ArcSDE for Informix Administration

Presented by Mark Harris and Tom Pattison

Outline

Basic Tuning

- Tuning memory
- Tuning CPU
- Reducing Disk I/O contention
- Dbtune table
- Statistics
- Informix Spatial DataBlade
- Configure ArcSDE for loading data

Basic Informix Tuning

- Allocate and share CPU and Memory resources among various processes running on the server
- Adjust initialization parameters stored in the Onconfig file.

- Must restart the instance to take affect

• Distribute "hot" files across file system to reduce disk I/O contention

Outline

- Basic Tuning
 - Tuning memory
 - Tuning CPU
 - Reducing Disk I/O contention
- Dbtune table
- Statistics
- Informix Spatial DataBlade
- Configure ArcSDE for loading data

Tuning Memory

- Memory is allocated to:
 - the Informix servers shared buffers
 - the Informix server processes
 - the ArcSDE giomgr process
 - the ArcSDE gsrvr processes
 - the O/S
 - other processes

Regular buffer

- Configured by the BUFFERS parameter
- Holds MRU data pages
- Set buffers to 25 percent of physical RAM
- Buffers are set in pages
- Example: to calculate the buffers for 256MB of RAM and a 2 kilobyte page (256 * 1024) * 0.25 / 2

Regular buffers

- Examine the %cached reads of the onstat -p command after server is warm
- Taking current memory use into account, if it is below 90% increase BUFFERS

LOGSIZE

- The LOGSIZE parameter controls the size of the logical log files
- Increase the LOGSIZE parameter to 1500

LOGBUFF

- Size of the buffers that buffer writes to the logical logs
- There are three buffers
- Defaults to 32 kilobytes
- Set to even increment of Informix pagesize

LOGBUFF

- After the server is warm, use onstat -I and examine Logical Logging section
 - if pages/io is less than 75% of bufsize reduce LOGBUFF
 - if pages/io is greater than 95% of bufsize increase LOGBUFF

PHYSBUFF

- The size of the buffers that buffer writes to the physical log
- There are two physical log buffers
- Set to an even increment of the Informix pagesize

PHYSBUFF

- After the server is warm, use onstat -I and examine Physical Logging section
 - if pages/io is less than 75% of bufsize reduce PHYSBUFF
 - if pages/io is greater than 95% of bufsize increase PHYSBUFF

LOGSMAX

- The LOGSMAX parameter controls the maximum number of logical logs that can be created
- Increase this parameter to create the new log files in the separate log file dbspaces

CLEANERS

- The CLEANERS parameter controls the number of page cleaners
- Page cleaners write dirty blocks in the regular buffer to disk
- Set the page cleaners to the number of frequently accessed disks
- Set to at least 6

Least recently used queues

• LRU queue pair maintain a FLRU and a MLRU list

QUEUES

LRU_MIN_DIRTY

LRU MAX DIRTY

LRU queues

- Avoid foreground writes by having enough LRU queues
- The number of LRU queues is controlled by the LRUS parameter
- Set LRUS to 4 times the number of CPUs

LRUs and page cleaners

- Use onstat -F to monitor the number of foreground writes
- Increase LRUS and CLEANERS to reduce foreground writes

Shorter LRU queues

- Page cleaners wake up and sleep according to LRU_MAX_DIRTY and LRU_MIN_DIRTY
- Lower them to shorten queues and reduce foreground writes
 - only if increasing LRUS and CLEANERS did not help

RA_PAGES

- The RA_PAGES parameter controls the number of pages read ahead
- Increase RA_PAGES to 125

RA_THRESHOLD

- RA_THRESHOLD number of unprocessed pages that trigger a read ahead
- Increase the RA_THRESHOLD to 85

Outline

- Basic Tuning
 - Tuning memory
 - Tuning CPU
 - Reducing Disk I/O contention
- Dbtune table
- Statistics
- Informix Spatial DataBlade
- Configure ArcSDE for loading data

Tuning CPU

- For single CPU servers
 - Set SINGLE_CPU_VP to 1; bypass superfluous mutex calls
 - Set MULTIPROCESSOR to 0; optimize locking for single processor
 - These are the defaults

