
ArcSDE for Informix
Administration

Presented by Mark Harris and
Tom Pattison

Outline

• Basic Tuning
– Tuning memory
– Tuning CPU
– Reducing Disk I/O contention

• Dbtune table
• Statistics
• Informix Spatial DataBlade
• Configure ArcSDE for loading data

Basic Informix Tuning
• Allocate and share CPU and Memory

resources among various processes
running on the server

• Adjust initialization parameters
stored in the Onconfig file.
– Must restart the instance to take affect

• Distribute “hot” files across file
system to reduce disk I/O contention

Outline

• Basic Tuning
– Tuning memory
– Tuning CPU
– Reducing Disk I/O contention

• Dbtune table
• Statistics
• Informix Spatial DataBlade
• Configure ArcSDE for loading data

Tuning Memory

• Memory is allocated to:
– the Informix servers shared buffers
– the Informix server processes
– the ArcSDE giomgr process
– the ArcSDE gsrvr processes
– the O/S
– other processes

Regular buffer

• Configured by the BUFFERS
parameter

• Holds MRU data pages
• Set buffers to 25 percent of physical

RAM
• Buffers are set in pages
• Example: to calculate the buffers for

256MB of RAM and a 2 kilobyte page
(256 * 1024) * 0.25 / 2

Regular buffers

• Examine the %cached reads of the
onstat -p command after server is
warm

• Taking current memory use into
account, if it is below 90% increase
BUFFERS

LOGSIZE

• The LOGSIZE parameter controls the
size of the logical log files

• Increase the LOGSIZE parameter to
1500

LOGBUFF
• Size of the buffers that buffer writes

to the logical logs
• There are three buffers
• Defaults to 32 kilobytes
• Set to even increment of Informix

pagesize

LOGBUFF

• After the server is warm, use onstat -l
and examine Logical Logging section
– if pages/io is less than 75% of bufsize

reduce LOGBUFF
– if pages/io is greater than 95% of bufsize

increase LOGBUFF

PHYSBUFF

• The size of the buffers that buffer
writes to the physical log

• There are two physical log buffers
• Set to an even increment of the

Informix pagesize

PHYSBUFF

• After the server is warm, use onstat -l
and examine Physical Logging
section
– if pages/io is less than 75% of bufsize

reduce PHYSBUFF
– if pages/io is greater than 95% of bufsize

increase PHYSBUFF

LOGSMAX

• The LOGSMAX parameter controls
the maximum number of logical logs
that can be created

• Increase this parameter to create the
new log files in the separate log file
dbspaces

CLEANERS

• The CLEANERS parameter controls
the number of page cleaners

• Page cleaners write dirty blocks in
the regular buffer to disk

• Set the page cleaners to the number
of frequently accessed disks

• Set to at least 6

Least recently used queues
• LRU queue pair maintain a FLRU and

a MLRU list LRU
QUEUES

LRU_MIN_DIRTY

LRU_MAX_DIRTY

LRU queues

• Avoid foreground writes by having
enough LRU queues

• The number of LRU queues is
controlled by the LRUS parameter

• Set LRUS to 4 times the number of
CPUs

LRUs and page cleaners

• Use onstat -F to monitor the number
of foreground writes

• Increase LRUS and CLEANERS to
reduce foreground writes

Shorter LRU queues

• Page cleaners wake up and sleep
according to LRU_MAX_DIRTY and
LRU_MIN_DIRTY

• Lower them to shorten queues and
reduce foreground writes
– only if increasing LRUS and CLEANERS

did not help

RA_PAGES

• The RA_PAGES parameter controls
the number of pages read ahead

• Increase RA_PAGES to 125

RA_THRESHOLD

• RA_THRESHOLD - number of
unprocessed pages that trigger a
read ahead

• Increase the RA_THRESHOLD to 85

Outline

• Basic Tuning
– Tuning memory
– Tuning CPU
– Reducing Disk I/O contention

• Dbtune table
• Statistics
• Informix Spatial DataBlade
• Configure ArcSDE for loading data

