Relational DBMS concepts for the New user

Jack Horton

Twentieth Annual ESRI International User Conference • June 26-30, 2000

Why use an RDBMS?

- Data maintenance
- Standardized access
- Multi-user access
- Data protection

RDBMSs offer Data protection

- Recovery
- Concurrency
- Security

Data protection

Recovery from

- User error
- Statement or process failure
- ♦ Instance failure
- ♦ Media failure
- Recovery must be:
 - Predictable all committed transactions, no uncommitted trans
 - ♦ Reliable
- Databases use optional transaction logging to allow recovery to the time just before the point of failure

Data protection

Concurrency – simultaneous access to the same data

- Multiple users modifying a table at the same time
- Read consistency
- Transactions are isolated from each other
- Locking

Data protection

Security

- Users are assigned privileges
 - Privileges on individual objects
 - Privileges to perform specific actions
 - Resource usage privileges
- Auditing
 - Tracking the actions a user performs

RDBMS data storage

- All RDBMS need a way to obtain exclusive access to disk resources.
- Some systems prefer "raw" filesystems, others prefer them "cooked."
- Known as "tablespaces," "devices," "disks," "chunks,"

RDBMS organization

- Catalog or Data Dictionary
 - An RDBMS addresses metadata with the same mechanisms as user data.
 - The "catalog" of an RDBMS is the set of system objects required to implement itself.

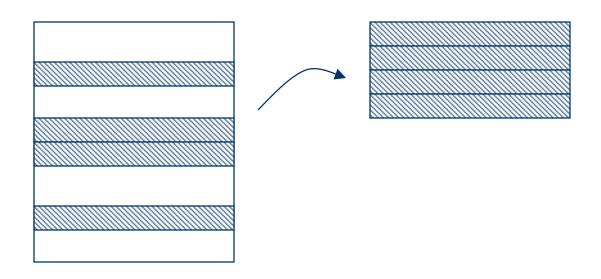
- Relation
 - The theoretical structure that is implemented as a 'table'

Degree (3) PIN **STATUS** DATE 19980410 123 **APPROVED Tuples** PENDING 19980729 124 Cardinality (rows) 125 DENIED 19980510 (4) 19980215 126 COMPLETED **Attributes**

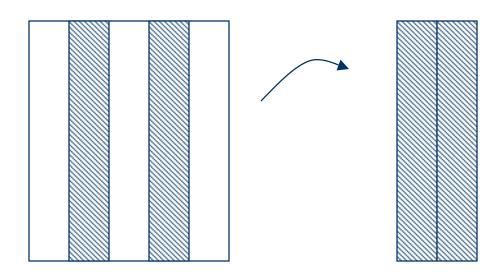
(columns)

- Relation properties:
 - Each tuple is distinct (no duplicates)
 - Tuples are unordered (top->bottom)
 - Attributes are unordered (left->right)
 - All attribute values are atomic (relations do not contain repeating groups)

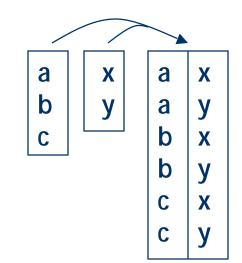
- Attribute values are taken from pools of legal values known as "domains."
- In some cases, it is desirable to mark an attribute value as "empty" or "missing." This can be achieved through the use of "NULL" values.

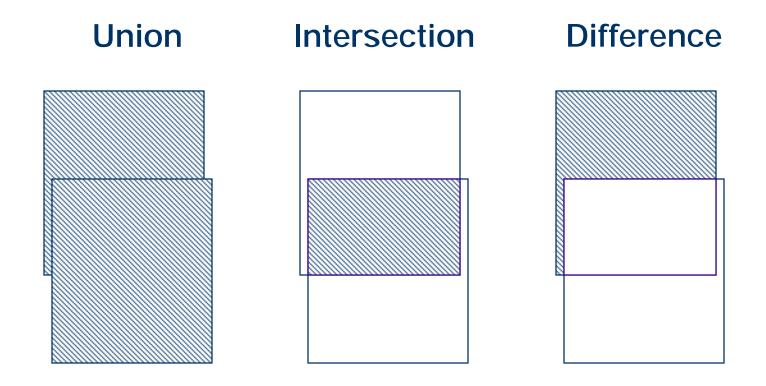

- Keys
 - Candidate
 - Provide tuple-level addressing system
 - May be more than one per relation
 - Primary
 - One per relation (others are alternate keys)
 - Foreign
 - Attribute of a relation which refers to primary key in another relation