Tuning CPU

- For multiple CPU servers
 - Set SINGLE_CPU_VP to 0
 - Set MULTIPROCESSOR to 1
 - Take advantage of the machines parallel processing capabilities
 - Note: may want to treat a dual-processor as a single processor

Virtual Processors

- Kind of like O/S processes
- Actually threads of the Informix oninit process
- Manage background tasks and service client application

Virtual Processors

- Virtual processor classes that are tunable include
 - CPU
 - -AIO
 - Network

Tuning VPs

- AIO and CPU class can be tuned by setting:
 - NUMCPUVPS
 - AFF_SPROC
 - AFF_NPROCS
 - NOAGE
 - NUMAIOVPS

Tuning VPs

- This presentation describes the use of the VPCLASS parameter
- You cannot mix the VPCLASS with the other VP parameters
 - An error results when the server is initialized if both types of parameters are present in the onconfig

User defined VPCLASS

- Informix allows you to define your own VP class
- You should not, unless an Informix DataBlade requires you to do so
- The Informix Spatial DataBlade uses the predefined CPU VP class

CPU and AIO VP class

 Informix always has at least one AIO VP class defined to handle ancillary tasks such as messaging
VPCLASS aio, num=1

CPU and non-logged I/O on UNIX Systems

- UNIX systems must use the AIO VP for nonlogged I/O
 - if kernel-asynchronous I/O (KAIO) is not implemented
 - if the I/O performed is to a cooked file
- Otherwise they use CPU VP
 - Advantage: Less context switching between AIO and CPU VPs

CPU VP and logged I/O on UNIX systems

- UNIX systems must use PIO and LIO to perform physical and logical logging
 - if kernel-asynchronous I/O (KAIO) is not implemented
 - if the log files are stored on cooked file
- Disadvantage:
 - context switching between CPU VP and PIO and LIO VP

Raw devices and KAIO on UNIX

- Advantages:
 - reduced context switching between CPU and other VPs
 - eliminates I/O to the O/S buffer
- Disadvantages
 - Difficult to setup and maintain

CPU and AIO VP class on Windows NT

- Windows NT systems always use CPU virtual processor to perform both logged and nonlogged I/O
- Set at least one AIO VP and several CPU VPs

CPU VPCLASS

- Do not set the CPU VPs higher than number of processors on machine
- Start the CPU VPs at 2
- Example:

VPCLASS cpu, num=2, max=8

AIO VPCLASS on UNIX

 If KAIO is implemented and all nonlogged I/O is to raw device, configure at least one AIO VP
VPCLASS aio, num = 1

AIO VPCLASS on UNIX

 If KAIO is implemented and some cooked devices are used, allocate two AIO VPs per active dbspace composed on a cooked device
VPCLASS aio, num = 8

AIO VPCLASS on UNIX

 If KAIO is not implemented, allocate two AIO virtual processors for each frequently accessed disk
 VPCLASS aio, num = 16

Network Virtual Processors

- The NETTYPE parameter defines the number of poll threads allocated to each connection type
- Poll threads can be run by either network VPs or CPU VPs

Network virtual processors on UNIX systems

- Poll threads tend to run more efficiently on CPU VPs; good for single CPU server
- If CPU VPs become congested you need to offload the poll threads to Network VPs

Network Virtual Processors on UNIX systems

• This is a typical NETTYPE configuration.

NETTYPE ipcshm,1,20,CPU NETTYPE tlitcp,2,100,NET

Network Virtual Processors on Windows NT

 The NETTYPE vp-class field is always set to NET on Windows NT even though the poll threads are handled inline

NETTYPE onsoctcp, 1,500,NET

VP Priority aging

- You should disable priority aging
- Enabled by default
- VPs run continuously and run with a lower priority the longer the server is up, unless priority aging is disabled

VPCLASS CPU, num=2, max=8, noage

Outline

- Basic Tuning
 - Tuning memory
 - Tuning CPU
 - Reducing Disk I/O contention
- Dbtune table
- Statistics
- Informix Spatial DataBlade
- Configure ArcSDE for loading data

Log file dbspaces

- Physical and logical log are created in the root dbspace
- Create separate dbspaces for each of these log files

Log file dbspaces

- Position physical and logical logs dbspaces on separate disk drives
- May position one or the other with the root dbspace if necessary

