functionality
with server functionality.

ArcObjects

AR foos
rOXIe

ArcGIS Desktop |)
.NETl.Java ADF

ArcObjects .

m Server applications

Objects (Multi-user)

I’OXIe
ArcGIS Engme

Desktop.applications e ji

(single user)

A

ArcObjects ArcObjects ArcObjects

GIS Servef ‘

Chapter | * Introducing ArcGIS Engine « | |

ARcGIS ENGINE CAPABILITIES

The capabilities of ArcGIS Engine are extensive. As an ArcGIS Engine devel-
opet, you can implement these and many other functions using its developer kit:

The items listed at right, if deployed, are
included in the standard ArcGIS Engine Runtime
functionality and would not require any of the
additional Runtime Options.

A software authorization file controls the
availability of the various levels of ArcGIS Engine
Runtime functionality. For more details on
deploying and configuring the ArcGIS Engine
Runtime, refer to Chapter 5, Licensing and
deployment’.

12 « ArcGIS Engine Developer Guide

Display a map with multiple map layers such as road, streams, and boundaries.
Pan and zoom throughout a map.

Identify features on a map.

Search for and find features on a map.

Display labels with text from field values.

Draw images from aerial photography or satellite imagery.

Draw graphic features such as points, lines, circles, and polygons.

Draw descriptive text.

Select features along lines and inside boxes, areas, polygons, and circles.
Select features within a specified distance of other features.

Find and select features with a Structured Query Language (SQL) expression.

Render features with thematic methods such as value map, class breaks, and
dot density.

Dynamically display real time or time series data.
Find locations on a map by geocoding addresses or street intersections.
Transform the coordinate system of your map data.

Perform geometric operations on shapes to create buffers; calculate differ-
ences; and find intersections, union, or inverse intersections of shapes.

Manipulate the shape or rotation of a map.

Create and update geographic features and their attributes.

EDITING FEATURES

ArcGIS Engine developer kit enables you to build applications that create,
modify, and remove vector-shaped features in a geodatabase or shapefile. The
standard ArcGIS Engine Runtime is used to run applications that edit shapefiles
or the simple features of a personal geodatabase. However, to leverage the full
function of the enterprise geodatabase, the Geodatabase Update Option of the
ArcGIS Engine Runtime is required.

ARcGIS ENGINE CAPABILITIES

An application, developed using the MapControl,
that utilizes the Spatial Option for the ArcGIS
Engine Runtime

SPATIAL MODELING AND ANALYSIS

You can extend the capabilities of ArcGIS Engine by adding the Spatial Option
to the ArcGIS Engine Runtime. This option provides a broad range of powerful
spatial modeling and analysis functions. You can create, query, map, and analyze
cell-based raster data; perfom integrated raster/vector analysis; derive new infot-
mation from existing data; query information across multiple data layers; and fully
integrate cell-based raster data with vector data in a custom ArcGIS Engine
application.

Il MapControl - Spatial Analyst

For example, you can:

* Convert features (points, lines, or polygons) to rasater

* Create raster buffers based on distance or proximity from freatures or rasters.
* Generate density maps from points features.

e Derive contours, slope, view shed, aspect, and hillshades

e Perform gird classification and display

* Use data from standard formats including TIFE, BIL, IMG, USGS DEM,
SDTS, DTED, and many others.

Chapter | * Introducing ArcGIS Engine « |3

ARcGIS ENGINE CAPABILITIES

3D VISUALIZATION AND MORE

The ArcGIS Engine Runtime 3D Option extends the capabilities of ArcGIS
Engine even further by enabling you to build applications that effectively visual-
Java code for the inset GlobeControk-based ize and analyze surface and globe data using the Scene and Globe controls. You
application can create applications that view a surface from multiple viewpoints, query a
surface, determine what is visible from a chosen location
on a surface, and display a realistic perspective image by

LBl

o
|® #][voe-2-][BE 8

B === - = | [ERERR [totorioeT foarei | draping raster and vector data over a surface.
e e —
o (I e i ’ You can, for example:
£ et ramenen P (G iobeconceol Engine dave®)
= £ mapeontral globeControl = new GlobeControl{):
7 8 S e Soccontzo - nev Toccontzal () * Display Scene and Globe documens
= maptoctoobar 4
i el punlic static void main(seringl) args) (.
S TG steoe - nev Gl e Perform interactive perspective viewing, including pan
e Cromseere 3 5 and zoom, rotate, tilt, and fly-through simulations, for
;

presentation and analysis.

a orerHerard = nitializ| 1 M M
,7% Sl * Display real-world surface features such as buildings
— e - OF x } catch (Except

ot decrators System.exit

5 frame : javax.swing Frame .
5 gobeControl : GlobeControl

Perform viewshed and line-of-sight analysis, spot
height interpolation, profiling, and steepest path
determination.

toalbarContrl: ToolbarCartrol
tocContrl : TOCCotrol

¢ Gt

© & man(strinal))

© % dolicenseManagement() i

o dsplerl)

public void aispl|

¥ Tesks (0Rems)
[4] [Desarption

Display of a
SceneControl-
based application

14 * ArcGIS Engine Developer Guide

ARcGIS ENGINE CAPABILITIES

STREET-LEVEL DATA

StreetMap USA provides detailed street data for the entire United States. You
can include and use this data in your ArcGIS Engine application through the use
of the StreetMap USA Runtime Option. With this option, you can use
StreetMap data sources just like any other feature class dataset. The StreetMap
USA Option extends the underlying geodatabase object model within ArcObjects
so that your applications can seamlessly use StreetMap data sources as geodata-
base objects.

This option provides:
* Nationwide address matching
e Street and landmark database

e StreetMap group layer that displays different levels of details at different
scales

* Basic street level routing

=l0lx|
(@@ @ vapview ~

m[zoom N} @) Selection -
BEBEE " RPE Trucking Inc.
mwan e ||| BSE AR

Print
£F Overview
=1 £F StreetMap USA Data i
= M streetMap LSA |
Basemap Layers
Cities (Points)
[Landmarks (Paints) £
streets and Highw % e P [u 5}
Ralraads =i —
Mapiliew
Airports R Q@ e
water = .
Selection +
Landmarks (Areas) €& seetln
City (Areas) 5
129% ¥
State - County OUY — @@ =
Background Street

City [Peew Drieans

e
Zip
Shaw Nest
- —_ Stop
Print

£F Overview

[= £F StreetMap USA Data

El etfap USA
emap Layars
Cities (Paints)
Landmarks (Pairks)
Streets and Highw
Rairoads
Airports
Water
Landmarks (Areas)
ity (Areas)
State - County Gut

b
EIRS

Background
Gity [ow Orlears EREREREY Y ER
SO —— 4 5 65 7 8 9 10
“ip 112 13 14 18 6 17

1813 20 21 2 23 24
® % ¥ BB/ W
4 B 2 3 4 5 6 7 8

Chapter | * Introducing ArcGIS Engine * |5

GETTING STARTED

Some examples of ArcGIS Engine applications
are provided in Chapter 6, Developer scenarios’.
Additional samples are included with the ArcGIS

Developer Help system.

o F g

Visual Studio NET

16 » ArcGIS Engine Developer Guide

Once you have the ArcGIS Engine developer kit installed, you are ready to start
developing ArcGIS Engine applications. However, good applications require
careful planning; working with ArcObjects is no exception. Before beginning your
development, feel free to read through and use, as necessary, the dicussions and
checklists in this section. They are provided in order to help you formulate your
plans and ensure you're getting started on the right foot.

DETERMINE THE TYPE OF APPLICATION

A wide variety of applications can be developed with ArcGIS Engine. These
applications vary from simple consoles that perform operations such as database
editing and analyses, to more complex Windows applications that contain con-
trols and visual components for user interaction and geographic data display. In
general there are three types of ArcGIS Engine applications:

1. Stand-alone, non-visual applications, such as console and utility applications

2. Stand-alone, visual applications, such as Windows and control-based applica-
tions
3. Embedded applications, such as components that are inserted into existing

applications

Ultimately, the type of application you develop will depend on the functional
requirements of the project at hand.

Checklist:

O What type of application are you developing? Non-visual, visual, or
embedded?

o you plan to migrate the functionality to Arc esktop or

O Do you pl igrate the functionality to ArcGIS Desktop
ArcGIS Server products?

O What platform do you want to support now and into the future?
Windows? UNIX"*? Both?

CHOOSE AN API AND DEVELOPMENT ENVIRONMENT

Since ArcGIS Engine provides four developer APIs—COM, .NET, Java, and
C++—you can use any development environment that supports these APIs for
application development. For non-visual applications, common language choices
include C++ and Java. For visual applications, many languages are available with
Windows capabilities such as Visual Basic® (VB) 6, C#NET, Java, and Visual
C++® (VC++). Below are some possible APIs, development environments, and
languages for ArcGIS Engine.

® COM—Visual Studio® 6.0 (VB6, VC++)
* NET—Visual Studio .NET (VB.Net, C#)

® Java—Eclipse, Websphere Studio, Intelli], JBuilder™, and so on.

® (C++—Visual Studio 6.0, C++ Builder

The environment you choose to develop with will ultimately depend on your
programming skills, the functionality you wish to provide end users, and whether

GETTING STARTED

Throughout most of this book, VB 6 is used as
the language to illustrate most coding concepts
and is often the easiest language to learn when
getting started. See Chapter 4, ‘Developer
environments’, for programming guidelines for
VB and some of the other environments
supported by the ArcGIS Engine APIs.

Each functional group of ArcObjects, or library,
used must be referenced in your development
environment for your application to compile and
run successfully. The various libraries available in
ArcGlIS Engine are discussed in detail in Chapter
2,’ArcGlS software architecture’.

ArcGIS Developer Online can be accessed from
http://arcgisdeveloperonline.esri.com.

Chapter 5, Licensing and deployment’, discusses
the various aspects of this checklist.

or not you are integrating with other existing applications or technologies.

Checklist:

O What development environment and language are you the most familiar
with?

O Which ArcGIS Engine API do you plan to use?

O Which development environment and language is best suited for the

type of the development you wish to undertake?

DEVELOP YOUR APPLICATION

At this point, assuming that a proper project development plan is in place, you are
ready to dive into the ArcGIS Engine SDK and start developing your application.
You may want to start by identifying the libraries and objects that will be neces-
sary to provided the functionality for the application. Use the developer help
resources to assist you in this process, including the ArcGIS Developer Help
system, the Developer Guide series, samples included in the help system, and the
ArcGIS Developer Online site.

Checklist:

Identify the ArcObjects functionality required.

What ArcGIS Engine library references will be required?
What ArcGIS license will be required to run the application?
Are ArcGIS Engine Runtime Options required?

How do you plan to deploy the application?

OO00O00a0

Have you implemented the correct license check-out coder

DEPLOY YOUR APPLICATION

Application deployment is an issue that should be considered long before applica-
tion development begins. ArcGIS Engine applications can be deployed in a num-
ber of ways and it is possible to have a number of end-user software and license
configurations. Therefore, there are a number of issues that you need to consider.

Checklist:

O Will they have ArcGIS Desktop installed or the ArcGIS Engine
Runtime or both? Which license will your application check-out?

What ArcGIS license will your end-users have on their systems?
Arclnfo, ArcEditor or ArcView?

How should you package and deploy the application?

Will I need to provide new versions in the future?

OooO0ooOo 0O

How will I distribute the application?

Chapter | * Introducing ArcGIS Engine |7

USING THIS BOOK

18 » ArcGIS Engine Developer Guide

This book, ArGIS Engine Developer Guide, is an introduction for developers who
want to build stand-alone GIS applications. This guide will help you, as the
developer, become familiar with the ArcGIS Engine object model by introducing
all of the ArcGIS Engine developer kit components, discussing relevant aspects
of building applications, introducing supported APIs, and providing developer
scenarios which produce real-world GIS applications.

To serve the widest base of developers, most of the code samples provided
within this book use the COM Visual Basic 6 API. However, the developer
scenarios cover the full range of supported APIs and a chapter is devoted to API-
specifc usages.

The first two chapters of this book provide an overview of ArcGIS Engine and
its capabilities, including architecture and components. The remaining chapters
focus on developing applications usages of each particular supported APL.

CHAPTER GUIDE

Chapter 1, ‘Introducing ArcGIS Engine’, gives developers an overview of the
ArcGIS Engine product, it's capabilities, and developer resources.

Chapter 2, ‘ArcGIS software architecture’, describes ArcGIS Engine architecture
and how the software components interact inside the system.

‘Developing with ArcGIS Controls’ is detailed in Chapter 3. It describes each of
the controls and provides some considerations for their use in application devel-
opment.

Chapter 4, ‘Developer environments’, introduces you to the multiple APIs sup-
ported by ArcGIS Engine. This chapter steps through each API from the basics to
advanced usage topics.

‘Licensing and deployment’, issues are addressed in Chapter 5. It details the
licensing options, discusses deployment strategies for your application, including
initialization and license checking.

Chapter 6, ‘Developer scenarios’, guides you through the creation and deployment
of several types of stand-alone applications utilixing each of the supported APIs

This book also contains a number of appendicies that provide detailed informa-
tion about the object model diagrams available in the ArcGIS Developer Help
system and additional developer resources.

DEVELOPER RESOURCES

The following topics describe some of the additional resources available to
ArcGIS developers. More in-depth coverage on the resources available to devel-
opers is covered in Appendix B.

ArcGIS DEVELOPER HELP SYSTEM

The ArcGIS Developer Help system is an essential resource for both the begin-
ning and experienced ArcObjects developers. It contains information on develop-
ing with ArcObjects including sample code, technical documents, and object
model diagrams. In addition, it also serves as a reference guide containing infor-
mation on every object within ArcObjects. The help system is available to Visual
Basic, NET, Java, and C++ developers. You can start the ArcGIS Developer
Help system through the ArcGIS program group from the Windows Start button.

The VB6 version of ArcGIS Developer Help is | fagi ArcGIs r _ fili Developer Help _ € NETHelp
installed in a typical installation. Follow the [@ Developer Tools » EQ C++ Help
custom installation procedures to access the =
C++, Java, or NET versions. I Engine Developer kit~ » & JavaHeh
7 License Maniager 3 @ Oriine Help

softwarefuthorization £ vE6 Help

THE ArcGIS DEVELOPER SERIES

This book is one in a series of books for ArcGIS developers.

The ArGIS Desktop Developer Guide is for developers who want to customize or
extend one of the ArcGIS Desktop applications, such as ArcMap or ArcCatalog,
Developers can use Visual Basic for Applications (VBA) to customize and either
Visual Basic, Visual C++, or NET to extend the applications.

The ArcGIS Server Adpministrator and Developer Guide is for developers who want to
use ArcGIS Server to build custom server applications. Server developers can
build Web services and Web applications that do simple mapping or include
advanced GIS functionality. Several scenarios illustrate with code examples some
of the different types of applications that can be developed using one of the
multiple ArcGIS Server developer kits. This book also serves as the administra-
tion guide to ArcGIS Server.

Chapter | * Introducing ArcGIS Engine * |9

DEVELOPER RESOURCES

| welcome to ArcGIs Developer Online

AObjacs induding ampla co0e, tochicaldocuments, and objec:
mogel dagrams.

ss the tabe

Add-ns

Visual aic 6 and VisualStudio NET addins
The E5R] 330415 SUEDMats Some ofthe tasks
peromad ‘angineer when davelepin
Wth AreOb) Brovds tool tha mare
debuggng

a

i

ArcGIS Developer Online at http://
arcgisdeveloperonline.esri.com

The ESRI Support Center at http://
support.esri.com

[@, 2

The ESRIVirtual Campus at

http://campus.esri.com

20 * ArcGlIS Engine Developer Guide

ArcGIS DEVELOPER ONLINE WEB SITE

ArcGIS Developer Online is a Web-based equivalent of the ArcGIS Developer
Help system and is available at the following URL:

http:/ | arcgisdeveloperoniine.esri.com.

The online site has several advantages including being accessible via a Web
browser and a connection to the Internet. The site is continually updated, making
it the most up-to-date reference for developers.

ESRI SUPPORT CENTER

The ESRI Support Center at h#p:/ /support.esri.com contains software information,
technical documents, samples, forums, and a knowledge base for all ArcGIS
products.

ArcGIS developers can take advantage of the forums, knowledge base, and
samples sections to aid in development of their ArcGIS applications.

TRAINING

ESRI offers a number of instructor-led and Web-based training courses for the
ArcGIS developer. These courses range from introductory level for VBA to the
more advanced courses in component development for ArcGIS Desktop, Engine,
and Server.

For more information, visit h#p:/ / wwm.esri.com and select the Training and Events
tab.

The ESRI Virtual Campus can be found directly at A#p:/ / campus.esti.com.

ArcGIS software
architecture

The architecture of ArcGIS has evolved over several releases of the
technology to be a modular, scalable, cross platform architecture

implemented by a set of software components called ArcObjects.

This chapter focuses on the main themes of this evolution at ArcGIS 9, and
introduces the reader to the various libraries that

compose the ArcGIS system.

ARCGIS SOFTWARE ARCHITECTURE

For a detailed explanation of COM see the
COM section of Chapter 4, 'Developer
environments'.

|

Developer
Components

}

Map
Presentation

)

Map
Analysis

)

Data
Access

)

Base
Services

|

ArcGIS Engine

22 + ArcGIS Engine Developer Guide

The ArcGIS Architecture has evolved over several releases of the technology to
be a modular, scalable, cross platform architecture implemented by a set of
software components called ArcObjects.

This section focuses on the main themes of this evolution at ArcGIS 9 and
introduces the reader to the libraries that compose the ArcGIS system.

The ArcGIS software architecture supports a number of products, each with its
unique set of requirements. The components that make up ArcGIS, ArcObjects,
are designed and built to support this. This chapter introduces you to ArcObjects.

ArcObjects is a set of platform-independent software components, written in
C++, that provide services to support GIS applications on the desktop, in the
form of thick and thin clients, and on the setrver.

As stated, the language chosen to develop ArcObjects was C++; in addition to
this language, ArcObjects makes use of the Microsoft Component Object Model
(COM). COM is often thought of as simply specifying how objects are imple-
mented and built in memory and how these objects communicate with one
another. While this is true, COM also provides a solid infrastructure at the oper-
ating system level to support any system built using COM. On Microsoft Win-
dows operating systems, the COM infrastructure is built directly into the operat-
ing system. For operating systems other than Microsoft Windows, this infrastruc-
ture must be provided for the ArcObjects system to function.

Not all ArcObjects components are created equal. The requirements of a particu-
lar object, in addition to its basic functionality, vary depending on the final end
use of the object. This end use broadly falls into one of the three ArcGIS
product families:

e ArcGIS Engine—Use of the object is within a custom application. Objects
within the Engine must support a variety of uses; simple map dialog boxes,
multithreaded servers, and complex Windows desktop applications are all
possible uses of Engine objects. The dependencies of the objects within the
Engine must be well understood. The impact of adding dependencies external
to ArcObjects must be carefully reviewed, since new dependencies may intro-
duce undesirable complexity to the installation of the application built on the
Engine.

* ArcGIS Server—The object is used within the server framework, where
clients of the object are most often remote. The remoteness of the client can
vary from local, possibly on the same machine or network, to distant, where
clients can be on the Internet. Objects running within the server must be
scalable and thread safe to allow execution in a multithreaded environment.

e ArcGIS Desktop—Use of the object is within one of the ArcGIS Desktop
applications. ArcGIS Desktop applications have a rich user experience, with
applications containing many dialog boxes and property pages that allow end
users to work effectively with the functionality of the object. Objects that
contain properties that are to be modified by users of these applications
should have property pages created for these properties. Not all objects
require property pages.

ARcCGIS SsOFTWARE ARCHITECTURE

|

Web
Development
Framework

}

Map
Presentation

)

Map
Analysis

)

Data
Access

)

Base
Services

|

ArcGlS Server

Ext

User
Interface

)

Applications

|

J/

ensions

Map
Presentation

)

Map
Analysis

)

Data
Access

%/

Base Services

Z

S

ArcGlIS Desktop

Many of the ArcObjects that make up ArcGIS are used within all three of the
ArcGIS products. The product diagrams on these pages show that the objects
within the broad categories, Base Services, Data Access, Map Analysis, and Map
Presentation, are contained in all three products. These four categories contain
the majority of the GIS functionality exposed to developers and users in ArcGIS.

This commonality of function between all the products is important for develop-
ers to understand, since it means that when working in a particular category,
much of the development effort can be transferred between the ArcGIS products
with little change to the software. After all, this is exactly how the ArcGIS
architecture is developed. Code reuse is a major benefit of building a modular
architecture, but code reuse does not simply come from creating components in a
modular fashion.

The ArcGIS architecture provides rich functionality to the developer, but it is not
a closed system. The ArcGIS architecture is extendable by developers external to
ESRI. Developers have been extending the architecture for a number of years,
and the ArcGIS 9 architecture is no different; it, too, can be extended. However,
ArcGIS 9 introduces many new possibilities for the use of objects created by
ESRI and you. To realize these possibilities, components must meet additional
requirements to ensure that they will operate successfully within this new and
significantly enhanced ArcGIS system. Externally, some of the changes from
ArcGIS 8 to ArcGIS 9 appear superficial, an example being the breakup of the
type libraries into smaller libraries. That, along with the fact that the objects with
their methods and properties, that were present at 8.3 are still available at 9.0,
masks the fact that internally ArcObjects has undergone some significant work.

The main focus of the changes made to the ArcGIS architecture at 9.0 revolves
around four key concepts:

* Modularity
are well-defined in a flexible system.

A modular system where the dependencies between components

* Scalability:
ments, from single user desktop applications to multiuser/multithreaded
server applications.

ArcObjects must perform well in all intended operating environ-

e Multiple Platform Support—ArcObjects for the Engine and Server should be
capable of running on multiple computing platforms.

e Compatibility:
and programmatically, to ArcObjects 8.3.

ArcObjects 9.0 should remain equivalent, both functionally

MODULARITY

The esriCore object library, shipped as part of ArcGIS 8.3, effectively packaged
all of ArcObjects into one large block of GIS functionality; there was no distinc-
tion between components. The ArcObjects components were divided into smaller
groups of components, these groups being packaged in DLLs. The one large
library, while simplifying the task of development for external developers, pre-
vented the software from being modular. Adding the type information to all the
DLLs, while possible, would have greatly increased the burden on external devel-
opers and hence was not an option. In addition the DLL structure did not always
reflect the best modular breakup of software components based on functionality
and dependency.

Chapter 2 » The ArcGIS software architecture * 23

ARcCGIS SsOFTWARE ARCHITECTURE

ESRI has developed a modular architecture for
ArcGlIS 9 by a process of analyzing features and
functions and matching that with end user
requirements and deployment options based on
the three ArcGIS product families. Developers
who have extended the ArcGlIS 8 architecture
with custom components are encouraged to go
through the same process to restructure their
source code into similar modular structures.

An obvious functionality split to make is user
interface and nonuser interface code. Ul libraries
tend to be included only with the ArcGIS
Desktop products.

For this discussion, thread safety refers to
concurrent object access from multiple threads.

24 « ArcGIS Engine Developer Guide

There is always a trade-off in performance and manageability when considering
architecture modularity. For each criteria, thought is given to the end use and the
modularity required to support that. As an example, the system could be divided
up into many small DLLs with only a few objects in each. While this provides a
flexible system for deployment options, at minimum memory requirements it
would affect performance due to the large number of DLLs being loaded and
unloaded. Conversely, one large DLL containing all objects is not a suitable
solution either. Knowing the requirements of the components allows them to be
effectively packaged into DLLs.

The ArcGIS 9 architecture is divided into a number of libraries. It is possible for
a library to have any number of DLLs and EXEs within it. The requirements that
components must meet to be within a library are well-defined. For instance, a
library such as esriGeometry (from the Base Services set of modules) has the
requirement of being thread safe, scalable, with no user interface components,
and deployable on a number of computing platforms. These requirements are
different from libraries such as esriArcMap (from the Applications category)
which does have user interface components and is a Windows-only library.

All the components in the library will share the same set of requirements placed
on the library. It is not possible to subdivide a library into smaller pieces for
distribution. The library defines the namespace for all components within it and is
seen in a form suitable for your chosen APL.

e Type Library—COM
e NET Interop Assembly—NET
e Java Package—]Java

e Header File—C++

SCALABILITY

The ArcObjects components within ArcGIS Engine and ArcGIS Server must be
scalable. Engine objects are scalable because they can be used in many different
types of applications; some require scalability while others do not. Server objects
are required to be scalable to ensure that the server can handle many users con-
necting to it, and as the configuration of the server grows so does the perfor-
mance of the ArcObjects components running on the server.

The scalability of a system is achieved using a number of variables involving the
hardware and software of the system. In this regard, ArcObjects supports
scalability with the effective use of memory within the objects and the ability to
execute the objects within multithreaded processes.

There are two considerations when multithreaded applications are discussed:
thread safety and scalability. It is important for all objects to be thread safe, but
simply having thread-safe objects does not automatically mean that creating
multithreaded applications is straightforward or indeed that the resulting appli-
cation will provide vastly improved performance.

The ArcObjects components contained in the Base Services, Data Access, Map
Analysis, and Map Presentation categories are all thread safe. This means that
application developers can use them in multithreaded applications; however

ARcCGIS SsOFTWARE ARCHITECTURE

programmers must still write multithreaded code in such a way as to avoid appli-
cation failures due to deadlock situations and so forth.

In addition to the ArcObjects components being thread safe for ArcGIS 9, the
apartment threading model used by ArcObjects was analyzed to ensure that
ArcObjects could be run efficiently in a multithreaded process. A model referred
to as “Threads in Isolation” was used to ensure that the ArcObjects architecture is
used efficiently.

This model works by reducing cross-thread communication to an absolute mini-
mum or better still, removing it entirely. For this to work, the singleton objects at
ArcGIS 9 were changed to be singletons per thread and not singletons per pro-

The classic singleton per process model means cess. The resource overhead of hosting multiple singletons in a process was

that all threads of an application will still access outweighed by the performance gain of stopping cross-thread communication
the main thread hosting the singleton objects. h he sinol b . di hread llv the Main STA d
This effectively reduces the application to a where the singleton object is created in one threa (normally the Main) an
single threaded application. the accessing object is in another thread.

ArcGIS is an extensible system and for the Threads in Isolation model to work,
all singleton objects must adhere to this rule. If you are creating singleton objects
as part of your development, you must ensure that these objects adhere to the
rule.

MULTIPLE PLATFORM SUPPORT

As stated earlier, ArcObjects components are C++ objects, meaning that any
computing platform with a C++ compiler can potentially be a platform for
ArcObjects. In addition to the C++ compiler, the platform must also support
some basic services required by ArcObjects.

While many of the platform differences do not affect the way in which
ArcObjects components are developed, there are areas where differences do
affect the way code is developed. The byte order of different computing architec-
tures varies between little endian and big endian. This is most readily seen when
objects read and write data to disk. Data written using one computing platform
will not be compatible if read using another platform, unless some decoding is
Microsoft Windows is a little endian platform, performed. All of the ArcGIS Engine and ArcGIS Server objects support this

while Sun Solaris fs a big endian platform. multiple platform persistence model. ArcObjects components always persist
themselves using the little endian model; when the objects read persisted data, it
is converted to the appropriate native byte order. In addition to the byte order
differences, there are other areas of functionality that differ between platforms;
the directory structure, for example, uses different separators for Windows and
UNIX—\" and /’, respectively. Another example is the platform specific arcas
of functionality such as OleDB.

COMPATIBILITY

Maintaining compatibility of the ArcGIS system between releases is important to
ensure that external developers are not burdened with changing their code to
work with the latest release of the technology. Maintaining compatibility at the
object level was a primary goal of the ArcGIS 9 development effort. While this
While the aim of ArcGIS releases is to limit the object-level compatibility has been maintained, there are some changes between
change in the APIs, developers should still test the ArcGIS 8 and ArcGIS 9 architectures that will affect developers, mainly

their software thoroughly with later releases. .
R e related to the compilation of the software.

Chapter 2 » The ArcGIS software architecture * 25

ARcCGIS SsOFTWARE ARCHITECTURE

26 * ArcGlIS Engine Developer Guide

While the changes required to software created for use with ArcGIS 8 to work
with ArcGIS 9 are minimal, it is important to understand that, to realize any
existing investment in the ArcObjects architecture at ArcGIS 9, you must review
your developments with respect to the ArcGIS Engine, ArcGIS Server, and
ArcGIS Desktop.

ESRI understands the importance of a unified software architecture and has
made numerous changes for ArcGIS 9 in order that the investment in ArcObjects
can be realized on multiple products. If you have been involved in creating
extensions to the ArcGIS architecture for ArcGIS 8, you should think how the
new ArcGIS 9 architecture affects the way your components are implemented.

ARCGIS APPLICATION PROGRAMMING INTERFACES

It is important not to confuse the Visual C++
support available through the COMAPI, and the
native C++API.

Since ArcObjects are developed in C++,there are
some case where data types compatible with
C++ have been used for performance reasons.

These performance considerations mostly affect
the internals of ArcObjects, hence using one of
the generic interfaces should not adversely affect
performance or yourArcObjects developments.

The functionality of ArcObjects can be accessed using four application program-
ming interfaces (APIs). The choice of which API to use is not a simple one and
will depend on a number of factors including; the ArcGIS product that you are
developing with, the end user functionality that you are developing and your
development experience with particular languages. The supported 4 APIs sup-
ported by ArcGIS Engine are:

* COM—Any COM compliant language (Visual Basic, Visual C++, Delphi, etc)
can be used with this API.

* NET—Visual Basic NET and C# are supported by this API.
* Java—Sun"™ Java2 Platform Standard Edition

e CH++—Microsoft VC++ 6.0, Microsoft VC++ .NET 2003, Sun Solaris Forte
6 Update 2, Linux GCC 3.2

When working with ArcObjects developers can consume functionality exposed
by the ArcObjects or extend the functionality of ArcObjects with their own
components. When referring to these APIs there are differences with respect to
consuming and extending the ArcObjects architecture.

CONSUMING API

All 4 APIs support consuming the functionality of the ArcObjects; however, not
all Interfaces implemented by ArcObjects are supported on all platforms. In some
cases interfaces make use of data types that are not compatible with an APIL. In
situations like this an alternative implementation of the interface is provided for
developers to use. The naming convention of a ‘GEN’ postfix on the interface
name is used to signify this kind of interface; IFoo would have an IFooGEN
interface. This alternative interface is usable by all APIs; however if the non
generic interface is supported by the API it is possible to continue to use the API
specific interface.

EXTENDING API

Extending ArcObjects is all about creating your own objects and adding them to
the ArcObjects architecture. ArcObjects is written to be extensible in almost all
areas. Support for extending the Architecture varies between the APIs, and in
some cases varies between languages of an APL.

The COM API provides the most possibilities of extending the system. The
limitation within this API is with the Visual Basic language. Visual basic does not
support the implementation of interfaces that have one or more of the following
characteristics:

* The interface inherits from an interface other than IUnknown or IDispatch.
ICurve which inherits from IGeometry cannot be implemented in VB for this
reason.

« o>

* Method names on an interface starting with an underscore (
find functions beginning with “_” in ArcObjects.

). You will not

* A parameter of a method uses a data type not supported by Visual Basic.
TActiveView cannot be implemented in Visual Basic for this reason.

Chapter 2 * The ArcGlIS softwre architecture 27

ARcCGIS APPLICATION PROGRAMMING INTERFACES

The majority of differences between the APls
support for ArcObjects revolves around data
types.All APIs fully support the automation
compliant data types show on the right. Differ-
ences occur with data types that are not ole
automation compliant.

28 « ArcGIS Engine Developer Guide

In addition to the limitations on the interfaces supported by VB, the binary re-use
technique of COM Aggregation is not supported by VB. This means that certain
parts of the Architecture cannot be extended; Custom Features is one such
example. In reality the above limitations of Visual Basic have little effect on the
vast majority of developers, since the percentage of ArcObjects affected is small,
and for this small percentage it is unlikely that developers will have a need to
extend the architecture. Other COM languages such as Visual C++ do not have
any of these limitations.

The NET API supports extending ArcObjects fully, with the one exception being
interfaces that make use of non OLE Automation compliant data types (see the
table below for a complete list of all OLE Automation compliant datatypes).

Boolean Data item that can have the value True or False.
unsigned char 8-bit unsigned data item.
double 64-bit IEEE floating-point number.
float 32-bit IEEE floating-point number.
int Signed integer, whose size is system dependent.
long 32-bit signed integer.
short 16-bit signed integer.
BSTR Length-prefixed string.
CURRENCY 8-byte, fixed-point number.
DATE 64-bit, floating-point fractional number of days since Dec 30, 1899.
SCODE For 16-bit systems - Built-in error that corresponds to VT_ERROR.
Typedef enum myenum | Signed integer, whose size is system dependent.
Interface IDispatch * Pointer to the IDispatch interface.
Interface IUnknown * Pointer to an interface that does not derive from IDispatch.
dispinterface Pointer to an interface derived from IDispatch.
Typename *
Coclass Typename * Pointer to a coclass name (VT_UNKNOWN).
[oleautomation] Pointer to an interface that derives from IDispatch.
interface Typename *
SAFEARRAY TypeName is any of the above types. Array of these types.
(TypeName)
TypeName* TypeName is any of the above types. Pointer to a type.
Decimal 96-bit unsigned binary integer scaled by a variable power of 10. A decimal
data type that provides a size and scale for a number (as in coordinates).

OLE Automation Data types

The Java and C++ APIs have similar limited support for extending ArcObjects.
Developers of these APIs are restricted to only being able to create custom
commands and tools. These commands and tools can then be used with the
ToolbarControl. This may appear to be a severe limitation, but despite this
restriction these APIs still have much to attract the developer. The
ToolbarControl along with the other ArcGIS Controls offers a rich development
environment to work with. The ArcGIS Desktop applications are rich profes-
sional GIS applications with a lot of functionality, but if viewed simply the
applications can be broken down into a series of Toolbars, along with a TOC
and map viewing area. The desktop applications are all extended by adding new
commands and tools. In a similar way developers can build applications with
rich functionality using any of the 4 ArcGIS Engine APIs.

ARcCGIS APPLICATION PROGRAMMING INTERFACES

The COM and .NET APIs are only supported on the Microsoft Windows plat-
form, while the Java and C++ APIs are supported on all the platforms supported
by ArcGIS Engine.

Chapter 2 » The ArcGIS software architecture * 29

ARcGIS ENGINE LIBRARIES

Carto

8
GISClient

Contains the workspace factories and
workspaces for vector data formats
supported by the geodatabase API.

Contains the objects required to
support a distributed geodatabase.

Contains the workspace
factories and workspaces
for file-based raster

data formats.

Provides workspaces for
working with OleDB-based
data sources.

Contains objects for working
with remote GIS services

provided by either ArcIMS
or the ArcGIS Server.

Contains the objects used to|
obtain a connection to the
ArcGiIS Server.

Contains the workspace factories and
workspaces for vector and raster data
formats supported by the geodatabase
that are stored within an RDBMS.

Contains the objects required
to generate output to both
printers and plotters or
exporting to files.

Contains types for all the definitions relating
to data access. Features, tables, networks,
and TINs are all defined in this library.

Server

5

Defined types used by user

interface components in the

4
. Contains components that support
Display drawing symbology to an output
device.

Contains components that expose
services used by the other libraries
composing ArcGIS.

30 * ArcGIS Engine Developer Guide

ArcGIS system such as
ICommand and ITool.

Contains the core geometry

objects and defines and

objects for coordinate systems.

implements the spatial reference

ARcGIS ENGINE LIBRARIES

The libraries contained within the ArcGIS Engine are summarized below. The

For a comprehensive discussion on each library, diagrams that accompany this section indicate the library architecture of the
refer to the library overview topics, a part of the ArcGIS Engine. Understanding the library structure, their dependencies and basic
library reference section oftheArCG:_S’e%e:;"::: functionality will help you as a developer navigate through the components of

ArcGIS Engine.

The libraries are discussed in dependency order. The diagrams show this with
sequential numbers in the upper right corner of the library block. For example,
System, as the library at the base of the ArcGIS architecture, is numbered one
while GeoDatabase, numbered seven, depends on the six libraries that proceed it
in the diagram—System, SystemUI, Geometry, Display, Server, and Output.

SYSTEM

The System library is the lowest level library in the ArcGIS architecture. The
library contains components that expose services used by the other libraries
composing ArcGIS. There are a number of interfaces defined within System that
can be implemented by the developer. The Aolnitializer object is defined in
System, all developers must use this object to initialize and un-initialize the
ArcGIS Engine in applications that make use of Engine functionality. The devel-
oper does not extend this library but can extend the ArcGIS system by imple-
menting interfaces contained within this library.

SysTeEMUI

 Knowing the library dependency order is The SystemUT library contains the interface definitions for user interface compo-
important since it affects the way in which

developers interact with the libraries as they nents that can be extended within the ArcGIS Engine. These include the
develop software.As an example C++ developers 1Command, ITool, and IToolControl interfaces. The developer uses these interfaces

must include the type libraries in the library to extend the UI components that the ArcGIS Engine’s developer components
dependency order to ensure correct compilation.

Understanding the dependencies also helps when ; ; K
deploying your developments. developer to simplify some user interface developments. The developer does not

extend this library but can extend the ArcGIS system by implementing interfaces
contained within this library.

use. The objects contained within this library are utility objects available to the

GEOMETRY

The Geometry library handles the geometry, or shape, of features stored in fea-
ture classes or other graphical elements. The fundamental geometry objects that
most users will interact with are Point, MultiPoint, Polyline and Polygon. Besides
those top-level entities are geometries that serve as building blocks for polylines
and polygons. Those are the primitives that compose the geometries. They are
Segment, Path, and Ring. Polylines and polygons are composed of a sequence of
connected segments that form a Pazh. A segment consists of two distinguished
points, the start and the end point, and an element type that defines the curve
from start to end. The kinds of segments are CircularAre, Line, EllipticArs, and
BezierCurve. All geometry objects can have Z, M, and IDs associated with their
vertices. The fundamental geometry objects all support geometric operations such
as Buffer, Clip, and so on. The geometry primitives are not meant to be extended
by developers.

Entities within a GIS refer to real-world features; the location of these real-
world features is defined by a geometry along with a spatial reference. Spatial

Chapter 2 » The ArcGIS software architecture * 31

ARcGIS ENGINE LIBRARIES

32 « ArcGIS Engine Developer Guide

reference objects, for both projected and geographic coordinate systems are
included in the Geometry library. Developers can extend the spatial reference
system by adding new spatial references and projections between spatial refer-
ences.

DisPLAY

The Display library contains objects used for the display of GIS data. In addition
to the main display objects responsible for the actual output of the image, the
library contains objects that represent symbols and colors used to control the
properties of entities drawn on the display. The library also contains objects that
provide the user with visual feedback when interacting with the display. Devel-
opers most often interact with the Display through a view similar to the ones
provided by the Map or Pagel_ayout objects. All parts of the library can be ex-
tended; commonly extended are symbols, colors, and display feedbacks.

SERVER

The Server library contains objects that allow you to connect and work with
ArcGIS Servers. Developers gain access to an ArcGIS Server using the
GISServerConnection object. The GISServerConnection object gives access to the
ServerObjectManager. Using this object, a developer works with ServerContext
objects to manipulate ArcObjects running on the server. The Server library is not
extended by developers. Developers can also use the GISClient library when
interacting with the ArcGIS Server.

OuTPUT

The Output library is used to create graphical output to devices, such as printers
and plotters, and hardcopy formats such as enhanced metafiles and raster image
formats (JPG, BMP, etcetera). The developer uses the objects in the library with
other parts of the ArcGIS system to create graphical output. Usually these would
be objects in the Display and Carto libraries. Developers can extend the Output
library for custom devices and export formats.

GEeEoDATABASE

The GeoDatabase library provides the programming API for the geodatabase. The
geodatabase is a repository of geographic data built on standard industry rela-
tional and object relational database technology. The objects within the library
provide a unified programming model for all supported data sources within
ArcGIS. The GeoDatabase library defines many of the interfaces that are imple-
mented by data source providers higher in the architecture. The geodatabase can
be extended by developers to support specialized types of data objects (Features,
Classes, etcetera); in addition, it can also have custom vector data sources added
using the PluglnDataSonrce objects. The native data types supported by the
geodatabase cannot be extended.

GISCLIENT

The GISClient library allows developers to consume Web services; these Web
services can be provided by ArcIMS and ArcGIS Server. The library includes
objects for connecting to GIS servers to make use of Web services. There is

ARcGIS ENGINE LIBRARIES

support for ArcIMS Image and Feature Services. The library provides a common
programming model for working with ArcGIS Server objects in a stateless man-
ner either directly or through a Web service catalog, The ArcObjects components
running on the ArcGIS Server are not accessible through the GISClient interface.
To gain direct access to ArcObjects running on the server, you should use func-
tionality in the Server library.

DATASOURCESFILE

The DataSourcesFile library contains the implementation of the GeoDatabase
API for file-based data sources. These file based data sources include shapefile,
coverage, TIN, CAD, SDC, StreetMap, and VPE The DataSourcesFile library is
not extended by developers.

DATASOURCESGDB

The DataSourcesGDB library contains the implementation of the GeoDatabase
API for the database data sources. These data sources include Microsoft Access
and relational database management systems supported by ArcSDE—IBM®
DB2®, Informix®, Microsoft SQL Server™, and Oracle®. The DataSourcesGDB
library is not extended by developers.

DATASOURCESOLEDB

The DataSourcesOleDB library contains the implementation of the GeoDatabase
API for the Microsoft OLE DB data sources. This library is only available on the
Microsoft Windows operating system. These data sources include any OLE DB
supported data provider and text file workspaces. The DataSourcesOleDB library
is not extended by developers.

DATASOURCESRASTER

The DataSourcesRaster library contains the implementation of the GeoDatabase

API for the raster data sources. These data sources include relational database

management systems supported by ArcSDE—IBM DB2, Informix, Microsoft
Raster Data Objects (RDO) is a COM API that SQL Server, and Oracle—along with supported RDO raster file formats. Devel-

provides display and analysis support for file opers do not extend this library when support for new raster formats is required,
based raster data. rather they extend RDO. The DataSourcesRaster library is not extended by
developers.

GEeEoDATABASEDISTRIBUTED

The GeoDatabaseDistributed library supports distributed access to an enterprise
geodatabase by providing tools for importing data into and exporting data out of
a geodatabase. The GeoDatabaseDistributed library is not extended by develop-
ers.

CARTO

The Carto library supports the creation and display of maps; these maps can
consist of data in one map or a page with many maps and associated marginalia.
The Pagel_ayont object is a container for hosting one or more maps and their
associated marginalia: North arrows, legends, scale bars, etcetera. The Map object
is a container of layers. The Map object has properties that operate on all layers

Chapter 2 » The ArcGIS software architecture * 33

ARcGIS ENGINE LIBRARIES

Contains objects for performing
analysis and supports the display
of globe data.

Performs 3D analysis of
data and supports 3D
data display.

Contains controls for application

% development including commands and
tools for use with the controls.

Contains core spatial analysis operations

that are used by the ArcGIS Spatial

Analyst and ArcGIS 3D Analyst extensions.

Contains objects related to working with Supports the creation and
location data, either route events or analysis of utility networks.
geocoding locations.

Contains the objects for displaying
data. The Pagelayout and Map
objects are in this library along
with map layers and renderers for
all the supported data types.

34 + ArcGIS Engine Developer Guide

ARcGIS ENGINE LIBRARIES

within the map—spatial reference, map scale, etcetera—along with methods that
manipulate the map’s layers. There are many different types of layers that can be
added to a map. Different data sources often have an associated layer responsible
for displaying the data on the map, vector features are handled by the Featurelayer
object, raster data by the RasterLayer, TIN data by the T7nLayer, and so on. Layers
can, if required, handle all the drawing operations for their associated data, but it
is more common for layers to have an associated Renderer object. The properties
of the Renderer object control how the data is displayed in the map. Renderers
commonly use symbols from the Display library for the actual drawing, the ren-
derer simply matches a particular symbol with the properties of the entity that is
to be drawn. A Map object, along with a Pagel_ayout object, can contain elements.
An element has geometry to define its location on the map or page, along with
behavior that controls the display of the element. There are elements for basic
shapes, text labels, complex marginalia, and so on. The Carto library also contains
support for map annotation and dynamic labeling,

The ArcGlIS Server uses the MapServer object for
its MapService.

Although developers can directly make use of the Map or Pagel_ayout objects in
their applications, it more common for developers to use a higher level object
such as the MapControl, Pagel_ayoutControl, or an ArcGIS application. These higher
level objects simplify some tasks, although they always provide access to the
lower level Map and Pagelayout objects, allowing the developer fine control of
the objects.

The Map and Pagel_ayout objects are not the only objects in Carto that expose the
behavior of map and page drawing. The MxdServer and MapServer objects both
support the rendering of maps and pages, but instead of rendering to a window,
these objects render directly to a file.

Using the MapDocument object developers can persist the state of the map and
page layout within a map document (.mxd), which can be used in ArcMap or one
of the ArcGIS controls.

The Carto library is commonly extended in a number of areas. Custom renderers,
layers, etcetera, are common. A custom layer is often the easiest method of
adding custom data support to a mapping application.

LocATiON

The Location library contains objects that support geocoding and working with
route events. The geocoding functionality can be accessed through fine-grained
objects for full control, or the GeocodeServer objects offers a simplified APIL.
Developers can create their own geocoding objects. The linear referencing func-
tionality provides objects for adding events to linear features and rendering these
events using a variety of drawing options. The developer can extend the linear
reference functionality.

NETWORKANALYSIS

The NetworkAnalysis library provides objects for populating a geodatabase with
network data and objects to analyze the network when it is loaded in the geoda-
tabase. Developers can extend this library to support custom network tracing,
The library is meant to work with utility networks: gas lines, electricity supply
lines, etcetera.

Chapter 2 » The ArcGIS software architecture * 35

ARcGIS ENGINE LIBRARIES

The contents of the Map and PageLayout
controls can be specified programmatically, or
they can load Map Documents

The ReaderControl only supports Published Map
Files (PMF)

ArcGlIS Engine comes with over |50 commands.

36 * ArcGlIS Engine Developer Guide

CONTROLS

The Controls library is used by developers to build or extend applications with
ArcGIS functionality. The ArcGIS Controls simplify the development process by
encapsulating ArcObjects and providing a coarser grained APIL. Although the
controls encapsulate the fine grained ArcObjects they do not restrict access to
them. The MapControl and Pagel_ayontControl encapsulate the Carto library’s Map
and Pagel_ayout objects respectively. The ReaderControl encapsulates both the Map
and Pagel_ayout objects, and provides a simplified API when working with the
control. If the map publisher has granted permission the developer can access the
internal objects, in a similar way to the Map and Pagel_ayout controls. The library
also contains the TOCContro/ that implements a table of contents and a
ToolbarControl for hosting commands and tools that work with a suitable control.

Developers extend the Controls library by creating their own commands and tools
for use with the controls. To support this the library has the HookHelper object.
This object makes it straightforward to create a command that works with any of
the controls, in addition to ArcGIS applications such as ArcMap.

GEOANALYST

The GeoAnalyst library contains objects that support core spatial analysis func-
tions. These functions are used within both the SpatialAnalyst and 3DAnalyst
libraries. Developers can extend the library by creating a new type of raster
operation. A license for cither the ArcGIS Spatial Analyst or 3D Analyst™ exten-
sion or the ArcGIS Engine Runtime Spatial or 3D option is required to make use
of the objects in this library.

3DANALYST

The 3DAnalyst library contains objects for working with 3D scenes in a similar
way that the Carto library contains objects for working with 2D maps. The Scene
object is one of the main objects of the library since it is the container for data
similar to the Map object. The Camera and Target objects specify how the scene is
viewed regarding the positioning of the features relative to the observer. A scene
consists of one or more layers; these layers specify the data in the scene and how
the data is drawn.

It is not common for developers to extend this library. A license for either the
ArcGIS 3D Analyst extension or the ArcGIS Engine Runtime 3D option is
required to work with objects in this library.

GLOBECORE

The GlobeCore library contains objects for working with globe data in a similar
way that the Carto library contains objects for working with 2D maps. The Globe
object is one of the main objects of the library since it is the container for data
similar to the Map object. The GlobeCamera object specifies how the globe is
viewed regarding the positioning of the globe relative to the observer. The globe
can have one or more layers; these layers specify the data on the globe and how
the data is drawn.

ARcGIS ENGINE LIBRARIES

The GlobeCore library has a developer control along with a set of commands and
tools to use with this control. This control can be used in conjunction with the
objects in the Controls library.

It is not common for developers to extend this library. A license for either the
ArcGIS 3D Analyst extension or the ArcGIS Engine Runtime 3D option is
required to work with objects in this library.

SPATIALANALYST

The Spatial Analyst library contains objects for performing spatial analysis on
raster and vector data. Developers most commonly consume the objects within
this library and do not extend it. A license for either the ArcGIS Spatial Analyst
extension or the ArcGIS Engine Runtime Spatial option is required to work with
objects in this library.

Chapter 2 » The ArcGIS software architecture * 37

Developing with
ArcGIS Controls

ArcGIS Engine provides a number of high-level developer controls that enable
you to build or extend applications with ArcGlIS functionality and create a high-
quality map-based user interface.These include the MapControl,
PageLayoutControl, ReaderControl, TOCControl, and ToolbarControl. The
GlobeControl and SceneControl are also available but applications using these

controls must be be authorized with the ArcGIS Engine 3D option.

This chapter includes:
* an overview of each control * a discussion of themes and concepts common
to each of the ArcGIS Controls * considerations for building applications with

or without the ToolbarControl.

WHAT ARE THEARCGIS CoNTROLS?

Deployment of applications built with either the
GlobeControl or SceneControl requires the
ArcGIS Engine 3D Option.

40 * ArcGIS Engine Developer Guide

The ArcGIS Controls are high-level developer components that firstly enable
developers to build and extend applications with ArcGIS functionality and
secondly provide a graphical user interface (GUI).

Each of the following ArcGIS Controls is available as an ActiveX control, .Net
Windows control, and Visual JavaBean:

* MapControl—similar to the 'data’
e PagelayoutControl
* ToolbarControl
TOCControl (Table of Contents Control)
* SceneControl
* GlobeControl
* ReaderControl

The ArcGIS Controls can be used to build applications in two ways: Firstly, the
ArcGIS Control(s) can be embedded into an existing application to add additional
mapping capability, or secondly, the ArcGIS Control(s) can be used to create a
new stand-alone application. In either case, an individual ArcGIS Control can be
embedded into an application or the TOCControl and ToolbarControl can be used
in conjunction with another ArcGIS Control to provide part of the applications
framework.

WORKING WITH THE ARcGIS CoNTROLS

There are some common themes and concepts, applicable to all of the ArcGIS
Controls, that should be understood in order to effectively build applications
using the ArcGIS Controls.

EMBEDDABLE COMPONENTS

Each ArcGIS Control is an embeddable component that can be dropped within
a container form or dialog provided by a visual design environment. Once
within a container the ArcGIS Control can be resized and repositioned
ECE imjxf| along with other embeddable components such as command buttons

P e I'-mﬂ]—E and combo boxes to provide a user interface in the application.
[Shou N Tipe el [=]
f oo PROPERTY PAGES

: | Each ArcGIS Control has a set of property pages that are accessible in
most visual design environments, once the control is embedded within a

container, by right clicking on the control and choosing ‘Properties’
from the context menu. These
x| Property pages provide shortcuts

E&RAI MapCandral

Property Pages

cenerd | paga | G | Pitirs | ' to a selection of a control’s prop-
Boider S erties and methods, and allow a
<] F Erah developer to build an application
r— I Enstls OLE Drop Evert b it J
: oo 3] I PrewiDesinMote wit e or no code.
Lt mouem buston to goorin, right 33 pan Tosn| | Mousa Poinine T arow K Invmicapt
e et | Bl mraimaad E] ARcOBJECTS
sl Each ArcGIS Control simplifies

| =
¥ Contair e kol inside: PagelsyoutConil
£ Linis |0 the rrap documend By lenanms

the development process by encap-
sulating coarse grained ArcObjects,
while still providing access to finer

T] o | 2o | v | grained ArcObjects. For example,
the PagelayoutControl encapsu-
All properties accessible via the property pages lates the Pagelayout object. The
can be set in code by the developer. Pagel_ayont contains at least one MapFrame element containing a Map and the Map

can contain multiple raster, feature, or custom Layer objects. Each ArcGIS Con-
trol provides shortcuts to frequently used properties and methods on the
ArcObjects they encapsulate. For example, the MapControl has a Spazia/Reference
property that is a shortcut to the SpatialReference property of the Map object.
Each ArcGIS Control also has some helper methods that perform common tasks.
For example, the MapControl has an AddShapelile method. The ArcGIS Controls
are typically a starting point for developing applications not only because they
provide user interface, but by providing a direct route into the object model.

EVENTS

Each ArcGIS Control fires events in response to keyboard and mouse interactions
by the end user. Other events fire in response to actions occurring within the
controls. For example, when a map document is loaded into the MapControl the
OnMapReplaced event is fired, or when an object is dragged over the MapControl
via drag and drop the OnO/lDrop event is fired.

Chapter 3 * Developing with ArcGIS Controls * 41

WORKING WITH THE ARcCGIS CoNTROLS

For more details on how the controls work
together, see the TOCControl and ToolbarControl
sections below.

42 + ArcGIS Engine Developer Guide

BUDDY CONTROLS

The ToolbarControl and TOCControl each work in conjunction with one other
‘buddy control’. Typically the ‘buddy control’ is a MapControl,
PagelLayoutControl, ReaderControl, SceneControl, or GlobeControl. The ‘buddy
control’ can be set at design time though the control property pages (in develop-
ment environments that support property page capability) or programmatically
using the SetBuddyControl.

CONTROL COMMANDS

The ArcGIS Engine provides a set of commands, tools, and menus that work
with the ArcGIS Controls. For example, there is a suite of map navigation,
feature selection, and graphic element commands that work with the MapControl
and PagelayoutControl. Likewise there is a suite of commands for the
SceneControl, GlobeControl, and ReaderControl. For applications using an
individual control, these commands can work directly with the control by pro-
grammatically creating a new instance of the command and passing the control to
the command’s OnCreate event. For applications using the ToolbarControl in
conjunction with a ‘buddy control’, these commands can be added to the
ToolbarControl either through the property pages at design time, or programmati-
cally, or at run-time by the end user if the ToolbarControl is in customize mode.

Developers can also extend the suite of commands provided by the ArcGIS
Engine by creating their own custom commands, tools, and menus to work with
the ArcGIS Controls. The HookHelper, GlobeHookHelper, and SceneHookHelper
objects can be used to simplify this development. Refer to the ‘Building Applica-
tions’ scenario in Chapter 6, ‘Developer Scenarios’ to see how to build a custom
command using the HookHelper object.

MAP AUTHORING

The ArcGIS Desktop applications can be used to pre-author documents that can
be loaded into the ArcGIS Controls, to quickly produce high quality mapping, For
example, ArcMap can be used to author map documents that can be loaded into
the MapControl and PagelLayoutControl. Pre-authoring documents can save a
substantial amount of time as it saves having to programmatically build up maps
and symbology from scratch. Once a document is loaded into an ArcGIS Control
any layers, elements, and symbols can be accessed programmatically through the
object model if their appearance subsequently needs changing.

WORKING WITH THE ARcGIS CoNTROLS

The table below summarizes the types of document that can be loaded into each
ArcGIS Control.

permission to

(ET Never Scene Globe no permission Tera
Document Filis Document Document toloadina permission to customized
(*.mxd, (*.sxd, (*.3dd, customized load in a application
*.mxt) *.sxt) *.sdt) application customized "
(ArcReader application andaléggessstrtlgted
application only .
its contents
MapControl Yes Yes No No No No Yes
PagelLayoutControl| Yes **Yes No No No No Yes
SceneControl No **Yes| Yes No No No No
GlobeControl No **Yes No Yes No No No
ReaderControl No No No No No Yes Yes
*ArcReaderControl No No No No No Yes Yes

* The ArcReaderControl is only available with the ArcGIS Publisher extension. However, it is listed here due to
its similarity with the ReaderControl.

** There are no properties available on the ArcGIS Controls to directly load Layer files (*.lyr). However, they
can be loaded indirectly via the MapDocument object.

Chapter 3 * Developing with ArcGIS Controls * 43

MAarPCoNTROL AND PAGELAYOUTCONTROL

w_MapCankral Applicakion

The MapControl and PagelayoutControl correspond to the ‘data’ and ‘layout’
views of the ArcMap desktop application. The MapControl encapsulates the Map
object and the PagelLayoutControl encapsulates the Pagel_ayout object. Map docu-
ments authored with the ArcMap application can be loaded into the MapControl
and PagelLayoutControl, to save the developer programmatically composing the
cartography.

The map document can be set at design time though the MapControl and
PagelLayoutControl property pages (in development environments that support
property page capability) and the control can be set to link” or ‘contain’ the map
document. When ‘linking’ the control will read the map document whenever the
control is created on the container and will display the most recent updates to the
map document. When ‘containing’ the control will copy the contents of the map
document into the control and will not display any further updates made to the
map document from that point onwards. Alternatively, a map document can be
loaded into the control programmatically using the LoadMxEile method.

Not only can the MapControl and PagelLayoutControl read map documents, they
can also write map documents (*.mxd). Both controls implement the
IM>dContents interface that enables the MapDocument object to write the contents
of the MapControl and PagelLayoutControl to a new map document.

Helper methods such as TrackRectangle, TrackPohgon, TrackLine, and TrackCircle
exist on the MapControl for tracking or ‘rubber banding’ shapes on the display.
The VisibleRegion property can be used to change the shape of the MapControl’s
display area. Helper methods such as FindElementByName and LocateFrontE lement

exist on the PagelayoutControl to help the developer
.|l x| manage elements, whilst the Prinfer and

PrinterPageConnt properties together with the
PrintPagel_ayont method assist with printing tasks.

=101 xI

M =, Pagelay ool Comng] Applicatian

Gull of CamHE

St Lawrence

Applications built using the MapControl and PageLayoutControl,

44 « ArcGIS Engine Developer Guide

respectively

GLOBECONTROL AND SCENECONTROL

The GlobeControl and SceneControl correspond to the 3D views of the
ArcGlobe and ArcScene desktop applications. The GlobeControl encapsulates the

Deployment of applications built with either the Globeliewer object and the SceneControl encapsulates the Scenel zewer object.
GlobeControl or SceneControl requires the Globe and Scene documents authored with the ArcGlobe and ArcScene applica-
ArcGIS Engine 3D Option. tions can be loaded into the GlobeControl and SceneControl respectively, to save

the developer programmatically composing the cartography.

Both the GlobeControl and SceneControl have built in navigation capability that
allows the end user to move around the 3D view and visualize the 3D data,
without having to use the available control commands or a custom command. To
use the built in navigation, the Navjgate property must be set either through the
property pages or programmatically. The end user can use the left mouse button
navigate backwards and forwards and to the left and right of the display, and the
right mouse button to zoom in and out on the display.

w, GloheControd Application

Applications built using the GlobeControl and SceneControl,
respectively

L

AN e

Chapter 3 * Developing with ArcGIS Controls * 45

READERCONTROL

ArcReader is available for download.
To get your free copy, go to
http:/lwww.esri.com/softwarelarcgis/arcreader.

The ReaderControl corresponds to the ‘data’ and ‘layout’ views of the
ArcReader™ desktop application, together with its Table of Contents. The
ReaderControl also contains the internal windows and tools used by the
ArcReader desktop application, such as the Find window and the Identify tool.
Published Map Files (PMF) authored with the ArcMap desktop application and
published with the ArcGIS Publisher extension can be loaded into the
ReaderControl, if published with permission to load into a customized
ArcReader application.

The ReaderControl has a simple self-contained object model that exposes all the
functionality of the ArcReader desktop application and does not require access to
ArcObjects. As such, developing applications with the ReaderControl does not
require previous experience with ArcObjects. However, if a Published Map File
was published with unrestricted access to its contents, developers can access the
underlying ArcObjects and develop with the ReaderControl in a similar way to
the MapControl and PagelLayoutControl.

While the ArcReaderControl is not available with ArcGIS Engine, it is mentioned
here due to its similarity with the ReaderControl; the ArcReaderControl has the
same simple self-contained object model as the ReaderControl. However, the
ArcReaderControl cannot be used as a ‘buddy control’ to work in conjunction
with the TOCControl or ToolbarControl, nor can developers access any underly-
ing ArcObjects. Developing with the ArcReaderControl requires the ArcGIS
Publisher extension and applications built with the ArcReaderControl can be

= W Cor e Dimtrouh j -Fﬂ | Wahm &
(] Ll 3 by Domnped i Uyt B
= 158 Poped ol 58
2 v :’rﬂ# e -
el Bty Hiwe Yok | 535 E5000
= b L i Ere Fretrws 1966 [pvodhinsg vt | E56000
Ertise N32E =
Fompercion | | o Ky [T mreey.
il | ® 1T | 3

[ecfmd watemuns | 4

| Hlem & 4l I+

46 * ArcGIS Engine Developer Guide

A ReaderControl application

eployed on to any machine that has the free ArcReader desktop application.

TOCCOoONTROL AND TooLBARCONTROL

TOCCONTROL

The TOCControl works in conjunction with a ‘buddy control’. The ‘buddy con-
trol” can be a MapControl, PageLayoutControl, ReaderControl, SceneControl, or
GlobeControl. The ‘buddy control’” can be set at design
time though the TOCControl property pages (in develop-
ment environments that support property page capability)
or programmatically using the SezBuddyControl method
when the container hosting the TOCControl is displayed.
Each TOCControl ‘buddy control” implements the
ITOCBuddy interface. The TOCControl uses the ‘buddy
control’ to display an interactive tree view of its map,

. T Carteol and MapCankod Applicatian

layer and symbology contents, and to keep its contents
synchronized with the ‘buddy control’. For example, if
the TOCControl has a MapControl as its ‘buddy’, and a
map layer is removed from the MapContol, the map layer
will also be removed from the TOCControl. Likewise, if
the end user interacts with the TOCControl to uncheck a
map layers visibility, the layer will no longer be visible
within the MapControl.

ATOCControl application TOOLBARCONTROL

The ToolbarControl works in conjunction with a ‘buddy control’. The ‘buddy
control’ can be a MapControl, PageLayoutControl, ReaderControl, SceneControl,
or GlobeControl. The ‘buddy control” can be set at design time though the
ToolbarControl property pages (in development environments that support
property page capability) or programmatically using the SezBuddyContro/ method
when the container hosting the ToolbarControl is displayed. The ToolbarControl
hosts a panel of commands, tools, tool controls, and menus that work with the

An application that uses the ToolbarControl and display of the ‘buddy control’.
the GlobeControl

Each ToolbarControl ‘buddy control’
m TookwControl and GlobeConbrod Apglication . M implements the ITOO/IMVBMZ@/ interface.
@ [E 2 @ B % | S couse s Coutar Gechnise G St Spn This interface is used to set the

- - - — - Currentlool property of the ‘buddy

i < — S \ control’. For example, imagine a
ToolbarControl that is hosting a ‘Page
Zoom In’ tool and has a
PagelayoutControl as its ‘buddy’. When
the end user clicks on the Page Zoom
In’ tool on the ToolbarControl it will
become the CurrentTool of the
PagelayoutControl. The implementation
of the ‘Page Zoom In’ tool will query
the ToolbarControl to access its ‘buddy
control’ (the PagelLayoutControl) and
retrieve the Pagelayout. It will then
provide the implementation for display-
ing the rectangle dragged by the end user

and changing the extent of the
PagelLayout.

Chapter 3 * Developing with ArcGIS Controls « 47

BUILDING APPLICATIONS WITH THE TOOLBARCONTROL

48 « ArcGlIS Engine Developer Guide

The ToolbarControl is typically used in conjunction with a ‘buddy control’ and a
selection of the control commands to quickly provide a functional GIS applica-
tion. The ToolbarControl is not only providing a part of the user interface, it is
also providing a part of the applications framework. ArcGIS Desktop applica-
tions like ArcMap, ArcGlobe, and ArcScene have a powerful and flexible frame-
work that include user interface components such as toolbars, commands, menus,
dockable windows, and status bars. This framework enables the end user to
customize the application by allowing them to reposition, add, and remove most
of these user interface components.

Many development environments provide some pieces of a framework in the
form of simple dialogs, forms, and multiple docking interface (MDI) applications.
They also provide generic user interface components like buttons, status bars, and
list boxes. However, a substantial amount of coding can still be required to
provide toolbars and menus that host commands, especially if they need to be
customized by the end user.

The ToolbarControl and the objects within its library can supply pieces of a
framework similar to the ArcGIS Desktop application framework. The developer
can use some or all of these framework pieces when building an application with
the ToolbarControl.

COMMANDS

ArcGIS Engine provides several suites of control commands that work with the
ArcGIS Controls to perform some specific action. Developers can extend this
suite of control commands by creating their own customized commands that
perform some specific piece of work. All of these command objects implement
the ICommand interface that is used by the ToolbarControl to call methods and
access properties at appropriate times.

The ICommand::OnCreate method is called shortly after the Command obiject is
hosted on the ToolbarControl. The method is passed a handle or ‘hook’ to the
application that the command will work with. The implementation of a com-
mand normally tests to see if the ‘hook’ object is supported (that is, the com-
mand tests to see that the ‘hook’ is an object that the command can work with).
If the ‘hook’ is not supported the command disables itself. If the ‘hook’ is sup-
ported the command stores the ‘hook’ for later use. For example, if an ‘Open
Map Document’ command is to work with the MapControl or
PagelLayoutControl and they are passed to the OnCreate method as the ‘hook’, the
command will store the ‘hook’ for later use. If the ToolbarControl is passed to
the OnCreate event as the ‘hook’, the command would normally check the type of
‘buddy control’ being used in conjunction with the ToolbarControl using the
Buddy property. For example, if a command hosted on the ToolbarControl only
works with the ReaderControl and the ToolbarControl ‘buddy’ is a MapControl,
the command should disable itself.

BUILDING APPLICATIONS WITH THE TooLBARCONTROL

To help developers create custom commands to work with the ArcGIS Controls
and the ArcGIS desktop applications, HookHelper, GlobeHookHelper, and

SceneHookHelper objects exist.

e The HookHelper is used for custom commands that work with the
MapControl, PageLayoutControl, ToolbarControl, and the ArcMap desktop

application.

e The SceneHookHelper is used for custom commands that work with the
SceneControl, ToolbarControl, and the ArcScene desktop application.

* The GlobeHookHelper is used for custom commands that work with the
GlobeControl, ToolbarControl, and the ArcGlobe desktop application.

Rather than the developer adding code into a commands OnCreate method to
determine the type of ‘hook’ passed to the command, the helper object handles
this. The helper objects are used to hold into the ‘hook’ and return Activel Gew,
Pagel_ayont, Map, Globe, and Scene objects (depending on the type of helper object)
regardless of the type of ‘hook’ that is passed. Refer to the ‘Building Applica-
tions’ scenario in Chapter 6, ‘Developer Scenarios’ to see how to build a custom
command using the HookHelper object that works with a MapControl,

PagelayoutControl, and ToolbarControl.

The [Command::OnClick method is called when the end user clicks on a command
item hosted on the ToolbarControl. Depending on the type of command it will
typically do some work using the ‘hook’ to access the required objects from the

‘buddy control’. There are three types of command:

e Asingle click command implementing the ICommand interface that responds to
a single click. A click results in a call to the [Command::OnClick method, and
some action is performed. By changing the ICommand::Checked value simple
command items can behave like a toggle. Single click commands are the only

types of command that can be hosted on a menu.

* A command item or tool implementing both the ICommand and ITvol inter-
faces, that requires end user interaction with the display of the ‘buddy con-
trol’. The ToolbarControl maintains one CurrentTool. When the end user clicks
the tool on the ToolbarControl it becomes the Currentlvol, and the previous
tool is deactivated. The ToolbarControl will set the CurrentTool of the ‘buddy
control’. While the tool is the Currenfloo/ it will receive mouse and key events

from the ‘buddy control’.

* A command item or tool control implementing both the [Command and
IToolControl interfaces. This is typically a user interface component like a
Listbox or ComboBox hosted on the ToolbarControl. The ToolbarControl
hosts a small window supplied by a window handle from the
IToolControl::hWnd property. Only a single instance of a particular tool control

can be added to the ToolbarControl.

Chapter 3 * Developing with ArcGIS Controls * 49

BUILDING APPLICATIONS WITH THE TooLBARCONTROL

The current tool to
Zoom in on the page

Actool contral displaying the
current page percentage

A single click command
to open a map

A menu containing single
click map commands

50 « ArcGIS Engine Developer Guide

Commands can be added to ToolbarControl in two ways, firstly, by specifying a
UID object that uniquely identifies a command (using a GUID), or secondly by
supplying an instance of an existing Comzmand object to the Addlrens method.
Where possible commands should be added to the ToolbarControl by specifying a
UID. If a UID is supplied, the ToolbarControl can identify whether this com-
mand has previously been added, and if so can reuse the previous instance of the
command. When an existing instance of a Command object is added to the
ToolbarControl there is no unique identifier for the command, and multiple
instances of the same command can exist on the ToolbarControl.

TOOLBARITEM

A Toolbarltem is a single command or menu hosted on a ToolbarControl or
ToolbarMenu. The IToolbarlten interface has properties to determine the appear-
ance of the item to the end user. For example, whether the item has a vertical
line to its left signifying that it begins a Group and whether the S#/ of the item
displays with a bitmap, a caption, or both. The Command and Menn properties
return the actual command or menu that the Toolbarltem represents.

UPDATING COMMANDS

By default the ToolbarControl updates itself automatically every half a second, to
ensure that the appearance of each Toolbarltem hosted on the ToolbarControl is
synchronised with the Ewnabled, Bitmap, and Caption properties of its underlying
command. Changing the Updatelnterval property can alter the frequency of the
update. An Updatelnterval of 0 will stop any updates from happening automati-
cally, and the developer must call the Update method programmatically to refresh
the state of each Toolbarltem.

The first time the Update method is called in an application, the ToolbarControl
will check whether the ICommand::OnCreate method of each Toolbarltem’s under-
lying command has been called. If the method has not been called the
ToolbarControl is automatically passed as the ‘hook’ to the ICommand::OnCreate
method.

BUILDING APPLICATIONS WITH THE TooLBARCONTROL

TOOLBARMENU

The ToolbarControl can host an item that is a drop down menu. A ToolbarMenu

item presents a vertical list of single click command items. The user must select
one of the command items on the ToolbarMenu, or click outside of the

e Pepuprtany -lmxl ToolbarMenu to make it disappear. A ToolbarMenu can only host com-
open || @ 7en b Sjzomoe T i et mand items (no tools or tool controls are permitted). The ToolbarMenu
itself can be either hosted on the ToolbarControl, hosted on another
Al Pertan ToolbarMenu as a ‘sub menu’, or it can appear as a ‘popup menu’ and
P used ff)r a right click context menu. Refe.r to the ‘Building Applications’
nm:mh Ararn scenario in Chapter 6, ‘Developer Scenarios’ to see how to build a
7 ‘popup menu’ hosting some control commands that work with the
BRI PageLayoutControl.
T, 24 Foed Bvrwdn
@ ruEde:

Tinre i G Bk Ty Prirviinss Bl

COMMAND POOL

Each ToolbarControl and ToolbarMenu has a CommandPool that is used
to manage the collection of Command objects that it is using. Normally, a
developer will not interact with the CommandPool. When a command is
added to the ToolbarControl either through the property pages of the
ToolbarControl or programmatically the command is automatically

Hosting the ToolbarMenu as a popoup

added to the CommandPool. Command objects are added to the
CommandPool either as a UID object that uniquely identifies the command (using a
GUID) or as an existing instance of a Command object.

If an existing instance of a Command object is added there is no unique identifier
for the command and multiple instances of the same command can exist in the
CommandPool. 1f a UID object is supplied, the CommandPool can identify whether
the command already exists in the CommandPool, and if so can reuse the previous
instance of the command. The CommandPoo/ manages this by tracking whether the
OnCreate method of a command has been called. If the OnCreate method has
been called it will reuse the command and increment its UsageCount.

For example, if a “Zoom In’ tool is added to a ToolbarControl twice, with the
UID supplied, when one of the “Zoom In’ items on the ToolbarControl is se-
lected and appears ‘pressed’ the other “Zoom In’ item will also appear ‘pressed’
because they are both using the same Comzmand object. When an application
contains multiple ToolbarControls or ToolbarMenus the developer should ensure
each ToolbarControl and ToolbarMenu uses the same CommandPool, to ensure that
only one instance of a command is created in the application.

CUSTOMIZATION

The ToolbarControl has a Customize property that can be set to put the
ToolbarControl into customize mode. This changes the behavior of the
ToolbarControl and allows the end user to rearrange, remove, and add items as
well as change their appearance.

Use the left mouse button to select an item on the ToolbarControl, either drag
the selected item to a new position or drag and drop the item off the
ToolbarControl to remove it.

Chapter 3 * Developing with ArcGIS Controls * 51

BUILDING APPLICATIONS WITH THE TooLBARCONTROL

52 « ArcGIS Engine Developer Guide

* Use the right mouse button to select an item and display a customize menu.
The customize menu can be used to remove the item or change the Style
(bitmap, caption or both) and Grouping of the Toolbarltem.

While the ToolbarControl is in Customize mode the developer can programmati-
cally launch the modeless CustomizeDialog. The CustomizeDialog lists all of the
control commands, together with any custom commands, toolsets, and menus. It
does this by reading entries from the ‘ESRI Controls Commands’, ‘ESRI Controls
Toolbars,” and ‘ESRI Controls Menus’ component categories. If required the
developer can change the CustomizeDialog to use alternative component catego-
ries. The end user can add these commands, toolsets and menus to the
ToolbarControl either by dragging and dropping them onto the ToolbarControl or
double clicking on them.

The CustomizeDialog is modeless to allow the user to interact with the
ToolbarControl. When the CustomizeDialog is launched with the SzartDialog
method, the method call returns immediately while the CustomizeDialog remains
open on the screen. In order to keep a reference to the CustomizeDialog while it
is open, it is sensible practice to store a class level variable to the
CustomizeDialog and to listen to its ICustomizeDialogEvents. Refer to the ‘Building
Applications’ scenario in Chapter 6, ‘Developer Scenarios’ to see how to display
the CustomizeDialog when the ToolbarControl is in Customize mode.

OPERATION STACK

The ToolbarControl has an OperationStack that is used to manage undo and redo
functionality. Operations are added to the operation stack by each Toolbarltem’s
underlying command, so that the operation can be rolled forward and then rolled
back as desired. For example, when a graphic element is moved, the operation
can be undone by moving the graphic back to its original location. Whether or
not a command makes use of an OperationStack depends upon its implementa-
tion. Typically a developer creates a single ControlsOperationStack for an applica-
tion (by default the OperationStack property is Nothing) and sets it into each
ToolbarControl. Undo and Redo commands can be added to the ToolbarControl
that step through the OperationStack.

BUILDING APPLICATIONS WITHOUT THE TOOLBARCONTROL

While building applications with the ToolbarControl can quickly provide pieces
of a framework similar to the ArcGIS Desktop application framework, there are
times when the ToolbarControl is not required for an application:

e the visual appearance of the ToolbarControl may not match that of the
application

* the overhead of implementing Command objects for the ToolbarControl is not
required

e there is an existing application framework present in the application
g

* the ToolbarControl and the commands it hosts do not easily work across
multiple ‘buddy controls’

In such circumstances, the developer must work directly with the MapControl,
PagelLayoutControl, SceneControl, GlobeControl, or ReaderControl. Any addi-
tional user interface components needed by the application such as command
buttons, status bars, and list boxes may be supplied by development environ-
ment.

For example, building map navigation functionality into a MapControl applica-
tion can be achieved by:

e setting the resulting Ewnvelope of the IMapControl2::TrackRectangle method into
the IMapControl2::Extent property within the MapControl’s OnMouseDown
event to create “Zoom In’ functionality.

e setting the Envelope of the IMapControl2::FullExtent property into the
IMapControl2::Extent property to create ‘Full Extent’ functionality. This code
could be placed within the Click event of command button supplied by the
development environment.

Alternatively, the controls commands that are provided with ArcGIS Engine, or
any custom commands that make use of either the HookHelper, SceneHookHelper,
or GlobeHookHelper objects will work directly with an individual ArcGIS Control.
However, the developer becomes responsible for calling [Command::OnCreate and
1Command::OnClick methods at the appropriate times and reading properties on
the [Command interface to build up the user interface as follows:

* A new instance of a command is created programmatically and the individual
ArcGIS Control is passed to the OnCreate event. For example, if the 3D
“Z.0oom FullExtent” command is to work with the GlobeControl, the
GlobeControl must be passed as the ‘hook’ to the OnCreate method.

e A developer can use the CommandPool object without the ToolbarControl in
order to manage the commands used by an application. The CommandPool will
provide support for calling the OnCreate method of each command based on
its Hook property.

e If the command only implements the [Command interface, the developer can
call the OnClick method at the appropriate time to perform the specific action.
If the command is a tool that implements both the ICommand and ITvo/ inter-
faces the developer must set the tool to be the Currenflool in the ArcGIS

Chapter 3 * Developing with ArcGIS Controls * 53

BUILDING APPLICATIONS WITHOUT THE ToOooLBARCONTROL

54 « ArcGlIS Engine Developer Guide

Control. The ArcGIS Control will send any keyboard and mouse events to the
tool.

e A Command’s Enabled, Caption, and Bitmap properties can be read and set into

the properties of a command button supplied by the development environ-
ment to build up the user interface of the application.

While this approach to building applications requires more programming on the
behalf of the developer, building from scratch does allow more flexibility.

Developer
environments

ArcObjects is based on Microsoft’s Component Object Model. End users of ArcGIS
applications don’t necessarily have to understand COM, but if you're a developer
intent on developing applications based on ArcObjects or extending the existing
ArcGIS applications using ArcObjects, an understanding of COM is a requirement
even if you plan to use the C++, Java, or .NET APIs and not COM specifically. The
level of understanding required depends on the depth of customization or
development you wish to undertake.At a minimum, review the Microsoft
Component Object Model and Developing with ArcObjects sections and then

proceed to the later APl-specific section of your choice.

Each API-specific section introduces you to programming techniques of supported
languages and details advanced features particular to development with

ArcObjects.
Topics covered in this chapter include:

* the Microsoft Component Object Model * developing with ArcObjects ¢ Visual
Basic, both as a platform and as your development environment e Visual C++ ¢

the .NET API < the Java API * the C++ API

THE MicrosoFT CoMPONENT OBJEcT MoODEL

ESRI chose COM as the component technology
for ArcGIS because it is a mature technology that
offers good performance, many of today’s
development tools support it, and there are a
multitude of third-party components that can be
used to extend the functionality of ArcObjects.

The key to the success of components is that
they implement, in a very practical way, many of
the object-oriented principles now commonly
accepted in software engineering. Components
facilitate software reuse because they are self-
contained building blocks that can easily be
assembled into larger systems.

56 * ArcGIS Engine Developer Guide

Before discussing COM specifically, it is worth considering the wider use of soft-
ware components in general. There are a number of factors driving the motivation
behind software components, but the principal one is the fact that software devel-
opment is a costly and time-consuming venture.

In an ideal world, it should be possible to write a piece of code once and then
reuse it again and again using a variety of development tools, even in circum-
stances that the original developer did not foresee. Ideally, changes to the code’s
functionality made by the original developer could be deployed without requiring
existing users to change or recompile their code.

Early attempts at producing reusable chunks of code revolved around the creation
of class libraries, usually developed in C++. These eatly attempts suffered from
several limitations, notably difficulty of sharing parts of the system (it is very diffi-
cult to share binary C++ components—most attempts have only shared source
code), problems of persistence and updating C++ components without recompiling,
lack of good modeling languages and tools, and proprietary interfaces and
customization tools.

To counteract these and other problems, many software engineers have adopted
component-based approaches to system development. A software component is a
binary unit of reusable code.

Several different but overlapping standards have emerged for developing and
sharing components. For building interactive desktop applications, Microsoft’s
COM is the de facto standard. On the Internet, JavaBeans is viable technology. At
a coarser grain appropriate for application-level interoperability, the Object
Management Group (OMG) has specified the common object request broker
architecture (CORBA).

To understand COM (and therefore all COM-based technologies), it’s important
to realize that it isn’t an object-oriented language but a protocol or standard.
COM is more than just a technology; it is a methodology of software develop-
ment. COM defines a protocol that connects one software component, or mod-
ule, with another. By making use of this protocol, it’s possible to build reusable
software components that can be dynamically interchanged in a distributed
system.

COM also defines a programming model, known as interface-based programming;
Objects encapsulate the manipulation methods and the data that characterize each
instantiated object behind a well-defined interface. This promotes structured and
safe system development since the client of an object is protected from knowing any
of the details of how a particular method is implemented. COM doesn’t specify
how an application should be structured. As an application programmer working
with COM, language, structure, and implementation details are left up to you.

COM does specify an object model and programming requirements that enable
COM objects to interact with other COM objects. These objects can be within a
single process, in other processes, or even on remote machines. They can be
written in other languages and may have been developed in very different ways.
That is why COM is referred to as a binary specification or standard—it is a
standard that applies after a program has been translated to binary machine code.

THE MiIcrRosoFT CoMPONENT OBJEcT MODEL

COM allows these objects to be reused at a binary level, meaning that third party
developers do not require access to source code, header files, or object libraries in
order to extend the system even at the lowest level.

COMPONENTS, OBJECTS, CLIENTS, AND SERVERS

Different texts use the terms components, objects, clients, and servers to mean
different things. (To add to the confusion, various texts refer to the same thing
using all of these terms.) Therefore, it is worthwhile to define the terminology
that this book will use.

COM is a client/server architecture. The server (or object) provides some func-
tionality, and the client uses that functionality. COM facilitates the communica-
tion between the client and the object. An object can at the same time be a server
to a client and be a client of some other object’s services.

Objects are instances of COM classes that

make services available for use by a client. Hence]]
it is normal to talk of clients and objects instead Client > Server / Client > Server
of clients and servers.These objects are often VBApp.exe ArcMap.exe Map.dil

referred to as COM objects and component
objects.This book will refer to them simply as . . L . .
objects. The client and its servers can exist in the same process or in a different process

space. In-process servers are packaged in Dynamic Link Library (DLL) form, and
these DLLs are loaded into the client’s address space when the client first accesses
the server. Out-of-process servers are packaged in executables (EXE) and run in
their own address space. COM makes the differences transparent to the client.

When creating COM objects, the developer must be aware of the type of server
that the objects will reside in, but if the creator of the object has implemented
them correctly, the packaging does not affect the use of the objects by the client.

There are pros and cons to each method of packaging that are symmetrically
opposite. DLLs are faster to load into memory, and calling a DLL function is
faster. EXEs, on the other hand, provide a more robust solution (if the server

Client and server

process space . . . o .
myDLL yourDLL fails, the client will not crash), and security is better handled since the server has
= % its own security context.
client server

MyC In a distributed system, EXEs are more flexible, and it does not matter if the

Objects inside an in-process server are accessed server has a different byte ordering from the client. The majority of ArcObjects

directly by their clients. - N
servers are packaged as in-process servers (DLLs). Later, you will see the perfor-
mance benefits associated with in-process servers.
process space process space
X ~I°“rE’§§ In a COM system, the client, or user of functionality, is completely isolated from
" o the provider of that functionality, the object. All the client needs to know is that
- — = the functionality is available; with this knowledge, the client can make method
y
Objects Insidlé an OUL.ORpTOCess Server are calls to the object and expect the object to honor them. In this way, COM is said

accessed by COM-supplied proxy objects which

ATANUTA TR to act as a contract between client and object. If the object breaks that contract,

the behavior of the system will be unspecified. In this way, COM development is

process space process space based on trust between the implementer and the user of functionality.
myEXE yourEXE
*3%% In the ArcGIS applications there are many objects that provide, via their inter-
client server faces, thousands of properties and methods. When you use the ESRI object
MyComp YourComp libraries you can assume that all these properties and interfaces have been fully
acsebsfgft')';s'cdg,:lﬁ:;ﬁ;ﬂxif,sﬁ;z ¥y implemented, and if they are present on the object diagrams, they are there to

make access transparent to the client. The COM

run-time handles the remoting layer use.

Chapter 4 » Developer environments * 57

THE MicrosoFT CoMPONENT OBJEcT MODEL

IUnknown
InterfaceA
IUnknown

H
IClassFactory H

IUnknown
InterfaceB
IUnknown

ImevlfaceB

IUnknown

IClassFactory

A server is a binary file that contains all the
code required by one or more COM classes. This
includes both the code that works with COM to
instantiate objects into memory and the code to

perform the methods supported by the objects
contained within the server.

Create GUID =] |
e e e
Ezzt:dmloyoursoulcecodel. Choose "Exit” when New GUID
~ GUID Fomat Exit

1. IMPLEMENT_OLECREATE(.)
2. DEFINE_GUIDL..]

3 static const stuct GUID ={ . }

(¢ 4 Registy Format ie. {usmme s e}

~ Result
{DFE2EECT-023E-4atc-OES1-FE42EECEED 14}

GUIDGEN.EXE is a utility that ships with
Microsoft’s Visual Studio and provides an easy-to-
use user interface for generating GUIDs. It can
be found in the directory <VS Install
Dir>\Common\Tools.

The acronym GUID is commonly pronounced
“gwid”.

58 ¢ ArcGIS Engine Developer Guide

CLASS FACTORY

Within each server there is an object called a class factory that the COM runtime
interacts with in order to instantiate objects of a particular class. For every
corresponding COM class there is a class factory. Normally, when a client requests
an object from a server, the appropriate class factory creates a new object and
passes out that object to the client.

SINGLETON OBJECTS

While this is the normal implementation, it is not the only implementation pos-
sible. The class factory can also create an instance of the object the first time and,
with subsequent calls, pass out the same object to clients. This type of implemen-
tation creates what is known as a singleton object since there is only one instance
of the object per process.

GLOBALLY UNIQUE IDENTIFIERS

A distributed system potentially has many thousands of interfaces, classes, and
servers, all of which must be referenced when locating and binding clients and
objects together at runtime. Clearly, using human-readable names would lead to
the potential for clashes, hence COM uses Globally Unique Identifiers (GUIDs),
128 bit numbers that are virtually guaranteed to be unique in the world. It is
possible to generate 10 million GUIDs per second until the year 5770 A.D., and
cach one would be unique.

The COM API defines a function that can be used to generate GUIDs; in addi-
tion, all COM-compliant development tools automatically assign GUIDs when
appropriate. GUIDs are the same as Universally Unique Identifiers (UUIDs),
defined by the Open Group’s Distributed Computing Environment (DCE) speci-
fication. Below is a sample GUID in registry format.

{E6BDAA76-4D35-11D0-98BE-00805F7CED21}

COM CLASSES AND INTERFACES

Developing with COM means developing using interfaces, the so-called interface-
based programming model. All communication between objects is made via their
interfaces. COM interfaces are abstract, meaning there is no implementation
associated with an interface; the code associated with an interface comes from a
class implementation. The interface sets out what requests can be made of an
object that chooses to implement the interface.

How an interface is implemented differs between objects. Thus the objects
inherit the type of interface, not its implementation, which is called type inherit-
ance. Functionality is modeled abstractly with the interfaces and implemented
within a class implementation. Classes and interfaces are often referred to as the
“what” and “how” of COM. The interface defines what an object can do, and the
class defines how it is done.

COM classes provide the code associated with one or more interfaces, thus encap-
sulating the functionality entirely within the class. Two classes can both have the
same interface, but they may implement them quite differently. By implementing
these interfaces in this way, COM displays classic object-oriented polymorphic
behavior. COM does not support the concept of multiple inheritance; however,
this is not a shortcoming since individual classes can implement multiple inter-

THE MicrosoFT CoMPONENT OBJEcT MODEL

faces. See the diagram to the left on polymorphic behavior.

Workspace- |

Factory Within ArcObjects are three types of classes that the developer must be aware of:

abstract classes, coclasses, and classes. An abstract class cannot be created; it is

solely a specification for instances of subclasses (through type inheritance).
ArcObjects Dataset or Geometry classes are examples of abstract classes. An
object of type Geometry cannot be created, but an object of type Polyline can.
This Polyline object in turn implements the interfaces defined within the Geom-
etry base class, hence any interfaces defined within object-based classes are acces-

sible from the coclass.

This is a simplified portion of the geodatabase A coclass is a publicly creatable class. In other words, it is possible for COM to
object model showing type inheritance among

abstract classes and coclasses and instantiation of X A i
classes. for the client to use the services defined by the interfaces of that class. A class

create an instance of that class and give the resultant object to the client in order

cannot be publicly created, but objects of this class can be created by other
objects within ArcObjects and given to clients to use.

To the left is a diagram that illustrates the polymorphic behavior exhibited in
COM classes when implementing interfaces. Notice that both the Human and
Parrot classes implement the [1a/k interface. The ITalk interface defines the
methods and properties, such as Starflalking, Stoplalking, or Language, but clearly
the two classes implement these differently.

INSIDE INTERFACES

COM interfaces are how COM objects communicate with each other. When
working with COM objects, the developer never works with the COM object
directly but gains access to the object via one of its interfaces. COM interfaces
are designed to be a grouping of logically related functions. The virtual functions
are called by the client and implemented by the server; in this way an object’s
interfaces are the contract between the client and object. The client of an object
is holding an interface pointer onto that object. This interface pointer is referred
to as an opaque pointer since the client cannot gain any knowledge of the imple-

mentation details within an object or direct access to an object’s state data. The
client must communicate through the member functions of the interface. This
allows COM to provide a binary standard through which all objects can effec-

IWalk tively communicate.
IDeath))]
|Death Interfaces allow developers to model functionality abstractly. Visual C++ devel-

|Death opers see interfaces as a collection of pure virtual functions, while Visual Basic

developers see an interface as a collection of properties, functions, and subrou-

This diagram shows how common behavior, tines.

expressed as interfaces, can be shared among
multiple objects, animals in this example, to The concept of the interface is fundamental in COM. The COM Specification

support polymorphism. (Microsoft, 1995) emphasizes these four points when discussing COM interfaces:

1. An interface is not a class. An interface cannot be instantiated by itself since it
carries no implementation.

2. An interface is not an object. An interface is a related group of functions and
is the binary standard through which clients and objects communicate.

Chapter 4 * Developer environments * 59

THE MicrosoFT CoMPONENT OBJEcT MODEL

An interface’s permanence is not restricted to
simply its method signatures, but it extends to
its semantic behavior as well. For example, an
interface defines two methods, A and B, with no
restrictions placed on their use. It breaks the
COM contract if at a subsequent release
Method A requires that Method B be executed
first.A change like this would force possible
recompilations of clients.

The name IlUnknown came from a 1988
internal Microsoft paper called Object Archi-
tecture: Dealing with the Unknown — or —

Type Safety in a Dynamically Extensible Class
Library.

60 * ArcGIS Engine Developer Guide

3. Interfaces are strongly typed. Every interface has its own interface identifier,
thereby eliminating the possibility of a collision between interfaces of the
same human-readable name.

4. Interfaces are immutable. Interfaces are never versioned. Once defined and
published, an interface cannot be changed.

Once an interface has been published, it is not possible to change the external
signature of that interface. It is possible at any time to change the implementa-
tion details of an object that exposes an interface. This change may be a minor
bug fix or a complete reworking of the underlying algorithm; the clients of the
interface do not care since the interface appears the same to them. This means
that when upgrades to the servers are deployed in the form of new DLLs and
EXE:s, existing clients need not be recompiled to make use of the new function-
ality. If the external signature of the interface is no longer sufficient, a new
interface is created to expose the new functions. Old or deprecated interfaces are
not removed from a class to ensure all existing client applications can continue to
communicate with the newly upgraded server. Newer clients will have the choice
of using the old or new interfaces.

THE IUNKNOWN INTERFACE

All COM interfaces derive from the [Unknown interface, and all COM objects
must implement this interface. The [Unknown interface performs two tasks: it
controls object lifetime and provides runtime type support. It is through the
1Unknown interface that clients maintain a reference on an object while it is in
use—leaving the actual lifetime management to the object itself.

Object lifetime is controlled with two methods, AddRef and Release, and an
internal reference counter. Every object must have an implementation of
1Unknown in order to control its own lifetime. Anytime an interface pointer is
created or duplicated, the AddRef method is called, and when the client no
longer requires this pointer, the corresponding Release method is called. When the
reference count reaches zero, the object destroys itself.

