
Geodatabase and
Object Model Design
Using CASE Tools

Julio Andrade
Erik Hoel



Goals
• Develop an understanding of

– when to use CASE versus ArcCatalog
– how to represent data models in UML
– how to run the schema wizard

• How to proceed forward
– other UC’00 sessions
– literature



• What is CASE
• Database design
• ArcInfo 8 Geodatabase
• Representing the Geodatabase using

UML
• Running the schema wizard
• Demo

Agenda



What is CASE?



CASE
• Computer Aided Software

Engineering
• Used to specify data / object models

– classes / components (software)
– database schemas

• Graphic modeling languages
– historical - OMT, Booch, ER
– current - UML



CASE
• Commercial products

– Visio Enterprise
– Rational Rose
– Paradigm Plus (CA)
– Popkin System Architect

• ArcInfo 8 requirements
– support for UML
– support for Microsoft Repository



Database Design



Continuum of
Database Design
• Natively utilize Coverages and

Shapefiles
• Import data into the Geodatabase
• Utilize ArcCatalog to refine and

extend existing classes
• Use CASE and UML for a ground-up

redesign of a large system



CASE Wizards
vs. ArcCatalog
• ArcCatalog

– excels at tactical modifications
– intended for modest models
– user difficulty with large complex models

• CASE Wizards and UML
– a strategic approach
– very good for total system redesign
– intended for maintaining complex models
– learning curve for CASE tools and UML



ArcInfo 8
Geodatabase



• A new object-oriented geographic data
model

• All relational data storage using ArcSDE
• Versioning and long transactions
• New data access objects for application

software developers
• Component based technology for

developing custom objects and features

ArcInfo 8 Geodatabase



• Dimension features
• Enhanced support for custom features in

the editor
• Dynamic segmentation
• Direct import/export of geodatabase data
• New connectivity rule
• CASE tools enhancements
• Performance enhancements

New Features at 8.1



Geodatabase Elements
• Objects, object classes
• Features, feature classes
• Relationships, relationship

classes
• Geometric networks
• Feature datasets
• Validation rules, domains
• Spatial references
• Rasters and other dataset

types in the future

Geodatabase

Feature datasets

Spatial reference

Geometric networks

Planar topologies

Domains

Raster datasets

Rasters

Feature classes, subtypes

Object classes, subtypes

Relationship classes

can be
inside or
outside

of feature
datasets



Objects

• Objects: entities
with properties and behavior

• An object is an instance of an
object class

• All objects in an object class have
the same properties and behavior

• An object can be related to other
objects via relationships

A row stores
an Object

NameOID Address . . .
518 Bob 38 Oak St.

OWNER

A table stores
an ObjectClass



Features
• A feature is a

spatial object
• Features have location

– a spatial attribute of type geometry

• Features can participate in network and
topological relationships

• A feature class is an object class that
stores spatial objects (features)

• All features in a feature class have the
same spatial reference

Feature
(row)

ShapeOID
524 X,Y,Z,M, ...

PARCEL
Type
Private

. . .

. . .

FeatureClass (table)



Feature Datasets
• Container for feature classes

– shared spatial reference
• Analogous to a coverage

– less restrictive
• May also contain

– relationship classes
– geometric networks



Validation Rules
• Store attribute, connectivity and

spatial rules on objects as part of
the geodatabase

• Pre-defined, parameter driven:
– attribute range rule
– attribute set rule
– connectivity rule

• Perform custom validation by
writing code



Domains
• Describe the legal values of a field type

– used to ensure attribute integrity
• Can be shared among classes
• Uniquely named
• Types of domains

– range
• a tree can have a height between 0 and 300 feet
• a road can have between 1 and 8 lanes

– coded value (e.g., a set)
• a tree can be of type oak, redwood, or palm
• a road can be made of dirt, asphalt, or concrete



Subtypes
• Partition the objects in an object class

into like groups
• Defined by the value of a subtype code

field
• All subtypes:

