

Leo Bynum and Mansour Raad

SDE Overview

™

Brief IntroductionBrief Introduction

What is SDE?

Take a standard RDBMS Table and add a
GEOMETRY column (with X,Y’s inside).

This is old news (pre SDE).

Storage is simple.

Attribute query & retrieval easy.

Spatial Queries are
More Difficult and Interesting

Spatial Queries are
More Difficult and Interesting

Spatially and Topologically constrained queries present
two problems especially for LARGE data sets.

1) Need very complex and very fast logic to do spatial relationship comparisons.

2) For efficiency, general area of interest logic is required to reduce your
 Search space.

You need:
A GOOD SUPER-FAST TOPOLOGY ENGINE
A GOOD SUPER-FAST SPATIAL INDEXING SCHEME

SDE solves these problemsSDE solves these problems

SDE provides a super fast INTEGER based topology engine

SDE provides a very efficient method of
SPATIAL INDEXING (utilizing grids)

Normal SQL QueriesNormal SQL Queries

A typical SQL query:

SELECT <COLUMN(S)>
FROM <TABLE(S)>
WHERE <COLUMN> <REALTION> <VALUE>

select pop96, area from counties
where name = ‘SAN DIEGO’

SDE Spatial QueriesSDE Spatial Queries

SDE will allow you to make these kinds of
queries by providing geometric column types
and topology relational operators.

SELECT pop96, geometry from counties
where area < 25000 and
geometry [is inside or touching] this

* Note this is conceptual. Actual implementation is
 programmed in the SDE client

SDE-INFORMIX DataBlade
Spatial Queries

SDE-INFORMIX DataBlade
Spatial Queries

Select school_name from schools, toxic_sites
where

WITHIN
 (
 BUFFER(toxic_sites.location, 5.0),
 schools.location
) = T

* Note: This is the actual syntax for the SDE-INFORMIX DataBlade

Client Server QueriesClient Server Queries

ClientClient SDE
Server
SDE

Server

Connection on startupConnection on startup

SDE
Server
SDE

ServerClientClient

Client connects to server

Query is initiatedQuery is initiated

 Client submits query to server

SDE
Server
SDE

ServerClientClient

"retrieve…"

SDE/RDBMS do their workSDE/RDBMS do their work

Server finds features satisfying constraints

ClientClient SDE
Server
SDE

Server

Results shipped backResults shipped back

Server sends features to client over network

ClientClient SDE
Server
SDE

Server

Client Rendering (Drawing)Client Rendering (Drawing)

Client processes one-at-a-time in a loop

ClientClient SDE
Server
SDE

Server

S Table and GridsS Table and Grids

Query a Land Parcels Layer

Spatial Query from ClientSpatial Query from Client

• Client submits spatially-constrained query

"retrieve all land parcels that overlap a
 ruptured storage tank’s contamination plume"

S Table Queried FirstS Table Queried First

• Server determines which parcels share an
index grid with the plume

"retrieve all land parcels that overlap a
 ruptured storage tank’s contamination plume"

Simple Envelope TestSimple Envelope Test

• Server finds shapes with overlapping
envelopes

"retrieve all land parcels that overlap a
 ruptured storage tank’s contamination plume"

Topology Engine Compares the
Rest

Topology Engine Compares the
Rest

"retrieve all land parcels that overlap a
 ruptured storage tank’s contamination plume"

Topology Engine will accept or reject features based on
complex topology comparisons

Business and Feature TablesBusiness and Feature Tables

WILDERNESS AREAS

Name Boundary

Big Flat

Upper Valley

East Ridge

8984

2170

3642

F9

FID Points

8984

2170

3642

Overview of SDE RDBMS
Tables and Their Uses

Overview of SDE RDBMS
Tables and Their Uses

2 ROADS

LAYER_ID TABLE_NAME ...

LAYERS

SHAPE ...

ROADS

6582
6583
6584

SP_FID ...

S2

6582
6583
6584

FID ...

F2

6582
6583
6584

Inside the S TableInside the S Table

S Table Columns:

SP_FID, GX, GY, EMINX, EMINY, EMAXX, EMAXY

SP_FID is the join key.

GX and GY are grid coordinates used in the S table search.

