Geodatabase and Object Model Design Using CASE Tools

Julio Andrade Erik Hoel

Goals

- Develop an understanding of
 - when to use CASE versus ArcCatalog
 - how to represent data models in UML
 - how to run the schema wizard
- How to proceed forward
 - other UC'00 sessions
 - literature

Agenda

- What is CASE
- Database design
- ArcInfo 8 Geodatabase
- Representing the Geodatabase using UML
- Running the schema wizard
- Demo

What is CASE?

CASE

- Computer Aided Software Engineering
- Used to specify data / object models

 classes / components (software)
 - database schemas
- Graphic modeling languages
 - historical OMT, Booch, ER
 - current UML

CASE

- Commercial products
 - Visio Enterprise
 - Rational Rose
 - Paradigm Plus (CA)
 - Popkin System Architect
- ArcInfo 8 requirements
 - support for UML
 - support for Microsoft Repository

Database Design

Continuum of Database Design

- Natively utilize Coverages and Shapefiles
- Import data into the Geodatabase
- Utilize ArcCatalog to refine and extend existing classes
- Use CASE and UML for a ground-up redesign of a large system

CASE Wizards vs. ArcCatalog

- ArcCatalog
 - excels at tactical modifications
 - intended for modest models
 - user difficulty with large complex models
- CASE Wizards and UML
 - a strategic approach
 - very good for total system redesign
 - intended for maintaining complex models
 - learning curve for CASE tools and UML

ArcInfo 8 Geodatabase

ArcInfo 8 Geodatabase

- A new object-oriented geographic data model
- All relational data storage using ArcSDE
- Versioning and long transactions
- New data access objects for application software developers
- Component based technology for developing custom objects and features

New Features at 8.1

- Dimension features
- Enhanced support for custom features in the editor
- Dynamic segmentation
- Direct import/export of geodatabase data
- New connectivity rule
- CASE tools enhancements
- Performance enhancements

Geodatabase Elements

Geo	odatabase					
	Feature datasets	_				
	Spatial reference					
F	eature classes, subtypes	can be inside or				
R	elationship classes	of feature datasets				
	Geometric networks]				
	Planar topologies]				
	Object classes, subtype	s				
	Domains					
	Raster datasets					
	Rasters					

ESRI

- Objects, object classes
- Features, feature classes
- Relationships, relationship classes
- Geometric networks
- Feature datasets
- Validation rules, domains
- Spatial references
- Rasters and other dataset types in the future

Objects

- Objects: entities
 with properties and behavior
- An object is an instance of an object class
- All objects in an object class have the same properties and behavior
- An object can be related to other objects via relationships

Features

- A feature is a spatial object
- Features have location
 - a spatial attribute of type geometry
- Features can participate in network and topological relationships
- A feature class is an object class that stores spatial objects (features)
- All features in a feature class have the same spatial reference

Feature Datasets

- Container for feature classes
 shared spatial reference
- Analogous to a coverage

 less restrictive
- May also contain
 - relationship classes
 - geometric networks

Validation Rules

- Store attribute, connectivity and spatial rules on objects as part of the geodatabase
- Pre-defined, parameter driven:
 - attribute range rule
 - attribute set rule
 - connectivity rule
- Perform custom validation by writing code

Domains

- Describe the legal values of a field type

 used to ensure attribute integrity
- Can be shared among classes
- Uniquely named
- Types of domains
 - range
 - a tree can have a height between 0 and 300 feet
 - a road can have between 1 and 8 lanes
 - coded value (e.g., a set)
 - a tree can be of type oak, redwood, or palm
 - a road can be made of dirt, asphalt, or concrete

Subtypes

- Partition the objects in an object class into like groups
- Defined by the value of a subtype code field
- All subtypes:
 - have the same attribute schema
 - have the same behavior schema
 - can have different default values and domains for each field
 fid geom subtype width lanes name

fid	geon	subtype	width	lanes	name
101		asphalt	85.3	4	Chimayo Highway
102		concrete	45.1	2	Acequia de Isabel
103		asphalt	75.9	4	Calle Petra
104		gravel	35.2	2	Maximilian Road

Relationship Classes

- A relationship class is an association between two object classes
- Relationship classes may be 1:1, 1:n, n:m
- An object class may participate in multiple relationship classes
- Related objects can message each other
 - origin to destination, destination to origin, both, neither
 - can trigger behavior (cascade delete, move to follow, custom...)

