
Administrating a
Multi-Versioned

ArcSDE Geodatabase

Thomas Brown



Today’s Agenda
• Workflow Management
• ArcSDE Meta Data Schema
• Multi-Versioned Object’s Schema
• Database Design
• Editing a Versioned Geodatabase
• Reconciliation and Post

– How it affects the workflow process
• Compressing the database



Intended Audience
• GIS database administrators
• Application developers
• Hard core junkies who just need to know

everything



What this session is not:
• An Introduction to versioning
• A conceptual overview
• Full of flashy demos!
• Entertaining



Managing Workflow
• Your organization’s business process will

impact the database administrator’s
responsibilities
– version management
– reconciliation/post
– compress
– and everyone’s number one concern...

PERFORMANCE!



Direct Editing of Default
• All users can simultaneously edit the

main database and save changes
– Geodatabase insures read consistency and

concurrency control

Default
version

Andy’s
edit session

Mike’s
edit session

Jeff’s
edit session

Erik’s
map app



Work Order Processing
• Discrete work units are processed as

work orders and are posted to the
database upon completion

Default
version

Jeff’s
edit session

Erik’s
map app ArcIMS

version1 version2 version3



Cyclical Work Flows
• Projects evolve through prescribed

stages, or life cycle
– design, approval, construction, as-built

Default
version

Mapping
Application

ArcIMS



Cyclical Work Flows
• Projects evolve through prescribed

stages, or life cycles
– design, approval, construction, as-built

Default
version

Engineer’s
edit session

design New design version, created
from the Default version



Cyclical Work Flows
• Projects evolve through prescribed

stages, or life cycles
– design, approval, construction, as-built

Default
version

Supervisor
reviews

design

approved

Approved version created
for supervisor’s review



Cyclical Work Flows
• Projects evolve through prescribed

stages, or life cycles
– design, approval, construction, as-built

Default
version

design

approved construction

Construction version for
changes that occur in the field



Cyclical Work Flows
• Projects evolve through prescribed

stages, or life cycles
– design, approval, construction, as-built

Default
version

design

approved construction

as-built

as-built, field
surveyed



Cyclical Work Flows
• Projects evolve through prescribed

stages, or life cycles
– design, approval, construction, as-built

Default
version

design

approved construction

as-built

Default
version

design

approved construction

as-built

Final step, as-built
posted to Default



ArcSDE Meta Data Schema
• Tables of interest

– Versions
– States
– Layers
– Table_registry
– Mvtables_modified



Some Definitions
• Version

– A conceptual abstraction for a unit of work,
such as work orders, design alternatives and
the default database

– the user defined “named” version references
an internal database state

– versions evolve over time through a
succession of states



Some Definitions
• State

– Discrete snapshot of the database which has
a constant schema and only differ by the set
of rows for each table and the column values

– states are organized in a tree structure



Versions Table
Name - case sensitive, 32 characters max length
Owner - user who created the version
Status - (Public, Protected, Private)
State id - current database state version references

default

version1 version2

version3

Default

version2
version1

name

version3

SDE

skipper
gilligan

owner

ginger

protected

private
private

status

public

0

6
2

state id

3



States Table

Owner - user who created the state
Lineage length - number of preceding states
Lineage - binary storage of the lineage

(example: 0,3,4)

0

31

2 4 6

5

0

2
1

id
SDE

gilligan
gilligan

owner

ginger

0

2
1

length

1

0

(0,1)
(0)

lineage

(0)

skipper 2 (0,3)

3

6



Organization of Versions
and Database States

0

31

2 4 6

5

SDE.DEFAULT

gilligan.version1

ginger.version3

skipper.version2



Version and State Ids
• Pre 8.1 - generated and managed by the

iomngr process (in memory)

• 8.1 - generated and managed by database
sequences
– sde.version_id_generator
– sde.state_id_generator



Joining the Versions and
States Tables
create view version_info as select a.name
“VERSION NAME”, a.owner, b.state_id,
b.parent_state_id, DECODE (a.status, 0,
'PRIVATE', 1, 'PUBLIC', 2, 'PROTECTED')
"ACCESS" from versions a, states b
where a.state_id(+) = b.state_id;



Hierarchical query
select s.state_id from states s start
with s.state_id = 5 connect by prior
decode (s.state_id, 0, -1,
s.parent_state_id) = s.state_id;

0

31

2 4 6

5

STATE_ID

5
4
3
0



Table_registry and Layers Tables

• Table_registry
– registration id uniquely identifies every table

registered with ArcSDE

• Layers
– layer id uniquely identifies every layer in the

database



Mvtables_modified
• Maintains the state id and the

corresponding table registration id
modified for that state

0

31

2 4 6

5

1

2
1

state id

3

14

14
39

table id

173
5
6

26
2



Multi-versioned Object
Schemas
• Business table (base table)
• Feature table
• Spatial table