Tuning CPU

• For single CPU servers
– Set SINGLE_CPU_VP to 1; bypass

superfluous mutex calls
– Set MULTIPROCESSOR to 0; optimize

locking for single processor
– These are the defaults

Tuning CPU

• For multiple CPU servers
– Set SINGLE_CPU_VP to 0
– Set MULTIPROCESSOR to 1
– Take advantage of the machines parallel

processing capabilities
– Note: may want to treat a dual-processor

as a single processor

Virtual Processors

• Kind of like O/S processes
• Actually threads of the Informix oninit

process
• Manage background tasks and

service client application

Virtual Processors

• Virtual processor classes that are
tunable include
– CPU
– AIO
– Network

Tuning VPs

• AIO and CPU class can be tuned by
setting:
– NUMCPUVPS
– AFF_SPROC
– AFF_NPROCS
– NOAGE
– NUMAIOVPS

Tuning VPs

• This presentation describes the use
of the VPCLASS parameter

• You cannot mix the VPCLASS with
the other VP parameters
– An error results when the server is

initialized if both types of parameters
are present in the onconfig

User defined VPCLASS

• Informix allows you to define your
own VP class

• You should not, unless an Informix
DataBlade requires you to do so

• The Informix Spatial DataBlade uses
the predefined CPU VP class

CPU and AIO VP class
• Informix always has at least one AIO

VP class defined to handle ancillary
tasks such as messaging
VPCLASS aio, num=1

CPU and non-logged I/O on
UNIX Systems
• UNIX systems must use the AIO VP

for nonlogged I/O
– if kernel-asynchronous I/O (KAIO) is not

implemented
– if the I/O performed is to a cooked file

• Otherwise they use CPU VP
– Advantage: Less context switching

between AIO and CPU VPs

CPU VP and logged I/O on
UNIX systems
• UNIX systems must use PIO and LIO

to perform physical and logical
logging
– if kernel-asynchronous I/O (KAIO) is not

implemented
– if the log files are stored on cooked file

• Disadvantage:
– context switching between CPU VP and

PIO and LIO VP

Raw devices and KAIO on
UNIX

• Advantages:
– reduced context switching between CPU

and other VPs
– eliminates I/O to the O/S buffer

• Disadvantages
– Difficult to setup and maintain

CPU and AIO VP class on
Windows NT
• Windows NT systems always use

CPU virtual processor to perform
both logged and nonlogged I/O

• Set at least one AIO VP and several
CPU VPs

CPU VPCLASS

• Do not set the CPU VPs higher than
number of processors on machine

• Start the CPU VPs at 2
• Example:
VPCLASS cpu, num=2, max=8

AIO VPCLASS on UNIX

• If KAIO is implemented and all non-
logged I/O is to raw device, configure
at least one AIO VP
VPCLASS aio, num = 1

AIO VPCLASS on UNIX

• If KAIO is implemented and some
cooked devices are used, allocate
two AIO VPs per active dbspace
composed on a cooked device
VPCLASS aio, num = 8

AIO VPCLASS on UNIX

• If KAIO is not implemented, allocate
two AIO virtual processors for each
frequently accessed disk
VPCLASS aio, num = 16

Network Virtual Processors

• The NETTYPE parameter defines the
number of poll threads allocated to
each connection type

• Poll threads can be run by either
network VPs or CPU VPs

Network virtual processors
on UNIX systems
• Poll threads tend to run more

efficiently on CPU VPs; good for
single CPU server

• If CPU VPs become congested you
need to offload the poll threads to
Network VPs

Network Virtual Processors
on UNIX systems

• This is a typical NETTYPE
configuration.
NETTYPE ipcshm,1,20,CPU

NETTYPE tlitcp,2,100,NET

Network Virtual Processors
on Windows NT
• The NETTYPE vp-class field is always

set to NET on Windows NT even
though the poll threads are handled
inline
NETTYPE onsoctcp, 1,500,NET

VP Priority aging

• You should disable priority aging
• Enabled by default
• VPs run continuously and run with a

lower priority the longer the server is
up, unless priority aging is disabled

VPCLASS CPU, num=2, max=8, noage

Outline

• Basic Tuning
– Tuning memory
– Tuning CPU
– Reducing Disk I/O contention

• Dbtune table
• Statistics
• Informix Spatial DataBlade
• Configure ArcSDE for loading data

Log file dbspaces
• Physical and logical log are created

in the root dbspace
• Create separate dbspaces for each of

these log files

physdbs log1dbs log2dbs

rootdbs

Log file dbspaces

• Position physical and logical logs
dbspaces on separate disk drives

• May position one or the other with
the root dbspace if necessary

Physical log file

• Creating the physical log dbspace
onspaces -c -d physdbs -p E:\inf_data\physdbs.000 -o 0 -s 10000