Clients also use IUnknown to acquire other interfaces on an object. Querylnterface is
the method that a client calls when another interface on the object is required.
When a client calls Querylnterface, the object provides an interface and calls
AddRef. In fact, it is the responsibility of any COM method that returns an
interface to increment the reference count for the object on behalf of the caller.
The client must call the Release method when the interface is no longer needed.
The client calls AddRef explicitly only when an interface is duplicated.

When developing a COM object, the developer must obey the rules of
Querylnterface. These rules dictate that interfaces for an object are symmetric,
transitive, and reflexive and are always available for the lifetime of an object. For
the client this means that, given a valid interface to an object, it is always valid to
ask the object, via a call to Querylnterface, for any other interface on that object
including itself. It is not possible to support an interface and later deny access to
that interface, perhaps because of time or security constraints. Other mechanisms

THE MicrosoFT CoMPONENT OBJEcT MODEL

interfaces
are reflexive G

interfaces <
are symmetric

The rules of QuerylInterface dictate that
interfaces of an object are reflexive, symmetric,
and transitive. It is always possible, holding a
valid interface pointer on an object, to get any
other interface on that object.

interfaces
are transitive

The method Querylnterface is often referred
to by the abbreviation QI.

Since IlUnknown is fundamental to all COM
objects, in general there are no references to
IUnknown in any of the ArcObjects documenta-
tion and class diagrams.

Smart pointers are a class-based smart type and
are covered in detail later in this chapter.

MIDL is commonly referred to simply as IDL.

The IDL defines the public interface that
developers use when working with ArcObjects.
When compiled, the IDL creates a type library.

must be used to provide this level of functionality. Some classes support the
concept of optional interfaces. Depending on the coclass, they may optionally
implement an interface; this does not break this rule since the interface is either
always available or always not available on the class.

When requested for a particular interface, the Querylnterface method can return an
already assigned piece of memory for that requested interface, or it can allocate a
new piece of memory and return that. The only case when the same piece of
memory must be returned is when the IUnknown interface is requested. When
comparing two interface pointers to see if they point to the same object, it is
important that a simple comparison not be performed. To correctly compare two
interface pointers to see if they are for the same object, they both must be que-
ried for their IUnknown, and the comparison must be performed on the [Unknown
pointers. In this way, the IUnknown interface is said to define a COM object’s
identity.

It’s good practice in Visual Basic to call Rekase explicitly by assigning an interface
equal to Nothing to release any resources it’s holding. Even if you don’t call Re-
Jease, Visual Basic will automatically call it when you no longer need the object—
that is, when it goes out of scope. With global variables, you must explicitly call
Release. In Visual Basic, the system performs all these reference-counting opera-
tions for you, making the use of COM objects relatively straightforward.

In C++, however, you must increment and decrement the reference count to
allow an object to correctly control its own lifetime. Likewise, the Querylnterface
method must be called when asking for another interface. In C++ the use of
smart pointers simplifies much of this. These smart pointers are class based and
hence have appropriate constructors, destructors, and overloaded operators to
automate much of the reference counting and query interface operations.

INTERFACE DEFINITION LANGUAGE

Microsoft Interface Definition Language (MIDL) is used to describe COM objects
including their interfaces. This MIDL is an extension of the Interface Definition
Language (IDL) defined by the Distributed Computing Environment (DCE), where
it used to define remote procedure calls between clients and servers. The MIDL
extensions include most of the Object Definition Language (ODL) statements and
attributes. ODL was used in the early days of OLE Automation for the creation of
type libraries.

TYPE LIBRARY

A type library is best thought of as a binary version of an IDL file. It contains a
binary description of all coclasses, interfaces, methods, and types contained within a
Server or servers.

There are several COM interfaces provided by Microsoft that work with type
libraries. Two of these interfaces are ITypelnfo and ITypelib. By utilizing these
standard COM interfaces, various development tools and compilers can gain
information about the coclasses and interfaces supported by a particular library.

In order to support the concept of a language-independent development set of
components, all relevant data concerning the ArcObjects libraries is shipped
inside type libraries. There are no header files, source files, or object files supplied
or needed by external developers.

Chapter 4 » Developer environments * 61

THE MicrRosoFT CoMPONENT OBJEcT MODEL

outbound interface
inbound interface

interface

interface

In the diagrams in this book and the ArcObjects
object model diagrams, outbound interfaces are
depicted with a solid circle on the interface jack.

The reason for making lUnknown the default
interface is because the VB object browser hides
information for the default interface.The fact
that it hides lUnknown is not important forVB
developers.

62 « ArcGIS Engine Developer Guide

INBOUND AND OUTBOUND INTERFACES

Interfaces can be either inbound or outbound. An inbound interface is the most
common kind—the client makes calls to functions within the interface contained
on an object. An outbound interface is one where the object makes calls to the
client—a technique analogous to the traditional callback mechanism.

There are differences in the ways these interfaces are implemented. The implementer
of an inbound interface must implement all functions of the interface; failure to do
so breaks the contract of COM. This is also true for outbound interfaces. If you use
Visual Basic, you don’t have to implement all functions present on the interface
since it provides stub methods for the methods you don’t implement. On the other
hand, if you use C++ you must implement all the pure virtual functions to compile
the class.

Connection points is a specific methodology for working with outbound COM
interfaces. The connection point architecture defines how the communication

between objects is set up and taken down. Connection points are not the most
efficient way of initializing bidirectional object communication, but they are in
common use because many development tools and environments support them.

Dispatch event interfaces

There are some objects with ArcObjects that support two outbound event inter-
faces that look similar to the methods they support. An example of two such
interfaces are the IDocumentEvents and the IDocumentEventsDisp. The “Disp” suffix
denotes a pure Dispatch interface. These dispatch interfaces are used by VBA when
dealing with certain application events, such as loading documents. A VBA program-
mer works with the dispatch interfaces, while a developer using another develop-
ment language uses the nonpure dispatch interface. Since these dispatch event
interfaces are application specific, the details are discussed in the application chap-
ters of the book, not the framework chapter.

Default interfaces

Every COM object has a default interface that is returned when the object is
created if no other interface is specified. All the objects within the ESRI object
libraries have [Unknown as their default interface, with a few exceptions.

The default interface of the Application object for both ArcCatalog and ArcMap is
the LApplication interface. These uses of nonlUnknown default interfaces are a
requirement of Visual Basic for Applications and are found on the ArcMap and
ArcCatalog application-level objects.

This means that variables that hold interface pointers must be declared in a
certain way. For more details, see the coding sections later in this chapter. When
COM objects are created, any of the supported interfaces can be requested at
creation time.

THE MicrosoFT CoMPONENT OBJEcT MODEL

IDispatch interface
COM supports three types of binding:

1. Late. This is where type discovery is left until runtime. Method calls made by

o . the client but not implemented by the object will fail at execution time.
Binding is the term given to the process of ’

matching the location of a function given a

>

ID. Method IDs are stored at compile time, but execution of the method is
pointer to an object. still performed through a higher-level function.

3. Custom vTable (early). Binding is performed at compile time. The client can
then make method calls directly into the object.

P —— s — The IDispatch interface supports late- and ID-binding languages. The [Dispatch

Binding ype DL DL interface has methods that allow clients to ask the object what methods it sup-
Late binding 22250 5,000

— ports.
[Custom vTable binding | 825000 | 20000 |

)) Assuming the required method is supported, the client executes the method by
This table shows the number of function calls R X . . . ’

that can be made per second on a typical calling the IDispatch::Invoke method. This method, in turn, calls the required
Pentium® lll machine. method and returns the status and any parameters back to the client on comple-

tion of the method call.

Cleatly, this is not the most efficient way to make calls on a COM object. Late
binding requires a call to the object to retrieve the list of method IDs; the client
must then construct the call to the Invoke method and call it. The Invoke method

Custom - Map .
must then unpack the method parameters and call the function.

vTable
QUERTEizEs All these steps add significant overhead to the time it takes to execute a method.
1Unknown AdldREf In addition, every object must have an implementation for IDispatch, which
Release . . -
makes all objects larger and adds to their development time.
Name
IMap Description ID binding offers a slight improvement over late binding in that the method IDs
pareaOfimerect are cached at compile time, which means the initial call to retrieve the IDs is not

required. However, there is still significant call overhead because the

Dual - Application : i K . X
IDispatch::Invoke method is still called in order to execute the required method on

vTable

Querylnterface the object.
IUnknown AddRef T ST
Relea:e Early binding, often referred to as custom vTable binding, does not use the

1Dispatch interface. Instead, a type library provides the required information at

GetTypelnfoCount
compile time to allow the client to know the layout of the server object. At

GetTypelnfo

/—/\ﬁ/—Aﬁ —

IDispatch GetlDsOfNames runtime, the client makes method calls directly into the object. This is the fastest
Invoke method of calling object methods and also has the benefit of compile-time type
Name checking.
1Application: Document

Objects that support both IDispatch and custom vTable are referred to as dual
interface objects. The object classes within the ESRI object libraries do not

StatusBar

These diagrams summarize the custom and implement the [Dispatch interface; this means that these object libraries cannot be
IDispatch interfaces for two classes in used with late-binding scripting languages such as JavaScript or VBScript since

ArcObjects.The layout of the vTable displays the . .
differences. It also ilustrates the importance of these languages require that all COM servers accessed support the [Dispareh

implementing all methods—if one method is interface.

missing, the vTable will have the wrong layout, . . N .
and hence, the wrong function pointer would be Careful examination of the ArcGIS class diagrams indicates that the Application

returned to the client, resulting in a system objects support [Dispatch because there is a requirement in VBA for the IDispatch
crash. interface.

Chapter 4 » Developer environments * 63

THE MiIcrRosoFT CoMPONENT OBJEcT MODEL

Interfaces that directly inherit from an interface
other than |Unknown cannot be implemented
inVB.

COM

. O IUnknown
containment

class

method1
method2

interface2 o—¢ method3
method4
COM

aggregation

interfacel O

IUnknown (controlling)
child class —

parent class

class
interfacel o method1
method2
interface2 O—¢{ method3
method4
Custom O lUnknown
feature
class
interfacel © method3
method4
&
interface2 O methodl
method2
interface3 © method5
method6

interface4 O—p¢{ method7
method8

64 + ArcGlIS Engine Developer Guide

All ActiveX controls support [Dispatch. This means it is possible to use the vari-
ous ActiveX controls shipped with ArcObjects to access functionality from
within scripting environments.

INTERFACE INHERITANCE

An interface consists of a group of methods and properties. If one interface
inherits from another, then all of the methods and properties in the parent are
directly available in the inheriting object.

The underlying principle here is interface inheritance, rather than the implementa-
tion inheritance you may have seen in languages such as SmallTalk and C++. In
implementation inheritance, an object inherits actual code from its parent; in
interface inheritance, it’s the definitions of the methods of the object that are
passed on. The coclass that implements the interfaces must provide the imple-
mentation for all inherited interfaces.

Implementation inheritance is not supported in a heterogencous development
environment because of the need to access source and header files. For reuse of
code, COM uses the principles of aggregation and containment. Both of these are
binary-reuse techniques.

AGGREGATION AND CONTAINMENT

For a third-party developer to make use of existing objects, using either contain-
ment or aggregation, the only requirement is that the server housing the contained
or aggregated object is installed on both the developer and target release ma-
chines. Not all development languages support aggregation.

The simplest form of binary reuse is containment. Containment allows modifica-
tion of the original object’s method behavior but not the method’s signature.
With containment, the contained object (inner) has no knowledge that it is
contained within another object (outer). The outer object must implement all the
interfaces supported by the inner. When requests are made on these interfaces,
the outer object simply delegates them to the inner. To support new functionality,
the outer object can either implement one of the interfaces without passing the
calls on or implement an entirely new interface in addition to those interfaces
from the inner object.

COM aggregation involves an outer object that controls which interfaces it
chooses to expose from an inner object. Aggregation does not allow modification
of the original object’s method behavior. The inner object is aware that it is being
aggregated into another object and forwards any Querylnterface calls to the outer
(controlling) object so that the object as a whole obeys the laws of COM.

To the clients of an object using aggregation, there is no way to distinguish which
interfaces the outer object implements and which interfaces the inner object
implements.

Custom features make use of both containment and aggregation. The developer
aggregates the interfaces where no customizations are required and contains those
that are to be customized. The individual methods on the contained interfaces can
then either be implemented in the customized class, thus providing custom function-
ality, or the method call can be passed to the appropriate method on the contained
interface.

THE MicrosoFT CoMPONENT OBJEcT MODEL

Aggregation is important in this case since there are some hidden interfaces defined
on a feature that cannot be contained. For mote information on custom features, see
Volume 2, Chapter 8, ‘Accessing the geodatabase’.

Visual Basic 6 does not support aggregation, so it can’t be used to create custom
features.

THREADS, APARTMENTS, AND MARSHALING

A thread is a process flow through an application. There are potentially many
threads within Windows applications. An apartment is a group of threads that

Although an understanding of apartments and work with contexts within a process. With COM+, a context l?elqngs to one
threading is not essential in the use of apartment. There are potentially many types of contexts; security is an example

ArcObjects, basic knowledge will help you of a type of context. Before successfully communicating with each other, objects
understand some of the implications with certain

development environments highlighted later in
this chapter. COM supports two types of apartments: single-threaded apartment and

multithreaded apartment (MTA). COM+ supports the additional thread-neutral
apartment (TNA). A process can have any number of ST As; each process creates
one STA called the main apartment. Threads that are created as apartment
threaded are placed in an STA. All user-interface code is placed in an STA to
prevent deadlock situations. A process can only have one MTA. A thread that is
started as multithreaded is placed in the MTA. The TNA has no threads perma-
nently associated with it; rather, threads enter and leave the apartment when
appropriate.

must have compatible contexts.

In-process objects have an entry in the registry, the ThreadingModel, that informs
the COM service control manager (SCM) into which apartment to place the

Apartments object. If the object’s requested apartment is compatible with the creator’s apart-
process space ment, the object is placed in that apartment; otherwise, the SCM will find or

Singl(o threaded apartment Thread create the appropriate apartment. If no threading model is defined, the object

main apartment) neutra . . R . .
’ £O | |apartment will be placed in the main apartment of the process. The ThreadingModel registry

Sl i s entry can have the following values:

L 1. Apartment. Object must be executed within the STA. Normally used by UL

Single threaded apartment objects.

L 2. Free. Object must be executed within the MTA. Objects creating threads are
Multi-threaded apartment normaﬂy placed in the MTA.
© J®) 3. Both. Object is compatible with all apartment types. The object will be created
in the same apartment as the creator.

Think of the SCM (pronounced scum) as the 4. Neutral. Objects must execute in the TNA. Used by objects to ensure there is
COM runtime environment.The SCM interacts no thread switch when called from other apartments. This is only available
with ob]eclts, servers, and the operating sys.tem under COM+.
and provides the transparency between clients

and the objects that they work with. Marshaling enables a client to make interface function calls to objects in other

apartments transparently. Marshaling can occur between COM apartments on
different machines, between COM apartments in different process spaces, and
between COM apartments in the same process space (STA to MTA, for example).
COM provides a standard marshaler that handles function calls that use automa-
tion-compliant data types (see table below). Nonautomation data types can be

Chapter 4 « Developer environments * 65

THE MicrosoFT CoMPONENT OBJEcT MODEL

handled by the standard marshaler as long as proxy stub code is generated; other-
wise, custom-marshaling code is required.

Type Description

Boolean | Data item that can have the value True or False

unsigned char | 8-bit unsigned data item

double | 64-bit IEEE floating-point number

float | 32-bit IEEE floating-point number

int | Signed integer, whose size is system dependent

long | 32-bit signed integer

short | 16-bit signed integer

BSTR | Length-prefixed string
CURRENCY | 8-byte, fixed-point number

DATE | 64-bit, floating-point fractional number of days since Dec 30, 1899
SCODE | For 16-bit systems - Built-in error that corresponds to VT_ERROR

Typedef enum myenum | Signed integer, whose size is system dependent

Interface IDispatch * | Pointer to the IDispatch interface

Interface IUnknown * | Pointer to an interface that does not derive from IDispatch

dispinterface Typename * | Pointer to an interface derived from IDispatch

Coclass Typename * | Pointer to a coclass name (VT_UNKNOWN)

[ol ion] interface Typ * | Pointer to an interface that derives from IDispatch

SAFEARRAY(TypeName) | TypeName is any of the above types. Array of these types

TypeName* | TypeName is any of the above types. Pointer to a type

96-bit unsigned binary integer scaled by a variable power of 10. A decimal data

Decimal N f . .
type that provides a size and scale for a number (as in coordinates)

COMPONENT CATEGORY

Component categories are used by client applications to find all COM classes of a
particular type that are installed on the system efficiently. For example, a client
application may support a data export function in which you can specify the
output format—a component category could be used to find all the data export
classes for the various formats. If component categories are not used, the applica-
tion has to instantiate each object and interrogate it to see if it supports the
required functionality, which is not a practical approach. Component categories
support the extensibility of COM by allowing the developer of the client applica-
tion to create and work with classes that belong to a particular category. If at a
later date a new class is added to the category, the client application need not be
changed to take advantage of the new class; it will automatically pick up the new
class the next time the category is read.

COM AND THE REGISTRY

COM makes use of the Windows system registry to store infor-
;i Registry Editor =] EX ’

Fle 2t Uew Feiorss ey mation about the various parts that compose a COM system. The
esriCarto.Featwelndex =) [Wame [ype [Deta I : . .
Des,,ca,mmu,e,mx.l R ey rr— classes, interfaces, DLLs, EXEs, type libraries, and so forth, are
B0l oot eseore . all given unique identifiers (GUIDs) that the SCM uses when
o ferencing th T le of thi
) 01 i FeatweLapersols referencing these components. To see an example of this, run
iCarto.FeatureLayerel . . .
sataredns regedit, then open HKEY_CLASSES_ROOT. This opens a list
23 esticarta. Fieldinfo. 1 .
T —c of all the classes registered on the system.
{21 estiCarta, FormattedGridLat
T[S - COM makes use of the registry for a number of housekeeping
My ComputerHKEY_CLASSES ROOT!esriCarto.Featurelayer 1{CLSID A . . .
tasks, but the most important and most easily understood is
ESRI keys in the Windows system registry the use of the registry when instantiating COM objects into memory. In the

66 * ArcGlIS Engine Developer Guide

THE MicrosoFT CoMPONENT OBJEcT MODEL

The function DIIGetClassObject is the function
that makes a DLL a COM DLL. Other functions,
such as DlIRegisterServer and
DllUnregisterServer, are nice to have but not
essential for a DLL to function as a COM DLL.

simplest case, that of an in-process server, the steps are as follows:
1. Client requests the services of a COM object.

2. SCM looks for the requested objects registry entry by searching on the class ID
(a GUID).

3. DLL is located and loaded into memory. The SCM calls a function within the
DLL called D//GetClassObect, passing the desired class as the first argument.

4. The class object normally implements the interface IC/assFactory. The SCM
calls the method Createlnstance on this interface to instantiate the appropriate
object into memory.

5. Finally, the SCM asks the newly created object for the interface that the client
requested and passes that interface back to the client. At this stage, the SCM
drops out of the equation, and the client and object communicate directly.

From the above sequence of steps, it is easy to imagine how changes in the
object’s packaging (DLL versus EXE) make little difference to the client of the
object. COM handles these differences.

AUTOMATION

Automation is the technology used by individual objects or entire applications to
provide access to their encapsulated functionality via a late-bound language.
Commonly, automation is thought of as writing macros, where these macros can
access many applications in order for a task to be done. ArcObjects, as already
stated, does not support the IDispatch interface; hence, it cannot be used alone
by an automation controller.

It is possible to instantiate an instance of ArcMap by cocreating the document
object and making calls into ArcMap via the document object or one of its
connected objects. There are, however, problems with this approach since the
automation controller instance and the ArcMap instance are running in separate
processes. Many of the objects contained within ArcObjects are process depen-
dent, and therefore simple Automation will not work.

Chapter 4 » Developer environments * 67

DEVELOPING WITH ARcCOBJECTS

For simplicity, some samples will not follow the
coding standards.As an example, it is recom-
mended that when coding in Visual Basic, all

types defined within an ESRI object library are
prefixed with the library name, for example,
esriGeometry.|Polyline.This is only done in
samples where a name clash will occur. Omit-
ting this text makes the code easier to under-
stand for developers new to ArcObjects.

68 * ArcGIS Engine Developer Guide

ArcGIS applications are built using ArcObjects and can be developed via several
APIs. These include COM (VB, VC++, Delphi™, MainWin), NET (VBNET and
C#), Java, and C++. Some APIs are more suitable than others for developing
certain applications. This is briefly discussed later, but you should also read the
appropriate developer guide for the product you are working with for more
information and recommendations on which API to use.

The subsequent sections of this chapter cover some general guidelines and consid-
erations when developing with ArcObjects regardless of the API. Some of the
more common API languages each have a section describing the development
environment, programming techniques, resources, and other issues you must
consider when developing with ArcObjects.

CODING STANDARDS

Each of the language-specific sections begins with a section on coding standards
for that language. These standards are used internally at ESRI and are followed by
the samples that ship with the software.

To understand why standards and guidelines are important, consider that in any
large software development project, there are many backgrounds represented by
the team members. Each programmer has personal opinions concerning how code
should look and be built. If each programmer engineers code differently, it be-
comes increasingly difficult to share work and ideas. On a successful team, the
developers adapt their coding styles to the tone set by the group. Often, this
means adapting one’s code to match the style of existing code in the system.

Initially, this may seem burdensome, but adopting a uniform programming style
and set of techniques invariably increases software quality. When all the code in a
project conforms to a standard set of styles and conventions, less time is wasted
learning the particular syntactic quirks of individual programmers, and more time
can be spent reviewing, debugging, and extending the code. Even at a social level,
uniform style encourages team-oriented, rather than individualist, outlooks—
leading to greater team unity, productivity, and ultimately, better software.

GENERAL CODING TIPS AND RESOURCES

This section on general coding tips will benefit all developers working with
ArcObjects no matter what language they are using. Code examples are shown in
VBA, however.

Class diagrams

Getting help with the object model is fundamental to successfully working with
ArcObjects. The appendix, ‘Reading the object model diagrams’, provides a
detailed introduction of the class diagrams and shows many of the common
routes through the objects. The class diagrams are most useful if viewed in the
carly learning process in printed form. This allows developers to appreciate the
overall structure of the object model implemented by ArcObjects. When you are
comfortable with the overall structure, the PDF files included with the softwatre
distribution can be mote effective to work with. The PDF files are searchable;
you can use the Search dialog box in Acrobat Reader to find classes and interfaces
quickly.

DEVELOPING WITH ARcCcOBJECTS

Object browsers

In addition to the class diagram PDF files, the type library information can be
viewed using a number of object browsers depending on your development
platform.

Visual Basic and .NET have built-in object browsers; OLEView (a free utility
from Microsoft) also displays type library information. The best object viewer to
use in this environment is the ESRI object viewer. This object viewer can be used
to view type information for any type library that you reference within it. Infor-
mation on the classes and interfaces can be displayed in Visual Basic, Visual C++,
or object diagram format. The object browsers can view coclasses and classes but
cannot be used to view abstract classes. Abstract classes are only viewable on the
object diagrams, where their use is solely to simplify the models.

Java and C++ developers should refer to the ArcObjects JavaDoc or ArcGIS
Developer Help.

Component help

All interfaces and coclasses are documented in the component help file. Ulti-
mately, this will be the help most commonly accessed when you get to know the
object models better.

For Visual Basic and .NET developers this is a compiled HTML file that can be
viewed by itself or when using an IDE. If the cursor is over an ESRI type when
the F1 key is pressed, the appropriate page in the ArcObjects Class Help in the
ArcGIS Developer Help system is displayed in the compiled HTML viewer.

For Java and C++ developers, refer to ArcObjects JavaDoc or ArcGIS Developer
Help system

Code wizards

There are a number of code generation wizards available to help with the cre-

ation of boiler plate code in Visual Basic, Visual C++, and .NET. While these

wizards are useful in removing the tediousness in common tasks, they do not

excuse you as the developer from understanding the underlying principles of the
generated code. The main objective should be to read the accompanying docu-
mentation and understand the limitations of these tools.

» Indexing of collections

" All collection-like objects in ArcObjects are zero-based for their indexing. This is
not the case with all development environments; Visual Basic has both zero- and
one-based collections. As a general rule, if the collection base is not known,
assume that the collection base is zero. This ensures that a runtime error will be
raised when the collection is first accessed (assuming the access of the collection
does not start at zero). Assuming a base of one means the first element of a zero-
This graph shows the performance benefits of based collection would be missed and an error would only be raised if the end of

accessing a collection using an enumerator the collection were reached when the code is executed.
opposed to the elements index.As expected, the

graph shows a classic power trend line (y=cx®).

.
Py r Yy y

Chapter 4 » Developer environments * 69

DEVELOPING WITH ARcCcOBJECTS

Exception handling is language specific, and since
COM is language neutral, exceptions are not
supported.

70 « ArcGlIS Engine Developer Guide

Accessing collection elements

When accessing elements of a collection sequentially, it is best to use an enumera-
tor interface. This provides the fastest method of walking through the collection.
The reason for this is that each time an element is requested by index, internally
an enumerator is used to locate the element. Hence, if the collection is looped
over getting cach clement in turn, the time taken increases by power (y=cxP).

Enumerator use

When requesting an enumerator interface from an object, the client has no idea
how the object has implemented this interface. The object may create a new
enumerator, or it may decide for efficiency to return a previously created enu-
merator. If a previous enumerator is passed to the client, the position of the
clement pointer will be at the last accessed element. To ensure that the enumera-
tor is at the start of the collection, the client should reset the enumerator before
use.

Error handling

All methods of interfaces, in other words, methods callable from other objects,
should handle internal errors and signify success or failure via an appropriate
HRESULT. COM does not support passing exceptions out of interface method
calls. COM supports the notion of a COM exception. A COM exception utilizes
the COM error object by populating it with relevant information and returning an
appropriate HRESULI to signify failure. Clients, on receiving the HRESULT,
can then interrogate the COM Error object for contextual information about the
error. Languages, such as Visual Basic, implement their own form of exception
handling. For more information, see the appropriate API language that you are
developing with.

Notification interfaces

There are a number of interfaces in ArcObjects that have no methods. These are
known as notification interfaces. Their purpose is to inform the application
framework that the class that implements them supports a particular set of
functionality. For instance, the application framework uses these interfaces to
determine if a menu object is a root-level menu (IRoofLevelMenz) or a context
menu (IShortentMenu).

Client-side storage

Some ArcObjects methods expect interface pointers to point to valid objects
prior to making the method call. This is known as client storage since the client
allocates the memory needed for the object before the method call. Say you have
a polygon, and you want to get its bounding box. To do this, use the
QueryEnvelope method on IPohgon. 1f you write the following code:

Dim pEnv As IEnvelope

pPolygon.QueryEnvelope pEnv
you’ll get an error because the QueryEnvelgpe method expects you (the client) to
create the Envelgpe. The method will modify the envelope you pass in and return
the changed one back to you. The correct code is shown below.

DEVELOPING WITH ARcCcOBJECTS

Dim pEnv As IEnvelope

Set pEnv = New Envelope

pPolygon.QueryEnvelope pEnv
How do you know when to create and when not to create? In general, all meth-
ods that begin with “Query”, such as QueryEnvelope, expect you to create the
object. If the method name is GerEnvelope, then an object will be created for you.
The reason for this client-side storage is performance. Where it is anticipated that
the method on an object will be called in a tight loop, the parameters need only
be created once and simply populated. This is faster than creating new objects
inside the method each time.

Property by value and by reference
Occasionally, you will see a property that can be set by value or by reference,
meaning that it has both a pur XXX and a putref XXX method. On first appear-
ance this may seem odd—why does a property need to support both? A Visual
C++ developer sees this as simply giving the client the opportunity to pass own-
ership of a resource over to the server (using the putref XXX method). A Visual
Basic developer will see this as quite different; indeed, it is likely because of the
Visual Basic developer that both By Reference and By 1Value are supported on the
property.
To illustrate this, assume there are two text boxes on a form, Textl and Text2.
With a propput, it is possible to do the following in Visual Basic:

Textl.text = Text2.text
It is also possible to write this:

Textl.text = Text2

ot this:
Textl = Text2

DISPIDs are unique IDs given to properties and All these cases make use of the progpput method to assign the text string of text
mf;‘h"dsl in "I'I’d:’ for the 'DiSPatC;‘] "’(';e’fa‘e;" box Text2 to the text string of text box Textl. The second and third cases work
efficiently call the appropriate method using the . . » . . :
Invoke method. be'cause, since no specific property is stated, Visual Basic looks for the property
with a DISPID of 0.

This all makes sense assuming that it is the text string property of the text box
that is manipulated. What happens if the actual object referenced by the variable
Text2 is to be assigned to the variable Text1? If there was only a propput method
it would not be possible, hence the need for a propputref method. With the
propputref method, the following code will achieve the setting of the object
reference.

Notice the use of the “Set”. Set Textl = Text2

Initializing Outbound interfaces

When initializing an Outbound interface, it is important to only initialize the
variable if the variable does not already listen to events from the server object.
Failure to follow this rule will result in an infinite loop.

As an example, assume there is a variable |7ewEvents that has been dimensioned
as:

Private WithEvents ViewEvents As Map

Chapter 4 » Developer environments * 71

DEVELOPING WITH ARcCcOBJECTS

72 « ArcGIS Engine Developer Guide

To correctly sink this event handler, you can write code within the OnClick event
of a UI button control, like this:
Private Sub UIButtonControll_Click()

Dim pMxDoc As IMxDocument

Set pMxDoc = ThisDocument

' Check to see that the map is different than what is currently connected
If (Not ViewEvents Is pMxDoc.FocusMap) Then
' Sink the event since listener has not been initialized with this map
Set ViewEvents = pMxDoc.FocusMap
End If
End Sub

Notice in the above code the use of the Is keyword to check for object identity.

DATABASE CONSIDERATIONS

When programming against the database, there are a number of rules that must
be followed to ensure that the code will be optimal. These rules are detailed
below.

If you are going to edit data programmatically, that is, not use the editing tools in
ArcMap, you need to follow these rules in order to ensure that custom object
behavior (such as network topology maintenance or triggering of custom feature-
defined methods) is correctly invoked in response to the changes your application
makes to the database. You must also follow these rules in order to ensure that
your changes are made within the multiuser editing (long transaction) framework.

Edit sessions

Make all changes to the geodatabase within an edit session, which is bracketed
between StartEditing and StopEditing method calls on the IWorkspaceEdit interface
found on thelWorkspace object.

This behavior is required for any multiuser update of the database. Starting an
edit session gives the application a state of the database that is guaranteed not to
change, except for changes made by the editing application.

In addition, starting an edit session turns on behavior in the geodatabase such that
a query against the database is guaranteed to return a reference to an existing
object in memory if the object was previously retrieved and is still in use.

This behavior is required for correct application behavior when navigating be-
tween a cluster of related objects while making modifications to objects. In other
words, when you are not within an edit session, the database can create a new
instance of a COM object each time the application requests a particular object
from the database.

Edit operations

Group your changes into edit operations, which are bracketed between the
StartEditOperation and StopEditOperation method calls on the [WorkspaceEdit inter-
face.

DEVELOPING WITH ARcCcOBJECTS

You may make all your changes within a single edit operation if so required. Edit
operations can be undone and redone. If you are working with data stored in
ArcSDEF, creating at least one edit operation is a requirement. There is no addi-
tional overhead to creating an edit operation.

Recycling and nonrecycling cursors

Use nonrecycling search cursors to select or fetch objects that are to be updated.
Recycling cursors should only be used for read-only operations, such as drawing
and querying features.

Nonrecycling cursors within an edit session create new objects only if the object
to be returned does not already exist in memory.

Fetching properties using query filters

Always fetch all properties of the object; query filters should always use “*”. For
cfficient database access, the number of properties of an object retrieved from
the database can be specified. As an example, drawing a feature requires only the
OID and the Shape of the feature, hence the simpler renderers only retrieve these
two columns from the database. This optimization speeds up drawing but is not
suitable when editing features.

If all properties are not fetched, then object-specific code that is triggered may
not find the properties that the method requires. For example, a custom feature
developer might write code to update attributes A and B whenever the geometry
of a feature changes. If only the geometry was retrieved, then attributes A and B
would be found to be missing within the Or#Changed method. This would cause
the OnChanged method to return an error, which would cause the S7ore to return
an error and the edit operation to fail.

Marking changed objects

After changing an object, mark the object as changed (and ensure that it is up-
dated in the database) by calling S7ore on the object. Delete an object by calling
the Delete method on the object. Set versions of these calls also exist and should
be used if the operation is being performed on a set of objects to ensure optimal
performance.

Calling these methods guarantees that all necessary polymorphic object behavior
built into the geodatabase is executed (for example, updating of network topol-
ogy or updating of specific columns in response to changes in other columns in
ESRI-supplied objects). It also guarantees that developer-supplied behavior is
correctly triggered.

Update and insert cursors

Never use update cursors or insert cursors to update or insert objects into object
and feature classes in an already loaded geodatabase that has active behavior.

Update and insert cursors are bulk cursor APIs for use during initial database
loading. If used on an object or feature class with active behavior, they will
bypass all object-specific behavior associated with object creation (such as topol-
ogy creation) and with attribute or geometry updating (such as automatic recalcu-
lation of other dependent columns).

Chapter 4 » Developer environments * 73

DEVELOPING WITH ARcCcOBJECTS

Application

2.

a
1

Database

The diagram above clearly shows that the
Feature, which is a COM object, has another
COM object for its geometry.The Shape
property of the feature simply passes the
IGeometry interface pointer to this geometry
object out to the caller that requested the
shape.This means that if more than one client
requested the shape, all clients point to the
same geometry object. Hence, this geometry
object must be treated as read-only. No changes
should be performed on the geometry returned
from this property, even if the changes are
temporary.Anytime a change is to be made to a
feature’s shape, the change must be made on
the geometry returned by the ShapeCopy
property, and the updated geometry should
subsequently be assigned to the Shape property.

74 < ArcGIS Engine Developer Guide

Shape and ShapeCopy geometry property

Make use of a Feature object’s Shape and ShapeCopy properties to optimally re-
trieve the geometry of a feature. To better understand how these properties relate
to a feature’s geometry, refer to the diagram to the left to see how features com-
ing from a data source are instantiated into memory for use within an application.

Features are instantiated from the data source using the following sequence:

1. The application requests a Fearure object from a data source by calling the
appropriate geodatabase API method calls.

2. The geodatabase makes a request to COM to create a vanilla COM object of
the desired COM class (normally this class is es7iGeoDatabase Feature).

3. COM creates the Featnre COM object.

4. The geodatabase gets attribute and geometry data from a data source.

5. The vanilla Feature object is populated with appropriate attributes.

6. The Geometry COM object is created and a reference is set in the Feature object.
7. The Feature object is passed to the application.

8. The Feature object exists in the application until it is no longer required.

USING A TYPE LIBRARY

Since objects from ArcObjects do not implement IDispatch, it is essential to make
use of a type library in order for the compiler to early-bind to the correct data
types. This applies to all development environments, although for Visual Basic,
Visual C++, and .NET, there are wizards that help you set this reference.

The type libraries required by ArcObjects are located within the ArcGIS install
folder. For example, the COM type libraries can be found in the COM folder
while the NET Interop assemblies are within the DotNet folder. Many different
files can contain type library information, including EXEs, DLLs, OLE custom
controls (OCXs), and object libraries (OLBs).

COM DATA TYPES

COM objects talk via their interfaces, and hence, all data types used must be
supported by IDL. IDL supports a large number of data types; however, not all
languages that support COM support these data types. Because of this,
ArcObjects does not make use of all the data types available in IDL but limits the
majority of interfaces to the data type supported by Visual Basic. The table below
shows the data types supported by IDL and their corresponding types in a variety
of languages.

DEVELOPING WITH ARCOBJECTS

Language IDL Microsoft C++ Visual Basic Java
boolean unsigned char unsupported char
byte unsigned char unsupported char
small char unsupported char
short short Integer short
long long Long int
hyper __inté4 unsupported long
s float float Single float
double double Double double
char unsigned char unsupported char
wchar_t wchar_t Integer short
enum enum Enum int
Interface Pointer Interface Pointer Interface Ref. Interface Ref.
VARIANT VARIANT Variant ms.com.Variant
Extended BSTR BSTR String java.lang.String
P VARIANT_BOOL short (-1/0) Boolean [true/false]

Note the extended data types at the bottom of the table: IZ4RLANT, BSTR, and
VARIANT_BOOL. While it is possible to pass strings using data types like char
and wehar_t, these are not supported in languages such as Visual Basic. Visual
Basic uses BSTRs as its text data type. A BSTR is a length-prefixed wide charac-
ter array, where the pointer to the array points to the text contained within it and
not the length prefix. Visual C++ maps ZARLANT_BOOL values onto 0 and —1
for the False and True values, respectively. This is different from the normal
mapping of 0 and 1. Hence, when writing C++ code, be sure to use the correct
macros— ZARIANT _FAILSE and VARLANT _TRUE—not False and True.

USING COMPONENT CATEGORIES

Component categories are used extensively in ArcObjects so that developers can
extend the system without requiring any changes to the ArcObjects code that will
work with the new functionality.

ArcObjects uses component categories in two ways. The first requires classes to
be registered in the respective component category at all times, for example,
ESRI Mx Extensions. Classes, if present in that component category, have an
object that implements [Extension interface and are instantiated when the ArcMap
application is started. If the class is removed from the component category, the
extension will not load, even if the map document (MXD file) is referencing that
extension.

The second use is when the application framework uses the component category
to locate classes and display them to a user to allow some user customization to
occur. Unlike the first method, the application remembers (inside its map docu-
ment) the objects being used and will subsequently load them from the map
document. An example of this is the commands used within ArcMap. ArcMap
reads the ESRI Mx Commands category when the Customization dialog box is
displayed to the user. This is the only time the category is read. Once the user
selects a command and adds it to a toolbar, the map document is used to deter-
mine what commands should be instantiated. Later, when this chapter covers
debugging Visual Basic code, you’ll see the importance of this.

Now that you’ve seen two uses of component categories, you will see how to get
your classes registered into the correct component category. Development envi-
ronments have various levels of support for component categories; ESRI pro-

Chapter 4 » Developer environments * 75

DEVELOPING WITH ARcCcOBJECTS

Customize 7]
Teckars Commands | Opians |

Calegaries: Commands
Macios 2] [ES ouew Featues

Desorpion
Savein: [Nomeimt ¥] Kehoud. | Addfomiie. | Close |

The Customize dialog box in ArcMap and

ArcCatalog
& Component Categary Manager - 0[]
ﬁw L £t
esif ditcr. AnnolationE diEwiension
& esif ditor AttibutsWindow Acd Object...
5 esif ditor ConflictsWindow |
-3 esif ditor DimensionE ditE wtension
A8 esif ditor 5 ketchPropetiesWindom 4
-3 esif ditor. Traversewindow
Find Calegary
33 esiLocationll CalibrateRouteWindow [
85 esiLocationll RouleE vensE diE xension
esiLocalorll s |
& esiSurveyExt LinkCrdExt
Find Next
(23 ESRI Editar Propeily Pages
#- (] ESAI Ediar Tookars
(2] ESRI EdilTool Meny Cammands &
o E— ;IJ

[Tip: Sefect the kiect you wank to change.

The Component Category Manager

76 * ArcGlIS Engine Developer Guide

vides two ways of adding classes to a component category. The first can only be
used for Commands and command bars that are added to either ArcMap or
ArcCatalog. Using the Add From File button on the Customize dialog box
(shown to the left), it is possible to select a server. All classes in that server are
then added to either the ESRT Gx Commands or the ESRT Mx Commands,
depending on the application being customized. While this utility is useful, it is
limited since it adds all the classes found in the server. It is not possible to remove
classes, and it only supports two of the many component categories implemented
within ArcObjects.

Distributed with ArcGIS applications is a utility application called the Compo-
nent Category Manager, shown to the left. This small application allows you to
add and remove classes from any of the component categories on your system,
not just ArcObjects ones. Expanding a category displays a list of classes in the
category. You can then use the Add Object button to display a checklist of all the
classes found in the server. You check the required classes, and these checked
classes are then added to the category.

Using these ESRI tools is not the only method to interact with component
categories. During the installation of the server on the target user’s machine, it is
possible to add the relevant information to the Registry using a registry script.
Below is one such script. The first line tells Windows for which version of
regedit this script is intended. The last line, starting with “[HKEY_LOCAL_”,
executes the registry command; all the other lines are comments in the file.

REGEDIT4

; This Registry Script enters coclasses into their appropriate Component
Category

; Use this script during installation of the components

; Coclass: Exporter.ExportingExtension

; CLSID: {E233797D-020B-4AD4-935C-F659EB237065}

; Component Category: ESRI Mx Extensions
[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{E233797D-020B-4AD4-935C-
F659EB237065}\Implemented Categories\{B56A7C45-83D4-11D2-A2E9-080009B6F22B}]

The last line in the code above is one continuous line in the script.

The last method is for the self-registration code of the server to add the relevant
classes within the server to the appropriate categories. Not all development
environments allow this to be set up. Visual Basic has no support for component
categories, although there is an add-in that adds this functionality. See the sec-
tions on Visual Basic Developer Add-ins and Active Template Library (ATL) later
in this chapter.

The tables below summarize suggested
naming standards for the various ele-
ments of your Visual Basic projects.

Module Type Prefix

Form | frm

Class | cls

Standard bas

Project pri

Name your modules according to the overall
function they provide; do not leave any with
default names (such as “Form1”,“Class|”, or
“Module |”).Additionally, prefix the names of
forms, classes, and standard modules with three
letters that denote the type of module, as shown
in the table above.

Control Type Prefix

Check box chk

Combo box cbo

Command button cmd

Common dialog cdl

Form | frm

Frame | fra

Graph | gph
Grid | grd
Image | img

Image list iml

Label | Ibl

List box | Ist

H

List view

Map control map

Masked edit | msk

Menu | mnu

OLE client ole

Option button opt

Picture box pic

Progress bar pbr

Rich text box ref

Scroll bar | srl

Slider | sld

Status bar | sbr

Tab strip | tab

Textbox | txt

Timer | tmr

Tool bar | tbr

Treeview | tvw

As with modules, name your controls according
to the function they provide; do not leave them
with default names since this leads to decreased
maintainability. Use the three-letter prefixes
above to identify the type of the control.

THEVIsuAL BASIC ENVIRONMENT

This section is intended for both VB6 and VBA developers. Differences in the
development environments are clearly marked throughout the text.

USER INTERFACE STANDARDS
Consider preloading forms to increase the responsiveness of your application. Be

careful not to preload too many (preloading three or four forms is fine).

Use resource files (.res) instead of external files when working with bitmap files,
icons, and related files.

Make use of constructors and destructors to set variable references that are only
set when the class is loaded. These are the VB functions: Class_Initialize() and
Class_Terminate() or Form_ILoad() and Form_Unload)(). Set all variables to Nothing
when the object is destroyed.

Make sure the tab order is set correctly for the form. Do not add scroll bars to the
tabbing sequence; it is too confusing.

Add access keys to those labels that identify controls of special importance on the
form (use the Tablndex property).

Use system colors where possible instead of hard-coded colors.

Variable declaration

e Always use Oprion Explicit (or turn on Require Variable Declaration in the VB
Options dialog box). This forces all variables to be declared before use and
thereby prevents careless mistakes.

* Use Public and Private to declare variables at module scope and Di in local
scope. (Dim and Private mean the same at Module scope; however, using Private
is more informative.) Do not use Global anymore; it is available only for
backward compatibility with VB 3.0 and ecarlier.

* Always provide an explicit type for variables, arguments, and functions.
Otherwise, they default to [ariant, which is less efficient.

* Only declare one variable per line unless the type is specified for each variable.

This line causes count to be declared as a [Variant, which is likely to be unintended.
Dim count, max As Long

This line declares both count and max as Long, the intended type.
Dim count As Long, max As Long

These lines also declare count and max as Long and are more readable.

Dim count As Long
Dim max As Long

Parentheses
Use parentheses to make operator precedence and logic comparison statements
easier to read.

Result = ((x * 24) / (y / 12)) + 42
If ((Not pFoo Is Nothing) And (Counter > 200)) Then

Chapter 4 « Developer environments * 77

THEVIsuAaL BAsIC ENVIRONMENT

Use the following notation for naming variables

and constants:

[<libraryName.>][<scope_>]<type><name>

<name> describes how the variable is used or
what it contains.The <scope> and <type>
portions should always be lowercase, and the
<name> should use mixed case.

Library Name Library

esriGeometry

ESRI Object Library

stdole

Standard OLE COM Library

<empty>

Simple variable data type

<libraryName>

Prefix Variable scope

c | constant within a form or class

g

public variable defined in a class form or
standard module

m | private variable defined in a class or form

<empty>

local variable

<scope>

Prefix Data Type

o

Boolean

by

byte or unsigned char

double

function

>

handle

int (integer)

long

°

a pointer

©

string

<zype>

78 * ArcGlIS Engine Developer Guide

Order of conditional determination

Visual Basic, unlike languages such as C and C++, performs conditional tests on
all parts of the condition, even if the first part of the condition is Filse. This
means you must not perform conditional tests on objects and interfaces that had
their validity tested in an earlier part of the conditional statement.

' The following Tine will raise a runtime error if pFoo is NULL

If ((Not pFoo Is Nothing) And (TypeOf pFoo.Thing Is IBar)) then

End If

' The correct way to test this code is
If (Not pFoo Is Nothing) Then
If (TypeOf pFoo.Thing Is IBar) Then
' Perform action on IBar thing of Foo
End If
End If

Indentation

Use two spaces for indentation or a tab width of two. Since there is only ever
one editor for VB code, formatting is not as critical an issue as it is for C++ code.

Default properties

Avoid using default properties except for the most common cases. They lead to
decreased legibility.

Intermodule referencing

When accessing intermodule data or functions, always qualify the reference with
the module name. This makes the code more readable and results in more effi-
cient runtime binding,

Multiple property operations
When performing multiple operations against different properties of the same
object, use a With ... End With statement. It is more efficient than specifying the
object each time.
With frmHello
.Caption = "Hello world"
.Font = "Playbil11"
.Left = (Screen.Width - .Width) / 2
.Top = (Screen.Height - .Height) / 2
End With

Arrays
For arrays, never change Option Base to anything other than zero (which is the
default). Use LBound and UBound to iterate over all items in an array.
myArray = GetSomeArray
For i = LBound(myArray) To UBound(myArray)
MsgBox cstr(myArray(i))
Next I

THEViIsuAaL BAsic ENVIRONMENT

Bitwise operators

Since And, Or, and Not are bitwise operators, ensure that all conditions using
them test only for Boolean values (unless, of course, bitwise semantics are what
is intended).

If (Not pFoo Is Nothing) Then
' Valid Foo do something with it
End If
Type suffixes

Refrain from using type suffixes on variables or function names (such as #yS#ings
or Right§(myString)), unless they are needed to distinguish 16-bit from 32-bit
numbers.

Ambiguous type matching

For ambiguous type matching, use explicit conversion operators (such as CSzg,
CDbl, and CS1#), instead of relying on VB to pick which one will be used.

Simple image display
Use an ImageControl rather than a PictureBox for simple image display. It is much
more efficient.

Error handling

Always use On Error to ensure fault-tolerant code. For each function that does

Recovery
satemenc _Frequency Meaning error checking, use Oz Error to jump to a single error handler for the routine that
. Function failed, pass control . . L .
Bie Sub | usually back to caller deals with all exceptional conditions that are likely to be encountered. After the
Raise | often Raise a new error code in error handler processes the error—usually by displaying a message—it should
the caller's scope 7/
Error condition removed, proceed by issuing one of the recovery statements shown on the table to the left.
Resume rarely reattempt offending
statement Error handling in Visual Basic is not the same as general error handling in COM
Resume Ignore error and continue . . .
Next | V&7 " | itk next statement (see the section ‘Working with HRESULTS’).

Event functions

Refrain from placing more than a few lines of code in event functions to prevent
highly fractured and unorganized code. Event functions should simply dispatch to
reusable functions elsewhere.

Memory management

To ensure efficient use of memory resources, the following points should be
considered:

e Unload forms regularly. Do not keep many forms loaded but invisible since
this consumes system resources.

* Be aware that referencing a form-scoped variable causes the form to be
loaded.

* Set unused objects to Nozhing to free up their memory.

e Make use of Class_Initialize() and Class_Terminate() to allocate and destroy
resources.

Chapter 4 » Developer environments * 79

THEVIsuAaL BAsIC ENVIRONMENT

The VBVM was called the VB Runtime in earlier
versions of the software.

80 * ArcGIS Engine Developer Guide

While Wend constructs

Avoid While ... Wend constructs. Use the Do While ... Loop or Do Until ... Logp
instead because you can conditionally branch out of this construct.
pFoos.Reset
Set pFoo = pFoos.Next
Do While (Not pFoo Is Nothing)
If (pFoo.Answer = "Done") Then Exit Loop
Set pFoo = pFoos.Next
Loop

TheVisual BasicVirtual Machine

The Visual Basic Virtual Machine (VBVM) contains the intrinsic Visual Basic
controls and services, such as starting and ending a Visual Basic application,
required to successfully execute all Visual Basic developed code.

The VBVM is packaged as a DLL that must be installed on any machine wanting
to execute code written with Visual Basic, even if the code has been compiled to
native code. If the dependencies of any Visual Basic compiled file are viewed,
the file msvbvm60.dll is listed; this is the DLL housing the Virtual Machine.

For more information on the services provided by the VBVM, see the sections
‘Interacting with the IUnknown interface’ and ‘Working with HRESULTS’ in this
chapter.

Interacting with the IlUnknown interface

The section on COM contains a lengthy section on the IUnknown interface and
how it forms the basis on which all of COM is built. Visual Basic hides this
interface from developers and performs the required interactions (Querylnterface,
AddRef, and Release function calls) on the developet’s behalf. It achieves this
because of functionality contained within the VBVM. This simplifies develop-
ment with COM for many developers, but to work successfully with ArcObjects,
you must understand what the VBVM is doing.

Visual Basic developers are used to dimensioning variables as follows:

Dim pColn as New Collection 'Create a new collection object
PColn.Add "Foo", "Bar" 'Add element to collection

It is worth considering what is happening at this point. From a quick inspection
of the code it looks like the first line creates a collection object and gives the
developer a handle on that object in the form of pCo/n. The developer then calls a
method on the object Add. Eatlier in the chapter you learned that objects talk via
their interfaces, never through a direct handle on the object itself. Remember,
objects expose their services via their interfaces. If this is true, something isn’t
adding up.

What is actually happening is some “VB magic” performed by the VBVM and
some trickery by the Visual Basic Editor in the way that it presents objects and
interfaces. The first line of code instantiates an instance of the collection class,
then assigns the default interface for that object, _Collection, to the variable pColn.
It is this interface, _ Collection, that has the methods defined on it. Visual Basic has
hidden the interface-based programming to simplify the developer experience.

THEVIsuAaL BAsIC ENVIRONMENT

This is not an issue if all the functionality implemented by the object can be
accessed via one interface, but it is an issue when there are multiple interfaces on
an object that provides services.

The Visual Basic Editor backs this up by hiding default interfaces from the
IntelliSense completion list and the object browser. By default, any interfaces that
begin with an underscore, “_”, are not displayed in the object browser (to display
these interfaces, turn Show Hidden Member on, although this will still not dis-
play default interfaces).

You have already learned that the majority of ArcObjects have [Unknown as their
default interface and that Visual Basic does not expose any of [Unknown’s meth-
ods, namely, Querylnterface, AddRef, and Release. Assume you have a class Foo that
supports three interfaces, [Unknown (the default interface), [Foo, and IBar. This
means that if you were to dimension the variable pIvo as below, the variable pFoo
would point to the [Unknown interfaces.

Dim pFoo As New Foo ' Create a new Foo object

Since Visual Basic does not allow direct access to the methods of [Unknown, you
would immediately have to QI for an interface with methods on it that you can
call. Because of this, the correct way to dimension a variable that will hold
pointers to interfaces is as follows:

Dim pFoo As IFoo ' Variable will hold pointer to IFoo interface

Set pFoo = New Foo ' Create Instance of Foo object and QI for IFoo

Now that you have a pointer to one of the object’s interfaces, it is an easy matter
to request from the object any of its other interfaces.

Dim pBar as IBar 'Dim variable to hold pointer to interface

Set pBar = pFoo 'QI for IBar interface

By convention, most classes have an interface with the same name as the class
with an “I” prefix; this tends to be the interface most commonly used when
working with the object. You are not restricted to which interface you request
when instantiating an object; any supported interface can be requested, hence the
code below is valid.

Dim pBar as IBar

Set pBar = New Foo 'CoCreate Object

Set pFoo = pBar 'QI for interface

Objects control their own lifetime, which requires clients to call AddRef anytime
an interface pointer is duplicated by assigning it to another variable and to call
Release anytime the interface pointer is no longer required. Ensuring that there are
a matching number of _AddRefs and Releases is important, and fortunately, Visual
Basic performs these calls automatically. This ensures that objects do not “leak”.
Even when interface pointers are reused, Visual Basic will correctly call release on
the old interface before assigning the new interface to the variable. The code
below illustrates these concepts; note the reference count on the object at the
various stages of code execution.

Chapter 4 » Developer environments ¢ 81

THEVIsuAaL BAsIC ENVIRONMENT

See Visual Basic Magic sample on the disk for
this code.You are encouraged to run the sample
and step though the code.This object also uses
an ATL C++ project to define the SimpleObject
and its interfaces; you are encouraged to look at
this code to learn a simple implementation of a
C++ATL object.

82 + ArcGIS Engine Developer Guide

Private Sub VBMagic()
' Dim a variable to the IUnknown interface on the simple object
Dim pUnk As IUnknown

' Co Create simpleobject asking for the IUnknown interface
Set pUnk = New SimpleObject 'refCount =1

' We need access to methods lets QI for a useful interface
' Define the interface we are to request
Dim pMagic As ISimpleObject

' Perform the QI operation
Set pMagic = punk 'refCount = 2

' Dim another variable to hold another interface on the object
Dim pMagic2 As IAnotherInterface

' QI for that interface
Set pMagic2 = pMagic 'refCount = 3

' Release the interface pointer
Set pMagic2 = Nothing 'refCount = 2

' Release the interface
Set pMagic = Nothing 'refCount = 1

' Now reuse the pUnk variable - what will VB do for this?
Set pUnk = New SimpleObject 'refCount = 1, then 0, then 1

' Let the interface variable go out of scope and VB to tidy up
End Sub 'refCount = 0
Often interfaces have properties that are actually pointers to other interfaces.
Visual Basic allows you to access these properties in a shorthand fashion by
chaining interfaces together. For instance, assume that you have a pointer to the
1Foo interface, and that interface has a property called Gak that is an IGak inter-
face with the method DoSomething(). You have a choice on how to access the
DoSomething method. The first method is the long-handed way.

Dim pGak as IGak

Set pGak = pFoo 'Assign IGak interface to Tocal variable

pGak.DoSomething 'Call method on IGak interface

Alternatively, you can chain the interfaces and accomplish the same thing on one
line of code.

pFoo.Gak.DoSomething 'Call method on IGak interface
When looking at the sample code, you will see both methods. Normally the
former method is used on the simpler samples, as it explicitly tells you what

interfaces are being worked with. More complex samples use the shorthand
method.

THEVIsuAaL BAsIC ENVIRONMENT

This technique of chaining interfaces together can always be used to get the value
of a property, but it cannot always be used to set the value of a property. Inter-
face chaining can only be used to set a property if all the interfaces in the chain
are set by reference. For instance, the code below would execute successfully.

Dim pMxDoc As ImxDocument

Set pMxDoc = ThisDocument

pMxDoc . FocusMap . Layers(0) .Name = "Foo"
The above example works because both the Layer of the Map and the Map of the
document are returned by reference. The lines of code below would not work
since the Extent envelope is set by value on the active view.

pMxDoc.ActiveView.Extent.Width = 32

The reason that this does not work is that the VBVM expands the interface chain
in order to get the end property. Because an interface in the chain is dealt with by
value, the VBVM has its own copy of the variable, not the one chained. To set
the Width property of the extent envelope in the above example, the VBVM
must write code similar to this:

Dim pActiveView as IActiveView

Set pActiveView = pMxDoc.ActiveView

Dim pEnv as IEnvelope
Set pEnv = pActiveView.Extent ' This is a get by value,

PEnv.Width = 32 ' The VBVM has set its copy of the Extent and not
' the copy inside the ActiveView

For this to work the VBVM requires the extra line below.

pActiveView.Extent = pEnv ' This is a set by value,

Accessing ArcObjects

You will now see some specific uses of the create instance and query interface
To find out what library an ArcObject is in, operations that involve ArcObjects. To use an ArcGIS object in Visual Basic or
review the object model diagrams or the VBA, you must first reference the ESRI library that contains that object. If you
developer help or use the LibraryLocator tool in are using VBA inside of ArcMap or ArcCatalog, most of the common ESRI
your developer kit tools directory. . K
object libraries are already referenced for you. In standalone Visual Basic applica-
tions or components you will have to manually reference the required libraries.

You will start by identifying a simple object and an interface that it supports. In
this case, you will use a Point object and the [Point interface. One way to set the
coordinates of the point is to invoke the PutCoords method on the [Point interface
and pass in the coordinate values.

Dim pPt As IPoint

Set pPt = New Point

pPt.PutCoords 100, 100

1ID is short for Interface Identifier, a GUID. The first line of this simple code fragment illustrates the use of a variable to hold

a reference to the interface that the object supports. The line reads the IID for
the IPoint interface from the ESRI object library. You may find it less ambiguous
(as per the coding guidelines), particularly if you reference other object libraries
in the same project to precede the interface name with the library name, for
example:

Dim pPt As esriGeometry.IPoint

Chapter 4 » Developer environments * 83

THEVIsuAaL BAsIC ENVIRONMENT

Coclass is an abbreviation of component object
class.

A Ql is required since the default interface of
the object is IUnknown. Since the pPt variable
was declared as type |Point, the default
IUnknown interface was QI'd for the IPoint
interface.

Microsoft Yisual Basic

& Compile error:

Method or data member not found

This is the compilation error message shown
when a method or property is not found on an
interface.

84 + ArcGIS Engine Developer Guide

That way, if there happens to be another [Point referenced in your project, there
won’t be any ambiguity as to which one you are referring to.

The second line of the fragment creates an instance of the object or coclass, then
performs a QI operation for the [Point interface that it assigns to pPz.

With a name for the coclass as common as Point, you may want to precede the
coclass name with the library name, for example:

Set pPt = New esriGeometry.Point

The last line of the code fragment invokes the Pu#Coords method. If a method
can’t be located on the interface, an error will be shown at compile time.

Working with HRESULTs

So far you have seen that all COM methods signify success or failure via an
HRESULT that is returned from the method; no exceptions are raised outside of
the interface. You have also learned that Visual Basic raises exceptions when
errors are encountered. In Visual Basic, HRESULTs are never returned from
method calls, and to confuse you further when errors do occur, Visual Basic
throws an exception. How can this be? The answer lies with the Visual Basic
Virtual Machine. It is the VBVM that receives the HRESULT; if this is anything
other than §_OK, the VBVM throws the exception. If it was able to retrieve any
worthwhile error information from the COM error object, it populates the Visual
Basic Err object with that information. In this way, the VBVM handles all
HRESULIT5 returned from the client.

When implementing interfaces in Visual Basic, it is good coding practice to raise
an HRESULT error to inform the caller that an error has occurred. Normally, this
is done when a method has not been implemented.

' Defined in Module

Const E_NOTIMPL = &H80004001 'Constant that represents HRESULT

'Added to any method not implemented

On Error GoTo 0

Err.Raise E_NOTIMPL

You must also write code to handle the possibility that an HRESULT other than
S_OK s returned. When this happens, an error handler should be called and the
error dealt with. This may mean simply telling the user, or perhaps it may mean
automatically dealing with the error and continuing with the function. The choice
depends on the circumstances. Below is a very simple error handler that will catch
any error that occurs within the function and report it to the user. Note the use
of the Err object to provide the user with some description of the error.
Private Sub Test()

On Error GoTo ErrorHandler

' Do something here

Exit Sub ' Must exit sub here before error handler
ErrorHandler:

Msgbox "Error In Application - Description " & Err.Description
End Sub

THEVIsuAaL BAsIC ENVIRONMENT

Working with properties

Some properties refer to specific interfaces in the ESRI object library, and other
properties have values that are standard data types, such as strings, numeric
expressions, Boolean values, and so forth. For interface references, declare an
interface variable and use the Sez statement to assign the interface reference to the
property. For other values, declare a variable with an explicit data type or use
Visual Basic’s ["ariant data type. Then, use a simple assignment statement to assign
the value to the variable.

Properties that are interfaces can either be set by reference or set by value. Prop-
erties that are set by value do not require the Sez statement.

Dim pEnv As IEnvelope

Set pEnv = pActiveView.Extent 'Get extent property of view

pEnv.Expand 0.5, 0.5, True 'Shrink envelope

pActiveView.Extent = pEnv 'Set By Value extent back on IActiveView

Dim pFeaturelLayer as IfeaturelLayer
Set pFeaturelLayer = New FeaturelLayer 'Create New Layer
Set pFeaturelLayer.FeatureClass = pClass 'Set ByRef a class into layer

As you might expect, some properties are read-only, others are write-only, and
still others are read—write. All the object browsers and the ArcObjects Class Help
(found in the ArcGIS Developer Help system) provide this information. If you
attempt to use a property and either forget or misuse the Sez keyword, Visual
Basic will fail the compilation of the source code with a method or “data mem-
ber not found error message”. This error may seem strange since it may be given
for trying to assign a value to a read-only property. The reason for the message is
that Visual Basic is attempting to find a method in the type library that maps to
the property name. In the above examples, the underlying method calls in the
type library are put_Extent and putref_FeatureClass.

Working with methods

Methods perform some action and may or may not return a value. In some in-
stances, a method returns a value that’s an interface; for example, in the code
fragment below, EditSelection returns an enumerated feature interface:

Dim pApp As TApplication

Dim pEditor As IEditor

Dim pEnumFeat As IEnumFeature 'Holds the selection

Dim pID As New UID

'Get a handle to the Editor extension

pID = "esriEditor.Editor"

Set pApp = Application

Set pEditor = pApp.FindExtensionByCLSID(pID)

'Get the selection

Set pEnumFeat = pEditor.EditSelection
In other instances, 2 method returns a Boolean value that reflects the success of
an operation or writes data to a parameter; for example, the DoModalOpen
method of GxDialog returns a value of True if a selection occurs and writes the
selection to an IEnumGxObject parameter.

Chapter 4 « Developer environments * 85

THEVIsuAaL BAsIC ENVIRONMENT

86 * ArcGIS Engine Developer Guide

Be careful not to confuse the idea of a Visual Basic return value from a method
call with the idea that all COM methods must return an HRESULT. The VBVM
is able to read type library information and set up the return value of the VB
method call to be the appropriate parameter of the COM method.

Working with events

Events let you know when something has occurred. You can add code to respond
to an event. For example, a command button has a Click event. You add code to
perform some action when the user clicks the control. You can also add events
that certain objects generate. VBA and Visual Basic let you declare a variable with
the keyword WithEvents. WithEvents tells the development environment that the
object variable will be used to respond to the object’s events. This is sometimes
referred to as an “event sink”. The declaration must be made in a class module or
a form. Here’s how you declare a variable and expose the events of an object in
the Declarations section:

Private WithEvents m_pViewEvents as Map

Visual Basic only supports one outbound interface (marked as the default out-
bound interface in the IDL) per coclass. To get around this limitation, the
coclasses that implement more than one outbound interface have an associated
dummy coclass that allows access to the secondary outbound interface. These
coclasses have the same name as the outbound interface they contain, minus the 1.
Private WithEvents m_pMapEvents as MapEvents
Once you’ve declared the variable, search for its name in the Object combo box
at the top left of the Code window. Then, inspect the list of events you can
attach code to in the Procedure/Events combo box at the top right of the Code
window.

Not all procedures of the outbound event interface need to be stubbed out, as
Visual Basic will stub out any unimplemented methods. This is different from
inbound interfaces, where all methods must be stubbed out for compilation to
occut.

Before the methods are called, the hookup between the event source and sink
must be made. This is done by setting the variable that represents the sink to the
event source.

Set m_pMapEvents = pMxDoc.FocusMap

Pointers to valid objects as parameters

Some ArcGIS methods expect interfaces for some of their parameters. The
interface pointers passed can point to an instanced object before the method call
or after the method call is completed.

For example, if you have a polygon (pPolygon) whose center point you want to
find, you can write code like this:

Dim pArea As IArea

Dim pPt As IPoint

Set pArea = pPolygon ' QI for IArea on pPolygon

Set pPt = pArea.Center

You don’t need to create pP# because the Center method creates a Point object for

THEVIsuAaL BAsIC ENVIRONMENT

you and passes back a reference to the object via its [Point interface. Only meth-
ods that use client-side storage require you to create the object prior to the
method call.

Passing data between modules

When passing data between modules it is best to use accessor and mutator func-

tions that manipulate some private member variable. This provides data encapsu-
lation, which is a fundamental technique in object-oriented programming, Public
variables should never be used.

For instance, you might have decided that a variable has a valid range of 1-100.
If you were to allow other developers direct access to that variable, they could
set the value to an illegal value. The only way of coping with these illegal values
is to check them before they get used. This is both error prone and tiresome to
program. The technique of declaring all variables private member variables of the
class and providing accessor and mutator functions for manipulating these vari-
ables will solve this problem.

In the example below, these properties are added to the default interface of the
class. Notice the technique used to raise an error to the client.

Private m_1Percentage As Long

Pub1ic Property Get Percentage() As Long
Percentage = m_1Percentage
End Property

Public Property Let Percentage(ByVal INewValue As Long)
If (INewvalue >= 0) And (INewValue <= 100) Then
m_1Percentage = 1NewValue
Else
Err.Raise vbObjectError + 29566, "MyProj.MyObject", _
"Invalid Percentage Value. Valid values (0 -> 100)"
End If
End Property

When you write code to pass an object reference from one form, class, or module
to another, for example:
Private Property Set PointCoord(ByRef pPt As IPoint)
Set m_pPoint = pPt
End Property
your code passes a pointer to an instance of the IPoint interface. This means that
you are only passing the reference to the interface, not the interface itself; if you
add the Byl“a/ keyword (as follows), the interface is passed by value.
Private Property Let PointCoord(ByVal pPt As IPoint)
Set m_pPoint = pPt
End Property
In both of these cases the object pointed to by the interfaces is always passed by
reference. In order to pass the object by value, a clone of the object must be
made, and that is passed.

Chapter 4 « Developer environments * 87

THEVIsuAaL BAsIC ENVIRONMENT

Using the TypeOf keyword

To check whether an object supports an interface, you can use Visual Basic’s
TypeOf keyword. For example, given an item selected in the ArcMap table of
contents, you can test whether it is a Featurelayer using the following code:

Dim pDoc As IMxDocument

Dim pUnk As IUnknown

Dim pFeatLyr As IGeoFeaturelLayer

Set pDoc = ThisDocument

Set pUnk = pDoc.SelectedItem

If TypeOf pUnk Is IGeoFeatureLayer Then ' can we QI for IGeoFeaturelLayer?

Set pFeatLyr = pUnk ' actually QI happens here
' Do something with pFeatLyr
End If

Using the Is operator

If your code requires you to compare two interface reference variables, you can
use the Is operator. Typically, you can use the Is operator in the following circum-
stances:

e To check if you have a valid interface.
Dim pPt As IPoint
Set pPt = New Point
If (Not pPt Is Nothing) Then 'a valid pointer?
... " do something with pPt
End If

* To check if two interface variables refer to the same actual object. Say you’ve
got two interface variables of type [Point, pPt1, and pP#2. Are they pointing to
the same object? If they are, then pPr7 Is pPr2.

The Is keyword works with the COM identity of an object. Below is an example
that illustrates the use of the Is keyword when finding out if a certain method on
an interface returns a copy of or a reference to the same real object.

In the following example, the Extent property on a map (IMap) returns a copy,
while the Activel zew property on a document (IMxDocument) always returns a
reference to the real object.

Dim pDoc As IMxDocument

Dim pEnvl As IEnvelope, pEnv2 as IEnvelope
Dim pActViewl As TActiveView

Dim pActView2 as TActiveView

Set pDoc = ThisDocument

Set pEnvl = pDoc.ActiveView.Extent
Set pEnv2 = pDoc.ActiveView.Extent
Set pActViewl = pDoc.ActiveView
Set pActView2 = pDoc.ActiveView

' Extent returns a copy,

' so pEnvl Is pEnv2 returns False
Debug.Print pEnvl Is pEnv2

' ActiveView returns a reference,

88 * ArcGIS Engine Developer Guide

THEVIsuAaL BAsIC ENVIRONMENT

Enumerators can support other methods, but
these two methods are common among all
enumerators.

so pActViewl Is pActView2
Debug.Print pActViewl Is pActView2

Iterating through a collection

In your work with ArcMap and ArcCatalog, you’ll discover that in many cases
you’ll be working with collections. You can iterate through these collections with
an enumerator. An enumerator is an interface that provides methods for travers-
ing a list of elements. Enumerator interfaces typically begin with IEnum and have
two methods: Nexz and Resez. Next returns the next element in the set and ad-
vances the internal pointer, and Resez resets the internal pointer to the beginning,

Here is some VBA code that loops through the selected features (IEnumeature) in
a map. To try the code, add the States sample layer to the map and use the Select
tool to select multiple features (drag a rectangle to do this). Add the code to a
VBA macro, then execute the macro. The name of each selected state will be
printed in the debug window.

Dim pDoc As IMxDocument
Dim pEnumFeat As IEnumFeature
Dim pFeat As IFeature
Set pDoc = ThisDocument
Set pEnumFeat = pDoc.FocusMap.FeatureSelection
Set pFeat = pEnumFeat.Next
Do While (Not pFeat Is Nothing)
Debug.Print pFeat.Value(pFeat.Fields.FindField("state_name"))
Set pFeat = pEnumFeat.Next
Loop
Some collection objects, the Visual Basic Collection being one, implement a
special interface called _NewEnum. This interface, because of the _ prefix, is
hidden, but Visual Basic developers can still use it to simplify iterating through a
collection. The Visual Basic For Each construct works with this interface to
perform the Reser and Next steps through a collection.
Dim pColn as Collection
Set pColn = GetCollection()' Collection returned from some function

Dim thing as Variant ' VB uses methods on _NewEnum to step through
For Each thing in pColn ' an enumerator.

MsgBox Cstr(thing)
Next

Chapter 4 « Developer environments * 89

THEVISUAL BASIC DEVELOPMENT ENVIRONMENT

The ESRIVB Add-In interface implementer can
be used to automate steps 3 and 4.

90 * ArcGIS Engine Developer Guide

In the previous section of this chapter, we focused primarily on how to write
code in the VBA development environment embedded within the ArcGIS Desk-
top applications. This section focuses on particular issues related to creating
ActiveX DLLs that can be added to the applications and writing external
standalone applications using the Visual Basic development environment.

Creating COM components

Most developers use Visual Basic to create a COM component that works with
ArcMap or ArcCatalog. Eatlier in this chapter you learned that since the ESRI
applications are COM clients—their architecture supports the use of software
components that adhere to the COM specification—you can build components
with different languages including Visual Basic. These components can then be
added to the applications easily. For information about packaging and deploying
COM components that you've built with Visual Basic, see the last section of this
chapter.

This section is not intended as a Visual Basic tutorial; rather, it highlights aspects
of Visual Basic that you should know in order to be effective when working with
ArcObjects.

In Visual Basic you can build a COM component that will work with ArcMap or
ArcCatalog by creating an ActiveX DLL. This section will review the rudimentary
steps involved. Note that these steps are not all-inclusive. Your project may
involve other requirements.

1. Start Visual Basic. In the New Project dialog box, create an ActiveX DLL
Project.

2. In the Properties window, make sure that the Instancing property for the
initial class module and any other class modules you add to the Project is set to
5—MultiUse.

3. Reference the ESRI Object Libraries that you will require.

4. Implement the required interfaces. When you implement an interface in a class
module, the class provides its own versions of all the public procedures speci-
fied in the type library of the interface. In addition to providing a mapping
between the interface prototypes and your procedures, the Implements state-
ment causes the class to accept COM Querylnterface calls for the specified
interface ID. You must include all the public procedures involved. A missing
member in an implementation of an interface or class causes an error. If you
don’t put code in one of the procedures in a class you are implementing, you
can raise the appropriate error (Const E_NOTIMPL = &H80004001). That
way, if someone else uses the class, they’ll understand that a member is not
implemented.

5. Add any additional code that’s needed.

6. Establish the Project Name and other properties to identify the component. In
the Project Properties dialog box, the Project Name you specify will be used
as the name of the component’s type library. It can be combined with the
name of each class the component provides to produce unique class names
(these names are also called ProgIDs). These names appear in the Component
Category Manager. Save the project.

THEVIsuAL BAsIC DEVELOPMENT ENVIRONMENT

7. Compile the DLL.

8. Set the component’s Version Compatibility to binary. As your code evolves, it’s

Visual Basic automatically generates the good practice to set the components to Binary Compatibility so, if you make
 necessary GUIDs for the dlasses, interfaces, and changes to a component, you'll be warned that you’re breaking compatibility.
libraries. Setting binary compatibility forces VB to P T N .

reuse the GUIDs from a previous compilation of For additional information, see the ‘Binary compatibility mode’ help topic in
the DLL.This is essential since ArcMap stores the Visual Basic online help.
the GUIDs of commands in the document for .
subsequent loading. 9. Save the project.

10. Make the component available to the application. You can add a component
to a document or template by clicking the Add from file button in the Cus-
tomize dialog box’s Commands tab. In addition, you can register a component
in the Component Category Manager.

Implementing interfaces

You implement interfaces differently in Visual Basic depending on whether they
are inbound or outbound interfaces. An outbound interface is seen by Visual
Basic as an event source and is supported through the WithEvents keyword. To
handle the outbound interface, LActivel iewEvents, in Visual Basic (the default
outbound interface of the Map class), use the WithEvents keyword and provide
appropriate functions to handle the events.

Private WithEvents ViewEvents As Map

Private Sub ViewEvents_SelectionChanged()
' User changed feature selection update my feature 1ist form
UpdateMyFeatureForm

End Sub

Inbound interfaces are supported with the Implements keyword. However, unlike
the outbound interface, all the methods defined on the interface must be stubbed
out. This ensures that the vTable is correctly formed when the object is instanti-
ated. Not all of the methods have to be fully coded, but the stub functions must
be there. If the implementation is blank, an appropriate return code should be
given to any client to inform them that the method is not implemented (see the
section ‘Working with HRESULTS’). To implement the [Extension interface, code
similar to below is required. Note that all the methods are implemented.
Private m_pApp As IApplication
Implements IExtension

Private Property Get IExtension_Name() As String

IExtension_Name = "Sample Extension"
End Property

Private Sub IExtension_Startup(ByRef initializationData As Variant)
Set m_pApp = initializationData
End Sub

Private Sub IExtension_Shutdown()

Set m_pApp = Nothing
End Sub

Chapter 4 » Developer environments * 91

THEVIsuAL BAsIC DEVELOPMENT ENVIRONMENT

Microsoft ¥isual Basic

& Compile error:

User-defined type not defined

Help

Project Format Debug Eun ¢
13 AddEorm
3 At o
| Add Module
) Add Class Mode
@ add user cortrl
(5] Add Broperty Page
18} Add User Document
Add wehClass
Add Data Report
Add DHTHL Page:
Add Data Environment
addFle. cul+n

Remove Class1

Camponents... Ctrl+T

Prafect] Praperties.
& ndd New Resouree File

References - Project]

Available References:
ESAI ArcT oolbox Query Buider Resourcs Lbrary = Cancel
%ESR\ #rcTaalbor T oolbos Resurce Library B Q
E5RI ArcToolbos Uiy Tooks
JESRI Cr-r Code Generation Wizard [CASE) i B,
() ESFH i Eude Generation Wizard R esaurce Libran J
et Loy +
j o o TectLina
SFI Caoe Tok GUI Looaleoton s Lbray | riarky
j ESAI Catlogll] Dbject Library Hep
| ESRI ContiolT oole3DAnalyst Object Library J
£GP ConvalTookPaatnsbelaston Dort bty
CJESRI Controll ooksG eneiic Obiect Library
I ESRI Conioll oolsGlobe Obiect Libiary
| E5RI ContolT oolsGiranhicE lement Oibect Libiary ﬁ
« >

ESRE Carto Object Library
Location: DA\ArcalSiComesriCarko,ob
Langusge: ~ Standard

Din plap 43 Ihap
Set plap - New i

<]

) MapEvents
) MapEvents?

& MapFrame

1 MapFrameLocatorFroperyPage
) MapFrameProperyPage

@ MapGraphicsLayerP roperyPage

After the applicable ESRI object libraries are
referenced, all the types contained within them
are available to Visual Basic. IntelliSense will
also work with the contents of the object
libraries.

92 + ArcGIS Engine Developer Guide

Setting references to the ESRI object libraries

The principal difference between working with the VBA development environ-
ment embedded in the applications and working with Visual Basic is that the
latter environment requires that you load the appropriate object libraries so that
any object variables that you declare can be found. If you don’t add the refer-
ence, you'll get the error message to the left. In addition, the global variables
ThisDocument and Application are not available to you.

Adding a reference to an object library

Depending on what you want your code to do, you may need to add several ESRI
object and extension libraries. You can determine what library an object belongs
to by reviewing the object model diagrams, searching developer help, or using the
Librarylocator tool located in the tools directory of your developer kit.

To display the References dialog box in which you can set the references you
need, select References in the Visual Basic Project menu.

After you set a reference to an object library by selecting the check box next to its
name, you can find a specific object and its methods and properties in the object
browser.

If you are not using any objects in a referenced library, you should clear the check
box for that reference to minimize the number of object references Visual Basic
must resolve, thus reducing the time it takes your project to compile. You should
not remove a reference for an item that is used in your project.

You can’t remove the “Visual Basic for Applications” and “Visual Basic objects
and procedures” references because they are necessary for running Visual Basic.

Referring to a document

Each VBA project (Normal, Project, TemplateProject) has a class called
ThisDocument, which represents the document object. Anywhere you write code
in VBA you can reference the document as ThisDocument. Further, if you are
writing your code in the ThisDocument Code window, you have direct access to all
the methods and properties on IDocument. This is not available in Visual Basic.
You must first get a reference to the Application and then the document. When
adding both extensions and commands to ArcGIS applications, a pointer to the
LApplication interface is provided.

Implements IExtension

Private m_pApp As IAppTlication

Private Sub IExtension_Startup(ByRef initializationData As Variant)
Set m_pApp = initializationData ' Assign IApplication
End Sub

Implements ICommand
Private m_pApp As IApplication

Private Sub ICommand_OnCreate(ByVal hook As Object)
Set m_pApp = hook ' QI for IApplication
End Sub

THEVIsuAL BAsIC DEVELOPMENT ENVIRONMENT

Now that a reference to the application is in an LApplication pointer member
variable, the document, and hence all other objects, can be accessed from any
method within the class.

Dim pDoc as IDocument
Set pDoc = m_pApp.Document
MsgBox pDoc.Name

Getting to an object

In the previous example, navigating around the objects within ArcMap was a
straightforward process since a pointer to the Application object, the root object
of most of the ArcGIS application’s objects, was passed to the object via one of
its interfaces. This, however, is not the case with all interfaces that are imple-
mented within the ArcObjects application framework. There are cases when you
may implement an object that exists within the framework and there is no possi-
bility to traverse the object hierarchy from that object. This is because very few
objects support a reference to their parent object (the IDocument interface has a

Singletons are objects that only support one Lo .
¢ ! yupp property named Parent that references the LApplication interface). In order to give

instance of the object.These objects have a class

factory that ensures that anytime an object is developers access to the application object, there is a singleton object that pro-
requested, a pointer to an already existing object vides a pointer to the running application object. The code below illustrates its
is returned.
use.

Dim pAppRef As New AppRef

Dim pApp as IApplication

Set pApp = pAppRef
You must be careful to ensure that this object is only used where the implementa-
tion will only ever run within ArcMap and ArcCatalog, For instance, it would not
be a good idea to make use of this function from within a custom feature since
that would restrict what applications could be used to view the feature class.

Running ArcMap with a command line argument

You can start ArcMap from the command line and pass it an argument that is
cither the pathname of a document (.mxd) or the pathname of a template
(.mxt). In the former case, ArcMap will open the document; in the latter case,
ArcMap will create a new document based on the template specified.

You can also pass an argument and create an instance of ArcMap by supplying
arguments to the Win32 API’s She/[Execute function or Visual Basic’s She// func-
tion as follows:

In Visual Basic, it is not possible to determine Dim ret As Variant
the command line used to start the application. ret = Shell("d:\arcgis\bin\arcmap.exe _
There is a sample on disk that provides this d:\arcgis\bin\templates\LetterPortrait.mxt", vbNormalFocus)
functionality. It can be found at <ArcGIS Devel- .
oper Kit install>\samples\COM By default, She// runs other programs asynchronously. This means that ArcMap
Techniques\Command Line. might not finish executing before the statements following the She// function are
executed.

To execute a program and wait until it is terminated, you must call three Win32
API functions. First, call the CreateProcessA function to load and execute
ArcMap. Next, call the WaitlorSingleObject function, which forces the operating
system to wait until ArcMap has been terminated. Finally, when the user has
terminated the application, call the CloseHandle function to release the

Chapter 4 » Developer environments * 93

THEVIsuAL BAsIC DEVELOPMENT ENVIRONMENT

priDemo - Project Properties

General| Make | Comple| Companert Debugaing |

Project Format Debug Run (
3 add Fom
1 Add|BT R
¢ add Module
%) Add Class Madue
“F add User Control
5] Add Froperty Page
@] Add User Document:
Add WebClass
Add Data Report.
Add DHTML Page
#Add Data Environment:
addFie.. CiHD

Remave dsHelobiap cks

8 References,
Components... Ctrl+T

priD ..
&' Add hew Resource File

[~ When this project

(" wsit for components to be created

(+ Stark program:

{7 Start component: =

" Start browser with URL:

[CitPragram Files|ESRIiArcInfolBini Arctiap. exe

[v Use existing browser

0K Cancel Help

youom| M TELE e OE B e B

94 + ArcGIS Engine Developer Guide

application’s 32-bit identifier to the system pool.

DEBUGGING VISUAL BASIC CODE

Visual Basic has a debugger integrated into its development environment. This is
in many cases a valuable tool when debugging Visual Basic code; however, in
some cases it is not possible to use the VB debugger. The use of the debugger and
these special cases are discussed below.

Running the code within an application

It is possible to use the Visual Basic debugger to debug your ArcObjects-based
source code even when ActiveX DILLs are the target server. The application that
will host your DLL must be set as the Debug application. To do this, select the
appropriate application, ArcMap.exe, for instance, and set it as the Start Program
in the Debugging Options of the Project Properties.

Using commands on the Debug toolbar, ArcMap can be started and the DLL
loaded and debugged. Break points can be set, lines stepped over, functions
stepped into, and variables checked. Moving the line pointer in the left-hand
margin can also set the current execution line.

Visual Basic debugger issues

In many cases, the Visual Basic debugger will work without any problems; how-
ever, there are two problems when using the debugger that is supplied with
Visual Basic 6. Both of these problems exist because of the way that Visual Basic
implements its debugger.

Normally when running a tool within ArcMap, the DLL is loaded into ArcMap
address space, and calls are made directly into the DLL. When debugging, this is
not the case. Visual Basic makes changes to the registry so that the class identifier
(CLSID) for your DLL does not point to your DLL but, instead, points to the
Visual Basic Debug DLL (VB6debugdll). The Debug DLL must then support all
the interfaces implemented by your class on the fly. With the VB Debug DLL
loaded into ArcMap, any method calls that come into the DLL are forwarded on
to Visual Basic, where the code to be debugged is executed. The two problems
with this are caused by the changes made to the Registry and the cross-process
space method calling. When these restrictions are first encountered, it can be
confusing since the object works outside the debugger or at least until it hits the
area of problem code.

Since the method calls made from ArcMap to the custom tool are across apart-
ments, there is a requirement for the interfaces to be marshaled. This marshaling
causes problems in certain circumstances. Most data types can be automatically
marshaled by the system, but there are a few that require custom code because
the standard marshaler does not support the data types. If one of these data types
is used by an interface within the custom tool and there is no custom marshaling
code, the debugger will fail with an “Interface not supported” error.

The registry manipulation also breaks the support for component categories. Any
time there is a request on a component category, the category manager within
COM will be unable to find your component because, rather than asking whether

THEVIsuAL BAsIC DEVELOPMENT ENVIRONMENT

your DLL belongs to the component category, COM is asking whether the VB
debugger DLL belongs to the component category, which it obviously doesn’t.
What this means is that anytime a component category is used to automate the
loading of a DLL, the DLL cannot be debugged using the Visual Basic debugger.

This obviously causes problems for many of the ways to extend the framework.
The most common way to extend the framework is to add a command or tool.
How component categories were used in this instance was discussed previously.
Remember the component category was only used to build the list of commands
in the dialog box. This means that if the command to be debugged is already
present on a toolbar, the Visual Basic debugger can be used. Hence, the procedure
for debugging Visual Basic objects that implement the [Command interface is to
ensure that the command is added to a toolbar when ArcMap is executed
standalone and, after saving the document, loading ArcMap through the
debugger.

In some cases, such as extensions and property pages, it is not possible to use the
Visual Basic debugger. If you have access to the Visual C++ debugger, you can
use one of the options outlined below. Fortunately, there are a number of ESRI
Visual Basic Add-ins that make it possible to track down the problem quickly and
effectively. The add-ins described below, in the section ‘Visual Basic Developer
Add-ins’, provide error log information including line and module details. A
sample output from an error log is given below; note the call stack information
along with line numbers.

Error Log saved on : 8/28/2000 - 10:39:04 AM

Record Call Stack Sequence - Bottom Tine is error Tine.

chkVisible_MouseUp C:\Source\MapControl\Commands\frmLayer.frm Line : 196
RefreshMap C:\Source\MapControl\Commands\frmLayer.frm Line : 20

Description
Object variable or With block variable not set

Alternatives to the Visual Basic debugger

If the Visual Basic debugger and add-ins do not provide enough information, the
Visual C++ debugger can be used, cither on its own or with C++ ATL wrapper
e e classes. The Visual C++ débugger does not run the object to be debugged out of
* conple o pcode process from ArcMap, which means that none of the above issues apply. Common
i Comple s ot debug commands are given in the section ‘Debugging tips in Visual Studio’. Both
(% Optiniize for Fast Code [Favar, Pentiom Proitm)
................... of the techniques below require the Visual Basic project to be compiled with

© Optimize for Small Code [/ 7eats Symboii Debug Info;

Project1 - Project Properties

© g Opsmeztin debug symbol information.
[| The Visual C++ Debugger can work with this symbolic debug information and

the source files.
DIl Base Address &H11000000

Visual C++ debugger

It is possible to use the Visual C++ debugger directly by attaching to a running
Create debug symbol information using the process that h;jls the Viéual Basic object t(,) be debugg'ed loaded and setting a brejak
Create Symbolic Debug info option on the point in the Visual Basic file. When the line of code is reached, the debugger will
Compile tab of the Project Properties dialog box. halt execution and step you into the source file at the correct line. The required
steps are shown below.

Cancel Help

Chapter 4 » Developer environments * 95

THEVIsuAL BAsIC DEVELOPMENT ENVIRONMENT

96 + ArcGIS Engine Developer Guide

1. Start an appropriate application, such as ArcMap.exe.
2. Start Microsoft Visual C++.

3. Attach to the ArcMap process using Menu option Build -> Start Debug ->
Attach to process.

4. Load the appropriate Visual Basic Source file into the Visual C++ debugger
and set the break point.

5. Call the method within ArcMap.

No changes can be made to the source code within the debugger, and variables
cannot be inspected, but code execution can be viewed and altered. This is often
sufficient to determine what is wrong, especially with logic-related problems.

ATL rrapper classes

Using the ATL, you can create a class that implements the same interfaces as the
Visual Basic class. When you create the ATL object, you create the Visual Basic
object. All method calls are then passed to the Visual Basic Object for execution.
You debug the contained object by setting a break point in the appropriate C++
wrapper method, and when the code reaches the break point, the debugger is
stepped into the Visual Basic code. For more information on this technique, look
at the ATL debugger sample in the Developer Samples of the ArcGIS Developer
Help system.

VisuaL C++

There are many enhancements to ATL inVC7.
Some of the relevant changes are covered in the
topic, ‘ATL and Visual C++.NET’, later in this
section.

Developing in Visual C++ is a large and complex subject, as it provides a much
lower level of interaction with the underlying Windows APIs and COM APIs
when compared to other development environments.

While this can be a hindrance for rapid application development, it is the most
flexible approach. A number of design patterns like COM aggregation and single-
tons are possible in Visual C++ that are not possible in Visual Basic 6. By using
standard class libraries like Active Template Library (ATL), the complex COM
plumbing code can be hidden. However it is still important to have a thorough
understanding of the underlying ATL. COM implementation.

The documentation in this section is based on Microsoft Visual C++ version 06,
and provides some guidance for ArcGIS development in this environment. With
the release of Visual Studio C++.Net, (also referred to as VC7), many new
enhancements are available to the C++ developer. While VC7 can work with the
managed .Net environment, and it is possible to work with the ArcGIS .Net AP,
this will only add an additional overhead to access the underlying ArcGIS COM
objects. So for the purposes of ArcGIS development in VC7 it is recommended
to work the “traditional” way, that is directly with the ArcGIS COM interfaces
and objects.

With the addition of Visual C#.Net language, is worth considering porting
VC++ code to this environment and using the ArcGIS .Net APIL. The syntax of
C# is not unlike C++, but the resulting code is generally simpler and more consis-
tent.

This section is intended to serve two main purposes:

1. To familiarize you with general Visual C++ coding style and debugging, begin-
ning with a discussion on ATL.

2. To detail specific usage requirements and recommendations for working with
the ArcObjects programming platform in Visual C++.

WORKING WITH ATL

This section cannot hope to cover all the topics that a developer working with
ATL should know in order to become an effective ATL C++ developer, but it
will serve as an introduction to getting started with ATL. ATL helps you imple-
ment COM objects and it saves typing, but it does not excuse you from knowing
C++ and how to develop COM objects.

ATL is the recommended framework for implementing COM objects. The ATL
code can be combined with MFC (Microsoft Foundation Class Library) code
which provides more support for writing applications. An alternative to MFC is
to use the Windows Template Library (WTL). This is based on the ATL template
methodology and provides many wrappers for window classes and other applica-
tion support for ATL. WTL is available for download from Microsoft, at the time
of writing version 7.1 is the latest and can be used with Visual C++ versions 6
and Visual C++.Net (VC7).

ATL in brief

ATL is a set of C++ template classes designed to be small, fast, and extensible,
based loosely on the Standard Template Library (STL). STL provides generic

Chapter 4 « Developer environments * 97

VisuaL C++

CComXxxThreadModel
CComObjectRootEx<>

IMylne2

CMyObject

CComObject<CMyObject>

The hierarchical layers of ATL

A more detailed discussion on Direct To COM
(DTC), follows in the later section, ‘Direct-To-
COM SmartTypes’.

98 + ArcGIS Engine Developer Guide

template classes for C++ objects like vectors, stacks and queues. ATL also pro-
vides a set of wizards that extend the Visual Studio development environment.
These wizards automate some of the tedious plumbing code that all ATL projects
must have. The wizards include, but are not limited, to the following:

e Application—used to initialize an ATL C++ project.

* Object—used to create COM objects. Both C++ and IDL code is generated,
along with the appropriate code to support the creation of the objects at
runtime.

* Property—used to add properties to interfaces.

* Method—used to add methods to interfaces; both the Property and Method
Wizards require you to know some IDL syntax.

* Interface Implementation—used to implement stub functions for existing
interfaces.

* Connection Point Implement — used to implement outbound events inter-
faces.

Typically these are accessed by a right-click on a project, class or interface in
Visual Studio Workspace/Class View.

