
ArcGIS
®

 9
ArcSDE® Configuration and Tuning Guide for Informix®

Copyright © 1986–2005 ESRI
All Rights Reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of ESRI. This work is protected under
United States copyright law and the copyright laws of the given countries of origin and applicable
international laws, treaties, and/or conventions. No part of this work may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying or recording, or by any
information storage or retrieval system, except as expressly permitted in writing by ESRI. All requests
should be sent to Attention: Contracts Manager, ESRI, 380 New York Street, Redlands, CA 92373-8100,
USA.

The information contained in this document is subject to change without notice.

U. S. GOVERNMENT RESTRICTED/LIMITED RIGHTS
Any software, documentation, and/or data delivered hereunder is subject to the terms of the License
Agreement. In no event shall the U.S. Government acquire greater than RESTRICTED/LIMITED
RIGHTS. At a minimum, use, duplication, or disclosure by the U.S. Government is subject to restrictions
as set forth in FAR §52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or
FAR §12.211/12.212 (Commercial Technical Data/Computer Software); and DFARS §252.227-7015
(NOV 1995) (Technical Data) and/or DFARS §227.7202 (Computer Software), as applicable.
Contractor/Manufacturer is ESRI, 380 New York Street, Redlands, CA 92373-8100, USA.

ESRI, MapObjects, ArcView, ArcIMS, SDE, ArcSDE, ArcInfo Librarian, Spatial Database Engine,
ArcCatalog, ArcToolbox, ArcMap, ArcGIS, ArcStorm, ArcInfo, ArcObjects, ArcExplorer, ArcEditor,
and www.esri.com are trademarks, registered trademarks, or service marks of ESRI in the United
States, the European Community, or certain other jurisdictions.
The names of other companies and products mentioned herein are trademarks or registered trademarks
of their respective trademark owners.

Contents

Contents iii

Getting started 1
Tuning and configuring the Informix instance 1
Arranging your data 2
Creating spatial data in an Informix database 2
Connecting to Informix 3
National language support 3
Backup and recovery 3

Essential Informix configuring and tuning 5
How much time should you spend tuning? 5
Windows 2000 Systems 6
UNIX Systems 20
Updating Informix statistics 36
Tuning CPU 37
Tuning memory 42

Configuring DBTUNE storage parameters 47
The DBTUNE table 47
Using the DBTUNE table 49
Defining the storage parameters 51
Arranging storage parameters by keyword 54
Informix default parameters 66
Editing the storage parameters 67
Converting SDE 3.x storage parameters to ArcSDE 9 storage parameters 67
The complete list of ArcSDE storage parameters 68

Managing tables, feature classes, and raster columns 70
ArcSDE to Informix Data Type Mapping 70
Data creation 71
Creating and populating raster columns 77
Creating views 78
Exporting data 78

iv ArcSDE Configuration and Tuning Guide for Informix

Schema modification 78
Choosing an ArcSDE log file configuration 79
Using the ArcGIS Desktop, ArcCatalog, and ArcToolbox applications 81
Registering a business table 86
How does ArcSDE use existing Informix tables? 88

National language support 90
Creating an Informix database with a specific language locale 90
Setting the NLS_LANG variable on the client 90
Configuring the Informix server locale 91
Configuring the Informix locale for ArcSDE 92
Setting the locale for ArcSDE 92

Backup and recovery 94
Data recovery system 94
What is a Dynamic Server recovery system? 94
Backing up the database 95
Recovering the database 96

Estimating the size of your tables and indexes 97
Estimating the size of your spatial tables 97
Estimating the size of your ArcSDE indexes 101

Storing raster data 102
Raster schema 105

Informix Spatial DataBlade geometry types 113
How the Informix Spatial DataBlade works 114
Spatial DataBlade data types 120
Instantiable subclasses 124

Storing locators 130
Locator schema 131

Making a Direct Connection 171

Index 180

C H A P T E R 1

Getting started

Creating and populating a geodatabase is arguably a simple process,

especially if you use ESRI® ArcCatalogTM or ArcToolboxTM to load the

data. So why is there a configuration and tuning guide? Well, while

database creation and data loading can be relatively simple, the resulting

performance may not be acceptable. It requires some effort to build a

database that performs optimally. This book provides instruction for

configuring the physical storage parameters of your data in the database

management system (DBMS). This book also provides some important

guidelines for configuring and tuning the IBM Informix® instance itself.