• Set the PHYSDBS and PHYSFILE
configuration parameters

PHYSDBS physdbs
PHYSFILE 9000

Move the logical log out of
the rootdbs
• To move the logical log to its own

dbspaces
– Create logical log file dbspaces
– Add logical log to new dbspaces
– Move current logical log to a new log
– Remove old logical logs

Create new logical logs

• Create the logical log dbspace
onspaces -c -d log1dbs -p D:\inf_data\log1dbs.000 -o 0 -s 10000

• Create the new logs
onparams -a -d log1dbs

• Enable the new logs
onmode -s
ontape -s

Remove the old logs (1)

• Get the current log
onstat -l
address number flags uniqid begin size used %used
a049784 1 U---C-L 1367 200035 750 750 57.00
a0497a0 2 U-B---- 1368 200323 750 750 0.00
a0497bc 3 U-B---- 1369 200611 750 750 0.00 In rootdbs
a0497d8 4 U-B---- 1370 2008ff 750 750 0.00
a0497f4 5 U-B---- 1371 200bed 750 750 0.00
a049810 6 U-B---- 1372 200edb 750 750 0.00
a04982c 7 U-B---- 1373 2011c9 750 750 0.00
a049848 8 U-B---- 1374 2014b7 750 750 0.00
a049864 9 U-B---- 1375 2017a5 750 750 0.00
a049880 10 U-B---- 1376 201a93 750 750 0.00

Remove the old logs (2)

• Switch the current log
onmode -l;onmode -l;onmode -l;onmode -l;onmode -l;onmode -l
onstat -l

address number flags uniqid begin size used %used
a049784 1 U-B---- 1367 200035 750 750 57.00
a0497a0 2 U-B---- 1368 200323 750 750 0.00
a0497bc 3 U-B---- 1369 200611 750 750 0.00
a0497d8 4 U-B---- 1370 2008ff 750 750 0.00 In rootdbs
a0497f4 5 U-B---- 1371 200bed 750 750 0.00
a049810 6 U-B---- 1372 200edb 750 750 0.00
a04982c 7 U---C-L 1373 2011c9 750 750 0.00
a049848 8 U-B---- 1374 2014b7 750 750 0.00
a049864 9 U-B---- 1375 2017a5 750 750 0.00
a049880 10 U-B---- 1376 201a93 750 750 0.00

Remove the old log (3)

• Delete the old logs
ontape -s
onparams -d -l 1 -y
onparams -d -l 2 -y
onparams -d -l 3 -y
onparams -d -l 4 -y
onparams -d -l 5 -y
onparams -d -l 6 -y

• The remaining logs
onstat -l

address number flags uniqid begin size used %used
a049784 7 U---C-L 1367 200035 750 750 0.00
a0497a0 8 U-B---- 1368 200323 750 750 0.00
a0497bc 9 U-B---- 1369 200611 750 750 0.00 In log2dbs
a0497d8 10 U-B---- 1370 2008ff 750 750 0.00
a0497f4 11 U-B---- 1371 200bed 750 750 0.00
a049810 12 U-B---- 1372 200edb 750 750 0.00
a04982c 13 U-B---- 1373 2011c9 750 750 0.00
a049848 14 U-B---- 1374 2014b7 750 750 0.00 In log2dbs
a049864 15 U-B---- 1375 2017a5 750 750 0.00
a049880 16 U-B---- 1376 201a93 750 750 0.00

Remove the old logs (4)

Temporary space

• Temporary space is used for:
– creating indexes
– sorting
– performing joins

Temporary dbspaces

• By default temporary storage is
written to /tmp or C:\tmp

• Create the temporary dbspaces
onspaces -c -t -d temp1dbs -p F:\inf_data\temp1dbs.000 -o 0 -s 20000

• Set DBSPACETEMP
DBSPACETEMP temp1dbs, temp2dbs

Default smart large object

• The Informix Spatial DataBlade stores
compressed geometry that is larger
than 930 bytes in “smart blobs”

• Create the sbspace
onspaces -c -s sblobdbs -g 1 -p F:\inf_data\sblobdbs.000 -o 0 -s 100000

• Set the onconfig parameter
SBSPACENAME sblobdbs

Smart large object

• Separate the smart large object
sbspace from the business dbspace
containing the spatial columns