The Envelope values are for trivial rejection of disjoint
features. This avoids the fetch from the F table.

S Table IndexingS Table Indexing

SDE 3.0
S<n>_IX1 on (GX, GY)
S<n>_IX2 on (SP_FID)

SDE 3.0.1
S<n>_IX1 on (GX, GY, and all of the rest)
S<n>_IX2 NOT MAINTAINED!

SDE 3.0.2
S<n>_IX1 on (GX, GY, and all of the rest)
S<n>_IX2 on (SP_FID)

Index columns that AREN’T in
the where clause??!!

Index columns that AREN’T in
the where clause??!!

Normally one only indexes the columns that are queried.
(i.e. in the where clause)

The RDBMS is smart enough to take the values from the
index without going to the table IF the values are in the
index.

The S table index in 3.0.2 takes advantage of this by
indexing ALL the columns.

Now you don’t have to worry about where you put the
S Table. It is never hit.

Learn from this ideaLearn from this idea

Indexing both the “where” columns AND the “select”
columns helps Business Table Queries in the same way
that that it helped the S table queries.

Use this to help speed your attribute queries.

Index BOTH spatial column and your favorite column.

Remember: Indexes are ORDER DEPENDENT!!!

Grid RecommendationsGrid Recommendations

• There are 3 Levels of grid.

• Do Not Use more than you need.

• This causes extra S table searches

• Most layers only need one grid level.

Grid RecommendationsGrid Recommendations

First Level Grid should be set to the LARGER of:

• Your layers average feature size.
 or

• Your average Querying Area.

Never make grids smaller than your features

2nd & 3rd Level Grids2nd & 3rd Level Grids

Higher level grids should be used to “catch” features
that are LARGER than your 1st LEVEL grid.

In most cases, if 80% of your features fit into your
first grid, that’s good enough. Stay with one grid level.

Grids: Final RemarksGrids: Final Remarks

Even though Grids are tuned to an average query,
there is almost always a “sweet spot” setting that
works well for ANY query.

Ballpark settings typically get you close enough.

Grid tuning is a Black Art. Perform bench marks.

Hardware IssuesHardware Issues

Server Hardware Components:

• CPU’s

• Memory

• Disk

CPU’sCPU’s

• Faster is better

• More is better

• Single user benchmarks benefit less from more than 2

• Multiple threads (Multi Users) Benefit far more from
 more CPU’s

MemoryMemory

• More is better

• Saves Page Swapping

• Good for reselects

• Will not help initial selections

• Benefits seen especially on multi user systems

DisksDisks

Get MORE than enough!!! Really!

RAID is BAD

RAID is GOOD

SCSI? NFS? IDE?

Spread out your I/O

The BIG LOADThe BIG LOAD

Create your tablespaces.
One for each layer.

Avoid Fragmentation!

Get the size right or your life will be hell!

Take your time and calculate EVERYTHING FIRST!

WRONG!!!!!WRONG!!!!!

THERE’S NEVER TIME TO DO IT RIGHT.
THERE’S ALWAYS TIME TO DO IT OVER.

Its always faster to load a layer TWICE than to load it
RIGHT the first time.

JUST DO IT!!

Here’s how.

Fragment and Size LATERFragment and Size LATER

F_INIT 1000000 F_IX1_INIT 1000000
F_NEXT 1000000 F_IX1_NEXT 1000000

A_INIT 1000000 A_IX1_INIT 1000000
A_NEXT 1000000 A_IX1_NEXT1000000

S_INIT 1000000 S_IX1_INIT 1000000
S_NEXT 1000000 S_IX1_NEXT 1000000

S_IX2_INIT 1000000
S_IX2_NEXT 1000000

First Giveaway: ll_numFirst Giveaway: ll_num

unix> ll_num

lists OWNER TABLE_NAME LAYER_ID
----------- -------------------- ---------------
SDE COUNTIES 1
SDE STREET06 2
LEO FOO 3

Second Give Away:
layer_get_size

Second Give Away:
layer_get_size

 layer_get_size owner/passwd
layer_name
layer_number
keyword
multiplier
next_scale

unix> layer_get_size sde/sde counties 2 COUNTIES 1.0 0.1

Analyzes tables to calculate exact size.
Outputs a DBTUNE.SDE entry

A word on ANALYZING
TABLES

A word on ANALYZING
TABLES

SQL> analyze table foo calculate statistics;

If you are getting lousy point-and-click identify response
or if your layer displays fine in ArcVIEW but CRAWLS
if you symbolize, Someone may have ANALYZED your
tables and indexes

SQL> analyze table foo delete statistics;
SQL> analyze index foo_ix delete statistics;

ORACLE TEMP and RBSORACLE TEMP and RBS

After your layer loads, will it go into NORMAL_IO?