– have the same attribute schema
– have the same behavior schema
– can have different default values and domains for

each field fid   geom  subtype   width lanes  name

103              asphalt     75.9      4      Calle Petra

101              asphalt     85.3      4      Chimayo Highway
102             concrete    45.1      2      Acequia de Isabel

104               gravel      35.2      2      Maximilian Road



Relationship Classes
• A relationship class is an association

between two object classes
• Relationship classes may be 1:1, 1:n, n:m
• An object class may participate in

multiple relationship classes
• Related objects can message each other

– origin to destination, destination to origin,
both, neither

– can trigger behavior (cascade delete, move to
follow, custom…)



Annotation
• An example of a graphic feature class
• Annotation feature classes may be

– feature-linked
– non feature-linked

• Composite relationship manages link
• Can store text as well as other graphics

– lines, arrows, boxes, etc.

feature class annotation feature
class

composite
relationship class

Majuro

Panape

Bora Bora

94         Majuro

95         Panape

92         Bora Bora41
43
47
49

92
95
94

41
43
47

21
23
27



Dimension Features
• Type of annotation that displays

specific distances on a map
• Stored in a dimension feature class
• Graphic feature
• “Smart” feature

– special drawing
– special editing

10.5 '



Geometric Networks
• Used to model network systems
• Topological relationship between feature

classes
• Each feature class has a topological role

in the network (i.e., junction or edge)
• A network may have multiple feature

classes in the same topological role
• Topology based upon geometric

coincidence, always live
• Feature classes must be in the same

feature dataset



Network Feature Classes
• Network features live in a geometric

network
• Directly support network analysis
• Types:

– simple junction
– simple edge
– complex junction
– complex edge

• Integrity constraint:
– edge must have a junction at each endpoint

Edge Junction
2..**



Connectivity Rules
• Help you maintain a valid network
• Constrain permissible connectivity

– default GN behavior allows any edge
to connect to any junction

• Connectivity rules include:
– edge-junction rules

• cardinality
– edge-edge rules

• permissible junction types
• default junction type



• True dynamic segmentation (DynSeg)
– display table or route events as layer in Map
– interactively find a location along a route

• Event tables can be INFO, DBASE,
Geodatabase, or OLE DB

• Route data can
be coverage route
system, PolyLineM
Shapefile, or
PolyLineM feature
class

Dynamic Segmentation

Route A

Route C

Route B

Route D

Route E



Planar Topology
• Feature classes in an integrated feature

dataset participate in a planar topology
• Features share boundaries
• Editor tools allow you to edit and

maintain shared boundaries
• Use the Integrate command in the

Editor to ensure coincident boundaries
• Use shared edge edit tool to edit

shared boundaries and maintain
topological relationships



Versions
• Object classes, feature classes, relationship

classes, geometric and logical networks may
all be versioned

• A version spans all multi-versioned objects in
the database

• Schema is constant across all versions
• Versions differ only in those features or rows

or elements modified in each version
• A user can connect to and

work with any version of the
database - majority will work
with the Default version

default

version1 version2

version3



Multi-Versioned Database

Default:Default:
As BuiltAs Built

User1User1User1

User2User2User2

User3User3User3

Version:Version:
Plan 1Plan 1

User4User4User4

User5User5User5

Version:Version:
Design 1Design 1

User6User6User6

Version:Version:
Design 2Design 2

Electric NetElectric Net



Representing the
Geodatabase
Using UML



Data Modeling Process

Code
Generation

MS
Repository

Schema
Creation

3rd Party
CASE Tool

UML Object
Model

Building 

LandBase.DLL

Geodatabase

Building FClass



CASE Tool
• Basic sequence

– utilize third party CASE tool
– create data model
– represent the data model using UML

within the CASE tool
– add Geodatabase configuration

components
– perform schema check(s)
– export finished model to Repository



UML Review
• Unified Modeling Language

– lingua franca of object modeling
• Developed in 1997 as a unification

of the three leading methodologies
– OMT (Rumbaugh)
– Booch
– Jacobson (use cases)