Physical log file

Creating the physical log dbspace

onspaces -c -d physdbs -p E:\inf_data\physdbs.000 -o 0 -s 10000

• Set the PHYSDBS and PHYSFILE configuration parameters

PHYSDBS PHYSFILE

physdbs 9000

Move the logical log out of the rootdbs

- To move the logical log to its own dbspaces
 - Create logical log file dbspaces
 - Add logical log to new dbspaces
 - Move current logical log to a new log
 - Remove old logical logs

Create new logical logs

Create the logical log dbspace

onspaces -c -d log1dbs -p D:\inf_data\log1dbs.000 -o 0 -s 10000

Create the new logs

onparams -a -d log1dbs

Enable the new logs

onmode -s

ontape -s

Remove the old logs (1)

Get the current log

onstat_l

	onstat -i								
	address	number	flags	uniqid	begin	size	used	%used	
	a049784	1	UC-L	1367	200035	750	750	57.00	
ł	a0497a0	2	U-B	1368	200323	750	750	0.00	
ł	a0497bc	3	U-B	1369	200611	750	750	0.00	In rootdbs
1	a0497d8	4	U-B	1370	2008ff	750	750	0.00	
	a0497f4	5	U-B	1371	200bed	750	750	0.00	
ł	a049810	6	U-B	1372	200edb	750	750	0.00	
	a04982c	7	U-B	1373	2011c9	750	750	0.00	
	a049848	8	U-B	1374	2014b7	750	750	0.00	
	a049864	9	U-B	1375	2017a5	750	750	0.00	
	a049880	10	U-B	1376	201a93	750	750	0.00	

ESRI

Remove the old logs (2)

Switch the current log

onmode -1;onmode -1;onmode -1;onmode -1;onmode -1onstat -1

address	number	flags	uniqid	begin	size	used	%used	
a049784	1	U-B	1367	200035	750	750	57.00	
a0497a0	2	U-B	1368	200323	750	750	0.00	
a0497bc	3	U-B	1369	200611	750	750	0.00	
a0497d8	4	U-B	1370	2008ff	750	750	0.00	In rootdbs
a0497f4	5	U-B	1371	200bed	750	750	0.00	
a049810	6	U-B	1372	200edb	750	750	0.00	
a04982c	7	UC-L	1373	2011c9	750	750	0.00	
a049848	8	U-B	1374	2014b7	750	750	0.00	
a049864	9	U-B	1375	2017a5	750	750	0.00	
a049880	10	U-B	1376	201a93	750	750	0.00	

Remove the old log (3)

Delete the old logs

ontape -s onparams -d -l 1 -y onparams -d -l 2 -y onparams -d -l 3 -y onparams -d -l 4 -y onparams -d -l 5 -y onparams -d -l 5 -y

Remove the old logs (4)

The remaining logs

onstat -1

address number flags unigid begin size %used used a049784 7 U---C-L 1367 200035 750 750 0.00 U-B---- 1368 a0497a0 8 200323 750 750 0.00 U-B---- 1369 200611 0.00 a0497bc 9 750 750 In log2dbs U-B---- 1370 a0497d8 10 2008ff 750 750 0.00 a0497f4 11 U-B---- 1371 200bed 750 750 0.00 a049810 12 U-B---- 1372 200edb 750 750 0.00 a04982c 13 U-B---- 1373 0.00 2011c9 750 750 U-B---- 1374 a049848 14 2014b7 750 750 0.00 In log2dbs U-B---- 1375 2017a5 750 a049864 15 750 0.00 a049880 16 U-B---- 1376 201a93 750 750 0.00

Temporary space

- Temporary space is used for:
 - creating indexes
 - sorting
 - performing joins

Temporary dbspaces

- By default temporary storage is written to /tmp or C:\tmp
- Create the temporary dbspaces

onspaces -c -t -d temp1dbs -p F:\inf_data\temp1dbs.000 -o 0 -s 20000

• Set DBSPACETEMP

DBSPACETEMP temp1dbs, temp2dbs

Default smart large object

- The Informix Spatial DataBlade stores compressed geometry that is larger than 930 bytes in "smart blobs"
- Create the sbspace

onspaces -c -s sblobdbs -g 1 -p F:\inf_data\sblobdbs.000 -o 0 -s 100000

Set the onconfig parameter

SBSPACENAME sblobdbs

Smart large object

 Separate the smart large object sbspace from the business dbspace containing the spatial columns