Tuning and configuring the Informix instance
Building an efficient geodatabase involves properly tuning and configuring the Informix
instance and proper arrangement and management of the database's tables and indexes.
Chapter 2, ‘Essential Informix configuring and tuning’, teaches you how to do just that.

Chapter 2 lists the necessary steps to create a geodatabase. You will learn how to
properly:

• Create an Informix database.

• Create the tablespaces that will store your tables and indexes.

• Tune the Informix instance that will mount and open the database.

• Manage the optimization statistics of the tables and indexes after they have been
created and populated.

2 ArcSDE Configuration and Tuning Guide for Informix

Arranging your data
Every table and index created in a database has a storage configuration. How you store
your tables and indexes affects your database's performance.

DBTUNE storage parameters

How is the storage configuration of the tables and indexes controlled? ArcSDE® reads
storage parameters from the DBTUNE table to define physical data storage parameters of
ArcSDE tables and indexes. The storage parameters are grouped into configuration
keywords. You assign configuration keywords to your data objects (tables and indexes)
when you create them from an ArcSDE client program.

Prior to ArcSDE 9, configuration keywords were stored in a dbtune.sde file maintained
under the ArcSDE etc directory. The dbtune.sde file is still used by ArcSDE 9 as the
initial source of storage parameters. When the ArcSDE 9 file sdesetupinfx command
executes, the configuration parameters are read from the dbtune.sde file and written into
the DBTUNE table.

It should also be noted that ArcSDE 9 has simplified the storage parameters. Rather than
matching each Informix storage parameter with an ArcSDE storage parameter, the
ArcSDE storage parameters have evolved into configuration strings and represent the
entire storage configuration for a table or index. Prior to ArcSDE 9 storage parameters
have been automatically converted to the new simpler ArcSDE 9 storage parameters. The
ArcSDE storage parameter holds all the Informix storage parameters of an Informix
CREATE TABLE or CREATE INDEX statement.

The sdedbtune command has been introduced at ArcSDE 9 to provide the ArcSDE
administrator with an easy way to maintain the DBTUNE table. The sdedbtune command
exports and imports the records of the DBTUNE table to a file in the ArcSDE etc
directory.

The ArcSDE 9 installation creates the DBTUNE table. If the dbtune.sde file is absent or
empty, sdesetupinfx creates the DBTUNE table and populates it with default
configuration keywords representing the minimum ArcSDE configuration.

In almost all cases, you will populate the table with specific storage parameters for your
database. Chapter 3, ‘Configuring DBTUNE storage parameters’, describes in detail the
DBTUNE table and all possible storage parameters and default configuration keywords.

Creating spatial data in an Informix database
ArcCatalog and ArcToolbox are graphical user interfaces (GUIs) specifically designed to
simplify the creation and management of a spatial database. These applications provide

Chapter 1—Getting started 3

the easiest method for creating spatial data in an Informix database. With these tools you
can convert ESRI coverages and shapefiles into ArcSDE feature classes. You can also
import an ArcSDE export file containing the data of a business table, feature class, or
raster column.

Multiversioned ArcSDE data can be edited directly with either ArcCatalog or ArcMap.

An alternative approach to creating spatial data in an Informix database is to use the
administration tools provided with ArcSDE.

Chapter 4, ‘Managing tables, feature classes, and raster columns’, describes the methods
used to create and maintain spatial data in an Informix database.

Note: ArcSDE XML columns are not supported with Informix databases. Therefore,
ArcIMS Metadata Services are not supported with Informix databases.

Connecting to Informix
ArcSDE clients connect to the ArcSDE service. Under the ArcSDE three-tiered
architecture, the ArcSDE client connects to the ArcSDE service, and the ArcSDE service
spawns a dedicated gsrvr process that connects to the Informix instance. The gsrvr
process brokers the spatial data between the ArcSDE client and the Informix instance.
The ArcSDE service and the gsrvr processes typically reside on the Informix host
machine, while ArcSDE clients are typically on remote machines.

