
Extending the
Geodatabase with
Custom Objects

Erik Hoel
Brian Goldin

Goals
• Develop an understanding of

– ArcInfo 8 Geodatabase
– non-programmatic customization

opportunities
– how to program custom objects

• How to proceed forward
– other UC’00 sessions
– literature

Agenda
• ArcInfo 8 Geodatabase

– review
– non-programmatic customization

• Programming custom objects
– general process
– important interfaces
– common navigation

ArcInfo 8
Geodatabase

• A new object-oriented geographic data
model

• All relational data storage using ArcSDE
• Versioning and long transactions
• New data access objects for application

software developers
• Component based technology for

developing custom objects and features

ArcInfo 8 Geodatabase

• Dimension features
• Enhanced support for custom features in

the editor
• Dynamic segmentation
• Direct import/export of geodatabase data
• New connectivity rule
• CASE tools enhancements
• Performance enhancements

New Features at 8.1

Geodatabase Elements
• Objects, object classes
• Features, feature classes
• Relationships, relationship

classes
• Geometric networks
• Feature datasets
• Validation rules, domains
• Spatial references
• Rasters and other dataset

types in the future

Geodatabase

Feature datasets

Spatial reference

Geometric networks

Planar topologies

Domains

Raster datasets

Rasters

Feature classes, subtypes

Object classes, subtypes

Relationship classes

can be
inside or
outside

of feature
datasets

Objects

• Objects: entities
with properties and behavior

• An object is an instance of an
object class

• All objects in an object class have
the same properties and behavior

• An object can be related to other
objects via relationships

A row stores
an Object

NameOID Address . . .
518 Bob 38 Oak St.

OWNER

A table stores
an ObjectClass

Features
• A feature is a

spatial object
• Features have location

– a spatial attribute of type geometry

• Features can participate in network and
topological relationships

• A feature class is an object class that
stores spatial objects (features)

• All features in a feature class have the
same spatial reference

Feature
(row)

ShapeOID
524 X,Y,Z,M, ...

PARCEL
Type
Private

. . .

. . .

FeatureClass (table)

Feature Datasets
• Container for feature classes

– shared spatial reference
• Analogous to a coverage

– less restrictive
• May also contain

– relationship classes
– geometric networks

Validation Rules
• Store attribute, connectivity and

spatial rules on objects as part of
the geodatabase

• Pre-defined, parameter driven:
– attribute range rule
– attribute set rule
– connectivity rule

• Perform custom validation by
writing code

Domains
• Describe the legal values of a field type

– used to ensure attribute integrity
• Can be shared among classes
• Uniquely named
• Types of domains

– range
• a tree can have a height between 0 and 300 feet
• a road can have between 1 and 8 lanes

– coded value (e.g., a set)
• a tree can be of type oak, redwood, or palm
• a road can be made of dirt, asphalt, or concrete

Subtypes
• Partition the objects in an object class

into like groups
• Defined by the value of a subtype code

field
• All subtypes:

– have the same attribute schema
– have the same behavior schema
– can have different default values and domains for

each field fid geom subtype width lanes name

103 asphalt 75.9 4 Calle Petra

101 asphalt 85.3 4 Chimayo Highway
102 concrete 45.1 2 Acequia de Isabel

104 gravel 35.2 2 Maximilian Road

Relationship Classes
• A relationship class is an association

between two object classes
• Relationship classes may be 1:1, 1:n, n:m
• An object class may participate in

multiple relationship classes
• Related objects can message each other

– origin to destination, destination to origin,
both, neither

– can trigger behavior (cascade delete, move to
follow, custom…)

Annotation
• An example of a graphic feature class
• Annotation feature classes may be

– feature-linked
– non feature-linked

• Composite relationship manages link
• Can store text as well as other graphics

– lines, arrows, boxes, etc.

feature class annotation feature
class

composite
relationship class

Majuro

Panape

Bora Bora

94 Majuro

95 Panape

92 Bora Bora41
43
47
49

92
95
94

41
43
47

21
23
27

Dimension Features
• Type of annotation that displays

specific distances on a map
• Stored in a dimension feature class
• Graphic feature
• “Smart” feature

– special drawing
– special editing

10.5 '