Tables and indexes

• Separate dbspaces for tables and
indexes

• Position the dbspaces on different
disk drives

• Provides simultaneous disk I/O to
table and indexes

High use tables

• Position high use tables in the middle
partitions of the disk drives
– reduces disk head travel

• Separate large high use tables from
one another by placing their
dbspaces on separate disk drives

Group small tables

• Group smaller tables together by
usage

• Allows you to mix “hot” dbspaces
with “not-so-hot” dbspaces

• Remember to keep tables separate
from indexes

Dbspaces for large tables

• Each large index or table (greater
than 500MB) should be stored in its
own dbspace

• May need multiple dbspaces for one
object to distribute it around file
system

Few extents as possible

• Keep the number of extents/object as
low as possible

• Lot of extents increase the possibility
of interleaving and disk head travel

• More extents mean more overhead

Outline

• Basic Tuning
– Tuning memory
– Tuning CPU
– Reducing Disk I/O contention

• Dbtune table
• Statistics
• Informix Spatial DataBlade
• Configure ArcSDE for loading data

DBTUNE Configuration
Parameters
• Configuration parameters

communicate object storage
information to INFORMIX

• Configuration parameters are
grouped into keywords

The DBTUNE table

• At ArcSDE 8.1 the dbtune.sde file
becomes the dbtune table

• At ArcSDE 3.x each dbtune parameter
described a Informix parameter

• At ArcSDE 8.1 each dbtune parameter
describes an Informix object

The ArcSDE 3.X keyword

##ROADS
A_TBLSP roadsdbs
A_IX_TBLSP road_ix_dbs
A_SBLOB_DBS roadsblob
A_INIT 40
A_NEXT 40
A_IX_FILL 90
A_LOCK_ROW 1

END

The ArcSDE 8.1 keyword

##ROADS
UI_TEXT “General roadway storage”
COMMENT “Do not change these settings -- BOB!!!!”
B_STORAGE “in roadsdbs extent size 40 next size 40

lock mode row put feature in (roadsblob)”
B_RTREE “in road_rt_dbs extent size 40 next size 40

fillfactor 90”
B_INDEX_1 “in road_ix_dbs extent size 40 next size 40

fillfactor 90”
END

Sdedbtune admin tool

• Imports a dbtune file into a DBTNE
table

• Exports the DBTUNE table to a
dbtune file

• Allows you to update the DBTUNE
table by editing the dbtune file

Outline

• Basic Tuning
– Tuning memory
– Tuning CPU
– Reducing Disk I/O contention

• Dbtune table
• Statistics
• Informix Spatial DataBlade
• Configure ArcSDE for loading data

Statistics

• Informix Dynamic Server uses Cost
Based Optimization
– You need to keep the data objects

statistics up-to-date
• Use UPDATE STATISTICS to keep

spatial data statistics up-to-date

Statistics

• Use UPDATE STATISTICS whenever
more than 10-20% of the data has
been modified

• Switching from Load Only I/O mode
to Normal I/O mode automatically
executes UPDATE STATISTICS

Statistics

• Use UPDATE STATISTICS on tables
containing a spatial column

• Example
update statistics for table streets;

Outline

• Basic Tuning
– Tuning memory
– Tuning CPU
– Reducing Disk I/O contention

• Dbtune table
• Statistics
• Informix Spatial DataBlade
• Configure ArcSDE for loading data

Informix Spatial DataBlade
• Joint effort of the Informix and ESRI

partnership
• Adds OGC compliant spatial types

and functions to an Informix
database

• ArcSDE for Informix calls spatial
functions and uses spatial types

Informix Spatial DataBlade

ArcSDE

Informix
Database Spatial

DataBlade

ArcInfo
ArcView

MO
CadClient

Third party apps

Informix Spatial Datablade

• The spatial datablade directory
Spatial.8.1 is installed under Informix
extend directory

• Register the Informix Spatial
Datablade to all databases that store
spatial data

Spatial Data Types

• Spatial data types include:
– ST_Geometry
– ST_Point
– ST_LineString
– ST_Polygon

– ST_Multipoint
– ST_MultiLineString
– ST_MultiPolygon

Create table bldftprints
(building_ids,
name varchar(32),
feature ST_LineString);

Spatial functions
• Comparison predicates

– ST_Equals
– ST_OrderingsEquals
– ST_Touches
– ST_Overhaps
– ST_Crosses
– ST_Within