Tables and indexes

- Separate dbspaces for tables and indexes
- Position the dbspaces on different disk drives
- Provides simultaneous disk I/O to table and indexes

High use tables

 Position high use tables in the middle partitions of the disk drives

– reduces disk head travel

 Separate large high use tables from one another by placing their dbspaces on separate disk drives

Group small tables

- Group smaller tables together by usage
- Allows you to mix "hot" dbspaces with "not-so-hot" dbspaces
- Remember to keep tables separate from indexes

Dbspaces for large tables

- Each large index or table (greater than 500MB) should be stored in its own dbspace
- May need multiple dbspaces for one object to distribute it around file system

Few extents as possible

- Keep the number of extents/object as low as possible
- Lot of extents increase the possibility of interleaving and disk head travel
- More extents mean more overhead

Outline

- Basic Tuning
 - Tuning memory
 - Tuning CPU
 - Reducing Disk I/O contention
- Dbtune table
- Statistics
- Informix Spatial DataBlade
- Configure ArcSDE for loading data

DBTUNE Configuration Parameters

- Configuration parameters communicate object storage information to INFORMIX
- Configuration parameters are grouped into keywords

The DBTUNE table

- At ArcSDE 8.1 the dbtune.sde file becomes the dbtune table
- At ArcSDE 3.x each dbtune parameter described a Informix parameter
- At ArcSDE 8.1 each dbtune parameter describes an Informix object

The ArcSDE 3.X keyword

##ROADS	
A_TBLSP	roadsdbs
A_IX_TBLSP	road_ix_dbs
A_SBLOB_DBS	roadsblob
A_INIT	40
A_NEXT	40
A_IX_FILL	90
A_LOCK_ROW	1
END	

The ArcSDE 8.1 keyword

##ROADS	
UI_TEXT	"General roadway storage"
COMMENT	"Do not change these settings BOB!!!!"
B_STORAGE	"in roadsdbs extent size 40 next size 40
	lock mode row put feature in (roadsblob)"
B_RTREE	"in road_rt_dbs extent size 40 next size 40 fillfactor 90"
B_INDEX_1	"in road_ix_dbs extent size 40 next size 40 fillfactor 90"
END	

Sdedbtune admin tool

- Imports a dbtune file into a DBTNE table
- Exports the DBTUNE table to a dbtune file
- Allows you to update the DBTUNE table by editing the dbtune file

Outline

- Basic Tuning
 - Tuning memory
 - Tuning CPU
 - Reducing Disk I/O contention
- Dbtune table
- Statistics

Configure ArcSDE for loading data

Statistics

- Informix Dynamic Server uses Cost Based Optimization
 - You need to keep the data objects statistics up-to-date
- Use UPDATE STATISTICS to keep spatial data statistics up-to-date

Statistics

- Use UPDATE STATISTICS whenever more than 10-20% of the data has been modified
- Switching from Load Only I/O mode to Normal I/O mode automatically executes UPDATE STATISTICS

Statistics

- Use UPDATE STATISTICS on tables
 containing a spatial column
- Example

update statistics for table streets;

Outline

- Basic Tuning
 - Tuning memory
 - Tuning CPU
 - Reducing Disk I/O contention
- Dbtune table
- Statistics
- Informix Spatial DataBlade
- Configure ArcSDE for loading data

Informix Spatial DataBlade

- Joint effort of the Informix and ESRI partnership
- Adds OGC compliant spatial types and functions to an Informix database
- ArcSDE for Informix calls spatial functions and uses spatial types

Informix Spatial Datablade

- The spatial datablade directory Spatial.8.1 is installed under Informix extend directory
- Register the Informix Spatial Datablade to all databases that store spatial data

Spatial Data Types

- Spatial data types include:
 - ST_Geometry
 - ST_Point
 - ST_LineString
 - ST_Polygon

- ST_Multipoint
- ST_MultiLineString
- ST_MultiPolygon

Create table bldftprints (building_ids, name varchar(32), feature ST_LineString);