Geometric Networks
• Used to model network systems
• Topological relationship between feature

classes
• Each feature class has a topological role

in the network (i.e., junction or edge)
• A network may have multiple feature

classes in the same topological role
• Topology based upon geometric

coincidence, always live
• Feature classes must be in the same

feature dataset

Network Feature Classes
• Network features live in a geometric

network
• Directly support network analysis
• Types:

– simple junction
– simple edge
– complex junction
– complex edge

• Integrity constraint:
– edge must have a junction at each endpoint

Edge Junction
2..**

Connectivity Rules
• Help you maintain a valid network
• Constrain permissible connectivity

– default GN behavior allows any edge
to connect to any junction

• Connectivity rules include:
– edge-junction rules

• cardinality
– edge-edge rules

• permissible junction types
• default junction type

• True dynamic segmentation (DynSeg)
– display table or route events as layer in Map
– interactively find a location along a route

• Event tables can be INFO, DBASE,
Geodatabase, or OLE DB

• Route data can
be coverage route
system, PolyLineM
Shapefile, or
PolyLineM feature
class

Dynamic Segmentation

Route A

Route C

Route B

Route D

Route E

Planar Topology
• Feature classes in an integrated feature

dataset participate in a planar topology
• Features share boundaries
• Editor tools allow you to edit and

maintain shared boundaries
• Use the Integrate command in the

Editor to ensure coincident boundaries
• Use shared edge edit tool to edit

shared boundaries and maintain
topological relationships

Versions
• Object classes, feature classes, relationship

classes, geometric and logical networks may
all be versioned

• A version spans all multi-versioned objects in
the database

• Schema is constant across all versions
• Versions differ only in those features or rows

or elements modified in each version
• A user can connect to and

work with any version of the
database - majority will work
with the Default version

default

version1 version2

version3

Multi-Versioned Database

Default:Default:
As BuiltAs Built

User1User1User1

User2User2User2

User3User3User3

Version:Version:
Plan 1Plan 1

User4User4User4

User5User5User5

Version:Version:
Design 1Design 1

User6User6User6

Version:Version:
Design 2Design 2

Electric NetElectric Net

Geodatabase
Customization

Custom
Objects

Subtypes

Domains,
Validation Rules

Connectivity
Rules

Feature Type
Selection

Customization
Continuum

Class
Extensions

complexity

po
w

er

Customizing
Existing Classes
• Import an object class

– import template from another object class in
any Geodatabase

• Define a new feature class (object class)
– add attribute fields, set geometry type, spatial

reference, etc.
• Edit the behavior of an object class

– set subtypes, domains, relationships, etc.

Modeling
Additional Behavior
• System can usually be customized

without writing custom behavior
• If it is necessary to create additional

custom behavior on the object or class
– nearly any COM compliant language can be

used: VC++, VB, Delphi
– CASE tools and ESRI Code Generation and

Schema Wizards make this a lot easier

Class Extensions
• Non-spatial, table-centric customization
• Extension of the object class

– not a subclassing of an object or object class
• Appropriate for:

– storing class variables (C++ static variables)
– custom validation
– custom property inspectors
– class level behavior
– related object creation events
– class description

Custom
Objects

Row
IRow

RowBuffer
IRowBuffer

 IRow : IRowBuffer

HasOID: Boolean
OID: Long
Table: ITable

Delete
Store

IRowEvents

IValidate IValidate : IUnknown

GetInvalidFields: IFields
GetInvalidRules: IEnumRule
GetInvalidRulesByField (in FieldName: String)

: IEnumRule
Validate (out errorMessage: String) : Boolean

 IRowEdit : IUnknown

DeleteSet (in Rows: ISet)

IRowEdit

Feature
IFeature

IFeatureEdit

IFeatureDraw

IFeatureBuffer

IFeatureEvents

Object
 IObject : IRow

Class: IObjectClass

IObject

 IRowSubtypes : IUnknown

SubtypeCode: Long

InitDefaultValues

IRowSubtypes

IRelatedObjectEvents

 IFeatureBuffer : IRowBuffer

Shape: IGeometry

 IFeatureDraw : IUnknown

InvalidArea: IInvalidArea

Draw (in drawPhase: esriDrawPhase, in
Display: IDisplay, in Symbol: ISymbol, in
symbolInstalled: Boolean, in Geometry:
IGeometry, in DrawStyle: esriDrawStyle)