– ST_Contains
– ST_Disjoint
– ST_Intersects
– ST_Relate
– SE_EnvelopesIntersect

Select building_id
from streets sts,bldftprints bld
where ST_Intersects(sts.feature,bld.feature) = ‘t’;

Spatial functions

• Property predicates
– ST_IsRing
– ST_IsClosed
– ST_IsSimple
– ST_IsEmpty

– ST_IsValid
– SE_Is3D
– SE_IsMeasure

Select count(*) from bldftprints where
ST_IsRing(feature) = ‘f’;

Spatial functions
• Property functions

– ST_Area
– ST_Boundary
– ST_CoordDim
– ST_Distance
– ST_EndPoint
– ST_Envelope
– ST_Dimension
– ST_ExteriorRing
– ST_GeometryType
– ST_Length

– ST_NumGeometries
– ST_NumInteriorRing
– ST_NumPoints
– ST_Perimeter
– ST_SRID
– SE_M
– ST_X
– ST_Y
– SE_Z

Spatial functions
• Text converters

– ST_GeomFromText
– ST_PointFromText
– ST_LineFromText
– ST_PolyFromText
– ST_MPointFromText

CREATE TABLE wells (g1 ST_Geometry);

INSERT INTO wells
VALUES (GeometryFromText (‘point (10.02 20.01)’,1));

– ST_MLineFromText
– ST_MPolyFromText
– ST_WKTToSQL
– ST_AsText

Spatial functions
• Well Known Binary Converters

– ST_GeomFromWKB
– ST_PointFromWKB
– ST_LineFromWKB
– ST_PolyFromWKB
– ST_MPointFromWKB

– ST_MLineFromWKB
– ST_MPolyFromWKB
– ST_WKBToSQL
– ST_AsBinary

Spatial functions
• (binary) Shape Converters

– SE_GeomFromShape
– SE_PointFromShape
– SE_LineFromShape
– SE_PolyFromShape
– SE_MPointFromShape

– SE_MLineFromShape
– SE_MPolyFromShape
– SE_ShapeToSQL
– SE_AsShape

Spatial functions

– ST_Union
– ST_Intersection
– ST_Difference
– ST_SymmetricDiff
– ST_Buffer
– ST_Centroid
– ST_ConvexHull

– ST_GeometryN
– ST_InteriorRingN
– ST_Point
– ST_PointN
– ST_PointOnSurface
– ST_Polygon
– ST_Transform

• Functions that generate geometry

Spatial functions
• Network Functions

– SE_LocateAlong
– SE_LocateBetween

SELECT LocateBetween(roads,surface.from,surface.to)
FROM highways, surface

The RTREE index

• The Informix Spatial DataBlade
indexes the spatial column with an
RTREE index.

• No fuss, no muss

CREATE INDEX <name> on <table>
(<column_name> St_Geometry_Ops) using Rtree;

Outline

• Basic Tuning
– Tuning memory
– Tuning CPU
– Reducing Disk I/O contention

• Dbtune table
• Statistics
• Informix Spatial DataBlade
• Configure ArcSDE for loading data

Configure ArcSDE for
loading
• Use the giomgr.defs file to alter

ArcSDE configuration for data
loading

• ArcSDE uses transmission buffers to
support asynchronous I/O and
streamline network usage

ArcSDE Transmission
Buffers
• Buffers are allocated on the server

side and the client side
– The size of the transmission buffer is

set with MAXBUFFSIZE and
MINBUFFSIZE

• Larger buffers allow higher
throughput increasing performance
during bulk loading

ArcSDE Transmission
Buffers
• If the server is waiting, the

buffer will gather up to
MINBUFFSIZE of data to send
to the server

• If the server is busy the client
will gather up to
MAXBUFFSIZE of data before
sending the buffer to the client

• Reduces I/O by batching a
minimum of amount of data

MINBUFFSIZE

MINBUFFSIZE

MAXBUFFSIZE

ArcSDE Transmission
Buffers
• High transmission buffers increase

performance during bulk loading
• Do not use high buffers for normal

query operations
– ArcSDE will assign the MAXBUFSIZE

amount of memory to each stream and
may exhaust available memory

Autocommit
• The giomgr.defs default commit

interval is 1000 records
• Increase autocommit interval to 5000

for loading

Where to get more help

• Informix classes
• ESRI classes
• Informix technical support
• ESRI technical support

Questions?

• Please don’t forget to fill out the
survey before you leave

