

ii GETTING STARTED WITH MAPOBJECTS LT USING VISUAL BASIC

Copyright © 2000 Environmental Systems Research Institute, Inc.

All Rights Reserved.

Printed in the United States of America.

The information contained in this document is the exclusive property of Environmental Systems Research Institute, Inc. This work is
protected under United States copyright law and the copyright laws of the given countries of origin and applicable international laws,
treaties, and/or conventions. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying or recording, or by any information storage or retrieval system, except as expressly permitted in
writing by Environmental Systems Research Institute, Inc. All requests should be sent to Attention: Contracts Manager, Environmental
Systems Research Institute, Inc., 380 New York Street, Redlands, CA 92373-8100 USA.

The information contained in this document is subject to change without notice.

SAMPLE DATA LICENSE AND DISCLAIMER

The sample data included in this package is the exclusive property and copyright of Environmental Systems Research Institute, Inc. and
the respective data publishers. This sample data is protected under United States copyright law and other international copyright
treaties and conventions. The sample data is provided under license from each of the respective data publishers for the Licensee�s own
internal use. Licensee shall not sell, rent, lease, sublicense, lend, assign, time-share, or transfer, in whole or in part, or provide
unlicensed third parties access to the sample data or portions of the data, documentation or meta data, any updates, or Licensee�s rights
under this Agreement. The sample data herein have been obtained from sources believed to be reliable, but its accuracy and
completeness, and the opinions based thereon, are not guaranteed. Every effort has been made to provide accurate sample data in this
package. ESRI is not inviting reliance on this sample data, and you should always verify actual map data and information. The sample
data contained in this package is subject to change without notice. THE SAMPLE DATA IS PROVIDED �AS-IS,� WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. ESRI shall not be liable for indirect, special, incidental, or
consequential damages related to Licensee�s use of the sample data, even if ESRI is advised of the possibility of such damage.

RESTRICTED RIGHTS LEGEND

Use, duplication, and disclosure by the U.S. Government are subject to restrictions as set forth in FAR §164§52.227-14 Alternate III
(g)(3) (JUN 1987), FAR §164§52.227-19 (JUN 1987), DFARS §164§252.227-7015 (JUN 1995) [Technical Data], and/or DFARS
§164§252.227-7202 (JUN 1995) [Computer Software], as applicable. Contractor/Manufacturer is Environmental Systems Research
Institute, Inc., 380 New York Street, Redlands, CA 92373-8100 USA.

ESRI is a registered trademark, and MapObjects, Spatial Database Engine, SDE, the ESRI corporate logo, the MapObjects logo, and GIS
by ESRI are trademarks of Environmental Systems Research Institute, Inc.

The names of other companies and products herein are trademarks or registered trademarks of their respective trademark owners.

CONTENTS iii

Contents 1 The Map control 1
Loading MapObjects LT 2
Getting help 2
Adding a map 3

2 Map tools 5
Adding pan and zoom controls 6
Adding a toolbar 8
Creating a find tool 11
Adding a spatial query tool 13

3 Map display 15
Handling resizing 16
Basing display of map layers on scale 17
Statistical mapping 18

4 Adding data at run time 21
Working with MapLayer objects 22
Working with ImageLayer objects 24

iv GETTING STARTED WITH MAPOBJECTS LT USING VISUAL BASIC

IN THIS CHAPTER

1

The Map control

• Loading MapObjects LT

• Getting help

• Adding a map

By following the steps in this introductory document you will use ESRI®

MapObjects® LT 2 and Microsoft® Visual Basic® 6 to build an application that
uses maps. Along the way you will learn how to:

· Display a map with multiple layers.
· Control panning and zooming.
· Create a toolbar control.
· Base the display of map layers on scale.
· Perform spatial and logical queries.
· Display features with thematic renderers.
· Add vector data and images to a map programmatically.

If you are using MapObjects LT for the first time, following all the steps
described in this document in order is recommended. Later, when you are
more familiar with MapObjects LT, you will be able to tell which steps are
necessary for particular applications.

The first chapter shows how to load the Map control into Visual Basic and
start to add data in design time. Adding data at design time is ideal for your
first few MapObjects LT projects and for rapidly creating test applications.

Some familiarity with the Visual Basic development environment is assumed.

1

Note: If you accepted the defaults when installing MapObjects LT, the geographic data that
this tutorial refers to can be found in
C:\Program Files\ESRI\MapObjectsLT2\Samples\Data\Usa and
C:\Program Files\ESRI\MapObjectsLT2\Samples\Data\Washington. The bitmaps you can
use for toolbar images are in the Samples\Bitmaps folder. A complete Visual Basic project for
this tutorial is available on the installation CD under \Samples\Getting Started Tutorial.