– Versioning (delta) tables
• Adds table
• Deletes table

– and relevant table indexes



• User defined table for managing spatial
attribute information

Business Table (base table)

Columns

OBJECTID (sde_row_id)

SHAPE

< user defined >

Index Name

R<#>_SDE_ROWID_UK

A<#>_IX1



Feature table (F#)
• Manages the shape’s geometry and

related information such as area, length
and type

Columns

FID

AREA

LEN

Index Name

F<#>_UK1

F<#>_AREA_IX2

POINTS (BINARY)

F<#>_LEN_IX3



Spatial Table (S#)

• An indexed table that stores references
to the shapes based on a simple, regular
grid

Columns

SP_FID

< other columns >

Index Name

S<#>_IX2

S<#>_IX1



Id Generation
• ArcSDE 8.1 row ids and feature ids are

generated by a <owner>.sequence
– R<#>  =   row_id sequence
– I<#>    =  shape sequence



Adds Table, A<#>
• Maintains information for each inserted

and updated row and corresponding
state id

Columns

OBJECTID

SHAPE

< user defined >

Index Name

R<#>_ROWID_IX1

A<#>_IX1_A

SDE_STATE_ID A<#>_STATE_IX2



Deletes Table, D<#>
• Maintains information for each deleted

and updated row and corresponding
state id

Columns

SDE_STATE_ID

SDE_DELETES_ROW_ID

DELETED_AT

Index Name

D<#>_IDX1 (col 1)

D<#>_IDX1 (col 2)

D<#>_IDX2



Database Design
• Correctly loading your data is critical for

database performance
– avoid disk i/o contention
– indexes on separate physical devices then the

tables
– accurate initial and next extent sizes
– requires defining your keywords and

parameters in the dbtune.sde file



Data Distribution

Business
Tables

Feature
Tables

Spatial
Tables

Indexes

Temporary Tables

Network Topology Tables

Delta Tables



Registering Objects as
Versioned
• ArcSDE 8.0.2

– set the dbtune.sde a_tblsp parameter
– set the index_tablespace parameter



Registering Objects as
Versioned
• ArcSDE 8.1 (additional parameters)

– a_tblsp parameter
– a_index_1 and a_index_2 parameters
– d_tblsp parameter
– d_index_1 and d_index_2 parameters



New Dbtune Table
• sdedbtune -o import/export utility to

update the dbtune table

Columns

KEYWORD

PARAMETER_NAME

CONFIG_STRING

CONFIG_STRING is the objects storage clause



Editing a Geodatabase
• Edit session is not visible to other users

until the edit session is saved
• The version being edited continues to

reference the initial state
– provides read consistency



Editing a Geodatabase
• States are created for each edit operation

– provides undo/redo capability
• Saving commits the changes to the

version
– Clients refresh workspace to view the

changes



Edit Session 0

31

2 4 6

5

gilligan.version1

Gilligan starts editing version1



Edit Session

Gilligan inserts a new feature

0

31

2 4 6

5

gilligan.version1

7Edit Session



Edit Session

Gilligan updates a feature

0

31

2 4 6

5

gilligan.version1

7

Edit Session 8



Edit Session

The skipper tells Gilligan to save

0

31

2 4 6

5gilligan.version1 8

gilligan.version1



ArcObjects

• Start and Stop Edit operations create
database states

pWorkspace.StartEditOperation

Set pFeature = pFeatureClass.GetFeature(298)

fieldIndex = pFeatureClass.FindField(“Owner”)

pFeature.Value(fieldIndex) = ”Donald Trump”

pFeature.Store

pWorkspace.StopEditOperation



Inserting Features
• When new features or rows are inserted,

a row is created in the A<#> table

object id < user columns > sde state id



Inserting Features
• When new features or rows are inserted,

a row is created in the A<#> table

object id < user columns > sde state id
101 < null > 7



Deleting Features
• When features or rows are deleted, a row

is created in the D<#> table

sde state id sde deletes row id deleted at



Deleting Features
• When features or rows are deleted, a row

is created in the D<#> table

sde state id sde deletes row id deleted at
0 101 8



Updating Features
• When features or rows are updated, a

row is created in the A<#> and D<#>
table

object id < user columns > sde state id

sde state id sde deletes row id deleted at

A<#>

D<#>



Updating Features
• When features or rows are updated, a

row is created in the A<#> and D<#>
table

object id < user columns > sde state id

sde state id sde deletes row id deleted at

A<#>

D<#>
0

< null > 9

9278

278



Reconcile and Post
• How reconcile affects performance

– Difference queries and conflict detection
• Post - why it’s fast
• What is Autoreconcile?
• Object locks, what do those messages

mean?