Suggestions:

Be sure your TEMP and RBS’s are big enough.

Check that your TEMP table space default storage is OK.

Leave the layer in NORMAL_IO BEFORE you load it.

Use a COMMIT frequency value.

SDE ThroughputSDE Throughput

Is it as fast as it can be?

How many features per second?

 Single CPU desktop server: 250 - 400 fps
 Two CPU ULTRA CLASS: 350 - 500 fps
Really Expensive MainFrame: 850 fps

Tuning Myths and RealitiesTuning Myths and Realities

If you do the right stuff:

De-fragment your data.
Spread out your I/O
Tune Oracle
Tune the SDE grids
Tune the GIOMGR.defs
Index Properly

You keep making SDE faster a little at a time.

RealityReality

SDE throughput is a multi-step process.

You’re only as fast as your slowest step.

Speeding up a faster step WON’T help.

Focus on the things that matter.

Tune what MattersTune what Matters

Things that make a BIG difference
Proper Attribute Indexing
Grid Sizing
Application Logic

Things that may not make a big difference
Fragmentation
Spreading out your I/O
Oracle fine tuning.

Settle the RumorSettle the Rumor

Local Shapefiles faster than SDE?

Ya. You betcha!

Flat files faster than a
Client-Server-RDBMS-Row-Topology-Network-Fetch?

Airline reservations would be faster if they used local
copies of the seat assignment.

Remember what you get!Remember what you get!

Centralized Server One copy of the data
Transaction Control Relational Algebra
Backups Concurrent Access
Concurrent Editing VERY LARGE Datasets
No NSF Mounts Superior Security

Changes Immediately Visible by Everyone

Tricks with the RDBMSTricks with the RDBMS

Use Triggers instead of complex programming.
Date stamps
History layers
Propagate data into other tables

Use Views instead of tables.
Lighten MO’s attribute load.
UNION ALL views “glue” two layers together.

Use Synonyms.

Hacking the layers table
(at your own risk)

Hacking the layers table
(at your own risk)

Useful columns in the layers table.

OWNER If you are moving and copying tables.

TABLE_NAME You can put views and synonyms here.

LAYER_ID This specifies the F and S table names.

If you change the LAYERS table, shutdown and restart SDE

RAID 5, Mirroring and BackupsRAID 5, Mirroring and Backups

unRAIDed Disk Crash: System down, Restore Backup

 RAID5 Disk Crash: System down, Disk gets rebuilt.

 Mirrored Disk Crash: System stays up, Disk gets rebuilt.

With RAID/Mirroring you don’t need to backup! (wrong!)

If you have the source data you don’t need really need RAID

More on BackupsMore on Backups

If you are dealing with LARGE data sets, don’t go down!

If you install RAID do the restore “fire drill”.

Don’t think of system crashes and restores as possible.

Don’t think of them as an eventuality.

Think of them as routine.

FF (SDE) = I + TFF (SDE) = I + T

Clustering data for Super Turbo Fast Display.

Some loss of functionality.

Huge throughput increases.

Some symbolization capability.

Great for “Wallpaper” and more...

Clustered Layers UtilityClustered Layers Utility

Usage:
<SDE server machine> <SDE instance name>
<source_table,sp_col> <dest_table,sp_col>
<username> <password>

 <POINTS | LINES | ISOLATED_POLYGONS |
 TESSELLATED_POLYGONS | POLYGONS>

 <CREATE | USE_EXISTING_LAYER>
<tile_size> <quoted_where>
<tag_val>[<SDE database name>]

Demo and QuestionsDemo and Questions

Thank you and Keep in touch!
- Leo