2 GETTING STARTED WITH MAPOBJECTS LT USING VISUAL BASIC 6

Loading MapObjects LT
Start Visual Basic and select New project from the dialog
box. Now right-click on the toolbox (the left-hand-side
toolbar) and choose Components. Find ESRI
MapObjects LT 2.0 in the list of available controls and
check the box beside it.

Click OK to close the dialog. Notice that a new tool
appears in the Visual Basic Toolbox. This new tool is the
MapObjects LT 2 Map control.

Getting help
The Map control is one of over 20 objects that make up
MapObjects LT. To find out about the various objects, click
the Object Browser button in the Visual Basic toolbar.

Pull down the �Libraries� combo box and choose
MapObjectsLT2.

MapObjects LT objects and constants are listed in the
Classes list on the lower left-hand list.

To see the properties and methods for an object, click on
the object in the list. The properties and methods of that
object are listed in the Members list to the right.

Tip: You can also add controls by selecting Components from
the Project menu or by pressing CTRL+T.

MapObjects LT Map Control

Visual Basic

Object Browser

THE MAP CONTROL 3

To see the signature of a method, click on the method in the
right-hand list. The details will appear in the space at the
bottom of the Object Browser.

Getting help

The following examples show how to get help with the
Visual Basic Object Browser.

1. Click Symbol in the Classes/Modules list.

2. Click Rotation in the Methods/Properties list.

3. Click the help (question mark) button.

Adding a map
The Map control is the object you use to display maps.

Add the Map control to the form

1. Double-click the Map control button in the toolbox to add a
new map to the form.

2. Resize the Map to fill the form.

The help system provides help for every object, property,
method, event, and constant in MapObjects LT. In
addition to the Object Browser, the help system is
accessible from the Visual Basic code window. Simply
type in the name of an object, property, method, event, or
constant and press F1.

Tip: The simplest way to get help is to select the Map control
and press F1.

4 GETTING STARTED WITH MAPOBJECTS LT USING VISUAL BASIC 6

Select the data to display on the map

You can specify the data that is displayed on the map by
setting properties in the Map control�s property sheet.

1. Right-click the mouse on the Map to display the context
menu.

2. Choose Properties to display the property sheet.

3. Click the Add button and locate the folder containing the
USA sample data. If you selected the defaults when you
installed MapObjects LT, this will be in

C:\Program Files\ESRI\MapObjectsLT2\Samples\Data

4. Click the States.shp file and then click Open.

5. Add the file Ushigh.shp in the same manner.

Set properties for the layers

1. Click the States layer in the Layers list and then click
Properties.

2. Click the Color button to select a color for the States layer.

3. Click OK to close the dialog.

4. Select a color for the Ushigh layer in the same manner.

5. Click OK to close the property sheet.

You can also use the Properties sheet to add other data
to the Map. By default, the files you can browse to
include all supported vector data�shapefiles,
coverages, and computer-aided design (CAD) files.
However, you can browse to different types of files by
changing the selected filter in the Files of Type box in
the Property Pages Open dialog.

Try adding a bitmap by selecting All Supported Image
Formats from the Files of Type box�if you selected
the Washington sample data set sample bitmap in the
\Samples\Data\Washington folder. If you selected the
USA coverages during the install, try adding a
coverage in a similar way, by selecting ESRI Coverage
Tables from the Files of Type box.

THE MAP CONTROL 5

Save the project

1. Click the File menu and then click Save Project.

2. Browse to a suitable folder; then in the File Name box type
StarterMap.frm.

3. Click Save.

4. In the second Save dialog, type StarterMap.vbp in the File
Name box.

5. Click Save.

Test your application

1. Click the Run button in the Visual Basic toolbar.

2. To stop running your application and return to design mode,
click the Stop button in the Visual Basic toolbar.

Stop

Run

6 GETTING STARTED WITH MAPOBJECTS LT USING VISUAL BASIC 6

IN THIS CHAPTER

7

Map tools

• Adding pan and zoom controls

• Adding a toolbar

• Creating a find tool

• Adding a spatial query tool

Once you have a Map control and it is displaying geographic data, you are
ready to add tools and functionality to your application.

In this chapter, you will learn how to allow the user to interact with the display
of the Map control by adding code to the Map event code stubs created by
Visual Basic. You will also create tools that allow users to search the map by
adding more controls to your form and adding code to work with the
MapObjects LT ActiveX automation objects.

In this chapter, you will be working primarily with:

� The Map control�s MouseDown and AfterLayerDraw events

� The Map control�s Pan, SearchByDistance, SearchExpression, and
SearchShape methods

� The Map control�s Extent property

� The Map, Rectangle, Point, and Recordset objects

2

8 GETTING STARTED WITH MAPOBJECTS LT USING VISUAL BASIC 6

Adding pan and zoom controls
At this point your application can display the map at its full
extent. In this section you will add some simple pan and
zoom controls that your application will activate in response
to mouse clicks inside the map. You will write some code
that the application will execute in response to the
MouseDown event on the map.