RDBMS organization

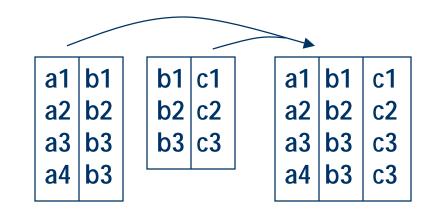

- Objects
 - ♦ TABLE
 - ♦ VIEW
 - ♦ INDEX
 - ♦ TRIGGER
 - ♦ PROCEDURE

- Relational theory is a mathematical model. It defines a number of operators and properties for the interaction of relations.
- One key concept is closure -- the output of any relational operation is another relation. This makes relational algebra very powerful!

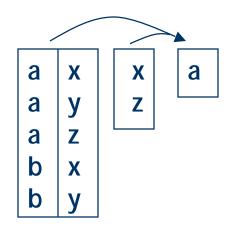

- ♦ Restrict
 - Produce a tuple subset



- Project
 - Produce an attribute subset



- (Cartesian) Product
 - Produce all possible combinations



- (Natural) Join
 - Produce all possible tuples which are a non-repeating combination of two tuples based on shared attribute value(s).

Divide

 Given binary and unary relations, produce all values of the noncommon attribute which are present for all unary tuples.

- Structured query language
- ANSI standard
- Broken into two components
 - Data Definition Language (DDL)
 - Data Manipulation Language (DML)

 To create a table use the CREATE TABLE command: CREATE TABLE table_name (column_def_list)

CREATE TABLE PARCELS (PARCEL_NO INTEGER, ASSESSED_VALUE FLOAT)

The DROP command is used to remove objects from catalog:

DROP TABLE PARCELS

- The most common SQL command is the SELECT statement.
- The basic format of a SELECT statement is:

SELECT column_list FROM table_list {WHERE where_clause} {ORDER BY column_list} {GROUP BY column_list}

Examples (I)
 SELECT * FROM PARCELS

SELECT PARCEL_NO FROM PARCELS

SELECT PARCEL_NO FROM PARCELS WHERE ASSESSED_VALUE > 360 AND TAX_DISTRICT = 'MRR'

Examples (II)

SELECTb.OWNER_NAME as "Owner",a.ASSESSMENT as "Cost"FROMPARCELS a, OWNERS bWHEREASSESSED_VALUE > 360 ANDTAX_DISTRICT = 'MRR' ANDa.PARCEL_NO =b.PARCEL_NO

ORDER BY

Applies sort to resulting rows

Example

```
SELECTb.OWNER_NAME as "Owner",a.ASSESSMENT as "Cost"FROMPARCELS a, OWNERS bWHEREASSESSED_VALUE > 360 ANDTAX_DISTRICT = 'MRR' ANDa.PARCEL_NO =b.PARCEL_NOOWNER_NAME
```

♦ GROUP BY

- Used to summarize one or more rows
- column_list must be subset of selected columns
- Used in conjunction with summarization functions (SUM, MIN, MAX, ...)