ATL provides base classes for implementing COM objects, as well as implementa-
tions for some of the common COM interfaces, including [Unknown, IDispatch,
and [ClassFactory. There are also classes that provide support for ActiveX controls
and their containers.

ATL provides the required services for exposing ATL-based COM objects—these
being registration, server lifetime and class objects.

These template classes build a hierarchy that sandwiches your class. These inherit-
ances are shown below. The CComxxex’ThreadModel supports thread-safe access to
global, instance, and static data. The CComObjectRootEx provides the behavior for
the IUnknown methods. The interfaces at the second level represent the interfaces
that the class will implement; these come in two varieties. The Ixxxlmp/ are ATL-
supplied interfaces that also include an implementation; the other interfaces have
pure virtual functions that must be fully implemented within your class. The
CComOlyject class inherits your class; this class provides the implementation of the
1Unknown methods along with the object instantiation and lifetime control.

ATL and DTC

Along with smart types, covered later in this chapter, Direct-To-COM (DTC)
provides some useful compiler extensions you can use when creating ATL-based
objects. The functions __declspec and __nuidof are two such functions, but the
most useful is the #import command.

COM interfaces are defined in IDL, then compiled by the Microsoft IDL com-
piler (MIDL.exe). This results in the creation of a type library and header files.
The project uses these files automatically when compiling software that refer-
ences these interfaces. This approach is limited in that when working with inter-
faces you must have access to the IDL files. As a developer of ArcGIS, you only
have access to the ArcGIS type library information contained in “.olb” and “.ocx”

VisuaL C++

files. While it is possible to engineer a header file from a type library, it is a te-
dious process. The #import command automates the creation of the necessary files
required by the compiler. Since the command was developed to support DTC
when using it to import ArcGIS type libraries there are a number of parameters
that must be passed so that the correct import takes place. For further informa-
tion on this process, see the later section Importing ArcGIS type libraries’.

Handling errors in ATL

It is possible to just return an E_FAIL HRESULT code to indicate the failure
within a method, however this does not give any indication to the caller of the
nature of the failure. There are a number of windows standard HRESULT
available, for example E_INVALIDARG (One or more arguments are invalid),
E_POINTER (Invalid Pointer). These error codes are listed in the window
header file winerror.h. Not all development environments have comprehensive
support for HRESULT, Visual Basic clients often see error results as “Automa-
tion Error — Unspecified Error”. ATL provides a simple mechanism for working
with the COM error information object that can provide an error string descrip-
tion, as well as an error code.

When creating an ATL object, the Object Wizard has an option to support
1SupportErrorlnfo. 1f you toggle the option on, when the wizard completes your
object will implement the interface ISupportErrorlnfo and a method will be added
that looks something like this:
STDMETHODIMP MyClass: : InterfaceSupportsErrorInfo(REFIID riid)
{

static const IID* arr[] =

{

&IID_IMyClass,
5

for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++)
{
if (InlineIsEqualGUID(*arr[i], riid))
return S_OK;

return S_FALSE;
}
It is now possible to return rich error messages by calling one of the ATL error
functions. These functions even work with resource files to ensure easy interna-
tionalization of the message strings.
Although Visual C++ does support an exception // Return a simple string

mechanism (try ... catch), it is not recommended « . .
IR ; At1ReportError(CLSID_MyClass, _T(“No connection to Database.”),
to mix this with COM code. If an exception TID_TMyClass, E_FAIL);

unwinds out of a COM interface there is no .
guarantee the client will be able to catch this // Get the Error Text from a resource string

and the most likely result is a crash. At1ReportError(CLSID MyClass, IDS_DBERROR, IID_IMyClass, E_FAIL,
_ModuTle.m_hInstResource);
To extract an error string from a failed method use the windows function
GetErrorlnfo. This is used to retrieve the last IErrorInfo object on the current
thread and clears the current error state.

Chapter 4 » Developer environments * 99

VisuaL C++

100 * ArcGIS Engine Developer Guide

Linking ATL code

One of the primary purposes of ATL is to support the creation of small fast
objects. To support this, ATL gives the developer a number of choices when
compiling and linking the source code. Choices must be made about how to link
or dynamically access the C runtime (CRT) libraries, the registration code, and the
various ATL utility functions. If no CRT calls are made in the code, this can be
removed from the link. If CRT calls are made and the linker switch

_ATI. MIN_CRT is not removed from the link line the error shown below will
generate during the link stage of the build. When compiling a debug build, there
will probably not be a problem, however, depending on the code written there
may be problems when compiling a release build. If you receive this error either
remove the CRT calls or change the linker switches.

LIBCMT.1ib(crt0.0obj) : error LNK2001: unresolved external symbol _main
ReleaseMinSize/History.d11 : fatal error LNK1120: 1 unresolved externals
Error executing Tink.exe.

If the utilities code is dynamically loaded at runtime, you must ensure that the
appropriate DLL (ATL.DLL) is installed and registered on the user’s system. The
ArcGIS runtime installation at 9.0 will install ATL.dIl. The table below shows
the various choices and the related linker switches.

Symbols Utilities Registrar

Debug yes static dynamic
ATL_MIN_CRT no static static
RelMinDepend _ATL_STATIC_REGISTRY
-ATL_MIN_CRT no dynamic dynamic
RelMinSize _ATL_DLL ” y

By default there are build configurations for ANSI and Unicode builds. A compo-
nent that is built with ANSI compilation will run on Windows9x, however
considering that ArcGIS is only supported on unicode operating systems (Win-
dows NT®, Windows 2000 and Windows XP), these configurations are redun-
dant. To delete a configuration in Visual Studio, select “Build / Configurations
... Then delete Win32 Debng, Win32 Release MinSize, Win32 Release
MinDependency.

Registration of a COM component

The ATL project wizard generates the windows standard entry points for registra-
tion. This code will register the .dll’s type library and execute a registry script file
(.rgs) script for each COM object within the dll. Additional C++ code to perform
other registration tasks can be inserted into these functions.
STDAPI D11RegisterServer(void)
{

// registers object in .rgs, typelib and all interfaces in typelib

// TRUE instructs the type library to be registered

return _Module.RegisterServer(TRUE) ;

STDAPI D11UnregisterServer(void)

{
return _Module.UnregisterServer(TRUE) ;

VisuaL C++

ATL provides a text file format “.rgs” that is parsed by ATLs registrar component
when a .dll is registered and unregistered. The .rgs file is built into a .dll as a
custom resource. The file can be edited to add additional registry entries and
contains, ProgID, ClassID and component category entries to place in the registry.
The syntax describes keys, values and names and sub keys to be added or removed
from the registry. The format can be summarized as follows:

[NoRemove | ForceRemove | val] Name | [=s ‘Value’ | d Value’ | b ‘Value]
{
. optional subkeys for the registry
}
NoRemove signifies that the registry key should not be removed on un-registration.
ForceRemove will ensure the key and sub-keys are removed before registering the
new keys. The s, 4 and 4 values indicate string (enclosed with apostrophes),
double word (32bit integer value) and binary registry values. A typical registration
script is shown below.
HKCR
{
SimpleObject.SimpleCOMObject.1l = s ‘SimpleCOMObject Class’
{
CLSID = s ‘{2AFFC10E-ECFB-4697-8B3D-0405650B7CFB}’
}
SimpleObject.SimpleCOMObject = s ‘SimpleCOMObject Class’
{
CLSID = s ‘{2AFFC10E-ECFB-4697-8B3D-0405650B7CFB}’
CurVer = s ‘SimpleObject.SimpleCOMObject.1’
}
NoRemove CLSID

{
ForceRemove {2AFFC10E-ECFB-4697-8B3D-0405650B7CFB} = s ‘SimpleCOMObject
Class’

{
ProgID = s ‘SimpleObject.SimpleCOMObject.1’
VersionIndependentProgID = s ‘SimpleObject.SimpleCOMObject’
InprocServer32 = s ‘%MODULE%’
{
val ThreadingModel = s ‘Apartment’
}
‘TypeLib’ = s ‘{855DD226-5938-489D-986E-149600FEDD63}’
‘Implemented Categories’
{
{7DD95801-9882-11CF-9FA9-00AA006C42C4}

}

NoRemove CLSID ensures the registry key “CLSID” is never removed. This is the
subkey below which all COM objects register their ProgID’s and GUIDS, so its
removal would result in a serious corruption of the registry. InprocServer32 is the
standard COM mechanism that relates a component GUID to a .dll file, ATL will

Chapter 4 Developer environments * 101

VisuaL C++

If the GUID of a component is changed during
development, or the type library name is
changed, then it is important to keep the .rgs
content consistent with these changes, otherwise
the registry will be incorrect and object creation
can fail.

102 « ArcGIS Engine Developer Guide

insert the correct module name using the %oMODULE% variable. Other entries
under the GUID specify the ProglD, threading model and type-library to use with
this component.

To register a COM CoClass into a component category, there are two approaches,
the recommended approach is illustrated above, place GUIDs for component
categories beneath an ‘Implemented Categories’ key, which in turn is under the
GUID of the CoClass. The second approach is to use ATL macros in an objects
header file; BEGIN_CATEGORY_MAP, IMPLEMENTED_CATEGORY and
END_CATEGORY_MAP. However these macros do not correctly remove
registry entries as explained in MSDN article 0279459 BUG: Component Category
Registry Entries Not Removed in ATL Component. A header file is supplied with the
GUIDs of all the component categories used by ArcGIS, this is available in
\Program Files\ ArcGIS\include\CatIDs\ ArcCATIDs.h.

Debugging ATL code

In addition to the standard Visual Studio facilities, ATL provides a number of
debugging options that provide specific support for debugging COM objects. The
output of these debugging options is displayed in the Visual C++ Output win-
dow. The Querylnterface call can be debugged by setting the symbol
_ATL,_DEBUG_QI, AddRef and Release calls with the symbol
_ATL,_DEBUG_INTERFACES, and leaked objects can be traced by monitoring
the list of leaked interfaces at termination time when the

_ATL, DEBUG_INTERFACES symbol is defined. The leaked interfaces list has
entries like the following:

INTERFACE LEAK: RefCount = 1, MaxRefCount = 3, {Allocation = 10}

On its own, this does not tell you much apart from the fact that one of your
objects is leaking because an interface pointer has not been released. However,
the A/location number allows you to automatically break when that interface is
obtained by setting the #_nlndexBreakAt member of the CComModule at server
start-up time. This in turn calls the function DebugBreak() to force the execution
of the code to stop at the relevant place in the debugger. For this to work the
program flow must be the same, but it can be very useful.

extern “C”
BOOL WINAPI D11Main(HINSTANCE hInstance, DWORD dwReason, LPVOID /
1pReserved/)
{
if (dwReason == DLL_PROCESS_ATTACH)
{
_Module.Init(ObjectMap, hInstance, &IBID_HISTORYLib);
DisableThreadLibraryCalls(hInstance);
_Module.m_nIndexBreakAt = 10;
}
else if (dwReason == DLL_PROCESS_DETACH)
{
_ModuTle.Term(Q);
}
return TRUE;

VisuaL C++

Boolean types

Historically ANSI C did not have a boolean data type and used int value instead,
where 0 represents false and non zero represents true. However the bool data-
type has now become part of ANSI C++. COM API’s are language independent
and define a different boolean type VARIANT_BOOL. Additionally win32 API
uses a different BOOL type. It is important to use the correct type at the appro-
priate time. The following table summarizes their usage:

Where
Type True ¥alue False Yalue Defined When to Use
This is an intrinsic compiler type so there is more
Defined potential for the compiler to optimise its use. This
=tine type can also be promoted to an int walue,
bool true (1) false (0) by i
compiler Expressions {e.q. i!1=0) returns a typ_e of bool,
Typically used for class member variables and local
variables,
windows
BOOL (it TRUE (1) FALSE (0] Data Type Used W|th w_m\:luws APL functlups, often as a return
{defined in value to indicate success or failure.
windef.h)
Used in COM APIs for boolean values, Also used
within YARIANT types, if the VARIANT type is
oM WT_BOOL, then the VARIANT walue (boolVal) is
VARIANT_BOOL VARIANT_TRUE VARIANT_FALSE | hoolean DUD“'IatEd;‘”tT a VARIANTEBOOL' Tj?ke il o
{16bit sharty (1) (o valuss convert 5 bool class member variable to the correct
{wtrpes.h) WARIANT_BOOL value. Often the conditional test

"hook - colon" operator is used, For example where
bRes is defined as a bool, then to set an result type:
*pVWal = bRes T VARIANT_TRUE : VARIANT_FALZE;

String types

Considering that strings (sequences of text characters) are a simple concept, they
have unfortunately become a complex and confusing topic in C++. The two main
reasons for this confusion are the lack of C++ support for variable length strings
combined with the requirement to support ANSI and Unicode character sets
within the same code. However as ArcGIS is only available on Unicode plat-
forms, it may simplify development to remove the ANSI requirements.

The C++ convention for strings is an array of characters terminated with a 0.
This is not always good for performance when calculating lengths of large strings.
To support variable length strings, the character arrays can be dynamically allo-
cated and released on the heap, typically using walloc and free or new and delete.
Consequently a number of wrapper classes provide this support; CString defined
in MFC and WTL, is the most widely used. Additionally for COM usage the
BSTR type is defined and the ATL wrapper class CComBSTR is available.

To allow for international character sets, Microsoft Windows migrated from a
8bit ANSI characters strings (8bit char) representation (found on win95, win98
and winME platforms) to a 16bit Unicode characters (16bit unsigned short).
Unicode is synonymous with wide characters (wchar_t). In COM APIs
OLECHAR is the type used and is defined to be wchar_t on Windows. Windows
operating systems like winN'T, win2000 and winXP natively support Unicode
characters. To allow the same C++ code to be compiled for ANSI and
UNICODE platforms, compiler switches are used to change windows API func-
tions (e.g. SetWindowText) to resolve to an ANSI version (SetWindowTextA) or
a Unicode version (SetWindowTextW). Additionally character independent types
(TCHAR defined in tchar.h) were introduced to represent a character, on an
ANSI build this is defined to be a char and on a Unicode build this is a wehar_#
(typedef defined as unsigned short). To perform standard C string manipulation

Chapter 4 « Developer environments * 103

VisuaL C++

To check if two CComBSTR strings are different,
do not use the not equal (“!=") operator.The
“==" operator performs a case sensitive
comparison of the string contents, however “I="
will compare pointer values and not the string
contents, typically returning false.

104 * ArcGIS Engine Developer Guide

there are typically three different definitions of the same function, for example
for a case insensitive comparison stremp provides the ANSI version, wesemp pro-
vides the Unicode version and _zesemp provides the TCHAR version. There is also
a fourth version _mbsemp which is a variation of the 8bit ANSI version that will
interpret multi-byte character sequences (MBCS) within the 8 bit string;

// Initialize some fixed length strings

char* pNameANSI = “Bil11”; // 5 bytes (4 characters plus a terminator)

wchar_t* pNameUNICODE = L”Bi11”; // 10 bytes (4 16bit characters plus a
16bit terminator)

TCHAR* pNameTCHAR = _T(“Bi11”); // either 5 or 10 depending on compiler
settings
COM APIs represent variable length strings with a BSTR type; this is a pointer to
a sequence of OLECHAR characters, which is defined as Unicode characters and
is the same as a wchar_t. A BSTR must be allocated and released with the
SysAllocString and SysFreeString windows functions and unlike C strings they
can contain embedded zero characters (although this is unusual). The BSTR also
has a count value, which is stored 4 bytes before the BSTR pointer address. The
CComBSTR wrappers are often used to manage the life time of a string,

Do not pass a pointer to a C style array of Unicode characters (OLECHAR or
wechar_t) to a function expecting a BSTR. The compiler will not raise an error as
the types are identical. However the function receiving the BSTR can behave
incorrectly or crash when accessing the string length (which will be random
memory values).
ipFoo->put_WindowTitle(L”Hell0™); // This is bad!
ipFoo->put_WindowTitle(CComBSTR(L"Hel10”)); // This correctly initializes
and passes a BSTR
ATL provides conversion macros to switch strings between ANSI (A), TCHAR
(T), Unicode (W) and OLECHAR (OLE). Additionally the types can have a
const modifier (C). These macros use the abbreviations shown in brackets with a
“2” between them. For example to convert between OLECHAR (e.g. a input
BSTR) to const TCHAR (for use in a windows function) use the OLE2CT con-
version macro. To convert ANSI to Unicode use A2W. These macros require the
USES_CONVERSION macro to be placed at the top of a method, this will
create some local variables that are used by the conversion macros. When the
source and destination character sets are different and the destination type in not
a BSTR, the macro allocates the destination string on the call stack (using the
_alloca runtime function). It’s important to realize this especially when using
these macros within a loop; the stack may grow very large and run out of stack
space.
STDMETHODIMP CFoo: :put_WindowTit1e(BSTR bstrTitle)
{
USES_CONVERSION;
if (::SysStringLen(bstrTitle) == 0)
return E_INVALIDARG;

::SetWindowText (m_hwWnd, OLE2CT (bstrTitle));

return S_OK;

VisuaL C++

Implementing non-creatable classes

These Non-Creatable Classes are COM objects that cannot be created by
CoCreatelnstance. Instead the object is created within a method call of a different
object and an interface pointer to the non-creatable class is returned. This type of
object is found in abundance in the Geodatabase model. For example FeatnreClass
is non-creatable and can only be obtained by calling one of a number of methods;
one example is the [FeatureWorkspace::OpenteatureClass method.

One advantage of a non-creatable class is that it can be initialized with private
data using method calls that are not exposed in a COM API. Below is a simplified
example of returning a non-creatable object:

// Foo is a CoCreateable object

IFooPtr ipFoo;
HRESULT hr = ipFoo.CreateInstance(CLSID_Foo);

// Bar is a Non-Creatable object,cannot use ipBar.CreateInstance(CLSID_Bar)
IBarPtr ipBar;
// Use a method on Foo to create a new Bar object
hr = ipFoo->CreateBar(&ipBar) ;
ipBar->DoSomething();
The steps required to change a CoCreatable ATL class into a non-creatable class
are shown below:

1. Add “noncreatable” to the idl coclass attributes.
[
uuid(DCB87952-0716-4873-852B-F56AE8FIBC42) ,
noncreatable
]
coclass Bar
{
[default] interface IUnknown;
interface IBar;
5
2. Change the class factory implementation to fail any CoCreate of the non-
creatable class. This happens via ATLs object map in the main dll module.
BEGIN_OBJECT_MAP(ObjectMap)
OBJECT_ENTRY(CLSID_Foo, CFoo) // Creatable object
OBJECT_ENTRY_NON_CREATEABLE (CLSID_Bar, CBar) // Non Creatable object
END_OBJECT_MAPQO
3. Optionally, the registry entries can be removed. First remove the registry script
for the object from the resources (Bar.rgs in this example). Then change the
class definition DECLARE_REGISTRY_RESOURCEID(IDR_BAR) to
DECLARE_NO_REGISTRY().

4. To create the non-creatable object inside a method use the CComObject
template to supply the implementation of Createlnstance.
// Get NonCreatable object Bar (implementing IBar) from COM object Foo
STDMETHODIMP CFoo: :CreateBar(IBar **pVal)

{
if (pVal==0) return E_POINTER;

Chapter 4 * Developer environments * 105

VisuaL C++

106 * ArcGIS Engine Developer Guide

// Smart pointer to non-creatable object Bar
IBarPtr ipBar = 0;

// C++ Pointer to Bar, with ATL template to supply CreateInstance imple-
mentation

CComObject<CBar>* pBar = 0;

HRESULT hr = CComObject<CBar>: :CreateInstance(&pBar);

if (SUCCEEDED(hr))

{
// Increment the ref count from 0 to 1 to protect the object
// from being released in any initialization code.
pBar->AddRef () ;

// Call C++ methods (not exposed to COM) to initialize the Bar object
pBar->InitialiseBar(10);

// QI to IBar and hold a smart pointer reference to the object Bar
hr = pBar->QueryInterface(IID_IBar, (void**)&ipBar);

pBar->Release();

// return IBar pointer to the caller
*pVal = ipBar.Detach();

return S_OK;
}

ATL inVisual C++.NET

Visual C++ version 6 is used for the majority of this help. However with the
release of Visual C++.Net (also known as VC7), there are enhancements and
changes that are relevent to the ArcGIS ATL developer, some of these are
summerized below:

Attribute-based programming—This is a major change introduced in VC7.
Attributes are inserted in the source code enclosed in square brackets, for ex-
ample | coclass |. Attributes are designed to simplify COM programming and
NET Framework common language runtime development. When you include
attributes in your source files, the compiler works with provider dynamic-link
libraries (DLL) to insert code or modify the code in the generated object files.
There are attributes that aid in the creation of .idl files, interfaces, type libraries,
and other COM elements. In the integrated development environment (IDE),
attributes are supported by the wizards and by the Properties window. The ATL
wizards make extensive use of attributes to inject the ATL boiler plate code into
the class. Consequently typical COM CoClass header files in VC7 contain much
less ATL code than at VC6. As IDL is generated from attributes, there is typically
no .idl file present in COM projects as before and the idl file is generated at
compile time.

Build configurations—There are only two default build configurations in VC7,
these are ANSI Debug and Release based builds. As ArcGIS is only available on

VisuaL C++

Unicode platforms it is recommended to change these by modifying the project
properties. The general project properties page has an option for “Character Set”,
simply change this from “Use Multi-Byte Character Set” to “Use Unicode Charac-
ter Set”.

Character conversion macros—The character conversion macros
(USES_CONVERSION, W2A, W2CT etc) have improved alternative versions.
These no longer allocate space on the stack, so they can be used in loops without
running out of stack space. The USES_CONVERSION macro is also no longer
required. They are now implemented as classes and begin with a “C”, for example
CW2A, CW2CT.

Safe array support—This is available with CComSafeArray and
CComSafeArrayBound classes.

Module level global—The module level global CComModule _module has
been split into a number of related classes for example CAtlComModule and
CAtlWinModule. To retrieve the resource module instance use the following
code: _AtlBaseModule.GetResourcelnstance();

String support—General variable length string support is now available through
CString in ATL. This is defined in the header file atlstr.h and cstringt.h. If ATL is
combined with MFC this defaults to MFC’s CString implementation.

File path handling—A collection of related functions for processing the
components of file paths are available through the CPath class defined in
atlpath.h.

ATLServer—This is a new selection of ATL classes designed for writing web
apps, XML web services and other Server applications.

#import issues—When using #import, a few modifications are required com-
pared to VCO. For example the #import of esriSystem requires an exclude or
rename of “GetObject” and the #import of esriGeometry requires an exclude or
rename of “ISegment”.

ATL REFERENCES

Microsoft MSDN provides a wealth of documentation, articles and samples, that
are installed with Visual Studio products. ATL reference documentation for
Visual Studio version 6 is under:

MSDN Library - October 2001 | Visual Tools and Languages | Visual Studio 6.0
Documentation | Visual C++ Documentation | Reference | Active Template Library

Additional documentation is also available on the MSDN Web site at
http:/ /www.msdn.microsoft.com

The following books are also useful:

Grimes, Richard. ATL COM Programmer’s Reference. Chicago: Wrox Press Inc.,
1988

Grimes, Richard. Professional ATL. COM Programming. Chicago: Wrox Press Inc.,
1988

Grimes, Richard, and Reilly Stockton, and Alex Stockton, and Julian Templeman.
Beginning ATL. 3 COM Programming. Chicago: Wrox Press Inc. 1999.

Chapter 4 « Developer environments * 107

VisuaL C++

108 * ArcGIS Engine Developer Guide

King, Brad and George Shepherd. Inside ATL. Redmond, WA: Microsoft Press,
1999.

Rector, Brent, and Chris Sells, and Jim Springfield. ATL Internals. Reading, MA:
Addison-Wesley, 1999.

SMART TYPES

Smart types are objects that behave like types. They are C++ class implementa-
tions that encapsulate a data type, wrapping it with operators and functions that
make working with the underlying type easier and less error prone. When these
smart types encapsulate an interface pointer, they are referred to as smart pointers.
Smart pointers work with the [Unknown interface to ensure that resource alloca-
tion and deallocation is correctly managed. They accomplish this by various
functions, construct and destruct methods, and overloaded operators. There are
numerous smart types available to the C++ programmer. The two main types of
smart types covered here are defined by Direct-To-COM and the Active Template
Library.

Smart types can make the task of working with COM interfaces and data types
casier, since many of the API calls are moved into a class implementation; how-
ever they must be used with caution, and never without a clear understanding of
how they are interacting with the encapsulated data type.

Direct-To-COM smart types

The smart type classes supplied with DTC are known as the Compiler COM
Support Classes and consist of:

e _com_error—this class represents an exception condition in one of the COM
support classes. This object encapsulates the HRESULT and the IErrorlnfo
COM exception object.

e _com_ptr_t—this class encapsulates a COM interface pointer. See below for
common uses.

* _bstr_t—this class encapsulates the BSTR data type. The functions and opera-
tors on this class are not as rich as the ATL. CComBSTR smart type, hence this
is not normally used.

* _variant_t—this class encapsulates the 1Z24RLANT data type. The functions
and operators on this class are not as rich as the ATL CCom 1 ariant smart type,
hence this is not normally used.

To define a smart pointer for an interface you can use the macro
_COM_SMARTPTR_TYPEDEF like this:
_COM_SMARTPTR_TYPEDEF (IFoo, __uuidof(IFoo0));
The compiler expands this as follows:
typedef _com_ptr_t< _com_IIID<IFoo, __uuidof(IFoo)> > IFooPtr;

Once declared, it is simply a matter of declaring a variable as the type of the

interface and appending P7rto the end of the interface. Below are some common

uses of this smart pointer that you will see in the numerous C++ samples.

// Get a CLSID GUID constant

extern “C” const GUID __decTspec(selectany) CLSID_Foo = \
{0x2f3b470c,0xb01f,0x11d3, {Ox83,0x8e, 0x00,0x00,0x00,0x00,0x00,0x00}} ;

VisuaL C++

// Declare Smart Pointers for IFoo, IBar and IGak interfaces
_COM_SMARTPTR_TYPEDEF (IFoo, __uuidof(IFoo0));
_COM_SMARTPTR_TYPEDEF(IBar, __uuidof(IBar));
_COM_SMARTPTR_TYPEDEF (IGak, __uuidof(IGak));

STDMETHODIMP SomeClass: :Do()
{
// Create Instance of Foo class and QueryInterface (QI) for IFoo interface
IFooPtr ipFoo;
HRESULT hr = ipFoo.CreateInstance(CLSID_Foo);
if (FAILED(hr)) return hr;

// Call method on IFoo to get IBar
IBarPtr ipBar;

hr = ipFoo->get_Bar(&ipBar);

if (FAILED(hr)) return hr;

// QI IBar interface for IGak interface
IGakPtr ipGak(ipBar);

// Call method on IGak
hr = ipGak->DoSomething(Q);
if (FAILED(hr)) return hr;

// Explicitly call Release()
ipGak = 0;
ipBar = 0;

// Let destructor call IFoo’s Release

return S_OK;
}
One of the main advantages of using the DTC smart pointers is that they are
automatically generated from the “Himport” compiler statement for all interface
and CoClass definitions in a type library. For more details on this functionality, see
the later section ‘Importing ArcGIS Type Libraries’.

Although is is possible to create an object implicitly in a DTC smart pointers
constructor, for example:

IFooPtr ipFoo(CLSID_Foo)

This will raise a C++ exception if there is an error during object creation (e.g. if
the “.dll” file containing the object implementation was accidentally deleted).
This exception will typically be unhandled and cause a crash. A more robust
approach is to avoid exceptions in COM and call Createlnstance explicitly and
handle the failure code, for example:

IFooPtr ipFoo;

HRESULT hr = ipFoo.CreateInstance(CLSID_Foo);

if (FAILED(hr))
return hr; // return object creation failure code to caller

Chapter 4 « Developer environments * 109

VisuaL C++

Differences in implementation of equality (“==
“) operator for smart pointer comparisons.The
COM specification states object indentity is
performed by comparing the pointer values of
IUnknown*.The DTC smart pointers will
perform necessary QI and comparison when
using the “=="operator. However the ATL smart
pointers will not do this and you must use the
ATL IsEqualObject() method.

110 * ArcGIS Engine Developer Guide

ActiveTemplate Library smart types

ATL defines various smart types, as seen in the list below. You are free to com-
bine both the ATL and DTC smart types in your code. However it is typical to
use the DTC for smart pointers as they are easily generated by importing type
libraries. For BSTR and VARIANT types the ATL versions for CComBSTR,
CComVariant are typically used..

ATL smart types:

e CComPtr—class encapsulates a COM interface pointer by wrapping the
AddRef and Release methods of the [Unknown interface.

e CComQIPtr—class encapsulates a COM interface and supports all three meth-
ods of the IUnknown interface: Querylnterface, AddRef, and Release.

e CComBSTR—<class encapsulates the BSTR data type.
e CComVariant—class encapsulates the ZARLANT data type
* CRegKey—class provides methods for manipulating Windows registry entries.

* CComDispatchDriver—class provides methods for getting and setting proper-
ties, and calling methods through an object’s [Dispatch interface.

e CSecnrityDescriptor—Class provides methods for setting up and working with
the Discretionary Access Control List (DACL).

This section examines the first four smart types and their uses. The example code
below written with ATL smart pointers, looks like the following:

// Get a CLSID GUID constant
extern “C” const GUID __decTspec(selectany) CLSID_Foo = \
{0x2f3b470c,0xb01f,0x11d3, {0x83,0x8e,0x00,0x00,0x00,0x00,0x00,0x00}};

STDMETHODIMP SomeClass::Do

{
// Create Instance of Foo class and QI for IFoo interface
CComPtr<IFoo> ipFoo;

HRESULT hr = CoCreateInstance(CLSID_Foo, NULL, CLSCTX_INPROC_SERVER,
IID_IFoo, (void **)&ipFoo);
if (FAILED(Chr)) return hr;

// Call method on IFoo to get IBar
CComPtr<IBar> ipBar;

HRESULT hr = ipFoo->get_Bar(&ipBar);
if (FAILED(hr)) return hr;

// IBar interface for IGak interface
CComQIPtr<IGak> ipGak(ipBar);

// Call method on IGak
hr = ipGak->DoSomething(Q);
if (FAILED(hr)) return hr;

// Explicitly call Release()
ipGak = 0;

VisuaL C++

ipBar = 0;

// Let destructor call Foo’s Release

return S_OK;
}
The most common smart pointer seen in the Visual C++ samples is the DTC
type. In the examples below, which illustrate the BSTR and 1Z4RLANT data
types, the DTC pointers are used. When working with CComBSTR, use the text
mapping 1”7 to declare constant OLECHAR strings. For more information on
string data types see the information on ‘ATL String Types’ later in this Visual ++
section. CCom 1V ariant derives directly from the VARIANT data type, meaning
that there is no overloading with its implementation, which in turn simplifies it
use. It has a rich set of constructors and functions that make working with
VARIANT straightforward; there are even methods for reading and writing
from streams. Be sure to call the Clear method before reusing the variable.

ipFoo->put_Name (CComBSTR(L”NewName™)) ;

if FAILEDChr)) return hr;

// Create a VT_I4 variant (signed long)
CComvariant value(12);

// Change its data type to a string

hr = vwalue.ChangeType(VT_BSTR) ;

if (FAILED(hr)) return hr;
Some method calls in idl are marked as being optional and take a variant param-
cter. However in VC++ these parameters still have to be supplied. To signify that
a parameter value is not supplied a variant is passed specifying an error code or
type DISP_E_PARAMNOTFOUND:

CComBSTR documentFiTename(L”World.mxd”);

CComvVariant noPassword;

noPassword.vt = VI_ERROR;

noPassword.scode = DISP_E_PARAMNOTFOUND;

HRESULT hr = ipMapControl->LoadVMxFile(documentFilename, noPassword) ;
When working with CComBSTR and CComariant, the Detach() function releases
the underlying data type from the smart type and can be used when passing a
result as an [out] parameter of a method. The use of the Detach method with
CComBSTR is shown below:

STDMETHODIMP CFoo: :get_Name(BSTR* name)

{
if (name==0) return E_POINTER;
CComVariant(VARIANT_TRUE) will create a CComBSTR bsName (L”FooBar™) ;
short integer variant (typeVT_I2) and not a *name = bsName.Detach();
boolean variant (type VT_BOOL) as expected. }
You can use CComVariant(true) to create a
boolean variant. CComVariant myVar(ipSmartPointer) will result in a variant type of boolean

(VIT_BOOL) and not a variant with an object reference (VI_UNKNOWN) as
expected. It is better to pass unambiguous types to constructors, i.e. types which
are not themselves smart types with overloaded cast operators.

Chapter 4 Developer environments * | 11

VisuaL C++

// Perform QI it IUnknown

IUnknownPtr ipUnk = ipSmartPointer;

// Ensure we use IUnknown* constructor of CComVariant

CComVariant myVar2 (ipUnk.GetInterfacePtr());

A common practice with smart pointers is to use Dezach() to return an object from
a method call. When returning an interface pointer the COM standard is to
increment reference count of the [out] parameter inside the method implementa-
tion. It is the callers responsibility to call Release when the pointer is no longer
required. Consequently care must be taken to avoid calling Dezach() directly on a
member variable, a typical pattern is show below:

STDMETHODIMP CFoo: :get_Bar(IBar **pval)

{
if (pval==0) return E_POINTER;

// Constructing a Tocal smart pointer using another smart pointer
// results in an AddRef (if pointer is not 0).
IBarPtr ipBar(m_ipBar);

// Detach will clear the Tocal smart pointer and the
// interface is written into the output parameter.
*pVal = ipBar.Detach(Q);

// This can be combined into one Tine
// *pVal = IBarPtr(m_ipBar) .Detach(Q);

return S_OK;
}
The above pattern has the same result as the following code, note that a condi-
tional test for a 0 pointer is required before AddRef can be called, calling
AddRef (or any method) on a 0 pointer will result in an access violation excep-
tion and typically crash the application:
STDMETHODIMP CFoo: :get_Bar(IBar **pval)

{
if (pval==0) return E_POINTER;

// copy the interface pointer (no AddRef) into the output parameter
*pVal = m_ipBar;

// Make sure interface pointer is non 0 before calling AddRef
if (*pval)
*pVal->AddRef();

return S_OK;
}
When using a smart pointer to receive an object from from an [out| parameter on
a method, use the smart pointer “&” de-reference operator. This will cause the
previous interface pointer in the smart pointer to be released. The smart pointer is
then populated with the new [out] value. The implementation of the method will

112 « ArcGIS Engine Developer Guide

VisuaL C++

have already incremented the object reference count. This will be released when
the smart pointer goes out of scope:
{
IFooPtr ipFool, ipFoo2;
ipFool.CreateInstance(CLSID_Foo);
ipFoo2.CreateInstance(CLSID_Foo);

// Initalise ipBar Smart pointer from Fool
IBarPtr ipBar;
ipFool->get_Bar(&ipBar);

// The “&” de-reference will call Release on ipBar
// ipBar is then repopulate with a new instance of IBar
ipFoo2->get_Bar(&ipBar);

}

// ipBar goes out of scope and the smart pointer destructor calls Release
Naming conventions

Type names

All type names (class, struct, enum, and tpedef) begin with an uppercase letter and
use mixed case for the rest of the name:

class Foo : public CObject { . . .};
struct Bar { . . .};
enum ShapeType { . . . };

typedef int* Foolnt;
Typedefs for function pointers (callbacks) append Proc to the end of their names.
typedef void (*FooProgressProc) (int step);

Enumeration values all begin with a lowercase string that identifies the project; in
the case of ArcObjects this is esti, and each string occurs on separate lines:

typedef enum esriQuuxness
{

esriQLow,

esriQMedium,

esriQHigh
} esriQuuxness;

Function names

Name functions using the following conventions:

For simple accessor and mutator functions, use Get<Property> and
Set<Property>:

int GetSize();
void SetSize(int size);

If the client is providing storage for the result, use Query<Property>:

void QuerySize(int& size);

Chapter 4 * Developer environments ¢ |13

VisuaL C++

Here are some suggestions for a naming
convention.These help identify the variables
usage and type and so reduce coding errors.This
is an abridged Hungarian notation:

[<scope>_]<type><name>

Prefix Variable scope

m | Instance class members

o

Static class member (including constants)

Globally static variable

oa

local variable or struct or public class
<empty>
member

<type>

Prefix ~ Data Type

b | Boolean

by | byte or unsigned char

cx/cy | shortused as size

d | double
dw | DWORD, double word or unsigned long

f | float

fn | function

h | handle

i | int(integer)

ip | smart pointer

I | long

p | apointer

s | string

sz | ASCIIZ null-terminated string
w | WORD unsigned int

X,y | shortused as coordinates

<name> describes how the variable is used or
what it contains.The <scope> and <type>
portions should always be lowercase, and the
<name> should use mixed case:

Variable Name Description

m_hWnd | a handle to a HWND

ipEnvelope

a smart pointer to a COM interface

m_pUnkOuter a pointer to an object

c_isLoaded a static class member

g pWindowlList a global pointer to an object

114 « ArcGIS Engine Developer Guide

For state functions, use Set<State and Is<State> or Can<State>:

bool IsFileDirty();
void SetFileDirty(bool dirty);
bool CanConnect();

Where the semantics of an operation are obvious from the types of arguments,
leave type names out of the function names.
Instead of:
AddDatabase(Database& db) ;
consider using:
Add(Database& db) ;
Instead of:
ConvertFoo2Bar(Foo* foo, Bar* bar);
consider using:
Convert(Foo* foo, Bar* bar)
If a client relinquishes ownership of some data to an object, use
Give<Property>. If an object relinquishes ownership of some data to a client,
use Take<Property>:
void GiveGraphic(Graphic* graphic);
Graphic* TakeGraphic(int itemNum);
Use function overloading when a particular operation works with different

argument types:
void Append(const CString& text);
void Append(int number);

Argument names

Use descriptive argument names in function declarations. The argument name
should clearly indicate what purpose the argument serves:

bool Send(int messageID, const char* address, const char* message);
DEBUGGING TIPS IN DEVELOPER STUDIO

Visual C++ comes with a feature-rich debugger. These tips will help you get the
most from your debugging session.

Backing up after failure

When a function call has failed and you’d like to know why (by stepping into
it), you don’t have to restart the application. Use the Set Next Statement
command to reposition the program cursor back to the statement that failed
(right-click on the statement to bring up the debugging context menu). Then,
just step into the function.

Edit and Continue

Visual Studio 6 allows changes to source code to be made during a debugging
session. The changes can be recompiled and incorporated into the executing code
without stopping the debugger. There are some limitations to the type of changes
that can be made, in this case the debug session must be restarted. This feature is
enabled by default, the settings are available in “Settings” of the project menu

VisuaL C++

then Select “C/C++ tab. Select “General” from the “Category” group box. In the
Debug info group box, select “Program Database for Edit and Continue”.

Unicode string display
Set your debugger options to display Unicode strings (click the Tools menu,
click Options, click Debug, then check the Display Unicode Strings check box).

Variable value display

Pause the cursor over a variable name in the source code to see its current
value. If it is a structure, click it and bring up the QuickWatch dialog box (the
Eyeglasses icon or Shift+F9) or drag and drop it into the Watch window.

Undocking windows

If the Output window (or any docked window, for that matter) seems too
small to you, try undocking it to make it a real window. Just right-click it and
toggle the Docking View item.

Conditional break points

Use conditional break points when you need to stop at a break point only once
some condition is reached (a for-loop reaching a particular counter value). To do
so, set the break point normally, then bring up the Breakpoints window (Ctrl+B
or Alt+F9). Select the specific break point you just set and then click the Condi-
tion button to display a dialog in which you specify the break point condition.

Preloading DLLs

You can preload DLLs that you wish to debug before executing the program. This
allows you to set break points up front rather than wait until the DLL has been
loaded during program execution. (Click Project, click Settings, click Debug, click
Category, then click Additional DLLs.) Then, click in the list area below to add
any DLLs you wish to have preloaded.

Changing display formats
You can change the display format of variables in the QuickWatch dialog box or
in the Watch window using the formatting symbols in the following table.

Symbol Format Value Displays
d,i | signed decimal integer 0xFO00F065 -268373915
u | unsigned decimal integer 0x0065 [
o | unsigned octal integer 0xF065 0170145
X, X | hexadecimal integer 61541 0x0000F065
I,h | long or short prefix for d, I, u, 0, x, X 00406042, hx 0x0C22
f | signed floating-point 3.2 1.500000
e | signed scientific notation 3.2 1.500000e+00
g | eorf, whichever is shorter 3.2 L5
c | single character 0x0065 ‘e’
s | string 0x0012FDE8 "Hello"
su | Unicode string "Hello"
hr | string [s_OK

To use a formatting symbol, type the variable name followed by a comma and the
appropriate symbol. For example, if var has a value of 0x0065, and you want to

Chapter 4 * Developer environments | 15

VisuaL C++

116 * ArcGIS Engine Developer Guide

see the value in character form, type var,c in the Name column on the tab of the
Watch window. When you press ENTER, the character-format value appears:
var,c = ‘¢’. Likewise, assuming that /7 is a variable holding HRESULITS, view a
human-readable form of the HRESULT by typing “hr,hr” in the Name column.

watch £
[Name _ JVale ____________[4
hr, hr E FAIL
plnicode 0z004200d4 "string'
plUnicods, su "Hello"
-

wiatch 1 {ifatch2 }\ Wiatehd Watchd

You can use the formatting symbols shown in the following table to format the
contents of memory locations.

Symbol Format Value
0x0012ffac
4..0."OW&..

ma | 64 ASCII characters WE&.0.:W..1

. 0x0012ffac
m 16 bytes in hex, followed by 16 ASCII B3 34 CB 00 84 30 94 80

characters FF 22 8A 30 57 26 00 00 4..0...".OW&..

0x0012ffac
B3 34 CB 00 84 30 94 80
FF 22 8A 30 57 26 00 00 .4..0..".OW&..

16 bytes in hex, followed by 16 ASCII

mb
characters

0x0012ffac
mw | 8words 34B3 00CB 3084 8094
22FF 308A 2657 0000

0x0012ffac
00CB34B3 80943084 308A22FF 00002657

md | 4 double-words

0x0012fc60
mu | 2-byte characters (Unicode) 8478 774 fiff fiff
0000 0000 0000 0000

With the memory location formatting symbols, you can type any value or expres-
sion that evaluates to a location. To display the value of a character array as a
string, precede the array name with an ampersand, &yourname. A formatting
character can also follow an expression:

e reptilx

e alps/0],mb
e xlocg

* count,d

To watch the value at an address or the value pointed to by a register, use the BY,
WO, or DIV operator:

e BY returns the contents of the byte pointed at.
e VO returns the contents of the word pointed at.
e DIV returns the contents of the doubleword pointed at.

Follow the operator with a variable, register, or constant. If the BY, WO, or DWW
operator is followed by a variable, then the environment watches the byte, word,
or doubleword at the address contained in the variable.

You can also use the context operator { } to display the contents of any location.

VisuaL C++

To display a Unicode string in the Watch window or the QuickWatch dialog box,
use the su format specifier. To display data bytes with Unicode characters in the
Watch window or the QuickWatch dialog box, use the mu format specifier.

Keyboard shortcuts
There are numerous keyboard shortcuts that make working with the Visual

Studio editor faster. Some of the more useful keyboard shortcuts follow.

The text editor uses many of the standard shortcut keys used by Windows
applications, such as Word. Some specific source code editing shortcuts are
listed below.

Shortcut Action

Alt+F8 | Correctly indent selected code based on surrounding lines.

Ctrl+] | Find the matching brace.

Crtrl+) | Display list of members.

Complete the word, once the number of letters entered allows the editor to recognize it. Use full when

Ctrl+Spacebar N N N
completing function and variable names.

Tab | Indents selection one tab stop to the right.

Shift+Tab | Indents selection one tab to the left.

Below is a table of common keyboard shortcuts used in the debugger.

Shortcut Action

F9 | Add or remove breakpoint from current line.

Ctrl+Shift+F9 | Remove all breakpoints.

Ctrl+F9 | Disable breakpoints.

Ctrl+Alt+A | Display auto window and move cursor into it.

Ctrl+Alt+C | Display call stack window and move cursor into it.

Crrl+Alt+L | Display locals window and move cursor into it.

Ctrl+Alt+A | Display auto window and move cursor into it.

Shift+F5 | End debugging session.
FI

Execute code one statement at a time, stepping into functions.

FI0 | Execute code one statement at a time, stepping over functions.

Crurl+Shift+F5 | Restart a debugging session.

Ctrl+FI10 | Resume execution from current statement to selected statement.

F5 | Run the application.

Ctrl+F5 | Run the application without the debugger.

Ctrl+Shift+FI10 | Set the next statement.

Ctrl+Break | Stop execution.

Loading the following shortcuts can greatly increase your productivity with the
Visual Studio development environment.

Chapter 4 * Developer environments * | 17

VisuaL C++

118 « ArcGIS Engine Developer Guide

Shortcut Action

ESC | Close a menu or dialog box, cancel an operation in progress, or place focus in the current document window.

CTRL*SHIFT+N | Create a new file.

CTRL+N | Create a new project.

CTRL+F6 or
CTRL+TAB

CTRL+ALT+A | Display the auto window and move the cursor into it.

Cycle through the MDI child windows one window at a time.

CTRL+ALT+C | Display the call stack window and move the cursor into it.

CTRL+ALT+T | Display the document outline window and move the cursor into it.

CTRL+H | Display the find window.

CTRL+F | Display the find window. If there is no current Find criteria, put the word under your cursor in the find box.

CTRL+ALT+l | Display the immediate window and move the cursor into it. Not available if you are in the text editor window.

CTRL+ALT+L | Display the locals window and move the cursor into it.

CTRL+ALT+O | Display the output window and move the cursor into it

CTRL+ALT+| | Display the project explorer window and move the cursor into it.

CTRL+ALT+P | Display the properties window and move the cursor into it.
CTRL+SHIFT+O | Open a file.
CTRL+O | Open a project.

CTRL+P | Printall or part of the document.

CTRL+SHIFT+S | Save all of the files, projects, or documents.
CTRL+S | Selectall.

CTRL+A | Save the current document or selected item or items.

Navigating through online help topics

Right-click a blank area of a toolbar to display a list of all the available
toolbars. The Infoviewer toolbar contains up and down arrows that allow you
to cycle through help topics in the order in which they appear in the table of
contents. The left and right arrows cycle through help topics in the order that
you visited them.

IMPORTING ArcGIS TYPE LIBRARIES

In order to reference ArcGIS interfaces, types and objects you will need to import
the definitions into VisualC++ types. The #import command automates the
creation of the necessary files required by the compiler. The #import was devel-
oped to support Direct-To-Com). When importing ArcGIS type libraries there are
a number of parameters that must be passed.

#pragma warning(push)

#pragma warning(disable : 4192) /* Ignore warnings for types that are
duplicated in win32 header files */
#pragma warning(disable : 4146) /* Ignore warnings for use of minus on

unsigned types */

#import “\Program Files\ArcGIS\com\esriSystem.olb”
/* Type library to generate C++ wrappers */ \

raw_interfaces_only, /* Don’t add raw_ to method names */\
raw_native_types, /* Don’t map to DTC smart types */\
no_namespace, /* Don’t wrap with C++ name space =/ \
named_guids, /* Named guids and declspecs */ 0\
exclude(“OLE_COLOR”, “OLE_HANDLE”, “VARTYPE™)

/* Exclude conflicting types */

#pragma warning(pop)

The main use of #import is to create C++ code for interface definitions, GUID
constants (LIBID, CLSID and IID) and define smart pointers. The exclude
(“OLE_COLOR”, “OLE_HANDLE”, “VARTYPE”) is required because Win

VisuaL C++

dows defines these to be unsigned longs, which conflicts with the ArcGIS defini-
tion of long—this was required to support Visual Basic as a client of ArcObjects,
since Visual Basic has no support for unsigned types. There are no issues with
excluding these.

You can view the code generated by #import in the “.tlh” files (type library
header file - similar format to a .h). You may also find a “.tli” file (type library
implementation - corresponds to .cpp). These files can be large but are only
regenerated when the type libraries change.

As there are many type libraries at ArcGIS 9 for different functional areas you can
start by just importing those that contain the definitions that you require. How-
ever #import does not automatically include all other definitions that the im-
ported type library requires. For example when importing the type library
esriGeometry it will contain references to types that are defined in esriSystem, so
esriSystem must be imported before esriGeometry.

A complete list of library dependencies can be found in the Overview topic for
cach library.

Choosing the minimum set of type libraries helps reduce compilation time, al-
though this is not always significant. Here are some steps to help determine the
minimum number type libraries required:

1. Do a compilation and look at the “missing type definition” errors generated
from code, e.g. “ICommand not found”.

2. Place a #import statement for the library you need a reference for into your
stdafx.h file. Use the LibraryLocator utility or component help to assist in this
task.

3. Compile the project a second time.

4. The compiler will issue errors for types it cannot resolve in the imported type
libraries, these are typically type definitions like WKSPoint or interfaces that
are inherited into other interfaces. For example if working with geometry
objects like points, start by importing esriGeometry, the compiler will issue
various errors like :
c:\temp\sample\debug\estigeometry.tth(869) : error C2061: syntax ertor :
identifier “WKSPoint’

Looking up the definition of WKSPoint you see it is defined in esriSystem.
Therefore importing esriSystem before estiGeometry will resolve all these
issues.

Below is a typical list of imports for working with the ActiveX controls.

#pragma warning(push)

#pragma warning(disable : 4192) /* Ignore warnings for types that are
duplicated in win32 header files */

#pragma warning(disable : 4146) /* Ignore warnings for use of minus on
unsigned types */

#import “\Program Files\ArcGIS\com\esriSystem.olb” raw_interfaces_only,
raw_native_types, no_namespace, named_guids, exclude(“OLE_COLOR”,
“OLE_HANDLE”, “VARTYPE™)

#import “\Program Files\ArcGIS\com\esriSystemUI.olb” raw_interfaces_only,
raw_native_types, no_namespace, named_guids

Chapter 4 * Developer environments * | 19

VisuaL C++

For a general discussion of ATL, see the earlier
section ‘ATL in Brief”.

120 * ArcGIS Engine Developer Guide

#import “\Program Files\ArcGIS\com\esriGeometry.olb” raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import “\Program Files\ArcGIS\com\esriDisplay.olb” raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import “\Program Files\ArcGIS\com\esriOutput.olb” raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import “\Program Files\ArcGIS\com\esriGeoDatabase.olb”
raw_interfaces_only, raw_native_types, no_namespace, named_guids

#import “\Program Files\ArcGIS\com\esriCarto.olb” raw_interfaces_only,
raw_native_types, no_namespace, named_guids

// Some of the Engine controls

#import “\Program Files\ArcGIS\bin\TOCControl.ocx” raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import “\Program Files\ArcGIS\bin\ToolbarControl.ocx”
raw_interfaces_only, raw_native_types, no_namespace, named_guids

#import “\Program Files\ArcGIS\bin\MapControl.ocx” raw_interfaces_only,
raw_native_types, no_namespace, named_guids

#import “\Program FiTles\ArcGIS\bin\PagelLayoutControl.ocx”
raw_interfaces_only, raw_native_types, no_namespace, named_guids

// additionally for 3D controls
#import “\Program Files\ArcGIS\com\esri3DAnalyst.olb” raw_interfaces_only,
raw_native_types, no_namespace, named_guids
#import “\Program Files\ArcGIS\com\esriGlobeCore.olb” raw_interfaces_only,
raw_native_types, no_namespace, named_guids
#import “\Program Files\ArcGIS\bin\SceneControl.ocx” raw_interfaces_only,
raw_native_types, no_namespace, named_guids
#import “\Program Files\ArcGIS\bin\GlobeControl.ocx” raw_interfaces_only,
raw_native_types, no_namespace, named_guids
A similar issue arises when writing IDL that contains definitions from other type
libraries. In this situation use importlib just after the library definition. For ex-
ample writing an external command for ArcMap would require you to create a
COM object implementing ICommand. This definition is in esriSystemUI and is
imported into the IDL as follows:
Tibrary WALKTHROUGH1CPPLib
{
importlib(“stdole32.t1b”);
importlib(“stdole2.t1b”);
import1ib(“\Program Files\ArcGIS\com\esriSystemUI.ol1b”);

coclass ZoomIn
{
[default] interface IUnknown;
interface ICommand;
}
};

ATL AND THE ACTIVEX CONTROLS

This section covers how to use ATL to add controls to a dialog. Although ATL is
focused on providing COM support it also supplies some useful windows pro-
gramming wrapper classes. One of the most useful is CWindow, this is a wrapper

VisuaL C++

around a window handle (HWND). The method names on CWindow correspond
to the win32 api functions. For example:

HWND buttonHWnd = GetD1gItem(IDC_BUTTON1); // Get window handle of
button
CWindow myButtonWindow(buttonHwnd); // Attach window handle

to CWindow class
myButtonWindow.SetWindowText(_T(“Button Title”)); // Win32 function to

change button caption
CWindow is a generic wrapper for all window handles, so for specific windows
messages to window common controls, like buttons, tree views or edit boxes, one
approach is to send window messages direct to the window, for example:
// Set button to be checked (pushed-in or ticked, depending on button style)
myButtonWindow.SendMessage (BM_SETCHECK, BST_CHECKED) ;
However there are some wrapper classes for these standard window common
controls in a header file at/controls.h. This is available as part of an ATL sample
ATLCON supplied in MSDN. See the following article “HOWTO: Using Class
Wrappers to Access Windows Common Controls in ATL”. This header file is an early
version of WTL (Windows Template Libraries), available for download from
Microsoft.

Visual Studio Resource editor can be used to design and position windows com-
mon controls and ActiveX® controls on a dialog. To create and manipulate the
dialog a C++ class is typically created that inherits from CAxDialoglmpl. This
class provides the plumbing to create and manage the ActiveX control on a
window. The ATL wizard can be used to supply the majority of the boiler plate
code. The steps to create a dialog and add an ActiveX control in an ATL project
are discussed below.

1. Select the menu option “Insert / New ATL Object”.
2. Select the “Miscellaneous” category and then select the “Dialog” object.

3. A dialog resource and a class inheriting from CAxDialoglmpl will be added to
your project.

4. Right click on the dialog in resource view and select “Insert ActiveX Control”,
this will display a list of available ActiveX control.

5. Double click on a control in the list to add the control to the dialog;

Chapter 4 Developer environments * |21

VisuaL C++

Make sure dialogs that host ActiveX controls
inherit from CAxDialoglmpl and not
CDialoglmpl. If this mistake is made the
DoModal method of the dialog simply exits with
no obvious cause.

Make sure applications that use windows
common controls, like treeview, correctly call
InitCommonControlsEx to load the window
class, otherwise the class will not function
correctly.

Make sure applications using COM objects call
Colnitialize. This initialises COM in the applica-
tion, without this call any CoCreate calls will fail.

For a detailed discussion on handling events in
ATL, see the section ‘Handling COM events in
ATL.

122 + ArcGIS Engine Developer Guide

6. Right click on the control and select “Properties” to set the controls design
time properties.

+2, ATLCOMDialog - Microsoft ¥isual C++ - [ATLCOMDialog.rc - IDD_MYDIALDG [En (=]}
=lEle Edit Wiew Insert BoundsChecker Project Build Lavout Tooks Window Help =8| x|
A EHE s me D CIEE |5 w3 en m)==n|ee
Ji PE R RS N R R
=-23 ATLCOMDialog resa - =
(1 "REGISTRY" = x| x|
-3 Dislog S Fix
= e) E K bl [
o
; IDD_MYDIALD! ok] et =
- (] String Table Cancal E3NC
#--(_] Yersion
ESRI MapControl
LT
Copy
L =
T m— -
520, | gRe.. | = Fie.
H(FEs L BEEME =B |

|
E]]
EN Classwizard
1 Build £ Debug j Find in Files 1 Find in Files2 Results SQL Debugging -

Events...
Activate embedded or linked object

Properties

Accessing a control on a dialog through a COM interface

To retrieve a handle to the control that is hosted on a form, use GetD/gControl
ATL method that is inherited from CAxDialogImpl to take a resource ID and
return the underlying control pointer:

ITOCControlPtr ipTOCControl;

GetD1gControl(IDC_TOCCONTROL1, IID_ITOCControl, (void**) &ipTOCControl);
ipTOCControl->AboutBox() ;

Listening to events from a control

The simplest way to add events is use the class wizard. Simply right-click on the
control and select “Events...”. Next select the resource ID of the control and
then select the event (e.g. OnMouseDown). Now click “Add Handler”. Finally
ensure the dialog begins listening to events by adding
AtlAdviseSinkMap(this, TRUE) to the OnlnitDialog. To finish listening to events
add a message handler for OnDestroy and add a call to AtlAdviseSinkMap(this,
FALSE).

Creating a control at run time

The CAxWindow class provides a mechanism to create and host ActiveX controls
in a similar manner to any other window class. This may be desirable if the parent
window of the control is also created at runtime.

AtIAWInInitQ;

CAXWindow wnd;

//m_hWnd is the parent window handle

//rect is the size of ActiveX control in client coordinates
//IDC_MYCTL 1is a unique id to identify the controls window
RECT rect = {10,10,400,300};

wnd.Create(m_hWnd, rect, _T(“esriReaderControl.ReaderControl”),
WS_CHILD|WS_VISIBLE, 0, IDC_MYCTL);

VisuaL C++

Setting the buddy control property

The ToolbarControl and TOCControl need to be associated with a “buddy”
control on the dialog. This is typically performed in the OnlnitDialog windows
message handler of a dialog,

LRESULT CEngineControlsD1g: :OnInitDialog(UINT uMsg, WPARAM wParam, LPARAM
1Param, BOOL& bHandled)

{

// Get the Control’s interfaces into class member variables

GetD1gControl (IDC_TOOLBARCONTROL, IID_IToolbarControl, (void **)
&m_ipToolbarControl);

GetD1gControl (IDC_TOCCONTROL, IID_ITOCControl, (void **) &m_ipTOCControl);

GetD1gControl (IDC_PAGELAYOUTCONTROL, IID_IPagelLayoutControl, (void **)
&m_ipPagelLayoutControl);

// Connect to the controls
At1AdviseSinkMap(this, TRUE);

// Set buddy controls
m_1ipTOCControl->SetBuddyControl (m_ipPagelLayoutControl);
m_ipToolbarControl->SetBuddyControl(m_ipPageLayoutControl);

return TRUE;
}

Known limitations of Visual Studio C++ Resource Editor and ArcGIS
ActiveX controls

Buddy property on property page is disabled

In Visual Studio C++ you cannot set the “Buddy” property of the TOCControl
and the ToolbarControl through the “General” property page. Visual C++ does
not support controls finding other controls at design time. However this step can
be performed in code in OnlnitDialog method.

ToolbarControl does not resize to the height of one button

In other environments (Visual Basic 6, .Net) the ToolbarControl will automati-
cally resize to be one button high. However in Visual Studio C++ 6 it can be any
size. In MFC and ATL the ActiveX® host classes do not allow controls to deter-
mine their own size.

Design time property pages disappear when display context sensitive help
When viewing the controls property page at design time, using right click and
selecting “whats’ This?” will result in the help tip to display, however the prop-
erty pages will then close. This is a limitation of the Visual Studio floating win-
dows combined with the floating tip window from HTML help. Clicking the
“Help” button provides the same text for the whole property page.

MFC AND THE ACTIVEX CONTROLS

There are many choices in how to work with ArcGIS ActiveX Controls in VC++,
firstly which framework is used to host the controls (for example ATL or

Chapter 4 * Developer environments ¢ 123

VisuaL C++

Inserting ActiveX controls on a dialog inVisual
Studio C++ Design time. The TOCControl,
MapControl have been added to the dialog, the
ToolbarControl is next.

MFC), secondly what the control will be hosted on (Dialog, MDI app etc). This
section discusses MFC and hosting the control on a dialog.

Creating an MFC dialog-based application

If you do not have a dialog in your application or component here are the steps
to create an MFC dialog application.

1. Launch Visual Studio C++ 6 and select “New”

2. Select Projects Tab and select “MFC AppWizard (exe)” Enter Project name
and location for project, click OK

3. For wizard step 1 - From the radio buttons change the application type to
“Dialog Based”, Click Next For wizard step 2 - The default project features
are fine, although you can uncheck AboutBox to simplify the application.
Ensure support for “ActiveX Controls” is checked.

4. Click Next For wizard step 3 - The default settings in this page are fine, the
MFC dll is shared, click Next.

5. For wizard step 4 - This shows you what the wizard will generate, click “Fin-
ish”

You should now have a simple dialog based application - in the resource view you
will see “TODO: Place Dialog Controls Here”. You can place buttons, list boxes
ctc in this dialog, also the dialog can host an ActiveX controls, there are two
approaches to doing this as discussed below. You can also compile and run this
application.

Hosting controls on an MFC dialog and access using with using
IDispatch

1. Right click on the MFC dialog and select “Insert ActiveX control”

2. Double click on a control from the list box and the con-

- sample - Microsult Visual | =18/l . . ;

B e e e e e o trol appears on the dialog with a default size.

2 ==@ RS- BN : i .

. 1 .
[CSampleZDig = [1A0 class members]][¢ C5ample2Dig = 3. Size and pOSlthI’l the control as requlred
Wossbopo b b o bbb bbby 4. Repeat steps 1 to 3 for each control.

- | T —— BT [N

r T e abl 5. You can right click on the control and select “Properties”
] Mo . . .

Cancel || % & to set the controls design time properties.
] -
‘ = B 6. To access the control in code, you will need ArcGIS

E 1nsert Active 2% . .. - .

] T interface definitions for IMapControl etc. To do this use
E ESRI TOCCantrol ESRI MapCant [;2iioveContl et el = the #import in you stdafx.h file. See section Importing
] ActivexPlugin Object . . .

E e et ArcGIS type libraries on how to do this.

3 éDD‘/}‘:gaédEéuh‘/:\zard

5 atchGrid.cliBatct

Corda Conkol 60 7. MEC provides control hosting on a dialog, this will trans-

1 # p : . .

] :;”V‘Ewcu""m late windows messages like WM_SIZE into approprtiate
“la control method calls. However to be able to make calls
3 ERFL|BEEHE =B EE

Ready 43 00 1 320 200

124 + ArcGIS Engine Developer Guide

on a control there are a few steps to go from a resource
ID to a controls interface. The following code illustrates
setting the TOCControl’s Buddy to be the MapControl:

VisuaL C++

// Code to set the Buddy property of the TOCControl to be the MapControl
//

// Get a pointer to the PagelLayoutControl and TOCControl
IPagelLayoutControlPtr ipPagelLayoutControl;

GetDl1gControl (IDC_PAGELAYOUTCONTROL1, IID_IPagelLayoutControl, (void**)
&ipPagelayoutControl);

ITOCControlPtr ipTOCControl;
GetD1gControl(IDC_TOCCONTROL1, IID_ITOCControl, (void**) &ipTOCControl);

// Get the IDispatch of the PagelLayoutControl
IDispatchPtr ipBuddyDisp = ipPagelLayoutControl;

// Set the TOCControls Buddy to the map control
ipTOCControl->putref_Buddy (ipBuddyDisp) ;

8. To catch events from the controls, simply double click on the control on the
form and supply the name of a method to be called. By default the wizard will
add an extra word “On” to the beginning of the event handler. Remove this
to avoid the event handler name becoming “OnOnMouseDownMapcontroll”.
The wizard will then automatically generate the necessary MEFC sink map
macros to listen to events.

Adding controls to an MFC dialog using IDispatch wrappers

As all ActiveX controls support IDispatch, this is the typical approach to add an
ActiveX control to an MFC project:

1. Select Project / Add / Components and Controls

+. Sample - Microsoft Visual C++ - [Sample.rc - IDD_SAMPLE DIALOG =10l x| . .
2. Select “Registered ActiveX Controls”

SlEle Edit View Insert Project Buld LayoU{5ample - Microsoft Visual G+ - [Sample.re - [0D_SAMPLE_DT

a2gEHE® o= - EEH & | 3 Double click to select control(e.g. ESRI TOCControl),
[CSampleDia <[class members)][g CSampleDla B then click “OK” to “Insert Component?” then click
o T T PP PR PTRT RN | PP RRIR “OK” to generate wrappers. This will add an icon for the

[i = = control to the “Controls” toolbar in Visual Studio

E ESRI ToolbarContral Ok 5 4. Additional source files are added to your project (e.g

.:; g _Coed | :: toccontrol.cpp and toccontol.h). These files contain a

E | e ﬁf wrapper class (e.g. CTOCControl) to provide methods

E & =P and properties to access the control. This class will

abl [invoke the control through the IDispatch calling mecha-
E : o nism. Note that IDispatch does incur some performance
] ESRITOCCHT! ESRIMaRCEna! 2 E overhead to package parameters when making method

] = B and property calls. The wrapper class inherits from a

_: ; H "’:‘" MFC CWnd class that hosts an ActiveX control.

f : € B || 5. Repeatsteps 1 to 4 to add each control to the projects

- K il “Controls” toolbar.

g 2 I , # i
e 00 7 m0s200 6. Select a control from the “Controls” toolbar and drag it

onto the dialog,

Addin Control wrappers inVisual Studio C++ 7 Y : . . S .
. You can right click on the control, select properties and this will allow desi:
Design time.The TOCControl, MapControl and Y & ? prop w W e

ToolbarControl have been added to the “Con- time properties to be set on the control. Note. in Visual Studio C++ you
trols” toolbar and to the dialog. cannot set the “Buddy” property of the TOCControl and the ToolbarControl.

Chapter 4 * Developer environments ¢ 125

VisuaL C++

Visual Studio C++ Class Wizard.Adding member
variables to the dialog for the ActiveX Controls.

Do not use the method GetlDispatch (inher-
ited from MFC’s CCmdTarget) on the wrapper
classes, it is intended for objects which are
implementing IDispatch and not the wrapper
classes that are calling IDispatch. Instead to get
a controls IDispatch use
m_mapcontrol.GetControlUnknown() and then
Querylnterface to IDispatch (see the above
example of setting the Buddy property).

This environment does not support controls finding other controls at design

time. However this step can be performed in code in on OnlnitDialog

method.

// Note no addref performed with GetControlUnknown, so no need to release
this pointer

LPUNKNOWN pUnk = m_mapcontrol.GetControlUnknown() ;

LPDISPATCH pDisp =

0;pUnk->QueryInterface(IID_IDispatch, (void **) &pDisp);

// Set TOCControls buddy to be MapControl
m_toccontrol.SetRefBuddy (pDisp) ;
pDisp->Release();

. Right click on the control and select “Class Wizard” to launch the class wiz-

ard. Select “Member Variables tab and click on the resource ID corresponding
to the control to give the control member variable name. The dialog class
member variable can now used to invoke methods and properties on the
control.

MFC ClassWizard 2]
Message Maps Member Yariables | Automation | Active Events ‘ Class Info |

Project: Class name:
Sample j |CS amplellg
Z:h ASampletSampleDlg.h, Z:4. . A5 ampletS ampleDlg.cpp

Add Class.. ™
AddWariable...

Cantrol |Dis: Type tember Dele Tkt ‘

IDC_MAPCONTROLY T

Add Member ¥ariable

Member variable name:
[m_

_ il |
2]

_ x|

_ Conedl |

Cancel
Description: Lategory:
[Conml =]
“ariable pe:

CToolbaContolDefault =

Cancel

Description:

map to CToolbarControlD efault member

9. To catch control events, select the “Message Maps” tab of the class wizard and

select the resource ID of the control. In the list of messages select the event
to catch e.g. OnBeginlabelEdit. Double click on this event and a handler for
this event will be added to your dialog class. By default the wizard will add an
extra word “On” to the beginning of the event handler. Remove this to avoid
the event handler name becoming “OnOnBeginlabelEditToccontroll”.

HANDLING COM EVENTS IN ATL

Here is a summary of terminology used here when discussing COM events in

Visual C++ and ATL.

Inbound interface—This is the normal case where a COM object implements a

predefined interface.

126 * ArcGIS Engine Developer Guide

VisuaL C++

Outbound interface—This is an interface of methods which a COM object
will fire at various times. For example the Map CoClass will fire an event on the
TActiveViewEvents in response to changes in the map.

Event source—The source COM object will fire events to an outbound interface
when certain actions occur. For example the Map CoClass is a source of
TActiveViewEvents and will fire the IActiveViewEvents::ItemAdded event when
a new layer is added to the map. The source object can have any number of
clients (or event sink objects) listening to events. Also a source object may have
more than one outbound interface, for example the MapCoClass also fires events
on an IMapEvents interface. An event source will typically declare its outbound
interfaces in idl with the /[source] tag.

Event sink—A COM object that listens to events is said to be a sink for events.
The sink object implements the outbound interface, this is not always advertised
in the type libraries as the sink may listen to events internally. An event sink
typically uses the connection point mechanism to register its interest in the events of
a source object.

Connection point—COM objects which are the source of events typically use
the connection point mechanism to allow sinks to hook up to a source. The
connection point interfaces are standard COM interfaces [ConnectionPointContainer
and [ConnectionPoint.

Fire event—When a source object needs to inform all the sinks of a particular
action, the source is said to fire an event. This results in the source iterating all
the sinks and making the same method call on each. For example when a layer is
added to a map, The Map CoClass is said to fire the Item.Added event. So all the
objects listening to the Map’s outbound LAczivel zewEvents interface will be called
on their implementation of the ItemAdded method.

Advise and unadvise events—To begin receiving events a sink object is said to
advise a source object that it needs to receive events. When events are no longer
required the sink will unadvise the source.

The ConnectionPoint mechanism

The source object implements [ConnectionPointContainer interface allowing sinks to
query a source for a specific outbound interface. The following steps are per-
formed to begin listening to an event. ATL implements this with the AtlAdvise
method.

1. The sink will Qls to the source object’s [ConnectionPointContainer and call
FindConnectionPoint suppling an interface ID for an outbound interface. To be
able to receive events the sink object must implement this interface.

2. The source may implement many outbound interfaces and will return a pointer
to a specific connection point object implementing [ConnectionPoint represent-
ing one outbound interface.

3. The sink calls IConnectionPoint::Advise passing a pointer to its own [Unknown
implementation. The source will store this with any other sinks that may be
listening to events. If the call to Advise was successful then the sink will be
given an identifier (a simple unsigned long - called a cookie) to give back to
the source at a later point when it no longer needs to listen to events.

Chapter 4 « Developer environments * 127

VisuaL C++

IUnknawn C—| Sowrce Object M The connection is now complete, methods
will be called on any listening sinks by the
IUnknown " n . A .
_ Event 0 Sink Object source. The sink will typically hold onto
IConnectionPointContainer {_—| ConnectionPoint ||"tEffBDE: Cookie

Connection Paint

O_

Interface

tfar authound Evert

an interface pointer to the source, so when
a sink has finished listening it can be

-
g

Source

released from the source object by calling

Connection point mechanism for hooking Source
to Sink objects

New Windows Message and Event Handlers for class EMyDis

Eristing message/event handlers:

Mew Windows messages/events:

OnafterDiaw
OnbfterSereenDraw
OrBeforeScreenDraw
OnDoubleClick
OnEstentlpdated
OnFulExtentUpdated
OnkeyDown
OnkeyUp
OnMapReplaced

(i

OnSelectionChanged
OriiewR efreshed

Llass or object to handle:

Onkousellp : Fires when the user ieleases a mouse button while over the MapControl

ChiyDialo
IDCANCEL
DOk

Eilter for messages available to class:

IConnectionPoint::Unadvise. This is
implemented with AtlUnadvise.

Cther Sink objects

IDispatch events versus pure COM events

An outbound interface can be a pure dispatch interface. This means instead of
the source calling directly onto a method in a sink, the call is made via the
IDispatch::Invoke mechanism. The IDispatch mechanism has a performance
overhead to package parameters compared to a pure vtable COM call. However
there are some situations where this must be used. ActiveX controls must imple-
ment their default outbound interface as a pure IDispatch interface, for example
IMapControlEvents2 is a pure dispatch interface. Secondly Microsoft VisualBasic
6 can only be a source of pure IDispatch events. The connection
2=
oK
Cancel
Agd and Edit
Edil Exiting

point mechanism is the same as for pure COM mechanism, the
main difference being in how the events are fired.

ATL provides some macros to assist with listening to IDispatch
events, this is discussed in MSDN under “Ewvent Handling and
ATL”. There are two templates available IDispEventImpl and
IDispEventSimplelmpl which are discussed in the following
sections.

Using IDispEventimpl to listen to events

The ATL template IDispEventImpl will use a type library to
“crack” the IDispatch calls and process the arguments into C++
method calls. The Visual Studio class wizard can provide this
mechanism automatically when adding an ActiveX controls to a
dialog. Simply right click on the Control and select “Events”. In
the class wizard select the resource ID of the control and then

Visual Studio C++ Class Wizard.Adding event
handler to an ActiveX control on a dialog.

There is a bug in the wizard as it does not add
the advise and unadvise code to the dialog.To fix
this issue add a message handler for OnDestroy.
Then in the OnlnitDialog handler call
AtlAdviseSinkMap with aTRUE second param-
eter to begin listening to events. Place a
corresponding call to At/AdviseSinkMap (with
FALSE as the Second parameter) in the
OnDestroy handler.This is discussed further in
MSDN article “BUG:ActiveX Control Events
Are Not Fired in ATL Dialog (Q190530)".

128 * ArcGIS Engine Developer Guide

choose the event, then select “Add Handler”.

The code below illustrates the event handling code added by the wizard, with
some modifications to ensure advise and unadvise are performed.

#pragma once

#include “resource.h”
#include <atThost.h>

// main symbols

I111717717177777777177777777777717777777777777777777777/7777777777711177777/7
// QMyDialog
class (MyDialog :
public CAxDialogImpl<CMyDialog>,
public IDispEventImp1<IDC_MAPCONTROL1, CMyDialog>
{

VisuaL C++

public
enum { IDD = IDD_MYDIALOG };

BEGIN_MSG_MAP(QMyDialog)
MESSAGE_HANDLER (WM_INITDIALOG, OnInitDialog)

// Add a handler to ensure event unadvise occurs
MESSAGE_HANDLER (WM_DESTRQY, OnDestroy)

COMMAND_ID_HANDLER (IDOK, OnOK)
COMMAND_ID_HANDLER (IDCANCEL, OnCancel)
END_MSG_MAP()

LRESULT OnInitDialog(UINT uMsg, WPARAM wParam, LPARAM 1Param, BOOL&
bHandTed)

{

// Calls IConnectionPoint: :Advise() for each control on the dialog box
with sink map entry.

AtT1AdviseSinkMap(this, TRUE);

return 1; // Let the system set the focus

}

LRESULT OnDestroy (UINT uMsg, WPARAM wParam, LPARAM 1Param, BOOL& bHandled)
{

// Calls IConnectionPoint::Unadvise() for each control on the dialog box
with sink map entry.

At1AdviseSinkMap(this, FALSE);

return 0;

}

LRESULT OnOK (WORD wNot1ifyCode, WORD wID, HWND hwWndCt1, BOOL& bHandled)
{

EndDialog(wID);

return 0;

3

LRESULT OnCancel(WORD wNot1ifyCode, WORD wID, HWND hwWndCt1, BOOL& bHandled)
{

EndDialog(wID);

return 0;

3

// ATL callback from SinkMap entry

VOID __stdcall OnMouseDownMapcontrol1l(LONG button, LONG shift, LONG x,
LONG y, DOUBLE mapX, DOUBLE mapY)

{

MessageBox (_T(“MouseDown!”));

}

BEGIN_SINK_MAP((MyDialog)
//Make sure the Event Handlers have __stdcall calling convention

Chapter 4 « Developer environments * 129

VisuaL C++

The following issues with events are documented
in MSDN Knowledge Base when using
IDispEventlmpl. Fixes to ATL code are shown in
MSDN for these issues, however it is not always
desirable to modify or copy ATL header files. In
this case the IDispEventSimplelmpl can be used
instead.

BUG: Events Fail in ATL Containers when
Enum Used as Event Parameter (Q237771)
BUG: IDispEventlmpl Event Handlers May
Give Strange Values for Parameters
(Q241810)

See the ‘Importing ArcGlIS type libraries’ section
for more explanation of #import.

130 * ArcGIS Engine Developer Guide

// The 0x1 is the Dispatch ID of the OnMouseDown method
SINK_ENTRY (IDC_MAPCONTROL1, 0Ox1, OnMouseDownMapcontroll)
END_SINK_MAPQ)
15

Using IDispEventSimplelmpl to listen to events

As the name of this template suggests it is a simpler version of IDispEventImpl.
The type library is no longer used to turn the IDispatch arguments into a C++
method call. While this may be a simpler implementation, it does now require the
developer to supply a pointer to a structure describing the format of the event
parameters. This structure is typically placed in the .cpp, for example here is the
structure describing the parameters of a OnMouseDown event for the
MapControl:

_ATL_FUNC_INFO g_ParamInfo_MapControl_OnMouseDown =

{
CC_STDCALL, // Calling convention.
VT_EMPTY, // Return type.
6, // Number of arguments.

{VT_14, VT_I14, VT_I4, VI_I4, VI_R8, VI_R8} // VariantArgument types.
5
The header file now inherits from IDispEventSimpleImpl and uses a different
macro SINK_ENTRY_INFO in the SINK_MAP. Also the events interface ID is
required, #import can be used to define this symbol. Note that a dispatch inter-
face is normally prefixed with DIID instead of IID.

#pragma once

#include “resource.h” // main symbols
#include <atThost.h>

// reference to structure defining event parameters
extern _ATL_FUNC_INFO g_ParamInfo_MapControl_OnMouseDown;

I111717717177777777177777777777717777777717777777777777/777777777771777777/7
// MyDialog2
class (MyDialog2 :

public CAxDialogImpl<CMyDialog2>,

pubTic IDispEventSimpleImpl<IDC_MAPCONTROL1, (MyDialog2,
&DIID_IMapControlEvents2>
{
public:

// Message handler code removed, it is the same as C(MyDialog using
IDispEventSimple

BEGIN_SINK_MAP(CMyDialog2)
// Make sure the Event Handlers have __stdcall calling convention
// The 0x1 is the Dispatch ID of the OnMouseDown method
SINK_ENTRY_INFO(IDC_MAPCONTROL1, // ID of event source
DIID_IMapControlEvents2, // interface to listen to
ox1, // dispatch ID of MouseDown

VisuaL C++

OnMapControlMouseDown, // method to call when event arrives
&g_ParamInfo_MapControl_OnMouseDown) // parameter info for method call

END_SINK_MAP()
IH

Listening to more than one IDispatch event interface on a COM
object

If a single COM object needs to receive events from more than one IDispatch
source, then this can cause compiler issues with ambiguous definitions of the
DispEventAdvise method. This is not normally a problem in a dialog as
AtlAdviseSinkMap will handle all the connections. The ambiguity can be avoided
by introducing different typedefs each time IDispEventSimplelmpl is inherited.
The following example illustrates a COM object called CListen which is a sink for
dispatch events from a MapControl and a Pagel.ayoutControl.

#pragma once
#include “resource.h” // main symbols

// This is the parameter information
extern _ATL_FUNC_INFO g_ParamInfo_MapControl_OnMouseDown;
extern _ATL_FUNC_INFO g_ParamInfo_PagelayoutControl_OnMouseDown;

//
// Define some typedefs of the dispatch template

//

class CListen; // forward definition

typedef IDispEventSimpleImpl<0, CListen, &IID_IMapControlEvents2>
IDispEventSimpleImp1_MapControl;

typedef IDispEventSimpleImpl<l, CListen, &IID_IPagelLayoutControlEvents>
IDispEventSimpleImpl_PagelLayoutControl;

I111777777177777777177777777777717777777717777777777777/777777777771777777/7
// ClListen

class ATL_NO_VTABLE CListen :
publ1ic CComObjectRootEx<CComSingleThreadVodel>,
pub1ic CComCoClass<CListen,&CLSID_Listen>,
pubTlic IDispEventSimpleImpl_MapControl,
public IDispEventSimpleImpl_PagelLayoutControl,
public IListen

{

public:
CListen()
{
}

DECLARE_REGISTRY_RESOURCEID(IDR_LISTEN)

Chapter 4 Developer environments * |31

VisuaL C++

132 « ArcGIS Engine Developer Guide

DECLARE_PROTECT_FINAL_CONSTRUCT()
BEGIN_COM_MAP(CListen)

COM_INTERFACE_ENTRY (IListen)
END_COM_MAP()

// Associated source and dispatchID to a method call

BEGIN_SINK_MAP(CListen)
SINK_ENTRY_INFO(O, // ID of event source
DIID_IMapControlEvents2, // interface to listen to
0ox1, // dispatch ID to receive
OnMapControlMouseDown, // method to call when event arrives

&g_ParamInfo_MapControl_OnMouseDown) // parameter info for
method call

SINK_ENTRY_INFO(1,
DIID_IPagelLayoutControlEvents,
0x1,
OnPagelayoutControlMouseDown,
&g_ParamInfo_PagelLayoutControl_OnMouseDown)
END_SINK_MAPQ)

// IListen
public:

STDMETHOD (SetControls) (IUnknown* pMapControl, IUnknown*
pPagelLayoutControl);

STDMETHOD(CTear) Q;

private:

void __stdcall OnMapControlMouseDown(long button, long shift, Tong x, long
y, double mapX, double mapY);

void __stdcall OnPagelLayoutControlMouseDown(long button, long shift, Tong
x, long y, double pageX, double pageY);

IUnknownPtr m_ipUnkMapControT;

TIUnknownPtr m_ipUnkPagelLayoutControl;
}
The implementaion of CListen contains the following code to start listening to
the controls, the typdef avoids the ambiguity of the DispEventAdvise implemen-
tation.

// Start listening to the MapControl

IUnknownPtr ipUnk = pMapControl;

HRESULT hr = IDispEventSimpleImp]_MapControl: :DispEventAdvise(ipUnk);

if (SUCCEEDED(hr))

m_ipUnkMapControl = ipUnk; // Store pointer to MapControl for Unadvise

// Start listening to the PagelLayoutControl

ipUnk = pPagelayoutControl;

hr = IDispEventSimpleImpl_PagelLayoutControl: :DispEventAdvise(ipUnk);
if (SUCCEEDED(hr))

m_ipUnkPagelLayoutControl = ipUnk; // Store pointer to PagelLayoutControl
for Unadvise

VisuaL C++

The implementation of CListen also contains the following code to UnAdvise
and stop listening to the controls.
// Stop listening to the MapControl
if (m_ipUnkMapControl!=0)
ID1ispEventSimpleImpl_MapControl: :DispEventUnadvise(m_ipUnkMapControl) ;
m_ipUnkMapControl = 0;

if (m_ipUnkPagelLayoutControl!=0)
IDi spEventSimpleImpl_PagelayoutControl : :DispEventUnadvise (m_ipUnkPagelayoutControl) ;
m_ipUnkPagelLayoutControl= 0;

Creating a COM events source

In order for an object to be a source of events it will need to provide an imple-
mentation of IConnectionPointContainer and a mechanism to track which sinks
are listening to which IConnectionPoint interfaces. ATL provides this through
the [ConnectionPointContainerlmpl template. Additionally ATL provides a wizard to
generate code to fire IDispatch events for all members of a given dispatch events
interface. Below are the steps to modify an ATL. COM CoClass to support a
connection point:

1. First make sure your ATL CoClass has been compiled at least once. This will
allow the wizard to find an initial type library.

2. In Class View, Right click on the COM object and select “Implement Connec-
tion Point...”

3. Either use a definition of events from the idl in the project, or select “Add
Type Lib” to browse to another definition.

4. Check the outbound interface to be implemented in the CoClass.

Implement Connection Point: ﬂﬂ

0K

Cancel

File name: TOCContalCP.h Browse... Add Typeib

Interfaces

i

ATLEVENTSOURCELE esiTOCControl I

ITOCControlE vents

Generating Event Firing Code

5. Clicking OK will modify ur ATL class and generate the proxy classes in a
header file (with a name ending in CP) for firing events.

Chapter 4 » Developer environments * 133

VisuaL C++

134 + ArcGIS Engine Developer Guide

If the wizard fails to run then use the following example that illustrates a
CoClass that is a source of ITOCControlEvents. ITOCControlEvents is a pure
dispatch interface.

#pragma once

#include “resource.h” // main symbols

#include “TOCControlCP.h” // Include generated connection point class
for firing events

/11177771717777777717777777777777177777777777777777777/777777771771777771/7
// QMyEventSource
class ATL_NO_VTABLE CMyEventSource :

pubTic CComObjectRootEx<CComSingleThreadModel>,

pubTic CComCoClass<CMyEventSource,&LSID_MyEventSource>,

publ1ic IMyEventSource,

pub1ic CProxyITOCControlEvents< C(MyEventSource >, // Generated
ConnectionPoint class

pub1ic IConnectionPointContainerImpl< C(MyEventSource > // Implementation
of Connection point Container

{

public:
(MyEventSource()
{
}

DECLARE_REGISTRY_RESOURCEID(IDR_MYEVENTSOURCE)
DECLARE_PROTECT_FINAL_CONSTRUCTO

BEGIN_COM_MAP((MyEventSource)
COM_INTERFACE_ENTRY (IMyEventSource)

COM_INTERFACE_ENTRY (IConnectionPointContainer) // Allow QI to this
interface

END_COM_MAPO)

// List of available connection points
BEGIN_CONNECTION_POINT_MAP(QMyEventSource)
CONNECTION_POINT_ENTRY (DIID_ITOCControlEvents)
END_CONNECTION_POINT_MAP()
5
The connection point class (TOCControlEventsCPh in the above example)
contains code to fire an event to all sink objects on a connection point.

There is one method on the class for each event beginning “Fire_...”. Each
method will build a parameter list of variants to pass as an argument to the
dispatch Invoke method. Each sink is iterated, a pointer to the sink is stored in a
vector m_vec member variable inherited from IConnectionPointContainerImpl.

VisuaL C++

Note that m_vec can contain pointers to 0 and this must be checked for before
firing the event.
template <class T>

class CProxyITOCControlEvents : public IConnectionPointImpl<T,
&DIID_ITOCControlEvents, CComDynamicUnkArray>

{
public:
VOID Fire_OnMouseDown(LONG button, LONG shift, LONG x, LONG y)
{
// Package each of the parameters into an IDispatch argument list
T* pT = static_cast<T*>(this);
int nConnectionIndex;
CComVariant* pvars = new CComVariant[4];
int nConnections = m_vec.GetSize();

// Iterate each sink object

for (nConnectionIndex = 0; nConnectionIndex < nConnections;
nConnectionIndex++)

{
pT->Lock();
CComPtr<IUnknown> sp = m_vec.GetAt(nConnectionIndex);
pT->Unlock(Q);
IDispatch* pDispatch = reinterpret_cast<IDispatch*>(sp.p);

// Note m_vec can contain 0 entries so it is important to check for
this
if (pDispatch !'= NULL)
{
// Build up the argument Tist
pvars[3] = button;
pvars[2] = shift;
pvars[1l] = x;
pvars[0] = y;
DISPPARAMS disp = { pvars, NULL, 4, 0 };

// Fire the dispatch method, Ox1 is the DispatchId for MouseDown

pDispatch->Invoke(0x1, IID_NULL, LOCALE_USER_DEFAULT,
DISPATCH_METHOD, &disp, NULL, NULL, NULL);

}
}
delete[] pvars; // clean up the parameter Tist
}
VOID Fire_OnMouseUp(LONG button, LONG shift, LONG x, LONG y)
{
// ... Other events

To fire an event from the source, simply call the Fire_OnMouseDown when
required.

A similar approach can be used for firing events to a pure COM (non IDispatch)
interface. The wizard will not generate the connection point class so this must be

Chapter 4 « Developer environments * |35

VisuaL C++

136 * ArcGIS Engine Developer Guide

written by hand, the following example illustrates a class that will fire an
ITOCBuddyEvents:: ActiveViewReplaced event, ITOCBuddyEvents is a pure
COM, non-IDispatch interface. The key difference is that there is no need to
package the parameters, a direct method call can be made.

template < class T >

class CProxyTOCBuddyEvents : public IConnectionPointImpl< T,
&ITID_ITOCBuddyEvents, CComDynamicUnkArray >

{

// This class based on the ATL generated connection point class - but this
is not an IDispatch based events

public:
void Fire_ActiveViewReplaced(TActiveView* pNewActiveView)
{
T* pT = static_cast< T* >(this);
int nConnectionIndex;
int nConnections = this->m_vec.GetSize();

for (nConnectionIndex = 0; nConnectionIndex < nConnections;
nConnectionIndex++)

{

pT->Lock();

CComPtr< IUnknown > sp=this->m_vec.GetAt(nConnectionIndex);

pT->Unlock(Q);

ITOCBuddyEvents* pTOCBuddyEvents = reinterpret_cast< ITOCBuddyEvents*
>(sp.p);

if (pTOCBuddyEvents)

pTOCBuddyEvents->ActiveViewReplaced(pNewActiveView) ;
}
}

15

IDL declarations for an object that supports events

When an object is exported to a type library the event interfaces are declared by
using the [source] tag against the interface name. For example an object that fires
ITOCBuddyEvents declares

[source] interface ITOCBuddyEvents;

If the outbound interface is a dispatch events interface dispinterface is used instead
of interface . Additionally a CoClass can have a default outbound interface and
this is specified with the /defanlt] tag. Default interfaces are identified by some
design environments (e.g. VisualBasic 6). For example here is the declaration for
the default outbound events interface:

[default, source] dispinterface IMyEvents2;

Event circular reference issues

After a sink has performed an Advise on the source there is typically a COM
circular reference. This occurs because the source has an interface pointer to a
sink in order to fire events, this keeps the sink alive. Similarly a sink object has a
pointer back to the source so it can perform the unadvise at a later point. This

VisuaL C++

keeps the source alive. Therefore these two objects will never be release and may
cause substantial memory leaks. There are a number of ways to tackle this issue:

1. Ensure the advise and unadvise is made on a method or windows message that
are guaranteed to happen in pairs and are independent of an objects life cycle.
For example in a CoClass that is also receiving windows messages use
theWindows messages OnCreate (WM_CREATE) and OnDestroy
(WM_DESTROY) to advise and unadvise.

2. If a ATL dialog class needs to listen to events then one approach is to make
the dialog a private COM class and implement the events interface directly on
the dialog. ATL allows this without much extra coding, This approach is
illustrated below. The dialog class creates a CustomizeDialog CoClass and
listens to ICustomizeDialogEvents. The OnlnitDialog and OnDestroy meth-
ods (corresponding to window messages) are used to Advise and Unadvise on
the CustomizeDialog,

class CEngineControlsDlg :
public CAxDialogImpl1<CEngineControlsDlg>,
pubTic CComObjectRoot, // Make Dialog Class a COM Object aswell

public ICustomizeDialogEvents // Implement this interface directly on
this object

CEngineControlsD1g() : m_dwCustD1gCookie(0) {} // initialise cookie for
event listening

// ... Event handlers and other standard dialog code has been removed ...

BEGIN_COM_MAP(CEngineControlsD1g)

COM_INTERFACE_ENTRY (ICustomizeDialogEvents) // Make sure QI works for
this event interface

END_COM_MAP(O)

// ICustomizeDialogEvents implementation to receive events on this
dialog

STDMETHOD(OnStartDialog) O ;
STDMETHOD(OnCloseDialog) O ;

ICustomizeDialogPtr m_ipCustomizeDialog; // The source of events

DWORD m_dwCustD1gCookie; // Cookie for
CustomizeDialogEvents

}

The dialog needs to be created like a noncreateble COM object rather than on
the stack as a local variable, this allocates the object on the heap and allows it
to be released through the COM reference counting mechanism.

// Create dialog class on the heap using ATL CComObject template
CComObject<CEngineControlsD1g> *myD1g;
CComObject<CEngineControlsD1g>: :CreateInstance(&myD1g);

myD1g->AddRef(); // Keep dialog alive until we’re done with it

myD1g->DoModal(); // Launch the dialog, when method returns dialog has
exited

myD1g->Release(); // typically the refcount now goes to 0 and frees the
dialog object

Chapter 4 * Developer environments * |37

VisuaL C++

3. Implement an intermediate COM object for use by the sink, this is sometimes
called a listener or event helper object. This object typically contains no imple-
mentation but simply uses C++ method calls to forward on events to the sink
object. The listener has its reference count incremented by the source, but the
sinks reference count is unaffected. This breaks the cycle, allowing the sink’s
reference count to reach 0, when all other references are released. As the sink
executes its destuctor code it instucts the listener to unadvise and release the
source.