Annotation

- An example of a graphic feature class
- Annotation feature classes may be
 - feature-linked

ESRI

- non feature-linked
- Composite relationship manages link
- Can store text as well as other graphics

- lines, arrows, boxes, etc.

Dimension Features

- Type of annotation that displays specific distances on a map
- Stored in a dimension feature class
- Graphic feature
- "Smart" feature
 - special drawing
 - special editing

Geometric Networks

- Used to model network systems
- Topological relationship between feature classes
- Each feature class has a topological role in the network (i.e., junction or edge)
- A network may have multiple feature classes in the same topological role
- Topology based upon geometric coincidence, always live
- Feature classes must be in the same feature dataset

Network Feature Classes

- Network features live in a geometric network
- Directly support network analysis
- Types:
 - simple junction
 - simple edge
 - complex junction
 - complex edge
- Integrity constraint:
 - edge must have a junction at each endpoint

Connectivity Rules

- Help you maintain a valid network
- Constrain permissible connectivity

 default GN behavior allows any edge to connect to any junction
- Connectivity rules include:
 - edge-junction rules
 - cardinality
 - edge-edge rules
 - permissible junction types
 - default junction type

Dynamic Segmentation

- True dynamic segmentation (DynSeg)
 - display table or route events as layer in Map
 - interactively find a location along a route
- Event tables can be INFO, DBASE, Geodatabase, or OLE DB
- Route data can be coverage route system, PolyLineM Shapefile, or PolyLineM feature class
 Route C
 Route C
 Route C
 Route C
 Route E

Planar Topology

- Feature classes in an integrated feature dataset participate in a planar topology
- Features share boundaries
- Editor tools allow you to edit and maintain shared boundaries
- Use the *Integrate* command in the Editor to ensure coincident boundaries
- Use shared edge edit tool to edit shared boundaries and maintain topological relationships

Versions

- Object classes, feature classes, relationship classes, geometric and logical networks may all be versioned
- A version spans all multi-versioned objects in the database
- Schema is constant across all versions
- Versions differ only in those features or rows or elements modified in each version
- A user can connect to and work with any version of the database - majority will work with the Default version

Multi-Versioned Database

Representing the Geodatabase Using UML

Data Modeling Process

CASE Tool

- Basic sequence
 - utilize third party CASE tool
 - create data model
 - represent the data model using UML within the CASE tool
 - add Geodatabase configuration components
 - perform schema check(s)
 - export finished model to Repository

UML Review

- Unified Modeling Language

 lingua franca of object modeling
- Developed in 1997 as a unification of the three leading methodologies
 - OMT (Rumbaugh)
 - Booch
 - Jacobson (use cases)

UML Syntax

Inheritance

ESRI

Relationships

For Arc8, this is 90% of what you need to know with respect to UML

Properties

- Properties become fields in schema
- Model the feature

ESRI

 feature class will be automatically created in the GDB during schema generation

Methods

ESRI

- Methods always live in the interface
 - components are interface-based
 - class realizes an interface

Note: this is necessary only for source code generation

Object Model Sample

Twentieth Annual ESRI International User Conference • June 26-30, 2000

ESRI

Feature Datasets

🖻 🚖 Logical View | 🗄 UML Deploy 🗄 💼 ESRI Classes 🖻 UML Seque 🗄 📄 ESRI Interfaces 🗄 UML Stated 🖻 🔄 Workspace 🖻 UML Static 🖫 Workspace «FeatureDataset» 庄 💼 Domains SNElectric 🗄 🚞 SNElectric 🖻 🔄 SNLandbase Package 🖏 Landbase ⊕ ⊟ SNBuildinas Class É - ■ SNOwners Data Type 🖮 🗐 TemplateRangeDomain • Automation Types 🖶 🦳 ESBI Types