Respond to the MouseDown event

1. Double-click the map to display the Visual Basic code
window.

2. Add code to Map1’s MouseDown procedure.

Private Sub Map1_MouseDown(Button As Integer_
, Shift As Integer, x As Single, y As Single)

 Set Map1.Extent = Map1.TrackRectangle

End Sub

Test the change

1. Click the Run button in the Visual Basic toolbar.

2. Click the map with the left mouse button and drag out a
rectangle.

3. Release the mouse button. Notice that the map is redrawn at
the location you specified.

4. Click the Stop button in Visual Basic to return to design
mode.

Add Panning

1. Double-click the map to display the Visual Basic code
window again.

2. Change the code for the MouseDown event.

TrackRectangle is a method that applies to a map. It
tracks the movement of the mouse while the user presses
the mouse button, rubber-banding a rectangle at the same
time. When the user releases the mouse button, the
TrackRectangle method returns a Rectangle object that
the application assigns into the Extent property of the
map, causing the map to be redrawn with a new map
extent.

MAP TOOLS 9

Private Sub Map1_MouseDown(Button As Integer, _
Shift As Integer, x As Single, y As Single)

 If Button = vbLeftButton Then

 Set Map1.Extent = Map1.TrackRectangle

 Elseif Button = vbRightButton then

 Map1.Pan

 End If

End Sub

If the Button parameter is equal to vbLeftButton when the
MouseDown event occurs, the zooming code from the
previous step will be executed. Otherwise, the code will call
another map method, Pan. If the user clicks the left mouse
button, the Button parameter will be vbLeftButton. If the
user clicks the right mouse button, the value of Button will
be vbRightButton.

Add a FullExtent button

Your application now supports panning and zooming, but
once the user zooms into the map, there is no way to get
back to the full extent again. In this section you will add a
button to the form that zooms the map to the full extent.

1. Double-click the CommandButton button in the toolbox to
add a button to the form.

2. Move the button to the upper right of the form.

3. Press F4 to select the Properties window.

4. Click in the Caption box and type Full Extent to change the
button’s caption.

5. Resize the Map control so that it is not obscured by the
button.

6. Double-click the Full Extent button to display the code
window.

7. Add code for the Click event.

Private Sub Command1_Click()

 Set Map1.Extent = Map1.FullExtent

End Sub

The FullExtent property of the map returns a Rectangle
object that defines the bounding box of all the layers of the
map.

Test the change

1. Click the Run button in the Visual Basic toolbar.

2. Click the map with the left mouse button and drag out a
rectangle.

3. Release the mouse button to redraw the map.

10 GETTING STARTED WITH MAPOBJECTS LT USING VISUAL BASIC 6

4. Click the map with the right mouse button and drag to pan
the map.

5. Release the mouse button to redraw the map.

6. Click the Full Extent button to redraw the map at the full
extent.

Save the project

1. Click the Stop button in the Visual Basic toolbar to return to
design mode.

2. Click the Save Project button in the Visual Basic toolbar to
save your changes.

Adding a toolbar
Your application�s pan and zoom capabilities are somewhat
hidden from the user. In this section you will create a
toolbar with pan and zoom buttons, a control that makes the
functionality more visible to the user.

Adding a toolbar

Visual Basic includes a Toolbar control that can be used in
conjunction with an ImageList control to display a collection
of buttons at the top of a form.

1. Delete the Full Extent button from the form.

2. Right-click the toolbox, choose Components, and select
Microsoft Windows Common Controls. You will notice that
new tools are added to your toolbox.

3. Double-click the Toolbar button in the toolbox to add a
Toolbar control to the form.

4. Double-click the ImageList button in the toolbox to add an
ImageList control to the form.

5. Resize the map so that it is not obscured by the toolbar.

The ImageList control may obscure the map; however, this
is not a problem because the ImageList control will not be
visible when your application is running.

Adding images to the ImageList control

1. Right-click the ImageList control to display the context menu.

2. Click Properties to display the property sheet.

3. Click the Images tab.

4. Click Insert Picture and locate the folder that contains the
sample bitmaps.

5. Click the Zoom.bmp file and then click Open.

6. Add the files Pan.bmp, Globe.bmp, Bex.bmp, and
LayerAdd.bmp in the same manner.

MAP TOOLS 11

Set the MaskColor of the ImageList

Setting the MaskColor property of an ImageList control
specifies a color that will act as a mask for any images
contained by the control. The mask color will not be drawn,
resulting in an image with a transparent background.

1. Click the Color tab.

2. In the Properties list on the left, select MaskColor.

3. Click Dark Cyan in the Color Palette list on the right.

4. Click OK to dismiss the property sheet.

Associate the ImageList with the toolbar

You can associate the Toolbar control with an ImageList
control to provide the graphic images for the buttons.

1. Right-click the Toolbar control to display the context menu.

2. Click Properties to display the property sheet.

3. In the ImageList box, click the arrow and then click
ImageList1. This associates the toolbar with the ImageList
control.