An alternative to using C++ pointers to communicate between listener and sink,
is to use an interface pointer which is a weak reference. That is the listener con-
tains a COM pointer to the sink but does not increment the sinks reference count.
It is the responsibility of the sink to ensure this pointer is not accessed after the
sink object has been released.

138 « ArcGIS Engine Developer Guide

.NET APPLICATION PROGRAMMING INTERFACE

WHAT IS THE .NET FRAMEWORK?
This section,‘What is the .NET Framework?’ The NET Framework is an integral Windows component that supports building

summarizes the Microsoft overview of the NET and running the next generation of applications and XML Web services. The

) Framework available O"I':”e as part of MSDN NET Framework is designed to fulfill the following objectives:
Library.The complete text is available at http://

www.msdn.microsoft.com/library/ * 'To provide a consistent object-otiented programming environment whether
default.asp?url=/library/en-us/cpguide/htmi/

cpovrintroductiontonetframeworksdk.asp object code is stored and executed locally, executed locally but Internet-

distributed, or executed remotely.

* To provide a code-execution environment that minimizes software deploy-
ment and versioning conflicts.

* To provide a code-execution environment that guarantees safe execution of
code, including code created by an unknown or semi-trusted third party.

* To provide a code-execution environment that eliminates the performance
problems of scripted or interpreted environments.

* To make the developer experience consistent across widely varying types of
applications, such as Windows-based applications and Web-based applications.

e To build all communication on industry standards to ensure that code based on
the NET Framework can integrate with any other code.

The .NET Framework has two main components: the common language runtime
and the NET Framework class library. The common language runtime is the
foundation of the NET Framework. You can think of the runtime as an agent
that manages code at execution time, providing core services such as memory
management, thread management, and remoting, while also enforcing strict type
safety and other forms of code accuracy that ensure security and robustness. In
fact, the concept of code management is a fundamental principle of the runtime.
Code that targets the runtime is known as managed code, while code that does
not target the runtime is known as unmanaged code. The class library, the other
main component of the NET Framework, is a comprehensive, object-oriented
collection of reusable types that you can use to develop applications ranging from
traditional command-line or graphical user interface (GUI) applications to appli-
cations based on the latest innovations provided by ASP.NET, such as Web Forms
and XML Web services.

The .NET Framework can be hosted by unmanaged components that load the
common language runtime into their processes and initiate the execution of
managed code, thereby creating a software environment that can exploit both
managed and unmanaged features. The NET Framework not only provides
several runtime hosts, but also supports the development of third-party runtime
hosts.

For example, ASPNET hosts the runtime to provide a scalable, server-side
environment for managed code. ASPNET works directly with the runtime to
enable ASPNET applications and XML Web services, both of which are dis-
cussed later in this topic.

Internet Explorer is an example of an unmanaged application that hosts the
runtime (in the form of a MIME type extension). Using Internet Explorer to
host the runtime enables you to embed managed components or Windows Forms
controls in HTML documents. Hosting the runtime in this way makes managed

Chapter 4 « Developer environments * 139

.NET AprPLICATION PROGRAMMING INTERFACE

140 * ArcGIS Engine Developer Guide

mobile code (similar to Microsoft ActiveX controls) possible, but with significant
improvements that only managed code can offer, such as semi-trusted execution
and secure isolated file storage.

The following sections describe the main components and features of the NET
Framework in greater detail.

Features of the Common Language Runtime

The common language runtime manages memory, thread execution, code execu-
tion, code safety verification, compilation, and other system services. These
features are intrinsic to the managed code that runs on the common language
runtime.

With regards to security, managed components are awarded varying degrees of
trust, depending on a number of factors that include their origin (such as the
Internet, enterprise network, or local computer). This means that a managed
component might or might not be able to perform file-access operations, registry-
access operations, or other sensitive functions, even if it is being used in the same
active application.

The runtime enforces code access security. For example, users can trust that an
executable embedded in a Web page can play an animation on screen of sing a
song, but cannot access their personal data, file system, or network. The security
features of the runtime thus enable legitimate Internet-deployed software to be
exceptionally feature rich.

The runtime also enforces code robustness by implementing a strict type-and-
code-verification infrastructure called the common type system (CTS). The CTS
ensures that all managed code is self-describing. The various Microsoft and third-
party language compilers generate managed code that conforms to the CTS. This
means that managed code can consume other managed types and instances, while
strictly enforcing type fidelity and type safety.

In addition, the managed environment of the runtime eliminates many common
software issues. For example, the runtime automatically handles object layout and
manages references to objects, releasing them when they are no longer being used.
This automatic memory management resolves the two most common application
errors, memory leaks and invalid memory references.

The runtime also accelerates developer productivity. For example, programmers
can write applications in their development language of choice, yet take full
advantage of the runtime, the class library, and components written in other
languages by other developers. Any compiler vendor who chooses to target the
runtime can do so. Language compilers that target the NET Framework make
the features of the NET Framework available to existing code written in that
language, greatly easing the migration process for existing applications.

While the runtime is designed for the software of the future, it also supports
software of today and yesterday. Interoperability between managed and
unmanaged code enables developers to continue to use necessary COM compo-
nents and DLLs.

The runtime is designed to enhance performance. Although the common language
runtime provides many standard runtime services, managed code is never inter-

.NET AprPLICATION PROGRAMMING INTERFACE

preted. A feature called just-in-time (JIT) compiling enables all managed code to
run in the native machine language of the system on which it is executing. Mean-
while, the memory manager removes the possibilities of fragmented memory and
increases memory locality-of-reference to further increase performance.

Finally, the runtime can be hosted by high-performance, server-side applications,
such as Microsoft SQL Server and Internet Information Services (I1IS). This
infrastructure enables you to use managed code to write your business logic, while
still enjoying the superior performance of the industry’s best enterprise servers
that support runtime hosting;

.NET Framework class library

The NET Framework class library is a collection of reusable types that tightly
integrate with the common language runtime. The class library is object oriented,
providing types from which your own managed code can derive functionality.
This not only makes the NET Framework types easy to use, but also reduces the
time associated with learning new features of the NET Framework. In addition,
third-party components can integrate seamlessly with classes in the NET Frame-
work.

For example, the NET Framework collection classes implement a set of inter-
faces that you can use to develop your own collection classes. Your collection
classes will blend seamlessly with the classes in the .NET Framework.

As you would expect from an object-oriented class library, the NET Framework
types enable you to accomplish a range of common programming tasks, including
tasks such as string management, data collection, database connectivity, and file
access. In addition to these common tasks, the class library includes types that
support a variety of specialized development scenarios. For example, you can use
the NET Framework to develop the following types of applications and ser-
vices:

* Console applications.

* Windows GUI applications (Windows Forms).
e ASPNET applications.

* XML Web services.

* Windows services.

For example, the Windows Forms classes are a comprehensive set of reusable
types that vastly simplify Windows GUI development. If you write an ASPNET
Web Form application, you can use the Web Forms classes.

Client application development

Client applications are the closest to a traditional style of application in Win-
dows-based programming. These are the types of applications that display win-
dows or forms on the desktop, enabling a user to perform a task. Client applica-
tions include applications such as word processors and spreadsheets, as well as
custom business applications such as data-entry tools, reporting tools, and so on.
Client applications usually employ windows, menus, buttons, and other GUI
clements, and they likely access local resources such as the file system and periph-
erals such as printers.

Chapter 4 » Developer environments * 141

.NET AprPLICATION PROGRAMMING INTERFACE

142 « ArcGIS Engine Developer Guide

Another kind of client application is the traditional ActiveX control (now re-
placed by the managed Windows Forms control) deployed over the Internet as a
Web page. This application is much like other client applications: it is executed
natively, has access to local resources, and includes graphical elements.

In the past, developers created such applications using C/C++ in conjunction
with the Microsoft Foundation Classes (MFC) or with a rapid application devel-
opment (RAD) environment such as Microsoft Visual Basic. The NET Frame-
work incorporates aspects of these existing products into a single, consistent
development environment that drastically simplifies the development of client
applications.

The Windows Forms classes contained in the NET Framework are designed to
be used for GUI development. You can easily create command windows, buttons
menus, toolbars, and other screen elements with the flexibility necessary to
accommodate shifting business needs.

>

For example, the NET Framework provides simple properties to adjust visual
attributes associated with forms. In some cases the underlying operating system
does not support changing these attributes directly, and in these cases the NET
Framework automatically recreates the forms. This is one of many ways in which
the NET Framework integrates the developer interface, making coding simpler
and more consistent.

Unlike ActiveX controls, Windows Forms controls have semi-trusted access to a
user’s computer. This means that binary or natively executing code can access
some of the resources on the user’s system (such as GUI elements and limited file
access) without being able to access or compromise other resources. Because of
code access security, many applications that once needed to be installed on a uset’s
system can now be safely deployed through the Web. Your applications can imple-
ment the features of a local application while being deployed like a Web page.

Server application development

Server-side applications in the managed world are implemented through runtime
hosts. Unmanaged applications host the common language runtime, which allows
your custom managed code to control the behavior of the server. This model
provides you with all the features of the common language runtime and class
library while gaining the performance and scalability of the host server.

Server-side managed code

ASPNET is the hosting environment that enables developers to use the NET
Framework to target Web-based applications. However, ASPNET is more than
just a runtime host; it is a complete architecture for developing Web sites and
Internet-distributed objects using managed code. Both Web Forms and XML Web
services use 1IS and ASP.NET as the publishing mechanism for applications, and
both have a collection of supporting classes in the NET Framework.

XML Web services, an important evolution in Web-based technology, are distrib-
uted, server-side application components similar to common Web sites. However,
unlike Web-based applications, XMIL. Web services components have no UI and
are not targeted for browsers such as Internet Explorer and Netscape Navigator.
Instead, XML Web services consist of reusable software components designed to

.NET AprPLICATION PROGRAMMING INTERFACE

be consumed by other applications, such as traditional client applications, Web-
based applications, or even other XML Web services. As a result, XML Web
services technology is rapidly moving application development and deployment
into the highly distributed environment of the Internet.

If you have used ecarlier versions of ASP technology, you will immediately notice
the improvements that ASPNET and Web Forms offer. For example, you can
develop Web Forms pages in any language that supports the NET Framework. In
addition, your code no longer needs to share the same file with your HTTP text
(although it can continue to do so if you prefer). Web Forms pages execute in
native machine language because, like any other managed application, they take
full advantage of the runtime. In contrast, unmanaged ASP pages are always
scripted and interpreted. ASPNET pages are
ASP.NET hosts XML Wab faster, more functional, and easier to develop
g orvices applications than unmanaged ASP pages because they interact
with the runtime like any managed application.

ASP.NET hosts
Web Forms

Client applications
' ‘E'\::tn:ﬁ,féf Eg‘fﬁ;f ?ﬁg;ts the The NET Framework also provides a collection
—= runtime and managed code of classes and tools to aid in development and
consumption of XML Web services applications.
XML Web services are built on standards such as
This diagram illustrates a basic network schema SOAP (a remote procedure-call protocol), XML (an extensible data format), and

with managed code running in different server WSDL (the Web Services Description Language). The NET Framework is built
environments. Servers such as IIS and SQL Server h dard . bili ith Mi £t soluti

can perform standard operations while your on these standards to promote interoperability with non-Microsoft solutions.

application logic executes through the managed

ode For example, the Web Services Description Language tool included with the

NET Framework SDK can query an XML Web service published on the Web,
parse its WSDL description, and produce C# or Visual Basic source code that
your application can use to become a client of the XML Web service. The source
code can create classes derived from classes in the class library that handle all the
underlying communication using SOAP and XML parsing, Although you can use
the class library to consume XML Web services directly, the Web Services De-
scription Language tool and the other tools contained in the SDK facilitate your
development efforts with the NET Framework.

If you develop and publish your own XML Web service, the NET Framework

provides a set of classes that conform to all the underlying communication stan-
dards, such as SOAP, WSDL, and XML. Using those classes enables you to focus
on the logic of your service, without concerning yourself with the communica-
tions infrastructure required by distributed software development.

Finally, like Web Forms pages in the managed environment, your XML Web
service will run with the speed of native machine language using the scalable
communication of IIS.

INTEROPERATING WITH COM

Code running under the NET Framework’s control is called managed code;
conversely, code executing outside the NET Framework is termed unmanaged
code. COM is one example of unmanaged code. The framework promotes
interaction with unmanaged code and for COM, the technology that bridges this
gap is COM Interop, which is part of the NET Framework itself.

Chapter 4 « Developer environments ¢ 143

.NET AprPLICATION PROGRAMMING INTERFACE

Unmanaged

For COM Interop to work, the CLR requires metadata for all the COM types.
This means that the COM type definitions normally stored in the type libraries
need to be converted to NET metadata. This is easily accomplished with the
Type Library Importer utility (tlbimp.exe) which ships with the NET Framework
SDK. This utility generates interop assemblies containing the metadata for all the
COM definitions in a type library. Once metadata is available, NET clients can
seamlessly create instances of COM types and call its methods as though they
were native NET instances.

Primary interop assemblies

Primary interop assemblies (PIAs) are the official, vendor-supplied, NET type
definitions for interoperating with underlying COM types. Primary interop assem-
blies are strongly named by the COM library publisher to guarantee uniqueness.

ESRI provides primary interop assemblies for all the ArcObjects type libraries
that are implemented with COM. ArcGIS NET developers should only use these
primary interop assemblies which are installed in the Global Assembly Cache
(GAC) during install if version 1.1 of the NET Framework is detected. ESRI
only supports the interop assemblies that ship with ArcGIS. You can identify a
valid ESRI assembly by its public key (8FC3CC631E44ADS0).

COM wrappers

The .NET runtime provides wrapper classes to make both managed and
unmanaged clients believe they are communicating with objects within their
respective environment.

When managed clients call
Managed

a method on a COM
u"_—_—\ object, the runtime creates
0 A .MET client 2 runtime callable wrapper
| l_g | R |U * | ‘ calling a PP

A COM client
calling a
MNET server

Consumer

144 « ArcGIS Engine Developer Guide

Or

COM server (RCW) which handles the
marshaling between the
two environments. Simi-
larly, the NET runtime

D_l:l creates COM callable

wrappers for the reverse
case, COM clients commu-
nicating with NET com-
ponents.

Consumer

Exposing .NET components to COM

When creating NET components that COM clients will make use of, follow the
guidelines listed below to ensure interoperability.

* Avoid using parameterized constructors.
* Avoid using static methods.
* Define event-source interfaces in managed code.

e Include HRESULTS in user-defined exceptions.

.NET AprPLICATION PROGRAMMING INTERFACE

* Supply Globally Unique Identifiers (GUIDs) for types that require them.
* Expect inheritance differences

For more information review ‘Interoperating with Unmanaged Code’ in the
MSDN help collection.

Performance considerations

COM Interop clearly adds a new layer of overhead to applications but the overall
cost of interoperating between COM and .NET is very small and often unnotice-
able. However, the cost creating wrappers and having them marshal between
environments does add up; if you suspect COM Interop is the bottleneck in your
application’s performance, try creating a COM worker class that wraps all the
chatty COM calls into one function which managed code can invoke. This im-
proves performance by limiting the marshaling between the two environments.

COM to .NET type conversion

Generally speaking, the type library importer imports types with the same name
they originally had in COM. All imported types are additionally added to a
namespace which have the following naming convention: ESRI.ArcGIS plus the
name of library. For example, the namespace for the Geometry library is
ESRI.ArcGIS.Geometry. All types are identified by their complete namespace
and type name.

Classes, Interfaces, and Members

All COM coclasses are converted to managed classes; the managed classes have
the same name as the original with ‘Class’ appended. For example, the Point
coclass is PointClass.

All classes additionally have an interface with the same name as the coclass that
corresponds to the default interface for the coclass. For example, the PointClass
has a Point interface. The type library importer adds this interface so clients can
register as event sinks.

The .NET classes additionally have class members which NET supports but
COM does not. Each member of each interface the class implements is added as
a class member. Any property or method a class implants can be accessed directly
from the class rather than having to cast to a specific interface. Since interface
member names are not unique, name conflicts are resolved by prefixing the
interface name and an underscore to the name of each conflicting member.
When member names conflict, the first interface listed with the coclass remains
unchanged.

Properties in C# that have by-reference or multiple parameters are not supported
with the regular property syntax. In these cases, it is necessary to use the accessor
methods instead. The following code excerpt shows an example.

ILayer layer = mapControl.get_Layer(0);
MessageBox. Show(Tayer.Name) ;

Events

The type library importer creates several types that enable managed applications
to sink to events fired by COM classes. The first type is a delegate that is named

Chapter 4 * Developer environments * 145

.NET AprPLICATION PROGRAMMING INTERFACE

146 * ArcGIS Engine Developer Guide

after the event interface plus an underscore followed by the event name, and then
the word EventHandler. For example, the SelectionChanged event defined on
the TActiveViewEvents interface has the following delegate defined:
TActiveViewEvents_SelectionChangedEventHandler. The importer additionally
creates an event interface with a °_Event’ suffix added to the end of the original
interface name. For example, IActiveViewEvents generates
IActiveViewEvents_Event. Use the event interfaces to set up event sinks.

Non-Ole Automation Compliant Types

COM types that are not OLE automation compliant generally do not work in
NET. ArcGIS contains a few non-compliant methods and these are unfortu-
nately not usable in NET. However, in most cases, supplemental interfaces have
been added which have the offending members rewritten compliantly. For
example, when defining an envelope via a point array you can’t use
IEnvelope::DefineFromPoints; instead, you must use
IEnvelopeGEN::DefineFromPoints.

[VB.NET]
Dim pointArray(1) As IPoint
pointArray(0) = New PointClass
pointArray(1) = New PointClass
pointArray(0) .PutCoords (0, 0)
pointArray (1) . PutCoords (100, 100)

Dim env As IEnvelope

Dim envGEN As IEnvelopeGEN
env = New EnvelopeClass
envGEN = New EnvelopeClass

‘Won’t compile
‘env.DefineFromPoints(2, pointArray)

‘Doesn’ t work
env.DefineFromPoints(2, pointArray(0))

“Works
envGEN.DefineFromPoints (pointArray)

[G]
IPoint[] pointArray = new IPoint[2];
pointArray[0] = new PointClassQ);
pointArray[1] = new PointClassQ;
pointArray[0] . PutCoords(0,0);
pointArray[1] . PutCoords(100,100);

IEnvelope env = new EnvelopeClassQ);
IEnvelopeGEN envGEN = new EnvelopeClassQ);

//Won’t compile
//env.DefineFromPoints(3, ref pointArray);

.NET AprPLICATION PROGRAMMING INTERFACE

//Doesn’ t work
env.DefineFromPoints(3, ref pointArray[0]);

//Works
envGEN. DefineFromPoints(ref pointArray);

.NET PROGRAMMING TECHNIQUES AND CONSIDERATIONS

This section contains several programming tips and techniques to help developers
who are moving to .NET.

Casting between interfaces (Querylnterface)

NET uses casting to jump from one interface to another interface on the same
class. In COM this is called QueryInterface. VB.NET and C# cast differently.

VB.NET

There are two types of casts, implicit and explicit. Implicit casts require not
additional syntax whereas explicit cast require cast operators.

geometry = point ‘Implicit cast

geometry = CType(point, IGeometry) ‘Explicit cast
When casting between interfaces it perfectly acceptable to use implicit casts as
there is no chance of data loss as there is when casting between numeric types.
However, when casts fail an exception (System.InvalidCastException) is thrown;
to avoid handling unnecessary exceptions, it’s best to test if the object imple-
ments both interfaces beforehand. The recommend technique is to use the
TypeOf keyword which is a comparison clause that tests whether an object is
derived from or implements a particular type, such as an interface. The example
below performs an implicit conversion from an IPoint to an IGeometry only if at
runtime it is determined that the Point class implements IGeometry.

Dim point As New PointClass

Dim geometry As IGeometry

If (TypeOf point Is IGeometry) Then

geometry = point

End If
If you prefer using the Option Strict On statement to restrict implicit conver-
sions, use the CType function to make the cast explicit. The example below adds
an explicit cast to the code sample above.

Dim point As New PointClass

Dim geometry As IGeometry

If (TypeOf point Is IGeometry) Then

geometry = CType(point, IGeometry)
End If

CH

In C#, the best method for casting between interfaces is to use the as operator.
Using the as operator is a better coding strategy than a straight cast because it
yields a null on a conversion failure rather than raising an exception.

The first line of code below is a straight cast. This is acceptable practice if you
are absolutely certain the object in question implements both interfaces; if the

Chapter 4 « Developer environments * 147

.NET AprPLICATION PROGRAMMING INTERFACE

148 * ArcGIS Engine Developer Guide

object does not implement the interface you are attempting to get a handle to,
NET will throw an exception. A safer model is to use the as operator which
returns a null if the object cannot return a reference to the desired interface.

IGeometry geometry = point; // straight cast

IGeometry geometry = point as IGeometry; // as operator
The example below shows how to handle to possibility of a returned null inter-
face handle.

IPoint point = new PointClassQ;

IGeometry geometry = point;

IGeometry geometry = point as IGeometry;

if (geometry != null)

{

Console.WritelLine(geometry.GeometryType.ToString());
}

Binary compatibility

Most existing ArcGIS Visual Basic 6 developers are familiar with the notion of
binary compatibility. This compiler flag in Visual Basic ensures that components
maintain the same GUID each time they are compiled. When this flag is not set,
a new GUID is generated for each class every time the project is compiled. This
has the adverse side-effect of having to then re-register the components in their
appropriate component categories.

To keep from having the same problem in .NET, you can use the GUIDAtrribute
class to manually specify a GUID for a class. Explicitly specifying a GUID
guarantees that it will never change. If you do not specify a GUID, the type
library exporter will automatically generate one when you first export your
components to COM and although the exporter is meant to keep using the same
GUIDs on subsequent exports, it’s not guaranteed to do so.

The example below shows a GUID attribute being applied to a class.
[VB.NET]
<GuidAttribute(“9ED54F84-A89D-4fcd-A854-44251E925F097)> _
PubTic Class SampleClass

End Class

[G]
[GuidAttribute(*“9ED54F84-A89D-4fcd-A854-44251E925F09)]
Public class SampleClass
{

//
}

Events

An event is a message sent by an object to signal the occurrence of an action. The
action could be caused by user interaction, such as a mouse click, or it could be
triggered by some other program logic. The object that raises (triggers) the event
is called the event sender. The object that captures the event and responds to it is
called the event receiver.

.NET AprPLICATION PROGRAMMING INTERFACE

In event communication, the event sender class does not know which object or
method will receive (handle) the events it raises. What is needed is an intermedi-
ary (or pointer-like mechanism) between the source and the receiver. The NET
Framework defines a special type (<Delegate>) that provides the functionality
of a function pointer.

A delegate is a class that can hold a reference to a method. Unlike other classes, a
delegate class has a signature, and it can hold references only to methods that
match its signature. A delegate is thus equivalent to a type-safe function pointer
or a callback.

To consume an event in an application, you must provide an event handler (an
event-handling method) that executes program logic in response to the event and
register the event handler with the event source and it must have the same signa-
ture as the event delegate. This process is referred to as event wiring,

The ArcObjects code excerpt below shows a custom ArcMap command wiring up
to the Map object’s selection changed event. For simplicity, the event is wired up
in the OnClick event.
[VB.NET]

‘Can’t use WithEvents because the outbound interface is not the

‘default interface

‘TActiveViewEvents 1is the sink event interface
‘SelectionChanged is the name of the event

‘TActiveViewEvents_SelectionChangedEventHandler is the delegate name

‘Declare the delegate
Private SelectionChanged As TActiveViewEvents_SelectionChangedEventHandler

Private m_mxDoc As IMxDocument

Publ1ic Overloads Overrides Sub OnCreate(ByVal hook As Object)
Dim app As TApplication

app = hook
m_mxDoc = app.Document
End Sub

PubTic Overrides Sub OnClick()
Dim map As Map
map = m_mxDoc.FocusMap

‘Create an instance of the delegate, add it to SelectionChanged event

SelectionChanged = New
TActiveViewEvents_SelectionChangedEventHandler (AddressOf OnSelectionChanged)

AddHandTer map.SelectionChanged, SelectionChanged
End Sub

‘Event handler

Private Sub OnSelectionChanged()
MessageBox. Show(“Selection Changed”)

End Sub

Chapter 4 * Developer environments * 149

.NET AprPLICATION PROGRAMMING INTERFACE

[G]
// IActiveViewEvents is the sink event interface
// SelectionChanged is the name of the event
// TActiveViewEvents_SelectionChangedEventHandler is the delegate name
TActiveViewEvents_SelectionChangedEventHandler m_selectionChanged;
private ESRI.ArcGIS.ArcMapUI.IMxDocument m_mxDoc;

public override void OnCreate(object hook)
{
TAppTlication app = hook as IApplication;
m_mxDoc = app.Document as IMxDocument;

public override void OnClick()
{

IMap map = m_mxDoc.FocusMap;

// Create a delegate instance and add it to SelectionChanged event

m_selectionChanged = new
TActiveViewEvents_SelectionChangedEventHandler(SelectionChanged) ;

((TActiveViewEvents_Event)map) .SelectionChanged += m_selectionChanged;
}
// Event hanlder
private void SelectionChanged()
{
MessageBox. Show(“Selection changed”);

}

Error handling

The error handling construct in Visual Studio .NET is known as structured
exception handling. The constructs used may be new to Visual Basic users, but
should be familiar to users of C++ or Java.

Structured exception handling is straightforward to implement, and the same
concepts are applicable to either VBNET or C#. VBNET allows backward
compatibility by also providing unstructured exception handling, via the familiar
On Error GoTo statement and Err object, although this model is not discussed in
this section.

Exceptions

Exceptions are used to handle error conditions in Visual Studio NET. They
provide information about the error condition.

An exception is an instance of a class which inherits from the System.Exception
base class. Many different types of exception class are provided by the NET
Framework, and it is also possible to create your own exception classes. Each
type extends the basic functionality of the System.Exception class by allowing
further access to information about the specific type of error that has occurred.

An instance of an Exception class is created and thrown when the NET Frame-
work encounters an error condition. You can deal with exceptions by using the
Try, Catch Finally construct.

150 * ArcGIS Engine Developer Guide

.NET AprPLICATION PROGRAMMING INTERFACE

Try, Catch, Finally
This construct allows you to catch errors that are thrown within your code. An
example of this construct is shown below. An attempt is made to rotate an
envelope, which throws an error.
[VB.NET]

Dim env As IEnvelope = New EnvelopeClass()

env.PutCoords (0D, OD, 10D, 10D)

Dim trans As ITransform2D = env

trans.Rotate(env.LowerLeft, 1D)
Catch ex As System.Exception

MessageBox.Show(“Error: “ + ex.Message)

‘ Perform any tidy up code.
End Try

[G]

{
IEnvelope env = new EnvelopeClassQ);
env.PutCoords (0D, OD, 10D, 10D);
ITransform2D trans = (ITransform2D) env;
trans.Rotate(env.LowerLeft, 1D);

}

catch (System.Exception ex)

{

MessageBox.Show(“Error: “ + ex.Message);

// Perform any tidy up code.
}
You place a try block is placed around the code which may fail. If the application
throws an error within the Try block, the point of execution will switch to the
first Catch block.

The Catch block handles a thrown error. The application executes the Catch
block when the Type of a thrown error matches the Type of error specified by
the Catch block. You can have more than one Catch block to handle different
kinds of errors. The code shown below checks first if the exception thrown is a
DivideByZeroException.

[VB.NET]

Catch divEx As DivideByZeroException

* Perform divide by zero error handling.
Catch ex As System.Exception

* Perform general error handling.

[GH]

catch (DivideByZeroException divEx)
{
Chapter 4 Developer environments * |51

.NET AprPLICATION PROGRAMMING INTERFACE

152 « ArcGIS Engine Developer Guide

// Perform divide by zero error handling.
}
catch (System.Exception ex)
{

// Perform general error handling.

}

If you do have more than one Catch block, note that the more specific exception
Types should precede the general System.Exception, which will always succeed
the type check.

The application always executes the Finally block, either after the Try block
completes, or after a Catch block, if an error was thrown. The Finally block
should therefore contain code which must always be executed, for example to
clean up resources like file handles or database connections.

If you do not have any cleanup code, you do not need to include a Finally block.

Code without exception handling

If aline of code not contained in a Try block throws an error, the NET runtime
searches for a Catch block in the calling function, continuing up the call stack
until a Catch block is found.

If no Catch block is specified in the call stack at all, the exact outcome may
depend on the location of the executed code and the configuration of the NET
runtime. It is therefore advisable to at least include a Try, Catch, Finally construct
for all entry points to a program.

Errors from COM components

The structured exception handling model differs from the HRESULT model used
by COM. C++ developers can easily ignore an error condition in an HRESULT if
they wished; in Visual Basic 6 however, an error condition in an HRESULT
populates the Err object and raises an error.

The .NET runtime’s handling of errors from COM components is somewhat
similar to the way COM errors were handled at VB 6. If a NET program calls a
function in a COM component (through the COM interop services) and returns
an error condition as the HRESULT, the HRESULT is used to populate an
instance of the COMException class. This is then thrown by the .NET runtime,
where you can handle it in the usual way, by using a Try, Catch Finally block.

It is advisable therefore to enclose all code that may raise an error in a COM
component within a Try block with a corresponding Catch block to catch a
COMException. Below is the first example rewritten to check for an error from a
COM component.

[VB.NET]
Dim env As IEnvelope = New EnvelopeClass()
env.PutCoords (0D, OD, 10D, 10D)
Dim trans As ITransform2D = env
trans.Rotate(env.LowerLeft, 1D)

Catch COMex As COMException
If (COMex.ErrorCode = -2147220984) Then

.NET AprPLICATION PROGRAMMING INTERFACE

MessageBox. Show(“You cannot rotate an Envelope”)

MessageBox . Show _
(“Error “ + COMex.ErrorCode.ToString() + “: *“ + COMex.Message)
End If
Catch ex As System.Exception
MessageBox.Show(“Error: “ + ex.Message)

[G]

{
IEnvelope env = new EnvelopeClassQ);
env.PutCoords (0D, OD, 10D, 10D);
ITransform2D trans = (ITransform2D) env;
trans.Rotate(env.LowerLeft, 1D);

}
catch (COMException COMex)
{
if (COMex.ErrorCode == -2147220984)
MessageBox. Show(“You cannot rotate an Envelope”);
MessageBox.Show (“Error “ + COMex.ErrorCode.ToString() + “: “ +
COMex .Message) ;
}
catch (System.Exception ex)
{
MessageBox.Show(“Error: “ + ex.Message);
}

The COMException class belongs to the System.Runtime.InteropServices
namespace. It provides access to the value of the original HRESULT via the
ErrorCode property which you can test to find out which error condition oc-
curred.

Throwing errors and the exception hierarchy

If you are coding a user interface, you may wish to attempt to correct the error
condition in code and try the call again. Alternatively you may wish to report the
error to the user to let them decide which course of action to take; here you can
make use of the Message property of the Exception class to identify the problem.

However, if you are writing a function that is only called from other code, you
may wish to deal with an error by creating a specific error condition and propa-
gating this error to the caller. You can do exactly this by using the Throw key-
word.

To simply throw the existing error to the caller function, write your error handler
simply by using the Throw keyword, as shown below.

[VB.NET]
Catch ex As System.Exception

Chapter 4 » Developer environments * 153

.NET AprPLICATION PROGRAMMING INTERFACE

154 « ArcGIS Engine Developer Guide

[G]
catch (System.Exception ex)
{

throw;

}

If you wish to propagate a different or more specific error back to the caller, you
should create a new instance of an Exception class, populate it appropriately, and
throw this exception back to the caller. The example shown below uses the
ApplicationException constructor to set the Message property.
[VB.NET]
Catch ex As System.Exception

Throw New ApplicationException _

(*You had an error in your application”)

[G]
catch (System.Exception ex)
{
throw new ApplicationException(“You had an error in your application”);

}

If you do this however, the original exception is lost. In order to allow complete
error information to be propagated, the Exception class includes the
InnerException property. This property should be set to equal the caught excep-
tion, before the new exception is thrown. This creates an error hierarchy. Again,
the example shown below uses the ApplicationException constructor to set the
InnerException and Message properties.
[VB.NET]
Catch ex As System.Exception

Dim appEx As System.AppTicationException = _

New ApplicationException(“You had an error in your application”, ex)
Throw appEx

[GA]
catch (System.Exception ex)
{
System.ApplicationException appEx =
new ApplicationException(“You had an error in your application”, ex);
throw appEx;

In this way, the function that eventually deals with the error condition can access
all the information about the cause of the condition and its context.

If you throw an error, the application will execute the current function’s Finally
clause before control is returned to the calling function.

.NET AprPLICATION PROGRAMMING INTERFACE

Working with resources

Using strings and embedded images directly (no localization)

If your customization does not support localization now, and you do not intend
for it to support localization later, you can use strings and images directly without
the need for resource files. For example, strings can be specified and used directly
in your code:

[VB.NET]

Me.TextBoxl.Text = “My String”

[GA]
this.textBoxl.Text = “My String”;

Image files (bitmaps, jpegs, pngs, etc.) can be simply embedded in your assembly
as follows:

1. Right click the Project in the Solution Explorer, choose Add, and then choose
Add Existing Item.

2. In the Add Existing Item dialog box, browse to your image file and click
Open.

3. In Solution Explorer, select the image file you just added, and then press F4 to
display its Properties.

4. Set the Build Action property to Embedded Resource.

E|
i Pan.bmp File Propetties :_I
m =
Build Action Embedded Resource -
Custom Tool
Custom Tool Mamespace
File Mame Pan.bmp |
I Full Path n-ﬂqmsidnufuwﬂwdk&.ﬁ_
Build Action
Hows the file related to the build and deployment processes,

Now you can reference the image in your code. For example, the following
code creates a Bitmap object from the first embedded resource in the assem-
bly:

[VB.NET]

Dim res() As String = GetType(Forml) .Assembly.GetManifestResourceNames ()
If (res.GetLength(0) > 0)

Dim bmp As System.Drawing.Bitmap = New System.Drawing.Bitmap(_
GetType(Forml) .Assembly.GetManifestResourceStream(res(0)))

[GA]

string[] res = GetType() .Assembly.GetManifestResourceNames() ;
if (res.GetLength(0) > 0)

{

Chapter 4 * Developer environments * |55

.NET AprPLICATION PROGRAMMING INTERFACE

156 * ArcGIS Engine Developer Guide

System.Drawing.Bitmap bmp = new System.Drawing.Bitmap(
GetType() .Assembly.GetManifestResourceStream(res[0]));

Creating resources files

Before attempting to provide localized resources, you should ensure you are
familiar with the process of creating resources files for your NET projects. Even
if you do not intend to localize your resources, you can still use resources files,
instead of using images and strings directly as described above.

Visual Studio .NET projects use an XMI.-based file format to contain managed
resources. These XML files have the extension .resx and can contain any kind of
data (images, cursors, etc.) providing the data is converted to ASCII format. Resx
files are compiled to .resources files which are binary representations of the
resource data. Binary .resources files can be embedded by the compiler either into
the main project assembly, or into a separate satellite assembly which contains
only resources.

The following options are available to create your resources files. Each is dis-
cussed below.

* Creating a .resx file for string resources
* Creating resources files for image resources

* Compiling a .resx file into a .resources file

Creating a .resx file for string resources

If all you need to localize is strings (not images or cursors), you can use Visual
Studio.NET to create a new .resx file which will be automatically compiled into a
.resources module embedded in the main assembly.

1. Right click the Project name in the Solution Explorer, select Add, and then
select Add New Item.

2. In the Add New item dialog select Assembly Resource File.

Add New Item - PanTool x|

Categories: Templates: E—

= (1 Local Project Ttems % i
g #
[Code
[pats
[weh
L iy

{24 Resources

Bitmap File Cursor File Icon File

A MNET resource file

Mame: PanToolstrings.resx

Open | Cancel Help

.NET AprPLICATION PROGRAMMING INTERFACE

A list of tools useful for working with resources
can be found in the Microsoft .NET Framework
documentation at http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/cptutorials/
html/appendix_b__resource_tools.asp.

Additional information on theResEditor sample
can be found at http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/cptutorials/
html/resource_editor__reseditor_.asp.

The ResEditor sample is provided by Microsoft
as source code.You must build the sample first if
you wish to create resource files using this tool.
You can find information on building the SDK
samples under the SDK sub-directory of your

Visual Studio .NET installation.

3. Open the new .resx file in Visual Studio, and add name-value pairs for the
culture-specific strings in your application.

Data for data

" name | walue - comment type mimetype
i \Pan_Categor Developer Samples {rully {rully {rully
\Pan_Message Move around the display by dragging {rully {rully {nully

Fan_Czption_|Pan C#

4. When you compile your project, the .resx file will be compiled to a .resources
module inside your main assembly.

Creating resources files for image resources

The process of adding images, icons, or cursors to a resources file in NET is more
complex than creating a file containing only string values, because the tools
currently available in the Visual Studio NET IDE can only be used to add string
resources.

However, a number of sample projects are available with Visual Studio NET
Framework SDK which can help you work with resource files. One such sample
is the Resource Editor (ResEditor).

The ResEditor sample can be used to add images, icons, imagelists and strings to a
resources file. The tool cannot be used to add cursor resources. Files can be saved
as either .resx or .resource files.

M Resource Editor E = 0] =]
Fie Resource
g =
B ity |
Lo L p
B Amow? E System.Diavang Bimap
B Giobe B Sestem Dravang Bimap
18 Pan B3 Svstem Diawing Bitmap
& Zoomln Systenm.Dawing Bitmap
E lcon
B Stye 8 lcon)
El Sting

Slrmgl This bool 200ms o the map

Strirg2 Thiz tood can be uzed o pan sround e map
Arrowl

Add

ISys-:crr\Wlnd':ms Foims |rnaocLi:] |

- Rename
S

Creating resources files programmatically

You can create XML .resx files containing resources programmatically by using
the ResXResonrceWriter class (part of the NET framework). You can create
binary .resources files programmatically by using the ResourcelVriter class (also part

Chapter 4 * Developer environments * |57

.NET AprPLICATION PROGRAMMING INTERFACE

More information on the ResXGen can be found
at http://msdn.microsoft.com/library/
default.asp?url=/librarylen-us/cptutorials/html/
ResX_Generator__RESXGEN_.asp.

158 « ArcGIS Engine Developer Guide

of the NET framework). These classes will allow more flexibility to add the
kind of resources you require.

These classes may be particularly useful if you wish to add resources which
cannot be handled by the NET Framework SDK samples and tools, for example
cursors. The basic usage of the two classes is very similar, first create a new
resource writer class specifying the file name, then add resources individually by
using the AddResource method.

>

The code below demonstrates how you could create a new .resx file using the
ResXResourceWriter class, and add a bitmap and a cursor to the file.

[VB.NET]

Dim img As System.Drawing.Image = CType(New
System.Drawing.Bitmap(“ABitmap.bmp”), System.Drawing.Image)
Dim cur As New System.Windows.Forms.Cursor(“Pencil.cur”)

Dim rsxw As New System.Resources.ResXResourceWriter(“en-AU.resx”)
rsxw.AddResource (“MyBmp_jpg”, img)

rsxw.AddResource (“Mycursor_cur”, cur)

rsxw.Close()

[GA]

System.Drawing.Image img = (System.Drawing.Bitmap) new
System.Drawing.Bitmap(“ABitmap.bmp”);

System.Windows.Forms.Cursor cur = new
System.Windows . Forms.Cursor(“Pencil.cur”);

System.Resources.ResXResourceWriter rsxw = new
System.Resources.ResXResourceWriter(“en-GB.resx”);

rsxw.AddResource (“MyBmp_jpg”, img);
rsxw.AddResource(“Mycursor_cur”, cur);

rsxw.Close();

The PanTool developer sample (Samples\Map Analysis\'Tools) includes a script
called “MakeResources” that shows you how to use the ResXResourceWriter class
to write bitmap, cursor files and strings into an .resx file. It also shows you how
to read from a .resx file using the ResXResonrceReader class. The sample includes
a .resx file that holds a bitmap, two cursors, and three strings.

Compiling a .resx file into a .resources file
XMIL-based .resx files can be compiled to binary .resources files either by using

the Visual Studio IDE, or by using the ResX Generator (ResXGen) sample in the
tutorial.

e Any .resx file included in a Visual Studio project will be compiled to a .re-
sources module when the project is built. See the ‘Using resources with local-
ization’ section below for more information on how multiple resource files are
used for localization.

e If you wish you can convert a .resx file into a .resources file independently of
the build process, using the NET Framework SDK command resgen, for
example:

resgen PanToolCS. resx PanToolCS. resources

.NET AprPLICATION PROGRAMMING INTERFACE

Using resources with localization

This section explains how you can localize resources for your customizations.

How to use resources with localization

In .NET, a combination of a specific Language and Country/Region is called a
cultnre . For example, the American dialect of English is indicated by the string
“en-US”, and the Swiss dialect of French is indicated by “fr-CH”.

If you wish your project to support various cultures (languages and dialects), you
should construct a separate .resources file containing culture-specific strings and
images for each culture.

When you build a .NET project which uses resources, NET embeds the default
.resources file in the main assembly. Culture-specific .resources files are compiled
into satellite assemblies (using the naming convention <Main Assembly
Name>.resources.dll), and placed in sub-directories of the main build directory.
The sub-directories are named after the culture of the satellite assembly they
contain, for example Swiss-French resources would be contained in a sub-direc-
tory called “fr-CH”.

When an application runs, it automatically uses the resources contained in the
satellite assembly with the appropriate culture. The appropriate culture is deter-
mined from the Windows settings. If a satellite assembly for the appropriate
culture cannot be found, the default resources (those embedded in the main
assembly) will be used instead.

The Visual Basic .NET and C# flavors of the Pan The following sections give more information on creating your own .resx and
Tool developer sample illustrate how to localize resources files.
resources for German language environments.
The sample can be found in the Developer . A .
Samples\ArcMap\Commands andTools\Pan Tool Embedding a default .Resources file in your project

folder. Strictly speaking, the sample only requires 1. Right click the Project name in the Solution Explorer, click Add, and then
localized strings, but the images have been
changed for the “de” culture as well, to serve as
illustration. 2

click Add Existing Item to browse to your .resx or .resources file.

. In Solution Explorer, select the file you just added, and then click F4 to

A batch file named buildResources.bat has been display its Properties.
provided in the Pan Tool sample to create the
default .resources files and the culture-specific
satellite assemblies.

3. Set the Build Action property to Embedded Resource.
This will ensure that your application always has a set of resources to fall back

on if there isn’t a resource dll for the culture your application runs in.

Creating .Resources.dll files for cultures supported by your project

1. First ensure you have a default .resx or .resources file in your project.

2. Take the default .resx or .resources file and create a separate localized file for
cach culture you want to support.

e Each file should contain resources with the same Names - the Value of each
resource in the file should contain the localized value.

* Localized resource files should be named according to their culture, e.g.
<BaseName>.<Culture>.resx or <BaseName>.<Culture>.resources.

3. Add the new resources files to the project, ensuring each one has its Build
Action set to Embedded Resource.

Chapter 4 * Developer environments * |59

.NET AprPLICATION PROGRAMMING INTERFACE

160 * ArcGIS Engine Developer Guide

4. Build the project

The compiler and linker will create a separate satellite assembly for each
culture. The satellite assemblies will be placed in sub-directories under the
directory holding your main assembly. The sub-directories will be named by
culture, which allows the NET runtime to locate the resources appropriate to
the culture the application runs in.

The main (default) resources file will be embedded in the main assembly.

Assembly versioning and redirection

Applications that are built using a specific version of a strongly named assembly
require the same assembly at run time. For example, if you create an application
that uses ESRI.ArcGIS.System version 9.0.452, you will not be able to run this
application on a system that has a newer version of ESRI.ArcGIS.System (e.g.
9.0.0.692) installed. This may be the case if someone has installed a newer ver-
sion of ArcGIS; however, using configuration files you can redirect an applica-
tion to use a newer version of an assembly.

You have two choices for redirecting assemblies:
* Application configuration files

* Machine configuration files

Application configuration files

Application configuration files contain settings specific to an application. This file
contains configuration settings that the common language runtime reads (such as

assembly binding policy, remoting objects, and so on), and settings that the appli-

cation can read.

The name and location of the application configuration file depend on the
application’s host, which can be one of the following:

* Executable—hosted application—The configuration file for an application
hosted by the executable host is in the same directory as the application. The
name of the configuration file is the name of the application with a .config
extension. For example, an application called myApp.exe can be associated
with a configuration file called myApp.exe.config.

* ASPNET-hosted application—ASPNET configuration files are called
Web.config. Configuration files in ASPNET applications inherit the settings of
configuration files in the URL path. For example, given the URL
www.esti.com/aaa/bbb, where wwwesti.com/aaa is the Web application, the
configuration file associated with the application is located at www.esti.com/
aaa. ASPNET pages that are in the subdirectory /bbb use both the settings
that are in the configuration file at the application level and the settings in the
configuration file that is in /bbb.

e Internet Explorer-hosted application—If an application hosted in Internet
Explorer has a configuration file, the location of this file is specified in a
<link> tag with the following syntax:

<link rel="ConfigurationFileName” href="location”>

.NET AprPLICATION PROGRAMMING INTERFACE

In this tag, /ocation is a URL to the configuration file. This sets the application
base. The configuration file must be located on the same Web site as the
application.

Machine configuration files

The machine configuration file, Machine.config, contains settings that apply to an
entire computer. This file is located in the %runtime install path%\Config direc-
tory. Machine.config contains configuration settings for machine-wide assembly
binding, built-in remoting channels, and ASPNET.

The configuration system first looks in the machine configuration file for the
<appSettings> element and other configuration sections that a developer might
define. It then looks in the application configuration file. To keep the machine
configuration file manageable, it is best to put these settings in the application
configuration file. However, putting the settings in the machine configuration file
can make your system more maintainable. For example, if you have a third-party
component that both your client and server application use, it is easier to put the
settings for that component in one place. In this case, the machine configuration

Deploying an application using XCOPY will not file is the appropriate place for the settings, so you don’t have the same settings in
copy the settings in the machine configuration .
two different files.

file.
The configuration file below shows how to bind to an assembly and then redirect
it to a newer version.

<configuration>
<runtime>
<assemb1yBinding xmIns="urn:schemas-microsoft-com:asm.v1">
<dependentAssembTy>
<assemblyIdentity name="ESRI.ArcGIS.System”
pubTicKeyToken="8fc3cc631e44ad86"
culture="neutral” />

<!— Assembly versions can be redirected in application, publisher
policy, or machine configuration files. —>

<bindingRedirect oldVersion="9.0.0.452" newersion="9.0.0.692"/>
</dependentAssembly>
</assemblyBinding>
</runtime>
</configuration>

ARrRcGIS DEVELOPMENT USING .NET

Using .NET you can customize the ArcGIS applications, create standalone appli-
cations that use ESRI’s types, and extend ESRI’s types. For example, you can
create a custom tool for ArcMap, create a standalone application that uses the
MapControl, or create a custom layer. This section discusses several key issues
related to developing with ArcGIS and NET.

Registering .NET components with COM

Extending the ArcGIS applications with custom .NET components requires
registering the components in the COM registry and exporting the NET assem-
blies to a type library (tlb). When developing a component, there are two ways
to perform this task, you can use the RegAsm utility that ships with the NET

Chapter 4 » Developer environments * 161

.NET AprPLICATION PROGRAMMING INTERFACE

162 * ArcGIS Engine Developer Guide

Framework SDK, or use Visual Studio.NET which has a ‘Register for COM
Interop’ compiler flag,

The example below shows an EditTools assembly being register with COM. The
/tlb parameter specifies that a type library should additionally be generated and
the /codebase option indicates that the path to the assembly should be included
in the registry settings. Both of these parameters are required when extending
the ArcGIS applications with NET components.

regasm EditTools.d11 /tlb:EditTools.tlb /codebase

Visual Studio.NET performs this same operation automatically if you set the
Register for COM Interop’ compiler flag — this is the simplest way to perform the
registration on a development machine. To check a project’s settings, select
‘Project Properties’ from the ‘Project’ menu and then look at the Build property
under ‘Configuration Properties’. The very last item is ‘Register for COM
Interop’, set this property to True.

Registering .NET classes in COM component categories

Much of ArcGIS’s extensibility relies on COM component categories. In fact,
most custom ArcGIS components must be registered in component categories
appropriate to their intended context and function in order for the host applica-
tion to make use of their functionality. For example, all ArcMap commands and
tools must be registered in the ESRI Mx Commands component category. There
are a few different ways you can register a NET component in a particular
category but before doing so, the NET components must be registered with
COM. See the ‘Registering .NET Components with COM’ section above for
details.

Customize dialog

Custom .NET ArcGIS commands and tools can quickly be added to toolbars via
the ‘Add From File...” button on the Customize dialog, In this case, you simply
have to browse for the tlb and open it. The ArcGIS framework will automati-
cally added the classes you select in the type library to the appropriate component
category.

Categories utility

Another option is to use the Component Categories Manager (Categories.exe). In
this case you select the desired component category in the utility and then browse
for your type library and select the appropriate class.

COMRegisterFunction

The final and recommended solution is to add code to your .NET classes that will
automatically register them in a particular component category whenever the
component is registered with COM. The NET Framework contains two at-
tribute classes (ComRegisterFunctionAttribute and
ComUnregisterFunctionAttribute) that allow you to specify methods which will
be called whenever your component is being registered or unregistered. Both
methods are passed the CLSID of the class currently being registered and with
this information you can you can write code inside the methods to make the
appropriate registry entries or deletions. Registering a component in a component

.NET AprPLICATION PROGRAMMING INTERFACE

category requires that you also know the component category’s unique 1D
(CATID).

The code excerpt below shows a custom ArcMap command that automatically
registers itself in the MxCommands component category whenever the NET
assembly in which it resides is registered with COM.

public sealed class AngleAngleTool: BaseTool

{

[ComRegisterFunction()]
static void Reg(String regKey)
{
Microsoft.Win32.Registry.ClassesRoot.CreateSubKey (regKey.

Substring(18)+ “\\Implemented Categories\\” + “{B56A7C42-83D4-11D2-A2E9-
080009B6F22B}™) ;

}

[ComUnregisterFunction()]

static void Unreg(String regKey)
{

Microsoft.Win32.Registry.ClassesRoot.DeleteSubKey(regKey.Substring(18)+
“N\Implemented Categories\\” + “{B56A7C42-83D4-11D2-A2E9-080009B6F22B}”) ;

3

To simplify this process, ESRI provides classes for each component category
ArcGIS exposes with static functions to register and unregister components.
Each class knows the GUID of the component category it represents so register-
ing custom components becomes greatly simplified. For more details on using
these classes see the “Working with the ESRI .NET Component Category Classes’
section below.

Simplify your code using the ESRI.ArcGIS.Utility assembly

Part of the ArcGIS Developer Kit includes a number of NET utility classes that
facilitate NET development by taking advantage of a few .NET capabilities
including object inheritance and static functions.

Working with the ESRI .NET Base Classes

ESRI provides two abstract base classes (BaseCommand and BaseTool) to help
you create new custom commands and tools for ArcGIS. The classes are abstract
classes (marked as Mustlnherit in Visual Basic NET), which means that although
the class may contain some implementation code, it cannot itself be instantiated
directly and can only be used by being inherited by another class. Both base classes
are defined in the ESRI.ArcGIS. Utility assembly and belong to the

ESRI.ArcGIS. Utility.BaseClasses namespace.

These base classes simplify the creation of custom commands and tools by pro-
viding a default implementation for each of the members of ICommand and
ITool. Instead of stubbing out each member and providing implementation code,
you only have to override the members that your custom command or tool re-
quires. The exception is ICommand::OnCreate; this member must be overridden
in your derived class.

Using these base classes is the recommended way to create commands and tools
for ArcGIS applications in .NET languages. You can create similar COM classes

Chapter 4 » Developer environments * 163

.NET AprPLICATION PROGRAMMING INTERFACE

from first principles; however, you should find the base class technique to be a

quicker,

Syntax

simpler, less error-prone method of creating commands and tools.

Both base classes additionally have an overloaded constructor, allowing you to
quickly set many of the properties of a command or tool (such as Name and
Category) via constructor parameters.

The overloaded BaseCommand constructor has the following signature:

[VB.NET]

PubTic Sub New(_

Byval
Byval
ByVal
ByVal
ByVval
Byval
Byval
ByVal

[GH]

bitmap As System.Drawing.Bitmap _
caption As String _

category As String _
helpContextId As Integer _
helpFile As String _

message As String _

name As String _

tooltip As String)

pub1ic BaseCommand(
System.Drawing.Bitmap bitmap,
string caption,
string category,
int helpContextId,
string helpFiTe,
string message,
string name,
string toolTip,

);

The overloaded BaseTool constructor has the following signature:

[VB.NET]

PubTic Sub New(_

Byval
Byval
ByVval
Byval
ByVal
ByVal
Byval
Byval
Byval

[GH]

bitmap As System.Drawing.Bitmap _
caption As String _

category As String _

cursor As System.Windows.Forms.Cursor _
helpContextId As Integer _

helpFile As String _

message As String _

name As String _

tooltip As String _

public BaseTool (
System.Drawing.Bitmap bitmap,
string caption,
string category,

164 + ArcGIS Engine Developer Guide

.NET AprPLICATION PROGRAMMING INTERFACE

System.Windows . Forms.Cursor cursor,
int helpContextlId,
string helpFiTe,
string message,
string name,
string toolTip,
);

Inheriting the base classes

You can use these parameterized constructors when you write your new classes,
for example as shown below for a new class called PanTool that inherits the
BaseTool class.
[VB.NET]
PubTic Sub New()

MyBase.New(Nothing, “Pan”, “My Custom Tools”, _

System.Windows.Forms.Cursors.Cross, 0, “”, “Pans the map.”,
“PanTool”, “Pan”)
End Sub
[G]
public PanToo1() : base (null,”Pan”, “My Custom Tools”,
System.Windows.Forms.Cursors.Cross, 0, “”,”Pans the map.”, “PanTool”,
“Pan”)
{
}

Setting base class members directly

As an alternative to using the parameterized constructors, you can alternatively
set the members of the base class directly.

The base classes expose their internal member variables to the inheritor class, one
per property, so that you can directly access them in your derived class. For
example, instead of using the constructor to set the ‘Caption’ or overriding the
Caption function, you can set the ‘m_caption’ class member variable declared in
the base class.

[VB.NET]
PubTic Sub New()
MyBase.New()

MyBase. .m_bitmap = New
System.Drawing.Bitmap([CetType] O .Assenbly.GetMani festResourceStream(*“Namespace. Pan.bmp™))

MyBase. .m_cursor = System.Windows.Forms.Cursors.Cross
MyBase. .m_category = “My Custom Tools”
MyBase..m_caption = “Pan”
MyBase. .m_message = “Pans the map.”
MyBase..m_name = “PanTool”
MyBase..m_toolTip = “Pan”

End Sub

Chapter 4 * Developer environments * 165

.NET AprPLICATION PROGRAMMING INTERFACE

166 * ArcGIS Engine Developer Guide

[G]
publ1ic PanToo1()
{

base.m_bitmap = new
System.Drawing.Bitmap(GetTypeQ .Assenbly . GetMani festResourceStream(‘‘Namespace. Pan.bmp™)) ;

base.m_cursor = System.Windows.Forms.Cursors.Cross;
base.m_category = “My Custom Tools”;

base.m_caption = “Pan”;

base.m_message = “Pans the map.”;

base.m_name = “PanTool1”;

base.m_toolTip = “Pan”;

}

Overriding members

When you create custom commands and tools that inherit a base class, you will

more than likely need to override a few members. When you override a member
in your class, the implementation code that you provide for that member will be
executed instead of the default member implementation inherited from the base

class. For example, the OnClick method in the BaseCommand has no implemen-
tation code at all (OnClick will not do anything by default), which may be suit-
able for a tool but probably not for a command.

To override any member, you can right-click the member of the base class in the
Solution Explorer Window then choose Add, Override to stub out the member
as overridden. (Note that if you right-click on the member of the underlying
interface (ICommand or ITool) instead of the base class member, the overridden
member will not include the overrides keyword, and the method will instead be
shadowed).
[VB.NET]
PubTic Overrides Sub OnClick()

‘ Your OnClick
End Sub

[GH]
public override void OnClick()
{

// Your OnClick
3
Alternatively, to override a member of the base class, choose (Overrides) from
the right hand drop-down list in the code window wizard bar, and then choose
the member you wish to override from the left hand drop-down list. This will
stub out the member as overridden.

What do the base classes do by default?

The table below shows the base class members that have a significant base class
implementation, along with a description of that implementation. Override these
members when the base class behavior is not consistent with your customization.
For example, Enabled is set to True by default, if you want your custom com-
mand enabled only when a specific set of criteria has been met, you must over-
ride this property in your derived class.

.NET AprPLICATION PROGRAMMING INTERFACE

Member Description

The given hitmap is made transparent
ICammand:: Bitmap based an the pixel value at position 1,1, The
bitrnap is null until set by the derived class.

ICammand:: Category If null, sets the categary "Misc.”
ICommand::Checked Set to False,
ICommand::Enabled Set to True.
ITool:: OnCortextMenu Set to False,
ITool::Deactivate Setto True.

Working with the ESRI .NET component category classes

To help the register NET components in COM component categories, ESRI
provides the ESRI. ArcGIS. Utility CATIDs namespace which has classes that
represent each of the ArcGIS component categories. Each class knows its
CATID and exposes static methods (Register and Unregister) for adding and
removing components. Registering your component becomes as easy as adding
COM registration methods with the appropriate attributes, and passing the re-
ceived CLSID to the appropriate static method.

The example below shows a custom Pan tool that registers itself in the ESRI Mx
Commands component category. Notice in this example we are using
MxCommands.Register and MxCommands.Unregister instead of
Microsoft.Win32.Registry.ClassesRoot.CreateSubKey and
Microsoft.Win32.Registry.ClassesRoot.DeleteSubKey.
[VB.NET]
PubTic NotInheritable Class PanTool

Inherits BaseTool

<ComRegisterFunction()> _

Pub1ic Shared Sub Reg(ByVal regKey As [String])
MxCommands .Register(regkey)

End

<ComUnregisterFunction()> _

Pub1ic Shared Sub Unreg(ByVal regkey As [String])
MxCommands .Unregister (regKey)

End Sub

[GA]
public sealed class PanTool : BaseTool
{

[ComRegisterFunction()]

static void Reg(string regKey)

{

MxCommands .Register(regkey) ;
}

Chapter 4 * Developer environments * 167

.NET AprPLICATION PROGRAMMING INTERFACE

168 * ArcGIS Engine Developer Guide

[ComUnregisterFunction()]
static void Unreg(string regKey)
{

MxCommands .Unregister(regKey) ;

}

Extending the Server

When using .NET to create a COM object for use in the GIS server, there are
some specific guidelines you need to follow to ensure that you can use your object
in a server context, and to ensure that it will perform well in that environment.
The guidelines below apply specifically to COM objects you create to run within
the server.

* You must explicitly create an interface that your COM class implements.
Unlike Visual Basic 6, NET will not create an implicit interface for your
COM class that you can use when creating the object in a server context.

* Your COM class should be marshaled using the Automation marshaller. You
specify this by adding the AutomationProxyAttribute attribute to your class
with a value of true.

* Your COM class should generate a dual class interface. You specify this by
adding the ClasslnterfaceAttribute attribute to your class with a value of
ClassInterfaceType. AutoDual.

* To ensure that your COM object performs well in the server, it must inherit
from ServicedComponent which is in the System.EnterpriseServices assembly.
This is necessary due to the current COM interop implementation of the
NET framework.

For more details and an example of a custom Server COM object written in
NET, see Chapter 4, ‘Developing ArcGIS Server applications’ in the ArGILS
Server Administrator and Developer Guide.

Releasing COM references

ArcGIS Engine and ArcGIS Desktop applications

An unexpected crash may occur when a standalone application attempts to
shutdown. For example, an application hosting a MapControl with a loaded map
document will crash on exit. The crashes result from COM objects hanging
around longer than expected. To stop the crash, all COM references must be
unloaded prior to shutdown. To help unload COM references, a static Shutdown
function has been added to the ESRI.ArcGIS. Utility assembly. The following
code excerpt shows the function in use.

[VB.NET]

Private Sub Forml_Closing(ByVal sender As Object, ByVal e As
System.ComponentModel.CancelEventArgs) Handles MyBase.Closing

ESRI.ArcGIS.Uti1ity.COMSupport.AOUninitialize.Shutdown()
End Sub

[G]
private void Forml_Closing(object sender, CancelEventArgs e)
{

ESRI.ArcGIS.UtiTity.COMSupport.AOUninitialize.Shutdown();

.NET AprPLICATION PROGRAMMING INTERFACE

The AOUninitalize.S hutdown function handles most of the shut down problems in
standalone applications but you may still experience problems as there are COM
objects that additionally require explicit releasing; in these cases, call
System. Runtime InteropServices.Marshal. ReleaseComObject() to decrement the refer-
ence count which allows the application to terminate cleanly. The StyleGallery is
one such object and the following example documents how to handle references
to this class.
[VB.NET]

Dim styleGallery As IStyleGallery

styleGallery = New StyleGalleryClass

MessageBox . Show(styleGallery.ClassCount)

Marshal.ReleaseComObject(styleGallery)
[

IStyleGallery sg = new StyleGalleryClass() as IStyleGallery;

MessageBox . Show(sg.ClassCount.ToString());

Marshal.ReleaseComObject(sg);

Working with geodatabase cursors in ArcGIS Server

Some objects that you can create in a server context may lock or use resources
that the object frees only in its destructor. For example, a geodatabase cursor may
acquite a shared schema lock on a file-based feature class or table on which it is
based, or may hold onto an SDE stream.

While the shared schema lock is in place, other applications can continue to query
or update the rows in the table, but they cannot delete the feature class or modify
its schema. In the case of file-based data sources, such as shapefiles, update
cursors acquire an exclusive write lock on the file, which will prevent other
applications from accessing the file for read or write. The effect of these locks is
that the data may be unavailable to other applications until all of the references
on the cursor object are released.

In the case of SDE data sources, the cursor holds onto an SDE stream, and if the
application has multiple clients, each may get and hold onto an SDE stream,
eventually exhausting the maximum allowable streams. The effect of the number
of SDE streams exceeding the maximum is that other clients will fail to open
their own cursors to query the database.

Because of the above reasons, it’s important to ensure that your reference to any
cursor your application opens is released in a timely manner. In NET, your refer-
ence on the cursor (or any other COM object) will not be released until garbage
collection kicks in. In a web application or web service, servicing multiple con-
current sessions and requests, relying on garbage collection to release references
on objects will result in cursors and their resources not being released in a timely
manner.

To ensure a COM object is released when it goes out of scope, the WebControls
assembly contains a helper object called WebObject. Use the Managel ifetime
method to add your COM object to the set of objects that will be explicitly
released when the WebOlyect is disposed. You must scope the use of WebObject
within a Using block. When you scope the use of WebObject within a using block,
any object (including your cursor) that you have added to the WebObject using the
Managel ifetime method will be explicitly released at the end of the using block.

Chapter 4 « Developer environments * 169

.NET AprPLICATION PROGRAMMING INTERFACE

The following example demonstrates this coding pattern:

[VB.NET]

Private Sub doSomething_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles doSomething.Click

Dim webobj As WebObject = New WebObject
Dim ctx As IServerContext = Nothing
Try
Dim serverConn As ServerConnection = New ServerConnection(“doug”,
True)

Dim som As IServerObjectManager = serverConn.ServerObjectManager

ctx = som.CreateServerContext(“Yellowstone”, “MapServer”)
Dim mapsrv As IMapServer = ctx.ServerObject

Dim mapo As IMapServerObjects = mapsrv

Dim map As IMap = mapo.Map(mapsrv.DefaultMapName)

Dim flayer As IFeaturelLayer = map.Layer(0)
Dim fClass As IFeatureClass = flayer.FeatureClass

Dim fcursor As IFeatureCursor = fClass.Search(Nothing, True)
webobj .Managelifetime(fcursor)

Dim f As IFeature = fcursor.NextFeature()
Do Until f Is Nothing

‘ do something with the feature

f = fcursor.NextFeature()
Loop

Finally
ctx.ReleaseContext()
webobj.Dispose()

End Try

End Sub

[¢]
private void doSomthing_Click(object sender, System.EventArgs e)
{
using (WebObject webobj = new WebObject())
{
ServerConnection serverConn = new ServerConnection(“doug”,true);
IServerObjectManager som = serverConn.ServerObjectManager;

IServerContext ctx =
som.CreateServerContext(“Yellowstone”, ”’MapServer”) ;

IMapServer mapsrv = ctx.ServerObject as IMapServer;
IMapServerObjects mapo = mapsrv as IMapServerObjects;
IMap map = mapo.get_Map(mapsrv.DefaultMapName) ;

IFeaturelLayer flayer = map.get_Layer(0) as IFeaturelayer;
IFeatureClass fclass = flayer.FeatureClass;

170 « ArcGIS Engine Developer Guide

.NET AprPLICATION PROGRAMMING INTERFACE

IFeatureCursor fcursor = fclass.Search(null, true);
webobj .Managelifetime(fcursor);

IFeature f = null;
while ((f = fcursor.NextFeature()) !=null)
{
// do something with the feature
}

ctx.ReleaseContext();
}
}
The WebMap, WebGeocode and WebPagel_ayout objects also have a Managel ifetime
method. If you are using, for example, a WebMap and scope your code in a using
block, you can rely on these objects to explicitly release objects you add with
Managel ifetime at the end of the using block.

Deploying .NET ArcGIS customizations

All ArcGIS Engine and Desktop customizations require an ArcGIS installation on
all client machines. The ArcGIS installation must include the ESRI primary
interop assemblies which the setup program installs in the global assembly cache.
For example, deploying a standalone GIS application that only requires an
ArcGIS Engine license requires an ArcGIS Engine installation on all target ma-
chines.

Standalone applications

Deploying standalone applications to either ArcGIS Engine or Desktop clients
involves copying over the executable to the client machine. Copying over the
executable can be as simple as using xcopy or more involved such as creating a
custom install/setup program. Note, aside from the ArcGIS primary interop
assemblies and the NET Framework assemblies, all dependencies must addition-
ally be packaged and deployed.

ArcGIS components

Components that extend the ArcGIS applications are trickier to deploy than
standalone applications because they must be registered with COM and in specific
component categories. As discussed eatlier, implementing COMRegisterFunction
and COMUnregisterFunctions facilitates deployment by providing self category
registration but this only occurs when the components are registered.

There are two techniques for registering components with COM. One option is
to run the register assembly utility (RegAsm.exe) that ships with the .NET
Framework SDK. This is typically not a viable solution as client machines may or
may not have this utility and it’s difficult to automate. The second and recom-
mended approach is to add an automatic registration step to a custom setup/
install program.

The key to creating a custom install program that both deploys and registers
components is the System.Runtime.InteropServices.RegistrationServices class.
This class has the members: RegisterAssembly and UnregisterAssembly, which
register and unregister managed classes with COM. These are the same functions

Chapter 4 » Developer environments * |71

.NET AprPLICATION PROGRAMMING INTERFACE

172 « ArcGIS Engine Developer Guide

Categories: Templates:

the RegAsm utility uses. Using these functions inside a custom installer class
along with a setup program is the complete solution.

The basic steps below outline the creation of a deployable solution. Note, the
steps assume you are starting with a solution that already contains a project with
at least one COM enabled class.

1. In Visual Studio.NET, add a new Installer Class and name it accordingly.

+-4_4 Local Project Tkems Web Custom Inherited User \Windows

Conitral Conitrol Service
By
Text File Frameset #5LT File

A & B

Style Sheet Installer Class Bitmap File

T
-

A class to be invoked at setu‘p. time:

~

Mame: | {nstaller cs

Open Cancel ‘ Help

Override the Install and Uninstall functions that are implemented in the
Installer base class and use the RegistrationServices class’s Register Assembly
and UnregisterAssembly methods to register the components. Make sure you
use the SetCodeBase flag; this indicates that the code base key for the assembly

should be set in the registry.

[VB.NET]

PubTic Overrides Sub Install(ByVal stateSaver As
System.Collections.IDictionary)

MyBase.Install(stateSaver)
Dim regsrv As New RegistrationServices

regsrv.RegisterAssembly(MyBase.GetType() .Assembly,
AssemblyRegistrationFlags.SetCodeBase)

End Sub

PubTic Overrides Sub Uninstall(ByVal savedState As
System.Collections.IDictionary)

MyBase.Uninstall(savedState)
Dim regsrv As New RegistrationServices

regsrv.UnregisterAssembly (MyBase.GetType() .Assembly)

End Sub
End Class

[G]
public override void Install(IDictionary stateSaver)

{

base.Install (stateSaver);

.NET AprPLICATION PROGRAMMING INTERFACE

RegistrationServices regSrv = new RegistrationServices();

regSrv.RegisterAssembly(base.GetType() .Assembly,
AssemblyRegistrationFlags.SetCodeBase);

}

public override void Uninstall(IDictionary savedState)

{
base.Uninstall (savedState);
RegistrationServices regSrv = new RegistrationServices();
regSrv.UnregisterAssembly(base.GetType() .Assembly);

}

2. Add a Setup program to your solution.

Add New Project El

E‘

Project Types: Templates: H

(] visual Basic Projects =
(3 visual C# Projects @ v@ I
(1 visual 34 Projects Setup Project Web Sstup Merge Madule

[visual C++ Projects Project Praject
4 Setup and Deployment Projects

.
(] Other Projects %

Setup Wizard Cab Project

Create a Windows Installer project to which files can be added.

Marme: | Setup

Location: ‘ DilArcGISCustomizations\CustomTools j Erowse...

Praject will be created at D\ArcGISCustomizationsiCustomTools| Setup,

oK concel | el

®

In the Solution Explorer, right-click on the new project and select ‘Add ->
Project Output’. Select the project you wish to deploy and choose ‘Primary
output’.

b. From the list of detected dependencies that is regenerated, remove all
references to ESRI primary interop assemblies (e.g. ESRI.ArcGIS.System)
and stdole.dll. The only items typically left in the list are your tlb and
Primary output from <AssemblyName><Version>" which represents the
dll or exe you are compiling,

(e

. The final steps involve associating the custom installation steps configured
in the new installer class with the Setup project. To do this, right-click on
the Setup project in the Solution Explorer and choose “View Custom
Actions’.

d. In the resulting view, right-click on ‘Install’ folder and choose ‘Add Custom
Action’. Double-click the ‘Application’ folder, then double-click the Pri-
mary output from <AssemblyName><Version> item. This steps associates
the custom install function created eatlier with the setup’s custom install
action.

o

. Repeat the last step for the setup’s uninstall.

Chapter 4 * Developer environments ¢ 173

.NET AprPLICATION PROGRAMMING INTERFACE

174 + ArcGIS Engine Developer Guide

#% Setup1 - Microsoft Development Environment [design] - Custom Action.

File Edit Wiew Project Build Debug Tools Action Window Help

=] } Debug ~ [mxcommands - BER 2,
Custom Actions {Setup1) | Fl= System (Setipt) | Classt 4 b % | Solution Explorer - Setupl B X
5 el g R R
= L Tnstal Soltion Exploring' (2 projects) 4
~@ Primary output from CustomTools (active) {2 CustomTools =
&3 Cormit & () References
(1 Ralback

[¥] AssemblyInfo.cs
= [Uninstal [#] Classt.cs

<@ Primary outpat from CustomTacls (Active) B el &

(5] setup1

+ (2 Detacted Dependencies
= R
& &
I

s T B @

Properties 7 x

Cutput L

P Tasicl.. Bl output [ERFrd R | g Find s . @) index .| E5 Properties | @ Dynamic Help

Ready

3. Finally, rebuild the entire solution to generate the setup executable. Running
the executable on a target machine installs the components and registers them
with COM. The COMRegisterFunction routines then register the components
in the appropriate component categories.

ArcGIS Server deployments

To deploy web applications developed on a development server to product pro-
duction servers, use the built-in Visual Studio. NET tools.

1. In the Solution Explorer, click on your project.
2. Click the Prgject menu, then select Copy Project.
3. In the Copy Project dialog, specify the deployment location.

4. Click OK.

In addition to copying the project, you must copy and register any related dlls
containing custom COM objects onto your web server and all the GIS server’s
server object container machines.

JAVA APPLICATION PROGRAMMING INTERFACE

The ArcGIS version 9.0 Java API is a programming interface which interoperates
with ArcObjects and is specifically designed to target Java developers. Java tech-
nology is both a platform and an object-oriented programming language devel-
oped by Sun Microsystems which comes in three versions and consists of two
components:

Versions:

e Java 2 platform, Standard Edition (J2SE)

e Java 2 platform, Enterprise Edition (J2EE)

e Java 2 platform, Micro Edition (J2ME)

Components:

* Java Virtual Machine (JVM) - Java runtime and client/server compilers.

* Java Application Programming Interface (API) - Suite of core, integration,
and user interface toolkits.

The Java language is important because it is an open standard. All implementa-
tions of the programming language must meet the standards provided by the
JVM. This enables applications to run on any hardware platforms that host the
JVM.

PLATFORM CONFIGURATION

This section will describe all the necessary configurations needed to be productive
with the Java API including classpath and environment settings.

Java Developer Kit

In order to develop with ArcObjects using the Java API, you must have the

Java 2 Platform Standard Software Developer Kit (J2SDK) installed. All of your
J2SDK tools are located in the install directory. You can either explicitly invoke
them from that directory or add it to your PATH environment variable. Adding

the directory to your PATH variable involves two steps:
Setting the JAVA_HOME variable is not ytoyou v VO p

absolutely necessary; however, some Java IDEs 1. Create a new environment variable named JAVA_HOME.
and Java tools require it be set. i X
JAVA_HOME=[path to JDK install directory]
For example:
JAVA_HOME=c:\j2sdk
Adding the PATH variable allows you to run
executables (javac, java, javadoc, etc.) from any 2. Edit the PATH variable to include the bin directory of JAVA_HOME.
directory on your system. PATH=. . ;%JAVA_HOME%\bin
In order to compile server-based applications like servlets and EJBs, you will also
need to install and include the Java 2 Enterprise Edition toolkit in your classpath.
Java application servers generally provide this or you can get the reference imple-
mentation provided by Sun Microsystems.

ArcGIS Engine

The ArcGIS Engine developer kit uses standard Java Native Interface (JNI) to
access core ArcObjects components. This requires some native libraries to be in
the developer’s path when compiling and running applications. You must be sure
to include the correct paths to invoke interoperabilty into native ArcObjects.

Chapter 4 * Developer environments ¢ |75

jAVA APPLICATION PROGRAMMING INTERFACE

176 * ArcGIS Engine Developer Guide

The native *.dlls are located in the following location:

. .\ArcGIS\bin

ESRI recommends setting an ARCENGINEHOME environment variable and
added the bin directory to your PATH variable. Although this is not a require-
ment to use the ArcGIS Engine developer kit, the developer samples all use this
variable to ensure your classpath setting are accurate.

Setting the ARCENGINEHOME variable:

ARCENGINEHOME=[path to ArcGIS install directory]

For example:

ARCENGINEHOME=c : \ArcGIS

Editing the PATH variable enables your system to use the native resource libraries
that ship with the ArcGIS Engine Runtime. Edit the PATH directory to include
the jre\bin directory of ARCENGINEHOME.

PATH=. .%ARCENGINEHOME%\ java\jre\bin

Classpath

The Java API provides Java Archive (JAR) files (*.jar) for ArcObjects and the
native runtime libraries. These JAR files are located on disk at
%ARCENGINEHOME%\java

All Java applications built with any of the ArcGIS developer kits must have the
following JARs referenced in the respective application’s classpath:

* arcobjects.jar—contains all of the non-UI classes in one complete archive

* jintegra.jar—contains all classes for the runtime library that handles interop to
COM

In addition, individual arcgis_xxx.jar files should be added to your classpath as
needed. For example, applications that leverage the Java visual beans included
with ArcObjects, require that the arcgis_visualbeans.jar file be added in the
classpath.

JRE

The ArcGIS Engine and Server developer kits include a version of the Java
Runtime Environment (JRE). This enables you to run any ArcGIS Java applica-
tion as long as all the necessary settings described above are local to the runtime.
You will notice the necessary *.dlls in the bin directory and the necessary *jars in
the library extension directory. All you need to do to get started with this
runtime environment is ensure that the bin directory is added to your PATH
environment variable:

PATH=. .\ArcGIS\java\jre\bin

jAVA APPLICATION PROGRAMMING INTERFACE

JAVA PROGRAMMING TECHNIQUES

This section provides you with some fundamental concepts of the Java program-
ming language. It assumes you understand general programming concepts but are
relatively new to Java.

Features of the JavaVirtual Machine

The Java Virtual Machine (JVM) specification provides a platform independent,
abstract computer for executing code. The JVM knows nothing about the Java
language, instead it understands a particular binary format, the class file that
contains instructions in the form of bytecodes. The Java Virtual Machine specifi-
cation provides an environment that both compiles and interprets programs. The
compiler creates a .java file, produces a series of bytecodes, and stores them in a
.class file, and the Java interpreter executes the bytecodes stored in the .class file.

Each implementation of the JVM is platform specific as it actually interacts with
the specific operating system. The JVM handles things such as memory allocation,
garbage collection, and security monitoring.

Java Native Interfaces

Even though Java programs are designed to run on multiple platforms, there may
be times where the standard Java class library doesn’t support platform-depen-
dent features needed by a particular application or a Java program needs to imple-
ment a lower-level program and have the Java program call it. The JNI is a
standard cross-platform programming interface provided by the Java language. It
enables you to write Java programs that can operate with applications and librar-
ies written in other programming languages, such as C or C++. This is the tech-
nology used to bridge native ArcObjects with the Java API in ArcGIS.

In order to initialize your Java environment for native usage of ArcObjects, every
ArcGIS Engine Java application must call the static nitializeEngine() method on
the Enginelnitializer class. This should be the first call you do, even before

Aolnitialize.
public static void main(String[] args){
To see how the initializeEngine method is used /* always initialize ArcGIS Engine for native usage */
as the first call, refer to the Java developer EngineInitializer.initializeEngine();

samples in ArcGIS Developer Help. .
}

ArcGIS DEVELOPMENT USING JAVA

This section is intended for developers using the Java SDK for ArcGIS Engine.
The SDK provides interoperability with ArcObjects, allowing a developer to
access ArcObjects as though they were Java objects. The API is not limited to any
specific Java Virtual Machine or platform and uses standard Java Native Interface
to access ArcObjects. The API exposes the complete functionality of ArcObjects
via Java classes and interfaces, which allows Java developers to write once, run
anywhere, and also benefit from ArcObjects component reuse. The Java API
provides “Proxy” classes that are generated from ArcObjects components type
libraries (TLBs) which allow interoperability with all of the underlying compo-
nents. These proxy classes expose ArcObjects properties, methods, and events via
their Java equivalents.

Chapter 4 « Developer environments ¢ |77

jAVA APPLICATION PROGRAMMING INTERFACE

178 « ArcGIS Engine Developer Guide

Interfaces

Native ArcObjects uses an interface-based programming model. The concept of
an interface is fundamental to ArcObjects and emphasizes four points:

1. An interface is not a class.
2. An interface is not an object.
3. Interfaces are strongly typed.
4. Interfaces are immutable.

ArcObjects interfaces are abstract, meaning there is no implementation associated
with an interface. Objects use type inheritance; the code associated with an
interface comes from the class implementation.

This model shares some features of the Java interface model, which was intro-
duced to enhance Java’s single-inheritance model. An interface in the Java lan-
guage is a specification of methods that an object declares it implements. A Java
interface does not include instance variables or implementation code.

The Java API has two objects for every ArcObjects interface: a corresponding
interface and an interface proxy class. The interface is named in the ArcObjects
style, prefixed with an 1. The interface proxy class appends the term proxy to the
name. An example of this mapping is provided below:
interface IArea : IUnknown public interface IArea{}

public class IAreaProxy implements IArea{}
The proxy classes are used internally by the Java API to provide implementation
to respective interfaces. An application developer should never use the default
constructor of these classes as it holds no implementation. ArcObjects requires
developers to go through an interface to access objects. The Java language does
not use this model; subsequently, the Java API to ArcObjects has two ways of
accessing objects—by interface or by class.
/* use the class implementing IPoint */
IPoint iPoint = new Point();
/* access object through class */
Point cPoint = new Point();

You cannot access objects through the default interface proxy class:
IPointProxy proxyPoint = new IPointProxy(); // incorrect usage

This will be discussed in more depth in subsequent sections.

ArcObjects interfaces are immutable and subsequently never versioned. An
interface is never changed once it is defined and published. When an interface
requires additional methods, the API defines a new interface by the same name
with a version number appended to it as described in the following table.
interface IGeometry : IUnknown public interface IGeometry{}

interface IGeometry2 : IGeometry public interface IGeometry?2 extends
IGeometry{}

interface IGeometry3 : IGeometry?2 public interface IGeometry3 extends
IGeometry2{}

public interface IGeometry4 extends
IGeometry3{}

jAVA APPLICATION PROGRAMMING INTERFACE

Classes

In the ArcObjects model, classes provide the implementation of the defined
interfaces. ArcObjects provides three types of classes: abstract classes, classes, and
coclasses. These classes can be distinguished through the object model diagrams
provided in ArcGIS Developer Help. It is important to be familiar with them
before you begin to use the three class types.

In ArcObjects, an abstract class cannot be used to create new objects and are
absent in the Java API. These classes are specifications in ArcObjects for instances
of subclasses through type inheritance. An abstract class enumerates what inter-
faces are to be implemented by the implementing subclass but does not provide
an implementation to those interfaces. For each abstract class in ArcObjects there
are subclasses that provide the implementation.

A ¢lass cannot be publicly created in ArcObjects; however, objects of this class
can be created as a property of another class or instantiated by objects from
another class. In the Java API, the default constructor normally used to create a
class is undefined for ArcObjects classes.

/* the constructor for FeatureClass() is unsupported*/
FeatureClass fc = new FeatureClass();

The following example illustrates this behavior while stepping you through the
process of opening a feature class.
IWorkspaceFactory wf = new ShapefileWorkspaceFactory(Q);

IFeatureWorkspace fw = new
IFeatureWorkspaceProxy (wf.openFromFile(" \path\to\data", 0));

/* create a Feature Class from FeatureWorkspace */
IFeatureClass fc = fw.openFeatureClass (" featureclass name");

In ArcObjects, a CoClass is a publicly creatable class. This means that you can
create your own objects merely by declaring a new object as shown below.

/* create an Envelope from the Envelope CoClass */

Envelope env = new Envelope(Q);

Structs

A structure defines a new data type made up of elements called members. Java
does not have structures as complex data types. The Java language provides this
functionality though classes; you can simply declare a class with the appropriate
instance variables. For each structure in ArcObjects, there is a representative Java
class with publicly declared instance variables matching the structure members as
outlined below.

struct WKSPointZ public class _WKSPointZ ... {
double X public double x;
double Y public double y;
double Z public double z;
}

You can work with these classes like any other class in Java:
_WKSPointZ pt = new _WKSPointZ();

pt.x = 2.23;
pt.y = -23.14;
pt.z = 4.85;

System.out.printin(pt.x + + pt.y + + pt.z);

Chapter 4 « Developer environments * 179

jAVA APPLICATION PROGRAMMING INTERFACE

180 * ArcGIS Engine Developer Guide

Enumerations

Java does not have enum types. To emulate enumerations in Java, a class or
interface must be created that holds constants. For each enumeration in native
ArcObjects, there is a Java interface with publicly declared static integers repre-
senting the enumeration value.

enum esri3DAXis public interface esri3DAxis {
esriXAxis =0 public static final int esriXAxis = 0;
esriYAxis =1 public static final int esriYAxis = 1;
esriZAxis = 2 public static final int esriZAxis = 2;
}

You can now refer to the es7ZXAxis constant using the following notation:
esri3DAXis.esriXAxis;

Variants

The variant data type can contain a wide array of subtypes. With variants all
types can be contained within a single type variant. Everything in the Java pro-
gramming language is an object. Even primitive data types can be encapsulated
inside objects if required. Every class in Java extends java.lang Object; conse-
quently, methods in ArcObjects that take variants as parameters can be passed any
object type in the Java APL

Calling methods with “variant” objects as parameters

For methods that take variants as parameters, any object types can be passed, as
all objects derive from java.lang Object. As this is considered a “widening cast”, an
explicit cast to Object is not needed. If you want to pass primitives as parameters
to methods, when variants are required, the corresponding primitive wrapper
class can be used.

Using methods that return variants

When using variant objects returned by methods, explicitly “downcast” those
objects to the corresponding wrapper object. For example, if expecting a String,
downcast to java.lang.String, if expecting a short, downcast to short’s wrapper
class, that is, java.lang.Short, as shown in the code below.

ICursor spCursor = spTable.ITable_search(spQueryFilter, false);
/*Iterate over the rows*/
TRow spRow = spCursor.nextRow() ;
while (spRow != null) {
Short ID = (Short) (spRow.getValue(1));
String name = (String) (spRow.getValue(2));
Short baseID = (Short) (spRow.getValue(3));

System.out.printIn("ID="+ ID +"\t name="+ name +"\tbaseID="+ baseID);
/* Move to the next row.*/
spRow = spCursor.nextRow() ;

jAVA APPLICATION PROGRAMMING INTERFACE

IRowBuffer is a superinterface of IRow and defines the gezl/alue(int) method as:
public Object getValue(int index)

throws IOException,

AutomationException

The value of the field with the specified index.
Parameters:
index - The index (in)
Returns:
return value. A Variant
The return value is an Object, specified by the javadoc as “variant”. Therefore, the
value can be downcasted to S#ing or Short, depending upon their type in the
geodatabase being queried.

Casting

ArcObjects follows an interface-based programming style. Many methods use
interface types as parameters and have interfaces as return value. When the return
value of a method is an interface type, the method returns an object implement-
ing that interface. When a method takes an interface type as parameter, it can
take in any object implementing that interface. This style of programming has the
advantage that the same method can work with many different object types,
provided they all implement the said interface.

For example, IFeature.getShape() method returns an object implementing [Geometry.
The object returned could potentially be any one of the following classes that
implement [Geometry: BezierCurve, CircularArc, EllipticArc, Envelope,
GeometryBag, Line, MultiPatch, Multipoint, Path, Point, Polygon, Polyline, Ray,
Ring, Sphere, TriangleFan, Triangles, or TriangleStrip.

Casting is used to convert between types. There are three types of potential casts
you, as a developer, may be tempted to use with the Java API:

1. Interface to concrete class casting
2. Interface cross-casting

3. Interface downcasting

It is important to understand that objects returned from methods within
ArcObjects can behave differently than objects implicitly defined because the
object reference is not held in the JVM.

If you have a method, doSomeProcessingOnPolygon(Pobygon p), that operates only on
Pobygon objects, and you want to pass the object obtained as a result of
[Feature.getShape(), you need a way to convert the “type” of the object from
1Geometry to Pohygon. In Java, this is done using a class cast operation:

/* incorrect usage: will give ClassCastException */

Polygon poly = (Polygon)geom;

However, use the same code with the ArcObjects Java API, and you will get a
ClassCastException. The reason for the exception is that the “geom” object refer-
ence is actually a reference to the native ArcObjects component. As a conse-
quence of the interoperability between Java and the native ArcObjects compo-
nents, the logic of casting this object reference to the Po/ygon object resides in the
constructor of the Polygon object, and not in the JVM.

Chapter 4 » Developer environments * |81

jAVA APPLICATION PROGRAMMING INTERFACE

182 « ArcGIS Engine Developer Guide

Every class in the Java API has a constructor that takes in a single object as
parameter. This constructor can create the corresponding object using the refer-
ence to the ArcObjects component. Therefore, to achieve the equivalent of a
class casting when using the Java API, use the “object constructor” of the class
being casted to.
Polygon poly = new Polygon(geom) ;
The following code illustrates the object constructor being used to “cast” the
geom object to a Polygon:
IFeature feature = featureClass.getFeature(i);
IGeometry geom = feature.getShape();
if (geom.getGeometryType() == esriGeometryType.esriGeometryPolygon){
/*Note: "Polygon p = (Polygon) geom;" will give ClassCastException*/
Polygon poly = new Polygon(geom) ;
doSomeProcessingOnPolygon(poly) ;
}
The Polygon object thus constructed will implement all interfaces implemented by
the Polygon class. Consequently, you can call methods belonging to any of the
implemented interfaces on the poly object.

You could write all your code using the object constructors alone, but there are
times when it might be better to cast an object implementing a particular inter-
face, not to a class type, but to another interface implemented by that object.

Continuing the previous example, suppose you want to use the

doS omeProcessingOnPobygon(Pohygon p) method not only on Po/ygon objects but on
other objects implementing LArea, such as Envelope and Ring. You could write a
generic doSomeProcessingOnArea(LArea area) method that works on all objects
implementing LArea. As Polygon, Envelgpe, and Ring objects all implement the LArea
interface, you could pass in those objects to this generic method, thereby prevent-
ing the need to write additional methods for each object type, such as
doSomeProcessingOnEnvelope(Envelope env) and doSomeProcessingOnRing(Ring ring). To
accomplish this, you would need to cast from the [Geometry type to the LArea
type. In Java, this is typically done using interface cross-casting.

/* incorrect usage: will give ClassCastException */

TArea area = (IArea) geom ;

However, for the same reason noted in the class-cast above, such a cast would
fail with a ClassCastException. To be able to cast to the ArcObjects interface, you
will need to use the interface proxy classes discussed eatrlier in this section. In the
Java API, you achieve the equivalent of an interface cross-casting by using the
InterfaceProxy of the interface being casted to.

TArea area = new IAreaProxy(geom) ;

The following code shows the use of an InzerfaceProxy class to cross-cast the geom
object to LArea:

IFeature feature = featureClass.getFeature(i);

IGeometry geom = feature.getShape();

/*Note: "IArea area = (TArea) geom;" will give ClassCastException*/
TArea area = new IAreaProxy(geom) ;

doSomeProcessingOnArea(area) ;

Using the LAreaProxy class as shown in the code above allows you to access the

jAVA APPLICATION PROGRAMMING INTERFACE

object through its LArea interface so that it can then be passed to a method that
takes an argument of type LArea. Thus, in this particular example, one method
can deal with three different object types. However, only methods belonging to
the LArea interface will be valid for the area object. To call other methods of the
object, you will need to either class-cast to the appropriate object type using its
object constructor or get a reference to the other interfaces using the
InterfaceProxy classes.

Instanceof

The instanceof operator in Java allows a developer to determine if its first operand
is an instance of its second.
operandl instanceof operand2
You can use instanceof in ArcObjects—]ava when the logic behind the type is
held in Java. You cannot use instanceof when the type is held in ArcObjects as
the logic of determining whether an object is an instance of a specified type
resides in the constructors of that object type and not the JVM.

Point point = new Point();

point.putCoords(0, 0);

point.putCoords (10, 10);

point.putCoords (20, 20);

if(point instanceof IGeometry) {
System.out.printin(" point is a IGeometry");
geom = point;
3
if(point instanceof IClone){
System.out.printIn(" point is a IClone");
3
The above code works since the type information is held in Java for Point. When
you construct a Point object, a proxy class for each implementing interface is also
constructed. This allows you to use instanceof on any of these types. Developers
would have access to any methods on Point implementing the Geometry or 1Clone
interfaces.

This is backwards compatible as well:
if(geom instanceof Polyline){
System.out.printin(" geom is a Polyline");
3
else if(geom instanceof Point){
System.out.printin(" geom is a Point");
pnt = (IPoint)geom; // allowable cast as the type is held in JVM
3
Since a direct cast of the geow object into Point was created, the geom object is of
type Point and instanceof can be used to check this information. However, since
the type information was known before it was checked above, it is not extremely
useful. What would be useful is to apply the above logic on methods that return
objects of super interfaces.

Chapter 4 » Developer environments * 183

jAVA APPLICATION PROGRAMMING INTERFACE

184 + ArcGIS Engine Developer Guide

Consider the [WorkspaceFactory.gpentromEile() method which returns an
1Workspace. Since the object returned is a Java object which implements
1Workspace, you cannot check if the returned object is of any of the known
implementing classes that implement [Workspace. In this case, to check for type
information, you should call a method on the returned object which is expected.
If the method does not throw an exception, it is of that type. This occurs be-
cause the logic on this object is declared at runtime and is held inside the underly-
ing ArcObjects component.