 IRelatedObjectEvents : IUnknown

RelatedObjectChanged (in RelationshipClass:
IRelationshipClass, in objectThatChanged:
IObject)

RelatedObjectMoved (in RelationshipClass:
IRelationshipClass, in objectThatChanged:
IObject, in MoveVector: ILine)

RelatedObjectRotated (in RelationshipClass:
IRelationshipClass, in objectThatChanged:
IObject, Origin: IPoint, Angle: Double)

RelatedObjectSetMoved (in
RelationshipClass: IRelationshipClass, in
objectsThatNeedToChange: ISet, in
objectsThatChanged: ISet, MoveVector:
ILine)

RelatedObjectSetRotated (in
RelationshipClass: IRelationshipClass, in
objectsThatNeedToChange: ISet, in
objectsThatChanged: ISet, Origin: IPoint,
Angle: Double)

 IFeatureEdit : IRowEdit

BeginMoveSet (in features: ISet, in Start:
IPoint) : IDisplayFeedback

MoveSet (in features: ISet, in MoveVector:
ILine)

RotateSet (in features: ISet, in Origin: IPoint,
in Angle: Double)

Split (in Point: IGeometry) : ISet
SplitAttributes (baseFeature: IFeature)

IRowBuffer : IUnknown

Fields: IFields
Value (in Index: Long): Variant

IRowEvents : IUnknown

OnChanged
OnDelete
OnInitialize
OnNew
OnValidate

IFeatureEvents : IUnknown

InitShape
OnMerge
OnSplit

IFeatureChanges : IUnknown

OriginalShape: IGeometry
ShapeChanged: Boolean

IFeatureChanges

 IFeature : IObject

Extent: IEnvelope
FeatureType: esriFeatureType
Shape: IGeometry
ShapeCopy: IGeometry

Motivation
• Used for the most aggressive of

customizations
– feature linked annotation
– dimension features

• Sometimes custom behavior cannot
be supported in the class extension
– custom notifications
– linkages to foreign data sources
– caching properties between objects

Developing Custom Objects
• Custom objects requires programming in

COM-compliant language
– only VC++ or Delphi (COM aggregation issue)
– class extensions can also use VB or VJ++

• CASE tools and ESRI Code Generation
Wizard makes it easier
– generates an ATL-based VisualStudio project

with stubbed methods

Geodatabase Objects

Feature

NetworkFeature

JunctionFeature EdgeFeature

SimpleJunction ComplexJunction SimpleEdge ComplexEdge

Object

Row

2..* *

• Generic objects
• Subclass custom

objects off the
ones in gray

Custom Objects
• Developers create custom objects

and complex data schemas
• Semantically, no difference

between ESRI supplied and
developer-supplied custom objects
– merely support required interfaces
– augment with new interfaces

consumed by your apps and clients

Custom Objects
• What you will need

– UML and Repository aware CASE tool
• Visio Enterprise

– Visual C++
– Geodatabase data model diagram
– ArcCatalog
– OO programming skills and knowledge

of COM (ATL a big plus)

Creation Process
• Create the object model

– 3rd party CASE tool
• Export to the Microsoft Repository

– 3rd party CASE tool UML export wizard
• Generate stub-code

– ESRI supplied wizard (VC++ only)
• Implement custom behavior

– you program the stubbed methods
• Create the Geodatabase schema

Creation Process
• Base it on a Geodatabase object

– give it custom behavior, properties

Feature

Object

«Interface»
IFeature

«Interface»
IFeatureBuffer

«Interface»
IFeatureDraw

«Interface»
IFeatureEdit

«Interface»
IFeatureSetup

NetworkFeature

IFeatureEvents

ESRI provides this...

Feature

Building

«Interface»
IBuilding

+Owner : BSTR
+Stories : int
+Height : double

You do this...