UML Syntax

Superclass

Property1
Property2

Subclass1
Property3

<<stereotype>>
Subclass2

Property4
Property5

Inheritance Relationships

Class1 Class2

Association

Class1 Class2

Composition

Method1()

Class1 <<interface>>
IClass1

Realization

For Arc8, this is 90% of what you need to know with respect to UML



Properties

• Properties become fields in schema
• Model the feature

– feature class will be automatically created in
the GDB during schema generation

Building

+Owner:esriFTString
+Height:esriFTDouble

OID Shape Owner Height

Building

Feature



Methods

<<Interface>>
IBuilding

+BuiltIn: DATE
+Height: double

Building

• Methods always live in the interface
– components are interface-based
– class realizes an interface

Note: this is necessary only for source code generation

+Owner:esriFTString
+Height:esriFTDouble

+Age(): double
+AvgWaterUse(year:long):double



Object Model Sample

SecondaryCircuitPrimaryCircuit

Building

Feature

CircuitXformerMeter

SimpleEdgeSimpleJunction

NetworkFeature

JunctionFeature EdgeFeature

Object

Tennant ObjectClass

FeatureClass

FeatureClass
and Geometric

Network

ESRI Feature

User Feature



Feature Datasets

<<FeatureDataset>>
SNLandbase

• New for 8.1
• Feature datasets correspond to

stereotyped packages in UML
• Feature classes and geometric networks

added to package (tree view)



Feature Datasets
• Modeling feature datasets as packages

enables:
– stand-alone feature classes
– relationship classes between feature classes

in different feature datasets
– specification of coordinate systems within

the schema generation wizard
– default coordinate systems (last specified)



Geometric Networks

<<GeometricNetwork>>
ElectricNetwork

+NetworkType: esriNetworkType=esriNTUtilityNetwork

Primaries

• New for 8.1
• Modeled as a stereotyped class

associated with all feature classes in
the network

Secondaries

Transformers



Subtypes

• Subtypes based on single integer field
• UML Association named “Subtype”
• Default subtype

Building

+<<SubtypeField>>Kind:esriFTInteger=2
+Owner:esriFTString
+Height:esriFTDouble

Tall Building
+Kind:esriFTInteger = 1

Short Building
+Kind:esriFTInteger = 2

SubtypeSubtype



Default Values

• Assigned on a subtype basis

Building

+<<SubtypeField>>Kind:esriFTInteger=2
+Owner:esriFTString
+Height:esriFTDouble

Tall Building
+Kind:esriFTInteger = 1
+Owner:esriFTString = “The Donald”
+Height:esriFTDouble = 500

Short Building

+Kind:esriFTInteger = 2
+Owner:esriFTString = “Joe Schmo”

SubtypeSubtype



Domains

• Stereotyped class
• Side effect creates an attribute rule

Building

+<<SubtypeField>>Kind:esriFTInteger=2
+Owner:esriFTString
+Height:esriFTDouble

BuildingTall
+Kind:esriFTInteger = 1
+Owner:esriFTString = “The Donald”
+Height:BuildingHeights = 500

BuildingShort

+Kind:esriFTInteger = 2
+Owner:esriFTString = “Schmo”

<<RangeDomain>>
BuildingHeights

+FieldType: esriFTdouble
+MergePolicy: -
+SplitPolicy: -
+MinValue: = 0
+MaxValue: = 750