RasterWorkspaceFactory rasterWkspFactory = new RasterWorkspaceFactory(Q);
IWorkspace wksp = rasterWkspFactory.openFromFile(aPath, 0);

if(wksp instanceof RasterWorkspace){
/*code does not execute as logic is in ArcObjects*/
System.out.printin(" wksp is a RasterWorkspace™);
rasWksp = (RasterWorkspace)wksp;
}
else{
try{
rasWksp = (RasterWorkspace)wksp;
rasWksp.openRasterDataset(aRaster);

}catch(Exception e){
/*code executes if wksp is not a RasterWorkspace*/
System.out.printin(" wksp is not a RasterWorkspace");
}
}

Methods that take out parameters

ArcObjects provides many methods that return more than one value. The Java
API requires sending single element arrays as paramters to such methods. Basi-
cally, you pass in single element arrays of the object that you want to be returned,
and ArcObjects fills in the first elements of those arrays with the return value.
Upon returning from the method call, the first element of the array contains the
value that has been set during the method call. One such method, that you will be
using in this section is the roMapPoint of LARMap interface. Take a look at the
javadoc of this method:
public void toMapPoint(int x,
inty,
double[] xCoord,
double[] yCoord)
throws IOException,
AutomationException

Converts a point in device coordinates (typically pixels) to coordinates in
map units.

Converts the x and y screen coordinates supplied in pixels to x and y map
coordinates. The returned map coordinates will be in MapUnits.

Parameters:
x - The x (in)

jAVA APPLICATION PROGRAMMING INTERFACE

y - The y (in)
xCoord - The xCoord (in/out: use single element array)
yCoord - The yCoord (in/out: use single element array)
Notice that the parameters xCoord and yCoord are marked as “in/out: use single
clement array”. To use this method, the first two parameters are the x and y
coordinates in pixel units. The next two parameters are actually used to get return
values from the method call. You pass in single dimensional single element double
arrays:

doubTe [] dXcoord = {0.0};

doubTe [] dYcoord = {0.0};
When the method call completes, you can query the values of dXcoord/0] and
dY'coord[0]. These values will be modified by the method and will actually refer to
the x and y coordinates in map units. A practical example of this method call is
to update the status bar with the current map coordinates as the mouse moves
over the control.
public void updateStatusBar (IARControlEventsOnMouseMoveEvent params)

throws IOException {

/*create single dimensional array of doubles

*the values of the first element of the arrays will be filled in

*by the arMap.toMapPoint(...) method

*/

doubTe [] dXcoord = {0.0};

doubTe [] dYcoord = {0.0};

int screenX = params.esri_getXQ;

int screenY = params.esri_getY(Q;

TIARMap arMap = arControl.getARPageLayout() .getFocusARMap () ;

arMap.toMapPoint(screenX, screenY, dXcoord, dYcoord);

/*set the statuslLabel*/

statusLabel.setText(“Map x,y: “ + dXcoord[0]+”, “+dYcoord[0]);
}
The Java API will not allow developers to populate an array with a superclass
type, even when it has been cast to a superclass type. Consider the following Java
example:
Integer[] integers = { new Integer(0), new Integer(1l), new Integer(2)};
Object[] integersAsObjects = (Object[])integers;
integersAsObjects[0] = new Object();
The above is not allowed and will cause an ArayStoreException. Consider the
following ArcObjects example:
Polyline[] polyline = {new Polyline(};
tin.interpolateShape(breakline, polyline, null);
PolyTline firstPolyLine = polyline[0];
The above is not allowed and will cause the same ArrayStoreException as the
carlier example. Take a look at the interpolateShape() method of 1Surface and
analyze what is going on here.
public void interpolateShape(IGeometry pShape,

IGeometry[] ppOutShape,

Chapter 4 * Developer environments * 185

jAVA APPLICATION PROGRAMMING INTERFACE

186 * ArcGIS Engine Developer Guide

Object pStepSize)
throws IOException,
AutomationException

Parameters:
pShape - A reference to a com.esri.arcgis.geometry.IGeometry (in)

ppOutShape - A reference to a com.esri.arcgis.geometry.IGeometry
(out: use single element array)

pStepSize - A Variant (in, optional, pass null if not required)
Throws:

IOException - If there are communications problems.

AutomationException - If the remote server throws an exception.

1Geometry is a super-interface to IPolyline, and the Polyline class implements both
interfaces. In the first attempt youe tried to send a single element Pofyline array
into a method which requires an in/out IGeometry parameter. This causes an
ArrayStoreException as ArcObjects is attempting to populate an [Polyline array with
an IGeometry object, attempting to place a super-class type into a subclass array.
The correct way to use this method is outlined below:

/*Set up the array and call the method*/

IGeometry[] geoArray = {new Polyline()};
tin.interpolateShape(breakline, geoArray, null);

/% "Cast" the first array element as a Polyline - this is
* the equivalent of calling QueryInterface on IGeometry
:‘.—/

IPolyline firstPolyLine = new IPolylineProxy(geoArray[0]);

Non-OLE Automation CompliantTypes

ArcObjects types that are not OLE automation compliant types do not work
within the Java APL. ArcObjects contains a few of these methods and unfortu-
nately such methods are not usable in the Java API. However, in most cases,
supplemental interfaces have been added which have the offending methods
overwritten as automation compatible. These new interfaces are appended with
the letters “GEN”, implying that they are generic for all supported APIs.

IPoint[] points = new Point[2];
points[0] = new Point();
points[1] = new Point();

points[0].putCoords(0, 0);
points[1].putCoords(10, 10);

IEnvelope env = new Envelope();

IEnvelopeCGEN envGEN = new Envelope(Q);

/*not automation compatible - throws exception*/
env.defineFromPoints(2, points[0]);

/*automation compatible*/

envGEN. defineFromPoints(points);

jAVA APPLICATION PROGRAMMING INTERFACE

G Palette Properties xl

e

Pages:

(Swing

[Swing Containers
IMOJ20 Final
Databxpress
ldswing

More dbSwing
b Swing Models
InternetBeans
b

EiB

AT

lcoRBA:

imoP:

MDP Screens

Componerts:

= e, || || |

Using visual beans

The Java API provides a set of reusable components as prebuilt pieces of soft-
ware code designed to provide graphical functions. As a visual beans developer,
you only need to write code to “buddy” them into your ArcGIS Engine applica-
tion. The use of beans creates a bridge between Java and the ActiveX controls
provided by ArcGIS. These visual components are heavyweight AWT compo-
nents and conform to the JavaBeans™ component architecture, allowing them to
be used as drag and drop components for designing Java GUIs in JavaBean-
compatible IDEs.

Mixing heavyweight and lightweight components

One of the primary goals of the Swing architecture was that it be based on the
existing AWT architecture. This allows developers to mix both kinds of compo-
nents in the same application. When using the ArcObjects JavaBeans with Swing
components, care should be taken while mixing the heavyweight and lightweight
components. For guidelines, refer to the article ‘Mixing heavy and light compo-
nents’ at hp:/ [java.sun.com/ products/ jfc/ tsc/ articles/ mixing/ .

If using Swing components, disable lightweight popups where the option is
available, using code similar to:

jComboBox . setLightWeightPopupEnabled(false);
jPopupMenu. setLightWeightPopupEnabled(false);

Listening to events

All ArcObjects JavaBean are capable of firing events. For instance, the .ARControl
bean fires the following events:

void onAction(IARControlEventsOnActionEvent theEvent)
void onAfterScreenDraw(IARControlEventsOnAfterScreenDrawEvent theEvent)
void onBeforeScreenDraw(TIARControlEventsOnBeforeScreenDrawEvent theEvent)

void onCurrentViewChanged(IARControlEventsOnCurrentViewChangedEvent
theEvent)

void onDocumentLoaded (TARControlEventsOnDocumentlLoadedEvent theEvent)

void onDocumentUnTloaded(TARControlEventsOnDocumentUnTloadedEvent
theEvent)

void onDoubleCTick (IARControlEventsOnDoubleClickEvent theEvent)

void onFocusARMapChanged (TARControlEventsOnFocusARMapChangedEvent
theEvent)

void onKeyDown(TARControlEventsOnKeyDownEvent theEvent)
void onKeyUp (TARControlEventsOnKeyUpEvent theEvent)

void onMouseDown (TARControlEventsOnMouseDownEvent theEvent)
void onMouseMove (TARControlEventsOnMouseMoveEvent theEvent)
void onMouseUp (TARControlEventsOnMouseUpEvent theEvent)

Chapter 4 * Developer environments * 187

jAVA APPLICATION PROGRAMMING INTERFACE

188 « ArcGIS Engine Developer Guide

To add and remove listeners for the events, the beans have methods of the form
addXY ZEventListener and removeXY ZEventListener. Adapter classes are provided as
a convenience for creating listener objects.

public void addIARControlEventsListener(IARControlEvents thelistener)
throws IOException

public void removeIARControlEventsListener(IARControlEvents
thelListener)

throws IOException

The following code shows using an anonymous inner class with the
LARControlEventsAdapter to add event listeners for onDocumentloaded and
onDocumentUnloaded events to the arControl object:

arControl = new ARControl(Q);

/*wire up the events for arControl*/
arControl.addIARControlEventsListener(new IARControlEventsAdapter(){
public void onDocumentLoaded (IARControlEventsOnDocumentLoadedEvent evt)
throws IOException{

/*set the statusbar text to point to the currently Toaded docu-
ment*/

statusLabel.setText (" Document filename: "+
arControl.getDocumentFiTlename());
/*Determine whether permission to toggle TOC visibility*/
if (arControl.hasDocumentPermission(
esriARDocumentPermissions.esriARDocumentPermissionsViewTOC))
{
tocVisibilityCheckBox.setEnabled(true);
tocVisibilityCheckBox.setSelected(arControl.isTOCVisible());
} else {
JOptionPane. showMessageDialog((Component)arg0.getSource(),
"You do not have permission toggle TOC visibility");

3

pubTic void onDocumentUnloaded (TARControlEventsOnDocumentUnTloadedEvent
evt)

throws IOException{
/*set the statusbar text to empty string*/
statusLabel.setText("");
}
;
It is worthwhile to note that the events fired by the beans are custom events for
which the listeners are provided as part of the Java API. Adding listeners from
the java.amt.event package (such MouseListener) to the beans will not be helpful as
the JavaBeans do not fire those events. Instead, you could use similar events, such
as onMonseDown, onMounseUp, and onMouselMove, provided by the corresponding
event listener, which in the case of ARControl is LARControlEvents.

C++ APPLICATION PROGRAMMING INTERFACE

C++ is an object-oriented programming language which evolved in the mid 1980s
from its predecessor, C. C++ is endowed with many features which give the
language an unrivaled expressive power, such as object orientation with inherit-
ance, operator overloading, virtual functions, templates, and a library of useful
and often necessary functions called the Standard Template Library (STL). The
C++ language has been standardized by the International Organization for Stan-
dardization (ISO) and several influential national standards organizations.

Developers may consider using the ArcGIS C++ API, as opposed to one of the
other APIs, for the following reasons:

* Execution speed—C++ code typically executes faster than the equivalent
Java, Visual Basic, and C# code.

* Cross-platform compatibility—Visual Basic and C# are currently used prima-
rily on the Windows platform. C++ and Java are inherently more cross-
platform.

e Prior familiarity—If the developers in your organization already have a good
deal of experience using the language, then C++ is a logical choice.

This section is intended to serve two main purposes:
1. To familiarize you with general C++ coding style and debugging.

2. To provide an introduction to the ArcGIS C++ API, detailing specific usage
requirements and recommendations for working with the ArcObjects pro-
gramming platform.

C++ DEVELOPMENT TECHNIQUES
Naming conventions

Type names

All type names (class, struct, enum, and Hjpedef) begin with an uppercase letter and
use mixed case for the rest of the name:

class Foo : public CObject { . . .};
struct Bar { . . .};
enum ShapeType { . . . };

typedef int* Foolnt;
Typedefs for function pointers (callbacks) append Proc to the end of their names.
typedef void (*FooProgressProc) (int step);
Enumeration values all begin with a lowercase string that identifies the project; in
the case of ArcObjects this is esti, and each string occurs on separate lines:

typedef enum esriQuuxness
{

esriQLow,

esriQMedium,

esriQHigh
} esriQuuxness;

Chapter 4 « Developer environments * 189

C++ APPLICATION PROGRAMMING INTERFACE

Here are some suggestions for a naming
convention.These help identify the variables
usage and type and so reduce coding errors.This

is an abridged Hungarian notation:

[<scope>_]<type><name>

Prefix Variable scope

m

Instance class members

o

Static class member (including constants)

0o

Globally static variable

<empty>

local variable or struct or public class

member

<zype>
b | Boolean
by | byte or unsigned char
cx/cy | shortused as size
d | double
dw | DWORD, double word or unsigned long
f | float
fn | function
h | handle
i | int(integer)
ip | smart pointer
I | long
p | apointer
s | string
sz | ASCIIZ null-terminated string
w | WORD unsigned int
X,y | shortused as coordinates

<name> describes how the variable is used or
what it contains.The <scope> and <type>
portions should always be lowercase, and the

<name> should use mixed case:

Variable Name ~ Description

m_hWnd

a handle to a HWND

ipEnvelope

a smart pointer to a COM interface

m_pUnkOuter

a pointer to an object

c_isLoaded

a static class member

g pWindowList

a global pointer to an object

190 * ArcGIS Engine Developer Guide

Function names

Name functions using the following conventions:

For simple accessor and mutator functions, use Get<Property> and
Set<Property>:

int GetSize();
void SetSize(int size);

If the client is providing storage for the result, use Query<Property>:
void QuerySize(int& size);
For state functions, use Set<State and Is<State> or Can<State>:

bool IsFileDirty();
void SetFileDirty(bool dirty);
bool CanConnect();

Where the semantics of an operation are obvious from the types of arguments,
leave type names out of the function names.
Instead of:
AddDatabase(Database& db) ;
consider using:
Add(Database& db) ;
Instead of:
ConvertFoo2Bar(Foo* foo, Bar* bar);
consider using:
Convert(Foo* foo, Bar* bar)
If a client relinquishes ownership of some data to an object, use

Give<Property>. If an object relinquishes ownership of some data to a client,
use Take<Property>:

void GiveGraphic(Graphic* graphic);

Graphic* TakeGraphic(int itemNum);
Use function overloading when a particular operation works with different
argument types:

void Append(const CString& text);

void Append(int number);

Argument names

Use descriptive argument names in function declarations. The argument name
should clearly indicate what purpose the argument serves:

bool Send(int messageID, const char* address, const char* message);

Smart types

Smart types are objects that behave like types. They are C++ class implementa-
tions that encapsulate a data type, wrapping it with operators and functions that
make working with the underlying type casier and less error prone. When these
smart types encapsulate an interface pointer, they are referred to as smart pointers.
Smart pointers work with the [Unknown interface to ensure that resource alloca-
tion and deallocation is correctly managed. They accomplish this by various
functions, construct and destruct methods, and overloaded operators.

C++ APPLICATION PROGRAMMING INTERFACE

Smart types can make the task of working with COM interfaces and data types
casier, since many of the API calls are moved into a class implementation; how-
ever they must be used with caution, and never without a clear understanding of
how they are interacting with the encapsulated data type.

The smart types supplied with the C++ API consist of:

e _com_ptr_t - this class encapsulates a COM interface pointer, creating a smart
pointer.

e CComBSTRK - class encapsulates the BSTR data type.
e CComVariant - class encapsulates the [Z4RLANT data type

To define a smart pointer for an interface you can use the macro
_COM_SMARTPTR_TYPEDEF like this:
_COM_SMARTPTR_TYPEDEF (IFoo, __uuidof(IFoo));
The compiler expands this as follows:
typedef _com _ptr_t< _com IIID<IFoo, ___uuidof(IFoo)> > IFooPtr;

Once declared, it is simply a matter of declaring a variable as the type of the
interface and appending P7rto the end of the interface. Below are some common
uses of this smart pointer that you will see in the numerous C++ samples.

// Get a CLSID GUID constant
extern “C” const GUID __decTspec(selectany) CLSID_Foo = \
{0x2f3b470c,0xb01f,0x11d3, {0x83,0x8e,0x00,0x00,0x00,0x00,0x00,0x00}};

// Declare Smart Pointers for IFoo, IBar and IGak interfaces
_COM_SMARTPTR_TYPEDEF (IFoo, __uuidof(IFoo0));
_COM_SMARTPTR_TYPEDEF(IBar, __uuidof(IBar));
_COM_SMARTPTR_TYPEDEF (IGak, __uuidof(IGak));

HRESULT SomeClass: :Do()
{

// Create Instance of Foo class and QueryInterface (QI) for IFoo inter-
face

IFooPtr ipFoo;
HRESULT hr = ipFoo.CreateInstance(CLSID_Foo);
if (FAILED(hr)) return hr;

// Call method on IFoo to get IBar
IBarPtr ipBar;

hr = ipFoo->get_Bar(&ipBar);

if (FAILED(hr)) return hr;

// QI IBar interface for IGak interface
IGakPtr ipGak(ipBar);

// Call method on IGak

hr = ipGak->DoSomething();
if (FAILED(hr)) return hr;

Chapter 4 Developer environments * 191

C++ APPLICATION PROGRAMMING INTERFACE

If you have used smart pointers before, you
might have seen differences in the implementa-
tion of the equality (“==) operator for smart
pointer comparisons.The COM specification
states object indentity is performed by compar-
ing the pointer values of IUnknown*. Our smart
pointers will perform necessary QI and compari-
son when using the “=="operator.

CComVariant(VARIANT_TRUE) will create a
short integer variant (typeVT_I2) and not a
boolean variant (type VT_BOOL) as expected.
You can use CComVariant(true) to create a
boolean variant.

CComVariant myVar(ipSmartPointer) will
result in a variant type of boolean
(VT_BOOL) and not a variant with an
object reference (VT_UNKNOWN) as
expected. It is better to pass unambigu-
ous types to constructors, i.e. types which
are not themselves smart types with
overloaded cast operators.

/I Perform QI it [Unknown

IUnknownPtr ipUnk = ipSmartPointer;

/I Ensure we use I[Unknown* constructor
of CComVariant

CComVariant
myVar2(ipUnk.GetlInterfacePtr());

192 « ArcGIS Engine Developer Guide

// Explicitly call Release()
ipGak = 0;
ipBar = 0;

// Let destructor call IFoo’s Release
return S_OK;
}
When working with CComBSTR, use the text mapping 1" to declare constant
OLECHAR strings. To display a CComBSTR at the command line, use weert.
You will need to include iostream to use wcert.
CComBSTR bsName(L”Matt”);
std::wcerr << L”The name is “ << (BSTR) bsName << std::endl;

EEEE)

CComV ariant derives directly from the VARIANT data type, meaning that there is
no overloading with its implementation, which in turn simplifies it use. It has a
rich set of constructors and functions that make working with [ZARLANTS
straightforward; there are even methods for reading and writing from streams. Be
sure to call the Clear method before reusing the variable.

ipFoo->put_Name (CComBSTR(L”NewName™)) ;

if FAILEDChr)) return hr;

// Create a VT_I4 variant (signed long)
CComvariant value(12);

// Change its data type to a string

hr = vwalue.ChangeType(VT_BSTR) ;

if (FAILED(hr)) return hr;
Some method calls in idl are marked as being optional and take a variant param-
cter. However in VC++ these parameters still have to be supplied. To signify that
a parameter value is not supplied a variant is passed specifying an error code or
type DISP_E_PARAMNOTFOUND:

CComBSTR documentFiTename(L”World.mxd”);

CComVariant noPassword;

noPassword.vt = VI_ERROR;

noPassword.scode = DISP_E_PARAMNOTFOUND;

HRESULT hr = ipMapControl->LoadVMxFile(documentFilename, noPassword) ;
However, if you do have a value that you wish to pass in for the variant, use the
smart type, CComVariant.

int val = 1;

CComVariant smartVal(val);

ipRowBuffer->put_Value(2, smartVal);

C++ APPLICATION PROGRAMMING INTERFACE

When working with CComBSTR and CCom ariant, the Detach() function releases
the underlying data type from the smart type and can be used when passing a
result as an [out] parameter of a method. The use of the Detach method with
CComBSTR is shown below:
HRESULT CFoo: :get_Name(BSTR* name)
{
if (name==0) return E_POINTER;
CComBSTR bsName(L”FooBar™) ;
*name = bsName.Detach();

}

A common practice with smart pointers is to use Dezach() to return an object from
a method call. When returning an interface pointer the COM standard is to
increment reference count of the [out] parameter inside the method implementa-
tion. It is the callers responsibility to call Release when the pointer is no longer
required. Consequently care must be taken to avoid calling Dezach() directly on a
member variable, a typical pattern is show below:

HRESULT CFoo: :get_Bar(IBar **pVal)

{

if (pval==0) return E_POINTER;

// Constructing a local smart pointer using another smart pointer
// results in an AddRef (if pointer is not 0).
IBarPtr ipBar(m_ipBar);

// Detach will clear the local smart pointer and the
// interface is written into the output parameter.
*pVal = ipBar.Detach();

// This can be combined into one Tine
// *pval = IBarPtr(m_ipBar).Detach(Q);

return S_OK;
3
The above pattern has the same result as the following code, note that a condi-
tional test for a 0 pointer is required before AddRef can be called, calling
AddRef (or any method) on a 0 pointer will result in an access violation excep-
tion and typically crash the application:
HRESULT CFoo: :get_Bar(IBar **pVal)

{
if (pVal==0) return E_POINTER;

// copy the interface pointer (no AddRef) into the output parameter
*pVal = m_ipBar;

// Make sure interface pointer is non 0 before calling AddRef
if (*pval)
*pVal->AddRef();

return S_OK;
}

Chapter 4 » Developer environments * 193

C++ APPLICATION PROGRAMMING INTERFACE

194 + ArcGIS Engine Developer Guide

When using a smart pointer to receive an object from from an [out| parameter on
a method, use the smart pointer “&” de-reference operator. This will cause the
previous interface pointer in the smart pointer to be released. The smart pointer is
then populated with the new [out] value. The implementation of the method will
have already incremented the object reference count. This will be released when
the smart pointer goes out of scope:
{

IFooPtr ipFool, ipFoo2;

ipFool.CreateInstance(CLSID_Foo);

ipFoo2.CreateInstance(CLSID_Foo);

// Initalise ipBar Smart pointer from Fool
IBarPtr ipBar;
ipFool->get_Bar(&ipBar);

// The “&” de-reference will call Release on ipBar
// ipBar is then repopulate with a new instance of IBar
ipFoo2->get_Bar(&ipBar);

}

// ipBar goes out of scope and the smart pointer destructor calls Release
Debugger

Visual C++ comes with a feature-rich debugger. These tips will help you get the
most from your debugging session.

Backing up after failure

When a function call has failed and you’d like to know why (by stepping into
it), you don’t have to restart the application. Use the Set Next Statement
command to reposition the program cursor back to the statement that failed
(right-click on the statement to bring up the debugging context menu). Then,
just step into the function.

Edit and Continue

Visual Studio 6 allows changes to source code to be made during a debugging
session. The changes can be recompiled and incorporated into the executing code
without stopping the debugger. There are some limitations to the type of changes
that can be made, in this case the debug session must be restarted. This feature is
enabled by default, the settings are available in “Settings” of the project menu
then Select “C/C++ tab. Select “General” from the “Category” group box. In the
Debug info group box, select “Program Database for Edit and Continue.”

Unicode string display
Set your debugger options to display Unicode strings (click the Tools menu,
click Options, click Debug, then check the Display Unicode Strings check box).

C++ APPLICATION PROGRAMMING INTERFACE

Variable value display

Pause the cursor over a variable name in the source code to see its current
value. If it is a structure, click it and bring up the QuickWatch dialog box (the
Eyeglasses icon or Shift+F9) or drag and drop it into the Watch window.

Undocking windows

If the Output window (or any docked window, for that matter) seems too
small to you, try undocking it to make it a real window. Just right-click it and
toggle the Docking View item.

Conditional break points

Use conditional break points when you need to stop at a break point only once
some condition is reached (a for-loop reaching a particular counter value). To do
so, set the break point normally, then bring up the Breakpoints window (Ctrl+B
or Alt+F9). Select the specific break point you just set and then click the Condi-
tion button to display a dialog in which you specify the break point condition.

Preloading DLLs

You can preload DLLs that you wish to debug before executing the program. This
allows you to set break points up front rather than wait until the DLL has been
loaded during program execution. (Click Project, click Settings, click Debug, click
Category, then click Additional DLLs.) Then, click in the list area below to add
any DLLs you wish to have preloaded.

Changing display formats
You can change the display format of variables in the QuickWatch dialog box or
in the Watch window using the formatting symbols in the following table.

Symbol Format Value Displays
d,i | signed decimal integer 0xFO00F065 -268373915
u | unsigned decimal integer 0x0065 [
o | unsigned octal integer 0xF065 0170145
X, X | hexadecimal integer 61541 0x0000F065
I,h | long or short prefix for d, I, u, 0, x, X 00406042, hx 0x0C22
f | signed floating-point 3.2 1.500000
e | signed scientific notation 3.2 1.500000e+00
g | eorf, whichever is shorter 3.2 L5
c | single character 0x0065 ‘e’
s | string 0x0012FDE8 "Hello"
su | Unicode string "Hello"
hr | string [s_OK

To use a formatting symbol, type the variable name followed by a comma and the
appropriate symbol. For example, if var has a value of 0x0065, and you want to
see the value in character form, type var,c in the Name column on the tab of the

Chapter 4 * Developer environments * 195

C++ APPLICATION PROGRAMMING INTERFACE

You can apply formatting symbols to structures,
arrays, pointers, and objects as unexpanded
variables only. If you expand the variable, the
specified formatting affects all members.You
cannot apply formatting symbols to individual
members.

196 * ArcGIS Engine Developer Guide

Watch window. When you press ENTER, the character-format value appears:
var,c = ‘¢’. Likewise, assuming that /7 is a variable holding HRESULIS, view a
human-readable form of the HRESULT by typing “hr,hr” in the Name column.

hr hr E_FAIL

plnicode 0=004200d4 “=tring’
plUnicode, su "Hella"
v

wigtchl { ateh2);\.Ill'atchS 5, Watcha

You can use the formatting symbols shown in the following table to format the
contents of memory locations.

Symbol Format Value

ma | 64 ASCII characters

L0y

0x00 | 2ffac
B3 34 CB 00 84 30 94 80
FF 22 8A 30 57 26 00 00 .4..0...".OW&..

16 bytes in hex, followed by 16 ASCII
characters

0x00 | 2ffac
B3 34 CB 00 84 30 94 80
FF 22 8A 30 57 26 00 00 .4..0...".OW&..

16 bytes in hex, followed by 16 ASCII

mb
characters

0x0012ffac
mw | 8words 34B3 00CB 3084 8094
22FF 308A 2657 0000

& | 4 double-word 0x0012ffac
m ouble-words 00CB34B3 80943084 308A22FF 00002657

0x0012fc60
mu | 2-byte characters (Unicode) 8478 77f4 fiff fiff
0000 0000 0000 0000

With the memory location formatting symbols, you can type any value or expres-
sion that evaluates to a location. To display the value of a character array as a
string, precede the array name with an ampersand, &yourname. A formatting
character can also follow an expression:

e reptlx

e alps/0],mb
e xlocg

* count,d

To watch the value at an address or the value pointed to by a register, use the BY,
WO, or DIV operator:

* BY returns the contents of the byte pointed at.
e VO returns the contents of the word pointed at.
e DIV returns the contents of the doubleword pointed at.

Follow the operator with a variable, register, or constant. If the BY, WO, or DWW
operator is followed by a variable, then the environment watches the byte, word,
or doubleword at the address contained in the variable.

You can also use the context operator { } to display the contents of any location.

C++ APPLICATION PROGRAMMING INTERFACE

To display a Unicode string in the Watch window or the QuickWatch dialog box,
use the su format specifier. To display data bytes with Unicode characters in the
Watch window or the QuickWatch dialog box, use the mu format specifier.

Keyboard shortcuts
There are numerous keyboard shortcuts that make working with the Visual

Studio editor faster. Some of the more useful keyboard shortcuts follow.

The text editor uses many of the standard shortcut keys used by Windows
applications, such as Word. Some specific source code editing shortcuts are
listed below.

Shortcut Action

Alt+F8 | Correctly indent selected code based on surrounding lines.

Ctrl+] | Find the matching brace.

Crtrl+) | Display list of members.

Complete the word, once the number of letters entered allows the editor to recognize it. Use full when

Ctrl+Spacebar . N 5
completing function and variable names.

Tab | Indents selection one tab stop to the right.

Shift+Tab | Indents selection one tab to the left.

Below is a table of common keyboard shortcuts used in the debugger.

Shortcut Action

F9 | Add or remove breakpoint from current line.

Ctrl+Shift+F9 | Remove all breakpoints.

Ctrl+F9 | Disable breakpoints.

Ctrl+Alt+A | Display auto window and move cursor into it.

Ctrl+Alt+C | Display call stack window and move cursor into it.

Crrl+Alt+L | Display locals window and move cursor into it.

Ctrl+Alt+A | Display auto window and move cursor into it.

Shift+F5 | End debugging session.
FI

Execute code one statement at a time, stepping into functions.

FI0 | Execute code one statement at a time, stepping over functions.

Crurl+Shift+F5 | Restart a debugging session.

Ctrl+FI10 | Resume execution from current statement to selected statement.

F5 | Run the application.

Ctrl+F5 | Run the application without the debugger.

Ctrl+Shift+FI10 | Set the next statement.

Ctrl+Break | Stop execution.

Chapter 4 * Developer environments * 197

C++ APPLICATION PROGRAMMING INTERFACE

198 « ArcGIS Engine Developer Guide

Loading the following shortcuts can greatly increase your productivity with the
Visual Studio development environment.

Shortcut Action

ESC | Close a menu or dialog box, cancel an operation in progress, or place focus in the current document window.

CTRL+SHIFT+N | Create a new file.

CTRL+N | Create a new project.

CTRL+F6 or
CTRL+TAB

CTRL+ALT+A | Display the auto window and move the cursor into it.

Cycle through the MDI child windows one window at a time.

CTRL+ALT+C | Display the call stack window and move the cursor into it.

CTRL+ALT+T | Display the document outline window and move the cursor into it.

CTRL+H | Display the find window.

CTRL+F | Display the find window. If there is no current Find criteria, put the word under your cursor in the find box.

CTRL+ALT+l | Display the immediate window and move the cursor into it. Not available if you are in the text editor window.

CTRL+ALT+L | Display the locals window and move the cursor into it.

CTRL+ALT+O | Display the output window and move the cursor into it

CTRL+ALT+| | Display the project explorer window and move the cursor into it.

CTRL+ALT+P | Display the properties window and move the cursor into it.
CTRL+SHIFT+O | Open a file.
CTRL+O | Open a project.

CTRL+P | Printall or part of the document.

CTRL+SHIFT+S | Save all of the files, projects, or documents.
CTRL+S | Selectall.

CTRL+A | Save the current document or selected item or items.

Navigating through online Help topics

Right-click a blank area of a toolbar to display a list of all the available
toolbars. The Infoviewer toolbar contains up and down arrows that allow you
to cycle through help topics in the order in which they appear in the table of
contents. The left and right arrows cycle through help topics in the order that
you visited them.

ARrRcGIS DEVELOPMENT USING C++

The upcoming sections are intended for developers using C++ to develop with
ArcGIS Engine. The ArcGIS Engine Developer Kit gives developers access to
ArcObjects and is designed to satisfy requirements for C++ development projects
that require ArcObjects without the ArcGIS Desktop applications.

Building an understanding of COM and ArcObjects

The C++ API for ArcGIS gives the C++ developer access to the ArcObjects
components used to build the ArcGIS family of products; these components are
themselves written in C++ using the COM framework. While it is not necessary
to write any COM code in order to use the C++ API, a basic understanding of
how COM objects work is necessary in order to use ArcObjects. If you are unfa-
miliar with the ArcObjects framework, the initial two sections of this chapter,
‘The Microsoft Component object model” and ‘Developing with ArcObjects’, are
recommended reading.

C++ APPLICATION PROGRAMMING INTERFACE

Getting help
In addition to the Start Menu -> Programs For help on the objects used in this API (interfaces, classes, and so on), refer to
shortcut the C++ version of ArcGIS Developer the ArcGIS Developer Help for C++ that installed with ArcGIS Engine. If you
Help can also be accessed from your ArcGIS accepted the default installation options, it can be accessed from Start Menu ->
Engine installation directory. Open it by navigat-
ing to <ArcGIS install directory>\ Programs -> ArcGIS -> Developer Help -> C++ Help.
DeveloperKit\Help\COM and double-clicking on
ArcGISDevHelpVC.chm. Supported compilers
The compilers in Visual Studio 6.0 and Visual Studio .NET 2003 are supported
by the ArcGIS C++ APL

Development environments

As an ArcGIS C++ API developer, you can choose any development environ-
ment. However, if you wish to use an integrated development environment
(IDE), either Visual Studio 6.0 or Visual Studio .NET 2003 (7.1) is recom-
You are also able to mix and match by coding in vy s . .
: e mended. If you don’t wish to use an IDE, you can write your code in any text
one development environment and compile in ; o X . .
another. For example, you can write code in editor and then compile it from the command line. If you choose this option, we
Visual Studio but compile and build it via a recommend using the nmake utility from a Windows command prompt. Your
script utiizing the command line tools. choice of development environment depends entirely on your personal preference
and the tools available. The following sections focus on each of these three
options.

ARrRcGIS DEVELOPMENT USING C++ IN VISUAL STUDIO 6.0

Set up your application

To begin creating your ArcGIS Engine application in Visual Studio 6.0, start
Microsoft Visual C++ and use the Win32 Console Application wizard to create
an empty project. Choose File > New, select Win32 Console Application, and
type in the name of the project and choose its location.

Next, set the requited project options. On the C/C++ tab of the Project Menu -
TheA"CSI‘IJ’;"L "Zd ?r CIGIS E:gi”; O’gfsi’es “r?’ > Settings dialog, select ‘Preprocessor’ from the Category combobox. In the
installed, by default, in the <ArcGlS insta
directory>\include\CPPAPI and <ArcGIS install AdlelonaI Inclu'de Directories text bOX? type the path to ArcSDK h. In addition,
directory>\com folders respectively. type in the location of the ArcGIS Engine olb files. Don’t forget to separate the

two paths with a semi-colon.

Next, go to the Preprocessor Definitions text box and type in
‘ESRI_WINDOWS’ to define the ESRI_WINDOWS symbol. Similar to the
include directories, symbols need to be separated with commas.

Tt is recommended that you use the /GX and /NOLOGO compiler flags. /GX
enables synchronous exception handling and /NOLOGO prevents display of a
compiler startup banner and informational compiler messages. Activate /GX by
opening the project Property Pages, navigating to C/C++ -> C++ Language, and
checking ‘Enable exception handling’. Set /NOLOGO by checking the ‘Suppress
Startup Banner and Information Messages’ option from the menu bar, Project ->
Settings -> C/C++ tab -> Customize category.

Finally, go to Project > Add to Project > New in order to add some files to the
project; these will eventually contain your code. Select the type of file you wish
to add and give it a name. Add as many files as you need for your application. You
are ready to write your code. Don’t forget to start by including ArcSDK.h!

Chapter 4 * Developer environments * 199

C++ APPLICATION PROGRAMMING INTERFACE

The ArcSDK.h and ArcGIS Engine olb files are
installed, by default, in the <ArcGlS install
directory>\include\CPPAPI and <ArcGlS install
directory>\com folders respectively.

200 « ArcGIS Engine Developer Guide

Compile your application
To compile an ArcGIS Engine application in Visual Studio 6.0, type F7 or choose
Build -> Build YourApplicationName.exe.

Run your application

Before you can run an ArcGIS Engine command line application from within
Visual Studio 6.0, you need to set up the arguments. Arguments are added to your
program by customizing your project settings;: go to the Project menu -> Settings
-> Debug tab and add any arguments to the Program arguments text box.

Once the arguments are added, run the application by choosing Build -> Execute
YourApplicationName.exe or by typing CONTROL-F5. To run the application in
debug mode, choose Build -> Start Debug -> Go, or type F5.

ARrcGIS DEVELOPMENT USING C++ IN VISUAL STUDIO .NET

Set up your application

The easiest way to progtam with the C++ API in .NET is to use the C/C++
Console Application wizard. This wizard is not the same as the Win32 Console
Project and Console Application (NET) wizards. To access the C/C++ Console
Application wizard, you must install Academic Tools for VS .NET 2003 from
http:/ /www.msdnaa.net/Resources/display.aspxrResID=1911. Once you have
installed the wizard, choose New > Project, click the Visual C++ Projects folder,
and select C/C++ Console Application.

Now you are ready to proceed with your project options. First, add some addi-
tional include directories. Do this by selecting Project Menu -> Properties, click-
ing on the C/C++ folder, and clicking General. In the Additional Include Direc-
tories text box, type the path to ArcSDK h. In addition, type in the location of
the ArcGIS Engine olb files. Remember to separate the paths with a semi-colon!
You can also click on the ellipses to add new directories.

Next, click on Preprocessor and in the Preprocessor Definitions text box type in
‘ESRI_WINDOWS’ to define the ESRI_WINDOWS symbol. You can also click
on the ellipses to define symbols.

Now you are ready to write your code. Don’t forget to start by including
ArcSDK.h!

Compile your application

To compile an ArcGIS Engine application in Visual Studio NET 2003, choose
Build -> Build Solution.

Run your application

Before you can run an ArcGIS Engine command line application from within
Visual Studio .NET 2003, you need to set up the arguments. Arguments are
added to your program by customizing your project settings; go to the Project
menu -> Properties -> Debugging item and add any arguments to ‘Command
Arguments’. Make sure the configuration you are working on is selected in the
configuration combobox.

C++ APPLICATION PROGRAMMING INTERFACE

Finally, run the application by choosing Debug -> Start Without Debugging or by
typing CONTROL-F5. If you wish to run the application in debug mode, choose
Debug -> Start, or type F5.

ArcGIS DEVELOPMENT WITH NMAKE AND THE WINDOWS COM-
MAND PROMPT

Set up a compiler for use from the command prompt

From the command prompt you have your choice of supported compilers; your
first step will be to select one and prepare it for use. The command line build
tools of Visual Studio are not available by default, so you need to use a provided
batch file, vevars32.bat, to configure one of the Visual Studio compilers for
command line compilation and execution.

Access theVisual Studio 6.0 compiler from the command line

The command line build tools of Visual Studio are not available by default.
However a batch file, called vevars32.bat, is provided to make them available.
The vevars32.bat file must be run each time you open a new command prompt.
Alternatively you can create your own batch file that runs vevars32.bat and opens
a command prompt that is ready for development. Each process is described
below.

* Run vevars32.bat from a command prompt

The vevars32.bat file’s default location is 1. Open a command prompt and cd to the directory containing vevars32.bat.
Program Files\Microsoft Visual Studio\VC98\Bin
(Visual Studio 6.0). 2. Type vevars32.bat to run the batch file.

3. For development, cd to the directory containing your code and begin.
The Visual Studio command line build tools will be available from your
command prompt.

4. For execution, run your exe with any necessary parameters.

e Create a batch file to run vevars32.bat for you
1. Navigate to the directory in which you wish to store the batch file
2. Right-click in the directory and choose New -> Text Document

3. Change the name of the file to end in .bat (cmdpromptdevel.bat, for ex-
ample) and click yes to confirm the name change.

4. Right-click the file and choose Edit

The vevars32.bat file’s default location is :) ioht-click g .
Program Files\Microsoft Visual Studio\VC98\Bin 5. Find vevars32.bat, right-click the file and choose Edit.
(Visual Studio 6.0). 6. Copy all of the text in vevars32.bat into the batch file you created and

opened above and close vevars32.bat

7. Add the following line to your batch file:

%SystemRoot%\system32\cmd. exe
This line opens a command prompt.

8. When you wish to develop on the command line, double-click your batch
file. A command prompt will open with the necessary environment already

set up for you. You can also create a shortcut to your batch file and add it
to the Start Menu or a toolbar.

Chapter 4 » Developer environments * 201

C++ APPLICATION PROGRAMMING INTERFACE

If desired, you can utilize the sample

Makefile. Windows provided with ArcGIS Engine.
Refer to the next section for details on this
sample file.

If you didn’t install to the default location, find
and use your install location to add the
\include\CPPAPI and \Com folders as include
directories.

The template, Maekfile. Windows, can be found
inArcGIS Developer Help under Development
Environments > C++ > Makefiles.

The comment text used here to describe the
code of the Makefile has been modified from the
actual comments within the file to reflect the
steps being taken.

202 < ArcGIS Engine Developer Guide

9. For development, cd to the directory containing your code and begin.
The Visual Studio command line build tools will be available from your
command prompt.

10. For execution, run your exe with any necessary parameters.

Access theVisual Studio .NET 2003 compiler from the command line

The command line build tools of Visual Studio are not available by default.
However, Visual Studio NET 2003 includes a command prompt that makes the
tools available. To open the command prompt and access these tools, go to the
Start Menu -> All Programs -> Microsoft Visual Studio NET 2003 -> Visual
Studio .NET Tools -> Visual Studio .NET 2003 Command Prompt.

When opened, the prompt automatically runs a batch file, vevars32.bat, that
makes the build tools available. The vevars32.bat file’s default location is Pro-
gram Files\Microsoft Visual Studio .NET 2003\ Vc7\bin.

Set up your application

Open your favorite text editor and begin writing your code. Use a Makefile to set
the following include directories, and compiler options.

1. Use the /T compiler option to add Program
Files\ ArcGIS\include\CPPAPI and Program Files\ArcGIS\Com as additional
include directories.

2. Use the /D compiler option to define the ESRI_WINDOWS symbol to direct
the compiler to read the Windows support headers from within
ArcSDK.h.

3. Use the /GX compiler flag to enable synchronous exception handling

4. Use the /NOLOGO compiler flag to prevent display of a compiler
startup banner and informational compiler messages.

Customizing the sample Makefile

As a convenience, an example Makefile, named Makefile.Windows, is included
with ArcGIS Engine for your use. The following steps highlight the specific areas
of the file that must be customized for it to be used in your development process.
The modifications shown are based on an application that is written in a single
file, my_application.cpp, which takes in a single file.

1. Throughout the makefile, update the program name, currently ‘basic_sample’,
to reflect your application name.
Set up the program name
PROGRAM = my_application.exe

Program name updates — source and object file Tists
CPPSOURCES = my_application.cpp
CPPOBJECTS = my_application.obj

Program name updates —- dependencies 1ist
my_application.obj: my_application.cpp my_application.h

C++ APPLICATION PROGRAMMING INTERFACE

2. The compiler options outlined in Steps 2 through 4 above have been set for
you, however you need to complete Step 1 yourself in order to prepare the
template for use in your applications.

Setting up the include directories

Although the compiler options have already been INCLI’PEDIRS =\ . i Y
set in the template, the line is included here to /I “C:\Program Files\ArcGIS\include\CPPAPI” \

illustrate the use of the built-in CPPFLAGS /I “C:\Program Files\ArcGIS\Com”
macro.

Setting up the compiler options
CPPFLAGS = /DESRI_WINDOWS $(INCLUDEDIRS) /nologo /GX

3. Provide dependencies lists for your application.

This line was also shown in Step Ito illustrate # Program name updates —- dependencies 1ist

the update of the program name. my_application.obj: my_application.cpp my_application.h

With your Makefile prepared, you are ready to write your code. Don’t forget to
start by including ArcSDK.h!

Compile your application
Once Makefile.Windows is ready to compile your application, you can compile
from the command line by typing ‘nmake /f Makefile.Windows’.

Run your application

Before you can run an ArcGIS Engine command line application the command
line parameters must be set up. Update your makefile to include variables for each
input parameter and a run target.

An example of these modifications is shown below:

Setting up the program argument
INPUT = C:\Data\inputfile

Setting up a run target
run:
$(PROGRAM) $(INPUT)

Once Makefile.Windows is ready for use with your application, you will be able
to run from the command line by typing ‘nmake /f Makefile. Windows run’.

Chapter 4 » Developer environments * 203

C++ APPLICATION PROGRAMMING INTERFACE

ARCOBJECTS C++ PRACTICES

The following are some of our recommendations for programming with the
ArcGIS C++ APL

Recommended function usage

The C++ API provides it’s own implementation of certain functions:

® Aolnitialize—used where Colnitialize would be used in COM programming,
extern “C” HRESULT AoInitialize(LPVOID pvReserved);

This function initializes ArcGIS Engine and COM. The initialization must be
done prior to any ArcObjects being used and in addition to the use of the

For the sake of simplicity the code snippets given LAolnitialize interface, which handles licensing for the application.
don’t always check HRESULTS, although as a
developer you should always do so. ® AoUninitialize—used where CoUninitialize would be used in COM program-
ming

extern “C” void AoUninitialize(void);

This function uninitializes ArcGIS Engine and COM.

® AoExit—used where exit would be used in non-ArcObjects code, as well as
return would be used in main().
extern “C” VOID AoExit (int number);
AoExit must be called before an application is exited. This allows portability

to supported operating systems that require .4oExiz to correctly clean up
various ArcGIS Engine and COM elements.

The following example illustrates how the three functions discussed above should
be used within an application:
int main (int argc, char* argv[])
{
// Initialize ArcGIS Engine and COM
::AoInitialize(NULL);

// ArcGIS Engine Ticensing

Note that IAolnitialize is scoped so that it will { o) o
be out of scope before AoUninitialize is called. TAoInitialize ipInit(CLSID_AoInitialize);

esrilicenseStatus status;
ipInit->Initialize(esrilLicenseProductCodeEngine, &status);
// ArcObjects Code here
ipInit->Shutdown();

// Uninitialize ArcGIS Engine and COM

::AoUninitializeQ;

// Exit the application
AoExit(0);

204 + ArcGIS Engine Developer Guide

C++ APPLICATION PROGRAMMING INTERFACE

* AoCreateObject—used where CoCreatelnstance would be used in COM pro-
gramming
extern “C” HRESULT AoCreateObject(REFCLSID rclsid,
LPUNKNOWN pUnkOuter,
DWORD dwCTsContext,
REFIID riid,
LPVOID *ppv);
When using smart pointers, this function will not be needed. However, you
can create an instance of an object without smart pointers by using this func-
tion, as shown in the following code:
// Create a Workspace Factory without using smart pointers
IWorkspaceFactory *pWorkspaceFactory;
hr = ::AoCreateInstance(CLSID_ShapefileWorkspaceFactory, 0,
CLSCTX_INPROC_SERVER,
IID_IWorkspaceFactory,
(void **)&pWorkspaceFactory) ;
e AoAlleBSTR replaces SysAllocString
extern “C” BSTR AoA1T1ocBSTR(const OLECHAR *sz);
e AolFreeBSTR replaces SysFreeString
extern “C” void AoFreeBSTR(BSTR bstr);
When using the smart type CComBSTR, the above two functions will not be
needed. However, you can create and free BSTRs with them, as illustrated in the
following example:
// display the feature type as “simple” or “other”
BSTR bsFeatureType;
esriFeatureType featType;
pFeatureClass->get_FeatureType(&featType);

switch (featType)
{

case esriFTSimple :
bsFeatureType = ::AoAT11ocBSTR(L”simple”);

break;
default:
bsFeatureType = ::AoAT11ocBSTR(L”other”);
}
std: :wcerr << L”Feature Type : “ << (BSTR) bsFeatureType << std::endl;

: :AoFreeBSTR (bsFeatureType) ;

Get a feature’s Field Values from type VARIANT

A feature’s field values are passed back as type VARIANT, requiring you to do
some processing to get the actual values. The following example loops through all
of a feature’s fields and prints out the feature’s value for each field. Only certain
field types are handled by the code shown here (for example, 2-byte integers, 4-
byte integers, and BSTR strings); however, you could choose to handle other
types as determined by the needs of your application.

// ipFeature is of type IFeaturePtr, and we assume it has already

// been declared and instantiated above

IFieldsPtr ipFields;

Chapter 4 * Developer environments * 205

C++ APPLICATION PROGRAMMING INTERFACE

206 * ArcGIS Engine Developer Guide

hr = ipFeature->get_Fields(&ipFields);

long fieldCount;

hr = ipFields->get_FieldCount(&fieldCount);
IFieldPtr ipField;

CComVariant fieldvalue;

for (Tong 1=0; i<fieldCount; i++)

{

hr = ipFields->get_Field(i, &ipField);

hr = ipFeature->get_Value(i, &fieldvalue);

// Get field’s value based on its type

switch (fieldvalue.vt)

{

case VI_I2:
std::cerr << fieldvalue.iVal << std::endl;
break;

case VI_I4:
std::cerr << fieldvalue.TVal << std::endl;
break;

case VI_R4:
std::cerr << fieldvalue.f1tVal << std::end1;
break;

case VT_R8:
std::cerr << fieldvalue.dblVal << std::end1;
break;

case VT_BSTR:
std: :wcerr << fieldvValue.bstrVal << std::end1;
break;

default:
std::wcerr << “Field type not supported.\n”;
break;

}

}

Cocreate an object with a smart pointer reference after the smart pointer is
declared:

A class is often cocreated at the same time that a smart pointer is declared:
IFooPtr ipFoo(CLSID_Foo);

However, in certain cases, it may be necessary for you to declare the smart
pointer first and cocreate the class later. This can be accomplished in the manner

C++ APPLICATION PROGRAMMING INTERFACE

below. Notice the use of the ‘dot’ member selection operator, as opposed to the
arrow member selection operator that is usually used with smart pointer types:
IFooPtr ipFoo;

// more code would be here

ipFoo.CreateInstance(CLSID_Foo);

Inline Query Interface (Ql)

You can use the built-in smart types to QI to other supported interfaces of a
coclass on which you have an interface:

// ipTin is of type ITinPtr and is an interface to an instance of
// the Tin coclass

// The Tin coclass supports both the ITin and ITinSurface interfaces
// GetVolume 1is a method on the ITinSurface interface
((ITinSurfacePtr) ipTin)->GetVolume(..);

Raw pointers in function signatures

Rather than having a smart pointer in the function signature, consider using a raw
pointer to save the overhead of a call to the smart pointer constructor/destructor
upon invocation of the function. You can still pass smart pointer objects to
functions since each smart pointer has an overloaded pointer operator that re-
turns the underlying raw pointer. The following example illustrates this:

HRESULT DoRasterOp(IRaster* pRaster); // Function dec: raw pointer
IRasterPtr ipRaster;

HRESULT hr = DoRasterOp(ipRaster); // Pass in smart pointer

Return ArcObjects from functions

This tip builds on the previous one. In this case, raw pointers are used in the
function declaration and a double indirection is used for the object that will be
returned. This allows you to alter what the pointer you are passed points to.
Next, initialize a smart pointer object with the value you wish to return and
assign it to the pointer you were passed in.

HRESULT GetTinWorkspace(char* path, ITinWorkspace** ppTinWorkspace)
{
HRESULT hr = S_OK;
IWorkspaceFactoryPtr ipWorkspaceFactory(CLSID_TinWorkspaceFactory) ;
IWorkspacePtr ipWork;
hr = ipWorkspaceFactory->0penFromFile(CComBSTR(path), 0, &ipWork);
if (FAILEDChr) || ipWork == 0)
return E_FAIL;
// Initialize ipTinWorkspace with ipWork
ITinWorkspacePtr ipTinWorkspace(ipwork) ;
*ppTinWorkspace = ipTinWorkspace;
// AddRef() if the assignment worked
if (*ppTinWorkspace)
Notice the call to AddRef.This is required to (*ppTinWorkspace) ->AddRef () ;
ensure that resources are managed properly. return hr;

Chapter 4 * Developer environments * 207

C++ APPLICATION PROGRAMMING INTERFACE

For further details on GUIDs, see ‘The Microsoft
Component Object Model’ section earlier in this
chapter.

208 « ArcGIS Engine Developer Guide

IUID

There are several methods in ArcObjects that take an IUID object as a parameter.
An TUID object is a globally unique identifier object. It can be either a GUID, as
shown in the example below, or a ProglD.

TUIDPtr ipUID(CLSID_UID);

IEnumLayerPtr ipEnumLayer;

// use IGeoFeaturelLayer’s GUID

hr = ipUID->put_Value(CComVariant(L”{E156D7E5-22AF-11D3-9F99-
00CO4F6BC78E}"));

hr = ipMap->get_Layers(ipUID, VARIANT_TRUE, &ipEnumLayer);

Replicate the functionality of instanceof (Java) or TypeOf (Visual Basic)

It is common to have an interface pointer that could point to one of several
coclasses. You can find out more information about the coclass by attempting to
QI to other interfaces using if/else logic. For example, both the RasterDataser and
FeatureDataset coclasses implement [Dataset. 1f you are passed [Dataset as a func-
tion parameter you can determine which coclass the IDataset references as fol-
lows:

void Foo (IDataset *pDataset)
{
IFeatureDatasetPtr ipFeatureDataset(ipDataset);
if (ipFeatureDataset != 0)
{
// use IFeatureDataset methods
}
else
{
IRasterDataset2Ptr ipRasterDataset(ipDataset);
if (ipRasterDataset!= 0)
{
// use IRasterDataset2 methods
}

}

ESRI System interfaces

The System library within ArcGIS Engine, which is included with ArcSDK h,
contains a number of interfaces that simplify programming. It contains compo-
nents that expose services used by the other ArcGIS libraries.

GROUPS OF OBJECTS IN INTERFACES WITHOUT STL

ArcObjects contains several interfaces for managing groups of objects. Although
they are not all discussed here, the examples given illustrate some that can greatly
simplify your work with COM objects in C++. Standard Template Library (STL)
types exist which are similar to some of these; however, these interfaces are often
simpler than their STL counterparts and are already set up to be used with COM
objects. For additional details on any of the interfaces below, see ArcGIS Devel-
oper Help for C++.

C++ APPLICATION PROGRAMMING INTERFACE

IArray

The LArray interface provides access to members that control a simple array of
objects. There are multiple related interfaces, such as [DoubleArray and
1VariantArray. The following code snippet shows how to add the geometries of
the features in a FeatureCursor to an array.

// ipFeaturelLayer is of type IFeaturelLayerPtr and ipQueryFilter is of
// type IQueryFilterPtr. Both have already been declared and

// instantiated.

TArrayPtr ipCacheArray (CLSID_Array);

IFeatureCursorPtr ipFeatureCursor;
ipFeaturelLayer->Search(ipQueryFilter, VARIANT_FALSE, &ipFeatureCursor);

IFeaturePtr ipFeature;
while (ipFeatureCursor->NextFeature(&ipFeature) == S_0K)
{
IGeometryPtr ipGeom;
ipFeature->get_ShapeCopy (&ipGeom) ;
jpCacheArray->Add ((IUnknownPtr) ipGeom) ;
}

ISet

The ISet interface provides access to members that control a simple set of unique
objects. For example, the following code snippet cycles through a map’s layers
and attempts to add all of the unique feature class workspaces that aren’t being
edited to a set.

// ipMap is of type IMapPtr and was previously

// declared and instantiated

ISetPtr ipSet(CLSID_Set);

ILayerPtr iplLayer;

IFeaturelLayerPtr ipFeatlLayer;

IFeatureClassPtr ipFeatClass;

IDatasetPtr ipDataset;

IWorkspacePtr ipWorkspace;

IWorkspaceEditPtr ipWorkspaceEdit;

long layerCount;

hr = ipMap->get_LayerCount(&layerCount) ;

for (Tong 1=0; i<layerCount; i++)

{
hr = ipMap->get_Layer(i, &iplLayer);
ipFeatLayer = iplLayer;
// Tayer might not be a feature layer
if (ipFeatLayer == 0 || FAILEDChr)) continue;
hr = ipFeatLayer->get_FeatureClass(&ipFeatClass);
// layer could reference bogus data
if (ipFeatClass == 0 || FAILEDChr)) continue;
jpDataset = ipFeatClass;
hr = ipDataset->get_Workspace (&ipWorkspace) ;
ipWorkspaceEdit = ipWorkspace;

Chapter 4 « Developer environments * 209

C++ APPLICATION PROGRAMMING INTERFACE

You might notice that the samples and scenarios
do not follow the Good Error Handling practiced
outlined here.This is done simply to increase
code readability since error checking is not the
focus of those bits of code.

210 « ArcGIS Engine Developer Guide

// some data are not editable
if (ipWorkspaceEdit == 0 || FAILEDChr)) continue;
VARIANT_BOOL beingEdited;
hr = ipWorkspaceEdit->IsBeingEdited(&eingEdited);
if (!beingEdited)
{
// only adds unique workspaces
hr = ipSet->Add(ipWorkspace) ;
}
}

Copy objects

The IClone interface is helpful when comparing and copying objects, saving time
and computing resources. Many coclasses support the IC/lone interface. See the
documentation for IClone in ArcGIS Developer Help for details. The following
code snippet clones a Point object:

// ipMouseClickPoint is of type IPointPtr and was previously declared //
and instantiated.

ICTonePtr ipClone (ipMouseClickPoint);

ICTonePtr ipCloned;

ipClone->Clone(&ipCloned) ;

Error handling

COM methods return an HRESULT to signify the success or failure of a call, as
discussed in the ‘Developing with ArcObjects’ section early in this chapter. When
you are programming with the C++ API you should check the returned
HRESULT of all calls to COM objects.

There are a few common HRESULTS that can be returned.

* S_OKsignifies success

e [FAIL indicates a failure.

* E_NOTIMPL indicates a method is not implemented

There are some macros that can be used to test the returned HRESULT.

* bool FAILED(HRESULT)
For example, if the opening of a workspace in which you want to process
data fails, you will not be able to use the data. At that point, you should exit
the application to avoid a crash later on.

// Open the workspace
IWorkspaceFactoryPtr ipWorkspaceFactory(CLSID_RasterWorkspaceFactory) ;
IWorkspacePtr ipWorkspace;
HRESULT hr = ipWorkspaceFactory->OpenFromFile(inPath, 0, &ipWorkspace);
if (FAILED(Chr) || ipWorkspace == 0)
{

std::cerr << “Could not open the workspace.” << std::endT;

return E_FAIL;

C++ APPLICATION PROGRAMMING INTERFACE

* bool SUCCEEDED(HRESULT)
For example, if you are going to create a new raster dataset, you must first
know that no dataset already exists with the desired name. To find out if such
a dataset exists, try to open it. If it succeeds, you know that you cannot create
a new dataset with that name.
// Check for existence of a dataset with the desired output name.
// If such exists, we can’t create a new one with the name.
IRasterDatasetPtr ipExistsCheck;
hr = ipRastWork->0OpenRasterDataset(outFile, &ipExistsCheck);
if (SUCCEEDED(hr))
{

std::cerr << “A dataset with the output name already exists!” <<
std::endl;
return E_FAIL;

}

Troubleshooting

e Cannot open include file “AreSDK.h"—If your sample is not compiling because
it cannot open ArcSDK .h, make sure that you have the correct argument for
the include directory: ArcGIS\include\CPPAPL. If it is correct and it is still
not working, make sure the file is in that directory.

e Cannot open type library file “esriSystem.olb” —If your sample is not compiling
because it cannot open an ESRI OLB file, make sure that you have the correct
argument for the include directory: ArcGIS\Com. If it is cotrect and it is still
not working, make sure the file is in that directory.

o Code is compiling but will not run. Sometimes 1 get an odd “abnormal program termina-
tion” error—If samples or your own code compiles but fails to run, make sure
you registered your ArcGIS Engine. Use the SoftwareAuthorization tool,
found in Start > All Programs > ArcGIS and check current configuration. If
the configuration does not list “standardengine”, run the tool and follow its
prompts.

e Error: Please define either ESRI_WINDOWS or ESRI_UNIX—You need to
inform the compiler which set of header files to use. You forgot to define the
ESRI_WINDOWS symbol.

Limitations

When using the C++ API, only Windows C++ command line applications are
supported. However, GUI applications can be built with the COM API (includ-
ing Visual C++), and several ActiveX controls provide GIS functionality to
standalone GUI applications. For details, see the “Visual C++’ section earlier in
this chapter.

Chapter 4 » Developer environments 21 |

Licensing and
deployment

Developing ArcGIS Engine applications cannot be undertaken in isolation from the
deployment of the final application. Deployment of your application involves three
separate processes: license initialization within your application, installation of the

ArcGIS Engine Runtime software, and the authorization of its use.

This chapter details each of these processes and examines the deployment
decisions that you , as developer, must make prior to distributing your ArcGIS

Engine applications.

ARCGIS LICENSE OPTIONS

214 + ArcGIS Engine Developer Guide

One of the most important decisions you make as an ArcGIS Engine developer is
to determine what the functional requirements of your prospective application
are and the minimum licensing level needed to meet those needs. In most cases, it
is inefficient for you to develop an application that requires an ArcGIS Engine
Runtime with 3D, Spatial, and GeoDatabase options, just because you didn't
assess the actual needs of your organization or client and plan accordingly.

This section of the chapter details the myriad of licensing options available.

Each of the sample applications that you build in
Chapter 6, 'Developer scenarios', also illustrates
the license initialization process.

While every standalone application must be
initialized, the following examples illustrate
situations that do not qualify as standalone and
therefore don't need to be initialized as
described:

* The application is a DLLthat will be incorpo-
rated into an application that will itself perform
the license configuration.

* The application is an extension to ArcMap or
another third party application.The extension is
responsible for license management.

STANDALONE EXECUTABLE LICENSE INITIALIZATION

One of the most important decisions you make as an ArcGIS Engine developer is
to determine what the functional requirements of your prospective application
are and the minimum licensing level needed to meet those needs. In most cases, it
is inefficient for you to develop an application that requires an ArcGIS Engine
Runtime with 3D, Spatial, and GeoDatabase options, just because you didn't
assess the actual needs of your organization or client and plan accordingly.

This section of the chapter details the myriad of options available for intializing
your application with multiple levels of licensing, It first dicusses them in detail
and then provides a number of sample license initialization situations.

LICENSE INITIALIZATION

Each stand-alone application developed using ArcObjects must initialize itself
with a suitable license to ensure it runs successfully on any machine to which it is
deployed. License initialization must be performed by an application, at applica-
tion start time, before any ArcObjects are accessed. Failure to do so will result in
application errors.

There are two types of licenses to consider when initializing an application:
product licenses and, if an application uses any of the ArcGIS extension features,
extension licenses. Each of these types of licenses are made available in certain
license flavors—FEngine Single Use, Desktop Concurrent Use, and Desktop Single
Use.

* Engine Single Use—provides access to either the ArcGIS Engine or Engine
with GeoDatabase Editing licenses. Each single use license is only available to
the machine on which it is installed.

e Desktop Concurrent Use—FlexILM technology is used to provide concurrent
access to the ArcGIS Desktop products, ArcView, ArcEditor, Arclnfo, and its
extensions. The licenses can be available to multiple machines; they are stored
on a license manager and checked out when being used.

* Desktop Single Use—provides access to Single Use ArcView, ArcEditor, and
Arclnfo licenses. Like the Engine Single Use licenses, each one is available
only to the machine on which it is installed. Even though this is significantly
different than the Desktop Concurrent Use licensing, they actually utilize the
same technology. This means that there is no mechanism for you, as an ArcGIS
Engine developer, to differentiate between a Single Use and a Desktop Con-
current license, and hence, they should be treated as the same.

CONSIDERATIONS FOR APPLICATIONS NOT USING ArcGIS
RUNTIME OPTIONS

Once an application has been initialized with a license it cannot be re-initialized;
an application is initialized with a license for the duration of its life. When
initializing an application with a license the following must be considered:

* The types of product license that the application can run with. For example,
an enterprise geodatabase editing application will not be able to run with an
ArcGIS Engine license or an ArcView license. However, it will be able to run
with an ArcGIS Engine with GeoDatabase Editing license, an ArcEditor
license or an Arclnfo license.

Chapter 5 ¢ Licensing and deployment * 215

STANDALONE EXECUTABLE LICENSE INITIALIZATION

e The types of product license available to the application. For example, an
application that can be run with an ArcGIS Engine license will also run with
an ArcView, ArcEditor and Arclnfo license. However, you may not want to
consume an Arclnfo license with such an application.

Using an ArcView license on an ArcGIS Engine application will give you access
to all the functionality available to a standard Engine license. Likewise, using an
ArcEditor license on an ArcGIS Engine application with GeoDatabase Editing
will give you access to all the functionality available to an Engine license with
GeoDatabase Editing,

Additional considerations for applications using ArcGIS extensions

When an application is initialized with a particular product license, a connection
is made to a license server. All subsequent calls to check extensions out and in are
made to the same license server. As such, you cannot use a combination of li-
censes from difference license servers or Engine Single Use.

e If an application is initialized with a Desktop Concurrent license, the applica-
tion will subsequently only be able to access that Desktop Concurrent license
server and its extension licenses.

e If an application is initialized with a Desktop Single Use license, the applica-
tion will subsequently only be able to access that single use license server and
its extension licenses.

* If an application is initialized with the Engine Single Use license on your
machine, the application will subsequently only be able to access the Engine
Single Use extension licenses.

It is possible before initialization has been performed to query the license servers
(Desktop Concurrent or Single Use) and Engine Single Use to see if the licenses

you require are available. If all the licenses you require are available using Engine
Single Use then we recommend you use it in preference to the Desktop Concur-

rent and Desktop Single Use licenses. This means you will not limit the Desktop
Concurrent licenses available to any other users.

The following extensions are available with Engine Single Use licenses:
e 3D Analyst
e Spatial Analyst
e StreetMap
For applications developed using the ArcGIS

Controls,Table | describes each Controls run-
time license requirements.

216 * ArcGIS Engine Developer Guide

STANDALONE EXECUTABLE LICENSE INITIALIZATION

For applications that are developed using the
ArcGlIS Controls,Table 2 describes each Controls
design-time license requirements.

ArcView, ArcEditor,

ArcGIS Engine 2 : :
ArcGIS Engine Single Use licence (AU, Arf:Ednor, Ridiito gl
" . " . Arcinfo Single Use or Desktop
Single Use with Engine Singe : ArcReader
- Use or Desktop Cocurrent licence
licence Use 3D Analyst - .
. Cocurrent licence with 3D Analyst
extension :
Extension
ArcReaderControl v v
MapControl 4 v
PageLayoutControl v v
ReaderControl 4 v
ToolbarControl v v
TOCControl v v
GlobeControl v v
SceneControl v 4

ENGINE SINGLE USE DESIGNER OPTION

The Engine Single Use designer extension is required when developing applica-
tions with ArcObjects. This license works differently to the other extensions in
that:

* The extension is only needed when designing and developing applications; it is
never needed at run-time.

* The extension does not need to be checked out; it is automatically checked

out for you.
. ArcGIS Engine ArcView, ArcEditor,
ArcGIS Engine Si/:rclgti‘ E“gleTwece Single Use licence ArcView, ArcEditor, Arcinfo Single
N 9 ngie Us R with Engine Singe Arcinfo Single Use or Desktop
Single Use with Engine Singe Vo U Deski c i
B Use designer se designer se or Desktop Cocurrent licence
: extension and 3D Cocurrent licence with Publisher
extension) ;
Analyst extension Extension
ArcReaderControl v
MapControl v 4
PageLayoutControl v v
ReaderControl v
ToolbarControl v
TOCControl v
GlobeControl v
SceneControl 4

INITIALIZING AN APPLICATION WITH A LICENSE
The initialization of an application with a license must be performed in the
following order:

1. Check the product license is available.

2. Check extension licenses are available (if required).

3. Initialize the application with the product license.

4. As required, perform extension check outs and check ins.
5

. Shutdown the application.

Chapter 5 * Licensing and deployment « 217

STANDALONE EXECUTABLE LICENSE INITIALIZATION

218 « ArcGIS Engine Developer Guide

CHECKING PRODUCT LICENSE AVAILABILITY

The product license that is chosen determines the functionality the application
will be able to access. Once the product license has been initialized it cannot be
changed for the duration of the applications life.

e If the product you require is not licensed you may optionally initialize the
application with a higher product license.

e If there are no appropriate product licenses available the application should
inform the user of the issue, and either allow the user to resolve the issue or
exit the application.

CHECKING EXTENSION LICENSE AVAILABILITY

If an application has been designed to use extension functionality, it may check
for the availability of extension licenses before the application is initialized.
Checking the availability of an extension license must be done in conjunction
with the product license that the application will ultimately be initialized with, as
not every extension license is available with every product license.

* If an extension required by the application for it to run successfully is not
available, the application should inform the user of the issue, and exit the
application.

e If the extension functionality is not necessary for the application to function,
and the extension license is unavailable, the application should disable to the
user the functionality dependant upon the extension.

INITIALIZING THE APPLICATION

Once it has been established that the appropriate product and extension licenses
are available the application should be initialized with the product license. Once
initialized it is not possible to re-initialize the application.

CHECKING EXTENSIONS IN AND OUT

Extensions can either be checked out as and when an application requires the
extension functionality, and checked in once the application has finished with the
functionality; or the extension can be checked out directly after the application is
initialized and checked back in before shutdown. The way that the extensions are
checked in and out will depend on the type of product license the application
was initialized with.

e If the application was initialized with either of the Engine Single Use li-
censes, any extensions used by the application will also be Engine Single Use.
As such any extensions can be checked out directly after the application is
initialized and checked back in before shutdown.

e If the application was initialized with a license server and the extensions are
required by the application for it to run successfully, the extensions should be
checked out directly after the application is initialized and checked back in
before shutdown.

STANDALONE EXECUTABLE LICENSE INITIALIZATION

e If the application was initialized with a license server and the extension
functionality is not necessary for the application to function, the extensions
can cither be checked out directly after the application is initialized or checked
out as and when the extension functionality is required. When the extension is
checked in the functionality should be disabled.

SHUTDOWN

Before an application is shut down the Aolnitialize object must be shut down.
This ensures that any ESRI libraries that have been used are unloaded.

LICENSE INITIALIZATION FAILURE

If a product or extensions fails to check out the license status indicates the reason
for the failure. Licenses can fail to check out for the following reasons:

* A product is not licensed.

* A license is unavailable because it is already being used (Desktop Concurrent
licenses only).

* An unexpected license failure due to system administration problems.

* The license is already initialized. An application is initialized with a product
license for the duration of it life. It is possible to check what product license
an application has been initialized with. For example, if an application con-
taining some enterprise GeoDatabase editing has been initialized with an
Engine Single Use with GeoDatabase Editing or an ArcEditor or Arclnfo
license, the editing functionality can be enabled. If however the application
has been initialized with an Engine Single Use or ArcView license the editing
functionality must be disabled.

EXAMPLE ONE

The application requires a minimum of an ArcGIS Engine license. If an ArcGIS
Engine license is not available, the application can run with an ArcView or
ArcEditor license but not an Arclnfo license (ArcInfo will provide all the func-
tionality we require but we do not wish to consume an Arclnfo license for our
simple application). The application also requires 3D Analyst and Spatial Analyst
extension functionality for it to run successfully, so both of these extensions need
to be checked out for the duration of the application. The following steps are
taken to initialize the application with a license.

Can the application be initialized with the ArcGIS Engine product
license?

1. Check whether an ArcGIS Engine product license is available.

2. Check whether a 3D Analyst extension license is available with the ArcGIS
Engine product license.

3. Check whether a Spatial Analyst extension license is available with the
ArcGIS Engine product license.

If any of these licenses are not available then the application cannot be initialized
with an ArcGIS Engine license. Can the application be initialized with an Arc-
View product license instead?

Chapter 5 ¢ Licensing and deployment « 219

STANDALONE EXECUTABLE LICENSE INITIALIZATION

220 * ArcGIS Engine Developer Guide

If all of these licenses are available, initialize the application.
4. Check out the ArcGIS Engine product license by initializing the application.

If the license failed to check out, can the application be initialized with an Arc-
View product license instead?

If the license checked out, check the extension licenses out.

5. Check out the 3D Analyst extension.

6. Check out the Spatial Analyst extension.

If cither of the extension licenses failed to check out, the application cannot run.
If the extension licenses are checked out, the application has been successfully

configured with licenses.

Can the application be initialized with the ArcView product license?

1. Check whether an ArcView product license is available.

2. Check whether a 3D Analyst extension license is available with the ArcView
product license.

3. Check whether a Spatial Analyst extension license is available with the Arc-
View product license.

If any of these licenses are not available then the application cannot be initialized
with an ArcView license. Can the application be initialized with an ArcEditor
product license instead?

If all of these licenses are available, initialize the application.
4. Check out the ArcView product license by initializing the application.

If the license failed to check out, can the application be initialized with an
ArcEditor product license instead?

If the license checked out, check the extension licenses out.
5. Check out the 3D Analyst extension.
6. Check out the Spatial Analyst extension.

If cither of the extension licenses failed to check out, the application cannot run.
Checking out Desktop Concurrent licenses may fail here as they may have been
checked out by another application since this application checked their availabil-
ity.

If the extension licenses are checked out, the application has been successfully
configured with licenses.

Can the application be initialized with the ArcEditor product license?

1. Check whether an ArcEditor product license is available.

2. Check whether a 3D Analyst extension license is available with the ArcEditor
product license.

3. Check whether a Spatial Analyst extension license is available with the
ArcEditor product license.

If any of these licenses are not available then the application cannot be initialized

STANDALONE EXECUTABLE LICENSE INITIALIZATION

with an ArcEditor license and the application cannot run.

If all of these licenses are available, initialize the application.

4. Check out the ArcEditor product license by initializing the application.
If the license failed to check out, the application cannot run.

If the license checked out, check the extension licenses out.

5. Check out the 3D Analyst extension.

6. Check out the Spatial Analyst extension.

If cither of the extension licenses failed to check out, the application cannot run.
Checking out Desktop Concurrent licenses may fail here as they may have been
checked out by another application since this application checked their availabil-
ity.

If the extension licenses are checked out, the application has been successfully
configured with licenses.

EXAMPLE 2

The application is an enterprise GeoDatabase editing application so requires a
minimum of an ArcGIS Engine with GeoDatabase Editing license. If an ArcGIS
Engine with GeoDatabase Editing license is not available, the application can run
with an ArcEditor or Arclnfo license. The application requires the Spatial Analyst
extension functionality for it to run successfully, so the extension needs to be
checked out for the duration of the application. The following steps are taken to
initialize the application with a license.

Can the application be initialized with the ArcGIS Engine with geoda-
tabase editing product license?

1. Check whether an ArcGIS Engine with GeoDatabase Editing product license
is available.

2. Check whether a Spatial Analyst extension license is available with the
ArcGIS Engine with GeoDatabase Editing product license.

If any of these licenses are not available then the application cannot be initialized
with an ArcGIS Engine with GeoDatabase Editing license. Can the application
be initialized with an ArcEditor product license instead?

If all of these licenses are available, initialize the application.

3. Check out the ArcGIS Engine with GeoDatabase Editing product license by
initializing the application.

If the license failed to check out, can the application be initialized with an
ArcEditor product license instead?

If the license checked out, check the extension license out.
4. Check out the Spatial Analyst extension.

If the extension licenses failed to check out, the application cannot run. Checking

Chapter 5 ¢ Licensing and deployment « 221

STANDALONE EXECUTABLE LICENSE INITIALIZATION

222 < ArcGIS Engine Developer Guide

out Desktop Concurrent licenses may fail here as they may have been checked out
by another application since this application checked their availability.

If the extension license checked out, the application has been successfully config-

ured with licenses.

Can the application be initialized with the ArcEditor product license?

1. Check whether an ArcEditor product license is available.

2. Check whether a Spatial Analyst extension license is available with the
ArcEditor product license.

If any of these licenses are not available then the application cannot be initialized
with an ArcEditor license. Can the application be initialized with an Arclnfo
product license instead?

If all of these licenses are available, initialize the application.
3. Check out the ArcEditor product license by initializing the application.

If the license failed to check out, can the application be initialized with an
Arclnfo product license instead?

If the license checked out, check the extension license out.
4. Check out the Spatial Analyst extension.

If the extension license failed to check out, the application cannot run. Checking
out Desktop Concurrent licenses may fail here as they may have been checked out
by another application since this application checked their availability.

If the extension license checked out, the application has been successfully config-

ured with licenses.

Can the application be initialized with the ArcInfo product license?

1. Check whether an Arclnfo product license is available.

2. Check whether a Spatial Analyst extension license is available with the
Arclnfo product license.

If any of these licenses are not available then the application cannot be initialized
with an Arclnfo license and the application cannot run.

If all of these licenses are available, initialize the application.

3. Check out the Arclnfo product license by initializing the application.
If the license failed to check out, the application cannot run.

If the license checked out, check the extension license out.

4. Check out the Spatial Analyst extension.

If the extension license failed to check out, the application cannot run. Checking
out Desktop Concurrent licenses may fail here as they may have been checked out
by another application since this application checked their availability.

If the extension license checked out, the application has been successfully config-
ured with licenses.

STANDALONE EXECUTABLE LICENSE INITIALIZATION

EXAMPLE 3

The application requires a minimum of an ArcGIS Engine license. If an ArcGIS
Engine license is not available, the application should be able to run with an
ArcView, ArcEditor or Arclnfo license. The application requires 3D Analyst
functionality, but not for the application to run successfully, so the extension will
be checked out as needed.

Can the application be initialized with the ArcGIS product license?
1. Check whether an ArcGIS Engine product license is available.

2. Check whether a 3D Analyst extension license is available with the ArcGIS
Engine product license.

If cither of these licenses are not available then the application cannot be initial-
ized with an ArcGIS Engine license. Can the application be initialized with an
ArcView product license instead?

If both these licenses are available, initialize the application.
3. Check out the ArcGIS Engine product license by initializing the application.

If the license failed to check out then the application cannot run. Can the appli-
cation be initialized with an ArcView product license instead?

If the license is checked out, the application has been successfully configured
with a license, but the functionality using the 3D Analyst extension should be
disabled.

Can the application be initialized with the ArcView product license?

1. Check whether an ArcView product license is available.

2. Check whether a 3D Analyst extension license is available with the ArcView
product license.

If cither of these licenses are not available then the application cannot be initial-
ized with an ArcView license. Can the application be initialized with an
ArcEditor product license instead?

If both these licenses are available, initialize the application.
3. Check out the ArcView product license by initializing the application.

If the license failed to check out then the application cannot run. Can the appli-
cation be initialized with an ArcEditor product license instead?

If the license is checked out, the application has been successfully configured
with a license, but the functionality using the 3D Analyst extension should be
disabled.

Can the application be initialized with the ArcEditor product license?

1. Check whether an ArcEditor product license is available.

2. Check whether a 3D Analyst extension license is available with the ArcEditor
product license.

If cither of these licenses are not available then the application cannot be initial-
ized with an Arclnfo license. Can the application be initialized with an Arclnfo

Chapter 5 ¢+ Licensing and deployment 223

STANDALONE EXECUTABLE LICENSE INITIALIZATION

224 « ArcGIS Engine Developer Guide

product license instead?
If both these licenses are available, initialize the application.
3. Check out the ArcEditor product license by initializing the application.

If the license failed to check out then the application cannot run. Can the appli-
cation be initialized with an Arclnfo product license instead?

If the license is checked out, the application has been successfully configured
with a license, but the functionality using the 3D Analyst extension should be
disabled.

Can the application be initialized with the ArcInfo product license?

1. Check whether an Arclnfo product license is available.

2. Check whether a 3D Analyst extension license is available with the Arclnfo
product license.

If cither of these licenses are not available then the application cannot be initial-
ized with an Arclnfo license.

If both these licenses are available, initialize the application.
3. Check out the Arclnfo product license by initializing the application.
If the license failed to check out then the application cannot run.

If the license is checked out, the application has been successfully configured
with a license, but the functionality using the 3D Analyst extension should be
disabled.

Using the 3D Analyst functionality
1. Check whether the 3D Analyst extension is already checked out

If the license is checked out the application can use the 3D Analyst functionality.
If the license is not checked out, check the license out.
2. Check out the 3Dl Analyst extension.

If the license failed to check out then the application cannot use the 3D Analyst
functionality. Checking out a Desktop Concurrent license may fail here as it may
have been checked out by another application since this application checked its
availability.

If the license is checked out the application can use the 3D Analyst.

DEeEPLOYING ARCGIS ENGINE RUNTIME

The ArcGIS Engine Runtime setup program is available for deployment on
Microsoft Windows operating systems.

The following includes a brief introduction to the technology used to create the
setup program and discusses various deployment methods for the ArcGIS Engine
Runtime setup on Windows.

WHAT IS THE ArcGIS ENGINE RUNTIME SETUP?

The ArcGIS Engine Runtime setup was created using Microsoft Windows In-
staller technology. This technology uses a package file (.msi) and a client-side
installer service (msiexec.exe). The Windows Installer is a service that runs on
your operating system. This service enables the operating system to manage the
installation and uses the information contained within the package file to install
the software.

The Msiexec.exe program is a component of Windows Installer. Msiexec.exe uses
a dynamic link library, Msi.dll, to read the package files (.msi), apply transforms
(.mst), and incorporate command-line options.

More information on Windows Installer can be found in the Windows Installer
Software Development Kit (SDK).

http://www.microsoft.com/msdownload/platformSDK/sdkupdate/

DEPLOYING ArcGIS ENGINE RUNTIME

An ArcGIS Engine Runtime developed application requires ArcGIS Engine
Runtime to be installed on the end-user’s machine. To ensure that ArcGIS Engine
Runtime is on the machine, you can:

Have the user run the ArcGIS Engine Runtime setup directly
1. The user can launch the setup from an ArcGIS Engine Runtime CD
2. Before proceeding with the setup, the user will need to check if ArcGIS

Engine Runtime has already been installed on their machine. To check if
ArcGIS Engine Runtime is on the machine:

i. Go to Control Panel > Add/Remove Programs.

il. In the programs list, check if ArcGIS Engine Runtime is listed. If it
is, ArcGIS Engine Runtime has been installed on this machine. Click Support
Information to verify the product version number is 9.0.

3. If ArcGIS Engine Runtime is installed on the machine, the user can proceed
with installing your developed application.

4. If the ArcGIS Engine Runtime setup is launched, and ArcGIS Engine
Runtime already exists on the machine the setup will execute as a maintenance
installation.

5. Before proceeding with the setup, the user must check that no ArcGIS
products of version less than 9.0 are installed on the machine. This includes:
ArcIMS, ArcGIS Desktop, ArcGIS Workstation and ArcReader. To check if
any of these products are on the machine:

i. Go to Control Panel > Add/Remove Programs.

Chapter 5 ¢ Licensing and deployment * 225

DEepPLoYING ARcGIS ENGINE RUNTIME

226 * ArcGIS Engine Developer Guide

il. In the programs list, check to see if any ArcGIS Products are
installed on the machine. If an ArcGIS product is listed, click Support
Information to determine the product version number. If the version is less
than 9.0, the product should be removed before installing ArcGIS Engine
Runtime 9.0.

. If ArcGIS Engine Runtime is not installed on the machine, the user must

launch the ArcGIS Engine Runtime Setup.exe before installing your devel-
oped application.

. If your application requires the Java or .NET installation feature, the user

must check that these features are installed. Java and .NET are optional
installation features and are not installed with a typical ArcGIS Engine
Runtime installation. To check if these features are installed:

i. Go to Control Panel > Add/Remove Programs

il. In the programs list, check if ArcGIS Engine Runtime is listed. If
it is, ArcGIS Engine Runtime has been installed on this machine.

iii. Click Change on the ArcGIS Engine Runtime feature, then Modify.
The Select Features dialog box shows the current state of the ArcGIS En-
gine Runtime installation. A hard drive icon illustrates the features installed
on the machine. A red cross illustrates the features not installed on the
machine, but available for installation.

iv. To install a feature, the user must select the feature, right click and
select Will be installed on local hard drive.

Include the ArcGIS Engine Runtime setup in your application’s setup
program

1.

As a developer, you can include the ArcGIS Engine Runtime setup in your
application’s setup using a number of methods. The methods for deploying
ArcGIS Engine Runtime are discussed later in this chapter.

. Before your setup launches the ArcGIS Engine Runtime setup, you need to

determine if ArcGIS Engine Runtime already exists on the user’s machine by
performing a system check. Performing a system check is discussed later in this
chapter.

. If ArcGIS Engine Runtime is not installed on the machine, you can install it

by using one of the deployment options discussed below.

. If ArcGIS Engine Runtime is already installed on the machine, you do not

need to install ArcGIS Engine Runtime and you can instead proceed with
installing your application only.

. If your application requires the Java or NET installation feature, you must

check that these features are installed (discussed later in this chapter). Java
and .NET are optional installation features and are not installed with a
typical ArcGIS Engine Runtime installation. If these features are not in-
stalled and your application requires one or both of them, you will need to
install the feature(s) required.

DEepPLoYING ARcGIS ENGINE RUNTIME

ARrcGIS ENGINE RUNTIME SETUP FEATURES

An .msi setup consists of features. Features are a group of components a user can
install. The ArcGIS Engine Runtime setup consists of the following installation

features:
Feature Descriptive Feature Name Description
ArcEngine ArcGIS Engine ArcGIS Engine
JavaRuntime ArcGIS Engine Java Runtime Java Archives
DotNetRuntime | ArcGIS Engine .Net Runtime .Net Assemblies

SYSTEM REQUIREMENTS FOR ArcGIS ENGINE RUNTIME

ArcGIS Engine Runtime is supported on Windows NT SP 6a, Windows 2000,
Windows XP Professional and Windows 2003 Server.

For additional or updated information regarding ArcGIS Engine Runtime system
requirements, visit: http://support.esti.com.

ARrRcGIS ENGINE RUNTIME INSTALLATION LOCATION

The ArcGIS 9.0 products, ArcGIS Engine Runtime, ArcGIS Engine Developer
Kit, ArcGIS Desktop, ArcReader standalone and ArcGIS Server will install to the
same installation directory. The first ArcGIS 9.0 product installed will determine
the installation location for all subsequent ArcGIS 9.0 products.

NOTE: If you have ArcIMS® ArcMap Server 9.0 already installed, ArcGIS 9.0
products will default to the ArcIMS installation location.

For example, if ArcGIS Desktop is installed to C:\Desktop, the installation
location for ArcGIS 9.0 will be C:\Desktop\ArcGIS. If you install ArcGIS
Engine Runtime next, you will not be provided with the opportunity to browse
to an installation location. The ArcGIS Desktop installation has predetermined
the installation location for all ArcGIS 9.0 products. Therefore, in this example,
ArcGIS Engine Runtime will also be installed to C:\Desktop\ArcGIS.

If you run out of disk space while installing an ArcGIS 9.0 product, you will
need to uninstall all ArcGIS 9.0 products (listed above) and reinstall them to a
location where more disk space is available. ArcGIS 9.0 products (excluding
ArcSDE, ArcIMS and ArcINFO Workstation) cannot be installed to different
locations.

DEPLOYMENT METHODS

There are two recommended methods for deploying ArcGIS Engine Runtime.

1. The user installs ArcGIS Engine Runtime setup directly from the CD
The ArcGIS Engine Runtime setup can be redistributed on CD. You may copy
the contents of ArcGIS Engine Runtime CD image and create additional

CD’s, or you may contact ESRI to obtain additional ArcGIS Engine Runtime
CDrs.

Additional requirements for running the setup directly from the CD:

* The user will need to check if ArcGIS Engine Runtime has already been
installed on their machine. If ArcGIS Engine Runtime is already installed on

Chapter 5 ¢ Licensing and deployment « 227

DEepPLoYING ARcGIS ENGINE RUNTIME

228 « ArcGIS Engine Developer Guide

the machine, the user can proceed with installing your developed application.
If the ArcGIS Engine Runtime setup is launched, and ArcGIS Engine
Runtime already exists on the machine the setup will execute as a maintenance
installation.

* ArcGIS Engine Runtime 9.0 cannot be installed on a machine with any
ArcGIS Products less than version 9.0. ArcGIS Products less than version 9.0
must be uninstalled before installing ArcGIS Engine Runtime 9.0.

e If any of the ArcGIS Engine Runtime features required for your application
are not installed, the user should install them. If the required ArcGIS Engine
Runtime features are on the machine they do not have to run the ArcGIS
Engine Runtime setup.

For additional ArcGIS Engine Runtime CD’s contact ESRI Customer Service at
www.esti.com, or in the US. call 888-377-4575, or contact your local ESRI
Regional Office.

2. Incorporate the ArcGIS Engine Runtime setup to run within your
application’s setup program
ArcGIS Engine can be installed without a user interface by running the setup
using Windows Installer command line parameters.

The ArcGIS Engine Runtime setup can be incorporated using the following
options:

a. At the end of an msi-based setup
b. Within a batch file
c. Within a scripted setup

Examples of these options are provided in this chapter.

Additional requirements for incorporating ArcGIS Engine Runtime
setup:

If any of the ArcGIS Engine Runtime features required for your application are
not installed, your setup should add them. If the required ArcGIS Engine
Runtime features are on the machine, you do not have to run the ArcGIS Engine
Runtime setup.

When ArcGIS Engine Runtime is installed, a registry entry is created for it at
the following location:

HKEY_LOCAL_MACHINE\Software\ESRI\ArcGIS Engine Runtime

The RealVersion value of this registry key will be 9.0

You can use this key to check whether ArcGIS Engine Runtime is installed on
the user’s machine.

1. Perform a system check for ArcGIS Engine Runtime optional installation
features
If your application requires ArcGIS Engine Runtime .NET or Java features
to be installed, you must check the user’s system for the presence of the
appropriate NET or Java installation feature as well as ArcGIS Engine
Runtime (see Perform a system check for ArcGIS Engine Runtime).

DEepPLoYING ARcGIS ENGINE RUNTIME

The following registry entry will determine the installation state of ArcGIS
Engine Runtime features:
[HKEY_CLASSES_ROOT\Installer\Features\7A1A3A9178A2BC74EB114EA6B5DB1C1B]
“Registry”’=""
“ArcEngine”=""
“DotNetRuntime”="ArcEngine” or “?ArcEngine”
“JavaRuntime”="ArcEngine” or “?ArcEngine”
To determine if the NET feature is installed:
The NET ArcGIS Engine installation feature requires NET Framework 1.1
to be installed on the machine. The following registry key can be used to
determine whether the .NET ArcGIS Engine feature is installed:
HKEY_CLASSES_ROOT\Installer\Features\7A1A3A9178A2BC74EB114EA6B5DB1C1B

The DotNetRuntime string value represents the NET ArcGIS Engine installa-
tion feature.

If a DotNetRuntime string value under this registry key is not displayed,
NET Framework 1.1 was not installed on the machine at the time the
ArcGIS Engine Runtime setup was run.

If the DotNetRuntime feature IS NOT installed then
”DotNetRuntime”="7ArcEngine”

If DotNetRuntime IS installed then
”DotNetRuntime”="ArcEngine”

To determine if the Java feature is installed:

The following registry key can be used to determine whether the .Java ArcGIS

Engine feature is installed:
HKEY_CLASSES_ROOT\Installer\Features\7A1A3A9178A2BC74EB114EA6B5DB1C1B

The JavaRuntime string value represents the .Java ArcGIS Engine installation

feature.
If JavaRuntime IS NOT installed then

”JavaRuntime”="?ArcEngine”
If JavaRuntime IS installed then

”JavaRuntime”="ArcEngine”

If you detect that a required installation feature is not installed, you will need
to install only that feature using the ADDLOCAL Windows Installer com-
mand within your script. For example, ADDLOCAL=DotNetRuntime or
ADDLOCAL=JavaRuntime.

If you choose to install only the DotNetRuntime or JavaRuntime feature, and
the ArcEngine feature (main ArcGIS Engine installation feature) has not been
installed, the setup will include the ArcEngine feature during installation.

If NET Framework 1.1 is not detected on the machine, the DotNetRuntime
feature will be hidden, and will not be installed.

The following are requirements that need to be taken into consideration when
incorporating the ArcGIS Engine Runtime setup within your application’s setup
program.