Feature

Object Model COM Implementation

Conceptual Example

Feature

Tree

Height
Kind

Object Model COM Implementation

Age()

Conceptual Example

Feature

Tree

Height
Kind

Feature

Object Model

Interface F1

Interface F2

COM Implementation

Age()

Conceptual Example

Feature

Tree

Height
Kind

Feature

Object Model

Interface F1

Interface F2

Interface F1

Interface F2

Height
Kind

Tree
Interface T

COM Implementation

Age()

Conceptual Example

Conceptual Example

Feature

Tree

Height
Kind

Feature

Object Model

Interface F1

Interface F2

Feature

Interface F1

Interface F2

Height
Kind

Tree
Interface T

COM Implementation

Age()

Programming
Custom Objects

Programming
Custom Objects
• Developers will typically

– override methods on I*Event interfaces
– add new interfaces
– occasionally override other interfaces (e.g.,

IFeatureDraw)

• Custom objects and class extensions are often
developed as a pair

• Modest collection of interfaces and components
to pay particular attention to

IRowEvents

• Standard events
– OnChanged, OnDelete, OnNew, …

• Good hooks for triggering behavior
• Generic behaviors are NOOPs

– QI to enclosing outer
• Returning bad HRESULT aborts current

edit operation

Row
IRowEvents IRowEvents : IUnknown

OnChanged
OnDelete
OnInitialize
OnNew
OnValidate

IRowEvents
• OnNew

– called in context of Store()
– after object added to cached collection of

new and updated objects
– before related object classes are notified of

object’s creation
• OnInitialize

– called on existing objects
– after the row has been setup (i.e., property

values hydrated)
– use this event to reset local member

variables

IRowEvents
• OnChanged

– called in context of Store() on existing object
– after weights and enabled/disabled pushed to

logical network (only on network features)
– after object added to cached collection of

new and updated objects
– before related object classes are notified of

object’s modification

IRowEvents
• OnDelete

– called in context of Delete() or DeleteSet()
– called as a side effect of network operations

that result in the deletion of a network feature
– before related part objects (r.e., composite

relationships) are deleted
– before relationship instances are deleted

• OnValidate

IRowChanges

• New with 8.1
• Useful for determining whether or

not a field’s value has changed

Row
IRowChanges IRowChanges : IUnknown

OriginalValue(in Index: Long): VARIANT
ValueChanged(in Index: Long): Boolean

IRelatedObjectEvents

• Events pertaining to
related object
modification
– changing
– rotating
– moving

• Set-based methods for efficiency
opportunities

Object

IRelatedObjectEvents IRelatedObjectEvents : IUnknown

RelatedObjectChanged (in RelationshipClass:
IRelationshipClass, in objectThatChanged:
IObject)

RelatedObjectMoved (in RelationshipClass:
IRelationshipClass, in objectThatChanged:
IObject, in MoveVector: ILine)

RelatedObjectRotated (in RelationshipClass:
IRelationshipClass, in objectThatChanged:
IObject, Origin: IPoint, Angle: Double)

RelatedObjectSetMoved (in
RelationshipClass: IRelationshipClass, in
objectsThatNeedToChange: ISet, in
objectsThatChanged: ISet, MoveVector:
ILine)

RelatedObjectSetRotated (in
RelationshipClass: IRelationshipClass, in
objectsThatNeedToChange: ISet, in
objectsThatChanged: ISet, Origin: IPoint,
Angle: Double)

IFeatureEvents

• Events that are related
to geometry changes
– InitShape, OnMerge, OnSplit

• Good for
– apportioning attributes in non-standard

manners
– initializing non-persisted connection points

Feature
IFeatureEvents IFeatureEvents : IUnknown

InitShape
OnMerge
OnSplit

INetworkFeatureEvents

• Network connectivity events
– OnConnect, OnDisconnect

• Unknown utility

STRIKE THIS?