Example

SELECT a.OWNER_NAME as "Owner", SUM(b.ASSESSMENT) as "Total" FROM OWNERS a, PARCELS b WHERE a.PARCEL_NO = b.PARCEL_NO GROUP BY OWNER_NAME

Subselects

 The closure property allows for substitution of SELECT expressions into SQL statements

Examples

INSERT INTO PARCELS_BAK SELECT * FROM PARCELS

SELECT PARCEL_NO FROM PARCELS WHERE ASSESSED_VALUE > (SELECT AVG(ASSESSED_VALUE) FROM PARCELS)

The basic format for the INSERT command is: INSERT source INTO target(columns) VALUES (value_list)

• Example:

INSERT INTO PARCELS (PARCEL_NO,ASSESSED_VALUE) VALUES (125,180)

The basic format for the UPDATE command is: UPDATE target SET col_val_pair_list {WHERE where_clause}

Example

UPDATE PARCELS SET ASSESSED_VALUE = 200 WHERE PARCEL_NO = 123

The basic format for the DELETE command is: DELETE FROM table {WHERE where_clause}

• Example:

DELETE FROM PARCELS WHERE PARCEL_NO = 121

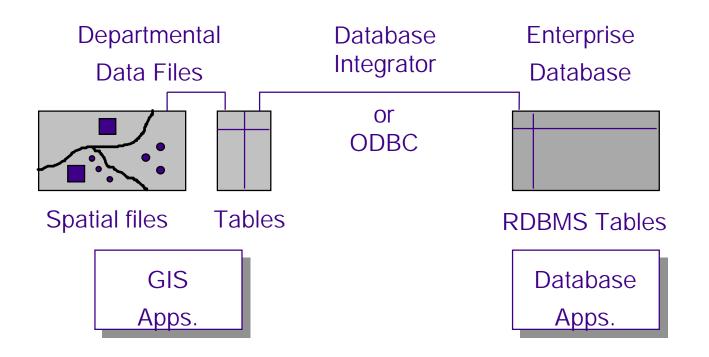
Indexing

- Queries represent the majority of operations performed on tables.
- Exhaustive searching of rows is SLOW!
- Indexes are used to store a sorted list of key values, allowing for faster searches.
- Examples
 - CREATE INDEX PARCELS_PN ON PARCELS(PARCEL_NO)
 - ♦ CREATE INDEX PARCELS_AV ON PARCELS(ASSESED_VALUE, PARCEL_NO)

Performance issues

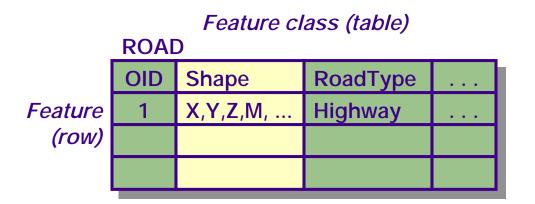
- Many strategies have evolved in order to maximize RDBMS query performance:
 - Block I/O
 - Since locating the starting byte of a data page is the slowest part of a I/O request, accessing data in large "blocks" makes sense.
 - Caching
 - Disk access is very slow in comparison to memory access (~10,000x).
 - A "cache" is a copy of most recently read pages.
 - A "blown cache" penalty can occur if the cache is smaller than the frequentlyread pages.
 - Indexing and Query optimization
 - In a complex query, the order of the search is important
 - Example: it is faster to first search on age, then on sex, to query for the 25 year old males
 - Rule-based optimization; cost-based optimization; hints

SDE stores GIS data in an RDBMS


- GIS users want better data management
 - data integrity
 - fast access for many simultaneous users
 - efficient use of the network
 - common environment to manage spatial and tabular data
 - SQL standard
- MIS users want spatial functionality
 - include spatial data as a managed enterprise asset
 - support GIS applications
 - spatially enable applications.

Example:

- Point-in-polygon query to determine auto insurance rate.
- Operator types in address, rate appears on screen.
- The operator never sees a map.