Chapter 5 ¢ Licensing and deployment * 229

DEepPLoYING ARcGIS ENGINE RUNTIME

230 « ArcGIS Engine Developer Guide

2. The ArcGIS Engine Runtime setup uses Windows Installer 2.0.

* The ArcGIS Engine Runtime setup uses Windows Installer 2.0. Windows
Installer version 2.0 must be installed and running on the target machine prior
to running the Engine Runtime setup using command line parameters. To
check the version of Windows Installer on the machine:

i. Locate msiexec.exe in the system32 folder.
il. Right click on msiexec.exe and select Properties.

iii.On the Properties dialog box, select the Version tab to check the file
version.

e If you are including the ArcGIS Engine Runtime setup in a non-msi-based
setup, the end-user will require Microsoft Installer version 2.0 to be installed
on their machine. The ArcGIS Engine Runtime setup uses the Windows
Installer technology.

e If you will be launching the Engine Runtime setup at the end of an msi-based
setup, you must create your msi setup using Windows Installer version 2.0 or
higher, to be compatible with the ArcGIS Engine Runtime setup.

* The ArcGIS Engine Runtime msi cannot be nested within an msi. Each prod-
uct, including ArcGIS Engine Runtime must be listed individually in Add/
Remove Programs.

* The Windows installer version 2.0 setup is available from <ArcGIS Engine
Runtime CD>\Support\MSI\instmsiw.exe

3. Perform a system check for ArcGIS Engine Runtime

If you are including the ArcGIS Engine Runtime setup, in your application’s
setup program, you must perform a system check on the users machine to
detect whether ArcGIS Engine Runtime has already been installed. If the
ArcGIS Engine Runtime setup is launched, and ArcGIS Engine Runtime
already exists on the machine the setup will execute as a maintenance installa-
tion.

Sample Scripts:

The following is an example of the command line parameters implemented
within a batch file that could be used to install only the ArcGIS Engine Runtime
NET feature:

REM ###HHHHHHHHH A

REM Set variables

SET MSI_PATH=\\CDROM\Setup.msi

REM ###HHHHHHHHH

REM Launch MSI Silently - NO UI
msiexec.exe /i “%MSI_PATH%” /qn ADDLOCAL=DotNetRuntime

Note: In the above example, if NET Framework 1.1 is not detected on the
machine, the DotNetRuntime feature will not be installed.

The following is an example of the command line parameters implemented

DEepPLoYING ARcGIS ENGINE RUNTIME

within a batch file that could be used to install only the ArcGIS Engine Runtime
Java feature:

REM ###HHHHHHHHHHHHHHH A

REM Set variables

SET MSI_PATH=\\CDROM\Setup.msi

REM ###HHHHHHHHHHHHHHH A

REM Launch MSI Silently - NO UI
msiexec.exe /i “%MSI_PATH%” /gqn ADDLOCAL=JavaRuntime

DEPLOYMENT OPTION EXAMPLES

The following are examples of deployment options for the ArcGIS Engine
Runtime setup.

At the end of an MSI-based setup

The following example uses Wise for Windows Installer MSI Authoring program
to launch the ArcGIS Engine Runtime setup at the end of another Msi-based
setup. The ArcGIS Engine Runtime setup will be launched after clicking the
Finish button. The example below suggests custom actions behind the Finish
button.

This example assumes that the ArcGIS Engine Runtime setup resides in the
same location as your application’s setup program. In this case, Setup.exe resides
in a folder named ArcEngine. To launch ArcGIS Engine Runtime Setup.exe
located in an ArcEngine folder on your application’s media:

1. Create Properties MSI_PATH and ArcEngineExists and initialize them to 1 in
the Property table.

2. Perform a system check for ArcGIS Engine Runtime at the beginning of your
setup program. The system check should search for the following registry key
and set the property ArcEngineExists to True if the registry value returned is
9.0. HKEY_LOCAL_MACHINE\Software\ESRI\ArcGIS Engine Runtime
and the RealVersion value will be 9.0.

3. Create a Custom action called Launch_Engine_MSI. Use the “Execute Pro-
gram from Path” type of custom action. Set the Property in this custom
action to MSI_PATH. The path to execute the program from is the path

Chapter 5 ¢ Licensing and deployment « 231

DEepPLoYING ARcGIS ENGINE RUNTIME

specified in the Property field, in this case MSI_PATH. No Command Line is
needed as setup.exe is being launched.
5I

Details ILDcationI Praperliesl

Use thig action to call an .EXE whoze path iz stored in a property. *f'ou must provide a mechanism
for setting a property with the .EXE path. This custom action is useful if the path to the [EXE is
dependent on uger input or system configuration,

Custam Action Mame: ILaunch_Eng\ne_MSl

Property: |MSI_PATH 2|

Cormmand Line |

Caneel

4. In the Exit Dialog of your application’s setup program, add two actions
behind the Finish button control.

Properties for PushButton 0K x|

Eontloll Graphic Events | Help | Eondmonsl

i~ Publish Event
Event [Argument [Condiion [[a7
EndDialog Return 1
[MS1_PATH] [SourceDijarcEn NOTInstalled AN Details
Doduction Launch_Engine_. NOTInstalled AN
Delete
Mave Lip
HMove Down
[~ Subseribe to Event

Event [Attibute] Add

Ok Cancel

The first action sets the MSI_PATH property to
[SourceDir]ArcEngine\Setup.exe. This will change depending on whete the
ArcGIS Engine Runtime setup is located on the media. In this example,
Setup.exe is located on the CD in a folder named ArcEngine.

Publish Event Details x|
=l

Event

Argument: |[S ourcelirjaicEnging\S etup. exe

Condition: INDT Installed AMD ArcEngineE xists <> "True" Build

232 < ArcGIS Engine Developer Guide

DEepPLoYING ARcGIS ENGINE RUNTIME

The second action calls the Launch_Engine_MSI that you previously created.

Publish Event Details

Evert:

Argument ILaun:h_E hagine_M51

Conditior: INDT Installed &MD ArcEngineExists <> "Trug" Build

Cancel

i L)}

Both these custom actions should execute only if the property
ArcEngineExists does not equal True.

Within a scripted setup

A scripted setup can be used to install ArcGIS Engine Runtime using command
line parameters (the example below uses the Wise Install Master Setup Authoring
Software):

Note: In the example below MSI_PATH will change depending on where the
ArcGIS Engine Runtime setup is located on the media. In this example,
Setup.msi is located on the CD in a folder named ArcEngine

Rem Set variable

Set Variable MSI_PATH to \\CDROM\ArcEngine\Setup.msi

Rem Launch ArcGIS Runtime setup program silently — No UI

Execute %SYS32%\msiexec.exe /i ¥MSI_PATH% /qn (Wait)

Rem Launch ArcGIS Runtime setup program silently — No UL except for a modal
dialog box displayed at the end

Execute %SYS32%\msiexec.exe /i ¥MSI_PATH% /qn+ (Wait)

Within a batch file

The following are examples of command line parameters implemented within a
batch file that could be used to install ArcGIS Engine Runtime:

Note: In the example below MSI_PATH will change depending on where the
ArcGIS Engine Runtime setup is located on the media. In this example,
Setup.msi is located on the CD in a folder named ArcEngine.

REM ###HHHHHHHHHHHHHHH A

REM Set variables

SET MSI_PATH=\\CDROM\ArcEngine\Setup.msi

REM ###HHHHHHHHH A

REM Launch MSI Silently - NO UI
msiexec.exe /i “9MSI_PATH%” /qn

REM Launch MSI Silently - Reduced UI
msiexec.exe /i “WMSI_PATHX” /qb

REM Launch MSI SiTently - No UI except for a modal dialog box displayed at
the end.

msiexec.exe /i “9MSI_PATHX” /qn+

Chapter 5 ¢+ Licensing and deployment * 233

DEepPLoYING ARcGIS ENGINE RUNTIME

Launch the setup from the ArcGIS Engine Runtime CD

The ArcGIS Engine Runtime setup can be launched manually from the CD using
setup.exe.

1. Copy the contents of the ArcGIS Engine Runtime CD image and create
additional CD’s, or include the ArcGIS Engine Runtime CD image on the
same CD as your application’s setup program

2. Inform your user of the following:

a. Check to see if ArcGIS Engine Runtime 9.0 is already installed on the
machine

b. Check that no ArcGIS Products of version less than 9.0 are installed on the
machine. If they are, they must be uninstalled before installing ArcGIS Engine
Runtime 9.0.

c. If ArcGIS Engine Runtime 9.0 is already installed, proceed with the devel-
oped application’s setup program.

d. If ArcGIS Engine Runtime 9.0 is not installed, launch Setup.exe from the
ArcGIS Engine Runtime CD image location. Once installation of ArcGIS
Engine Runtime is complete, launch the developed application’s setup pro-
gram.

HOW TO USE INSTALLATION COMMAND LINE PARAMETERS

The ArcGIS Engine Runtime setup can be installed using the .msi file and client-
side installer service (msiexec.exe) command line parameters. The table below
illustrates some available msiexec.exe command line parameters:

(SOURCE: http://msdn.microsoft.com/library/default.asprurl=/library/en-us/
msi/setup/command_line_options.asp)

Option Parameters Description
l Package | ProductCode | Installs or configures a product.
la Package Administrative installation option. Installs a product on the network.

Ix Package | ProductCode | Uninstalls a product.

Sets user interface level.

q No Ul

qn No Ul

qb Basic Ul. Use gb! to hide the Cancel button.

qr Reduces Ul with no modal dialog box displayed at the end of
Iq nibr|f the installation.

qf Full Ul and any authored FatalError, UserExit, or Exit modal

dialog boxes at the end.

qn+ No Ul except for a modal dialog box displayed at the end.

gb+ Basic Ul with a modal dialog box displayed at the end. The
modal box is not displayed in the user cancels the installation.
Use gb+! or gb!+ to hide the Cancel button.

qb- Basic Ul with no modal dialog boxes. Please note that /gb+- is
not a supported Ul level. Use gb-! or gb!- to hide the
Cancel button.

Note that the ! option is available with Windows Installer version 2.0

and works only with basic Ul. It is not valid with full Ul.

[? or/h Displays copyright information for Windows Installer.

For more Windows Installer command parameters see http://
msdn.microsoft.com/library/default.asprurl=/library/en-us/msi/setup/
command_line_options.asp

234 + ArcGIS Engine Developer Guide

DEepPLoYING ARcGIS ENGINE RUNTIME

Examples:

To perform a typical installation without a user interface and to a non-default
installation location, the following command can be used:

Msiexec.exe /i <setup location>\setup.msi /gn InstallDir=C:\Mysetup

To perform a typical installation with a basic user interface (progress bar) and to a
non-default installation location, the following commandn can be used:

Msiexec.exe /i <setup location>/setup.msi /gb InstallDir=C:\Mysetup

To perform a complete installation without a user interface and to the default
installation location, the following command can be used:

Msiexec.exe /i <setup location>\setup.msi /qn ADDLOCAL=A1T

To perform a custom installation without a user interface and to the default
installation location, the following command can be used:

Msiexec.exe /i <setup location>\setup.msi /qn
ADDLOCAL=<featurel>,<feature2>,....

The features available to install are specified with the ADDLOCAL parameter.
ArcGIS Engine has the following installation features:

Feature Descriptive Feature Name Description
ArcEngine ArcGIS Engine ArcGIS Engine
JavaRuntime ArcGIS Engine Java Runtime Java Assemblies
DotNetRuntime | ArcGIS Engine .Net Runtime .Net Assemblies

To perform a custom installation without a user interface consisting of the
ArcGIS Engine and .NET installation features, the following command can be
used:

Msiexec.exe /i <setup location>\setup.msi /qn
ADDLOCAL=ArcEngine,DotNetRuntime

DEPLOYMENT GUIDELINES
* You must not uninstall ArcGIS Engine Runtime during the uninstallation of
the your developed application.

* You must recommend that the user manually uninstall ArcGIS Engine
Runtime, only if the user knows there are no third-party applications using it.
NOTE: ArcGIS Engine Runtime should be uninstalled using the Control
Panel, not by deleting files from disk.

e The ArcGIS Engine Runtime cannot be included in an authored MSI file
(nested MSI setup).

* Your application setup program should not launch the ArcGIS Engine
Runtime setup if it is already installed on the machine.

* You cannot redistribute individual Engine Runtime files; the deployment
methods discussed in this chapter are the only means of deploying ArcGIS
Engine Runtime files.

Chapter 5 ¢+ Licensing and deployment * 235

AUTHORIZING YOUR ARcGIS ENGINE APPLICATION

License initialization must be built into your
application. For more information, see the earlier
section 'Standalone executable license initializa-
tion".

Software Authorization Wizard

Registration Options

“You must register the software prior to uze. Select from the options belaw.

The final step in developing and deploying ArcGIS Engine applications is to
ensure that all client machines have the correct license configuration to support
your ArcGIS Engine application. This section details the various ways end users
and developers can “authorize” the ArcGIS Engine Runtime components on
client systems.

Software Authorization is the process of unlocking the underlying ArcGIS En-
gine Runtime software components. As a developer, you did this yourself when
you installed and set up the ArcGIS Engine Developer Kit. Once you had in-
stalled the software, a Software Authorization wizard opened. It asked that you
navigate to the authorization file (.ecp) that had
been issued to you when you registered the
product. Only after the authorization file was
read and accepted, were you able to design and
run applications that use ArcGIS Engine compo-

nents. All deployed applications must be autho-

Registration O ptions

| have installed my software and need ta register it.

rized in a similar manner, although there a num-
ber of different ways to achieve "authorization."

As discussed earlier in this chapter, every applica-

% i have received an autharization file from ESRI and am now ready to finish theg

ireqgistration process.

tion you build and deploy must first initialize

itself with a suitable license. The store of 'suit-

able' licenses that your application initializes
itself against are contained within the software
authorization or keycode file, whichever is
applicable, on the client machine or network. If
your application attempts to initialize against a
license that is not contained in the authorization

< Back I Mest » I

Cancel | file or, if all instances of the needed license have

been checked out, then your application will not

The Software Authorization Wizard opens after
installing ArcGIS Engine Developer Kit. However,
installations of ArcGIS Engine Runtime do not
trigger the Software Authorization Wizard to
start automatically.

236 * ArcGIS Engine Developer Guide

be able to run.

You, as the developer, must think in advance about how your clients will acquire
and access an authorization or keycode file suitable to run your application. Your
clients may fall into three categories:

* Licensed ArcGIS Desktop users who have access to the license features that
your application uses.

* 'Those that will acquire the ArcGIS Engine Runtime software and/or its
authorizations directly from ESRI.

* Those who will receive the ArcGIS Engine Runtime software and authoriza-
tions packaged within your application and have no direct contact with ESRI.

The following sections discuss the software authorization process for each of
these three user types.

AUTHORIZING YOUR ARcGIS ENGINE APPLICATION

If your client does not register and receive their
authorization file in advance, the Software
Authorization wizard directs them to do so.

ArcGIS DESKTOP USERS

If your client is a licensed ArcGIS Desktop user, you and your client would go
through the following process to install and run an application that you built:

1.

You review and confirm licensing requirements of your application—Arc-
View, ArcEditor, or Arclnfo (single use or concurrent) along with any neces-
sary extensions.

. Your client confirms that they have the applicable ArcGIS Desktop authoriza-

tion or keycode files available for use with your application, as determined in
the previous step.

. You or your client installs your custom ArcGIS Engine application.

. Upon application start up, it initializes and checks out an available license

from the client's previously existing authorization or keycode file.

END USER LICENSES ArcGIS RUNTIME WITH ESRI
The second type of end user purchases and/or authorizes the ArcGIS Engine

Runtime software themselves. You and your client would go through the follow-
ing process to install and run an application that you built:

1.
2.

You review and confirm licensing required by your application.

Your client purchases ArcGIS Engine Runtime and any needed options (3D,
GeoDatabase, Spatial, StreetMap, etcetera), as determined in the previous
step.

. Your client registers the ArcGIS Engine product, and options if necessary,

with ESRI (http://www.service.esti.com).

4. Your client receives an authotization file

j| (cop) from ESRI and saves it o their com-

Reagistration Method

Select the method you want to uge to register the software,

puter.

5. Your client installs the ArcGIS Engine

Runtime software.

i+ Register now using the Intermet.

icohnection. |

hiz automatic method is the easiest way to register. |t requires an Intemeté

6. Once the installation is complete, your client
navigates to the \ArcGIS\bin folder and

runs the SoftwareAuthorization.exe it

" Register at ESRI's website and receive your authorization file by email. contains.

" Register by email and receive your authorization file by email

" Fax or mail vour registration to ESRI.

7. When asked by the Software Authorization
wizard, your client navigates to the location
of their authorization file.

8. You or your client installs your custom
ArcGIS Engine application.

9. Upon application start up, it initializes and

b I Hext I D checks out an available license from the

client's authorization file.

Chapter 5 ¢ Licensing and deployment * 237

AUTHORIZING YOUR ARcGIS ENGINE APPLICATION

Although the redistribution of authoriza-
tion files within your application is
documented here, there are restrictions
upon its use:

* If your application will be used solely within
your organization, you can redistribute in this
manner. However, you cannot distribute it in
excess of the number of licenses you have
purchased.

* If the application will be used or sold to a
third party, use of a ‘redistributable' authoriza-
tion file violates the standard ESRI Software
Master License Agreement and an individual
contract must be negotiated. Contact the ESRI
Business Partner Group or your International
Distributor for information on such licensing.

For additional information on your right to use
and deploy ArcGIS Engine applications, see
footnotes |2 and 23 of the ESRI Software
Master License Agreement.

To run the SoftwareAuthorization tool from
within your application's installation program,
use the following arguments:

JLIF <filename> /S

The /S triggers the tool to run silently with no

user interface displaying.

See the developer help for more information on
the |Authorizelicense interface.

238 « ArcGIS Engine Developer Guide

The final type of end user has no direct contact with ESRI. Instead your applica-
tion calls the SoftwareAuthorization.exe or the LAuthorizeLicense object, con-
tained in your installation program or application, to unlock the functionality of
ArcGIS Engine. This would require that you 'hardcode’ the authorization key
code into your program. The advantage of this method is that the software will
be authorized silently and does not require prompting your user for any registra-
tion information. In this case, you and your client would go through the follow-
ing process to install and run an application that you built:

1. You review and confirm licensing required by your application.

2. You purchase the necessary redistributable ArcGIS Engine Runtime product
and any needed options (3D, GeoDatabase, Spatial, etcetera), as determined in
the previous step.

3. You register the ArcGIS Engine product, and options if necessary, with ESRI
(http:/ /www.service.esti.com).

4. You receive a redistributable authoriztion file (.ecp) and add its features into
the code for your application.

5. Your client installs your custom-built ArcGIS Engine application. This
a. installs ArcGIS Engine Runtime software, and

b. automatically runs the SoftwareAuthortization.exe in \ArcGIS\bin\ or uses
the LAuthorizeLicense object.

6. Upon application start up, it initializes and checks out an available license
from the client's authorization file.

Developer
scenarios

Throughout this book, you have been introduced to

several programming concepts and patterns and have

been introduced to some new APIs.This chapter is intended to

apply these concepts by walking you through some application development
scenarios. Each of the scenarios builds and deploys an application using the tools
andAPIs available in ArcGIS Engine. Each scenario is available complete as an

ArcGIS developer sample included in the ArcGIS Engine Developer Kit.

The developer scenarios included are:

* building applications with ActiveX ¢ building applications with Visual JavaBeans ¢
building applications withWindows controlse building a command line Java

application ¢ building a command line C++ application.

BUILDING APPLICATIONS WITHACTIVEX

Rather than walk through this scenario, you can
get the completed application from the samples
installation location. The sample is installed as
part of the ArcGIS developer samples.

The ArcGIS developer samples are not included
in the 'typical installation of the ArcGIS Engine
Developer Kit. If you do not have them installed,
rerun the Developer Kit install wizard, choose
Custom or Modify, and select the samples
feature under Software Developer Kit.

ActiveX is another term for a Microsoft Compo-
nent Object Model (COM) object.All of ArcOb-
jects is based on COM, and the ArcGIS Controls
are COM objects.

240 * ArcGIS Engine Developer Guide

This walkthrough is for developers who want to build and deploy an application
using ActiveX. It describes the process of building and deploying an application
using the ArcGIS Controls.

You can find this sample in

<install_Tocation>\DeveloperKit\Samples\Developer_Guide_Scenarios\
ArcGIS_Engine\Building_an_ArcGIS_Control_Application\Map_Viewer

PROJECT DESCRIPTION

The goal of this scenario is to demonstrate and familiarize you with the steps
required to develop and deploy a GIS application using the standard ArcGIS
Controls within a COM API. This scenario uses the MapControl, Pagel_ayontControl,
TOCControl, and ToolbarControl as ActiveX Controls within the Microsoft Visual
Basic 6.0 development environment. C++, Java, and NET programmers should
refer to the following scenarios available later in this chapter: Building a com-
mand line C++ application, Building applications with visual JavaBeans, Building
a command line Java application, and Building applications with Windows Con-
trols.

This scenario demonstrates the steps required to create a GIS application for
viewing map documents pre-authored using ArcMap, an ArcGIS Desktop applica-
tion. The scenario covers the following techniques:

* Loading and embedding the ArcGIS Controls in Microsoft Visual Basic 6.0.

* Loading pre-authored map documents into the MapControl and
Pagel_ayoutControl.

e Setting ToolbarControl and TOCContro/ buddy controls.

* Handling form resize.

* Adding Control commands and tools to the Too/barControl.
* Creating popup menus.

* Managing label editing in the TOCControl.

* Drawing shapes on the MapControl.

e Creating a custom tool to work with the MapControl, Pagel_ayoutControl, and
ToolbarControl.

* Customizing the Too/barControl.

* Deploying the application onto a Windows operating system.

CONCEPTS

This scenario is implemented using the Microsoft Visual Basic 6.0 development
environment and uses the ArcGIS Controls as ActiveX components. ActiveX
refers to a set of technologies that enables software components written in
different languages to work together in a networked environment. Each ActiveX
ArcGIS control has events, properties, and methods that can be accessed once the
control is embedded within an ActiveX container, like a Visual Basic form. The
objects and functionality within each control can be combined with other ESRI
ArcObjects and custom controls to create customized end user applications.

BUILDING APPLICATIONS WITHACTIVEX

The scenario could have been written in any other COM development environ-
ment that fully supports ActiveX, including Microsoft Visual C++, Borland
Delphi, Sybase PowerBuilder, and Microsoft Visual Basic for Applications (VBA).
Visual Basic, while not providing all the functionality of a development environ-
ment such as Visual C++, was chosen because it appeals to a wider audience.
Whichever development environment you use, your future success with the
ArcGIS Controls depends on your skill in both the programming environment and
ArcObjects.

The MapControl, Pagel_ayontControl, TOCControl, and ToolbarControl are used in this
scenario to provide the user interface of the application. The ArcGIS Controls
are used in conjunction with other ArcObjects and Control commands by the
developer to create a GIS viewing application.

DESIGN

The scenario has been designed firstly to highlight how the ArcGIS Controls
interact with each other and secondly to expose a part of each ArcGIS Controls
object model to the developer.

Each ActiveX ArcGIS control has a set of property pages that can be accessed
once the control is embedded within an ActiveX container. These property pages
provide shortcuts to a selection of a control’s properties and methods and allow a
developer to build an application without writing any code. This scenario does
not use the property pages, but rather builds up the application programmatically.
For further information about the property pages, refer to ArGILS Developer Help.

REQUIREMENTS

To successfully follow this scenario you need the following (the requirements for
deployment are covered later in the Deployment section):

e An installation of the ArcGIS Engine Developer Kit with an authorization
file enabling it for development use.

* An installation of the Microsoft Visual Basic 6.0 development environment
and an appropriate license.

e Familiarity with Microsoft Windows operating systems and a working knowl-
edge of Microsoft Visual Basic 6.0. While the scenatio provides some informa-
tion about how to use the ArcGIS Controls in Microsoft Visual Basic 6.0, it is
not a substitute for training in the development environment.

* While no experience with other ESRI software is required, previous experi-
ence with ArcObjects and a basic understanding of ArcGIS applications, such
as ArcMap and ArcCatalog, is advantageous.

The ArcGIS developer samples are not included
in the "typical' installation of the ArcGIS Engine
Developer Kit. If you do not have them installed, located at
rerun the Developer Kit install wizard, choose
Custom or Modify, and select the samples
feature under Software Developer Kit.

* Access to the sample data and code that comes with this scenario. This is

<install_Tocation>\DeveloperKit\Samples\Developer_Guide_Scenarios\
ArcGIS_Engine\Building_an_ArcGIS_Control_Application\Map_Viewer

Chapter 6 * Developer scenarios * 241

BUILDING APPLICATIONS WITHACTIVEX

The controls and libraries used in this scenatio are as follows:

* MapControl * TOCControl

e PagelayoutControl * ToolbarControl

e Carto Object Library e System Object Library

* Display Object Library e SystemUI Object Library

* Geometry Object Library

In Visual Basic, these control and library names are prefixed with 'esri'.

IMPLEMENTATION

The implementation below provides you with all the code you will need to
successfully complete the scenario. It does not provide step-by-step instructions
to develop applications in Visual Basic 6.0, as it assumes that you have a working
knowledge of the development environment already.

Loading the ArcGIS Controls

Before you start to program your application, the ArcGIS Controls and the other

ArcGIS Engine library references that the application will use should be loaded

into the development environment.

1. Start Visual Basic and create a new ‘Standard EXE’ project from the New
project dialog box.

2. Click the Project menu and choose Components.

3. In the Components dialog box, check ‘ESRI MapControl’, ‘ESRI
PagelayoutControl’, ‘ESRI TOCControl’, and ‘ESRI ToolbarControl’. Click OK.

The ‘ESRI Automatic’ References Visual Basic x]
Add-In can be used to quickly select and refer- control
ence the ArcGlIS Controls and otherArcGIS enlrok | Designers | insetable Objots |
Engine libraries that you frequently use inVisual ESRI GlabeControl
Basic 6.0.To load the Add-In select ‘Add-In | ESRI MapControl |
5 « » q | ESRI PagelayoutControl
Manager... from the Add—lnf menu, select ‘ESRI EoRI SeeneControl
Automatic References’ and check the load W/ ESRI TOCCankrl
behaviour check boxes.To then display the Add-In Cles trol
select ‘ESRI Automatic References’ from the ‘Add- Fllpl Contral Library
Ins’ menu. FTI Device Digita Infrared ActiveX Control modu

FTI Device Digita Serial Activey Contral madule
FTI Device Digita USE Activel Control module

E ESRIMapContro]l Graphics Server Extended Graph
GridDTC g
Help Center UI 1.0 Type Library - Srowse. .. |
| »

1| I™ selected Items Only

ESRIPagelayoutControl ESRI ToolsarContral
= ’V Location: D 4. arcGISibint ToolbarControl ocx ‘
ESRITOCControl

jond ESRTToolbarControl
L

OK I Cancel | Apply I

The controls will now appear in the Visual Basic toolbox.

242 < ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITHACTIVEX

4. Click on the Project menu again and choose References.

5. In the References dialog box, check ‘ESRI Carto Object Library’, ‘ESRI
Display Object Library’, ‘ESRI Geometry Object Library’, ‘ESRI System
Object Library’, and ‘ESRI SystemUI Object Library’. Click OK.

References - EngineControls.wbp

Available References: o

¥ Visual Basic For Applications il Cancel
v/ YWisual Basic runtime ohbjects and procedures

' isual Basic objecks and procedures
v OLE fwtamation Browse. .
v/ ESRI SystemU] Object Library

+ ESRI Syskem Cbject Library ﬂ
v ESRI Carka Object Library

v ESRI Geometry Ohject Librar
Wi D L

Prioricy Help

R,

ect Library
Helper Component 1.0 Type Library + |
145 RADIUS Protocol 1.0 Type Library

Acraobat Distiller

AcrolEHelper 1.0 Type Library
fﬁctive DS Tvoe Library _lLI
4 »

~ESRI Display Object Library
Lacation: D:\Program Files\arcSIS\ComlestiDisplay. alb

Language: Standard

Embedding the ArcGIS Controls in a container

Before you can access each control’s properties, methods, and events, each control
needs embedding within an ActiveX container. Once the controls are embedded
within the form, they will shape the application’s user interface.

1. Open the Visual Basic Form.

2. Double-click the MapControl icon in the Visual Basic toolbox to add a
MapControl onto a form.

3. Repeat to add the PagelayontControl, TOCControl, and ToolbarControl.

4. Resize and reposition each control on the form as shown.

o]

ESRI ToolbarCentrol

ESRI TOCControl

ESRI PageLayoutControl

ESRI MapCantrol

Chapter 6 * Developer scenarios ¢ 243

BUILDING APPLICATIONS WITHACTIVEX

244 « ArcGIS Engine Developer Guide

Loading Map Documents into the PageLayoutControl and
MapControl

Individual data layers or map documents pre-authored using ArcMap, an ArcGIS
Desktop application, can be loaded into the MapControl and Pagel_ayontControl.
You can either load the sample map document provided or you can load in your
own map document. Later you will add a dialog box to browse to a map docu-
ment.

1. Double-click on the form to display the code window.

2. Select the Form_Load event and enter the following code (if you are using
your own map document, substitute the filename).

Private Sub Form_Load()

'Check and Toad a pre-authored map document into the PagelLayoutControl
using relative paths.

Dim sFileName As String

sFiTeName = "..\..\..\..\..\..\Data\ArcGIS_Engine_Developer_Guide\Gulf
of St. Lawrence.mxd"

If PagelLayoutControll.CheckMxFile(sFileName) Then
PagelLayoutControll.LoadVMxFile sFileName
End If

End Sub

3. Select the PagelayoutControl_ OnPagelayoutReplaced event and enter the
following code to load the same map document into the MapControl. The
OnPagelayoutReplaced event will be triggered whenever a document is
loaded into the Pagel_ayoutControl.

Private Sub PagelLayoutControll_OnPagelLayoutReplaced(ByVal newPagelayout
As Variant)

'Load the same pre-authored map document into the MapControl.
MapControll.LoadMxFile PageLayoutControll.DocumentFilename

'Set the extent of the MapControl to the full extent of the data.
MapControll.Extent = MapControll.FullExtent

End Sub

Setting the TOCControl and ToolbarControl Buddy Controls

For the purpose of this application the TOCControl and ToolbarContro/ will work
in conjunction with the Pagel_ayoutControl rather than the MapControl. To do this
the Pagel_ayontControl must be set as the buddy control. The TOCControl uses the
buddy’s ActiveView to populate itself with maps, layers, and symbols, while any
command, tool, or menu items present on the Too/barContro/ will interact with the
buddy control’s display.

1. Double-click on the form to display the code window.

BUILDING APPLICATIONS WITHACTIVEX

2. Select the Form_ILoad event and enter the following after the load document
code:

Private Sub Form_Load()

'Check and Toad a pre-authored map document into the PagelLayoutControl
using relative paths.

Dim sFileName As String

sFiTeName = "..\..\..\..\..\..\Data\ArcGIS_Engine_Developer_Guide\Gulf
of St. Lawrence.mxd"

If PagelLayoutControll.CheckMxFile(sFileName) Then

PagelLayoutControll.LoadVxFile sFileName
End If

'Set buddy controls.

TOCControll.SetBuddyControl PagelLayoutControll

TooTlbarControll.SetBuddyControl PagelLayoutControll
End Sub

3. Run the application. The map document has been loaded into the

Pagel_ayoutControl, and the TOCControl lists the data layers in the map docu-
ment. Use the TOCControl to toggle layer visibility by checking and unchecking
the boxes. By default, the focus map of the map document is loaded into the
MapControl. At this point the ToolbarControl is empty because no commands
have been added to it. Try resizing the form, and note that the control’s do not

change size.

il

= £ Gulf of St. Lawrence 4]
1= [Links to Weh Sites

=
= W Citiss

- Town o Yilage

o small ity

@ City
1= W Major Roads

Map tips show #

—— Expressway

—— Primary Highwray
1= ¥ Base Map

= W U5, - Canadian B

= W Coastlines

O
= W Maine

= W Land

Handling Form Resize

When the form is resized at run time, the Pagel_ayontControl and MapControl do not
automatically resize themselves. To resize the controls so that they always fill the
extent of the form, you must respond to the Form_Resize event. If the
Pagel_ayontControl or MapControl contain a lot of data, redrawing this data during
the Form_Resize can be costly. To increase performance you can suppress the data
redraw until the resizing is complete. During the resize a stretched bitmap will be
drawn instead.

Chapter 6 * Developer scenarios ¢ 245

BUILDING APPLICATIONS WITHACTIVEX

1. Double-click on the form to display the code window.
2. Select the Form_Resize event and enter the following code:

Private Sub Form_Resize()
Dim dwidth As Double, dheight As Double, dMargin As Double

'Set the margin size.
dMargin = TOCControll.Left

'Resize the PagelLayoutControl.

dheight = Forml.ScaleHeight - PagelLayoutControll.Top - dMargin
If dheight > 0 Then PageLayoutControll.Height = dheight
dwidth = Forml.Scalewidth - TOCControll.Width - (dMargin * 2)
If dwidth > 0 Then PagelLayoutControll.Width = dwidth

'Resize the MapControl.
dheight = Forml.ScaleHeight - MapControll.Top - dMargin
If dheight > 0 Then MapControll.Height = dheight

End Sub
3. Select the Form_ILoad event and add the following code at the end of the
procedure:

Private Sub Form_Load()
'Set buddy controls..

'Suppress drawing while resizing
MapControll.SuppressResizeDrawing False, Forml.hWnd
PagelLayoutControll.SuppressResizeDrawing False, Forml.hWnd

End Sub
4. Run the application and try resizing the form.

Adding Commands to the ToolbarControl

The ArcGIS Engine comes with more than 120 commands and tools that work

with the MapControl, the Pagel_ayoutControl, and the ToolbarControl directly. These

commands and tools provide you with a lot of frequently used GIS functionality

for map navigation, graphics management, and feature selection. You will now

add some of these commands and tools to your application.

1. Double-click on the form to display the code window.

2. Select the Form_ILoad event and add the following code before the load
document code:

Private Sub Form_Load()
Dim sProgID As String

'Add generic commands.

246 + ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITHACTIVEX

sProgID = "esriControlTools.ControlsOpenDocCommand"
ToolbarControll.AddItem sProgID, , , False, , esriCommandStyleIconOnly
'Add Pagelayout navigation commands.

sProgID = "esriControlTools.ControlsPageZoomInTool"
ToolbarControll.AddItem sProgID, , , True, , esriCommandStyleIconOnly
sProgID = "esriControlTools.ControlsPageZoomOutTool"
ToolbarControll.AddItem sProgID, , , False, , esriCommandStyleIconOnly
sProgID = "esriControlTools.ControlsPagePanTool"
ToolbarControll.AddItem sProgID, , , False, , esriCommandStyleIconOnly
sProgID = "esriControlTools.ControlsPageZoomholePageCommand"
ToolbarControll.AddItem sProgID, , , False, , esriCommandStyleIconOnly
sProgID = "esriControlTools.ControlsPageZoomPageTolLastExtentBackCommand"
ToolbarControll.AddItem sProgID, , , False, , esriCommandStyleIconOnly
sProgID = "esriControlTools.ControlsPageZoomPageTolastExtentForwardCommand'
ToolbarControll.AddItem sProgID, , , False, , esriCommandStyleIconOnly
'Add Map naviagtion commands.

sProgID = "esriControlTools.ControlsMapZoomInTool"

ToolbarControll.AddItem sProgID, , , True, , esriCommandStyleIconOnly
sProgID = "esriControlTools.ControlsMapZoomOutTool"
ToolbarControll.AddItem sProgID, , , False, , esriCommandStyleIconOnly
sProgID = "esriControlTools.ControlsMapPanTool"
ToolbarControll.AddItem sProgID, , , False, , esriCommandStyleIconOnly
sProgID = "esriControlTools.ControlsMapFullExtentCommand"
ToolbarControll.AddItem sProgID, , , False, , esriCommandStyleIconOnly

'Load a pre-authored...

End Sub

3. Run the application. The ToolbarControl now contains ArcGIS Engine com-
mands and tools that you can use to navigate the map document loaded into
the Pagel_ayoutControl. Use the page layout commands to navigate around the
actual page layout and the map commands to navigate around the data present
in the data frames. Use the open document command to browse and load
other map documents.

Il
Z BERDRE aadd

=1 £ Gulf of St. Lawrence + |
1= [Links to Web Sitss

=
= W Cities
- Town or vilage Guif of St. Lawrence
o smal City e
® City
= W Major Roads
Map tips show #
— Expressway
— Primary Highwiay
1= ¥ Base Map
= W U5, - Canadian Bc

= W Coast lines
O

= W Maine

= ¥ Land

Chapter 6 » Developer scenarios ¢ 247

BUILDING APPLICATIONS WITHACTIVEX

Creating a Popup Menu for the PagelLayoutControl

As well as adding Control commands to the Too/barControl to work with the
buddy control, as in the previous step, you can also create popup menus from the
Control commands. You will add a popup menu that works with the
Pagel_ayontControl to your application. The popup menu will display whenever the
right mouse button is used on the display area of the Pagel_ayoutControl.

1.

Add the following code to the general declarations area of the form:

Option Explicit
Private m_pToolbarMenu As IToolbarMenu 'The popup menu

. Add the following code to the Form_ILoad event after the code adding the

commands to the Too/barControl but before the load document code.

Private Sub Form_Load()
'Add Map naviagtion commands...

'Create a new ToolbarMenu.

Set m_pToolbarMenu = New ToolbarMenu

'Share the ToolbarControl’s command pool.

Set m_pToolbarMenu.CommandPool = ToolbarControll.CommandPool
'Add commands to the ToolbarMenu.

sProgID = "esriControlTools.ControlsPageZoomInFixedCommand"

m_pToolbarMenu.AddItem sProgID, , , False, esriCommandStyleIconAndText
sProgID = "esriControlTools.ControlsPageZoomOutFixedCommand"
m_pToolbarMenu.AddItem sProgID, , , False, esriCommandStyleIconAndText
sProgID = "esriControlTools.ControlsPageZoomwholePageCommand"
m_pToolbarMenu.AddItem sProgID, , , False, esriCommandStyleIconAndText
sProgID = "esriControlTools.ControlsPageZoomPageTolLastExtentBackCommand"
m_pToolbarMenu.AddItem sProgID, , , True, esriCommandStyleIconAndText
sProgID = "esriControlTools.ControlsPageZoomPageTolastExtentForwardCommand"
m_pToolbarMenu.AddItem sProgID, , , False, esriCommandStyleIconAndText

'Set the hook to the PagelLayoutControl.
m_pToolbarMenu. SetHook PagelayoutControll

'Load a pre-authored..

End Sub

3. Add the following code to the Pagel.ayoutControll_OnMouseDown event.

248 + ArcGIS Engine Developer Guide

Private Sub PagelayoutControll_OnMouseDown(ByVal button As Long, ByVal
shift As Long, ByvVal x As Long, ByVal y As Long, ByVal pageX As
Double, ByVal pageY As Double)

'Popup the ToolbarMenu
If button = vbRightButton Then

m_pTooTlbarMenu.PopupMenu x, y, PageLayoutControll.hWnd
End If

End Sub

BUILDING APPLICATIONS WITHACTIVEX

4. Run the application. Right-click on the Pagel_ayoutControls display area to
display the popup menu, and navigate around the page layout.

I i
| BEEHDLE Q0P

= £ Gulfof St Lawrence

= [Links to Wb Sites

]
= W Cities

+ Toun o Vilage

o Small City

o City
= VI Msjor Roads

Map tips show #

— Expressway

— Primary Highway
= V] Base Map

=1 | U5, - Canadian Be

[E3] Fixed Zoom In
[Fixed zoom In

=)] Coast lines

[}
=l Maine

=l Land

Controlling Label Editing in the TOCControl

By default, the TOCContro/ allows users to automatically toggle the visibility of
layers and to change map and layer names as they appear in the table of contents.
You will add code to prevent users from editing a name and replacing it with an
empty string.

1. Add the following code to the beginning of the Form_ILoad event to trigger
the TOCControl label editing events.

Private Sub Form_Load()

'Set label editing to manual.
TOCControll.LabelEdit = esriTOCControlManual

'Add generic commands...

End Sub
2. Add the following code to the TOCControll_OnEndLableEdit event.

Private Sub TOCControll_OnEndLabelEdit(ByVal x As Long, ByVal y As Long,
ByVal newLabel As String, pcanEdit As Boolean)

'If the new label is an empty string, then prevent the edit.
If newLabel = "" Then pcanEdit = False

End Sub

3. Run the application. To edit a map, layer, heading, or legend class label in the
TOCControl, click on it once, and click on it a second time to invoke label

Chapter 6 » Developer scenarios ¢ 249

BUILDING APPLICATIONS WITHACTIVEX

Navigating around the focus map using the map
navigation tools will change the extent of the
focus map in the PageLayoutControl and cause
the MapControl to update. Navigating around
the page layout with the page layout navigation
tools will change the extent of the page layout
(not the extent of the focus map in the
PageLayoutControl), so the MapControl will not

update.

250 * ArcGIS Engine Developer Guide

editing. Try replacing the label with an empty string. You can use the ESC key
on the keyboard at any time during the edit to cancel it.

i
2 EEH0 LS aafd
5 Gulfof St. Lawrence 4
= [Links to Web Sikes
]
= W dities
- Town or Vilage
o Smal City
o iy
= ¥ Major Roads Grrr ot st. Lawrence
Map tips show # ;

ressway

= ¥ Base Map
= W U.5. - Canadian Bord

= W Coast lines
[}
= W Maine

= W Land

Drawing Shapes on the MapControl

You will now use the MapControl as an overview window and draw the current
extent of the focus map within the Pagel_ayoutControl on its display. As you navi-
gate around the data within the data frame of the Pagel_ayoutControl, you will see
the MapControl overview window update.

1. Add the following code to the general declarations area of the form.

Option Explicit

Private m_pToolbarMenu As IToolbarMenu

Private m_pEnvelope As IEnvelope 'The envelope drawn on the MapControl

Private m_pFi11Symbol As ISimpleFiT11Symbol 'The symbol used to draw the
'envelope on the MapControl

Private WithEvents m_pTransformEvents As DisplayTransformation

'The PagelayoutControl's focus map events

2. Create a new public sub routine called CreateOverviewSymbol. This is where you

will create the symbol used in the MapControl to represent the extent of the
data in the focus map of the Pagel_ayoutControl. Add the following code to the
sub routine:

Private Sub CreateOverviewSymbol()

'Get the IRGBColor interface.
Dim pColor As IRgbColor

Set pColor = New RgbhColor
'Set the color properties.
pColor.RGB = RGB(255, 0, 0)

'Get the ILine symbol interface.
Dim pOutline As ILineSymbol
Set pOutline = New SimpleLineSymbol

BUILDING APPLICATIONS WITHACTIVEX

'Set the Tine symbol properties.
pOutline.Width = 1.5
pOutline.Color = pColor

'Get the IFi11Symbol interface.

Set m_pFi11Symbol = New SimpleFi11Symbol
'Set the fil11 symbol properties.
m_pFi11Symbo1.0utline = pOutline
m_pFi11Symbol.Style = esriSFSHolTow

End Sub
3. Call the CreateOverviewSymbol sub routine from the Form_ILoad event before
the TOCControl label editing code.

Private Sub Form_Load()

'Create symbol used on the MapControl.
CreateOverviewSymbol

'Set label editing to manual..

End if

4. The default event interface of the PagelayontControl is the
1Pagel_ayoutControlEvents. These events do not tell you when the extent of the
map within the data frame changes. To do this you will use the
ITransformEvents interface of the PagelayoutControl's focus map. Add the fol-
lowing code to the PagelayoutControl_OnPagelayoutReplaced event directly
above the load document code.

Private Sub PagelLayoutControll_OnPagelLayoutReplaced(ByVal newPagelayout
As Variant)

'Get the TActiveView of the focus map in the PagelLayoutControl.

Dim pActiveView As IActiveView

Set pActiveView = PageLayoutControll.ActiveView.FocusMap

'"Trap the ITranformEvents of the PagelLayoutCntrol's focus map.

Set m_pTransformEvents = pActiveView.ScreenDisplay.DisplayTransformation
'Get the extent of the focus map.

Set m_pEnvelope = pActiveView.Extent

'Load the same pre-authored map document into the MapControl.
MapControll.LoadMxFile PageLayoutControll.DocumentFilename

'Set the extent of the MapControl to the full extent of the data.
MapControll.Extent = MapControll.FullExtent

End Sub

5. Add the following code to the m_pTransformEvents_VisibleBoundsUpdated
event. This event is triggered whenever the extent of the map is changed and
is used to set the envelope to the new visible bounds of the map. By refreshing
the MapControl you force it to redraw the shape on its display.

Chapter 6 * Developer scenarios ¢ 251

BUILDING APPLICATIONS WITHACTIVEX

252 < ArcGIS Engine Developer Guide

Private Sub m_pTransformEvents_VisibleBoundsUpdated(ByVal sender As

esriDisplay.IDisplayTransformation, ByVal sizeChanged As Boolean)

'Set the extent to the new visible extent.
Set m_pEnvelope = sender.VisibleBounds
'Refresh the MapControl's foreground phase.
MapControll.Refresh esriViewForeground

End Sub

. Add the following code to the MapControl_OnAfterDraw event to draw the

envelope with the symbol you created eatlier onto the MapControls display.

Private Sub MapControll_OnAfterDraw(ByVal display As Variant, Byval
viewDrawPhase As Long)

If m_pEnvelope Is Nothing Then Exit Sub

'If the foreground phase has drawn
Dim pViewDrawPhase As esriViewDrawPhase
pViewDrawPhase = viewDrawPhase
If pViewDrawPhase = esriViewForeground Then
'Draw the shape on the MapControl.
MapControll.DrawShape m_pEnvelope, m_pFil1Symbol
End If

End Sub

. Run the application. Use the map navigation tools that you added earlier to

change the extent of the focus map in the Pagel_ayoutControl. The new extent is
drawn on the MapControl.

=i Form{ D@J@

FBEHE 2and
- £ Gulf of St. Lawrence
=[] Links to Web Sites.

=l Wl Cities.
- Town or ilage
o Smal City
o Gty
= ¥l Major Roads G or St Lawrence
tap tips show # e E
— Expressway
— Primary Highway
=S| Base Map
= W 0.5, - Canadian Bc

= W Costlines
(]
= M Maine

= M Land

BUILDING APPLICATIONS WITHACTIVEX

The command class is implemented in a
separate ActiveX DLL project rather than inside
the ActiveX exe project, because the command
will not become a COM class unless it is in a
DLL.

This scenario's source code is located at
<install_location>\DeveloperKit\Samples\
Developer_Guide_Scenarios\ArcGIS_Engine\
Building_an_ArcGIS_Control_Application\
Map_Viewer.

Creating a CustomTool

Creating custom commands and tools to work with the MapControl and
Pagel_ayontControl is very much like creating commands for the ESRI ArcMap
application that you may have done previously. You will create a custom tool that
adds a text element containing today’s date to the Pagel_ayoutControl at the location
of a mouse click. You will, however, create the command to work with the
MapControl and ToolbarControl as well as the Pagel_ayoutControl.

The code for this custom tool is available with the rest of this scenario's source
code. If you want to use the custom command directly, rather than creating it
yourself, go directly to Step 12.

1. Start Visual Basic and create a new ActiveX DLL project from the New
project dialog box.

2. Name the project EngineScenarioCommands.
3. Click the Project menu again and choose References.

4. In the References dialog box, check ESRI Carto Object Library, ESRI Control
Commands Object Library, ESRI Display Object Library, ESRI Geometry
Object Library, ESRI System Object Library, and ESRI SystemUI Object
Library. Click OK.

5. Add a class module to the project and name it AddDateTool.

6. Add in the ControlCommands.res Visual Basic resource file from its location in
this sample's source code. To do this you will need the VB6 Resource Editor
Add-in.

7. Add the following code to the general declarations area of the AddDateTool
class module.

Option Explicit

Implements ICommand
Implements ITool

Private m_pHookHeTlper As IHookHelper
Private m_pBitmap As IPictureDisp

8. Add the following code to the Class_Initialize and Class_Terminate methods.

Private Sub Class_Initialize()
'Load resources
Set m_pBitmap = LoadResPicture(''Date", vbResBitmap)
'Create a HookHelper
Set m_pHookHelper = New HookHelper
End Sub

Private Sub Class_Terminate()
'"Clear variables
Set m_pHookHelper = Nothing
Set m_pBitmap = Nothing

End Sub

Chapter 6 * Developer scenarios * 253

BUILDING APPLICATIONS WITHACTIVEX

9. You now need to stub out all of the properties and events of the [Command
interface, even if you are not going to use some of these. Add the following
code to the ICommand properties and methods.

Private Property Get ICommand_Bitmap() As esriSystem.OLE_HANDLE
ICommand_Bitmap = m_pBitmap
End Property

Private Property Get ICommand_Caption() As String
ICommand_Caption = "Add Date"
End Property

Private Property Get ICommand_Category() As String
ICommand_Category = "CustomCommands"
End Property

Private Property Get ICommand_Checked() As Boolean
ICommand_Checked = False
End Property

Private Property Get ICommand_Enabled() As Boolean
If Not m_pHookHelper.ActiveView Is Nothing Then
ICommand_Enabled = True
Else
ICommand_Enabled = False
End If
End Property

Private Property Get ICommand_HelpContextID() As Long
"Not impTemented
End Property

Private Property Get ICommand_HelpFile() As String
"Not impTlemented
End Property

Private Property Get ICommand_Message() As String
ICommand_Message = "Adds a date element to the page layout"
End Property

Private Property Get ICommand_Name() As String
ICommand_Name = "CustomCommands_Add Date"
End Property

Private Sub ICommand_OnClick()
"Not impTlemented
End Sub

Private Sub ICommand_OnCreate(ByVal Hook As Object)

Set m_pHookHelper.Hook = Hook
End Sub

254 + ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITHACTIVEX

The ICommand_OnCreate event is
passed a handle or hook to the applica-
tion that the command will work with. In

this case it can be a MapControl,
PageLayoutControl, or ToolbarControl.
Rather than adding code into the
OnCreate event to determine the type of
hook that is being passed to the com-
mand, you will use the HookHelper to
handle this.A command or tool needs to
know how to handle the hook it gets
passed, so a check is needed to deter-
mine the type of ArcGIS Control that has
been passed. The HookHelper is used to
hold the hook and return the ActiveView
regardless of the type of hook (in this
case either a MapControl,
PageLayoutControl, or ToolbarControl).

Private Property Get ICommand_Tooltip() As String
ICommand_Tooltip = "Add date"
End Property

10. You now need to stub out all of the properties and events of the [Too/ inter-

face, even if you are not going to use some of these. Add the following code
to the IToo/ properties and methods:

Private Property Get ITool_Cursor() As esriSystem.OLE_HANDLE
‘Not impTemented
End Property

Private Function ITool_Deactivate() As Boolean
ITool_Deactivate = True
End Function

Private Function ITool_OnContextMenu(ByVal x As Long, ByVal y As Long) As
BooTlean

"Not impTlemented
End Function

Private Sub IToo1_OnDb1CTlick()
"Not impTemented
End Sub

Private Sub ITool_OnKeyDown(ByVal keyCode As Long, ByVal shift As Long)
"Not impTlemented
End Sub

Private Sub ITool_OnKeyUp(ByVal keyCode As Long, ByVal shift As Long)
"Not impTemented
End Sub

Private Sub ITool_OnMouseDown(ByVal button As Long, ByVal shift As Long,
ByVal x As Long, ByVal y As Long)

'Get the active view.
Dim pActiveView As TActiveView
Set pActiveView = m_pHookHelper.ActiveView

'Create a new text element.

Dim pTextElement As ITextETement
Set pTextElement = New TextElement
'Create a text symbol.

Dim pTextSymbol As ITextSymbol

Set pTextSymbol = New TextSymbol

'Create a font.

Dim pFont As stdole.StdFont
Set pFont = New stdole.StdFont
pFont.Name = "Arial"

Chapter 6 * Developer scenarios * 255

BUILDING APPLICATIONS WITHACTIVEX

256 * ArcGIS Engine Developer Guide

11.

12.
13.

pFont.Bold = True
pFont.Size = 25

'Set the symbol properties.
pTextSymbol.Font = pFont

'Set the text element properties
pTextElement.Symbol = pTextSymbo]l
pTextElement.Text = Date

'QI for IETement

Dim pETement As IETement

Set pElement = pTextElement

'Create a page point.

Dim pPoint As IPoint

Set pPoint = pActiveView.ScreenDisplay.DisplayTransformation.ToMapPoint(x, y)
'Set the elements geometry.

pETement.Geometry = pPoint

'Add the element to the graphics container.
pActiveView.GraphicsContainer.AddElement pTextETlement, O
'Refresh the graphics

pActiveView.PartialRefresh esriViewGraphics, Nothing, Nothing

End Sub

Private Sub ITool_OnMouseMove(ByVal button As Long, ByVal shift As Long,
ByVal x As Long, ByVal y As Long)

"Not impTemented
End Sub

Private Sub ITool_OnMouseUp(ByVal button As Long, ByVal shift As Long,
ByVal x As Long, ByVal y As Long)

"Not impTlemented
End Sub

Private Sub ITool_Refresh(ByVal hdc As esriSystem.OLE_HANDLE)
"Not impTlemented
End Sub

You now need to compile your project into an ActiveX DLL. Give it the
name ControlCommands.dIl.

Register the ControlCommands.dll.

In the Visual Basic Standard executable project that you created at the begin-
ning of this scenario, select the Form_Load event and add the following code
after the code to add the map navigation commands.

Private Sub Form_Load()
'Add Map navigation commands...

'Add custom date tool.
sProgID = "EngineScenarioCommands.AddDateTool"

BUILDING APPLICATIONS WITHACTIVEX

ToolbarControll.AddItem sProgID, , , True, , esriCommandStyleIconAndText
'Create a new ToolbarMenu...

End Sub

14. Run the application and use the AddDateToo/ to add a text element to the
Pagel_ayontControl containing today’s date.

-t
EBEEBO0 B ® QTG | Ladoe

£ £ Gulf of St. Lawrence 4]
1] Links to Weh Sites

= W Cities
+ Town or tilage
o Small Gty
® City

= ¥ Major Roads 10/09/2003
Map tips show #
— Expressway
— Primary Highway
£l ¥ Base Map Gulf «
1= ¥ U.5. - Canadian Bc F L= 1
(= bl Coastlines
- M prodused by ESRI i, 2001 oul
(= bl Maine

= b Land

Customizing the ToolbarControl

As well as adding Controls commands and tools to the Too/barContro/ in the
Form_Load event, you can also add them by customizing the ToolbarControl and
using the customize dialog box. To do this you will place the ToolbarControl in
customize mode and display the customize dialog box.

1. Add the following code to the general declarations area of the form:

Option Explicit

Private m_pToolbarMenu As IToolbarMenu

Private m_pEnvelope As IEnvelope

Private m_pFil1Symbol As IFi11Symbol

Private WithEvents m_pTransformEvents As DisplayTransformation

Private WithEvents m_pCustomizeDialogEvents As CustomizeDialog
‘The customize dialog events

Private m_pCustomizeDialog As ICustomizeDialog
'The customize dialog box used by the ToolbarControl

2. Add a new sub routine called CreateCustomizeDialog and add the following
code to it. This is where you will create the customize dialog box. Add the
following code to the sub routine:

Private Sub CreateCustomizeDialog()
Set m_pCustomizeDialog = New CustomizeDialog

Set m_pCustomizeDialogEvents = m_pCustomizeDialog
'Set the title.

Chapter 6 Developer scenarios * 257

BUILDING APPLICATIONS WITHACTIVEX

258 « ArcGIS Engine Developer Guide

m_pCustomizeDialog.DialogTitle = "Customize ToolbarControl Items"
'Show the 'Add from File' button.
m_pCustomizeDialog.ShowAddFromFile = True

'Set the ToolbarControl that new items will be added to.

Set m_pCustomizeDialog.DoubleClickDestination = ToolbarControll

End Sub

. Call the CreateCustomizeDialog sub routine from the Form_Load event before

the call to the CreateOverviewSymbol sub routine.

Private Sub Form_Load()

'Create the customize dialog box for the ToolbarControl.
CreateCustomizeDialog

'Create symbol used on the MapControl...

End Sub

. Add a check box to the Form and give it the name ‘chkCustomize’ and the

caption ‘Customize’.

. Add the following code to the chkCustomize_Click event.

Private Sub chkCustomize_Click()

'Show or hide the customize dialog box.
If chkCustomize.Value = 0 Then
m_pCustomizeDialog.CloseDialog
Else
m_pCustomizeDialog.StartDialog ToolbarControll.hwWnd
End If

End Sub

. Add the following code to the m_pCustomizeDialogEvents_OnCloseDialog

and m_pCustomizeDialogEvents_OnStartDialog events.
Private Sub m_pCustomizeDialogEvents_OnCloseDialog()

ToolbarControll.Customize = False
chkCustomize.Value = 0

End Sub
Private Sub m_pCustomizeDialogEvents_OnStartDialog()
ToolbarControll.Customize = True

End Sub

. Run the application and check the customize box to put the ToolbarControl

into customize mode and open the customize dialog box.

BUILDING APPLICATIONS WITHACTIVEX

In the customize dialog box the ‘Add
From File...” button could be used to
browse to and select the Control
Commands.dll file you compiled earlier.
The AddDateTool will be added to the
customize dialog box under the
CustomCommands category.

On the Commands tab select the Graphic Element category and double-click
the Select Elements command to add it to the Too/barControl. By right-clicking
on an item on the ToolbarControl, you can adjust its appearance in terms of
style and grouping,

EBmEDOBE QSO @ 2advae [kssec et |

= £ Gulf of St. Lawrence 4]
[[Links b Web Sites

]
= ¥l Cities
- Town or tilage
o Smal City
o Cty
=] Major Roads
Map tips show #
— Expressway
— Primary Highway
Map
U.5. - Canadian Be

=

Coast lines
£ Wl Maine
= W Land

=101
[V Customize
Delete
Text Only
Tmage Orly

v Tmage and Text

Begin Group 2] x]
Group Spacing
Commands | Toolsets | Merus |
Category Commands:
D Analyst LT RECTEnge =
30 Analyst Developer Samples | Nudge Doun
CustomCommands = Nudge Left
Feature Selection 81 Nudloe Right
Generic: [Hudloe Hio
Gilobe B Nudge Up
+} Rotale

Map Navigation & Roate Left
Pagelayout

b Rotate Right

Sample_Page Layout
Sample_SceneCantrol
Scene

SendtoBack,
17y Unaroup

& Select Elements
I Send Backward

Use double click or drag and drop
to add commands.

Add From File. Close

Stop customizing the application. Use the select tool to move the text element
containing today’s date.

EEEB0GBS ® QM| Dadoate | K sdectclnents

=10l x|

[~ Customize

= £F Gulf of St. Lawrence |
=[] Links o veb Sites

@
= W Ciies
- Town or vilage
o small City
@ City
= W majer Roads
Map tips show #
—— Expressway
—— Primary Highway
=] ase Map
U.5, - Canadian Bc

=) Wl Coast lines

O
=)] Maine

=l Land

10/09/2003

[FEsa=: e re amos 2o,
frd St Caraia el
Fioscaps s mvan comratriprosr o searcns ot o

s proctcetay 5.t 2001

Guif of

Chapter 6 Developer scenarios * 259

BUILDING APPLICATIONS WITHACTIVEX

When developing a stand-alone execut-
able using ESRI ArcObjects, it is the
responsibility of the application to check
and configure the licensing options. The
CoClass Aolnitialize and the IAolnitialize
interface it implements are designed to
support license configuration. License
initialization must be performed at
application start time, before any ESRI
ArcObjects functionality is accessed.
Failure to do so will resolve in application
errors.

260 * ArcGIS Engine Developer Guide

DEPLOYMENT

To successfully deploy this application onto another machine, the application
must configure a license. First, it must check that the product license is available,
and second it must initialize the license. If this license configuration fails, the
application cannot run.

1. Add the following member variable to the general declarations area of the
form:

Option Explicit

Private m_pAoInitialize As IAoInitialize 'The initialization object

2. Add the following code to the beginning of the Form_ILoad event:
Private Sub Form_Load()

'Create a new AoInitialize object.

Set m_pAoInitialize = New AoInitialize

If m_pAoInitialize Is Nothing Then
MsgBox "Unable to initialize. This application cannot run!"
Unload Forml
Exit Sub

End If

'Determine if the product is available.

If m_pAoInitialize.IsProductCodeAvailable(esrilicenseProductCodeEngine)
= esrilicenseAvailable Then

If m_pAoInitialize.Initialize(esriLicenseProductCodeEngine) <
esriLicenseCheckedOut Then
MsgBox "The initialization failed. This application cannot run!"
UnTload Forml
Exit Sub
End If
Else

MsgBox "The ArcGIS Engine product is unavailable. This application
cannot run!"

UnToad Forml
Exit Sub
End If

End Sub
3. Add the following code to the Form_Unload event:
Private Sub Form_Unload(Cancel As Integer)

'Shut down the AoInitilaize object
m_pAoInitialize.Shutdown

End Sub

4. Compile the application into an executable.

BUILDING APPLICATIONS WITHACTIVEX

To successfully deploy this application onto a uset’s machine:

* The application’s executable and the DLL containing the custom command
will need to be deployed onto the user’s machine.

* The user’s machine will need an installation of the ArcGIS Engine Runtime
and a standard ArcGIS Engine license.

ADDITIONAL RESOURCES

The following resources may help you understand and apply the concepts and
techniques presented in this scenario.

* Additional documentation available in the ArcGIS Engine Developer Kit
including ArGILS Developer Help, component help, object model diagrams, and
samples to help you get started.

e ArcGIS Developer Online—Web site providing the most up-to-date informa-
tion for ArcGIS Developers including updated samples and technical docu-
ments. Go to http://arcgisdeveloperonline.esti.com.

* ESRI online discussion forums—NWeb sites providing invaluable assistance
from other ArcGIS developers. Go to http://support.esti.com and click the
User Forums tab.

* Microsoft documentation on the Visual Basic 6 development environment.

Chapter 6 * Developer scenarios * 261

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

Rather than walk through this scenario, you can
get the completed application from the samples
installation location. The sample is installed as
part of the ArcGIS developer samples.

The ArcGIS developer samples are not included
in the 'typical installation of the ArcGIS Engine
Developer Kit. If you do not have them installed,
rerun the Developer Kit install wizard, choose
Custom or Modify, and select the samples
feature under Software Developer Kit.

262 * ArcGIS Engine Developer Guide

This walkthrough is for developers who want to build and deploy an application
using visual Java components. It describes the process of building and deploying
an application using the visual JavaBeans available in the ArcGIS Engine Devel-
oper Kit.

You can find this sample in
<install_location>\DeveloperKit\Samples\Developer_Guide_Scenarios\
ArcGIS_Engine\Building_an_ArcGIS_Control_Application\Map_Viewer

PROJECT DESCRIPTION

This scenario demonstrates the steps required to create a GIS application for
viewing map documents pre-authored using ArcMap, an ArcGIS Desktop applica-
tion. The scenario covers the following techniques:

e Setting up the development environment

e Building a GUI using the visual components

* Loading map documents

* Adding commands to the toolbar

* ‘Buddying up’ the ToolbarControl and TOCControl

* Adding toolbar items to the ToolbarControl

e Creating popup menu using ToolbarMenu

* Controlling Label Editing in the TOCContro/ component
* Drawing an ‘overview rectangle’ on the MapControl
e Creating a custom tool

* Customizing the ToolbarControl

* Deploying using an executable JAR

CONCEPTS

The ArcGIS Engine Developer Kit provides reusable visual Java components
corresponding to each ArcGIS Control. This developer scenario will show how
these components can be embedded in a Java GUI to build a ‘map viewer’ appli-
cation.

The visual components provided by the ArcGIS Engine Developer Kit are heavy-
weight AWT components that conform to the JavaBeans component architecture,
allowing them to be used as drag and drop components for designing Java GUIs
in JavaBean compatible IDEs. Each component has certain properties and meth-
ods and is capable of firing events. Internally, the Java components use JNI (Java
Native Interface) to host the ArcGIS Controls, thereby providing nearly the same
speed of execution as any native application built using the controls. By assem-
bling the ArcGIS Engine visual components in a Java application and ‘wiring
them up’ with each other and with other ArcObjects components, custom GIS
applications can be rapidly built and deployed on supported ArcGIS Engine
platforms.

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

DESIGN

In this application, the MapControl, Pagel_ayontControl, TOCControl, and
ToolbarControl components are hosted inside a javax.swing.[Frame container and
interact with each other and with other ArcGIS Engine objects to provide GIS
viewing capability.

The scenario starts with building a GUI using the GridLayout layout manager to
position the components. Once the components are added to the JFrame con-
tainer, they are connected with each other using the sezBuddy method. At this
stage, the application is ready to function as a simple map viewer.

The scenario then extends the functionality of the simple map viewer by building
custom tools and demonstrating event handling. To achieve this, it explores the
API of the visual and other nonvisual ArcGIS Engine components further.

While the components can be used as ‘drag and drop’ JavaBeans in a Java IDE
supporting visual GUI design, in this scenario, we will programmatically place the
components; this gives us a better understanding of the code. For information on
using the components as ‘drag and drop’ beans, refer to AreGILS Developer Help.

REQUIREMENTS

In order to successfully follow this scenario you need the following (the require-
ments for deployment are covered later in the Deployment section):

The visual JavaBeans are not included in the * An installation of the ArcGIS Engine Developer Kit (including Java) with an
‘typical' installation of the ArcGIS Engine
Developer Kit. If you do not have them installed,

rerun the Developer Kit install wizard, choose * An installation of the Java 2 Platform, Standard Edition (J2SE) Software
Custom or Modify, and select the Java feature

authorization file enabling it for development use.

; " Development Kit (SDK), preferably 1.4.2 or later. If you do not already have
under ArcGlIS Engine.In addition, for access to X i X .
the Javadoc and other java-specific documenta- one available, download it from the Java Website at http://java.sun.com/
tion, select the Java feature under Software j2se/downloads.html

Developer Kit. . . .
* A Java IDE of your choice or your favorite text editor.

* A beginner to intermediate knowledge of the Java programming language.
The ArcGIS developer samples are not included

in the 'typical' installation of the ArcGIS Engine * While no experience with other ESRI software is required, previous experi-

Developer Kit. If you do not have them installed, ence with ArcObjects and a basic understanding of maps are advantageous.
rerun the Developer Kit install wizard, choose . . .
Custom or Modify, and select the samples e Access to the sample data and code that comes with this scenario.
feature under Software Developer Kit. <install_Tocation>\DeveloperKit\Samples\Developer_Guide_Scenarios\

ArcGIS_Engine\Building_an_ArcGIS_Control_Application\Map_Viewer

To build this application, the following visual components from the ArcGIS
Engine Developer Kit will be used:

* map.MapControl

* pagelayout.PagelayoutControl
* TOC.TOCControl

* toolbar.ToolbarControl

* toolbar.ToolbarMenu

In the Java API, these are prefixed by 'com.esti.arcgis.beans'.

Chapter 6 Developer scenarios * 263

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

264 + ArcGIS Engine Developer Guide

In addition, objects from the following libraries will be used:

e Carto * Geometry
e Display e SystemUI

In the Java API, their package names se are prefixed by 'com.esti.arcgis'.

In order to reference the above mentioned packages, the following JAR files must
be added to your classpath:

* arcobjectsjar, located at <install_location>\ArcGIS\java\opt
 arcgis_visualbeans.jat, located at <install_location>\ArcGIS\java\opt

* jintegrajar, , located at <install_location>\ArcGIS\java

IMPLEMENTATION

To implement this scenario follow the steps below. While the scenario specifically
uses the Gulf of St Lawrence map document located installed with the samples,
you can use your own map document instead. The implementation below pro-
vides you with all the code you will need to successfully complete the scenario. It
does not provide step-by-step instructions to develop applications in Java, as it
assumes that you have a working knowledge of the development environment
already.

Setting up the development environment

To compile and run applications using the ArcGIS Engine Developer Kit, the
PATH environment variable should include:

e Path to ArcGIS/bin

* Path to J2SE SDK/bin

* Path to J2SE SDK/jre/bin
To set the PATH on Windows:

1 Right-click on the My computer icon and select the Properties item from the
dropdown menu.

2. In the System Properties window, click the Advanced tab.
3. Click the Environment Variables button.

4. In the Environment Variables window, double-click on the Path variable in
the System variables.

5. Add the path to ArcGIS\bin folder and the bin directories of your J2SE SDK
and JRE to the Variable value text field. For example, if ArcGIS Developer
Kit is installed in C:\Program Files\ArcGIS and J2SE SDK is installed in
C:\j2sdk1.4.2, the following would be required to be added to the PATH
environment variable:

C:\Program Files\ArcGIS\Bin;C:\j2sdkl.4.2\jre\bin;C:\j2sdkl.4.2\bin

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

Building a GUI using the visual components

Use your favorite text editor or IDE to write 1. Create a new Java class called MapViewerFrame.java. This class will provide
your source code. the GUI and functionality of the map viewer application. Implement this
class as a subclass of javax.swing [Frame. Add an event listener for
windowClosing event to exit the application when the frame is closed by
clicking on the X button.

//MapViewerFrame.java

import javax.swing.JFrame;

import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;

public class MapViewerFrame extends JFrame {
//constructor
public MapViewerFrame() {
setTitle("MapViewer");

public void buildAndShow() throws IOException {
this.show();
addEventListeners();

public void addEventListeners()throws IOException {
addwindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
System.exit(0);
}
b
}
}

2. Create a new Java class called MapViewer.java. This class will provide the
main() method to construct the MapViewerFrame, give it an initial size, and
launch it:

//MapViewer.java

import java.awt.Dimension;
import java.awt.Toolkit;
import java.io.IOException;

import javax.swing.UIManager;
import com.esri.arcgis.system.EngineInitializer;
public class MapViewer {

static {
try {
UIManager . setLookAndFeel ("'com. sun.java.swing.plaf.windows .WindowsLookAndFeel™) ;
} catch (Exception e) {
//ignore

Chapter 6 * Developer scenarios * 265

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

Any application that uses visual JavaBean
components of the ArcGIS Engine Developer Kit
should include the following three JAR files in its
classpath:

...\ArcGlS\java\opt\arcobjects.jar
...\ArcGlIS\java\opt\arcgis_ visualbeans.jar
...\ArcGlIS\java\jintegra.jar

These files provide the runtime libraries needed
for accessing ArcObjects from Java.

When using a Java IDE, the classpath is typically
set by adding the above mentioned JAR files as
referenced libraries in the Java build path.

To run the Java program, click the Run button in
your IDE or give the following command from
the command line:

java -classpath “C:\Program
Files\ArcGlS\java\opt\arcgis_visualbeans.jar;
C:\Program Files\ArcGIS\java\opt\
arcgis_engine.jar;C:\Program
Files\ArcGlS\java\jintegra.jar;.” MapViewer

266 * ArcGIS Engine Developer Guide

public static void main(String[] args) throws IOException {
EngineInitializer.initializeVisualBeans(Q);
MapViewerFrame mapViewerFrame = new MapViewerFrame(Q) ;

Dimension d = Toolkit.getDefaultToolkit().getScreenSize();
int width = d.width;
int height = d.height;

mapViewerFrame.setBounds (width/6, height/6, width*2/3, height*2/
3);

mapViewerFrame.buildAndShow() ;

}

3. At this stage you should be able to compile both the MapViewerFrame and
MapViewer Java files. To do so, the Java compiler needs to be told where to
find the referenced Java classes. This is done by specifying the classpath.

To compile using the command line, cd to the directory containing the
MapViewerFrame and MapViewer Java code and give a command similar to:
javac -classpath “C:\Program
Files\ArcGIS\java\opt\arcgis_visualbeans.jar;
C:\Program Files\ArcGIS\java\opt\arcgis_engine.jar;C:\Program
Files\ArcGIS\java\jintegra.jar;.” *.java
This compiles the Java program and produces a MapViewerFrame.class and a
MapViewer.class file. If you get a ‘NoClassDefFoundError” error, double-check
your classpath, and make sure it includes the required JAR files—arcobjects.jar,
arcgis_ visualbeans.jar, and jintegra.jar.

4. Launch the MapViewer class, and make sure a blank Java frame comes up
before proceeding to the next step.

_lojx

5. Next, add member variables for the components to be added to the

MapViewerFrame class, and construct these components in the constructor.
//MapViewerFrame.java

import javax.swing.JFrame;

import java.awt.event.WindowAdapter;

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

import java.awt.event.WindowEvent;

//add new imports for this step:

import javax.swing.JLabel;

import java.awt.BorderLayout;

import java.awt.Dimension;

import javax.swing.JPanel;

import com.esri.arcgis.beans.TOC.TOCControl;

import com.esri.arcgis.beans.map.MapControl;

import com.esri.arcgis.beans.pagelayout.PagelLayoutControl;
import com.esri.arcgis.beans.toolbar.ToolbarControl;

public class MapViewerFrame extends JFrame {
PagelLayoutControl pagelLayout;
MapControl map;
TOCControl toc;
ToolbarControl toolbar;
JLabel statuslLabel;

//constructor
public MapViewerFrame() {
setTitle(“MapViewer”);

pagelayout = new PagelLayoutControl(Q);
map = new MapControl1(Q);
toc = new TOCControl1(Q);
toolbar = new ToolbarControl();
statusLabel = new JLabel(" ");
6. Set the size of the map and toolbar components in the constructor while
allowing BorderLayout to manage the size of the remaining components.
//set constraints on the size of map and toolbar
//let the layout manager manage the size of all other components
map.setSize(new Dimension(200,200)) ;
toolbar.setSize(new Dimension(900, 25));
}
7. In the MapViewerFrame interface, the toolbar component will occupy
BorderLLayout NORTH and the pagelLayout component will occupy the main
panel, such as the BorderLayout. CENTER position.

The BorderLayout.WEST position will be occupied by both the TOC and map
components. To achieve this, create a new method to build a JPanel contain-
ing the two controls with the desired layout:
//new method to build the Teft panel
private JPanel buildMapTOCPanel1() {
JPanel leftPanel = new JPanel();
leftPanel.setlLayout(new BorderLayout());
leftPanel.add(toc, BorderLayout.CENTER);
leftPanel.add(map, BorderLayout.SOUTH);
return lTeftPanel;

Chapter 6 * Developer scenarios * 267

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

8. In the BorderLayout.SOUTH position of the MapViewerFrame, add a JLabel
to act as a status bar. The buildAndShow() method should look like the
following once you have updated it with all layout locations:

public void buildAndShow() throws IOException {
JPanel mapTOCPanel = buildMapTOCPanel();

this.getContentPane().add(toolbar, BorderLayout.NORTH);
this.getContentPane() .add(pagelLayout, BorderLayout.CENTER);
this.getContentPane() .add(mapTOCPanel, BorderLayout.WEST);
this.getContentPane() .add(statusLabel, BorderLayout.SOUTH);

this.show();
addEventListeners();

}

9. Compile and run the application to confirm that the GUI has been laid out as

shown:

=loix]

As a standard Java layout manager (BorderLayout) has been used to position the
components, it manages the layout and sizes of the components for you. You
should be able to resize the frame and see that the components get placed appro-
priately without requiring any explicit resizing code.

Loading map documents

1. Now that the components have been added, you can load map documents into
the controls. To do this, add the following code to the end of the
buildAndShow() method, just after addEventListeners().

public void buildAndShow() throws IOException {

268 * ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

this.show();
addEventListeners();
//load a pre-authored map document into the PagelLayout control

String documentPath = new java.io.File("../../../../../data/
ArcGIS_Engine_Developer_Guide/Gulf of St.
Lawrence.mxd") .getAbsolutePath();

if (pagelLayout.checkMxFile(documentPath))
pagelayout. ToadMxFile(documentPath,null);

2. When the document is loaded into the pagelayout control, an
onPagelayoutReplaced event will be generated. You will add code to load the
same map document in the map component in response to this event. In the
addEventListeners() method, add the event listener to the pagelLayout compo-
nent for the onPagelayoutReplaced event, as an anonymous inner class, using
IPagelLayoutControlEventsAdapter.

public void addEventListeners()throws IOException {

pagelayout.addIPagelayoutControlEventsListener(
new IPagelLayoutControlEventsAdapter() {

public void
onPagelayoutReplaced(IPagelayoutControlEventsOnPagelayoutReplacedEvent
evt) throws IOException{

map . ToadMxFile(pagelLayout.getDocumentFilename(),
As a general rule when using the Java APl of null, null);

ArcGIS Engine Developer Kit, all methods should map.setExtent (map.getFul1Extent());
be called on the visual components after they D ’

are displayed.The exception to this rule is when
calling 'setXYZ()' methods—for example, to set }
the size of a component. B;

}

‘Buddying up’ theToolbarControl and TOCControl

Although the components have been added to the JFrame, they do not yet ‘know
about each other’. For the controls to work in sync with each other, the TOC and
toolbar components should know with which control they are associated. Other-
wise, the toolbar component will not know which component it is ‘controlling’,
and the TOC component will not know which component’s table of contents it
should display.

To set up this communication between the components, add the following code
to the buildAndShow() method after the load document code.

public void buildAndShow() throws IOException {

//Tload a pre-authored map document on the pagelLayout component

String documentPath = new java.io.File("../../data/Gulf of St.
Lawrence.mxd") .getAbsolutePath();

if (pagelayout.checkMxFile(documentPath))
pagelayout. ToadMxFile(documentPath,null);

//set buddy controls to wire up the TOC and Toolbar Control

//with the PagelLayout Control

toc.setBuddyControl(pagelLayout) ;
toolbar.setBuddyControl(pagelLayout) ;

Chapter 6 * Developer scenarios * 269

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

}

Adding commands to the toolbar

The toolbar control has been added to the user interface and, by default, this
control is not populated with any tools. You will begin to add tools in the follow-
ing steps.

The ArGIS Engine Developer Kit comes with more than 120 commands and tools
that work with the MapControl, the Pagel_ayontControl, and the ToolbarControl.
These commands and tools provide a lot of frequently used GIS functionality for
map navigation, graphics management, and feature selection. You will now add
some of these commands and tools to your application.

1. To add the prebuilt toolbar commands, add the following imports:

import com.esri.arcgis.controltools.ControlsOpenDocCommand;
import com.esri.arcgis.systemUI.esriCommandStyles;

2. In the buildAndShow() method, add the prebuilt commands to the toolbar
after calling this.show() and before the addEventListeners() call:

this.show(Q);

toolbar.addItem(new ControlsOpenDocCommand(), 0, -1, false, O,
esriCommandStyles.esriCommandStyleIconOnly);

toolbar.addItem(new ControlsPageZoomInTool(), 0, -1, false, O,
esriCommandStyles.esriCommandStyleIconOnly);

toolbar.addItem(new ControlsPageZoomOutToo1(), 0, -1, false, O,
esriCommandStyles.esriCommandStyleIconOnly);

toolbar.addItem(new ControlsPagePanToo1(), 0, -1, false, O,

esriCommandStyles.esriCommandStyleIconOnly);

toolbar.addItem(new ControlsPageZoomwholePageCommand(), 0, -1,
false, 0, esriCommandStyles.esriCommandStyleIconOnly);

toolbar.addItem(new ControlsPageZoomPageTolLastExtentBackCommand(),
0, -1, false, 0,
esriCommandStyles.esriCommandStyleIconOnly);

toolbar.addItem(new

ControlsPageZoomPageTolastExtentForwardCommand(), O,

-1, false, O,

esriCommandStyles.esriCommandStyleIconOnly);

toolbar.addItem(new ControlsMapZoomInTool(), 0, -1, false, O,

esriCommandStyles.esriCommandStyleIconOnly);

toolbar.addItem(new ControlsMapZoomOutTool(), 0, -1, false, O,
esriCommandStyles.esriCommandStyleIconOnly);

toolbar.addItem(new ControlsMapPanTool(), 0, -1, false, 0,

esriCommandStyles.esriCommandStyleIconOnly);

toolbar.addItem(new ControlsMapFullExtentCommand(), 0, -1, false,
0, esriCommandStyles.esriCommandStyleIconOnly);

addEventListeners();

270 « ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

//1oad a pre-authored map document on the pagelLayout component

=loix|

FRERBD ¢+ QAN

Gulf of St. Lawrence
e

3. Run the application.

The map document has been loaded into the pagel.ayout component, and the
toc component lists the data layers in the map document. Use the toc compo-
nent to toggle layer visibility. By default the focus map of the map document
is loaded into the map component. Also note that the commands have been
added to the toolbar component.

Creating popup menu using ToolbarMenu

ArcGIS Engine provides a ToolbarMenu component that can be used to add
popup menus to other components, such as the MapControl and Pagel_ayoutControl.
In this step, you will add a popup menu to the pagelayout component. The
popup menu will contain prebuilt commands from the
com.esri.arcgis.beans.toolbaritems package.

To display the popup menu, an event handler will be added to the pagelayout
component for the onMouseDown event. If the right mouse button is clicked,
the menu will be displayed.

1. Add the following imports to MapViewerFrame.java:
import com.esri.arcgis.beans.toolbar.ToolbarMenu;
import com.esri.arcgis.beans.pagelayout.IPagelLayoutControlEventsAdapter;
import
com.esri.arcgis.beans.pagelayout.IPagelLayoutControlEventsOnMouseDownEvent;
2. Construct a new ToolbarMenu object in the MapViewerFrame contstructor, as
shown below:

public class MapViewerFrame extends JFrame{

PagelLayoutControl pagelayout;
MapControl map;
TOCControl toc;
ToolbarControl toolbar;
ToolbarMenu popupMenu;
JLabel statuslLabel;
3. Add a member vatiable for popupMenu and surround in a try/catch block:

public MapViewerFrame(){
setTitle("MapViewer");
Chapter 6 * Developer scenarios * 271

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

272 < ArcGIS Engine Developer Guide

try {
pagelLayout = new PagelayoutControl();
map = new MapControl1(Q);
toc = new TOCControl1(Q);
toolbar = new ToolbarControl1(Q);
popupMenu = new ToolbarMenu();
statuslLabel = new JLabel(" ");

// set constraints on the size of the map and toolbar
// let the layout manager
map.setSize(new Dimension(200, 200));
toolbar.setSize(new Dimension(900, 25));

} catch (Exception e) {
e.printStackTrace();

}
}

4. Add prebuilt commands from the com.esri.arcgis.beans.toolbaritems package
to the popupMenu component, after the call to this.show() in the
build AndShow() method:

this.show(Q);

// add popup menu 1items

popupMenu. addItem(new ControlsPageZoomInFixedCommand(), 0, -1,
false, esriCommandStyles.esriCommandStyleIconAndText);

popupMenu. addItem(new ControlsPageZoomOutFixedCommand(), 0, -1,
false, esriCommandStyles.esriCommandStyleIconAndText);

popupMenu. addItem(new ControlsPageZoomwholePageCommand(), 0, -1,
false, esriCommandStyles.esriCommandStyleIconAndText);

popupMenu . addItem(new

ControlsPageZoomPageTolLastExtentBackCommand(), 0, -1,
false, esriCommandStyTles.esriCommandStyleIconAndText

)5

popupMenu . addItem(new

ControlsPageZoomPageTolLastExtentForwardCommand() ,

0, -1, false,
esriCommandStyles.esriCommandStyleIconAndText);

//add Generic commands to the toolbar

5. Associate the popupMenu with the pagelayout component, along with the
code that sets up the buddy controls, in the build AndShow() method:
//set buddy controls to wire up the TOC and ToolbarControl
//with the pagelLayout object
toc. setBuddyControl(pagelLayout) ;
toolbar. setBuddyControl (pagelLayout) ;
popupMenu. setHookByRef (pagelLayout) ;

}

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

6. In the addEventListeners() method, add the event listener to the pagelayout
component for the onMouseDown event, as an anonymous inner class, using
IPagelLayoutControlEventsAdapter:

pagelayout.addIPagelayoutControlEventsListener(
new IPagelayoutControlEventsAdapter(){

public void onMouseDown (IPagelLayoutControlEventsOnMouseDownEvent
evt) throws IOException {

//if Right mouse button(2) is pressed, display the popup menu
if(evt.getButton() == 2)

popupMenu. popupMenu(evt.getX(), evt.getY(Q),
pagelLayout.getHwWnd () ;

3
b;

7. Run the application.

(=3}
HETEEEEEICERT)

= £ Gulfof St. Lawrence

o
= W Ciiss
+ Tonn or vilage
small ity
o ciy
= ¥l Msjor Roads
Hlap tips show #

Gulf of St. Lawrence

— Expressway
— Primary H

= W Base Map
= W Us.-Car

= W Coastlines

= W Mane

= W Land

Right-click on the pagelLayout component to display the popup menu, and
navigate around the page layout.

Controlling Label Editing in the TOCControl

By default the TOCControl allows users to automatically toggle the visibility of
layers and to change map and layer names as they appear in the table of contents.
You will add code to prevent users from editing a name and replacing it with an
empty string.
1. Add the following imports to MapViewerFrame.java for classes used in this
step:
import com.esri.arcgis.beans.TOC.ITOCControlEventsAdapter;

import com.esri.arcgis.beans.TOC.ITOCControlEventsOnEndLabelEditEvent;
import com.esri.arcgis.beans.TOC.esriTOCControlEdit;

Chapter 6 * Developer scenarios * 273

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

274 + ArcGIS Engine Developer Guide

2. In the buildAndShow() method, set the labelEdit to manual:

this.show();

//set label editing to manual
toc.setlabelEdit(esriTOCControlEdit.esriTOCControlManual);

//add popup menu 1items

. In the addEventListeners() method, add the event listener to the toc compo-

nent for the onEndLabelEdit event, as an anonymous inner class, using
ITOCControlEventsAdapter. After adding this, your addEventListeners()
method should look like this:

private void addEventListeners() throws IOException {

toc.addITOCControlEventsListener(new ITOCControlEventsAdapter(){

publ1ic void onEndLabelEdit(ITOCControlEventsOnEndLabelEditEvent
TlabelEditEvt)

throws IOException {
String newLabel = TabelEditEvt.getNewLabel();

//if the new Tabel is an empty string, prevent the
//edit

if (newLabel.equals(""))
TabelEditEvt.setCanEdit(false);
}
b
}

. Run the application. To edit a map, layer, heading, or legend class label in the

toc component, click on it once, then click on it a second time to invoke label
editing. Try replacing the label with an empty string, You will be able to re-
place the label with strings other than an empty string. You can use the Esc
key on the keyboard at any time during the edit to cancel it.

R

@B beE Qe

= £F Guif of St. Lawrence
= T Links to Web Stes

+ Tomn or Vilage
Small City

Map
¥] U.5. - Canadian Border
Wl Coastiines

Wl Mane

Wl Land

Gulf of St. Lawrence
Map tips show # 7 e
=iy 7 ar

o

Al

BUILDING APPLICATIONS WITH VISUAL JAvABEANS

Navigating around the focus map using
the map navigation tools will change the
extent of the focus map in the
PageLayoutControl and cause the
MapControl to update. Navigating
around the page layout with the page
layout navigation tools will change the
extent of the page layout (not the extent
of the focus map in the
PageLayoutControl), so the MapControl
will not update.

Drawing an ‘overview rectangle’ on the MapControl

You will now use the map component as an overview window and draw on its
display the current extent of the focus map within the pagel.ayout component.
As you navigate around the data within the data frame of the pagelayout com-
ponent, you will see the map component’s overview window update.

1. Add the following imports to the MapViewerFrame.java for classes used in
this step:
import com.esri.arcgis.beans.map.IMapControlEvents2Adapter;
import com.esri.arcgis.beans.map.IMapControlEvents20nAfterDrawEvent;

import com.esri.arcgis.carto.Map;

import com.esri.arcgis.carto.esriViewDrawPhase;

import com.esri.arcgis.display.DisplayTransformation;

import com.esri.arcgis.display.ITransformEventsAdapter;

import com.esri.arcgis.display.ITransformEventsVisibleBoundsUpdatedEvent;

import com.esri.arcgis.display.RgbColor;

import com.esri.arcgis.display.SimpleFil1Symbol;

import com.esri.arcgis.display.SimpleLineSymbol;

import com.esri.arcgis.geometry.IEnvelope;

2. Add the following class members to MapViewerFrame:

public class MapViewerFrame extends JFrame {
SimpleFi11Symbol fi11Symbol; //The symbol used to draw the envelope
IEnvelope currentExtent; //The envelope drawn on the MapControl
Map focusMap; //The PagelLayoutControl's focus map

PagelLayoutControl pagelLayout;

3. Create a new private method called createOverviewSymbol(). This is where
you will create the symbol used in the map control to represent the extent of
the data in the pageLayout control. Add the following code to the sub routine:
private void createOverviewSymbol() throws IOException{

RgbCoTlor color = new RgbColor();
color.setRed(255);
color.setGreen(0);
color.setBlue(0);
color.setTransparency ((byte)255);

SimpleLineSymbol outline = new SimpleLineSymbo1(Q);
outline.setWidth(15);

outline.setColor(color);

fi11Symbo1 = new SimpleFil1Symbo1();
color.setTransparency((byte) 0);

fi11Symbo1.setColor(color);
fi11Symbo1.setOutline(outline);

Chapter 6 * Developer scenarios * 275

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

4. Call the createOverviewSymbol from the buildAndShow() method, after the call
setting label editing to manual:

//set label editing to manual
toc.setlLabelEdit(esriTOCControlEdit.esriTOCControlManual);

//create symbol used to draw overview on the MapControl
createOverviewSymbol(Q);

//add popup menu 1items

5. In the event listener for [Pagel_ayontControlEvents added in the
addEventListeners() method earlier, get a reference to the pagelayout
component’s focus map. Store the extent of the focusMap in the
currentBExtent member variable. This extent will be used to draw the over-
view rectangle on the map component. To achieve this, add the lines of code
(shown in bold) after loading the map documents and setting its extent in the
onPagelayoutReplaced event handler:

pagelayout.addIPagelayoutControlEventsListener(
new IPagelLayoutControlEventsAdapter() {

public void
onPagel ayoutReplaced(TPagel ayoutControlEventsOnPagel ayoutReplacedEvent
evt) throws IOException{

map . ToadMxFile(pagelLayout.getDocumentFilename(), null,
null);

map.setExtent(map.getFullExtent());

focusMap = new
Map (pagelLayout.getActiveView() .getFocusMap()) ;

currentExtent = focusMap.getExtent();
}
b

6. The default events of the Pagel_ayoutControl are the
IPagelayoutControlEvents. These events do not tell us when the extent of
the map within the data frame changes. To do this you will trap the
ITransformEvents of the Pagel_ayontControl’s focus map. Add the following
event listeners to listen to the DisplayTransformation object’s
visibleBoundsUpdated event.

The visibleBoundsUpdated event is triggered whenever the extent of the map
is changed and is used to set the envelope to the new visible bounds of the
map. By refreshing the MapControl you force it to redraw the shape on its
display.
pagelLayout.addIPagelayoutControlEventsListener(

new IPagelLayoutControlEventsAdapter() {

public void
onPagelayoutReplaced(IPagelLayoutControlEventsOnPagelayoutReplacedEvent
evt) throws IOException{

map . ToadMxFiTe(pagelLayout.getDocumentFilename(), null,
null);

map.setExtent(map.getFullExtent());

276 * ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

focusMap = new Map (pagelLayout.getActiveView() .getFocusMap());
currentExtent = focusMap.getExtent();

DisplayTransformation dt = new
DisplayTransformation(foausMap. getScreerDisplay .getDisplayTransformationQ) ;
dt.addITransformEventsListener(new ITransformEventsAdapter(){

public void
visibleBoundsUpdated(ITransformEventsVisibleBoundsUpdatedEvent evt)

throws IOException {
//set currentExtent to the new visible extent
currentExtent = evt.getSender() .getVisibleBounds(Q);
//refresh the map components foreground phase

map . refresh(esriViewDrawPhase.esriViewForeground,null,null);

3
s

}
D3
7. Add an IMapControlEvents2Listener to the map component that draws the
updated bounds, whenever a map refresh is triggered by the
visibleBoundsUpdated event-handler, added in the last step. Add the follow-
ing to the addEventListeners() method:
map .addIMapControlEvents2Listener(new IMapControlEvents2Adapter() {
public void onAfterDraw(IMapControlEvents20nAfterDrawEvent evt)
throws IOException {
if (evt.getViewDrawPhase() ==
esriViewDrawPhase.esriViewForeground) {
try{
//draw the shape on the MapControl
map .drawShape (currentExtent, fil1Symbol);
} catch (Exception e) {
System.err.printin("Error in drawing shape on
MapControl™);
//e.printStackTrace(Q;

b;

Chapter 6 » Developer scenarios * 277

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

278 « ArcGIS Engine Developer Guide

. Run the application. Use the map navigation tools that you added earlier to
change the extent of the focus map in the pagel.ayout component, and ob-
serve that the new extent is drawn on the map component, as a red rectangle.