Adding buttons to the Toolbar control

In this section you will add five buttons and two separators
to the toolbar. You will set the Style of two buttons to
Placeholder. The Placeholders will be used later in this
document.

1. In the Toolbar property sheet, click the Buttons tab; then click
Insert Button.

2. Set the button’s Style to ButtonGroup, its Image to 1, its Key
to ZoomIn, and its Value to Pressed.

3. Add a second button and set its Style to ButtonGroup, its
Image to 2, and its Key to Pan.

4. Add a third button and set its Style to Placeholder.

12 GETTING STARTED WITH MAPOBJECTS LT USING VISUAL BASIC 6

5. Add a fourth button and set its Style to Separator.

6. Add a fifth button and set its Style to Placeholder.

7. Add a sixth button and set its Style to Separator.

8. Add a seventh button and set its Image to 3 and its Key to
FullExtent.

9. Click OK to dismiss the property sheet.

Change the MouseDown event

1. Double-click the map to display the Visual Basic code
window.

2. Modify the code attached to Map1’s MouseDown procedure.

Private Sub Map1_MouseDown(Button As Integer _
, Shift As Integer, x As Single, y As Single)

 If Toolbar1.Buttons("ZoomIn").Value _
 = tbrPressed Then

 Set Map1.Extent = Map1.TrackRectangle

 ElseIf Toolbar1.Buttons("Pan").Value _
 = tbrPressed Then

 Map1.Pan

 End If

End Sub

Selecting the first button in the toolbar sets the mouse to be
a zoom tool; selecting the second button lets you use the
mouse to pan.

Implement the FullExtent button

In this section you will reimplement the Full Extent button
that you deleted.

1. Double-click the toolbar to display the code window.

2. Add code to Toolbar1’s ButtonClick event.

Private Sub Toolbar1_ButtonClick(ByVal Button _
As MSComctlLib.Button)

 If Button.Key = "FullExtent" Then

 Set Map1.Extent = Map1.FullExtent

 End If

End Sub

The ButtonClick event is generated whenever a click
occurs on a button in the toolbar. If the Key property of the
button pressed is FullExtent, the map is zoomed to its full
extent.

MAP TOOLS 13

Test the changes

1. Click the Run button in the Visual Basic toolbar.

2. Click somewhere on the map and drag a rectangle to zoom
in.

3. Click the Pan button in your application’s toolbar.

4. Click somewhere on the map and then drag to pan.

5. Click on the full extent button (the globe) in your application’s
toolbar to draw the map at its full extent.

Save the changes

1. Click the Stop button in the Visual Basic toolbar to return to
design mode.

2. Click the Save Project button in the Visual Basic toolbar to
save the changes.

Creating a find tool
In this section you will add additional controls to your
application to implement a simple function for locating a
state by name.

Add controls to the form

1. Double-click the Label button in the toolbox to add a label to
the form.

2. Resize the Map and reposition the label so that the label is in
the lower left corner of the form.

3. In the Properties window of the new Label, set the Caption of
the label to be ‘State:’.

4. Double-click the TextBox button in the toolbox to add a
TextBox to the form. Position the TextBox next to the label.

5. Clear the Text property of the TextBox by using the Properties
window. The form should look like this.

14 GETTING STARTED WITH MAPOBJECTS LT USING VISUAL BASIC 6

Attach code to the TextBox

You will use the text the user types into the TextBox to
perform a logical query.

1. Double-click the TextBox to show the code window.

2. Add code to Text1’s KeyPress procedure by selecting
KeyPress from the right-hand dropdown list:

Private Sub Text1_KeyPress(KeyAscii As Integer)

 If KeyAscii = vbKeyReturn Then

 ' build a search expression

 Dim exp As String

 exp = "STATE_NAME = '" & Text1.Text & "'"

 ' perform the search

 Dim recs As MapObjectsLT2.Recordset

 Set recs = Map1.Layers("States"). _
 SearchExpression(exp)

 ' show the results, if any

 If Not recs.EOF Then

 Dim shp As Object

 Set shp = recs.Fields("Shape").Value

 Dim rect As MapObjectsLT2.Rectangle

 Set rect = shp.Extent

 rect.ScaleRectangle 2

 Set Map1.Extent = rect ' zoom to the state

 Map1.Refresh ' force redraw of the map

 Map1.FlashShape shp, 3 ' flash the state

 End If

 End If

End Sub

The code first builds a simple SQL query expression by
using the value of the TextBox�s Text property. It then
searches the States layer using the SearchExpression
method; the result is a Recordset object. If the value of
the Recordset�s EOF property is False, the code
positions Recordset on the first record that satisfies the
search expression. In that case, the code gets the value
of the Shape field for the first record. The code scales
the Extent of the shape and then sets it as the Extent of
the map. The code then redraws the map explicitly
using the Refresh method, and finally, flashes the shape
three times.