Reconcile
• Is the process of merging two versions

and detecting conflicts
– can occur when two users are editing the

same version
– or reconciling a child version and its parent

version



Example

4

75

6 8

0

parent version

child version

edit session

User starts editing the child version, makes one
change then reconciles with the parent version



Example

User starts editing the child version, makes one
change then reconciles with the parent version

4

75

6 8

0

parent version

child version

edit session9



Conflict Detection

pre-edit version

4

75

6 8

0

target version edit session

common ancestor

Each lineage is compared for all differences and
feature conflicts:

- target version (4,5,6)
- edit session (4,7,8)



Differences

4

75

6 8

0

parent version

child version

edit session9

All features inserted, updated, deleted along the 
reconcile version lineage are applied to the reconcile
state



Post

4

75

6 8

0

parent version

child version

edit session9

Automatically saves the edit session, and applies
the reconciliation to the target version



Post

Automatically saves the edit session, and applies
the reconciliation to the target version

4

75

6

0

parent version

9parent and child version

child version



Auto Reconcile
• Editing option to automatically save changes

(reconcile) if the version has been modified since
you started editing



Example

4

0
Default version

edit session 1 5 6 edit session 2

Edit session 1 stops editing and saves



Example

Edit session 1 stops editing and saves

4

0
Default version

5 6 edit session 2Default version



Example

Edit session 2 saves, auto reconcile setting
determines if the reconcile should be saved or not

4

0
Default version

5 6

edit session 2

Default version

7



Example

When enabled version automatically saved

4

0
Default version

5 6Default version

7Default version



Object locks
• Prevents versions from accidentally be

reconciled by multiple users
simultaneously

• Shared lock acquired on start editing,
reconcile promotes shared lock to an
exclusive lock

• Shared lock acquired on target version
(prevents multiple reconciliation's)



Warning Messages
• Cannot start editing a version which is

currently being reconciled



Warning Messages
• Cannot reconcile a version when multiple

users are editing the version



A Workflow Example
• Multiple users editing the Default version



Multiple Users Editing

Three edit sessions start editing and make changes

4

0
Default version

edit session 2edit session 1

edit session 3

7

5 6 8

9



Multiple Users Editing

Edit session 1 stops editing and saves

4

0
Default version

edit session 2

edit session 3

7

9 6 8Default version



Multiple Users Editing

Edit session 2 saves

4

0
Default version

edit session 2

edit session 3

7

9 6 8

Default version 10

Default version



Multiple Users Editing

Edit session 2 continues editing

4

0
Default version

edit session 2

edit session 39 8

Default version 10

Default version

11



Multiple Users Editing

Edit session 3 stops editing and saves

4

0
Default version

edit session 2

9 8

Default version

10

Default version

11 12

Default version



Multiple Users

Default version

Edit session 2 stops editing and saves

4

0
Default version

9

10

Default version

11 12

Default version

13

Default version



Compress
• What is the objective?

– To improve PERFORMANCE!

• How?
– By eliminating redundant rows and

moving rows from the delta tables to
the base table

– minimizing the depth of the state tree



Simple Example
0

31

2 4 6

5

Default

Version 1

Version 3

Version 2

Prior to compress



Simple Example

Version 1

0

32

6

Default

Version 3

Version 2

After compress - minimized the depth of the state
tree



Example 2
0

31

2 4 6

5

Default

Version 2

Version 1

Prior to compress



Example 2
0

32

6

Default Version 2

Version 1

After compress - minimized the depth of  the state
tree



Successful Example

4

0

9

10

12

13 Default version
Prior to compress



Successful Example
0 Default version

After compress - all rows in the delta tables moved
back to the base table



Compress
• How to determine if the compress was

successful?
– select name, state_id from sde.versions;

• If Default’s state id = 0, it was successful
• But what if it is not 0?

– Reconcile all versions with Default and
compress again



Complex Example

Default

Version 1

Version 3

1

32

0

54

Version 2

After compress, still requires reconciling and
compressing again



Complex Example

Default, Version 2

Version 1 Version 3

1

32

0

54

76

Version 1

Version 3

Version 2
After reconcile



Complex Example
Default, Version 2

Version 1 Version 3

0

76

Successful compression to base



Compress
• Requires an exclusive lock on all

database states
– prevents inconsistent reads of the database

• 8.1 will support the ability to define a
rollback segment for the compress
transaction
– (requires large rollbacks based on the number

of rows in the delta tables)



Final Slide !!!
• Update DBMS statistics (while the

database is in production) and after
running compress
– analyze table <table> compute statistics
– A/I 8.1 will contain a command in ArcCatalog

to update statistics for the feature dataset
and feature class



Related sessions
• Overview of the Geodatabase

– Wednesday/Thursday at 8:30, Room 6D (SDCC)

• Designing and Using A Geodatabase
– Wednesday at 10:30, Room 3 (SDCC)

• ArcSDE DBMS Administration: Oracle,
SQL Server, Informix
– Thursday starting at 10:30, Room 3 (SDCC)