Lalmlx]
EEEEEEEIEEELD)

= £ Gulf of St. Lawrence
| Links to Web Sites.

o
| Ciies
+ Tonn or vilage
small ity
o ciy
= ¥l Msjor Roads
Hlap tips show #

Gulf of St. Lawrence

ey o & SH
—— Primary Highway
= @ Baseop Ly s @

5 W US. - Conadion Border \i 1 Pl R ;

o8 s ijl & }3% L

= W Maine Shadia 3/ hiv\ etown- / G\ace Bay

= W Land

2
- % : 7\
et . hY
\‘f"bh“:m o) |:|
b

Creating a custom tool

You will create a custom tool that can be added to the Too/barControl. This tool

will add today’s date as a text element to the Pagel_ayoutControl, at the location of
a mouse click.

The tool will be built as a generic tool so it could be work with MapControl and
ToolbarControl as well as the Pagel_ayoutControl.

Custom tools can be built as Java classes that implement the following two
interfaces:

import com.esri.arcgis.systemUI.ICommand;

import com.esri.arcgis.systemUI.ITool;

1. Create a new Java class AddDateCommand.java:

import com.esri.arcgis.systemUI.ICommand;
import com.esri.arcgis.systemUI.ITool;

public class AddDateCommand implements ICommand, ITool {

}

As this class implements the ICommand and ITool interfaces, it will compile only
after all methods belonging to these interfaces have been implemented.

2. Add implementation for all methods defined in ICommand, as shown below.
The implementation of onCreate and onClick methods will be done in the
next step, so you can leave an ‘empty’ implementation for now.
import java.io.IOException;
import java.text.SimpleDateFormat;
import java.util.Date;

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

import com.esri.arcgis.carto.JActiveView;
import com.esri.arcgis.carto.TextElement;

import com.esri.arcgis.carto.esriViewDrawPhase;

import com.esri.arcgis.display.TextSymbol;
import com.esri.arcgis.geometry.IPoint;

import com.esri.arcgis.support.ms.stdole.StdFont;

import com.esri.arcgis.systemUI.ICommand;
import com.esri.arcgis.systemUI.ITool;

public class AddDateCommand implements ICommand, ITool {

/‘,’:7’:
* @see com.esri.arcgis.systemUI.ICommand#isEnabled()
:‘:/
public boolean isEnabled() throws IOException, AutomationException {
return true;
}
/‘,’:7’:
* @see com.esri.arcgis.systemUI.ICommand#isChecked()
:‘:/
public boolean isChecked() throws IOException, AutomationException {
return false;
}
/‘,’:7’:
* @see com.esri.arcgis.systemUI.ICommand#getName()
*/
public String getName() throws IOException, AutomationException {
return “CustomCommands_Add Date”;
}
/‘,’:7’:
* @see com.esri.arcgis.systemUI.ICommand#getCaption()
*/
public String getCaption() throws IOException, AutomationException {
return "Add Date";
}
/‘,’:7’:
* @see com.esri.arcgis.systemUI.ICommand#getTooltip()
*/
public String getTooltip() throws IOException, AutomationException {
return "Add date";
}
/‘,’:7’:
* @see com.esri.arcgis.systemUI.ICommand#getMessage()
*/
public String getMessage() throws IOException, AutomationException {
return "Adds a date element to the page Tayout";
}
/‘,“:7’:
* @see com.esri.arcgis.systemUI.ICommand#getHelpFile()

*/

Chapter 6 * Developer scenarios * 279

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

public String getHelpFile() throws IOException, AutomationException {
return null;
}
/‘,’:7’:
* @see com.esri.arcgis.systemUI.ICommand#getHelpContextID()
*/
public int getHelpContextID() throws IOException, AutomationException {
return 0;
}
/‘,’:7’:
* @see com.esri.arcgis.systemUI.ICommand#getBitmap()
*/
public int getBitmap() throws IOException, AutomationException {
return 0;//We rely on being displayed as text
}
/‘,’:7’:
* @see com.esri.arcgis.systemUI.ICommand#getCategory()
*/
public String getCategory() throws IOException, AutomationException {
return “CustomCommands”;
}
/;’:7’:
* @see com.esri.arcgis.systemUI.ICommand#onCreate(java.lang.0Object)
*/
public void onCreate(Object obj) throws IOException,
AutomationException {

//to be added Tater
}
/;“:7’:
* @see com.esri.arcgis.systemUI.ICommand#onClick()
*/
public void onClick() throws IOException, AutomationException {

}

}

3. The onCreate method is passed a reference of the application that the com-
mand works with. In this case, it can be a MapControl, Pagel_ayontControl, or
ToolbarControl. Rather than adding logic in the onCreate method to determine
the type of object passed to the hook method, you will use the HookHelper
class to handle this. A command or tool needs to know how to handle the
hook it gets passed, so a check is needed to determine the type of ArcGIS
Control has been passed. The HookHelper is used to hold the hook and return
the ActiveView regardless of the type of hook (in this case either a
MapControl, Pagel_ayoutControl, or ToolbarControl).

Add the HookHelper member variable to the AddDateCommand class:

public class AddDateCommand implements ICommand, ITool{
HookHeTper hookHelper;

280 * ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

4. In the onCreate method, construct the hookhelper and use the setHookByRef
method to pass the controls object.
public void onCreate(Object obj) throws IOException, AutomationException
{
hookHeTper = new HookHelper(Q) ;
hookHeTper.setHookByRef(obj);

}

5. Add implementation for all methods defined in ITool interface to the
AddDateCommand class. Not all methods will be used, but they need to be
implemented to be able to compile the class. In the following code, pay atten-
tion to the onClick() method, as this method creates a TextElement with the
current date as its text and adds it to the graphics container of the hook
object.

/‘,’:7’:

* @see com.esri.arcgis.systemUI.ITool#getCursor()

*/

public int getCursor() throws IOException, AutomationException {
return 0;

}

/‘,’:7’:

* @see com.esri.arcgis.systemUI.ITool#onMouseDown(int, int, int,

int)

*/

pub1ic void onMouseDown(int button, int shift, int x, int y)
throws IOException, AutomationException {

Date today = new Date();

//format the date in the form "Wed 27 Aug, 2003"
SimpleDateFormat formatter;

formatter = new SimpleDateFormat("EEE d MMM, yyyy");
String dateString = formatter.format(today);

//create a font
StdFont font = new StdFont();
font.setName("Arial™);
font.setBold(true);

//create a text symbol
TextSymbol textSymbol = new TextSymbol1();
textSymbol.setFont(font);
textSymbol.setSize(15);

//create a text element to be added to the graphics container

TextETement textElement = new TextElement();
textETement.setSymbol (textSymbol) ;
textElement.setScaleText(false);
textElement.setText(dateString);

Chapter 6 * Developer scenarios * 28I

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

282 « ArcGIS Engine Developer Guide

//add the text element to the graphics container
TActiveView activeView = hookHelper.getActiveView();
IPoint pt =
activeView.getScreenDisplay(.getDisplayTransformation() . taMapPoint(x,y) ;
textElement.setGeometry (pt);

activeView.getGraphicsContainer() .addElement(textElement, 0);

//refresh the view
activeView.partialRefresh(esriViewDrawPhase.esriViewGraphics, null, null);

}
/-,':7':
* @see com.esri.arcgis.systemUI.ITool#onMouseMove(int, int, int, int)
*/
public void onMouseMove(int arg0, int argl, int arg2, int arg3)
throws IOException, AutomationException {
}
/-,':7':
* @see
com.esri.arcgis.systemUI.ITool#onMouseUp(int, int, int, int)
*/
public void onMouseUp(int arg0, int argl, int arg2, int arg3)
throws IOException, AutomationException {
}
/-,':7':
* @see com.esri.arcgis.systemUI.ITool#onDb1Click()
*/
public void onDb1Click() throws IOException, AutomationException {
}
/-,':7':
* @see com.esri.arcgis.systemUI.ITool#onKeyDown(int, int)
*/
public void onKeyDown(int arg0, int argl)
throws IOException, AutomationException {
}
/-,':7':
* @see com.esri.arcgis.systemUI.ITool#onKeyUp(int, int)
*/
public void onKeyUp(int arg0, int argl)
throws IOException, AutomationException {
}
/-,‘:7':
* @see com.esri.arcgis.systemUI.ITool#onContextMenu(int, int)
*/
public boolean onContextMenu(int arg0, int argl)
throws IOException, AutomationException {
return false;

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

Vi
* @see com.esri.arcgis.systemUI.ITool#refresh(int)
*/
public void refresh(int arg0) throws IOException, AutomationException {
}
Vi
* @see com.esri.arcgis.systemUI.ITool#deactivate()
*/
public boolean deactivate() throws IOException, AutomationException {
return true;

}
6. The AddDateCommand class is now complete. Compile it.

7. In MapViewerFrame, add an instance of the AddDateCommand to the
toolbar component in the buildAndShow() method, after the lines of code
that add prebuilt commands to the toolbar:
toolbar.addItem(new AddDateCommand(),

0, -1, true, 0, esriCommandStyles.esriCommandStyleTextOnly);

8. Recompile and launch MapViewer class. A new Add date tool will come up
on the toolbar. Select that tool and click on the page layout to add today’s
date at that point.

& Mapviewer
F MEBEEE QA0 @ | e
= £ Gulf of St. Lawrence
] Links ta Web Stes

= W Ciies
« Tomn or Vilage
small ity
o City

Bl B Mojor Roads Gulf of St. Lawrence
Map tips show # ST
o { . e

— Expressway

— Primary Highwsy

= ¥ Baselap
= W/ US. - Canadian Border
= W Coastlines

= W Mane

= W Land

Thu 28 Aug, 2003

Customizing the ToolbarControl

In addition to adding ArcGIS Engine commands and tools to the Too/barControl
using addItem() as shown above, you can also add them by customizing the
ToolbarControl using the customize dialog box. To do this, you will place the
Toolbar component in customize mode and display the customize dialog box.

1. Add the following imports for this section:

import javax.swing.JCheckBox;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

Chapter 6 * Developer scenarios * 283

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

Note that only tools and commands that are
registered on the system as COM components
can be added to the toolbar using the customize
dialog box. Java commands and tools (like the
one built in the previous step) do not appear in
the Customize dialog box, as they are not
registered as COM components in the system

registry

284 + ArcGIS Engine Developer Guide

import com.esri.arcgis.beans.toolbar.CustomizeDialog;

import com.esri.arcgis.beans.toolbar.ICustomizeDialogEvents;

import
com.esri.arcgis.beans.toolbar.ICustomizeDialogEventsOnCloseDialogEvent;
import
com.esri.arcgis.beans.toolbar.ICustomizeDialogEventsOnStartDialogEvent;

. Add the class members.

public class MapViewerFrame extends JFrame {

JCheckBox customizeCB; //JCheckbox to control toolbar customization

CustomizeDialog customizeDialog; //The customize dialog box used by
//the ToolbarControl constructor

public MapViewerFrame() {

. Create a new method “createCustomizeDialog()” to instantiate the customize

dialog box. Add the following code to the method:

Vi

* Method createCustomizeDialog.

:‘:/

private void createCustomizeDialog() throws IOException {
customizeDialog = new CustomizeDialog(Q);

//set the title

customizeDialog.setDialogTitle("Customize Toolbar Items");
//show the 'Add From File' button
customizeDialog.setShowAddFromFile(true);

//set the toolbar component that the new items will be added to
customizeDialog.setDoubleClickDestination(toolbar);

}

. In the buildandShow() method, call the createCustomizeDialog() method to

instantiate the customize dialog box. Also instantiate the customizeCB
JCheckBox and add event listeners to it to start and close the customize dialog
box:

public void buildAndShow() throws IOException {
JPanel mapTOCPanel = buildMapTOCPanel();

createCustomizeDialogQ);
customizeCB = new JCheckBox("Customize");
customizeCB.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent e) {
try {
if (customizeCB.1isSelected()) {
customizeDialog.startDialog(toolbar.getHWnd());
} else {
customizeDialog.closeDialog();
}
} catch (Exception ee) {
ee.printStackTrace();

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

s

5. To add the Customize check box to the GUI, modify the code to add the
toolbar and check box to a new JPanel. Add this panel to the
BorderlLayout NORTH position instead of adding just the toolbar in that
position.

JPanel topPanel = new JPanel();
topPanel.setlLayout(new BorderLayout());
topPanel.add(toolbar, BorderLayout.CENTER);
topPanel.add(customizeCB, BorderLayout.EAST);

this.getContentPane() .add(pagelLayout, BorderLayout.CENTER);
this.getContentPane() .add(mapTOCPanel, BorderLayout.WEST);

6. In the createCustomizeDialog() method, add event listener to the customize
dialog box to put the toolbar in ‘customize’ state when the dialog box is
started and in the normal state when it is closed:

private void createCustomizeDialog() throws IOException {
customizeDialog = new CustomizeDialog(Q);
//set the title
customizeDialog.setDialogTitle("Customize Toolbar Items");
//show the ‘Add From File’ button
customizeDialog.setShowAddFromFile(true);
//set the toolbar component that the new items will be added to
customizeDialog.setDoubleClickDestinationByRef(toolbar);

customizeDialog.addICustomizeDialogEventsListener(new
ICustomizeDialogEvents(){

public void onStartDialog(ICustomizeDialogEventsOnStartDialogEvent
arg0)
throws IOException {
toolbar.setCustomize(true);

}
public void onCloseDialog(ICustomizeDialogEventsOnCloseDialogEvent
arg0)
throws IOException {

toolbar.setCustomize(false);
customizeCB.setSelected(false);

s

}

7. Run the application and check the ‘customize’ check box to put the toolbar
into ‘customize’ mode and open the customize dialog box.

8. On the Commands tab, select the Graphic Element category, and drag the
Select Elements command to the toolbar to add it there. By right-clicking on

Chapter 6 * Developer scenarios * 285

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

286 * ArcGIS Engine Developer Guide

an item on the toolbar, you can adjust the appearance in terms of style and
grouping,

B Mopviewer E

=Bl
S QR0 EBE @ QY @ adose K soedamerts

" ¥ Eustomize
Gulf of SE. Lawrence Delete f
[ks to web sites
@ image On
5 W Cies Ihgonly x|
- T v Iage and Text
Small iy Bormands | Taaaets | penus | Begin Group
- Categorny Commands: (03 Spac
S| St
— Expressuay & o
erees E: Nudge Left i
— Primary Hghway Globe e | .
= ¥ BaseMap udge P 7
¥ U5, - Canadian Bor Map Navigation B Nudge Up ¥ &
PageLapout =) Rotate ;|
= ¥ Costlnes Reacer. 8 Relele Left
o (2 Folete gkt O o
= ¥ mane R Select Elements e
Iy Send Backward TSRS A
= ¥ Land SendtoBack 2
1 Unroup =
kS
Use double cick or rag and drop A From File - <
10 acd commands o

Stop customizing the application. Use the Select tool to

move the text ele-
ment containing today’s date.

& Mopviewer

=lalx|
F BEOE RS QQ @ adose | Rk Eements I~ Bislorizd
= £ Gulf of St. Lawrence
= [Links to Web Sites
@

= W Cities
+ Townor Vilage
Small Gty
© Gty
] Major Rosds
Map tips show #
— Expressway.

<

— Primary Highway
= W Base Map
£ M| LS. - Canadian Border

I Coastlines:

O
1 ¥ Maine

Mon 8 Sep, 2003

(Data Source: ESRI M aps and Data OD 2001,
and Statistics Ganada (Website:
tp Jiceps statcan cafengishiprofilP laceSearchForml cfm)

Map produced by ESRI, Inc, 2001

BUILDING APPLICATIONS WITH VISUAL JAVABEANS

DEPLOYMENT

To successfully deploy this application onto a user’s machine, you will create an
executable JAR file. Users will then be able to launch the application by using the
JRE installed as part of ArcGIS Engine Developer Kit or Runtime, by giving the
following command:

java —jar mapviewer.jar

To create an executable JAR:

1. In the directory where the compiled Java class files are present, create a file
called “manifest.txt”.

2. Add the following single line to the manifest.txt file:
Main-Class: com.esri.arcgis.scenario.beans.MapViewer

3. Make sure to hit enter at the end of the first line.

4. Save the file, and open a command window. cd to the directory containing the
manifest.txt file.

5. Give the following command to create the executable JAR file:
jar cmf manifest.txt mapviewer.jar *.class

6. A mapviewer.jar file will be created. This is the executable JAR that can be
launched using the JRE included as part of the ArcGIS Engine Developer Kit,
as follows:
"C:\Program Files\ArcGIS\java\jre\bin\java" -jar mapviewer.jar

This command can be bundled in a batch file or shell script to provide a launch

script.

ADDITIONAL RESOURCES

The following resources may help you understand and apply the concepts and
techniques presented in this scenatio.

* Additional documentation available in the ArcGIS Engine Developer Kit

including ArGILS Developer Help, javadoc, object model diagrams, and samples
to help you get started.

e ArcGIS Developer Online—Web site providing the most up-to-date informa-
tion for ArcGIS Developers including updated samples and technical docu-
ments. Go to http://arcgisdeveloperonline.esti.com.

* ESRI online discussion forums—NWeb sites providing invaluable assistance
from other ArcGIS developers. Go to http://support.esti.com and click the
User Forums tab.

* Sun’s Java Tutorial at h##p:/ /java.sun.com/ docs/ books/ tutorial/

* Helpful Web sites for Java in general, such as Javaranch (hp://
wwmjavaranch.com/)—a friendly place for Java greenhorns.

Chapter 6 * Developer scenarios * 287

BUILDING APPLICATIONS WITHWINDows CONTROLS

Rather than walk through this scenario, you can
get the completed application from the samples
installation location. The sample is installed as
part of the ArcGIS developer samples.

The ArcGIS developer samples are not included
in the 'typical installation of the ArcGIS Engine
Developer Kit. If you do not have them installed,
rerun the Developer Kit install wizard, choose
Custom or Modify, and select the samples
feature under Software Developer Kit.

288 * ArcGIS Engine Developer Guide

This walkthrough is for developers who want to build and deploy an application
using .NET. It describes the process of building and deploying an application
using the ArcGIS Controls.

You can find this sample in

<install_Tocation>\DeveloperKit\Samples\Developer_Guide_Scenarios\
ArcGIS_Engine\Building_an_ArcGIS_Control_Application\Map_Viewer

PROJECT DESCRIPTION

The goal of the Building applications with Windows Controls scenatio is to
demonstrate and make you familiar with the steps required to develop and deploy
a GIS application using the standard ArcGIS Controls within the Microsoft
Visual Studio.NET API. The scenario uses the MapControl, Pagel_ayontControl,
TOCControl, and ToolbarControl as Windows Controls within the Microsoft Visual
Studio .NET development environment. COM, Java, and C++ programmers
should refer to the following scenarios: Building applications with ActiveX,
Building applications with visual JavaBeans, Building a command line Java appli-
cation, and Building a command line C++ application.

The scenario demonstrates the steps required to create a GIS application for
viewing map documents pre-authored using ArcMap, an ArcGIS Desktop applica-
tion. The scenario covers the following techniques:

* Loading and embedding the ArcGIS Controls in Microsoft Visual Studio
NET.

* Loading pre-authored map documents into the MapControl and
Pagel_ayoutControl.

* Setting ToolbarControl and TOCContro/ buddy controls.

* Handling form resize.

e Adding ArcGIS Engine commands and tools to the Too/barControl.
* Creating popup menus.

* Managing label editing in the TOCControl.

* Drawing shapes on the MapControl.

e Creating a custom tool to work with the MapControl, Pagel_ayoutControl, and
ToolbarControl.

* Customizing the ToolbarControl.

* Deploying the application onto a Windows operating system.

CONCEPTS

This scenario is implemented using the Microsoft Visual Studio .NET develop-
ment environment and uses the ESRI interop assemblies to host the ArcGIS
Controls inside NET Windows Controls in a .NET form. These interoperability
assemblies act as a bridge between the unmanaged code of COM and the man-
aged .NET code. Any references to the members of the COM ArcGIS Controls
are routed to the interop assemblies and forwarded to the actual COM object.
Likewise, responses from the COM object are routed to the interop assembly and
forwarded to the NET application. Each ArcGIS Engine control has events,

BUILDING APPLICATIONS WITHWINDows CONTROLS

properties, and methods that can be accessed once embedded within a container
such as a NET form. The objects and functionality within each control can be
combined with other ESRI ArcObjects and custom controls to create customized
end user applications.

The scenario has been written in both C# and Visual Basic NET, though the
following implementation concentrates on the C# scenario. Many developers will
feel more comfortable with Visual Basic .NET, as the code looks familiar to
Visual Basic 6.0, while the syntax of the of the C# programming language will
be familiar to Java and C++ programmers. Whichever development environment
you use, your future success with the ArcGIS Controls depends on your skill in
both the programming environment and ArcObjects.

The MapControl, Pagel_ayontControl, TOCControl, and ToolbarControl are used in this
scenario to provide the user interface of the application. The ArcGIS Controls
are used in conjunction with other ArcObjects and ArcGIS Engine commands by
the developer to create a GIS viewing application.

DESIGN

The scenario has been designed firstly to highlight how the ArcGIS Controls
interact with each other, and secondly to expose a part of each ArcGIS Controls
object model to the developer.

Each NET ArcGIS Engine control has a set of property pages that can be ac-
cessed once the control is embedded within a . NET Form. These property pages
provide shortcuts to a selection of a control’s properties and methods, and allow
a developer to build an application without writing any code. This scenario does
not use the property pages, but rather builds up the application programmatically.
For further information about the property pages, refer to the ArnGILS Developer
Help.

REQUIREMENTS

To successfully follow this scenario you need the following (the requirements for
deployment are covered later in the Deployment section):

* An installation of the ArcGIS Engine Developer Kit with an authorization
file enabling it for development use.

* An installation of the Microsoft Visual Studio .NET 2003 development
environment and the Microsoft NET Framework 1.1. and an appropriate
license.

e Familiarity with Microsoft Windows operating systems and a working knowl-
edge of Microsoft Visual Studio .NET and either the C# or Visual Basic NET
programming language. While the scenario provides some information about
how to use the ArcGIS Controls in Microsoft Visual Studio .NET, it is not a
substitute for training in the development environment.

* While no experience with other ESRI software is required, previous experi-
ence with ArcObjects and a basic understanding of ArcGIS applications, such
as ArcMap and ArcCatalog, is advantageous.

Chapter 6 » Developer scenarios * 289

BUILDING APPLICATIONS WITHWINDows CONTROLS

The ArcGIS developer samples are not included
in the "typical' installation of the ArcGIS Engine
Developer Kit. If you do not have them installed,
rerun the Developer Kit install wizard, choose
Custom or Modify, and select the samples
feature under Software Developer Kit.

The AxControIName .NET Framework
components represent the control that is
hosted within a .NET Form, whilst the
esriControlName assemblies contain the
object and interfaces from inside the
control’s type library.

290 « ArcGIS Engine Developer Guide

e Access to the sample data and code that comes with this scenario. This is
located at

<install_Tocation>\DeveloperKit\Samples\Developer_Guide_Scenarios\
ArcGIS_Engine\Building_an_ArcGIS_Control_Application\Map_Viewer

The controls and libraries used in this scenatio are as follows:

e AxMapControl * AXTOCControl

* AxPagelayoutControl * AxToolbarControl

* ESRI.ArcGIS.Carto * ESRI.ArcGIS.System

* ESRI.ArcGIS.Display * ESRILArcGIS.SystemUI
e ESRILArcGIS.Geometry * ESRILArcGIS. Utility

e esriMapControl * estiTOCControl

e esriPagelayoutControl ¢ esriToolbarControl
IMPLEMENTATION

The implementation below provides you with all the code you will need to
successfully complete the scenario. It does not provide step-by-step instructions
to develop applications in Microsoft Visual Studio .NET, as it assumes that you
have a working knowledge of the development environment already.

Loading the ArcGIS Controls

Before you start to program your application, the ArcGIS Controls and the other
ArcGIS Engine library references that the application will use should be loaded
into the development environment.

1. Start Visual Studio .NET and create a new Visual C# ‘Windows Application’
project from the New project dialog box.

2. Name the project ‘Controls’, and browse to a location to save the project.

3. Right-click in the Windows Forms tab of the Toolbox and select ‘Add/
Remove Items...” from the context menu.

BUILDING APPLICATIONS WITHWINDows CONTROLS

4. In the Customize Toolbox dialog box, select NET Framework components
and check ‘AxMapControl’, ‘AxPagelayoutControl’, AxTOCControl’, and
‘AxToolbarControl’. Click OK. The controls will now appear in the Windows
Forms tab of the toolbox.

Customize Toolbox x|

NET Framework Components | com compenerts |

Hame Namespace Assembly Name -
) ESRIArc i ESRI AN Control
AxPageLayoutControl ESRLArcGlS. PageLayoutControl ESRLArCGLS. PageLayout
£xTOCControl ESRILArcGIS, TOCControl ESRILArcGIS, TOCControl
AxToolbarControl ESRILArcGIS, ToolbarContral ESRILANCGIS, ToobarCont

System. Windows. Forms System, CF Windows. Forr
System. Windows. Forms System, Windows. Forms {
Button System. Web, UL WebControls System,Web (1,0.5000.0
Oeuttonarray Microsaft, wisualBasic, Compatibility . WE6 Microsoft. VisualBasic. Car
System. Web.L1.MabilsControls System Wb, Mobile (1.0,

System. Web, UL WebConkrols Syster Wet [1.0.5000.0

AxiapControl
gy Lenguage: Invariant Language (Invariant Country)
version: 9.0,0.380

oK Cancel ‘ Reset ‘ Help ‘

5. Click on the Project menu and choose Add Reference....

The ESRI.NET assemblies, will be used to 6. In the Add Reference dialog box, double click ‘ESRI.ArcGIS.Carto’,

instantiate and make cals on the objects in the ‘HSRI.ArcGIS.Display’ ‘ESRI.ArcGIS.Geometry’, ‘ESRI.ArcGIS.System’,
ESRI object libraries from your C# project using /

the COM interoperability services provided by ‘ESRI.AI‘CGIS.SYSTZCIT]UI, ESRIAI‘CGISUtlht}’ Click OK.
the .NET framework.
g

HET | com | Projects |

Browse...
Select

Component Name Yersion

ESRILACGIS, Systemi]
ESRILArCGIS, TOCConkrol

9 vogram FlesiarcalsiDat,
9
ESRLACGIS. TockarCortrol 9.
9
1
1
1

394 DiiProgram FilesiArcalsiDat ..
394 DifProgram Fles\ArcGISiDot. .,
352 Diiprogram Flesiorcaisipat,.,
0 DiiPragram FilesiarcalSiDat ..
esriMapContral 0 DifProgram Fles\ArcGISiDot. .,
esriPageLayoutControl 0 DifFrogram Fles\ArcGIS\Dot. .,
esriReaderContral 1.00.0 DiiPragram FilesiarcalSiDat ..
esrisceneCantrol 1.0.0.0 D:iProgram Fles\arcGIsiDot. .
esriTOCControl 1.0.0.0 DifFrogram Fles\ArcGIS\Dot. .,
esriTanlharCankeal 1.nn MPraaram Filesidre GISi0ne ﬂ

ESRIACGIS Ltilities
esriGlobeContral

Selected Components:

Component Name Type [source [j Remove

ESRLArcGIS, Carto MET D:\Program Files\ArcGIsiDotie. .
ESRILACGIS. Display MET D:|Progran FllesiArcGISiDotile. .
ESRIACGIS. Geametry MET D:\Program Files| ArcGI51Dothe

ESRLArCGIS, System MET D:\Program Files\ArcGIsDote. .

FSRIAPFGTS. Suatanl IT MFT FiPrraram Fiecareosinarte. 7]

oK concel | help

Chapter 6 * Developer scenarios * 291

BUILDING APPLICATIONS WITHWINDows CONTROLS

In .NET a variable is fully qualified using a
Namespace. Namespaces are a concept in .NET
that allow objects to be organized hierarchically,

regardless of the assembly they are defined in.To
make code simpler and more readable, the
directives act as shortcuts when referencing
items specified in namespaces.

Remember that C# is case sensitive. If you start
by typing “ESRI.”, the auto completion feature of
IntelliSense will allow you to complete the next

section of code by pressing Tab.

292 < ArcGIS Engine Developer Guide

Embedding the ArcGIS Controls in a Container

Before you can access each control’s properties, methods, and events, each control
needs embedding within a .NET container. Once the controls are embedded
within the form, they will shape the application’s user interface.

1. Open the NET Form in design mode.

2. Double-click the AxMapControl in the Windows Forms tab of the toolbox to
add a MapControl onto the form.

3. Repeat to add the AxPagelayoutControl, AXTOCControl, and
AxToolbarControl.

4. Resize and reposition each control on the form as shown.

=k

ESRI ToolbarControl |

ESRI TOCControl

ESRI PageLayoutControl

ESRI MapControl

5. Double-click on the form to display the form’s code window. Add the follow-
ing ‘using’ directives to the top of the code window:
using System;
using System.Windows.Forms;
using ESRI.ArcGIS.SystemUI;
using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Display;
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.esriSystem;
using esriToolbarControl;
using esriTOCControl;

BUILDING APPLICATIONS WITHWINDows CONTROLS

Loading Map Documents into the PageLayoutControl and
MapControl

Individual data layers or map documents pre-authored using ArcMap, an ArcGIS
Desktop application, can be loaded into the MapControl and Pagel_ayontControl.
You can either load the sample map document provided or you can load in your
own map document. Later you will add a dialog box to browse to a map docu-
ment.

1. Select the Form_Ioad event and enter the following code (if you are using
your own map document substitute the correct filename):

private void Forml_Load(object sender, System.EventArgs e)
{

//Load a pre-authored map document into the PagelLayoutControl using
relative paths.

string fileName =
@', .\..\..\- 2\ A\ LG\ L\Data\\ArcGIS_Engine_Developer_Guide\Gulf of St.
Lawrence.mxd";

if (axPagelLayoutControll.CheckMxFile(fileName))
{
axPagelLayoutControll.LoadVxFile(fileName,"");

2. Display the form in design mode and select axPagelayoutControll from the
Properties window and display the axPagel.ayoutControl events. Double-click
on the OnPagelayoutReplaced event to add an event handler to the code
window.

IaxPageLaynutEnntrull ESRI.ArcGIS.Ij

tEel#] s

onfMouseldp e
OndleDrop
[onPageLayautReplacedjet ayoutt |
OnPageSizeChar

OnviewRefreshe

Parenti_hanged

Resize

SizeChanged

SystemColorsChe

Walidated

Yalidating

1

| Actives -about, .., AckiveX -Properties. ., |

| OnPagelayoutReplaced |

3. In the axPagelayoutControl_OnPagel.ayoutReplaced event enter the follow-
ing code to load the same map document into the MapControl. The

Chapter 6 * Developer scenarios * 293

BUILDING APPLICATIONS WITHWINDows CONTROLS

294 + ArcGIS Engine Developer Guide

OnPagelayoutReplaced event will be triggered whenever a document is
loaded into the Pagel_ayoutControl.

private void axPagelLayoutControll_OnPagelLayoutReplaced(object sender,
ESRT.ArcGIS. Pagel ayoutControl . IPagel ayoutControlEvents_OnPagelayoutReplacedEvent
e)

{

//Load the same pre-authored map document into the MapControl.
axMapControll.LoadMxFile(axPagelLayoutControll.DocumentFilename,null,
null);

//Set the extent of the MapControl to the full extent of the data.
axMapControll.Extent = axMapControll.FullExtent;
}

Setting the TOCControl and ToolbarControl Buddy Controls

For the purpose of this application the TOCControl and ToolbarContro/ will work
in conjunction with the Pagel_ayoutControl, rather than the MapControl. To do this
the Pagel_ayontControl must be set as the buddy control. The TOCControl uses the
buddy’s ActiveView to populate itself with maps, layers, and symbols, while any
command, tool, or menu items present on the Too/barContro/ will interact with the
buddy control’s display.

1. In the Form_Load event enter the following after the load document code:

private void Forml_Load(object sender, System.EventArgs e)

{
//Load a pre-authored map document into the PagelLayoutControl using
relative paths.

string fileName =
@', .\..\..\- N\ LG\ L\Data\\ArcGIS_Engine_Developer_Guide\Gulf of St.
Lawrence.mxd";

if (axPageLayoutControll.CheckMxFile(fileName))
{
axPagelLayoutControll.LoadVxFile(fileName,"");

//Set buddy controls.

axTOCControll.SetBuddyControl(axPageLayoutControll);

axToolbarControll.SetBuddyControl (axPageLayoutControll);
}

. Build and run the application. The map document is loaded into the

Pagel_ayontControl, and the TOCControl lists the data layers in the map docu-
ment. Use the TOCControl to toggle layer visibility by checking and unchecking
the boxes. By default, the focus map of the map document is loaded into the
MapControl. At this point the Too/barControl is empty because no commands
have been added to it. Try resizing the form, and note that the controls do not
change size.

BUILDING APPLICATIONS WITHWINDows CONTROLS

EE

= £ Gulf of 5t. Lawrence -
(= [Links to Web Sites

=
= vl Cities
« Town or Yilage
o smalciy
® iy

= ¥l Major Roads
WMap tips show #
— Expressway
—— Primary Highway
= Base Map
£l W 115, - Canadian Bor|

) b Coast lines

O
) [l Maine k2
4| | »

Handling Form Resize

When the form is resized at run time the Pagel_ayoutControl and MapControl do not
automatically resize themselves. To resize the controls so that they always fill the
extent of the form, you must anchor the controls to the form. If the
Pagel_ayontControl or MapControl contain a lot of data, redrawing this data during
the Form_Resize can be costly. To increase performance you can suppress the data
redraw until the resizing is complete. During the resize a stretched bitmap will be
drawn instead.

1. Display the form in design mode and select axPagel.ayoutControll from the
Properties window. Click on the anchor property and anchor the
axPagelayoutControl to the top, left, bottom, and right of the form.

-

2. Anchor the axMapcontrol to the top, left, and bottom of the form.

Chapter 6 * Developer scenarios * 295

BUILDING APPLICATIONS WITHWINDows CONTROLS

3. Add the following code to the beginning of the Form_ILoad event:

private void Forml_Load(object sender, System.EventArgs e)
{
//Suppress drawing while resizing
this.SetStyle(ControlStyles.EnableNotifyMessage,true);

}

This method of suppressing resize drawing 4. Add the following constants to the class:

works by examining the windows messages sent
to the form.When a form starts resizing, public class Forml : System.Windows.Forms.Form
windows sends the WM_ENTERSIZEMOVE {
Windows(messge).At this point we suppress
drawing to the MapControl and o . i
PageLayoutControl and draw using a “stretchy private const int WM_ENTERSIZEMOVE = 0x231;
bitmap”.When windows sends the private const int WM_EXITSIZEMOVE = 0x232;
WM_EXITSIZEMOVE the form is released from
resizing and we resume with a full redraw at . . .
¢ thg new extent. 5. Add the following code to override the OnNotifyMessage method.

protected override void OnNotifyMessage(System.Windows.Forms.Message m)

{
base.OnNotifyMessage (m);

if (m.Msg == WM_ENTERSIZEMOVE)

{
axMapControll.SuppressResizeDrawing(true, 0);
axPagelayoutControll. SuppressResizeDrawing(true, 0);
}
else if (m.Msg == WM_EXITSIZEMOVE)
{
axMapControll.SuppressResizeDrawing(false, 0);
axPagelayoutControll.SuppressResizeDrawing(false, 0);
}
}

6. Build and then run the application. Try resizing the Form.

Adding Commands to the ToolbarControl

The ArGIS Engine comes with over 120 commands and tools that work with the
MapControl, the Pagel_ayontControl and the ToolbarControl directly. These commands
and tools provide you with a lot of frequently used GIS functionality for map
navigation, graphics management and feature selection. You will now add some
of these commands and tools to your application.

1. In the Form_Load event add the following code before the load document
code.

private void Forml_Load(object sender, System.EventArgs e)

{

string progID;
//Add generic commands
progID = "esriControlToolsGeneric.ControlsOpenDocCommand";

296 * ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITHWINDows CONTROLS

axToolbarControll.AddItem(progID, -1, -1, false, O,
esriCommandStyTes.esriCommandStyleIconOnly);

//Add Pagelayout navigation commands

progID = "esriControlToolsPagelLayout.ControlsPageZoomInTool";

axToolbarControll.AddItem(progID, -1, -1, true, O,

esriCommandStyTes.esriCommandStyleIconOnly);

progID = "esriControlToolsPagelLayout.ControlsPageZoomOutTool";

axToolbarControll.AddItem(progID, -1, -1, false, O,

esriCommandStyles.esriCommandStyleIconOnly);

progID = "esriControlToolsPagelLayout.ControlsPagePanTool";

axToolbarControll.AddItem(progID, -1, -1, false, O,

esriCommandStyles.esriCommandStyleIconOnly);

progID = "esriControlToolsPagelLayout.ControlsPageZoomwholePageCommand";

axToolbarControll.AddItem(progID, -1, -1, false, O,
esriCommandStyTes.esriCommandStyleIconOnly);

proglID =
"esriControlToolsPagelLayout.ControlsPageZoomPageTolLastExtentBackCommand" ;

axToolbarControll.AddItem(progID, -1, -1, false, O,
esriCommandStyTes.esriCommandStyleIconOnly);

proglID =
"esriControlToolsPagelLayout.ControlsPageZoomPageTolastExtentForwardCommand" ;

axToolbarControll.AddItem(progID, -1, -1, false, O,
esriCommandStyTes.esriCommandStyleIconOnly);

//Add Map naviagtion commands

progID = "esriControlToolsMapNavigation.ControlsMapZoomInTool";

axToolbarControll.AddItem(progID, -1, -1, true, O,
esriCommandStyTes.esriCommandStyleIconOnly);

progID = "esriControlToolsMapNavigation.ControlsMapZoomOutTool";

axToolbarControll.AddItem(progID, -1, -1, false, O,
esriCommandStyTes.esriCommandStyleIconOnly);

progID = "esriControlToolsMapNavigation.ControlsMapPanTool";

axToolbarControll.AddItem(progID, -1, -1, false, O,
esriCommandStyTes.esriCommandStyleIconOnly);

progID = "esriControlToolsMapNavigation.ControlsMapFullExtentCommand";

axToolbarControll.AddItem(progID, -1, -1, false, O,
esriCommandStyTes.esriCommandStyleIconOnly);

//Load a pre-authored...
}

Chapter 6 * Developer scenarios * 297

BUILDING APPLICATIONS WITHWINDows CONTROLS

2. Build and then run the application. The ToolbarControl now contains ArcGIS
Engine commands and tools that you can use to navigate the map document
loaded into the Pagel_ayontControl. Use the page layout commands to navigate
around the actual page layout and the map commands to navigate around the
data present in the data frames. Use the open document command to browse
and load other map documents.

~=loix]
| BEERBO L QN

- £ Gulf of St. Lawrence -

(= [Links to b Sites

)
= W Cities

« Town or Yilage

o small Ciry

® Gty
= W Major Roads

WMap tips show #

— Expressway

—— Primary Highway
= Base Map

= 1 W5, - Canadian Bori—|

() ¥ Coast lines

O
=) ¥ Maine =2
4| | »

Creating a Popup Menu for the PagelLayoutControl

As well as adding ArcGIS Engine commands to the Too/barControl to work with
the buddy control, as in the previous step, you can also create popup menus from
the ArcGIS Engine commands. You will add a popup menu that works with the
Pagel_ayontControl to your application. The popup menu will display whenever the
right mouse button is used on the display area of the Pagel_ayoutControl.

1. Add the following member variable to the class:

public class Forml : System.Windows.Forms.Form

{
private ESRI.ArcGIS.ToolbarControl.AxToolbarControl
axToolbarControll;

private ESRI.ArcGIS.TOCControl.AxTOCControl axTOCControll;
private ESRI.ArcGIS.MapControl.AxMapControl axMapControll;

private ESRI.ArcGIS.PagelayoutControl.AxPagelLayoutControl
axPagelayoutControll;

private IToolbarMenu m_ToolbarMenu = new ToolbarMenuClass(); //The
popup menu

2. Add the following code to the Form_Load event after the code adding the
commands to the ToolbarControl, but before the load document code.

private void Forml_Load(object sender, System.EventArgs e)

{

//Add Map naviagtion commands...

298 « ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITHWINDows CONTROLS

//Share the ToolbarControl’s command pool

m_TooTbarMenu.CommandPool = axToolbarControll.CommandPool;

//Add commands to the ToolbarMenu

progID = "esriControlToolsPagelayout.ControlsPageZoomInFixedCommand";

m_ToolbarMenu.AddItem(progID, -1, -1, false,
esriCommandStyles.esriCommandStyleIconAndText) ;

progID = "esriControlToolsPagelayout.ControlsPageZoomOutFixedCommand";

m_ToolbarMenu.AddItem(progID, -1, -1, false,
esriCommandStyTes.esriCommandStyleIconAndText) ;

progID = "esriControlToolsPagelLayout.ControlsPageZoomwholePageCommand";

m_ToolbarMenu.AddItem(progID, -1, -1, false,
esriCommandStyTes.esriCommandStyleIconAndText) ;

progID =
"esriControlToolsPagelLayout.ControlsPageZoomPageTolLastExtentBackCommand" ;

m_ToolbarMenu.AddItem(progID, -1, -1, true,
esriCommandStyTes.esriCommandStyleIconAndText) ;

progID =
"esriControlToolsPagelLayout.ControlsPageZoomPageTolastExtentForwardCommand";

m_ToolbarMenu.AddItem(progID, -1, -1, false,
esriCommandStyTes.esriCommandStyleIconAndText) ;

//Set the hook to the PagelLayoutControl
m_ToolbarMenu. SetHook (axPageLayoutControll) ;

//Load a pre-authored..
}

3. Display the Form in design mode and select axPagelLayoutControll from the
Properties window and display the axPagelayoutControl events. Double click
on the OnMouseDown event to add an event handler to the code window.

4. In the axPagelayoutControl_OnMouseDown event add the following code:

private void axPagelLayoutControll_OnMouseDown(object sender,
ESRI.ArcGIS.PagelLayoutControl.IPagelLayoutControlEvents_OnMouseDownEvent
e)

{

//Popup the ToolbarMenu
if (e.button == 2)
{
m_ToolbarMenu.PopupMenu(e.x,e.y,axPageLayoutControll.hWnd);

Chapter 6 » Developer scenarios * 299

BUILDING APPLICATIONS WITHWINDows CONTROLS

300 * ArcGIS Engine Developer Guide

5. Build and run the application. Right click on the PagelayoutControl’s display
area to display the popup menu, and navigate around the page layout.

~=loix]
FEERBD 8380

= £7 Gulf of 5t. Lawrence |
(= [Links to b Sites

=
= W Cities

« Town or Yilage

o small Ciry

® iy
= Majar Roads

WMap tips show #

— Expressway

—— Primary Highway
= Base Map

£l W 115, - Canadian Bor|

[Fixed Zaom In

) b Coast lines

O
=)] Maine =2
4| |

Controlling Label Editing in the TOCControl

By default the TOCControl allows users to automatically toggle the visibility of
layers and to change map and layer names as they appear in the table of contents.
You will add code to prevent users from editing a name, and replacing it with an
empty string.

1. Add the following code to the beginning of the Form_ILoad event.

private void Forml_Load(object sender, System.EventArgs e)
{
//Set label editing to manual
axTOCControll.LabelEdit = esriTOCControlEdit.esriTOCControlManual;

//Add generic commands
}

2. Display the Form in design mode and select AXTOCControll from the Proper-
ties window and display the AXTOCControl events. Double click on
OnEndLabelEdit to add an event handler to the code window.

3. Add the following code to the axTOCControl_OnEndlLableEdit event
private void axTOCControll_OnEndLabelEdit(object sender,
ESRI.ArcGIS.TOCControl.ITOCControlEvents_OnEndLabelEditEvent e)

{
//If the new label is an empty string then prevent the edit
string newLabel = e.newlLabel;

if (newLabel.TrimQ) ="")
{

e.cankEdit = false;
}

BUILDING APPLICATIONS WITHWINDows CONTROLS

Navigating around the focus map using the map
navigation tools will change the extent of the
focus map in the PageLayoutControl and cause
the MapControl to update. Navigating around
the page layout with the page layout navigation
tools will change the extent of the page layout
(not the extent of the focus map in the
PageLayoutControl), so the MapControl will not

update.

The variable declared as visBoundsUpdatedE is a
delegate.A delegate is a class that can hold a
reference to a specific method and link this to a
specific event.The linking process between the
event and the method is sometimes known in
.NET as wiring.

4. Build and run the application. To edit a map, layer, heading or legend class
label in the TOCControl, click on it once, and then click on it a second time to
invoke label editing, Try replacing the label with an empty string. You can use
the ESC key on the keyboard at any time during the edit to cancel it.

=k
| REaB0 L@@

[l £F Gulf of St. Lawrence -]
= [Links to Web Sites

=
= Wl Cities
« Town or Yilage
o Small Gity
® iy
= W Major Roads
tap tips show #
— Expresswa

= Base Map
= bl U.5. - Canadian Bord ™

= [l Coast lines

)
El b Maine =
4 | »

Drawing Shapes on the MapControl

You will now use the MapContro/ as an overview window and draw on its display
the current extent of the focus map within the Pagel_ayoutControl. As you navigate
around the data within the data frame of the Pagel_ayoutControl you will see the
MapControl overview window update.

1. Add the following member variables to the class:

public class Forml : System.Windows.Forms.Form
{
private ESRI.ArcGIS.ToolbarControl.AxToolbarControl axToolbarControll;
private ESRI.ArcGIS.TOCControl.AxTOCControl axTOCControll;
private ESRI.ArcGIS.MapControl.AxMapControl axMapControll;

private ESRI.ArcGIS.PagelayoutControl.AxPagelLayoutControl
axPagelLayoutControll;

private IToolbarMenu m_ToolbarMenu = new ToolbarMenuClass();
private IEnvelope m_Envelope; //The envelope drawn on the MapControl

private Object m_Fi11Symbol; //The symbol used to draw the envelope on
the MapControl

private ITransformEvents_VisibleBoundsUpdatedEventHandler
visBoundsUpdatedE; //The PagelLayoutControl's focus map events

Chapter 6 * Developer scenarios ¢ 301

BUILDING APPLICATIONS WITHWINDows CONTROLS

2. Create a new function called CreateOverviewSymbol. This is where you will
create the symbol used in the MapControl to represent the extent of the data in
the focus map of the PagelayontControl. Add the following code to the func-
tion.

private void CreateOverviewSymbol()
{
//Get the IRGBColor interface
IRgbColor color = new RgbColor(Q);
//Set the color properties
color.RGB = 255;

//Get the ILine symbol interface

ILineSymbol outline = new SimpleLineSymbol1();
//Set the 1ine symbol properties
outline.Width = 1.5;

outline.Color = color;

//Get the IFi11Symbol interface
ISimpTleFi11Symbol simpleFil1Symbol = new SimpleFiT1SymbolClassQ);
//Set the fi1l symbol properties
simpleFi11Symbol.0utline = outline;
simpleFi11Symbol.Style = esriSimpleFil1Style.esriSFSHolTlow;
m_FiT1Symbol = simpleFil1Symbol;

}

3. Call the CreateOverviewSymbol function from the Form_ILoad event before
the TOCControl label editing code.

private void Forml_Load(object sender, System.EventArgs e)
{
//Create symbol used on the MapControl
CreateOverviewSymbo1();

//Set label editing to manual..
}

4. Add the following OnVisibleBoundsUpdated function. This function will be
linked to an event raised whenever the extent of the map is changed and is
used to set the envelope to the new visible bounds of the map. By refreshing
the MapControl you force it to redraw the shape on its display.
private void OnVisibleBoundsUpdated(IDisplayTransformation sender, bool
sizeChanged)

{
//Set the extent to the new visible extent
m_Envelope = sender.VisibleBounds;
//Refresh the MapControl's foreground phase

axMapControll.ActiveView.PartialRefresh(esriViewDrawPhase.
esriViewForeground, null, null);

}

5. The default event interface of the Pagel_ayoutControl is the
IPagelayoutControlEvents. These events do not tell us when the extent of
the map within the data frame changes. To do this you will use the

302 « ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITHWINDows CONTROLS

ItransformEvents interface of the Pagel_ayontControl’s focus map. Add the
following code to the PagelayoutControl_OnPagelayoutReplaced event
handler directly above the load document code.
private void axPagelLayoutControll_OnPagelLayoutReplaced(object sender,
ESRT.ArcGIS. Pagel ayoutControl . IPagel ayoutControlEvents_OnPagelayoutReplacedEvent
e)
{

//Get the IActiveView of the focus map in the PagelLayoutControl

TActiveView activeView = (TActiveView)
axPagelLayoutControll.ActiveView.FocusMap;

//Trap the ITranformEvents of the PagelLayoutCntrol's focus map
visBoundsUpdatedE = new
ITransformEvents_VisibleBoundsUpdatedEventHandler (OnVisibleBoundsUpdated) ;

((ITransformEvents_Event)activeView.ScreenDisplay.
DisplayTransformation).VisibleBoundsUpdated += visBoundsUpdatedE;

//Get the extent of the focus map
m_Envelope = activeView.Extent;

//Load the same pre-authored map document into the MapControl

axMapControll.LoadMxFile(axPagelLayoutControll.DocumentFilename,null,
null);

//Set the extent of the MapControl to the full extent of the data
axMapControll.Extent = axMapControll.FullExtent;
}

6. Display the Form in design mode and select axMapControll from the Proper-
ties window and display the axMapControl events. Double click on
OnAfterDraw to add an event handler to the code window.

7. Add the following code to the axMapControl_OnAfterDraw event handler to
draw the envelope with the symbol you created eatlier onto the MapControl’s
display.
private void axMapControll_OnAfterDraw(object sender,
ESRI.ArcGIS.MapControl.IMapControlEvents2_OnAfterDrawEvent e)

{
if (m_Envelope == null)
{
return;
}

//If the foreground phase has drawn
esriViewDrawPhase viewDrawPhase = (esriViewDrawPhase) e.viewDrawPhase;
if (viewDrawPhase == esriViewDrawPhase.esriViewForeground)
{
IGeometry geometry = m_Envelope;
axMapControll.DrawShape(geometry, ref m_Fi11Symbol);

Chapter 6 * Developer scenarios * 303

BUILDING APPLICATIONS WITHWINDows CONTROLS

This scenario’s source code is located at
<install_location>\DeveloperKit\Samples\
Developer_Guide_Scenarios\ArcGIS_Engine\
Building_an_ArcGIS_Control_Application\
Map_Viewer.

304 « ArcGIS Engine Developer Guide

8. Build and run the application. Use the map navigation tools that you added

carlier to change the extent of the focus map in the Pagel_ayontControl. The
new extent is drawn on the MapControl.

=lolx|
2 EREED TS aaid

[£F Gulf of St.Lawrence |
=1 L] Links ko Web Sites

(]
= W Cities
- Townor Vilage:
o Small City
@ City
= W Major Roads
Map tips show #
— Expressway
—— Primary Highway
=l W BaseMap
=1 ¥ U.5. - Canadian Bor |

(= ¥ Coast lines

]
= [¥] Maine E
«| | »

Creating a CustomTool

Creating custom commands and tools to work with the MapControl and
Pagel_ayontControl is very much like creating commands for the ESRI ArcMap
application that you may have done previously. You will create a custom tool that
adds a text element containing today’s date to the Pagel_ayoutControl at the location
of a mouse click. You will however, create the command to work with the
MapControl and ToolbarControl as well as the Pagel_ayoutControl.

The code for this custom tool is available with the rest of this scenario’s source
code. If you want to use the custom command directly, rather than creating it
yourself, go directly to Step 24.

1. Create a new Visual C# ‘Class Library’ project from the New project dialog

box.

. Name the project Commands, and browse to a location to save the project.
. Click on the Project menu and choose Add Reference....

. In the Add Reference dialog box, check ‘ESRI.ArcGIS.Carto’,

‘HSRI.ArcGIS.Display’, ‘ESRI.ArcGIS.Geometry’, ‘ESRI.ArcGIS.System’,
‘HSRI.ArcGIS.SystemUI’, ‘ESRI.ArcGIS. Utility’, and
‘HSRI.ArcGIS.ControlCommands’.

. Add one class to the project, named AddDateTool.

. Click on the Project menu and choose Add Existing Item. Browse to the

date.bmp from its location in this sample’s source code and add it into your
project.

. Click on the date.bmp in the Solution Explorer window to display its proper-

ties in the Properties window. Change the Build Action property to Embedded
Resource. This bitmap will be used on the face of the command button.

BUILDING APPLICATIONS WITHWINDows CONTROLS

To change a namespace inVisual Basic .NET,
right click on the project in the Solution
Explorer and select Properties. In the project
Property Pages select General and change the
Root Namespace. Press OK.

Abstract classes are classes that cannot be
instantiated, and frequently contain only partial
implementation code, or not implementation at
all. They are closely related to interfaces;
however, they differ significantly from interfaces
in that a class may implement any number of
interfaces, but it can inherit from only one
abstract class. Inheriting the ESRI BaseTool
abstract class will allow you to create commands
and tools more quickly and simply than directly
implementing the esriSystemUl ICommand and
ITool interfaces.

The sealed class modifier states that a class
cannot be inherited from.As this class is not
designed for this purpose it is prudent to add
this modifier to prevent other classes from
inheriting this class.

The class constructor is a method that is called
when the class is created. It can be used to set
up members of the class.The constructor
method has the same name as the class; it
differs from other methods, in that it has no
return type.

Instead of implementing the Bitmap, Caption,
Category, Name, Message and Tooltip methods
individually, you can set the values that should be
returned from these methods, and rely on the
BaseTool class to provide the implementation for
these methods. The other members will be left
to return the default values as implemented by
the BaseTool class.

To override properties and methods inVisual
Basic .NET, select (Overrides) from the ‘Class
Name’ combo box and the property or method
name from the ‘Method Name’ combo box at
the top of the code window.

8. Change the namespace of both the AddDateTool to be

CSharpDotNETCommands.

namespace CSharpDotNETCommands

{

. Add the following using directives to the top of the AddDateTool class code

window.

using System;

using ESRI.ArcGIS.Carto;

using ESRI.ArcGIS.Display;

using ESRI.ArcGIS.Geometry;

using ESRI.ArcGIS.SystemUI;

using ESRI.ArcGIS.esriSystem;

using ESRI.ArcGIS.ControlCommands;
using ESRI.ArcGIS.Utility.BaseClasses;
using System.Runtime.InteropServices;

10. Specify that the AddDateTool class inherits from the ESRI BaseTool abstract

class. Also add the sealed class modifier.

public sealed class AddDateTool : BaseTool

11. Add the following code to AddDateTool class constructor:

publ1ic AddDateTool()

{
//Get an array resources in the assmebly
string[] res = GetType() .Assembly.GetManifestResourceNames();
//Set the tool properties

base.m_bitmap = new
System.Drawing.Bitmap(GetType() .Assembly.GetManifestResourceStream(res[0]));

base.m_caption = “Add Date”;
base.m_category = "CustomCommands"';
base.m_message = "Adds a date element to the page layout";
base.m_name = "CustomCommands_Add Date";
base.m_toolTip = "Add date";
}

12. Add the following member variable to the AddDateTool class.

public sealed class AddDateTool : BaseTool

{

//The HookHelper object that deals with the hook passed to the OnCreate
event

private IHookHelper m_HookHelper = new HookHelperClass(Q);

13. In the Class View window, navigate to the BaseCommand OnCreate method

and right click to display the context menu. Select Add, and then Override to
add the property to the code window.

14. Add the following code to overridden OnCreate method.

public override void OnCreate(object hook)

{
m_HookHelper.Hook = hook;

Chapter 6 * Developer scenarios * 305

BUILDING APPLICATIONS WITHWINDows CONTROLS

15. In the Class View window, navigate to the BaseCommand Enabled property
and right click to display the context menu. Select Add, and then Override to
add the property to the code window.

16. Add the following code to override the default Enabled value as implemented
by the BaseTool class.

public override bool Enabled

{
The ICommand_OnCreate event is passed a get
handle or hook to the application that the
command will work with. In this case it can be a {
MapControl, PageLayoutControl or //Set the enabled property
ToolbarControl. Rather than adding code into the if (m_HookHelper.ActiveView != null)
OnCreate event to determine the type of hook {
that is being passed to the command, you will
use the HookHelper to handle this.A command return true;
or tool needs to know how to handle the hook }
it gets passed, so a check is needed to deter- else
mine the type of ArcGIS Control has been passed. {
The HookHelper is used to hold the hook and
return the ActiveView regardless of the type of return false;
hook (in this case either a MapControl, }
PageLayoutControl or ToolbarControl). }
3

17. In the Class View window, navigate to the BaseTool OnMouseDown method
and right click to display the context menu. Select Add, and then Override to
add the property to the code window.

18. Add the following code to the override the default OnMouseDown function-
ality as implemented by the BaseTool class.

public override void OnMouseDown(int Button, int Shift, int X, intY)

{
base.OnMouseDown (Button, Shift, X, Y);

//Cet the active view
TActiveView activeView = m_HookHelper.ActiveView;

//Create a new text element

ITextElement textElement = new TextElementClass();
//Create a text symbol

ITextSymbol textSymbol = new TextSymbolClass();
textSymbol.Size = 25;

//Set the text element properties
textElement.Symbol = textSymbol;
textElement.Text = DateTime.Now.ToShortDateString(Q);

//QI for IElement

IETement element = (IETement) textElement;

//Create a page point

IPoint point = new PointClassQ;

point = activeView.ScreenDisplay.DisplayTransformation.ToMapPoint(X,Y);

306 * ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITHWINDows CONTROLS

//Set the elements geometry
element.Geometry = point;

//Add the element to the graphics container
activeView.GraphicsContainer.AddETement(element, 0);
//Refresh the graphics

activeView.PartialRefresh(esriViewDrawPhase.esriViewGraphics, null,
null);

}

19. ArcGIS Engine expects the custom command to be a COM class; therefore
you must specify that the NET class you have created is also exposed as a
COM class by creating a COM callable wrapper for it. In the Solution Ex-
plorer window, right click on the Commands project and select Properties
from the context menu.

Setting the Register for COM Interop property 20. In the project Property Pages dialog box, select Configuration Properties; and

to True will invoke the Assembly Registration : . . .
then click Build. In the right-hand pane, change the Register for COM Intero
Tool (Regasm.exe).This will add the information u & pane, & g p

about the class to the registry that a COM property to True. Click OK.
client would expect to find. 21. In the code window of the AddDateTool class add the following code to the
If the Register for COM Interop property is beginning of the AddDateTool class declaration, to specify attributes required
disabled, check that the project is a C# class by COM
library type. Y :

R U b J by using th [ClassInterface(ClassInterfaceType.None)]
hew can be generate Yy using the . " "
GuidGen.exe utility included with Visual Studio [Guid("DBBO184E-ACB1-47E5-B363-781FADC4528F")]

-NET or by selecting Create GUID from the 22. Add the following code to the AddDateTool class after the member variables.
Tools menu.The GUID should be specified in the The code defines functions that register and unregister the AddDateTool class
format shown, without curly braces. . K
to the ESRI Controls Commands component category using the categories
utility.
//Register in the "ESRI Controls Commands' component category
#region Component Category Registration
[ComRegisterFunction()]
[ComVisible(false)]
static void RegisterFunction(String sKey)
{
string fullKey = sKey.Remove(0, 18) + @"\Implemented Categories";

Microsoft.Win32.RegistryKey regKey =
Microsoft.Win32.Registry.ClassesRoot.OpenSubKey (fullKey, true);

if (regkKey !=null)
{

regKey .CreateSubKey ("{B284D891-22EE-4F12-A0A9-
BIDDED9197F43}™);

}
}
[ComUnregisterFunction()]
[ComVisible(false)]
static void UnregisterFunction(String sKey)
{
string fullKey = sKey.Remove(0, 18) + @"\Implemented Categories";

Microsoft.Win32.RegistryKey regKey =
Microsoft.Win32.Registry.ClassesRoot.OpenSubKey (fullKey, true);

if (regKey !=null)

Chapter 6 * Developer scenarios * 307

BUILDING APPLICATIONS WITHWINDows CONTROLS

{
regKey .DeleteSubKey (" {B284D891-22EE-4F12-A0A9-B1DDED9197F4}™) ;
}
}
#endregion

23. Build the project.

24. In the Visual Studio NET ‘Windows Application’ project that you created at
the beginning of this scenario, add the following code after the code to add
the map navigation commands.

private void Forml_Load(object sender, System.EventArgs e)
{

//Add Map naviagtion commands...

//Add custom date tool
progID = "CSharpDotNETCommands .AddDateTool";

axToolbarControll.AddItem(progID, -1, -1, true, O,
esriCommandStyles.esriCommandStyleIconAndText) ;

//Add commands to the ToolbarMenu
}

25. Build and run the application and use the AddDateTool to add a text element
to the Pagel_ayontControl containing today’s date.

o =1oi x|
EEBEEBE0R L &a "M L

= £3 Gulf of 5t. Lawrence |
(= [Links to Web Sites

=
= vl Cities
« Town or Yilage
o Small Gty
® iy
= ¥l Major Roads
WMap tips show #
e 17/09/2003
—— Primary Highway
= Base Map

£l W 115, - Canadian Bor| GL
o B aTem o0 A,
= Wl Coastlines P .
o Y
£ b Maine k2
| 15 opmoiceaoy s, e 2001

308 * ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITHWINDows CONTROLS

Customizing the ToolbarControl

As well as adding ArcGIS Engine commands and tools to the ToolbarControl in the
Form_Load event, you can also add them by customizing the ToolbarControl and
using the customize dialog box. To do this you will place the ToolbarControl in
customize mode and display the customize dialog box.

1. Add the following member variables to the class:

public class Forml : System.Windows.Forms.Form

{
private ITransformEvents_VisibleBoundsUpdatedEventHandler
Visual Studio .NET provides the ability to specify visBoundsUpdatedE;
functions that execute when an assembly private ICustomizeDialog m_CustomizeDialog = new
exposed for COM interop is registered and CustomizeDialogClass(); //The CustomizeDialog used by the ToolbarControl
unr egistered on a system. This allows you to private ICustomizeDialogEvents_OnStartDialogEventHandler
register your class in @ component category that startDialogE; //The CustomizeDialog start event

the Customize Dialog box wil fook for. private ICustomizeDialogEvents_OnCloseDialogEventHandler

closeDialogE; //The CustomizeDialog close event
2. Create a new function called CreateCustomizeDialog. This is where you will
create the customize dialog box by adding the following code to the function:

private void CreateCustomizeDialog()

{
//Set the customize dialog box events
startDialogE = new

The ComVisible attribute is set to false to ICustomizeDialogEvents_OnStartDialogEventHandler(OnStartDialog);

ensure that this method cannot be called directly ((ICustomizeDialogEvents_Event)m_CustomizeDialog) .OnStartDialog +=
by a COM client. It does not affect the method startDialogE;
being called when the assembly is registered closeDialogE = new
with COM.

ICustomizeDialogEvents_OnCloseDialogEventHandler(OnCloseDialog) ;
((ICustomizeDialogEvents_Event)m CustomizeDialog) .OnCloseDialog +=
closeDialogE;

//Set the title
m_CustomizeDialog.DialogTitle = “Customize ToolbarControl Items”;
//Show the ‘Add from File’ button
m_CustomizeDialog.ShowAddFromFile = true;
//Set the ToolbarControl that new items will be added to
m_CustomizeDialog.SetDoubleClickDestination(axToolbarControll);

}

3. Call the CreateCustomizeDialog function from the Form_Load event before
the call to the CreateOverviewSymbol sub routine.
private void Forml_Load(object sender, System.EventArgs e)

{
//Create the customize dialog box for the ToolbarControl
CreateCustomizeDialog(Q);

//Create symbol used on the MapControl...
}

Chapter 6 * Developer scenarios * 309

BUILDING APPLICATIONS WITHWINDows CONTROLS

310 * ArcGIS Engine Developer Guide

4. Add a check box to the Form and give it the name ‘chkCustomize’ and the

caption ‘Customize’.

. Display the Form in design mode and select chkCustomize from the Properties

window and display the chkCustomize events. Double click on
CheckedChanged to add an event handler to the code window.

. Add the following code to the chkCustomize_ CheckedChanged event.

private void chkCustomize_CheckedChanged(object sender, System.EventArgs
e)
{
//Show or hide the customize dialog
if (chkCustomize.Checked == false)
{
m_CustomizeDialog.CloseDialog();
axToolbarControll.Customize = false;
}
else
{
m_CustomizeDialog.StartDialog(axToolbarControll.hWnd);
axToolbarControll.Customize = true;
}
}

. Add the following OnStartDialog and OnCloseDialog event handlers. These

functions will be wired to events raised whenever the customize dialog box is
opened or closed.

private void OnStartDialog(Q)
{

axToolbarControll.Customize = true;

}

private void OnCloseDialog()

{
axToolbarControll.Customize = false;
chkCustomize.Checked = false;

}

. Build and run the application and check the customize box to put the

ToolbarControl into customize mode and open the customize dialog box.

BUILDING APPLICATIONS WITHWINDows CONTROLS

9. On the Commands tab select the Graphic Element category, and double click
on the Select Elements command to add it to the Too/barControl. By right
clicking on an item on the Too/barControl you can adjust its appearance in terms
of style, and grouping,.

I
EEREEBDRBB & QM@ | 2eoddoae [R ssectBeaments | ¥ Custoizs
1= £# Gulf of St. Lawrence - Delete

=0 Iglxks o tireb Sites —
= W Cies ;mage O”:‘T .
o T will v Image and Text
onn or Vilage =
o Small City Bogin Group
© Ciy P
= 9 Major Foads Commands | Toolsets | Menus | | GroupSpacng |
WD tps show & Cajegony: Commands:
_ 30 Anclyst CTTEw FECTany B
Primary Highway 3D Analyst Developer Samples i Mudas Down _I
= ¥ Base Map CustomCommands = Mudge Lelt
=) bl 115, - Canadian B Fealure Selection Nudge Righ
Generic ‘B Mudge Right
= W Cosstlines Globe B gz Lp
g N q Rotate
ap Navigation -
Pael syt 5 Fotste Left
d Reader I b Fiotate Right
Sample_Pan/Zoom K Select Elements
Ganpl_SceneCorral 2 S o Backward
Test Commands Send toBack
Ifz Ungioup =
Use double dlick or drag and diop 4d From File.. Close
10 add command.
T

10. Stop customizing the application. Use the select tool to move the text ele-
ment containing today’s date.

e
B EHEHD B & Q™M@ Daddose | Kselctbements [Customize

[= £F Gulf of St. Lawrence |
=1 [Links to Wieb Sites

@
= W Cities
- Town or Vilage
o Small City
@ City
= Major Roads
Map tips show #

— Exgresanay 17/09/2003

— Primary Highway

= W Base Map
= ¥ .5, - Canadian Bor| Gulf ¢

[=m=ora: iy = pamco, Il
[0 S ot i
= ¥ Coastlines otz o ko Pzt i
O
= Maine ey oo Oy ESR, i, 07 au

Chapter 6 * Developer scenarios * 311

BUILDING APPLICATIONS WITHWINDows CONTROLS

DEPLOYMENT
When developing a stand-alone executable using To successfully deploy this application onto another machine, the application
ESRI ArcObject’s it is the responsibility of the
must configure a license. Firstly, it must check that the product license is available

application to check and configure the licensing . R ; o - .
options. The CoClass Aolnitialize and the and secondly it must initialize the license. If this license configuration fails, the

IAolnitialize interface it implements are application cannot run.
designed to support license configuration. License
initialization must be preformed at application 1. Add the following member variable to the class.

start time, before any ESRIArcObject functional-
ity is accessed. Failure to do so will resolve in
application errors. {

public class Forml : System.Windows.Forms.Form

private TAoInitialize m_AoInitialize = new AoInitializeClassQ);
//The initialization object

private IToolbarMenu m_ToolbarMenu = new ToolbarMenuClass();
//The popup menu

}
2. Add the following code to the very beginning of the Form_Ioad event.
private void Forml_Load(object sender, System.EventArgs e)

{

//Create a new AoInitialize object

if (m_AoInitialize == null)

{
System.Windows . Forms .MessageBox.Show("'Unable to

initialize. This application cannot run!");

this.Close(Q);

}

//Determine if the product is available

esrilLicenseStatus TicenseStatus = (esrilicenseStatus)

m_AoInitialize.IsProductCodeAvailable(
esrilicenseProductCode.esriLicenseProductCodeEngine);

if (licenseStatus == esrilicenseStatus.esrilicenseAvailable)
{
TicenseStatus = (esrilicenseStatus)
m_AoInitialize.Initialize(esrilicenseProductCode.
esrilicenseProductCodeEngine) ;
if (licenseStatus != esrilicenseStatus.esrilicenseCheckedOut)

{
System.Windows . Forms .MessageBox . Show(""The
initialization failed. This application cannot
run!");

this.Close();

}

else

{
System.Windows . Forms .MessageBox . Show(""The ArcGIS Engine
product is unavailable. This application cannot run!™);

this.Close(Q);

312 « ArcGIS Engine Developer Guide

BUILDING APPLICATIONS WITHWINDows CONTROLS

//Create the customize dialog box for the ToolbarControl

}

3. Display the Form in design mode and select Form1 from the Properties win-
dow and display the Form events. Double click on the Closing event to add an
event handler to the code window.

4. In the Form_Closing event add the following code:
private void Forml_Closing(object sender,

System.ComponentModel.CancelEventArgs e)

{
//Release COM objects and shut down the AoInitilaize object
ESRI.ArcGIS.UtiTity.COMSupport.AOUninitialize.Shutdown();
m_AoInitialize.Shutdown();

}

5. Build the project and build the solution in release mode.
To successfully deploy this application onto a users machine:

* The application’s executable and the DLL containing the custom command
will need to be deployed onto the users machine. The Assembly Registration
Tool (RegAsm.exe) must be used to add information about the custom class to
the registry.

* The users machine will need an installation of the ArcGIS Engine Runtime
and a standard ArcGIS Engine license.

e 'The users machine will need an installation of the Microsoft NET Frame-
work 1.1.

ADDITIONAL RESOURCES

The following resources may help you understand and apply the concepts and
techniques presented in this scenario.

* Additional documentation available in the ArcGIS Engine Developer Kit
including ArGILS Developer Help, component help, object model diagrams, and
samples to help you get started.

* ArcGIS Developer Online—Web site providing the most up-to-date informa-
tion for ArcGIS Developers including updated samples and technical docu-
ments. Go to http://arcgisdeveloperonline.esti.com.

* ESRI online discussion forums—NWeb sites providing invaluable assistance
from other ArcGIS developers. Go to http://support.esti.com and click the
User Forums tab.

* Microsoft documentation on the Visual Studio .NET development environ-
ment.

Chapter 6 * Developer scenarios * 313

BUILDING A COMMAND LINE JAVA APPLICATION

Rather than walk through this scenario, you can
get the completed application from the samples
installation location. The sample is installed as
part of the ArcGIS developer samples.

The ArcGIS developer samples are not included
in the 'typical installation of the ArcGIS Engine
Developer Kit. If you do not have them installed,
rerun the Developer Kit install wizard, choose
Custom or Modify, and select the samples
feature under Software Developer Kit.

The Java APl is not included in the 'typical'
installation of the ArcGIS Engine Developer Kit. If
you do not have it installed, rerun the Developer
Kit install wizard, choose Custom or Modify, and

select the Java feature under ArcGIS Engine. In
addition, for access to the Javadoc and other Java-
specific documentation, select the Java feature
under Software Developer Kit.

314 + ArcGIS Engine Developer Guide

This walkthrough is intended for programmers who want to learn more about the
Java API in ArcGIS Engine. To get the most out of this scenario you should
understand basic Java programming concepts such as classes, inheritance, and
using packages. Some familiarity with ArcObjects will also be helpful, although
not required. Although this scenario does require conceptual knowledge of the
Java language, it does not require a lot of programming experience. The code
used in this example provides an easy entry point to learn about the Java API in
ArcGIS Engine on a small and simple scale.

You can find this sample in

<install_Tocation>\Developerkit\Samples\Developer_Guide_Scenarios\ArcGIS_Engine
\Building_a_Command_Line_Application\Converting_A_Tin_To_Point_Shapefile

PROJECT DESCRIPTION

This scenario will cover several aspects of the ArcGIS Engine API. The goal of
this exercise is to create a standalone command line application with the ArcGIS
Engine Java APL The application will take as input a TIN representation of a
surface and create a three-dimensional shapefile representing the interpolated TIN
nodes. Once you have completed this scenario, you will understand the tech-
niques required to work with the ArcGIS Engine Java APL

CONCEPTS

Terrain data is collected mostly as a sequence of discrete (X, Y, Z) data points.
Digital terrain models (DTM) are generally organized such that mass points lie in
a grid pattern or they represent nodes of triangles in an array referred to as trian-
gulated irregular network or TIN. The nodes will be converted to points and used
to create a new feature class. This exercise will use the TIN object and the
ITinAdpanced interface it implements. ITinAdvanced provides access to basic prop-
erties and is a starting point to the underlying data structure. In addition, the
scenario utilizes the GeometryDef and FieldsEdit objects to populate the newly
created feature class.

DESIGN

The application will be written entirely in the Java language. This allows you to
write code once on any platform and deploy the application on any supported
ArcGIS Engine platform. This scenario will use Microsoft Windows XP as the
developer platform, but can easily be followed on any UNIX-based developer
platforms.

We will use Ant, a cross-platform Java-based build tool, to build and deploy the
scenario. Ant executes tasks implemented as Java classes, which allow it to inherit
the platform independence of Java. ArcGIS Engine Developer Kit includes an
extended version of Ant called arcgisant. This scenario will use arcgisant, but you
are free to use any version of Ant 1.5.x or greater.

REQUIREMENTS

In order to successfully follow this scenario you need the following (the require-
ments for deployment are covered later in the Deployment section):

* An installation of the ArcGIS Engine Developer Kit (including Java) with an
authorization file enabling it for development use.

BUILDING A COMMAND LINE jAVA APPLICATION

* An installation of the Java 2 Platform, Standard Edition (J2SE) Software
Development Kit (SDK), preferably 1.4.2 or later. If you do not already have
one available, download it from the Java Website at http://java.sun.com/
j2se/downloads.html

* A Java IDE of your choice or your favorite text editor.

* An understanding of basic Java programming concepts such as classes, inherit-
ance, and using packages.

* While no experience with other ESRI software is required, previous experi-
ence with ArcObjects is helpful.

The ArcGlIS developer samples are not included e A TIN dataset
in the "typical' installation of the ArcGIS Engine
Developer Kit. If you do not have them installed, e Access to the sample data and code that comes with this scenario.
rerun the Developer Kit install wizard, choose
Custom or Modify, and select the samples
feature under Software Developer Kit.

<install_Tocation>\Developerkit\Samples\Developer_Guide_Scenarios\ArcGIS_Engine
\Building_a_Command_Line_Application\Converting_A_Tin_To_Point_Shapefile

Objects from the following libraries will be used:
* DataSourcesFile * Geometry
* GeoDatabase e System

In the Java API, their package names se are prefixed by 'com.esti.arcgis'.

IMPLEMENTATION

To implement this scenario follow the steps below. This implementation provides
you with all the code you will need to successfully complete the scenario. It does
not provide step-by-step instructions to develop applications in Java, as it as-
sumes that you have a working knowledge of the development environment
already.

Setting up environment variables

Any windows user can add, modify, or remove a user environment variable.
Setting such environment variables will make most effective use of this scenario.
You will add three environment variables and their respective executable (bin)
folders to the global PATH variable.

1. Right-click My Computer, and then click Properties.
2. Click the Advanced tab.

3. Click Environment Variables.

4

. Under System Variables click New.
For Variable name: type 'ARCENGINEHOME'.
For Variable value: type in the root level ArcGIS Engine install directory (for
example, C:\ArcGIS).

5. Click OK.
6. Under System variables single-click on Path and click Edit.

7. Append the following to the beginning of Variable value:
%ARCENGINEHOMEY\bin;

8. Click OK until you have closed all System Properties dialog boxes.

Chapter 6 * Developer scenarios * 315

BUILDING A COMMAND LINE jAVA APPLICATION

To compile and run applications using the ArcGIS
Engine Developer Kit, the PATH environment
variable should include paths toArcGIS/bin and
J2SE SDK/bin. In addition,ArcGIS Engine
Developer Kit ships with an extended version of
Ant called arcgisant.The path to this tool
should also be included.

il
Ele Edit View Favortes Tools Help | a'
eﬁack - _) - Lﬁ; ;) Search ”
Address Ib C:iTintoPoint j Ga | Links
Mame = | Type

File Falder

#ML Document
#ML Document
PROPERTIES File

sample. properties

Folder and file structure required in order for
the build scripts to work as desired.

316 * ArcGIS Engine Developer Guide

Repeat the steps above to add the following environment variables:
e JAVA_HOME=]2SE SDK install directory
* ANT_HOME=%ARCENGINEHOME\DeveloperKit\tools\arcgisant

Before proceeding with building the application itself, you need to prepare the
build scripts. It is vital to set up the build structure as illustrated to the left in
order for the scripts to work correctly.

* TintoPoint folder—root folder for the project
* src folder—subfolder containing all of the application's source code
e build.xml—Ant build script file.

* properties.xml—external Ant properties file, which extends the build environ-
ment.

* sample.properties—external Java properties file with command line param-
eters.

The three files—build.xml, properties.xml, and sample.properties—must be
created before you can build and deploy the scenario.

Creating the samples.properties file

Let's begin by creating the sample.properties file. This file provides the build
script with necessary command line arguments to successfully execute the applica-
tion created in this exercise. This file will use the variable=argument pattern.

1. Create a text file named sample.properties and add the following lines of code
to it. Revise the arguments for the variables input.tin.path and
output.shape.path to match the paths to your TIN dataset and output
shapefile dataset.

TinToPoint

unit.name=TintoPoint
main.class=engine.scenario.analyst3d.TintoPoint
#TinToPoint command 1ine args

input.tin.path=\<path to TIN dataset>
output.shape.path=\<path to generated shapefile dataset>

2. Save and close the file.

Creating the properties.xml file

The properties.xml file sets Ant properties for the build environment. Ant prop-
erties can be set explicitly or loaded from a file. For simplicity, you will add the
dependent properties from a file, properties.xml.

1. Create an XML file named properties.xml and add the following Ant proper-
ties:

<!— :mode=ant —

<!- -

<!- load environment variables —>

<!- -

<property environment="env'"/>

BUILDING A COMMAND LINE jAVA APPLICATION

<property name="arcengine.home" value="${env.ARCENGINEHOME}" />
<property name="ant.home" value="${engine.home}/developerkit/tools/ant" />

<!- -

<!—- directory mappings —>

<!- -

<property name="root.dir" location="${basedir}"/>

<property name="src.dir" location="src"/>

<property name="build.dir" location="build"/>

<property name="class.dir" lTocation="${build.dir}/classes"/>

<!- -

<!= Tibrary dependency settings —>

<!- -

<!—Tibrary directory mappings —

<property name="arcgis.dir" Tlocation="${engine.home}/java"/>

<!— each Tibrary has its own unique directory structure —>

<property name="arcgis.subdir" value="opt"/>

<!— jar file mappings —>

<property name="jintegra.jar" location="${arcgis.dir}/jintegra.jar"/>

<property name="arcobjects.jar" location="${arcgis.dir}/${arcgis.subdir}/
arcobjects.jar"/>

2. Save and close the file.

Creating the build.xml file

Ant build scripts are written in XML and contain one project and at least one
task. Each project defines one or more targets that combine tasks for execution.
In this scenario, the project name is “ArcGIS Engine Developer Scenario” and its
To learn more about private and public targets
used in Ant scripts, see the Ant documentation
available from the Apache AntWeb site,
http:/lant.apache.orgl. o

build script needs to contain the four private and three public targets, as listed
respectively below:

init—creates the build directory structure.

* validate-engine—ensures that the ArcGIS Engine Developer environment is
propetly set.

e compile—compiles the scenario.
e execute—runs the scenario in a separate JVM instance.
e all—the default target, which builds the entire scenatio.
e clean—cleans all build products.
* run-scenario—builds and runs the scenario application.

In order to get an idea of the structure of Ant targets, let’s have a look at a
sample compile target line by line.

<target name="compile" depends="validate-engine">

As shown in the first line, this target has a name to reference and depends on
another target. To ensure a successful build, the ‘depends” attribute is used to
confirm that the environment is set correctly.

Chapter 6 » Developer scenarios * 317

BUILDING A COMMAND LINE JAVA APPLICATION

<!- compile the java code from ${src.dir} into ${class.dir} —
<javac srcdir="${src.dir}" destdir="${class.dir}">
<classpath refid="compile.classpath"/>

In the last section of this sample target, one of Ant’s core tasks, javac), is created
to compile the files in the source directory and place them in the class directory.
The javac task supports a classpath task to ensure the classpath settings.

The complete sample target, including closure of the XML tags, then is as shown
below:
<target name="compile" depends="validate-engine">
<!- compile the java code from ${src.dir} into ${class.dir} —
<javac srcdir="${src.dir}" destdir="${class.dir}">
<classpath refid="compile.classpath"/>
</javac>
</target>

The entire build script is not discussed in detail Now that you've got a basic understanding of targets and their usage in Ant, let's

here;to learn more about building Ant scripts proceed with creating the build.xml file for this scenatio.
see the Ant documentation available from the

Apache AntWeb site, http://ant.apache.orgl. 1. Create an XML file named build.xml and add the following:
<?xml version="1.0"7>
<!DOCTYPE project[
<!ENTITY properties SYSTEM "file:properties.xml">
1>

<!— :mode=ant —

<project name="ArcGIS Engine Developer Scenario" default="all"

basedir=".">

<!—import external XML fragments —>
&properties;

<!— import sample properties —>
<property file="sample.properties"/>

<path id="compile.classpath">
<pathelement Tocation="${jintegra.jar}"/>
<pathelement Tocation="${arcobjects.jar}"/>
</path>

<path id="run.classpath">
<path refid="compile.classpath"/>
<pathelement Tocation="${class.dir}"/>

</path>
<!- -
<!- private targets —>
<!- -

<target name="init">
<!- create the time stamp —>
<tstamp/>
<!- create the build directory structure used by compile —
<mkdir dir="${build.dir}"/>
<mkdir dir="${class.dir}"/>

318 « ArcGIS Engine Developer Guide

BUILDING A COMMAND LINE JAVA APPLICATION

</target>

<target name="validate-engine" depends="init">
<condition property="engine.available">
<and>
<isset property="env.ARCENGINEHOME" />
</and>
</condition>

<fail message="Missing dependencies: ARCENGINEHOME environment
variable not correctly set" unless="engine.available"/>

</target>

<target name="compile" depends="validate-engine">
<!— javac resolver needed to run inside of Websphere Studio —

<available classname="org.eclipse.core.launcher.Main"
property="build.compiler"

value="org.eclipse.jdt.core.IDTCompilerAdapter"

classpath="${java.class.path}" />

<!- compile the java code from ${src.dir} into ${class.dir} —
<javac srcdir="${src.dir}" destdir="${class.dir}">
<classpath refid="compile.classpath"/>
</javac>
</target>

<target name="execute" depends="compile" if="input.tin.path">

<java classname="${main.class}" failonerror="true"
fork="true">

<classpath refid="run.classpath"/>
<!- values must be set correctly in sample.properties —>
<arg value="${input.tin.path}"/>
<arg value="${output.shape.path}"/>
</java>
</target>

<!- -

<!- public targets —

<!- -

<target name="all" depends="compile" description="build everything">
<echo message="application built"/>
</target>

<target name="clean" description="clean all build products">
<!- delete the ${build} directory trees —>
<delete dir="${build.dir}"/>
<echo message="build directory gone!"/>

</target>

<target name="run-scenario" depends="execute" description="execute the
sample with args set in sample.properties"/>

</project>

Chapter 6 » Developer scenarios * 319

BUILDING A COMMAND LINE jAVA APPLICATION

Use your favorite text editor or IDE to write
your source code.

320 « ArcGIS Engine Developer Guide

2. Save and close the file.

Testing your build environment

Now that you've set up all the necessary files for building your application, let's
test it before proceeding.

1. Open a command prompt and cd into the root folder of your project. For
example,
cd C:\TintoPoint

2. You should have all the build script files located in this root directory.

3. Type 'arcgisant' at the command prompt.

4. You should receive output similar to the following:
Buildfile: build.xml
init:
[mkdir] Created dir: Q:\dop\dev\ant\projects\engine.scenario\build

[mkdir] Created dir: Q:\dop\dev\ant\projects\
engine.scenario\build\classes

validate-engine:
compile:
BUILD FAILED

file:Q:/dop/dev/ant/projects/engine.scenario/build.xml:49: srcdir
"Q:\dop\dev\ant\projects\engine.scenario\src" does not exist!

Total time: 1 second
The build should fail since you do not have any source to build yet. If you look
on disk at your project directory, you should notice a build folder was created.
This is where all build products will be generated.
Clean up the build with the following command:
arcgisant clean
This should generate output similar to the following:

Buildfile: build.xml
clean:
[deTete] Deleting directory Q:\dop\dev\ant\projects\engine.scenario\build
[echo] build directory gone!

BUILD SUCCESSFUL
Total time: 1 second

Now that your build environment is prepared, youe can proceed with writing the
Java source code for the example application.

Creating the TintoPoint main class
1. Begin you source code by adding the signature for the main class in this exer-
cise:

package engine.scenario.analyst3d;

public class TintoPoint{}

The class will eventually have three private static methods and one public main
entry point. For the sake of simplicity, private static methods are used to do the

BUILDING A COMMAND LINE jAVA APPLICATION

The datasourcesfile, geodatabase, geometry, and
system Java packages are the equivalent of the
DataSourcesFile, GeoDatabase, Geometry, and
System libraries of ArcGIS Engine.

work for the application. While some Java developers believe that, when a
method can be either static or an instance, an instance method should be utilized,
this scenario uses the simplest approach—static methods. Each of these methods
will be covered in upcoming sections.

Next, let's look at what imports are required by the class.

As discussed earlier, this scenario uses the datasourcesfile, geodatabase, geometry,
and system Java packages.

* datasourcesfile—provides workspace factories and workspaces for vector data
formats supported by the geodatabase API. You will be use the
ShapefileWorkspaceFactory class in this exercise to create your generated 3D
shapefile.

* geodatabase—provides all definitions relating to data access including Tins and
FeatureClasses. You will be use the GeomerryDef class to define spatial quali-
ties for your generated feature class.

* geometry—contains the core geometry objects, as well as spatial reference
information. In this scenario, you will use the Point class as a representation of
all the TIN nodes in your input TIN dataset.

* system—contains objects that expose services used by the other libraries
within ArcGIS Engine. You will use the use Aolnitializer object to initialize
and un-initialize your application.

2. Below the package declaration you made above, import the classes as shown.
Use fully qualified imports so you can see explicitly which classes from the
ArcGIS Engine Java API you are working with.
import java.io.File;
import java.io.IOException;

import com.esri.arcgis.datasourcesfile.ShapefileWorkspaceFactory;
import com.esri.arcgis.geodatabase.Field;

import com.esri.arcgis.geodatabase.Fields;

import com.esri.arcgis.geodatabase.GeometryDef;

import com.esri.arcgis.geodatabase.IEnumTinNode;

import com.esri.arcgis.geodatabase.IFeatureBuffer;
import com.esri.arcgis.geodatabase.IFeatureClass;

import com.esri.arcgis.geodatabase.IFeatureClassProxy;
import com.esri.arcgis.geodatabase.IFeatureCursor;
import com.esri.arcgis.geodatabase.IFeatureWorkspace;
import com.esri.arcgis.geodatabase.IFeatureWorkspaceProxy;
import com.esri.arcgis.geodatabase.IFieldEdit;

import com.esri.arcgis.geodatabase.IFields;

import com.esri.arcgis.geodatabase.IFieldsEdit;

import com.esri.arcgis.geodatabase.ITinAdvanced;

import com.esri.arcgis.geodatabase.ITinNode;

import com.esri.arcgis.geodatabase.IWorkspaceFactory;
import com.esri.arcgis.geodatabase.Tin;

import com.esri.arcgis.geodatabase.esriFeatureType;
import com.esri.arcgis.geodatabase.esriFieldType;

import com.esri.arcgis.geodatabase.esriTinQualification;

Chapter 6 * Developer scenarios ¢ 321

BUILDING A COMMAND LINE jAVA APPLICATION

import com.esri.arcgis.geometry.IPoint;

import com.esri.arcgis.geometry.ISpatialReference;
import com.esri.arcgis.geometry.Point;

import com.esri.arcgis.geometry.esriGeometryType;
import com.esri.arcgis.system.AoInitialize;

import com.esri.arcgis.system.EngineInitializer;

import com.esri.arcgis.system.esrilLicenseExtensionCode;
import com.esri.arcgis.system.esrilLicenseProductCode;

Now that the imports have all been made, you can add methods to your class.

Adding the tinToPoint method

This method performs most of the work for the application. It will take, as
parameters, a path to your TIN file, the name of the TIN, a path to an output
shapefile, and a name for the output shapefile.

1. Create the signature for the #nToPoint method as follows:

Ve

* @param tinPath - path to input tin data source

* @param tinName - name of input tin data source

* @param shapePath - path to output shapefile data source

* @param shapeFile - name of output shapefile data source

:‘:/

private static void tinToPoint(String tinPath, String tinName,

String shapePath, String shapeFile){

Initially, you need to open your TIN dataset from its file location, which is passed
as a parameter to the method, by instantiating a new 17z class. The Tin class
implements many interfaces; you will use methods provided by the ITinAdvanced
and [GeoDataset interfaces. By calling the 7#:#() method, exposed by the

The ITinAd d i i ArcGl . . .
e TinAdvanced interface requires anArcGIS ITinAdvanced interface, you can open the specified TIN.

Engine Runtime license with 3D option or an
ArcGIS 3D Analyst extension when deployed.You
will add code for detecting for this license and
checking it out later in this exercise.

2. Instantiate the new Tin class by adding the following code below the signature
for your method.

try{
//Get tin from tin file
ITinAdvanced tinAdv = new TinQ;
String path = tinPath + File.separator + tinName;
System.out.printin(" - Path to Tin: " + path);
tinAdv.init(path);

Note about try/catch here. TODO

System.out.printin(" - Calculating ... ™);

Tin tin = new Tin(tinAdv);

3. Next, get the spatial reference of the Tz and send it as a parameter to a
createBasicFields() method that will be defined in the next section. In addition,
you need to send a geometry type point since your resulting feature class will
be a point feature class.

ISpatialReference tinSpatialRef = tin.getSpatialReference();

IFields fields = createBasicFields(esriGeometryType.esriGeometryPoint,
false, true, tinSpatialRef);

322 < ArcGIS Engine Developer Guide

BUILDING A COMMAND LINE jAVA APPLICATION

4. Now that the basic fields have been generated, the next step is to create an
output shapefile. Workspacebuactory is used as a dispenser of workspaces to
create an instance of a ShapefileWorkspacelactory class. The IFeatureWorkspace
interface is used to access and manage datasets. You will cross-cast to the
returned object that implements [Workspace by creating an instance of
1FeatureWorkspaceProxy class using its object constructor. Finally, your output
shapefile is generated using the ereateleatureClass() method to create a
standalone feature class.

// create output shapefile
IWorkspaceFactory wkspFactory = new ShapefileWorkspaceFactory();
IFeatureWorkspace featureWksp = new IFeatureWorkspaceProxy (
wkspFactory .openFromFile(shapePath, 0));

IFeatureClass outFC = new IFeatureClassProxy(
featureWksp.createFeatureClass(shapefile,

fields,

null,

null,
esriFeatureType.esriFTSimple,
""Shape",

");

5. The final step in creating this method is to populate the newly created feature
class with the value of the nodes from your input TIN. The
matkeNodeEnumerator() method returns enumerations of nodes based on an
extent and a criteria. The extent used is that of the input TIN dataset and all
data inside the TIN is used as the criteria. Once an enumeration object is filled
with your TIN nodes, use a FeazureCursor as a data access object to iterate over
the set of rows in your newly created feature class and a FeatureBuffer object to
hold the state of the row. Next, create an instance of the Point class and
populate it with your TIN nodes by instantiating an I17#Node interface with
the objects returnd by your enumeration. While your node is not null, loop
through them and populate your feature class.