National language support
If you intend to support a database that does not use the Informix default 7-bit United
States ASCII English (US7ASCII) character set, you will have to take a few extra steps
in creating the Informix database. You will also need to set the national language system
environment of the client applications.

Chapter 5, ‘National language support’, describes how to configure the Informix database
and set up the application environment.

Backup and recovery
Developing and testing a backup strategy is every bit as important as the effort put into
creating it. A good backup strategy protects the database in the event of a media failure.

Chapter 6, ‘Backup and recovery’, lists the ArcSDE files that must be included as part of
the regular Informix backup. In addition, suggested Informix reference materials are
listed for further reading.

C H A P T E R 2

Essential Informix configuring
and tuning

The performance of an ArcSDE application depends to some extent on

how well you configure and tune Informix. This chapter provides basic

guidelines for tuning an Informix database for use with an ArcSDE

application. It assumes that you have a basic understanding of the

Informix data structures, such as dbspaces, sbspaces, tables, and indexes,

and that you are proficient with Structured Query Language (SQL). We

encourage you to refer to Informix’s extensive documentation, in

particular Informix Performance Guide for Informix Dynamic Server

2000 and Informix Administrator’s Guide for Informix Dynamic Server

2000 for your appropriate Informix release.

How much time should you spend tuning?
The appreciable difference between a well-tuned database and one that is not depends on
how it is used. A database created and used by a single user does not require as much
tuning as a database that is in constant use by many users. The reason is quite simple—
the more people using a database, the greater the contention for its resources.

By definition, tuning is the process of sharing resources among users by configuring the
components of a database to minimize contention and remove bottlenecks. The more
people you have accessing your databases, the more effort is required to provide access to
a finite resource.

A well-tuned Informix database makes optimum use of available central processing unit
(CPU) and memory while minimizing disk input/output (I/O) contention. Database

6 ArcSDE Configuration and Tuning Guide for Informix

administrators approach this task knowing that each additional hour spent will often
return a lesser gain in performance. Eventually, they reach a point of diminishing returns,
where it is impractical to continue tuning; instead, they continue to monitor the server and
address performance issues as they arise.

Windows 2000 systems

Updating the onconfig file

Informix maintains its configuration parameters in the onconfig file located in the
%INFORMIXDIR%\etc directory on Windows 2000. The parameters of this file control
the server's memory use, the size and number of log files, temporary space, the location
of the error logs, and much more. The onconfig file is read whenever the Informix server
is started. So changes to the parameter require that you restart the server.

Naming the onconfig file

The standard onconfig file, onconfig.std, contains the default settings of the Informix
parameters. Do not edit this file; instead, preserve it as a record of the default settings.

On Windows 2000, the Informix Dynamic Server (IDS) installation process
automatically copies the onconfig.std file to the ‘Onconfig’ file.

For the remainder of this document, when the onconfig file is mentioned, we are referring
to the %INFORMIXDIR%\etc\Onconfig on Windows 2000. On Windows 2000, the
installation also sets the system variable ONCONFIG to Onconfig. The ‘Onconfig’ file is
also defined in the Windows registry as the Informix onconfig file. If you intend to use
an onconfig file with a different name, you need to change the ONCONFIG environment
in the registry and the %INFORMIXDIR%\setenv.cmd file.

Some important onconfig parameters

The following is a list of some of the more important onconfig parameters whose default
values you should change to improve the performance of your Informix server when
using it with ArcSDE.

BUFFERS

The BUFFERS parameter file controls the size of the regular buffers, the area of memory
in which Informix stores the most recently used pages of data. The first reader reads the
pages from disk, while subsequent readers read the pages from the regular buffer until it
is paged out of memory. A page will be paged out of the regular buffer if it is has been
unused over a period of time and the memory is needed to hold other pages that are being
used.