Traditional GIS data is not stored in RDBMS

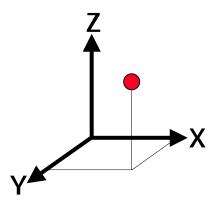
- Problems coordinating transactions on data
- No referential integrity
- Different application environments

Features

- Features are spatial objects
 - object with a geometry attribute
 - Vector model for geographic entities
 - Features (rows) belong to feature classes (tables)

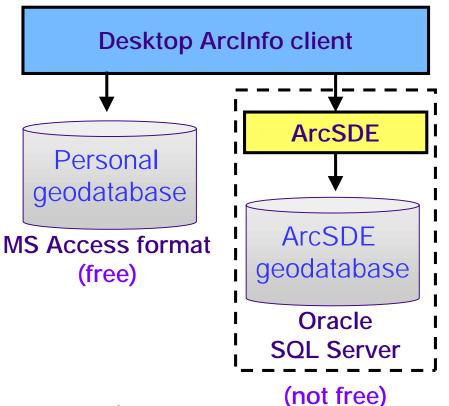
- Feature location can be stored three ways:
 - Binary
 - Normalized
 - Extended Type

Feature geometry

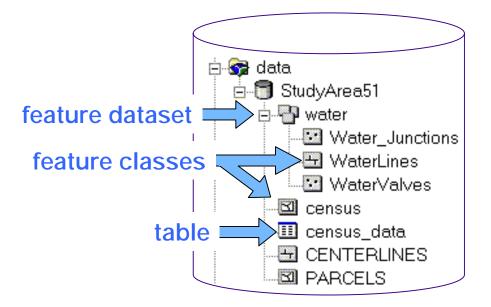

Points	Multipoints	Lines	Polygons				
\bigcirc		↓ 1 Line	↓ Poly				
 Segments have with a curve in 	n between						
 Aggregate to 	Ŭ	2 Paths	3 Rings (closed paths)				
 Aggregate to 	lines/polys						
• Edit at any lev	vel						
		Bezier curve	Line Circular arc				
		Segments					

Feature coordinates

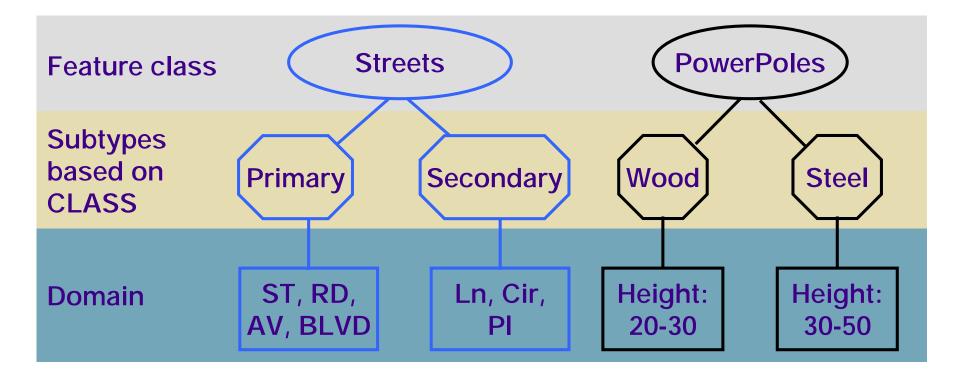
- Feature coordinates are:
 - ♦ X position in X
 - Y position in Y
 - ♦ Z position in Z (optional)
 - E.G.; elevation for a point or line segment end
 - M a measurement (optional)
 - E.G.; Dynamic Segmentation measures



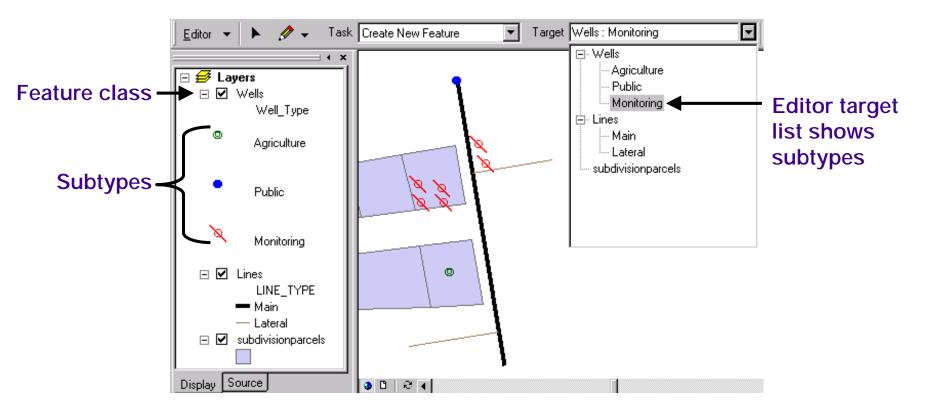
One line made of two segments
 Stored as integer (scaled in Spatial Reference)