Test the changes

1. Run your application.

2. Type the name of a state (e.g., Vermont) into the TextBox.
Note that this search will be case sensitive.

3. Press the Enter key.

4. When you are finished running your application, click the
Stop button in the Visual Basic toolbar.

MAP TOOLS 15

Adding a spatial query tool
In this section you will add a new tool to the toolbar that will
perform spatial queries on the map. The spatial queries are
performed on the Ushigh MapLayer and also on another
MapLayer, Counties, which you will add to the Map control.
You will also add code to your application that will draw the
results of the spatial query on the map.

Add a new button to the toolbar

1. Right-click the toolbar to display the context menu. Click
Properties to show the property sheet.

2. Click the Buttons tab.

3. Click the right arrow twice to change the Index to 3.

4. Change the button’s Style to ButtonGroup, its Key to Find,
and its Image to 4.

5. Click OK to dismiss the property sheet.

Add another layer

1. Right-click the map to display the context menu. Click
Properties to show the property sheet.

2. Click the Add button and locate the folder where the sample
data is stored.

3. Click the Counties.shp file and then click Open.

4. Click the Counties layer in the list to select it.

5. Click the down arrow to move the Counties layer below the
Ushigh layer.

6. Click Properties to change the color of the Counties layer.

7. Click OK to dismiss the Layer Properties dialog and again to
dismiss the property sheet.

The new MapLayer displays every county in the United
States.

Add a variable to the form

1. Double-click the form to display the code window.

2. In the General section, declare a variable that will be the
results of the spatial query. The type of the variable will be a
Recordset.

Dim gSel As MapObjectsLT2.Recordset

It is necessary to completely qualify the Recordset type
with MapObjects LT in order to avoid a name conflict with
Visual Basic�s built-in Recordset type.

Implement the query tool

Modify Map1�s MouseDown procedure.
Private Sub Map1_MouseDown(Button As Integer _
, Shift As Integer, x As Single, y As Single)

 If Toolbar1.Buttons("ZoomIn").Value _
 = tbrPressed Then

 Set Map1.Extent = Map1.TrackRectangle

 ElseIf Toolbar1.Buttons("Pan").Value _
 = tbrPressed Then

 Map1.Pan

 ' spatial query

 ElseIf Toolbar1.Buttons("Find").Value _
 = tbrPressed Then

 Dim p As Point

 Set p = Map1.ToMapPoint(X, Y)

 ' search for a highway within the tolerance

 Dim recs As MapObjectsLT2.Recordset

 Set recs = Map1.Layers("Ushigh"). _
 SearchByDistance(p, Map1. _
 ToMapDistance(100), "")

 ' If nothing is found

 If recs.EOF Then

 Set gSel = Nothing

16 GETTING STARTED WITH MAPOBJECTS LT USING VISUAL BASIC 6

When the current tool is the spatial query tool, two
searches are performed. The first search is a point
proximity search on the Ushigh layer. The code obtains
the point by converting the x and y coordinates of the
event, which are in control units, into map units. If the
first search is successful, the code uses the highway it
found as the input to the second search that it performs
on the Counties layer. The code stores the result of the
second search in the variable named gSel.

Test the changes

1. Run your application and zoom in to an area of the map that
contains a highway.

2. Click the spatial query tool; then click on a highway. The
corresponding country will be highlighted.

3. Click the Stop button in the Visual Basic toolbar.

4. Click the Save Project button to save the changes.

 ' Else search for counties intersecting

 Else

 Set gSel = Map1.Layers _
 ("Counties").SearchShape(recs.Fields _
 ("Shape").Value, moAreaIntersect, "")

 End If

 Map1.Refresh ' trigger a redraw of the map

 End If

End Sub

Draw the results

1. Add code to Map1’s AfterLayerDraw procedure.

2. Add code to display the results of the query on top of the
States layer.

Private Sub Map1_AfterLayerDraw(ByVal index As _
Integer, ByVal canceled As Boolean, ByVal hDC _
As stdole.OLE_HANDLE)

 If Map1.Layers(index).Name = "Counties" Then

 If Not gSel Is Nothing Then

 Dim sym as New MapObjectsLT2.Symbol

 sym.Color = moYellow

 Map1.DrawShape gSel, sym

 End If

 End If

End Sub

IN THIS CHAPTER

17

Map display

• Scale-dependent display

• Handling the Resize event

• Statistical mapping

An important part of your mapping application will be its Map control. The
Map should convey its information clearly and appropriately.

In this chapter, you will learn how to handle the Resize event of the form in
order to keep your Map in the intended place on the Form. You will also learn
a technique for switching MapLayers on and off to improve map clarity. In
addition, you will learn to implement some of the MapObjects LT renderer
objects in order to symbolize your MapLayers in a more advanced way,
communicating information about the different features on your Map.