SubtypeSubtype



Relationships

Tennant

+Name: esriFTString
+CriminalRecord: esriFTString

• Relationships are named
• Specified cardinality
• Origin and destination

+Owner:esriFTString
+Height:esriFTDouble

Building
LivesIn

Location Occupant

0..1 *



Attributed Relationships

• A separate table will be created
• Not restricted to many to many

relationships
• Specified as a UML class

– named after the UML association
– stereotyped as <<RelationshipClass>>

<<RelationshipClass>>
LivesIn

TenantSince:esriFTDate

Tennant

+Name: esriFTString
+CriminalRecord: esriFTString

+Owner:esriFTString
+Height:esriFTDouble

Building
LivesIn

Location Occupant

0..1 *



Composite Relationships

• Part lifetime controlled by whole
class (deep delete semantics)

• Always one to many

SwitchBank Switch
BankHasSwitch



Relationship Rules

• Assigned by subtypes
• Same name as relationship
• More specific cardinality

– but consistent with relationship

Tall Building ST Good Tennant ST
LivesIn

0..1 300



Conn
Rule

Connectivity Rules

• Edge connectivity rules
– n-ary UML association

• Junction connectivity rules

EdgeST1 EdgeST2

JunctionST3
ConnRule

JunctionST1

Default

JunctionST3

EdgeST1



Schema Wizard



Data Modeling Process

Code
Generation

MS
Repository

Schema
Creation

3rd Party
CASE Tool

UML Object
Model

Building 

LandBase.DLL

Geodatabase

Building FClass



Schema Wizard
• Basic sequence

– start wizard from within ArcCatalog
– connect to the Repository, select the model
– select the feature dataset to generate the

schema for
• all domains are created at this time
• relationship classes only created if feature class is

also being created

– define schema properties for each feature
– generate schema when closing wizard



Semantics Checker
• New for 8.1
• Check a model exported to the

Repository
– reports ALL errors at once
– shortens modeling cycle

• Add-on that runs inside Visio
• Should be run before the schema or

code generation wizards



Startling Demo



Background Info:
Orphan Junctions
• Simple junction feature
• Automatically added when first

feature class added to network
<networkName>_Junctions

• Integrity constraint:
– edge must have a junction at each

endpoint
Edge Junction

2..**



Electrical Demo…

Tower

Substation
Transformer

Pole

Primary
Line

Distribution
Transformer

Transmission
Line

Secondary
Line



Conclusions
• Time spent data modeling is very

beneficial in the long run
• Pay attention to performance issues
• Use ArcCatalog for tactical control of

simpler systems
• Use CASE (UML and schema wizard) for

modeling complex systems
• Both tools will simplify your life



For Further Info



For Further Info
• Relevant UC sessions:

– Overview of the Geodatabase
– Designing and Using a Geodatabase
– Working with a Versioned Geodatabase
– Extending the Geodatabase with Custom

Objects
– Extending the Geodatabase with Class

Extensions
– Advanced Customization with ArcObjects in

C++
– Managing and Editing Geometric Networks
– Working with Networks in ArcInfo 8



For Further Info
• Geodatabase Literature

– Michael Zeiler. Modeling Our World: the ESRI Guide to
Geodatabase Design. ESRI Press, 1999.

– Andy MacDonald. Building a Geodatabase. ESRI Press,
1999.

– Multi-user GIS Systems with ArcInfo 8. ArcOnline White
Paper, March 2000.

– Erik Hoel, Julio Andrade, and Sudhakar Menon.
Modeling GIS Databases Using UML. Submitted to the
8th International Symposium of ACM GIS.



For Further Info
• General Literature

– David Taylor. Object Technology: A
Manager’s Guide. 2nd Ed., Addison-Wesley,
1997.

– Martin Fowler, et.al. UML Distilled: Applying
the Standard Object Modeling Language.
Addison-Wesley, 1997.

– Bertrand Meyer. Object-Oriented Software
Construction. Prentice Hall, 1997.





Representing the GeoDatabase
using UML

Representing the GeoDatabase
using UML



Startling CASE Tool DemoStartling CASE Tool Demo



Hi-Tech Schema Wizard DemoHi-Tech Schema Wizard Demo