Storing the geodatabase

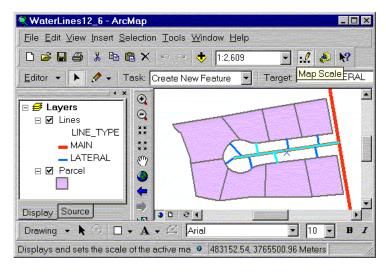
- Personal geodatabase
 - Stored in an .mdb file
 - Automatically connected through JetEngine server
- ArcSDE geodatabase
 - Stored in an RDBMS
 - User connects through ArcSDE server
- The difference
 - Type of RDBMS (and connection method)
 - Multi-user editing and conflict resolution tools (ArcSDE)
- Once loaded, use same tools on either storage type


Geodatabase basics

- Stores tables, feature classes, feature datasets, more …
- Tables
 - A collection of attribute rows and columns
- Feature classes
 - A collection of features
 - Conceptually like a shapefile
- Feature datasets
 - A collection of feature classes
 - Conceptually like a coverage
- Raster datasets
- Rules
 - Domains
 - Connectivity rules


Introducing subtypes and domains

- Prevent illegal attribute assignment to features, tables
 - Subtype a subset of records within a field
 - Domain a definition of valid values for a field or subtype

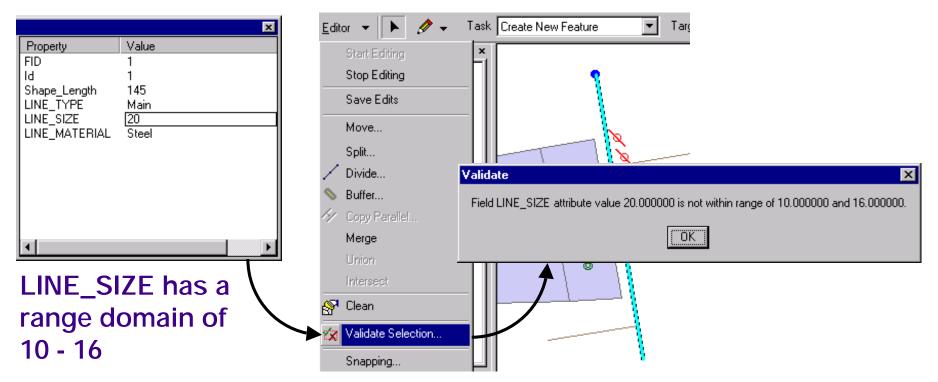

Subtypes in ArcMap

- Add, edit, symbolize by subtype
 - New features get subtype defaults for attributes

Editing records with coded value domains

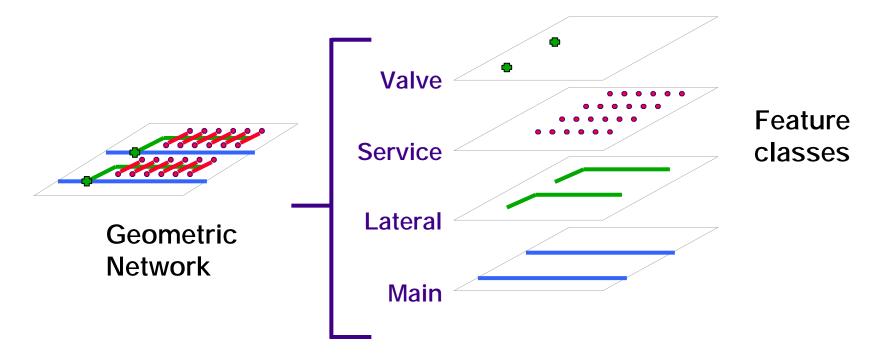
- Attribute editor only shows valid values
- The description is displayed instead of the code

Attribute editor shows descriptions...