In this chapter, you will use:

� The Visible and Width properties of the Map control

� The CalculateStatistics method of the Recordset object

� The DotDensityRenderer and ClassBreaksRenderer objects

3

18 GETTING STARTED WITH MAPOBJECTS LT USING VISUAL BASIC 6

Scale-dependent display
The States MapLayer displays faster than the Counties
MapLayer and may provide sufficient detail when the map
is at a small scale. The Counties MapLayer, on the other
hand, may be the more appropriate MapLayer for large-
scale displays. In this section you will add code to the
BeforeLayerDraw event that uses the current Map extent
to determine which MapLayer to display. Displaying one
layer instead of both will speed up drawing and improve the
clarity of your Map.

Respond to the BeforeLayerDraw event

1. Double-click the Map control to display the code window.

2. Add code to Map1’s BeforeLayerDraw procedure:

Private Sub Map1_BeforeLayerDraw(ByVal index As _
Integer, ByVal hDC As stdole.OLE_HANDLE)

 Dim layer As MapObjectsLT2.MapLayer

 Set layer = Map1.Layers(index)

 If layer.Name = "Counties" Then

 layer.Visible = Map1.Extent.Width < _
 (Map1.FullExtent.Width / 4)

 ElseIf layer.Name = "States" Then

 layer.Visible = Map1.Extent.Width >= _
 (Map1.FullExtent.Width / 4)

 End If

End Sub

The code bases the value of the visible property of each
layer on the current extent of the map. If the width of the
current extent is less than one-fourth of the full extent of
the map, the counties will be visible and the states will be
invisible. Because this code executes in response to the

BeforeLayerDraw event for each layer, the code calculates
the value of the visible field before drawing occurs.

Test the changes

1. Run your application. Notice that it does not draw the
Counties layer.

2. Zoom into New England. The Counties layer becomes
visible.

MAP DISPLAY 19

3. Click the FullExtent button. The Counties will no longer be
visible.

4. Click the Stop button in the Visual Basic toolbar.

5. Click the Save Project button to save your changes.

Handling the Resize event
When you run your application and resize the form, the
Map is not automatically resized.

Respond to the Resize event

1. Double-click the form to display the code window.

2. Add code to the form’s Resize procedure by selecting Resize
from the right-hand dropdown list:

Private Sub Form_Resize()

 ' y coordinate of the find controls

 Dim yFind As Integer

 ' a constant spacing

 Dim space As Integer

 space = Text1.Top - (Map1.Top + Map1.Height)

 yFind = ScaleHeight - Text1.Height - space

 ' move the controls that make up the find tool

 Label1.Move Label1.Left, yFind

 Text1.Move Text1.Left, yFind

 ' move the map itself

 Dim mapTop As Integer

 mapTop = Toolbar1.Top + Toolbar1.Height

 Map1.Move 0, mapTop, ScaleWidth, _
 yFind - space - mapTop

End Sub

3. Add code to the form’s Initialize procedure by selecting
Resize from the right-hand dropdown list:

Private Sub Form_Initialize()

 Call Form_Resize

End Sub

If you run your application now, it redraws the map twice
initially. This is because controls on the form are initially
displayed using the size and position specified during
design time and then resized. To fix this problem, you will
resize the controls when the form is initialized. You have
already written the code to resize the controls; you just
need to call the procedure.

20 GETTING STARTED WITH MAPOBJECTS LT USING VISUAL BASIC 6

Test the changes

1. Run your application.

2. Resize the form by right-click and dragging the edge of the
form.

3. Release the mouse button. The controls on the form are
moved and resized appropriately.

4. Click the Stop button in the Visual Basic toolbar.

5. Click the Save Project button to save your changes.

Statistical mapping
In this section you will modify your application so that it
uses the underlying attribute information when it draws the
MapLayers.

Attach a renderer to the Counties layer

Each MapLayer object has a Renderer property, which
controls how MapObjects LT draws a MapLayer. You can

use the ClassBreaksRenderer to display a MapLayer based
on numeric values, as shown below.

1. Double-click the form to display the code window.

2. Add code to the Load procedure for the form.

Private Sub Form_Load()

 ' counties layer

 Dim rC as New MapObjectsLT2.ClassBreaksRenderer

 Set Map1.Layers("Counties").Renderer = rC

 rC.Field = "MOBILEHOME"

 Dim stats as MapObjectsLT2.Statistics

 Set stats = Map1.Layers("Counties").Records. _
 CalculateStatistics("MOBILEHOME")

 ' calculate breaks away from the mean,

 ' only add breaks within the range of values

 Dim breakVal As Double

 breakVal = stats.Mean - (stats.StdDev * 3)

 Dim i as Integer

 For i = 0 To 6

 If breakVal >= stats.Min And _
 breakVal <= stats.Max Then

 rC.BreakCount = rC.BreakCount + 1

 rC.Break(rC.BreakCount - 1) = breakVal

 End If

 breakVal = breakVal + stats.StdDev

 Next i

 rC.RampColors moLimeGreen, moRed

End Sub

MAP DISPLAY 21

Attach a renderer to the States layer

1. Modify the form’s Load procedure.

2. Append this code at the end of the form’s Load procedure.

' states layer

 Dim rS as New MapObjectsLT2.DotDensityRenderer

 Set Map1.Layers("States").Renderer = rS

 rS.Field = "HOUSEHOLDS"

 Set stats = Map1.Layers("States").Records. _
 CalculateStatistics("HOUSEHOLDS")

 rS.DotValue = stats.Max / 40

Test your changes

1. Run your application and look at the States layer. Notice that
the application draws polygons with dots that indicate the
number of households.