Comparison predicates

- ST_Equals
- ST_OrderingsEquals
- ST_Touches
- ST_Overhaps
- ST_Crosses
- ST_Within

- ST_Contains
- ST_Disjoint
- ST_Intersects
- ST_Relate
- SE_EnvelopesIntersect

```
Select building_id
from streets sts,bldftprints bld
where ST_Intersects(sts.feature,bld.feature) = `t';
```


Property predicates

- ST_IsRing :
- ST_IsClosed

- ST_IsValid
- SE_Is3D
- ST_IsSimple
- ST_IsEmpty
- SE_IsMeasure

```
Select count(*) from bldftprints where
ST_IsRing(feature) = `f';
```


Property functions

- ST_Area
- ST_Boundary
- ST_CoordDim
- ST_Distance
- ST_EndPoint
- ST_Envelope
- ST_Dimension
- ST_ExteriorRing
- ST_GeometryType
- ST_Length

- ST_NumGeometries
- ST_NumInteriorRing
- ST_NumPoints
- ST_Perimeter
- ST_SRID
- SE_M
- ST_X
- ST_Y
- SE_Z

Text converters

- ST_GeomFromText
- ST_PointFromText
- ST_LineFromText
- ST_PolyFromText
- ST_MPointFromText

- ST_MLineFromText
- ST_MPolyFromText
- ST_WKTToSQL
- ST_AsText

CREATE TABLE wells (g1 ST_Geometry);

Well Known Binary Converters

- ST_GeomFromWKB
- ST_PointFromWKB
- ST_LineFromWKB
- ST_PolyFromWKB
- ST_MPointFromWKB

- ST_MLineFromWKB
- ST_MPolyFromWKB
- ST_WKBToSQL
- ST_AsBinary

(binary) Shape Converters

- SE_GeomFromShape
- SE_PointFromShape
- SE_LineFromShape
- SE_PolyFromShape
- SE_MPointFromShape

- SE_MLineFromShape
- SE_MPolyFromShape
- SE_ShapeToSQL
- SE_AsShape

Functions that generate geometry

- ST_Union
- ST_Intersection
- ST_Difference
- ST_SymmetricDiff
- ST_Buffer
- ST_Centroid
- ST_ConvexHull

- ST_GeometryN
- ST_InteriorRingN
- ST_Point
- ST_PointN
- ST_PointOnSurface
- ST_Polygon
- ST_Transform

Network Functions

- SE_LocateAlong
- SE_LocateBetween

SELECT LocateBetween(roads,surface.from,surface.to)
FROM highways, surface

The RTREE index

- The Informix Spatial DataBlade indexes the spatial column with an RTREE index.
- No fuss, no muss

CREATE INDEX <name> on

(<column_name> St_Geometry_Ops) using Rtree;

Outline

- Basic Tuning
 - Tuning memory
 - Tuning CPU
 - Reducing Disk I/O contention
- Dbtune table
- Statistics
- Informix Spatial DataBlade
- Configure ArcSDE for loading data

Configure ArcSDE for loading

- Use the giomgr.defs file to alter ArcSDE configuration for data loading
- ArcSDE uses *transmission buffers* to support asynchronous I/O and streamline network usage

ArcSDE Transmission Buffers

- Buffers are allocated on the server side and the client side
 - The size of the transmission buffer is set with MAXBUFFSIZE and MINBUFFSIZE

 Larger buffers allow higher throughput increasing performance during bulk loading

ArcSDE Transmission Buffers

- If the server is waiting, the buffer will gather up to MINBUFFSIZE of data to send to the server
- If the server is busy the client will gather up to MAXBUFFSIZE of data before sending the buffer to the client
- Reduces I/O by batching a minimum of amount of data

ArcSDE Transmission Buffers

- High transmission buffers increase performance during bulk loading
- Do not use high buffers for normal query operations
 - ArcSDE will assign the MAXBUFSIZE amount of memory to each stream and may exhaust available memory

Autocommit

- The giomgr.defs default commit interval is 1000 records
- Increase autocommit interval to 5000 for loading

Where to get more help

- Informix classes
- ESRI classes
- Informix technical support
- ESRI technical support

Questions?

Please don't forget to fill out the survey before you leave