- 🗆 ×

🖬 Greeley VisioEnt5 81.vsd:Workspace

🖻 UML Activity

🗎 UML Collabo

🖻 UML Compo

- New for 8.1
- Feature datasets correspond to stereotyped packages in UML
- Feature classes and geometric networks added to package (tree view)

the UML Navigator

UML Systems

🗄 🔩 Greeley 81 Visio 5 v2

🖻 🖓 ArcInfo Uml Model

Feature Datasets

- Modeling feature datasets as packages enables:
 - stand-alone feature classes
 - relationship classes between feature classes in different feature datasets
 - specification of coordinate systems within the schema generation wizard
 - default coordinate systems (last specified)

Geometric Networks

- New for 8.1
- Modeled as a stereotyped class associated with all feature classes in the network

Subtypes

- Subtypes based on single integer field
- UML Association named "Subtype"
- Default subtype

ESRI

Default Values

Assigned on a subtype basis

Domains

- Stereotyped class
- Side effect creates an attribute rule

Relationships

- Relationships are named
- Specified cardinality
- Origin and destination

Attributed Relationships

- A separate table will be created
- Not restricted to many to many relationships
- Specified as a UML class
 - named after the UML association
 - stereotyped as <<RelationshipClass>>

- Part lifetime controlled by whole class (deep delete semantics)
- Always one to many

Relationship Rules

- Assigned by subtypes
- Same name as relationship
- More specific cardinality
 - but consistent with relationship

Connectivity Rules

Edge connectivity rules

 n-ary UML association

ESRI

Junction connectivity rules

Schema Wizard

Data Modeling Process

Twentieth Annual ESRI International User Conference • June 26-30, 2000

ESRI

Schema Wizard

- Basic sequence
 - start wizard from within ArcCatalog
 - connect to the Repository, select the model
 - select the feature dataset to generate the schema for
 - all domains are created at this time
 - relationship classes only created if feature class is also being created
 - define schema properties for each feature
 - generate schema when closing wizard

Semantics Checker

- New for 8.1
- Check a model exported to the Repository
 - reports ALL errors at once
 - shortens modeling cycle
- Add-on that runs inside Visio
- Should be run before the schema or code generation wizards

Startling Demo

Background Info: Orphan Junctions

- Simple junction feature
- Automatically added when first feature class added to network
 <networkName>_Junctions
- Integrity constraint:
 - edge must have a junction at each endpoint

Conclusions

- Time spent data modeling is very beneficial in the long run
- Pay attention to performance issues
- Use ArcCatalog for tactical control of simpler systems
- Use CASE (UML and schema wizard) for modeling complex systems
- Both tools will simplify your life

- Relevant UC sessions:
 - Overview of the Geodatabase
 - Designing and Using a Geodatabase
 - Working with a Versioned Geodatabase
 - Extending the Geodatabase with Custom Objects
 - Extending the Geodatabase with Class Extensions
 - Advanced Customization with ArcObjects in C++
 - Managing and Editing Geometric Networks
 - Working with Networks in ArcInfo 8

- Geodatabase Literature
 - Michael Zeiler. Modeling Our World: the ESRI Guide to Geodatabase Design. ESRI Press, 1999.
 - Andy MacDonald. *Building a Geodatabase*. ESRI Press, 1999.
 - Multi-user GIS Systems with ArcInfo 8. ArcOnline White Paper, March 2000.
 - Erik Hoel, Julio Andrade, and Sudhakar Menon.
 Modeling GIS Databases Using UML. Submitted to the 8th International Symposium of ACM GIS.

- General Literature
 - David Taylor. *Object Technology: A Manager's Guide*. 2nd Ed., Addison-Wesley, 1997.
 - Martin Fowler, et.al. UML Distilled: Applying the Standard Object Modeling Language. Addison-Wesley, 1997.
 - Bertrand Meyer. *Object-Oriented Software Construction*. Prentice Hall, 1997.

Representing the GeoDatabase using UML

Startling CASE Tool Demo

Hi-Tech Schema Wizard Demo