2. Zoom into an area so the Counties layer becomes visible.
Notice that the application now draws the counties in
different colors, depending on the underlying attribute
values.

3. Click the Stop button in the Visual Basic toolbar.

4. Click the Save Project button to save your changes.

22 GETTING STARTED WITH MAPOBJECTS LT USING VISUAL BASIC 6

IN THIS CHAPTER

23

Adding data at run time

• Working with MapLayer objects

• Working with ImageLayer
objects

For many applications, users will wish to interactively add the particular raster
and vector data sets they require. The required MapLayers and ImageLayers
and the data files they represent may not be known in advance. Indeed, much
of the power of a geographic information system (GIS) application lies in its
ability to change, unlike a paper map.

In each of the previous sections, you worked with MapLayer objects that
were specified using the Map control�s property sheet during design time. In
this section, you will add code to your application that creates MapLayer and
ImageLayer objects during run time. You will add a new button to the toolbar
that allows users to add data interactively during run time.

In this chapter, you will be working with:

� The MapLayer object

� The Imagelayer object

� The File and Valid properties

� The Layers collection

4

24 GETTING STARTED WITH MAPOBJECTS LT USING VISUAL BASIC 6

Working with MapLayer objects
The following section shows how to remove existing layers
from your Map and demonstrates a method for adding
MapLayers interactively during run time.

Remove the existing layers

1. Right-click on the map to display the context menu.

2. Choose Properties to display the property sheet.

3. Click on the Ushigh layer; then click Remove to delete the
layer.

4. Remove the other layers and click OK.

5. Comment out the code in the Form_Load and
Map_BeforeLayerDraw events.

Add a new button to the toolbar

1. Right-click the toolbar to display the context menu. Click
Properties to show the property sheet.

2. Click the Buttons tab and select Index number 5.

3. Change the button’s Style to Default, its Key to AddLayer,
and its Image to 5.

4. Click OK to dismiss the property sheet.

Add a CommonDialog control to the Form

This control will be used to select files interactively.

1. Right-click on the Visual Basic Toolbox and choose
Components.

2. Find Microsoft Common Dialog Control in the list of available
controls and check the box beside it.

3. Click OK to close the dialog. Notice that a new tool should
appear in the Visual Basic Toolbox.

4. Double-click this new tool to place the control on the form.

Respond to the new AddLayer button

1. Double-click the toolbar to display the code window.

2. In the Toolbar1 ButtonClick event, modify the code as shown
below.

Private Sub Toolbar1_ButtonClick(ByVal Button _
As MSComctlLib.Button)

 If Button.Key = "FullExtent" Then

 Map1.Extent = Map1.FullExtent

 ' Respond to the new AddLayer button

 ElseIf Button.Key = "AddLayer" Then

 With CommonDialog1

 .Filter = "Shapefiles (*.shp)|*.shp"

 ' Handle the user pressing Cancel

 .CancelError = True

 On Error Resume Next

 .ShowOpen

 If Err.Number = cdlCancel Then

 Exit Sub

 End If

 On Error GoTo 0

 ' Call a routine to add selected file

 If Not AddShapefile(.FileName) Then

 MsgBox "Failed to add shapefile"

 End If

 End With

 End If

End Sub

CommonDialog control

ADDING DATA AT RUN TIME 25

Add a function to add MapLayers

1. In the General section of the code window, declare a
procedure.

Private Function AddShapefile(ByVal FilePath _
As String) As Boolean

 ' Initialize return value.

 AddShapefile = False

 ' Create new MapLayer.

 Dim lyrNew As MapObjectsLT2.MapLayer

 Set lyrNew = New MapObjectsLT2.MapLayer

 ' The FilePath variable is the full

 ' path name of the selected file.

 lyrNew.File = FilePath

 If lyrNew.Valid Then

 ' If the layer is Valid then add to Map

 If Map1.Layers.Add(lyrNew) Then

 AddShapefile = True

 End If

 End If

End Function

Test the changes

1 Run your application to test the changes. First click the new
AddLayer button on the toolbar.

2. In the dialog that opens, navigate to a directory containing
shapefiles.

3. Select a shapefile and click Open. You should then see the
selected shapefile being added to the Map.

4. Click the Stop button and save the changes.

You can now add shapefiles interactively to the Map. You may
also wish to add CAD files or coverages to the Map
interactively. CAD files may simply be added in a similar way to
shapefiles. When setting the CommonDialog control�s Filter
property, note the CAD files extensions; many have
nonstandard extensions.