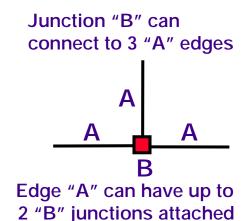

Attributes						
⊡∼Lines	Property	Value				
- 17	FID	20				
- 20	ld	<null></null>				
- 22	Shape_Length	9.31226338070408				
	LINE_TYPE	LATERAL				
	LINE_SIZE	10				
	LINE_MATE	Steel				
		Plastic				
3 features		Steel				
o locitar co		Copper				

... but the underlying table stores the codes

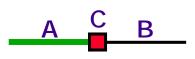
FID	Shape	ld	Shape_Length	LINE_TYPE	LINE_SIZE	LINE_MATERIAL
17	Polyline		87.544821713665	- 1		4
20	Polyline		9.3122633807040	2	1	2
22	Polyline		9.2834094325568	2	1	2

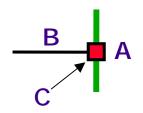

Editing records that have range domains

- Perform edit in ArcMap
- Use Validate Selection to verify edit against range
 - Invalid features remain selected


Introducing a Geometric network

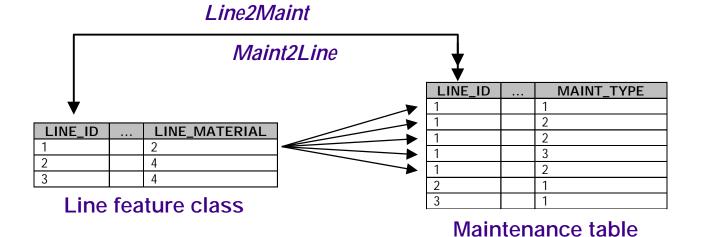
- Feature classes in a single feature dataset
 - A feature class can only participate in one network
- Connectivity based on geometric coincidence


Connectivity rules


- Validate using validate selection
- Edge Junction
 - Cardinality
 - Number of junctions connecting to an edge
 - Number of edges connecting to a junction
- Edge Edge

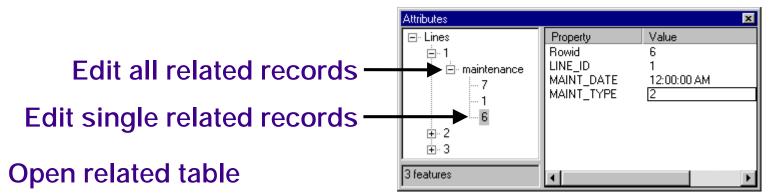
Default junction is automatically added during editing

Edge "A" can connect to Edge "B" through junction "C"



Adding "B" Snap to "A" "C" is automatically created

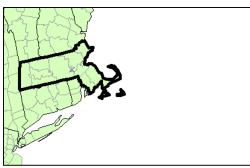
Relationships


An association between tables or feature classes

- Works with the geodatabase and coverages
- Tables must be in the same workspace
 - ♦ Same data type