// get tin node enum

IEnumTinNode enum = tin.makeNodeEnumerator(tin.getExtent(),
esriTinQualification.esriTinInsideDataArea, null);

IFeatureCursor outCursor = outFC.IFeatureClass_insert(true);
IFeatureBuffer outBuffer = outFC.createFeatureBuffer();
IPoint point = new Point(Q);
ITinNode node = enum.IEnumTinNode_next();
while(node != null){
node.queryAsPoint(point);
outBuffer.setShapeByRef(point) ;
outCursor.insertFeature(outBuffer);
node = enum.IEnumTinNode_next();

Chapter 6 * Developer scenarios * 323

BUILDING A COMMAND LINE JAVA APPLICATION

6. Finish the code for the tintoPoint method by catching any exceptions.

System.out.printIn(" - Path to Generated Shapefile: " +
shapePath +
File.separator +
shapeFile);
}catch (Exception ex) {
ex.printStackTrace(Q);
}
}

You've now completed the code that results in a new shapefile representing the
nodes of the intput TIN on disk.

7. Review the code for the full method below to make sure yout's matches.
Vo
* @param tinPath - path to input tin data source
* @param tinName - name of input tin data source
* @param shapePath - path to output shapefile data source
* @param shapeFile - name of output shapefile data source
:‘:/
private static void tinToPoint(String tinPath,
String tinName,
String shapePath,
String shapeFile){
try{
//Get tin from tin file
ITinAdvanced tinAdv = new TinQ;
String path = tinPath + File.separator + tinName;
System.out.printin(" - Path to Tin: " + path);
tinAdv.init(path);

System.out.printin(" - Calculating ... ™);
Tin tin = new Tin(tinAdv);

ISpatialReference tinSpatialRef = tin.getSpatialReference();
IFields fields = createBasicFields(esriGeometryType.esriGeometryPoint,
false,
true,
tinSpatialRef);
// create output shapefile
IWorkspaceFactory wkspFactory = new ShapefileWorkspaceFactory();
IFeatureWorkspace featureWksp = new IFeatureWorkspaceProxy (
wkspFactory .openFromFile(shapePath, 0));

IFeatureClass outFC = new IFeatureClassProxy(
featureWksp.createFeatureClass(shapefile, fields, null, null,
esriFeatureType.esriFTSimple, "Shape”, ""));

// get tin node enum

IEnumTinNode enum = tin.makeNodeEnumerator(tin.getExtent(),
esriTinQualification.esriTinInsideDataArea,
null);

324 < ArcGIS Engine Developer Guide

BUILDING A COMMAND LINE jAVA APPLICATION

// store node to shapefile
IFeatureCursor outCursor = outFC.IFeatureClass_insert(true);
IFeatureBuffer outBuffer = outFC.createFeatureBuffer();
IPoint point = new Point();
ITinNode node = enum.IEnumTinNode_next();
while(node !'= nul1){
node.queryAsPoint(point);
outBuffer.setShapeByRef(point);
outCursor.insertFeature(outBuffer);
node = enum.IEnumTinNode_next();

System.out.printin(, - Path to Generated Shapefile: " +
shapePath +
File.separator +
shapeFile);
}catch (Exception ex) {
ex.printStackTrace(Q);
}
}

Creating the basic fields for the 3D shapefile

Now that the method that performs the conversion from TIN to shapefile has
been created, the next step is to define the schema structure for the output 3D
shapefile. The #nToPoint() method defined above uses the createBasicEields method
you create here to generate a fields object and send it as a parameter to the
createFeatureClass() method.

1. Create the signature for this method as follows:
/:':7‘:
* @param shapeType - a geometry object type
* @param hasM - m-value precision defined
* @param hasZ - z-value precision defined
* @param spatialRef - Spatial Reference
* @return IFields - a collection of columns in a table

*/

private static IFields createBasicFields(int shapeType, boolean hasM,
boolean hasZ, ISpatialReference spatialRef){

2. Use a GeometryDef object to define spatial qualities of your feature class. The
most fundamental spatial quality that the method will take as a parameter is
the geometry type. Create new fields using the [FieldsEdit interface and return
this object.
try {

Fields fields = new Fields(Q);

IFieldsEdit fieldsEdt = fields;

Field field = new Field(Q;

IFieldEdit fieldEdt = field;

GeometryDef geometryDef = new GeometryDef();

Chapter 6 * Developer scenarios ¢ 325

BUILDING A COMMAND LINE jAVA APPLICATION

326 * ArcGIS Engine Developer Guide

double dGridSize;
if (spatialRef.hasXYPrecision()) {
double[] xmin = {03};
double[] ymin = {0};
double[] xmax = {0};
double[] ymax = {0};
spatialRef.getDomain(xmin, xmax, ymin, ymax) ;
double dArea = (xmax[0] - xmin[0]) * (ymax[0] - ymin[0]);
dGridSize = Math.sqrt(dArea / 100);
}else {
dGridSize = 1000;
}
geometryDef . setGeometryType (shapeType) ;
geometryDef.setHasM(hasM) ;
geometryDef.setHasZ(has2);
geometryDef.setSpatialReferenceByRef (spatialRef);
geometryDef.setGridCount(1);
geometryDef.setGridSize(0,dGridSize);

// add oid field - must come before geometry field
fieldEdt = new Field(Q;
fieldEdt.setName("OBJECTID");
fieldEdt.setAliasName("OBJECTID");
fieldEdt.setType(esriFieldType.esriFieldType0QID);
fieldsEdt.addField(fieldEdt);

//add Geometry field
fieldEdt = new Field();
fieldEdt.setName("SHAPE™) ;
fieldEdt.setIsNullable(true);
fieldEdt.setType(esriFieldType.esriFieldTypeGeometry);
fieldEdt. setGeometryDefByRef(geometryDef) ;
fieldEdt.setRequired(true);
fieldsEdt.addField(fieldEdt);
return fieldsEdt;

}catch (IOException ex) {
ex.printStackTrace(Q);
return null;
}

}

Initializing ArcObjects

Every application built with the ArcGIS Engine Developer Kit must initialize
ArcObjects at a product level, including any appropriate extension licenses. The
Aolnitialize object is used to accomplish this task. This class initializes the
ArcObjects runtime environment and must be the first ArcObjects component
created. Two methods will be called from this object:

* initialize(int product code)—This method takes an integer value representing a
product code. The Java API provides an interface called esriLicenseProductCode

BUILDING A COMMAND LINE jAVA APPLICATION

which exposes static integer fields representing the different ESRI product
levels. See the javadoc description for a full list of products.

o CheckOuntExctension(int extensioncode)—This method takes an integer value
representing an extension license code. The Java API provides an interface
called esrilicenseExtensionCode which exposes static integer fields representing
the different ESRI extension products available.

This application requires an ArcGIS Engine Runtime license with 3D Analyst
extension license.

1. Create the signature for this method as follows:
private static void 1icenseCheckOutQ{}

2. Implement the private method.
Vo
* Initialize ArcObjects product usage and check out
* available 3D Analyst extension Ticense
*/

private static void 1icenseCheckOut(){

try{
AoInitialze aoInit = new AoInitialize(Q);
aoInit.initialze(esrilicenseProductCode.esrilicenseProductCodeEngine);

aoInit.checkOutExtension(esrilicenseExtensionCode.
esrilicenseExtensionCode3DAnalyst) ;

}catch(I0Exception e){
System.out.println(,Program Exit: Unable to initialize ArcObjects,,);
System.exit(0);
}
}

Putting it all together

Now that the private methods have all been constructed, you need to create an
entry point for your application. This main method will take command line
arguments and pass them to the ##1oPoint method created in earlier steps.

1. First, insert some logic to ensure that you have the correct number of argu-
ments in the form of an if/else code block.
/7‘:
* Description:
* Main Method - Application Entry Point
*/
public static void main(String[] args) {

if(args.length !'= 2){

System.out.printin("Tin to Point: ArcGIS Engine Developer
Scenario™);

System.out.printin("Usage: TintoPoint [Path-to-tin] [Path-to-output-
shapefile]™);

System.exit(0);
}else{

Chapter 6 » Developer scenarios ¢ 327

BUILDING A COMMAND LINE jAVA APPLICATION

This exercise does not implement any logic that
determines if the arguments being passed are
valid strings or datapaths.This validation process
may be beneficial when developing a production
application.

328 « ArcGIS Engine Developer Guide

System.out.printin("Tin to Point: ArcGIS Engine Developer Sample™);

String inDataset = args[0];

String outDataset = args[1];
This application takes two arguments: an input full path to your TIN dataset and
a full path to the generated output shapefile. Once the application determines the
correct amount of arguments they can be split into the path and name format
required by the #nToPoinf() method generated carlier.

2. Add in the following code below the if/else code back you just created.
String inDataPath = inDataset.substring(0,
inDataset. lastIndexOf (File.separator));

String inDataName = inDataset.substring(
inDataset.lastIndexOf(File.separator) + 1));

String outDataPath = outDataset.substring(0,
outDataset. TastIndexOf(File.separator));

String outDataName = outDataset.substring(
outDataset.lastIndexOf (File.separator) + 1));

The next step in creating the main method is to initialize the programming envi-
ronment. In the ArcGIS Java API, this is handled by calling the static class
Enginelnitializer. This class is a facade class exposed by the Java API to ensure
optimal use of native ArcObjects for Java. Following that, the static
licenseCheckOut() method described above must be called.

3. Add the following code to the main method.
EngineInitializer.initilizeEngine(Q);
TicenseCheckOut(Q);

4. The last step is to call the static worker method #nzoPoint() and pass in the
string parameters.

tinToPoint(inDataPath, inDataName, outDataPath, outDataName);
System.out.printin("Tin to Point - Done");

}

}

The code for the command line application is now complete.

DEPLOYMENT

There are many options to deploying your Java application and while you are free
to choose any method you are comfortable with, this scenario utilizes the Ant
build scripts you created earlier.

Redo the build steps you tested eatlier.

1. Open a command prompt and cd into the root folder of your project. For
example,
cd C:\TintoPoint

2. You should have all the build script files located in this root directory.
3. Type 'arcgisant' at the command prompt.

4. You should receive output similar to the following:
Buildfile: build.xml
init
validate-engine:

BUILDING A COMMAND LINE jAVA APPLICATION

compile:

execute:
[java] Tin to Point: ArcGIS Engine Developer Sample
[java] - Path to Tin: Q:\dop\data\imagery\tin\bachtin
[javal - Calculating ...
[java] - Path to Generated Shapefile:

Q:\dop\data\workspace\newshp. shp
[java] Tin to Point - Done

run-scenario:

BUILD SUCCESSFUL
Total time: 9 seconds

If for any reason your build fails, ensure you have your environment correctly set
and parameters correctly set in the sample.properties file. If your build does not
compile, ensure that your source code is correct.

TROUBLESHOOTING
If your build returns the following:
Buildfile: build.xml
init:
validate-engine:
compile:
execute:
[java] Tin to Point: ArcGIS Engine Developer Scenario
[java] Usage: TintoPoint [Path-to-tin] [Path-to-output-shapefile]

run-scenario:

BUILD SUCCESSFUL

then your source code has successfully compiled, but you have not provided path
variables in the sample.properties file.

If your build returns the following:
Buildfile: build.xml
init:
validate-engine:
compile:
execute:
[java] Tin to Point: ArcGIS Engine Developer Sample

[java] java.lang.StringIndexOutOfBoundsException: String index out of
range: -1

[javal at java.lang.String.substring(String.java:1444)
[java] at engine.scenario.analyst3d.TintoPoint.main(Unknown Source)
[java] Exception in thread "main"

BUILD FAILED
file:Q:/dop/dev/ant/projects/engine.scenario/build.xm1:53: Java returned: 1

Total time: 1 second

Chapter 6 » Developer scenarios ¢ 329

BUILDING A COMMAND LINE jAVA APPLICATION

330 * ArcGIS Engine Developer Guide

then your source code has compiled, but you have not provided valid variable
strings representing your data paths. Ensure that you have provided data paths in
the following format:

* C:\\data\\imagery\\tin\ \bachtin
* C:\\data\\workspace\ \newshp.shp

ADDITIONAL RESOURCES

The following resources may help you understand and apply the concepts and
techniques presented in this scenario.

* Additional documentation available in the ArcGIS Engine Developer Kit
including ArGILS Developer Help, component help, object model diagrams, and
samples to help you get started.

e ArcGIS Developer Online—Web site providing the most up-to-date informa-
tion for ArcGIS Developers including updated samples and technical docu-
ments. Go to http://arcgisdeveloperonline.esti.com.

* ESRI online discussion forums—NWeb sites providing invaluable assistance
from other ArcGIS developers. Go to http://support.esti.com and click the
User Forums tab.

Java enjoys a huge community with many resources for its developers. The fol-
lowing is a list of URLs that most developers keep in their toolkit. These links
while correct at publication, are subject to change.

* Sun’ Java and JDK FAQ (http://java.sun.com/products/jdk/faq.html)—
High-level introductory FAQs about Java.

>

e Sun’s Java (http://java.sun.com/)—The source for Java technology.

* Sun’s Java Tutorial (http://java.sun.com/docs/books/tutorials)—On-Line
version of the book from Addison-Wesley. Learing all about Java.

* Thinking in Java (http://www.mindview.net/Books/TT])—On-Line version
fo book from Prentice Hall. Very good for learning about Object-Oriented
Programming concepts in Java.

The Apache Ant project is an extremely successful open source project and carries
the trademark of many resources.

* The Apache Ant Project (http://ant.apache.org)—this is where the Ant
project lives.

* Java Development with Ant (http://www.manning.com/antbook)—excellent
book covering Ant 1.5.

* Ant in Anger (http://ant.apache.org/ant_in_anger.html)—this document
describes stategies and some basic examples of how to use Ant.

* jGuru (http://wwwjguru.com/forums/home.jsprtopic=Ant)—jGuru hosts
an interactive Ant discussion forum.

Rather than walk through this scenario, you can
get the completed application from the samples
installation location. The sample is installed as
part of the ArcGIS developer samples.

The ArcGIS developer samples are not included
in the 'typical installation of the ArcGIS Engine
Developer Kit. If you do not have them installed,
rerun the Developer Kit install wizard, choose
Custom or Modify, and select the samples
feature under Software Developer Kit.

Although this scenario steps you through C++
development, solution code is also available in
other programming languages, including C#, Java,
Visual Basic 6,Visual Basic .NET and Visual
C++.

For a more in-depth explanation of slope, see
the Burrough and McDonnell reference listed in
the 'Additional resources' section at the end of
this scenario.

BUILDING A COMMAND LINE C++ APPLICATION

This scenario is designed to introduce the ArcGIS Engine C++ API for cross-
platform applications. To get the most out of this scenario you should understand
basic C/C++ programming concepts such as the preprocessor, functions, and
memory management. Some familiarity with ArcObjects will also be helpful,
although not required. Although this scenario does require conceptual knowledge
of the C++ language, it does not require a lot of programming experience. The
code used in this example provides an easy entry point to learn about the C++
API to ArcGIS Engine on a small and simple scale.

The purpose of this scenario is not to teach how to set up a C++ environment or
how to compile on each supported operating system. Throughout this scenario it
is assumed that you have a functional C++ environment and know how to
compile a C++ program in that environment. What this scenario does provide is
the steps to take and the code to write in order to create a command line applica-
tion which computes the slope of a given digital elevation model.

You can find this sample in

<install_Tocation>\Developerkit\Samples\Developer_Guide_Scenarios\ArcGIS_Engine
\Building_a_Command_L1ine_Application\Computing_the_slope_of_a_raster_dataset

PROJECT DESCRIPTION

This scenario covers some aspects of the ArcGIS Engine C++ API. The goal of
the RasterSlope scenario is to create a standalone command line application with
the ArcGIS C++ API. The application will take as input a digital elevation model
(DEM) and will build and persist the slope map raster dataset. Once you have
completed this scenario, you will understand the techniques required to work
with the ArcGIS Engine C++ API, including using the Spatial Analyst extension.
In particular, the scenario covers the following techniques:

e Programming with the ArcGIS Engine C++ Developer Kit in a standard text
editor.

e Parsing command line arguments.

* Enabling extensions: in particular, the Spatial Analyst extension.
* Performing the calculation of slope on a raster dataset.

e DPersisting the resultant raster dataset.

* Deploying the application on all platforms supported by the ArcEngine C++
APL

CONCEPTS

Slope datasets are often used as inputs in physical process models. Slope is com-
monly expressed in degrees or as a percentage. In our slope calculation a param-
cter (zFactor) can be specified which specifies the number of ground x,y units in
1 z unit. This allows you to create a slope dataset with different z units than the
input surface. To build the slope dataset, you will use the RasterSurfaceOp class
and the ISurfaceOp interface it implements. You will also use the Raster class and
the IRasterBandCollection interface it implements to persist the resulting raster
dataset.

Chapter 6 * Developer scenarios ¢ 331

BUILDING A COMMAND LINE C++ APPLICATION

For more detailed information, see the C++
aaplication programming interface section of
Chapter 4, 'Developer environments'.

The C++ APl is not included in the 'typical'
installation of the ArcGIS Engine Developer Kit. If
you do not have it installed, rerun the Developer
Kit install wizard, choose Custom or Modify, and

select the Native C++ feature under Software
Developer Kit.

The ArcGIS developer samples are not included
in the "typical' installation of the ArcGIS Engine
Developer Kit. If you do not have them installed,
rerun the Developer Kit install wizard, choose
Custom or Modify, and select the samples
feature under Software Developer Kit.

332 < ArcGIS Engine Developer Guide

The role of the software is to calculate the slope of a given raster dataset. The
user’s job is to provide a console at which to run the scenario, as well as a digital
clevation model on which to run the scenario. Since this is a cross-platform
application, the console can be on any supported platform.

DESIGN

The application will be written entirely in the C++ language. This allows you, as
the developer, to write code once on any supported platform and deploy the
application on all supported ArcGIS Engine platforms. This scenario uses
Microsoft Windows XP as the developer platform and nmake to compile and run
the application from the command line, using the .NET 2003 compiler. How-
evet, it can easily be followed on any other supported platforms and using any
supported build strategy. Both Visual Studio 6.0 and Visual Studio .NET 2003
projects are included with the solution code available in the Developer Kit.

In the design, some safeguards were taken to insure that the application remained
cross-platform. They include avoiding function calls and datatypes defined out-
side the ArcGIS Engine and the C++ API as well as platform-independent path
processing. For example, it should not matter whether the user has “/” or “\” as
the path separator in the arguments to the application as long as the path sepa-
rated is used by the operating system on which the application is being executed.
In addition, C++ standards need to be followed to avoid compiler dependencies.

REQUIREMENTS
In order to successfully follow this scenario you need the following:

* An installation of the ArcGIS Engine Developer Kit (including Native C++)
with an authorization file enabling it for development use.

* A text editor such as Notepad or Microsoft Visual C++.

* A supported C/C++ compiler. This scenario uses the Microsoft Visual C++
Compiler NET 2003 (7.1). For setup details, see the C++ API section of
Chapter 4, 'Developer environments'.

* A configured ArcObjects environment. For setup details, see the C++ API
section of Chapter 4, 'Developer environments'.

* ArcSDK.h: the ArcGIS Engine C++ API header file.

e A familiarity with the operating system you have chosen to work on, and a
basic foundation in C++ programming,

* While no experience with other ESRI software is required, previous experi-
ence with ArcObjects and a basic understanding of maps is advantageous.

* Access to the sample data, solution code, and Makefiles that come with this
scenario. This is located at

<install_location>\DeveloperKit\Samples\Developer_Guide_Scenarios\ArcGIS_Engine
\BuiTding_a_Command_Line_AppTication\Computing_the_slope_of_a_raster_dataset

* An ArcGIS Spatial Analyst or ArcGIS Engine Runtime with Spatial option
license is required for the application to run once deployed.

e To run the application, you will need a raster dataset.

BUILDING A COMMAND LINE C++ APPLICATION

IMPLEMENTATION

The implementation below provides you with all the code you will need to
successfully complete the scenario. It does not provide step-by-step instructions

The C++ AP section of Chapter 4, 'Developer to compile C++ applications, as it assumes that you already have a working
environments' has a detailed discussion of error knowledge of your chosen development environment. Error checking has been
checking.You are encouraged to read it for more left out to increase code readability
information. ’

This scenario’s sample application demonstrates spatial analyst functionality; the

full source code is available in the samples included in the ArcGIS Engine Devel-

oper Kit. Here are the files discussed in this scenario:

* RasterSlope.cpp—Main C++ source file

* RasterSlope.h—Main C++ header file

* Makefile. Windows.template—nmake utility file template. During this exer-
cise, you will copy this file from the solution code and rename it
Makefile.Windows. You will then update it while following the scenario.

* Makefile. Windows—nmake utility file that specifies compiler settings and
rules, file dependencies, input arguments, and an execution rule for our appli-
cation. In the solution code, this file is the completed Makefile for the sce-
nario. As you work through the scenario, the name will refer to the Makefile
you are building,

e PathUtilities.cpp—Platform independent path processing helper function
implementation file

e PathUtilities.h—Platform independent path processing helper function header
file

Creating your build environment

This scenario uses nmake to build and deploy its application. In order to utilize

If you are unfamiliar with the nmake utility, see nmake, you must write a Makefile for it to execute. This scenario is not designed
the Microsoft Developer Network (MSDN) for to teach you the basics of project management with the nmake utility. However,

further information. this scenario will step you through the parts of the Makefile that must be cus-

tomized for each application you build.

A template copy of Makefile. Windows, like the First, copy Makefile.Windows.template from this scenario's solution code to your
one provided in this scenario's solution code, is

included in the ArcGIS Engine Developer Kit and coding directory. Once you have the file copied to your coding directory, follow

can be accessed from the help system under the steps outlined below to prepare it for use:
Devel t Envi ts -> C++ -> Makefil . .
evelopment Environments akefiles 1. Rename your copy of Makefile.Windows.template to Makefile.Windows.
as Makefile. Windows. / /

2. Open the newly renamed Makefile.Windows.
3. Update PROGRAM to be RasterSlope.exe.
4

. Update INCLUDEDIRS macro, which contains the include directories to pass
to the compiler, to reflect where you installed ArcGIS Engine.

Update CPPSOURCES to be RasterSlope.cpp.
Replacing all instances of basic_sample in your

Makefile. Windows file with RasterSlope will 6. Update CPPOBJECTS to be RasterSlope.ob;.
complete steps 3 and 5 through 7 listed at L . . .
right. 7. Update the dependencies line from basic_sample.obj to be for RasterSlope.obj

and to depend on RasterSlope.cpp and RasterSlope.h.

w

Chapter 6 * Developer scenarios * 333

BUILDING A COMMAND LINE C++ APPLICATION

The command line build tools of Visual Studio
(nmake, cl, link, for example) are not available
by default. However, a batch file provided by
Microsoft makes them available in Windows. This
batch file, called vevars32.bat, must be run each
time you open a new command prompt.You can
automate this process by either creating a batch
file which runs the Visual Studio 6.0 version of
vevars32.bat and opens a command prompt
which is ready for development, or by using the
Visual Studio .NET 2003 Command Prompt
which runs vevars32.bat for you. For details, see
the C++ APl section in Chapter 4, 'Developer
environments."

334 < ArcGIS Engine Developer Guide

You are now ready to compile with nmake. When this scenario directs you to do
so, you will need to use the “f” flag to specify the name of the Makefile that
should be used. At the command line, you will type:

nmake /f Makefile.Windows.

Setting execution parameters

To use the Makefile to facilitate running the scenario, the parameters need to be

stored within it and a target must be set to run the application. To set up your

makefile to do this, you need to update the parameters to match the data you

wish to process, and the name you want the output to be given.

1.

Near the beginning of Makefile.Windows, find the lines:

#

Command 1ine parameters: Edit these parameters so that you can
easily run the sample by typing “nmake /f Makefile.Windows run”.
#

You will need to:

(1) Describe parameters here. ex: IN_SHAPEFILE is the input shapefile
(2) Define parameters below this comment box.

ex: IN_SHAPEFILE = “c:\data\shapefile.shp”

(3) Add the parameters to the run target at the end of this file
ex: $(PROGRAM) $(IN_SHAPEFILE)

#

. Below it, add parameters for running this sample. For example, if your input

raster is “C:\MyComputer\Rasters\RasterDataset” and your output dataset is
going to be named “tempslope” you will add the following lines:

IN_RASTER = “C:\MyComputer\Rasters\RasterDataset”

OUT_RASTER = “tempsTope”

. At the end of Makefile.Windows there is a run target that currently only

executes the program. Update that run target to also pass in the input param-
cters. If you used the variable names IN_RASTER and OUT_RASTER as shown in the
example above, the run target should now look as follows:

#

Run target: “nmake /f Makefile.Windows run” to execute the application
#

run:
$ (PROGRAM) $(IN_RASTER) $(OUT_RASTER)

You are now ready to run the application with nmake. When this scenario directs
you to do so, you will need to use the “f” flag to specify the name of the

Makefile that should be used. On a Windows system, you will type:

nmake /f Makefile.Windows run

This will have the same affect as typing “RasterSlope.exe

C:\MyComputer\Rasters\RasterDataset tempslope” at the command line.

BUILDING A COMMAND LINE C++ APPLICATION

There are three ways to scope members in a
namespace.The following are examples of each
using cerr, a member of namespace std:

1. using namespace std;
2. using std::cerr;
3. std::cerr << "Prepend namespace";

The third method is used throughout this
scenario.

Processing the arguments

The user provides the input and output file information for this application at
runtime (either through the Makefile or at the command line). To get the specifics
of that information, in order to use it in the program, some argument processing
must be done.

1. Create a new file, RasterSlope.h, in your text editor. Place the contents of the
file in a #ifndef and #define section. Include a header file so that information
(such as a usage message) can be displayed to the user.

#ifndef _RASTERSLOPE_ESRISCENARIO_h__
#define __RASTERSLOPE_ESRISCENARIO_h__

#include <iostream>

#endif // __RASTERSLOPE_ESRISCENARIO_h__

2. In another new file, RasterSlope.cpp, begin implementing your slope applica-
tion. First include the header file you created in the last step. Then start writ-
ing the main function. For now, just process the arguments in it. Make sure
the correct number of arguments were entered, else print out a usage message
and exit. Since the first argument will be the program name, it can be ignored.
The second argument is the input data and the third is the resulting slope file.
You will check if the arguments passed are valid later in the program’s execu-
tion.

#include “RasterSlope.h”

int main(int argc, char* argv[])

{
if (argc !=3)
{
std::cerr << “Usage: RasterSlope [sourceFile] [outputFile]”
<< std::endl;
return 0;
}

char* source = argv[1];
char* result = argv[2];

return 0;
}

3. However, you will need to have the path and the file name of the input
separately. To get this information, you will create a new file, in which you
will place the path parsing utility functions. Start a new file, PathUtilities.h,
and declare a helper function to get the parent directory and another to get the
file name.

#ifndef _PATHUTILITIES_ESRISCENARIO_H__
#define __PATHUTILITIES_ESRISCENARIO_H__

#include <iostream>
#include <ArcSDK.h>

Chapter 6 * Developer scenarios * 335

BUILDING A COMMAND LINE C++ APPLICATION

// Extract the shape file name from the full path of the file
HRESULT GetFiTleFromFullPath(const char* inFullPath, BSTR* outFileName);

// Remove the file name from the full path and return the directory

HRESULT GetParentDirFromFullPath(const char* inFullPath,
BSTR* outFilePath);

#endif // __PATHUTILITIES_ESRISCENARIO_H__
4. Implement the path utility functions in the new file PathUltilities.cpp.
#include “PathUtilities.h”

// Function to remove the file name from the full path and return the
// path to the directory. Caller is responsible for freeing the memory
// in outFilePath (or pass in a CComBSTR which has been cast to a BSTR
// to let the CComBSTR handle memory management) .
HRESULT GetParentDirFromFullPath(const char* inFullPath,
BSTR* outFilePath)
{
if (!inFulTPath || !outFiTlePath)
return E_POINTER;

// Initialize output
*outFilePath = 0;

const char *pathEnd = strrchr(inFullPath, “/’); // UNIX
if (pathEnd == 0)
pathEnd = strrchr(inFullPath, ‘\\’); // Windows

if (pathEnd == 0)
return E_FAIL;

int size = strien(inFullPath) - strlen(pathEnd);
char *tmp = new char[size+1];

strncpy(tmp, inFullPath, size);

*(tmp+size) = ‘\0’;

CComBSTR bsTmp (tmp);
delete[] tmp;
if (!bsTmp)
return E_OUTOFMEMORY;
*outFilePath = bsTmp.Detach(Q);

return S_OK;

// Function to extract the file (or directory) name from the full path
// of the file. Caller 1is responsible for freeing the memory in

// outFileName (or pass in a CComBSTR which has been cast to a BSTR
// to let the CComBSTR handle memory management) .

HRESULT GetFiTleFromFullPath(const char* inFullPath, BSTR *outFileName)
{

336 * ArcGIS Engine Developer Guide

BUILDING A COMMAND LINE C++ APPLICATION

if (!inFulTPath || !outFiTeName)
return E_POINTER;

*outFileName = 0;

const char* name = strrchr(inFulT1Path, ‘/’); // UNIX
if (name == 0)
name = strrchr(inFulTPath, ‘\\’); // Windows

if (name == 0)
return E_FAIL;

name++;
char* tmp = new char[strien(name)+1];
strcpy(tmp, name);

CComBSTR bsTmp (tmp);
delete[] tmp;
if (!bsTmp)
return E_OUTOFMEMORY;
*outFileName = bsTmp.Detach(Q);

return S_OK;
}
5. Use the functions in PathUtilities.h to parse the input.

a. Update RasterSlope.h to include PathUtilities.h so that you can use the
functions you wrote above. Find

#include <iostream>
and below it, add
#include “PathUtilities.h”
b. In RasterSlope.cpp’s main program, parse the input to get the path and the
file name. Find

char* result = argv[2];

return 0;
Between these two lines, insert

// Parse path

CComBSTR sourceFilePath;

CComBSTR sourceFileName;

HRESULT hr = GetParentDirFromFullPath(source, &sourceFilePath);

if (FAILED(hr) || sourceFilePath.Length() <= 0)

{
std::cerr << “Couldn’t parse source file path.” << std::endl;
return 0;

}

hr = GetFileFromFullPath(source, &sourceFileName);

if (FAILED(hr) || sourceFileName.Length() <= 0)

{

Chapter 6 * Developer scenarios * 337

BUILDING A COMMAND LINE C++ APPLICATION

std::cerr << “Couldn’t parse source file name.” << std::endl;
return 0;

}

6. Update the Makefile to reflect the new PathUltilities.cpp and PathUtilities.h
files, including RasterSlope’s dependency upon it.

7. Compile and run the application. It should simply exit and not appear to do
anything although it is parsing the arguments.

Accessing ArcGIS Engine

In order to use ArcGIS Engine, it must be initialized and the proper files in-
cluded. When done using ArcGIS Engine, it must be uninitializd.

1. At the top of RasterSlope.h, but below the inclusions for iostream and
PathUtilities.h, add an inclusion for ArcSDK h. It should now appear as

follows:
The code shown in gray has already been #include <iostream>
entered in previous steps. It is given here to #include “PathUtilities.h”

illustrate the accurate placement of the code you

N #include <ArcSDK. h>
are adding in this step.

2. AoExit() must be called before the application is exited. This allows portabil-
ity to supported operating systems which require AoExit() to correctly clean
up various ArcGIS Engine and COM elements. Update RasterSlope.cpp’s
main() to use this function instead of return.

int main(int argc, char* argv[])

{

if (argc !=3)

{
std: :cerr << “Usage: RasterSlope [sourceFile] [outputFile]”

<< std::end1;

AoExit(0);
return-o;

}

char* source = argv[1];
char* result = argv[2];

std::cerr << “Couldn’t parse source file path.” << std::endT;
AoEXit(0);
return-0+

}

hr = GetFileFromFullPath(source, &sourceFileName);

if (FAILEDChr) || sourceFileName.Length() <= 0)

{
std::cerr << “Couldn’t parse source file name.” << std::endl;
AoExit(0);
return-o;

338 + ArcGIS Engine Developer Guide

BUILDING A COMMAND LINE C++ APPLICATION

AoExit(0);
return-0+
3
3. Write helper functions that initialize and shutdown the engine. These are
general functions which you can use in any command line application.

a. In RasterSlope.h:
#include <ArcSDK.h>

bool InitializeWithExtension(esrilicenseProductCode product,
esrilicenseExtensionCode extension);
void ShutdownApp (esriLicenseExtensionCode 1icense);
b. At the bottom of RasterSlope.cpp:
bool InitializeWithExtension(esrilicenseProductCode product,
esrilicenseExtensionCode extension)

{
::Aolnitialize(0);

TAoInitializePtr ipInit(CLSID_AolInitialize);
esrilLicenseStatus TicenseStatus = esrilicenseFailure;
ipInit->IsExtensionCodeAvailable(product, extension, &licenseStatus);
if (TicenseStatus == esrilLicenseAvailable)
{

ipInit->Initialize(product, &licenseStatus);

if (TicenseStatus == esrilicenseCheckedOut)

ipInit->CheckOutExtension(extension, &licenseStatus);

}
return (1licenseStatus == esrilLicenseCheckedOut);
}
void ShutdownApp(esrilicenseExtensionCode 1icense)
{
// Scope ipInit so released before AoUninitialize call
{
TAoInitializePtr ipInit(CLSID_AoInitialize);
esrilicenseStatus status;
ipInit->CheckInExtension(license, &status);
ipInit->Shutdown();
It appears that a new instance of Aolnitialize is ¥
created in ShutdownApp(). However, it is a
singleton object and so returns a pointer to the r:AoUninitializeQ;
Aolnitialize object that was previously created. 3

Command line applications can be run against any ArcGIS Engine installation—
Runtime or Developer Kit—or any installation of the ArcGIS Desktop products,
(ArcView, ArcEditor, or Arclnfo). However, this particular application requires a
Spatial license in addition to the core license. Depending on the core product
license being used , Engine or Desktop, either a Spatial option for the ArcGIS

Chapter 6 * Developer scenarios * 339

BUILDING A COMMAND LINE C++ APPLICATION

Any additional extension functionality must use
an extension license that matches the core
license being used at that time. If the application
initially accesses an Engine Runtime license, it
must use the 3D or Spatial options for ArcGIS
Engine if they are required. If the application
initially accesses anArcGIS Desktop license
(ArcView, ArcEditor, or Arcinfo), it must use 3D
or Spatial Analyst extension licenses if they are
required.

This is a placeholder comment to indicate where
additional code will be placed later in the
exercise.

340 « ArcGIS Engine Developer Guide

Engine Runtime or an ArcGIS Spatial Analyst extension must also be available.
Your application must confirm the availability of and then check out the neces-
sary licenses as required.

4. In RasterSlope.cpp’s main(), initialize ArcGIS Engine and set up the licensing

for the product. Next, shutdown and uninitialize ArcGIS Engine. These lines
of code can be placed after the command line arguments have been processed;
that part of the application does not need access to ArcGIS Engine and, if the
arguments are invalid, there is no reason to start ArcGIS Engine.
if (FAILED(hr) || sourceFileName.Length() <= 0)
{

std::cerr << “Couldn’t parse source file name.” << std::endT;

AoExit(0);
3

if (!InitializeWithExtension(esrilicenseProductCodeEngine,
esrilicenseExtensionCodeSpatialAnalyst))

if (!InitializeWithExtension(esrilicenseProductCodeArcView,
esrilicenseExtensionCodeSpatialAnalyst))
if (!InitializeWithExtension(esrilicenseProductCodeArcEditor,
esrilicenseExtensionCodeSpatialAnalyst))

if (!InitializeWithExtension(esrilicenseProductCodeArcInfo,
esrilicenseExtensionCodeSpatialAnalyst))

{

std::cerr << “Exiting Application: Engine Initialization failed”
<< std::endl;

ShutdownApp (esrilicenseExtensionCodeSpatialAnalyst);
AoExit(0);
// Insert code here

ShutdownApp (esrilicenseExtensionCodeSpatialAnalyst);

AoExit(0);

. Compile the application using the nmake utility as you did earlier in the sce-

nario.

. Run the application. It still appears not to do anything, however now it is also

performing the license checking,

Computing the Slope

At this point, you've determined the dataset on which to compute the slope and
have accessed ArcGIS Engine. Now, the slope calculation itself can be per-
formed. This action is done in a separate function, CaleulateSlope(), which is called
from main().

1. Place a declaration for CalenlateSiope() in RasterSlope.h. Give it an HRESULT

return type so that it can be used for error checking,

void ShutdownApp (esriLicenseExtensionCode 1icense);
HRESULT CalculateSTope(BSTR inPath, BSTR inName, BSTR outFile);

BUILDING A COMMAND LINE C++ APPLICATION

2. After the ShutdownApp() function in RasterSlope.cpp, add the implementation
tor CalculateSlope(). Place the function only in this step. Upcoming steps will
continue to place code into the CalenlateSlope() function, unless otherwise
indicated.

HRESULT CalculateSTope(BSTR inPath, BSTR inName, BSTR outFile)
{

}
3. Open the input raster workspace.

HRESULT CalculateSTope(BSTR inPath, BSTR inName, BSTR outFile)
{
// Open the workspace

IWorkspaceFactoryPtr ipWorkspaceFactory
(CLSID_RasterWorkspaceFactory);

IWorkspacePtr ipWorkspace;
HRESULT hr = ipWorkspaceFactory->OpenFromFile(inPath, 0, &ipWorkspace);
if (FAILEDChr) || ipWorkspace == 0)
{
std: :cerr << “Could not open the workspace factory.” << std::endl;
return E_FAIL;
}

4. Query Interface to get access to the raster-specific workspace functionality
and open the input raster dataset.
HRESULT hr = ipWorkspaceFactory->0OpenFromFiTle(inPath, 0, &ipWorkspace);
if (FAILED(Chr) || ipWorkspace == 0)
{
std: :cerr << “Could not open the workspace factory.” << std::endl;
return E_FAIL;
}

// Open the raster dataset

IRasterWorkspacePtr ipRastWork(ipWorkspace);

IRasterDatasetPtr ipRastDataset;

hr = ipRastWork->OpenRasterDataset(inName, &ipRastDataset);

if (FAILED(Chr) || ipRastDataset == 0)

{
std::cerr << “Could not open the raster dataset.” << std::endl;
return E_FAIL;

}

5. To perform the slope calculation, use the ISurfaceOp interface’s Siope() function.
To do this you need to access the ISurfaceOp interface on the workspace. To set
up that workspace, Query Interface to [RasterAnalysisEnvironment.
hr = ipRastWork->OpenRasterDataset(inName, &ipRastDataset);
if (FAILED(hr) || ipRastDataset == 0)

{
std::cerr << “Could not open the raster dataset.”
return E_FAIL;

<< std::endl;

Chapter 6 * Developer scenarios ¢ 341

BUILDING A COMMAND LINE C++ APPLICATION

// Set up the ISurfaceOp interface to calculate slope
IRasterAnalysisEnvironmentPtr ipRastAnalEnv(CLSID_RasterSurfacelp);
ipRastAnalEnv->putref_OutWorkspace(ipWorkspace) ;

ISurfaceOpPtr ipSurfOp(ipRastAnalEnv);

6. You are now ready to perform the slope calculation and end the
CalculateS lope() function. Return the HRESULT returned by that function, to
indicate if the calculation was successful.

ISurfaceOpPtr ipSurfOp(ipRastAnalEnv);
IGeoDatasetPtr ipGeoDataIn(ipRastDataset);
IGeoDatasetPtr ipGeoDataOut;

HRESULT slopeHR = ipSurfOp->Slope(ipGeoDataln,
esriGeoAnalysisSlopeDegrees,

0,
&ipGeoDatalut) ;
if (FAILED(slopeHR) || ipGeoDataOut == 0)

{
std::cerr << “slopeHR =
return slopeHR;

}

<< sTopeHR << std::end1;

return slopeHR;

7. CalenlateSlope() has now been completely implemented and is ready for use. In
the main function, after the engine has been initialized, call the CalulateS/lope()
function. Delete the placeholder comment.

//Insert—codehere

hr = CalculateSlope(sourceFilePath, sourceFileName, CComBSTR(result));
if (FAILED(hr))

std: :cerr << “The sTope calculation failed.” << std::endl;
else

std: :wcerr << L“The slope of “ << (BSTR) sourceFileName
<< L“ has been calculated.” << std::endl;

ShutdownApp (esriLicenseExtensionCodeSpatialAnalyst);

8. Compile the application and then run it. Notice that the output data’s path
information is never used and that the result of the slope calculation is not
stored anywhere.

Persisting the result

When the slope is computed, the result is only created in memory. To save it, you
must programmatically persist it to disk.

1. Since you cannot create a new raster dataset where one already exists, make
sure that the output slope file does not exist yet. This can be done in the
CalculateS lope() function by trying to open a workspace with the desired name.
If such an open is successful, then there is already a dataset with that name.

342 < ArcGIS Engine Developer Guide

BUILDING A COMMAND LINE C++ APPLICATION

To perform this check, place the following code after the input dataset is
opened in CalentateSlope().

hr = ipRastWork->OpenRasterDataset(inName, &ipRastDataset);

if (FAILED(hr) || ipRastDataset == 0)

{
std::cerr << “Could not open the raster dataset.” << std::endl;
return E_FAIL;

}

// Check for existence of a dataset with the desired output name.
IRasterDatasetPtr ipExistsCheck;

hr = ipRastWork->0penRasterDataset(outFile, &ipExistsCheck);

if (SUCCEEDED(hr))

{

std::cerr << “A dataset with the output name already exists!”
<< std::endl;

return E_FAIL;
}

// Set up the ISurfaceOp interface to calculate slope

2. Once its been determined that no such dataset exists, you can save the one
created by the slope operation. The save is done through the
IRasterBandCollection interface after the slope is computed.
HRESULT CalculateSTope(BSTR inPath, BSTR inName, BSTR outFile)
{

HRESULT sTopeHR = ipSurfOp->Slope(ipGeoDataln,
esriGeoAnalysisSlopeDegrees,

0,
&ipGeoDatalut) ;
if (FAILED(sTopeHR) || ipGeoDataOut == 0)

{
std::cerr << “slopeHR = *
return slopeHR;

<< sTopeHR << std::end1;

// Persist the result

IRasterBandCollectionPtr ipRastBandCol1(ipGeoDatalut) ;

IDatasetPtr ipOutDataset;

jpRastBandCo11->SaveAs(outFile, ipWorkspace, CComBSTR(L”GRID”),
&ipOutDataset);

return slopeHR;

}

3. Compile and run the application. Browse to where the slope data was created.
A new ESRI grid was generated with your output name.

Chapter 6 * Developer scenarios ¢ 343

BUILDING A COMMAND LINE C++ APPLICATION

The output slope file is created in the same
directory as its parent raster file.

344 < ArcGIS Engine Developer Guide

DEPLOYMENT

The final part of the development process is your application's successful deploy-
ment to an enduser's machine. Doing so requires the following:

e An installation of ArcGIS Engine Runtime with Spatial option on the user
machine.

* A copy of the application's executable, created at compile time, residing on
the enduser's machine.

Once these requirements are in place, your enduser will be able to create a slope
file for any dataset just by typing the following at the command line:

RasterSTope inputRaster outputRaster

where inputRaster is the full path (including file name) to the raster data file and
outputRaster is the name of the output slope file that to be created.

Alternatively, your enduser can use the nmake utility to run the sample. To do so,
an appropriate Makefile with the correct arguments must be made and the fol-
lowing entered at the command line:

nmake /f Makefile.Windows run

ADDITIONAL RESOURCES

The following resources may help you understand and apply the concepts and
techniques presented in this scenario.

* Additional documentation available in the ArcGIS Engine Developer Kit
including ArGILS Developer Help, component help, object model diagrams, and
samples to help you get started.

e ArcGIS Developer Online—Web site providing the most up-to-date informa-
tion for ArcGIS Developers including updated samples and technical docu-
ments. Go to http://arcgisdeveloperonline.esti.com.

* ESRI online discussion forums—NWeb sites providing invaluable assistance
from other ArcGIS developers. Go to http://support.esti.com and click the
User Forums tab.

o Principles of Geographical Information Systems. Peter A. Burrough and Rachel A.
McDonnell. Oxford University Press. 1998.

Reading the
object model
diagrams

The ArcObjects object model diagrams are an important supplement to the
information you receive in object browsers.This chapter describes the
diagram notation used throughout this book and in the object model

diagrams that are accessed through ArcGIS Developer Help.

INTERPRETING THE OBJECT MODEL DIAGRAMS

The diagram notation used in this book and the ArcObjects object model dia-
grams is based on the Unified Modeling LLanguage (UML) notation, an industry-
diagramming standard for object-oriented analysis and design, with some modifi-
cations for documenting COM-specific constructs.

The object model diagrams are an important supplement to the information you
receive in object browsers. The development environment, Visual Basic or other,
lists all of the classes and members but does not show the structure or relation-
ships of those classes. These diagrams complete your understanding of the
ArcObjects components.

Object model key Types of Classes

An abstract class cannot be used to create new objects, itisa

for i f subcl hrough
AbstractClass ey o o (through type

Inbound interface o—— Interface:Inherited interface Instantiation A coclass can directly create objects by declaring a new object.

ZF Type inheritance

1
1
1
1
1
CoClass Composmon | Type inheritance defines specialized classes of objects that
|

A class cannot directly create objects, but objects of a class can
be created as a property of another class or instantiated by
objects from another class.

Outbound interface @— | Properties
Methods

Types of Relationships

lationships b.

A iati representr P
have defined multiplicities at both ends.

classes. They

share properties and methods with the superclass and have
additional properties and methods. Note that interfaces in
superclasses are not duplicated in subclasses.

Inbound interface 0——] Interface:Inherited interface

Outbound interface @— | Properties
Methods

specifies that one object from one class has a

Class method with which it creates an object from another class.
. — Composition is a rel hip in which objects from the "whole"
Inbound interface o— Interface:Inherited interface class control the lifetime of objects from the "part” class.
Outbound interface @— | Properties An N-ary association specifies that more than two classes are
Methods associated. A diamond is placed at the intersection of the
association branches.

1x A Multiplicity is a constraint on the number of objects that can
- o be associated with another object. Association and composition
Multlpllcn:y relationships have multiplicities on both sides. This is the notation
— Propeny Get Special Interfaces for multiplicities:
—= Property Put I - One and only one (if none shown, one is implied)
=—a Property Get/Put

Interface key Association

(Optional) represents interfaces that are inherited by some subclasses

but not all. The subclasses list the optional interfaces they implement. 0..1 - Zero or one
—0 Property Put by Reference i AL

d represents interfaces that are only on specific instances of M..N - From M to N (positive integers)
<— Function the class.

. *or 0..* - From zero to any positive integer
<t Event function (<classname>) indicates the name of the helper class required to
support this event interface in Visual Basic.

I..% - From one to any positive integer

Object Model Diagram key showing the types of
ArcObjects and the relationships between them.

346 + ArcGIS Engine Developer Guide

INTERPRETING THE OBJECT MODEL DIAGRAMS

CLASSES AND OBJECTS

There are three types of classes shown in the UML diagrams: abstract classes,
coclasses, and classes.

abstract Instantiation

class

Type
inheritance

[1 v
Composition
coclass class

Association =

Multiplicity

A coclass represents objects that you can directly create using the object declara-
tion syntax in your development environment. In Visual Basic, this is written
with the Dim pFoo As New FooObject syntax.

A class cannot directly create new objects, but objects of a class can be created as
a property of another class or by functions from another class.

An abstract class cannot be used to create new objects; it is a specification for
subclasses. An example is that a “line” could be an abstract class for “primary
line” and “secondary line” classes. Abstract classes are important for developers
who wish to create a subclass of their own since it shows which interfaces are
required and which are optional, for the type of classs they are implementing,
Required interfaces must be implemented on any subclass of the abstract class to
ensure the new class behaves correctly in the ArcObjects system.

RELATIONSHIPS

Among abstract classes, coclasses, and classes, there are several types of class
relationships possible.

1%
Owner Land parcel
i

In this diagram, an owner can own one or many land parcels, and a land parcel
can be owned by one or many owners.

Associations represent relationships between classes. They have defined multiplici-
ties at both ends.

A Multiplicity is a constraint on the number of objects that can be associated with
another object. This is the notation for multiplicities:

1—One and only one. Showing this multiplicity is optional; if none is shown, “1”
is implied.

0..1—Zero or one

M.N—From M to N (positive integers)

* or 0.4—From zero to any positive integer

1.4—From one to any positive integer

Appendix A ¢ Reading the object model diagrams * 347

INTERPRETING THE OBJECT MODEL DIAGRAMS

348 « ArcGIS Engine Developer Guide

TYPE INHERITANCE

Type inberitance defines specialized classes that share properties and methods with the
superclass and have additional properties and methods.

Line

Secondary

line

Primary
line

This diagram shows that a primary line (creatable class) and secondary line
(creatable class) are types of a line (abstract class).

INSTANTIATION

Instantiation specifies that one object from one class has a method with which it
creates an object from another class.

Pole | [-=m---- » Transformer

A pole object might have a method to create a transformer object.

COMPOSITION

Composition is a stronger form of aggregation in which objects from the “whole”
class control the lifetime of objects from the “part” class.

Pole Crossarm

A pole contains one or many crossarms. In this design, a crossarm cannot be
recycled when the pole is removed. The pole object controls the lifetime of the
crossarm object.

ArcGIS developer
resources

ESRI has created two essential resources for ArcGIS developers: the ArcGIS
Software Developer Kit and ArcGIS Developer Online (http://

ArcGlISDeveloperOnline.esri.com).

ARcGIS SoFTwWARE DEVELOPER KiT

[C:\Program Files\ircGls|Developerkit The ArcGIS Software Developer Kit (SDK) is the collection of diagrams, utili-

=) addin ties, add-ins, samples, and documentation geared to help developers implement
[C)Diagrams custom ArcGIS functionality.

ﬁDocumentation

SiHelp ARCGIS DEVELOPER HELP SYSTEM

[E)samples The ArcGIS Developer Help System is the gateway to all the SDK documenta-
Chtools

tion including help for the add-ins, developer tools, and samples; in addition, it

A typical SDK installation serves as the complete syntactical reference for all object libraries.

Each supported API has a version of the help system that works in concert with
it. Regardless of the API you choose to use, you will see the appropriate library
reference syntax and have a help system that is integrated with your development
environment. For example, if you are a Visual Basic 6 developer you will use
ArcGISDevHelp.chm which has the VB6 syntax and integrates with the VB6
IDE thereby providing F1 help
support in the Code Window.

fa Arccls

fan Developer Help @ NETHelp The help systems reside in the

I/ Developer Taols Pl &+t Help DeveloperKit\Help folder but are
[Engine Developer kit » & JavaHelp typically launched from the start

& onli menu or F1 help in Visual Basic 6
[@ License Manager 4 a Online Help 1 p u

and Visual Studio.NET 2003. The
graphic below shows the start menu
options for opening the help systems.

& Softwareduthorization | m

SAMPLES

The ArcGIS Developer Kit contains over 600 samples many of which are written
in several languages. The samples are described in the help system and the source
code and project files are installed in the DeveloperKit\samples folder. The help
system’s table of contents for the samples section mirrors the samples directory
structure.

The help system organizes samples by functionality. For example, all the
Geodatabase samples are grouped under

cGIS Developer Help Samples\Geodatabase. Most first tier group-
Fie Edt YView Go Hep . P
- - B @& & & O ings are further subdivided. You can also find
Hee Bok fovo Rebsh Home Pk Pint Odins samples in the SDK using the ‘Query the
veres | || Are9iS sk & <. . .
e il E i Ml Samples’ topic in the help system which lists all
&) witeams B e X . .
e i vt ol the samples alphabetically; in addition, you can
© @ s Evaie [List samples by tangusge: [ENNN-] | ,
o L e sort the list by language. For example, you can
+ @ Techrical Decument Mame Cateqory Type Language : :
i i o TR SR Tee A elect to only list the available Java samples.
* :WTWx % AddFeaturalayer Controls TOOL Java . .
e 3 Addy Geodatabase oL Java Installing the samples source code and project
R v 4 Application web servics Developor Guide rool ca,un HETJave . . .
En ity e Semar ey files is an option in the install. The samples are
* How o use the Sampk & Attributeguary Centrols TOOL Java H
+ @ 30 Ancist 7 BivariateRenderers Controls TOOL Java installed under the
* R Appheahon Framevor. & Browse for data using name abjects Geodatabase TOOL WBEJawa H
: & s 3 e desa d9ok e ArcGIS\DeveloperKit\samples folder. If you
sellsaia: 10 BuildPyramids Raghar TOOL Java, T4 bl .
0 @ irtosns ¥ b Banar T don’t have this folder on your computer, you
12 CelStabstics Spatislinalyst TOOL Java]
. g“w’dEm 13 Chackversion Geodatabass TOOL Jave can rerun the install program and check on
= 14 CleanShapsfies Geodatabass TOOL CH+Jave 1
2?‘"‘* ™ 15 ClipShapsfils zendstshsss TOOL C4dJave Samples under Developer I<‘lt
: * 1w el . Geomatry TOOL Jave

350 * ArcGIS Engine Developer Guide

ARcGIS SoFTwARE DEVELOPER KiT

DEVELOPER TOOLS

The ArcGIS Developer Tools are executables that ESRI has provided to facilitate
your ArcObjects development. You may find some of these tools essential. For
example, if you are a Visual Basic 6 desktop developer you will likely use the
Categories.exe tool to register components in component categories.

Each of the developer tools is installed in the DeveloperKit\tools folder except
for the Component Category Manager, which is located in the ArcGIS\bin folder.
Please refer to ArcGILS Developer Help for a detailed discussion of each tool and
instructions for their use.

Tools available with each ArcGIS Developer Kit

* Component Categories Manager—Registers components within a specific
component category.

* Fix Registry Utility—Fixes corruptions in the Component Categories section
of the registry.

* GUID Tool—Generates GUIDs, in registry format, for use within source
code.

* Library Locator—Identifies object library containing a specified interface,
coclass, enumeration, or structure.

Additional tools available in the Desktop Developer Kit

e ESRI Object Browser—Advanced object browser.

* Extract VBA—Extracts VBA code from a corrupt map document (mxd).

ADD-INS

The ESRI add-ins automate some of the tasks performed by the software engi-
neer when developing with ArcObjects, as well as provide tools that make debug-
ging code easier. ESRI provides add-ins for the Visual Basic 6 IDE and the Visual
Studio NET IDE.

Visual Basic 6 add-ins

The following Visual Basic 6 add-ins are available but only installed if you select

15 AreGIS Desktop Developer Kit Setup

setetretres them during the installation process:
Please solect which feales you would fice fo nstall F !e -
S S beriea e * ESRI Align Controls with Tab Index—Ensures control creation order matches
M The VB asdin lealiie nittale addin: o Visual
el e tab index.

Thiz feature wil be instaled onthe bacalhard
dive,

e ESRI Automatic References—Automatically adds ArcGIS library references.

* ESRI Code Converter—Converts projects from ArcGIS 8.X to ArcGIS 9.X.

This foakurs racies 0K an you hard drive:

Cument locanon

Elas e * ESRI Command Creation Wizard—TFacilitates the creation of commands and
] o N e e t00ls.
Installation dialog box for Se’eﬂg’g Fhe(‘j/;sgal * ESRI Compile and Register—Aids in compiling components and registering
asic adda-ins.

these in desired component categories.

e ESRI ErrorHandler Generator—Automates the generation of error handling
code.

Appendix B ¢ ArcGIS developer resources ¢ 351

ARcGIS SoFTwARE DEVELOPER KiT

352 < ArcGIS Engine Developer Guide

e ESRI ErrorHandler Remover—Removes the error handlers from the source
files.

* ESRI Interface Implementer—Automatically stubs out implemented inter-
faces.

* ESRI Line Number Generator—Adds line numbers to the appropriate lines
within source files.

¢ ESRI Line Number Remover—Removes the line numbers from source files.

Visual Studio.NET add-ins

The following NET add-ins are automatically installed during setup if a version
of Visual Studio.NET 2003 is detected:

* ESRI Component Category Registrar—Stubs out registration functions to
enable self component category registration.

¢ ESRI Guid Generator—Inserts a GUID attribute.

ARcGIS DEVELOPER ONLINEWEBSITE

ArcGIS Developer Online is the place to find the most up-to-date ArcGIS 9
developer information including sample code, technical documents, object model
diagrams, and the complete object library reference.

The web site is a reflection of the ArcGIS Developer Help system except it is
online and therefore more current. The web site has some additional features
including an advanced search utility that enables you to control the scope of your
searches. For example, you can create a search that only scans the library refer-
ence portion of the help system.

Visit the site today (http://arcgisdeveloperonline.esti.com).

gew Fgwrtes Took fep
csa:k - Iﬂ Iﬂ {h /f'_)saardn ‘jzl?FavMIes @ redz &) ﬁz- '_"s - [Jag

Addeess | hetpllarcgsdevalparonbne.esr, com|

ESRI' preGlS Developer-Online

[ElHide Fd|Locate pgHome Page URL ¥ = Quick Searc

-~
% Walcome to 4roGlS Developer N
Developing with AroGLS Welcome to ArcGIS Developer Online
ArcGIE Engine
@ 4reG1s Deskiop . ; . ;
@ oIt Server This onlinz help system is the place to find the latest infarmation about
@ tevel i Arcobjects induding sample code, technical documents, and object
evalopment Environments madeal chagrams. [|
Extending ArcObjects
Technical Documents Use the table of contents on the left to navigate the help systam.
@ ndd-Ins

Developer Tools
Library Referance

Samol Add-Ins wisual Basic 6 and visual Studio NET Addins
ot |4 The ESRI add-ins automate some of the tasks
Cownlaads perfarmad by the softwara engineer when developing
Discussion Forum with ArcObjects, as well as provide tools that make
B Feedback “ debugging code =2asier.
£ =i > . w
& D Intene: gl

Appendix B ¢ ArcGIS developer resources * 353

Glossary

The following is a glossary of common terms used throughout this
book.While it is not meant to be an all-encompassing list, its should
provide you with a quick reference to ArcGIS Engine-specific

terminology.

abstract class

Active Server Pages

ActiveTemplate Library
add-in

ADF

ADF runtime

apartment

API

application programming
interface

application Web service

ArcGIS Server Web service

arcgisant

ArcObjects

ASCII

ASP

356 * ArcGIS Engine Developer Guide

GLOSSARY

A specification for subclasses that is often shown on object model diagrams to
help give structure to the diagram. An abstract class is not defined in a type
library and cannot be instantiated.

A Microsoft server-side scripting environment that can be used to create and run
dynamic, interactive Web server applications, which are typically coded in
JavaScript or VBScript. An ASP file contains not only text and HTML tags,
smiilar to standard Web documents, but also commands written in a scripting
language, which can be carried out on the server.

A set of C++ template classes, designed to be small, fast, and extensible.

An extension to a development environment that performs a custom task. ESRI
provides various developer add-ins as part of the ArcGIS developer kit.

Application Developer Framework. The set of custom Web controls and tem-
plates that can be used to build Web applications that communicate with a GIS
server. ArcGIS Server includes an ADF for both .NET and Java.

The components required to run an application built with the ADE. See also ADE

A group of threads working within a process that work within the same context.
See also MTA, STA, thread, TNA.

See application programming interface.

A set of routines, protocols, and tools that application developers use to build or
customize a program or set of programs. APIs make it easier to develop a pro-
gram by providing building blocks for a preconstructed interface instead of
requiring direct programming of a device or piece of software. They also guaran-
tee that all programs using a common API will have similar interfaces. APIs can
be built for programming languages such as C, COM, Java, and so on.

A Web service that solves a particular problem, for example, a Web service that
finds all of the hospitals within a certain distance of an address. An application
Web service can be implemented using the native Web service framework of a
Web server, for example, an ASPNET Web service (WebMethod) or Java Web
service (Axis).

A Web service processed and executed from within an ArcGIS Server. Each Web
service is a distinct HTTP endpoint (URL). Administrators can expose
MapServer and GeocodeServer objects as generic ArcGIS Server Web services for
access across the Internet. See also Web service catalog;

The command, provided with the Java ADF, that starts the Apache ANT tool
that builds and deploys Web applications. See also ADF.

A library of software components that makes up the foundation of ArcGIS.
ArcGIS Desktop, ArcGIS Engine, and ArcGIS Server are all built on top of the
ArcObjects libraries.

American Standard Code for Information Interchange. The de facto standard for
the format of text files in computers and on the Internet. Each alphabetic,
numeric, or special character is represented with a 7-bit binary number (a string
of seven 1s and 0s). 128 possible characters are defined.

See Active Server Pages.

GLOSSARY

ASPNET

assembly

ATL

authentication

.bat file

big endian

binary

by value

C++

Cascading Style Sheets

CASE

class

A programming framework built on the Common Language Runtime (CLR) that
can be used on a server to build Web applications in any programming language
supported by .NET. See also Active Server Pages.

A package of software and its associated resources. Typically, an ArcGIS Win32
assembly will include executables and DLLs, object libraries, registry files, and
help files for a unit of software. A NET assembly is a unit of software built
with a NET language that uses the NET Framework and the CLR to execute.

See Active Template Library.

The process of obtaining identification credentials, such as a name and password,
from a user and validating those credentials against some authority. If the creden-
tials are valid, the entity that submitted the credentials is considered an authenti-
cated identity. Authentication can be used to determine whether an entity has
access to a given resource.

Sometimes referred to as a batch file, a file that contains commands that can be
run in a command window. It is used to perform repetitive tasks and to run
scheduled commands.

A computer hardware architecture in which, within a multibyte numeric repre-
sentation, the most significant byte has the lowest address and the remaining
bytes are encoded in decreasing order of significance. See also little endian.

Any file format for digital data encoded as a sequence of bits (Is and Os) but not
consisting of a sequence of printable characters (ASCII format). The term is
often used for executable machine code, such as a DLL or EXE file that contains
information that can be directly loaded or exectued by the computer.

A way of passing a parameter to a function such that a temporary copy of the
value of the parameter is created. The function makes changes to this temporary
copy, which is discarded after the function exits. If the parameter is a reference
to an underlying object, any changes made to the underlying object will be pre-
served after the function exits.

A common object-oriented programming language, with many different imple-
mentations designed for different platforms.

A standard for defining the layout or presentation of an HTML or XML docu-
ment. Style information includes font size, background color, text alignment, and
margins. Multiple stylesheets may be applied to “cascade” over previous style
settings, adding to or overriding them. The World Wide Web Consortium (W3C)
maintains the CSS standard. See also World Wide Web Consortium.

Computer-aided software engineering. A category of software that provides a
development environment for programming teams. CASE systems offer tools to
automate, manage, and simplify the development process. Complex tasks that
often require many lines of code are simplified with CASE user interfaces and
code generators.

A template for a type of object in an object-oriented programming language. A
class may be considered to be a set of objects that share a common structure and
behavior.

Appendix Ce Glossary * 357

GLOSSARY

class identifier

client

cloning

CLR

CLSID

coclass

COM

COM contract

COM interface

COM-compliant language

command

command bar

command line

component

component category

Component Category
Manager

Component Object Model

computer-aided software
engineering

358 * ArcGIS Engine Developer Guide

A COM term refering to the globally unique number that is used by the system
registry and the COM framework to identify a particular coclass. See also GUID.

An application, computet, ot device in a client/server model that makes requests
to a server.

The process of creating a new instance of a class with the same state as an exist-
ing instance.

Common Language Runtime. The execution engine for NET Framework appli-
cations, providing services such as code loading and execution and memory
management.

See class identifier.

A template for an object that can be instantiated in memory.

See Component Object Model.

The COM requirement that interfaces, once published, cannot be altered.

A grouping of logically related virtual functions, implemented by a server object,
allowing a client to interact with the server object. Interfaces form the basis of
COM’s communication between objects and the basis of the COM contract.

A language that can be used to create COM components.

Any class in an ArcGIS system that implements the ICommand interface and can
therefore be added to a menu or toolbar in an ArcGIS application.

A toolbar, menu bar, menu, or context menu in an ArcGIS application.

An onscreen interface in which the user types in commands at a prompt. In
geoprocessing, any tool added to the ArcToolbox™ window can be run from the
command line.

A binary unit of code that can be used to create COM objects.

A section of the registry that can be used to categorize classes by their functional-
ity. Component categories are used extensively in ArcGIS to allow extensibility
of the system.

An ArcGIS utility program (Categories.exe) that can be used to view and manipu-
late component category information.

A binary standard that enables software components to interoperate in a net-
worked environment regardless of the language in which they were developed.
Developed by Microsoft, COM technology provides the underlying services of
interface negotiation, lifecycle management (determining when an object can be
removed from a system), licensing, and event services (putting one object into
service as the result of an event that has happened to another object). The
ArcGIS system is created using COM objects.

See CASE.

GLOSSARY

container account

container process

Content Standard for Digital
Geospatial Metadata

control

control points

creation time

CSDGM
CsSs

custom

data type

database management system

database support
DBMS
DCOM

debug

deeply stateful application

default interface

The operating system account that server object container processes run as, which
is specified by the GIS server post installation utility. Objects running in a server
container process have the same access rights to system resources as the container
account.

A process in which one or more server objects is running. Container processes run
on SOC machines and are started and shut down by the SOM.

A publication authored by the Federal Geographic Data Committee (FGDC) that
specifies the information content of metadata for a set of digital geospatial data.
The purpose of the standard is to provide a common set of terminology and
definitions for concepts related to the metadata. All U.S. government agencies
(federal, state, and local) that receive federal funds to create metadata must
follow this standard.

A component with a user interface. In ArcGIS, the term often refers to the
MapControl, PagelLayoutControl, TOCControl, ToolbarControl, or
ArcReaderControl, which are parts of ArcGIS Engine.

See control.
The time it takes to initialize an instance of a server object when server objects

are created in the GIS server either as a result of the server starting or in response
to a request for a server object by a client.

See Content Standard for Digital Geospatial Metadata.

See Cascading Style Sheets.

Functionality provided or created by a party who is not the original software
developer.

The attribute of a variable, field, or column in a table that determines the kind
of data it can store. Common data types include character, integer, decimal,
single, double, and string;

A set of computer programs that organizes the information in a database accord-
ing to a conceptual schema and provides tools for data input, verification, stor-
age, modification, and retrieval.

The proprietary database platforms supported by a program or component.
See database management system.

Distributed Component Object Model. Extends COM to support communication
among objects on different computers on a network.

To test a program or component in order to determine the cause of faults.

An application that uses the GIS server to maintain application state by changing
the state of a server object or its related objects. Deeply stateful applications
require non-pooled server objects.

When a COM object is created, the interface that is returned automatically if no
other interface is specified. Most ArcObjects classes specify IUnknown as the
default interface.

Appendix Ce Glossary * 359

GLOSSARY

deployment
developer sample

development environment

device context

display

DLL

dockable window

dynamic link library

early binding

E)B
EMF

Enterprise JavaBeans

EOBrowser

event handling

executable file

extension

Federal Geographic Data
Committee

360 * ArcGIS Engine Developer Guide

The installation of a component or application to a target machine.
A sample contained in the ArcGIS Developer Help system.

A software product used to write, compile, and debug components or applica-
tions.

Represents a surface that can be drawn to, for example, a screen, bitmap, or
printer. In ArcGIS, the Display abstract class is used to abstract a device context.

Often used to refer to subclasses of the Display abstract class. For example,
“when drawing to the display” means when drawing to any of the display
coclasses; “the display pipeline” refers to the sequence of calls made when draw-
ing occurs.

See dynamic link library.

A window that can exist in a floating state or be attached to the main application
window.

Modules of code containing a set of routines that are called from procedures. A
DLL is loaded and linked to an application at runtime by its calling modules
(EXE or DLL).

A technique that an application uses to access an object. In early binding, an
object’s properties and methods are defined from a class, instead of being checked
at runtime as in late binding, This difference often gives early binding perfor-
mance benefits over late binding, See also late binding.

See Enterprise JavaBeans.

Enhanced Metafile. A spool file format used in printing by the Windows operat-
ing system.

The server-side component architecture for the J2EE platform. EJB enables
development of distributed, transactional, secure, and portable Java applications.

An ArcGIS utility application that can be used to investigate the contents of
object libraries.

Sinking an event interface raised by another class.

A binary file containing a program that can be implemented or run. Executable
files are designated with a .exe extension.

In ArcGIS, an optional software module that adds specialized tools and function-
ality to ArcGIS Desktop. ArcGIS Network Analyst, StreetMap, and ArcGIS
Business Analyst are examples of ArcGIS extensions.

An organization established by the United States Federal Office of Management
and Budget responsible for coordinating the development, use, sharing, and
dissemination of surveying, mapping, and related spatial data. The committee is
comprised of representatives from federal and state government agencies,
academia, and the private sector. The FGDC defines spatial data metadata stan-
dards for the United States in its Content Standard for Digital Geospatial
Metadata and manages the development of the National Spatial Data Infrastruc-
ture (NSDI).

GLOSSARY

FGDC See Federal Geographic Data Committee.
framework The existing ArcObjects components that comprise the ArcGIS system.
GDB See geodatabase.

GDI Graphical Device Interface. A standard for representing graphical objects and
transmitting them to output devices, such as a monitor. GDI generally refers to
the Windows GDI APIL.

GeocodeServer An ArcGIS Server software component that provides programmatic access to an
address locator and performs single and batch address matching, It is designed for
use in building Web services and Web applications using ArcGIS Server.

geodatabase An object-oriented data model introduced by ESRI that represents geographic
features and attributes as objects and the relationships between objects but is
hosted inside a relational database management system. A geodatabase can store
objects, such as feature classes, feature datasets, nonspatial tables, and relation-
ship classes.

geometry The measures and properties of points, lines, and surfaces. In a GIS, geometry is
used to represent the spatial component of geographic features. An ArcGIS
geometry class is one derived from the Geometry abstract class to represent a
shape, such as a polygon or point.

geoprocessing tool An ArcGIS tool that can create or modify spatial data, including analysis func-
tions (overlay, buffer, slope), data management functions (add field, copy, re-
name), or data conversion functions.

GIS server The components of ArcGIS Server that host and run server objects. A GIS server
consists of a server object manager and one or more server object containers.

GUID Globally Unique Identifier. A string used to uniquely identify an interface, class,
type library, or component category. See also class identifier.

hexadecimal A number system using base 16 notation.

HKCR HKEY_CLASSES_ROOT registry hive. A Windows registry root key that points
to the HKEY_LOCAL_MACHINE\Software\Classes registry key. It displays
essential information about OLE and association mappings to support drag-and-
drop operations, Windows shortcuts, and core aspects of the Windows user
interface.

HRESULT A 32-bit integer returned from any member of a COM interface indicating suc-
cess or failure, often written in hexadecimal notation. An HRESULT can also
give information about the error that occured when calling a member of a COM
interface. Visual Basic translates HRESULTS into errors; Visual C++ developers
work directly with HRESULT values.

IDE See integrated development environment.
IDispatch A generic COM interface that has methods allowing clients to ask which members
are supported. Classes that implement IDispatch can be used for late binding and
ID binding,
IDL See Interface Definition Language.

Appendix Ce Glossary * 361

GLOSSARY

11D

impersonation

implement

inbound interface

inheritance

in-process

integrated development
environment

Interface Definition Language
IUnknown

JavaServer Faces

JavaServer Pages

JavaServer Pages Standard
Tag Library

JSF
JSP
JSTL

late binding

362 * ArcGIS Engine Developer Guide

Interface Identifier. A string that provides the unique name of an interface. An
1ID is a type of Globally Unique Identifier. See also GUID.

A process by which a Web application assumes the identity of a particular user
and thus gains all the privileges to which that user is entitled.

Regarding an interface, to provide code for each of the members of an interface
(the interface is defined separately).

An interface implemented by a class, on which a client can call members. See also
outbound interface.

In object-oriented programming, the means to derive new classes or interfaces
from existing classes or interfaces. New classes or interfaces contain all the meth-
ods and properties of another class or interface, plus additional methods and
properties. Inheritance is one of the defining characteristics of an object-oriented
system.

Within the process space of a client application, a class contained in a DLL is in-
process, as objects are loaded into the process space of the client EXE. A compo-
nent contained in a separate EXE is out-of-process.

A software development tool for creating applications, such as desktop and Web
applications. IDEs blend user interface design and layout tools with coding and
debugging tools, which allows a developer to easily link functionality to user
interface components.

A language used to define COM interfaces. The Microsoft implementation of
IDL may be referred to as MIDL or Microsoft IDL.

All COM interfaces inherit from the IUnknown interface, which controls object
lifetime and provides runtime type support.

A framework for building user interfaces for Java Web applications. JSF is de-
signed to ease the burden of writing and maintaining applications that run on a
Java application server and render their user interfaces back to a target client.

A Java technology that enables rapid development of platform-independent Web-
based applications. JSP separates the user interface from content generation,
enabling designers to change the overall page layout without altering the underly-
ing dynamic content.

A Java technology that encapsulates core functionality common to many Web-
based applications as simple tags. JSTL includes tags for structural tasks such as
iteration and conditionals, manipulation of XML documents, internationalization
and locale-sensitive formatting, and SQL.

See JavaServer Faces.
See JavaServer Pages.
See JavaServer Pages Standard Tag Library.

A technique that an application uses for determining data type at runtime using
the IDispatch interface, rather than when the code is compiled. Late binding is
generally used by scripting languages. See also early binding,

GLOSSARY

LIBID Library Identifier. A type of GUID consisting of a unique string assigned to a
type library. See also GUID.

library In object-oriented programming, generic, platform independent term indicating a
logical grouping of classes. ArcGIS is composed of approximately 50 libraries.
Although the term library refers to a conceptual grouping of ArcGIS types,
libraries do have multiple representations on disk: one per development environ-
ment. In COM, OLBs contain all the type information; in NET, Assemblies
contain the type information; and in Java, JAR files contain the type information.

license The grant to a party of the right to use a software package or component.

little endian A computer hardware architecture in which, within a multibyte numeric repre-
sentation, the least significant byte has the lowest address and the remaining bytes
are encoded in increasing order of significance. See also big endian.

macro A computer program, usually a text file, containing a sequence of commands that
are executed as a single command. Macros are used to perform commonly used
sequences of commands or complex operations.

map document In ArcMap, the file that contains one maps; its layout; and its associated layers,
tables, charts, and reports. Map documents can be printed or embedded in other
documents. Map document files have a .mxd extension.

MapServer An ArcGIS Server software component that provides programmatic access to the
contents of a map document on disk and creates images of the map contents
based on user requests. It is designed for use in building map-based Web services
and Web applications using ArcGIS Server.

marshaling The process that enables communication between a client object and server
object in different apartments of the same process, between different processes,
or between different processes on different machines by specifying how function
calls and parameters are to be passed over these boundaries.

members Refers collectively to the properties and methods, or functions, of an interface or
class.
memory leak When an application or component allocates a section of memory and does not

free the memory when finished with it, it is said to have a memory leak; the
memory cannot then be used by any other application.

MTA Multiple threaded apartment. An apartment that can have multiple threads
running. A process can only have one MTA. See also apartment, STA, thread,
TNA.

network 1. A set of edge, junction, and turn elements and the connectivity between them,
also known as a logical network. In other words, an interconnected set of lines
representing possible paths from one location to another. A city streets layer is an
example of a network. 2. In computing, a group of computers that share soft-
ware, data, and peripheral devices, as in a LAN or WAN.

object In object-oriented programming, an instance of a class.

Object Definition Language Similar to Interface Definition Language but used to define the objects contained
in an object library. See also Interface Definition Language, object library.

Appendix Ce Glossary * 363

GLOSSARY

object library

object model diagram

object pooling

object-oriented programming

OoCX
ODL
OGIS

OLB
OLE

OLE Custom Control

OleView

out-of-process

outbound interface

PDF

performance

364 * ArcGIS Engine Developer Guide

A binary file that stores information about a logical collection of COM objects
and their properties and methods in a form that is accessible to other applications
at runtime. Using a type library, an application or browser can determine which
interfaces an object supports and invoke an object’s interface methods.

A graphical representation of the types in a library and their relationships.

The process of precreating a collection of instances of classes, such that the
instances can be shared between multiple application sessions at the request level.
Pooling objects allows the separation of potentially costly initialization and
aquisition of resources from the actual work the object does. Pooled objects are
used in a stateless manner.

A programming model in which developers define the data type of a data struc-
ture as well as the functions, or types of operations, that can be applied to the
data structure. Developers can also create relationships between objects. For
example, objects can inherit characteristics from other objects.

See OLE custom control.
See Object Definition Language.

Open Geodata Interoperability Specification. A specification, developed by the
Open GIS Consortium, to support interoperability of GIS systems in a heteroge-
neous computing environment.

See object library.

Object Linking and Embedding. A distributed object system and protocol from
Microsoft that allows applications to exchange information. Applications using
OLE can create compound documents that link to data in other applications. The
data can be edited from the document without switching between applications.
Based on the Component Object Model, OLE allows the development of reus-
able objects that are interoperable across multiple applications.

Also known as an ActiveX Control, an OLE custom control is contained in a file
with the extension .ocx. The ArcGIS controls are ActiveX Controls.

A utility, available as part of Microsoft Visual Studio, that can be used to view
type information stored in a type library or object library or inside a DLL.

Within the process space of a client application, a component contained in an
EXE is out-of-process; instantiated classes are loaded into the process space of
the EXE in which they are defined rather than into that of the client. See also in-
process.

An interface implemented by a class, on which that object can make calls to its
clients; analogous to a callback mechanism. See also inbound interface.

Portable Document Format. A proprietary file format from Adobe that creates
lightweight text-based, formatted files for distribution to a variety of operating
systems.

A measure of the speed at which a computer system works. Factors affecting
performance include availability, throughput, and response time.

GLOSSARY

persistence The process by which information indicating the current state of an object is
written to a storage medium such as a file on disk. In ArcObjects, persistence is
achieved via the standard COM interfaces IPersist and IPersistStream or the
ArcObjects interface IPersistVariant.

pixel type See data type.

platform A generic term often referring to the operating system of a machine. May also
refer to a programming language or development environment, such as COM,
NET, or Java.
plug-in data source An additional read-only data source provided by either ESRI or a third party

developer. It may be a data source forming part of the core ArcObjects or an
extension.

PMF See Published Map File.

ProgiD A string value, stored in the system registry, identifying a class by library and class
name, for example, esriCarto.Featurelayer. The ProglD registry key also contains
the human-readable name of a class, the current version number of the class, and
a unique class identifier. ProglIDs are used in VB object instantiation. See also
class identifier, 1ID.

property page A user interface component that provides access to change the properties of an
object or objects.

proxy object A local representaion of a remote object, supporting the same interfaces as the
remote object. All interaction with the remote object from the local process is
forced via the proxy object. A local object makes calls on the members of a proxy
object as if it were working directly with the remote object.

Published Map File A file exported by the Publisher extension that can be read by ArcReader. Pub-
lisher Map Files end with a .pmf extension.

query interface A client may request a reference to a different interface on an object by calling
the Querylnterface method of the IUnknown interface.

raster A spatial data model that defines space as an array of equally sized cells arranged
in rows and columns. Each cell contains an attribute value and location coordi-
nates. Unlike a vector structure, which stores coordinates explicitly, raster coordi-
nates are contained in the ordering of the matrix. Groups of cells that share the
same value represent geographic features. See also vector.

recycling The process by which objects in an object pool are replaced by new instances of
objects. Recycling allows for objects that have become unusable to be destroyed
and replaced with fresh server objects and to reclaim resources taken up by stale
server objects.

reference A pointer to an object, interface, or other item allocated in memory. COM objects
keep a running total of the references to themselves via the IUnknown interface
methods AddRef and Release.

Regedit A utility, part of the Windows operating system, that allows you to view and edit
the system registry.

register To add information about a component to the system registry, generally per-
formed using RegSvr32.

Appendix Ce Glossary * 365

GLOSSARY

registry

registry file

RegSvr32

rehydrate

render

runtime environment

scalable

SCM

script

serialization

server

server account

server context

server directory

366 * ArcGIS Engine Developer Guide

Stores information about system configuration for a Windows machine. COM
uses the registry extensively, storing details of COM components including
ProglDs and ClassIDs, file location of the binary code, marshaling information,
and categories in which they participate.

A file containing information in Windows Registry format. Double clicking a .reg
file in Windows will enter the information in the file to the system registry. Often
used to register components to component categories.

A Windows utility that can add information about a component to the system
registry. A component must be registered before it can be used.

To reinstantiate an object and its state from persisted storage.

To draw to a display. The conversion of the geometry, coloring, texturing, light-
ing, and other characteristics of an object into a display image.

The host that provides the services required for compiled code to execute. The
Service Control Manager is effectively the runtime environment for COM. The
Visual Basic Virtual Machine (VBVM) is the runtime environment that runs
Visual Basic code.

A system that does not show negative effects when its size or complexity grows
greater.

Service Control Manager. An administrative tool that enables the creation and
modification of system services. It effectively serves as the runtime environment
for COM.

A set of instructions in plain text, usually stored in a file and interpreted, or
compiled, at runtime. In geoprocessing, scripts can be used to automate tasks,
such as data conversion, or generate geodatabases and can be run from their
scripting application or added to a toolbox. Geoprocessing scripts can be written
in any COM-compliant scripting language, such as Python, JScript, or VBScript.

A form of persistence, in which an object is written out in sequence to a target,
usually a stream. See also persistence.

1. A computer in a network that is used to provide services, such as access to files
or e-mail routing, to other computers in the network. Servers may also be used to
host Web sites or applications that can be accessed remotely. 2. An item that
provides functionality to a client—for example, a COM component or object to a
user application using components or to a database client utility using a database
on a server machine.

The operating system account that the server object manager service runs as. The
server account is specified by the GIS server post installation utility.

A space on the GIS server where a server object and its associated objects are
running. A server context runs within a server container process. A developer gets
a reference to a server object through the server object’s server context and can
create other objects within a server object’s context.

A location on a file system used by a GIS server for temporary files that are
cleaned up by the GIS server.

GLOSSARY

server object

server object isolation

server object type

session state

shallowly stateful application

singleton

smart pointer

SOAP

SOC

SOM

SQL
STA

standalone application

state

A coarse-grained ArcObjects component that manages and serves a GIS resource,
such as a map or a locator. A server object is a high-level object that simplifies the
programming model for doing certain operations and hides the fine-grained
ArcObjects that do the work. Server objects also have SOAP interfaces, which
makes it possible to expose server objects as Web services that can be consumed
by clients across the Internet.

Describes whether server objects share processes with other server objects. Server
objects with high isolation run dedicated processes, whereas server objects with
low isolation share processes with other server objects of the same type.

Defines what a server object’s initialization parameters are and what methods and
properties it exposes to developers. At ArcGIS version 9.0, there are two server
object types: MapServer and GeocodeServer.

The process by which a Web application maintains information across a sequence
of requests by the same client to the same Web application.

An application that uses the session state management capabilities of a Web
server to maintain application state and makes stateless use of server objects in
the GIS server. Shallowly stateful applications can use pooled server objects.

A class for which there can only be one instance in any process.

A Visual C++ class implementation that encapsulates an interface pointer, pro-
viding operators and functions that can make working with the underlying type
casier and less error prone.

Simple Object Access Protocol. An XMI.-based protocol developed by
Microsoft/Lotus/IBM for exchanging information between peers in a decentral-
ized, distributed environment. SOAP allows programs on different computers to
communicate independently of an operating system or platform by using the
World Wide Web’s HTTP and XML as the basis of information exchange. SOAP
is now a W3C specification. See also XML, World Wide Web Consortium.

Server object container. A process in which one or more server objects is running.
SOC processes are started and shut down by the SOM. The SOC processes run on
the GIS server’s container machines. Each container machine is capable of host-
ing multiple SOC processes. See also SOM.

Server object manager. A Windows service that manages the set of server objects
that are distributed across one or more server object container machines. When
an application makes a connection to an ArcGIS Server over a LAN, it is making
a connection to the SOM. See also SOC.

See Structured Query Language.

Single threaded apartment. An apartment that only has a single thread. User
interface code is usually placed in an STA. See also apartment, MTA, thread,
TNA.

An application that runs by itself, not within an ArcGIS application.

The current data contained by an object.

Appendix Ce Glossary * 367

GLOSSARY

stateful operation

stateless

stateless operation

stream

Structured Query Language
SXD
synchronization

target computer

thread

TNA

tool

type inheritance

type library

]}

UML

URL

usage time

368 * ArcGIS Engine Developer Guide

An operation that makes changes to an object or one of its associated objects—for
example, removing a layer from a map. See also stateless operation.

An object that stores no state data in between member calls.

An operation that does not make changes to an object—for example, drawing a
map. See also stateful operation.

A mode of data delivery in which objects provide data storage. Stream objects
can contain any type of data in any internal structure. See also persistence.

A syntax for defining and manipulating data from a relational database. Devel-
oped by IBM in the 1970s, SQL has become an industry standard for query
languages in most relational database management systems.

Scene Document. A document saved by ArcScene™ that has the extension .sxd.
The process of automatically updating certain elements of a metadata file.
A computer to which an application is deployed.

A process flow through an application. An application can have many threads.
See also apartment, MTA, STA, TNA.

Thread neutral apartment. An apartment that has no threads permanently associ-
ated with it; threads enter and leave the apartment as required. See also apart-
ment, MTA, STA, thread.

A command that requires interaction with the user interface before an action is
performed. For example, with the Zoom In tool, you must click or draw a box
over the geographic data or map before it is redrawn at a larger scale. Tools can be
added to any toolbar.

A kind of inheritance in which an interface may inherit from a parent interface.
A client may call the child interface as if it were the parent, as all the same mem-
bers are supported.

A collection of information about classes, interfaces, enumerations, and so on,
that is provided to a compiler for inclusion in a component. Type libraries are also
used to allow features such as IntelliSense to function correctly. Type libraries
usually have the extension .tlb.

User interface. The portion of a computer’s hardware and software that facili-
tates human interaction. The Ul includes items that can be displayed on screen,
and interacted with by using the keyboard, mouse, video, printer, and data cap-
ture.

Unified Modeling Language. A graphical language for object modeling. See also
CASE.

Uniform Resource Locator. A standard format for the addresses of Web sites. A
URL looks like this: www.esri.com. The first part of the address indicates what
protocol to use, while the second part specifies the IP address or the domain
name where the Web site is located.

The amount of time between when a client gets a reference to a server object and
when the client releases it.

GLOSSARY

utility COM object A COM object that encapsulates a large number of fine-grained ArcObjects
method calls and exposes a single coarse-grained method call. Utility COM ob-
jects are installed on a GIS server and called by server applications to minimize
the round trips between the client application and the GIS server. See also Com-
ponent Object Model.

variant A data type that can contain any kind of data.

VB Visual Basic. A programming language developed by Microsoft based on an ob-
ject-oriented form of the BASIC language and intended for application develop-
ment. Visual Basic runs on Microsoft Windows platforms.

VBA Visual Basic for Applications. The embedded programming environment for
automating, customizing, and extending ESRI applications, such as ArcMap and
ArcCatalog, It offers the same tools as Visual Basic in the context of an existing
application. A VBA program operates on objects that represent the application
and can be used to create custom symbols, workspace extensions, commands,
tools, dockable windows, and other objects that can be plugged in to the ArcGIS
framework.

VBVM Visual Basic Virtual Machine. The runtime environment used by Visual Basic code
when it runs.

vector 1. A coordinate-based data model that represents geographic features as points,
lines, and polygons. Each point feature is represented as a single coordinate pair,
while line and polygon features are represented as ordered lists of vertices. At-
tributes are associated with each feature, as opposed to a raster data model,
which associates attributes with grid cells. 2. Any quantity that has both magni-
tude and direction. See also raster.

virtual directory A directory name, used as a URL, that corresponds to a physical directory on a
Web server.
Visual C++ A Microsoft implementation of the C++ language, which is used in the Microsoft

application Visual Studio, producing software that can be used on Windows
machines.

w3cC See World Wide Web Consortium.

wait time The amount of time it takes between a client requesting and receiving a server
object.
Web application An application created and designed specifically to run over the Internet.
Web application template A file that contains a user interface as well as all the code and necessary files to

use as a starting point for creating a new customized Web application. ArcGIS
Server contains a number of Web application templates.

Web control The visual component of a Web form that executes its own action on the server.
Web controls are designed specifically to work on Web forms and are similar in
appearance to HTML elements.

Web form Based on ASPNET technology, Web forms allow the creation of dynamic Web
pages in a Web application. Web forms present their user interface to a client in a
Web browser or other device but generally execute their actions on the server.

Appendix Ce Glossary * 369

GLOSSARY

Web server

Web service

Web service catalog

WorldWideWeb Consortium

WSDL

XMI

XML

XML Metadata Interchange

XSL

XSLT

370 * ArcGIS Engine Developer Guide

A computer that manages Web documents, Web applications, and Web services
and makes them available to the rest of the world.

A software component accessible over the World Wide Web for use in other
applications. Web services are built using industry standards such as XML and
SOAP and thus are not dependent on any particular operating system or program-
ming language, allowing access through a wide range of applications.

A collection of ArcGIS Server Web services. A Web service catalog is itself a
Web service with a distinct endpoint (URL) and can be queried to obtain the list
of Web services in the catalog and their URLSs. See also ArcGIS Server Web
service.

An organization that develops standards for the World Wide Web and promotes
interoperability between Web technologies, such as browsers. Members from
around the world contribute to standards for XML, XSI., HTML, and many other
Web-based protocols.

Web Service Description Language. The standard format for describing the meth-
ods and types of a Web service, expressed in XML.

See XML Metadata Interchange.

Extensible Markup Language. Developed by the World Wide Web Consortium,
XML is a standard for designing text formats that facilitates the interchange of
data between computer applications. XML is a set of rules for creating standard
information formats using customized tags and sharing both the format and the
data across applications.

A standard produced by the Object Management Group that specifies how to
store a UML model in an XML file. ArcGIS can read models in XMTI files.

Extensible Style Language. A set of standards for defining XML document
presentation and transformation. An XSL stylesheet may contain information
about how to display tagged content in an XML document, such as font size,
background color, and text alignment. An XSL stylesheet may also contain XSLT
code that describes how to transform the tagged content in an XML document
into an output document with another format. The World Wide Web Consortium
maintains the XSI. standards. See also XML, Wotld Wide Web Consortium.

Extensible Style Language Transformations. A language for transforming the
tagged content in an XML document into an output document with another
format. An XSL stylesheet contains the XSLT code that defines each transforma-
tion to be applied. Transforming a document requires the original XML docu-
ment, an XS document containing XSLT code, and an XSLT parser to execute
the transformations. The World Wide Web Consortium maintains the XSLT
standard. See also XML, XSI., Wotld Wide Web Consortium.

	Contents
	Chapter 1: Introducing ArcGIS Engine Developer Guide
	ArcGIS 9 developer overview
	ArcGIS Engine overview
	ArcGIS Engine users
	ArcGIS Engine capabilities
	Getting started
	Using this book
	Developer resources

	Chapter 2: ArcGIS Software architecture
	ArcGIS software architecture
	ArcGIS application programming interfaces
	ArcGIS Engine libraries

	Chapter 3: Developing with ArcGIS Controls
	Working with the ArcGIS Controls
	MapControl and PageLayoutControl
	GlobeControl and SceneControl
	ReaderControl
	TOCControl and ToolbarControl
	Building applications with the ToolbarControl
	Building applications without the ToolbarControl

	Chapter 4: Developer environments
	The Microsoft Component Object Model
	Developing with ArcObjects
	The Visual Basic 6 environment
	The Visual Basic 6 development environment
	Visual C++
	.NET API
	Java API
	C++ API

	Chapter 5: Licensing and deployment
	ArcGIS license options
	Standalone execuatble license installation
	Deploying ArcGIS Engine Runtime
	Authorizing your ArcGIS Engine application

	Chapter 6: Developer Scenarios
	Building applications with ActiveX
	Building applications with visual JavaBeans
	Building applications with Windows controls
	Building a command line Java application
	Building a command line C++ application

	App A: Reading the OMD
	Interpreting the OMDs

	App B ArcGIS Developer resources
	ArcGIS software developer kit
	ArcGIS Developer Online Website

	Glossary