ArcInfo� coverages may also be added as MapLayers. The
structure of a coverage is more complex than that of a
shapefile�coverages consist of many files, and each coverage
can contain one or more feature classes. For more information
about adding ArcInfo coverages as MapLayers, look in the
online reference index for �coverages, adding to a Map.�

26 GETTING STARTED WITH MAPOBJECTS LT USING VISUAL BASIC 6

Working with ImageLayer objects
In each of the previous sections, you worked with
MapLayer objects that were based on vector data. In this
section, you will see how to add layers to your map that are
based on image data. MapObjects LT allows you to use a
wide range of image types as ImageLayers, including such
common image types as Windows® bitmaps (.bmp), tagged
image file format (.tiff), and JPEG images (.jpg, .jpeg). (For
a full list of supported image formats, look in the
MapObjects LT online help.) You will add code that allows
the new AddLayer toolbar button to add either bitmaps as
ImageLayers or shapefiles as MapLayers.

Select an image layer to display on the map

You can specify that an image is to be displayed as an
ImageLayer by setting the properties in the Map control�s
property sheet similar to those used to add MapLayers.

1. Right-click the mouse on the map to display the context
menu.

2. Choose Properties to display the property sheet.

3. Click the Add button and then select “All supported Image
formats” from the “Files of type” combo box.

4. Navigate to the Washington sample data folder.

5. Click the Wash.bmp file and then click Open.

6. Click Add again and then choose the Roads shapefile.

7. Click OK to dismiss the property sheet.

Test the changes

1. Click the Run button in the Visual Basic toolbar. You should
see that the bitmap of Washington is added to the Map along

with the Roads shapefile. Right-click to zoom in on the top-
left corner.

The roads in the shapefile should follow the roads in the
bitmap. The sample bitmap has a world file (.wld) and is
therefore georeferenced correctly.

2. To stop running your application and return to design mode,
click the Stop button in the Visual Basic toolbar.

Adding an ImageLayer in code

Previously, you added a MapLayer programmatically by
using the CommonDialog control. Now you will add an
ImageLayer programmatically, by adding to the existing
code.

Respond to the new AddLayer button

1. Double-click the form to display the code window.

2. In the Toolbar1 ButtonClick event, modify the existing code.

ADDING DATA AT RUN TIME 27

Private Sub Toolbar1_ButtonClick(ByVal Button _
As MSComctlLib.Button)

 If Button.Key = "FullExtent" Then

 Map1.Extent = Map1.FullExtent

 ' Respond to the new AddLayer button

 ElseIf Button.Key = "AddLayer" Then

 With CommonDialog1

 .Filter = "Shapefiles (*.shp)|*.shp" & _
 "|Bitmaps (*.bmp)|*.bmp"

 .CancelError = True

 On Error Resume Next

 .ShowOpen

 If Err.Number = cdlCancel Then

 Exit Sub

 End If

 On Error GoTo 0

 ' Add a MapLayer or ImageLayer

 If .FilterIndex = 1 Then

 If Not AddShapefile(.FileName) Then

 MsgBox "Failed to add shapefile"

 End If

 ElseIf .FilterIndex = 2 Then

 If Not AddBitmap(.FileName) Then

 MsgBox "Failed to add Bitmap"

 End If

 End If

 End With

 End If

End Sub

Add a function to add MapLayers

1. In the General section of the code window, declare a
procedure.

Private Function AddBitmap(ByVal FilePath _
As String) As Boolean

 ' Initialize return value.

 AddBitmap = False

 ' Create new ImageLayer.

 Dim imlNew As MapObjectsLT2.ImageLayer

 Set imlNew = New MapObjectsLT2.ImageLayer

 ' The FilePath variable is the full

 ' path name of the selected file.

 imlNew.File = FilePath

 If imlNew.Valid Then

 ' If the layer is Valid then add to Map

 If Map1.Layers.Add(imlNew) Then

 AddBitmap = True

 End If

 End If

End Function

Test the changes

1 Run your application to test the changes. First, click the new
AddLayer button on the toolbar.

2. In the dialog that opens, select Bitmaps from the Files of Type
dropdown list.

3. Browse to a directory containing georeferenced bitmaps.

4. Select a bitmap and click Open. You should then see the
selected bitmap added to the Map.

28 GETTING STARTED WITH MAPOBJECTS LT USING VISUAL BASIC 6

You can also specify MapLayers and ImageLayers at
design time and add them at run time. Create a layer
object in a similar way, but specify a path to the file in
your code. Try to use relative paths, if possible.

5. Click the Stop button and save the changes.