Accessing related records in ArcMap

• Fields in related table appear in Attributes editor



Selected records in related table update when table is displayed

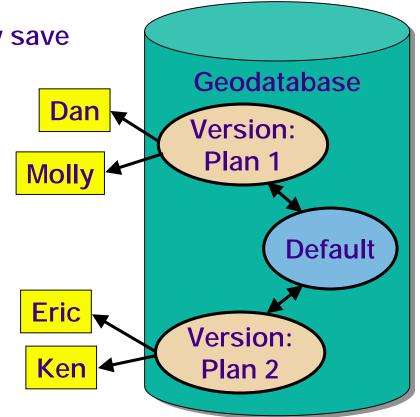
Attri	outes d	f Lines						×		At	ributes of maint	enance		×
Π	FID	Shape	Id	Shape_Length				ন			OBJECTID	LINE_ID	MAINT_D	ATE 🔺
	1	Polyline	1	147.679542225544			ī			\geq	1	1	12:00:00 AM	
Нŕ	4	Polyline	2	99.9995310713287			-	-			2		12:00:00 AM	
Н		Polyline		87.752213171458			Ē	-			3		12:00:00 AM	
r -		· ·						-			4		12:00:00 AM	
Re	cord:	14 4	1	▶ ▶ 1 out of 3 S	elected.	8	Option:				5	2	12:00:00 AM	
								Find & Replace			7	1	12:00:00 AM	
								Coloot Du Attributo	_		6	1	12:00:00 AI	M 🚽
							SQ	Select By Attribute						
							E	Clear Selection				<u>ا</u>	l . L . L .	
							_		_	ГВ	ecord: 14 4	<u> </u>))) 3	out of 7.5
								Highlight Color						
								Relationships	▶ main	tena	nce			

Simple and composite relationships

- Simple
 - Objects exist independently
- Composite
 - Destination objects cannot exist without origin objects (deleted)
 - Destination features move with origin features

Composite relationship, State to County

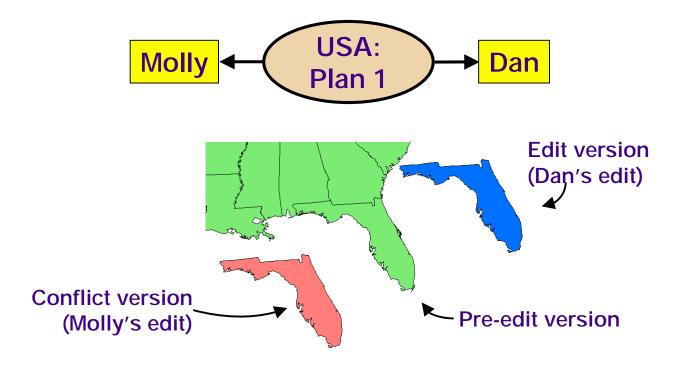
Select state and move it...



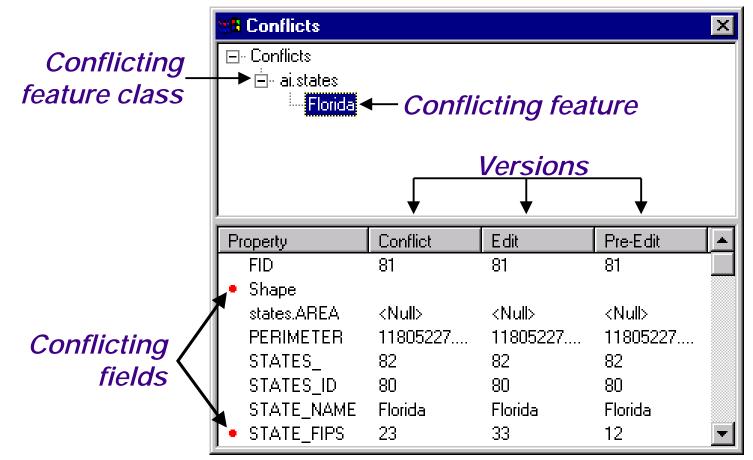
the counties follow

Multi-user editing

Many users may edit any version simultaneously


- You see your edits only
- Others see your edits when they save
- Version permissions
 - Private
 - Owner views and edits
 - Public
 - Everyone views and edits
 - Protected
 - Everyone views; owner edits

Conflicts


Occur when two users edit the same feature

- A coordinate and attribute edit can create a conflict
- The second person to save will notice the conflict

Displaying conflicts

- Triggered by Save or Reconcile
 - ◆ Dan tried to save after Molly edited the same feature

Summary

- RDBMS principles
- SQL
- Performance
- ♦ SDE
- Geodatabase