NetworkFeature
 INetworkFeatureEvents : IUnknown

OnConnect
OnDisconnect

INetworkFeatureEvents

IFeatureDraw

• Used primarily with custom objects to
override default drawing behavior
– behavior that is inappropriate for a custom

renderer
• Fairly simple to implement despite large

argument list

Feature
IFeatureDraw IFeatureDraw : IUnknown

InvalidArea: IInvalidArea

Draw (in drawPhase: esriDrawPhase, in
Display: IDisplay, in Symbol: ISymbol, in
symbolInstalled: Boolean, in Geometry:
IGeometry, in DrawStyle: esriDrawStyle)

Common Navigation Tasks
Pseudo-C++ (ATL-based)

• Feature class
IObject::get_Class(IObjectClass**);

• Class extension
IObject::get_Class(IObjectClass** &ipClass);

ipClass->get_Extension(IUnknown** &ipUnk);

IClassExtensionPtr ipClassExtension(ipUnk);

• Feature dataset
IObject::get_Class(IObjectClass** &ipClass);

IFeatureClassPtr ipFeatClass(ipClass);

ipFeatClass->get_FeatureDataset(IFeatureDataset**);

Common Navigation Tasks
• Geometric network

IObject::get_Class(IObjectClass** &ipClass);

INetworkClassPtr ipNetworkClass(ipClass);

ipNetworkClass->get_GeometricNetwork(IGN** &ipGN);

• Logical network
IObject::get_Class(IObjectClass** &ipClass);

INetworkClassPtr ipNetworkClass(ipClass);

ipNetworkClass->get_GeometricNetwork(IGN** &ipGN);

ipGeometricNetwork->get_Network(INetwork** &ipNet);

Common Navigation Tasks
• Related objects

IObject::get_Class(IObjectClass** &ipOClass);

ipOClass->get_RelationshipClasses(relRole,

IEnumRelationshipClass** &ipRelClasses);

IObjectPtr ipObject(this);

while (ipRelClasses->Next(&ipRelClass) == S_OK) {

ipRelClass->get_ObjectsRelatedToObject(ipObject,

ISet** &ipObjects);

while (ipObjects->Next(&ipRelatedObject) == S_OK){

. . . whatever . . .

}

}

Programming Caveats
• Do not assume too much – program

defensively
– check HRESULTs
– assume your server components can fail
– check arguments (inbound and outbound)
– check for field existence
– always obey the Rules of COM

• Consider the GDB versioning and
transaction model during design

• Always minimize cursor creation

Programming Caveats
• Always bracket database edits inside an

Edit Session (Start/StopEditing)
• Group changes inside of EditOperations

(rollbacks)
• Always use NON-RECYCLING cursors

when fetching data that will be updated

Programming Caveats
• Always retrieve all fields when

searching for data that will be
updated

• Always tag changed objects with
store/delete to guarantee that object
behavior is executed

Custom Object
Demo

Conclusions
• Geodatabase provides large non-programmatic

customization opportunities
– most is built into core

• Creating custom objects requires
– UML, CASE, VC++, COM
– code generation and schema wizards help

• Time spent data modeling is very beneficial in
the long run

• Pay attention to performance issues

For Further Info

For Further Info
• Relevant UC sessions:

– Overview of the Geodatabase
– Designing and Using a Geodatabase
– Working with a Versioned Geodatabase
– Extending the Geodatabase with Class

Extensions
– Managing and Editing Geometric Networks
– Geodatabase and Object Model Design Using

CASE Tools
– Working with Networks in ArcInfo 8
– Advanced Customization with ArcObjects in

C++

For Further Info
• Geodatabase Literature

– Michael Zeiler. Modeling Our World:
the ESRI Guide to Geodatabase
Design. ESRI Press, 1999.

– Andy MacDonald. Building a
Geodatabase. ESRI Press, 1999.

– Multi-user GIS Systems with ArcInfo 8.
ArcOnline White Paper, March 2000.

For Further Info
• General Literature

– David Chappell. Understanding ActiveX and
OLE: A Guide for Developers and Managers.
Microsoft Press, 1996.

– Dale Rogerson. Inside COM: A Tedious Book
for Superstar Geeks. Microsoft Press, 1997.

– Bertrand Meyer. Object-Oriented Software
Construction. Prentice Hall, 1997.

– Brent Rechtor, Chris Sells. ATL Internals,
1999.

Programming Custom
Objects with ArcInfo 8
Programming Custom
Objects with ArcInfo 8

Database Technology

• Many ways to model data
– Graphic data model
– Georelational data

model
– Object Relational data

model

Startling Hi-Tech DemoStartling Hi-Tech Demo