Chapter 2—Essential Informix configuring and tuning 7

Increase the number of data buffers to 2,000 or 25 percent of your physical RAM,
whichever is greater. BUFFERS is specified in pages. If your pages are 2 kilobytes (page
size can be determined with the Informix command onstat -b) and your physical RAM is
256 MB, BUFFERS would be calculated as follows:

BUFFERS = <physical RAM converted to kilobytes> * 25% /
 <page size in kilobytes>
 = (256 * 1024) * 0.25 / 2
 = 32768

BUFFERS 32768

LOGSIZE

The LOGSIZE parameter controls the default size of the logical logs. The size of the
logical logs can be specified when they are created with the INFORMIX onparams
utility. However, if the size is not specified, LOGSIZE is used.

Set the logical log file size to 100,000 kilobytes. When the logical logs are moved out of
the rootdbs, they will be created with this size.

LOGSIZE 100000

LOG_BACKUP_MODE

The LOG_BACKUP_MODE parameter specifies the mode in which logical logs are
backed up. This mode can be either continuous or manual. Continuous mode will allow
you to automatically do logical log backups when required.

LOG_BACKUP_MODE CONT

LOGSMAX

The LOGSMAX parameter specifies the maximum number of logical logs that may be
created. Increase the LOGSMAX parameter so that you can create new logical logs in
order to move them out of the rootdbs.

Set the maximum number of logical log files to 100.

LOGSMAX 100

CLEANERS

CLEANERS specifies the page cleaner threads started by the INFORMIX instance. Page
cleaner threads periodically wake up and perform background writes of batches of dirty
pages held in the regular buffers to disk.

Set the number of page cleaners to 6 or the number of disks that contain frequently
accessed data, whichever is higher.

CLEANERS 6

8 ArcSDE Configuration and Tuning Guide for Informix

STACKSIZE

STACKSIZE specifies the amount of stack allocated to the INFORMIX instance.
Although for most applications Informix recommends that this parameter be left at its
default value of 32 (kilobytes), for ArcSDE it is important to increase the size of this
parameter to 64 (kilobytes) in support of the Informix Spatial DataBlade® user-defined
datatypes (UDTs) accessed by ArcSDE.

Increase the initial stack size of each thread to 64 kilobytes. Set the STACKSIZE
parameter to 64.

STACKSIZE 64

RA_PAGES

This read-ahead parameter sets the number of data and index pages that are cached in the
regular buffers whenever a sequential scan of one or more tables occurs.

Set the read-ahead pages to 125.

RA_PAGES 125

RA_THRESHOLD

RA_THRESHOLD, the read-ahead threshold, specifies the number of remaining unread
pages that triggers another call to read more pages from disk.

Set the number of unprocessed pages that trigger another read ahead to 85.

RA_THRESHOLD 85

DUMPDIR

The DUMPDIR parameter specifies the location of the dump directory where error log
files are written in the event of an assertion failure.

Leave the dump directory set to tmp if you have adequate space there. However, you can
create a tmp directory under the Informix installation directory and set DUMPDIR to
that. Should an assert failure occur, the diagnostic files are one directory below the
online.log file that references them.

DUMPDIR C:\informix\tmp

RESIDENT

The RESIDENT parameter specifies which portion of the INFORMIX instances shared
memory can be swapped out of the operating system's shared memory. Allowing as
many portions of the instance’s shared memory as possible to remain resident eliminates
a large amount of I/O and context switching of the instance’s memory structures.

Chapter 2—Essential Informix configuring and tuning 9

Setting the RESIDENT parameter to -1 keeps as many of the instance’s memory
structures as possible resident given the amount of physical memory and system
resources available.

RESIDENT –1

MULTIPROCESSOR

The MULTIPROCESSOR parameter specifies whether the Informix Server machine has
one or multiple processors to use.

Set to 0 if the Informix Server machine has only one processor and set to 1 if there are
multiple processors.

System parameters that must be adjusted prior to initialization

TAPEDEV

The TAPEDEV parameter specifies the device used to back up the dbspaces. During the
loading phase of your database, it is often a good idea to set this parameter to the NUL
device. After the data is loaded set the parameter to the proper tape device. The rationale
behind this is that the data is already backed up by the data source that you are loading it
from. Therefore, if a dbspace is lost to a disk failure, the data can be restored from the
original data source. Once the database is loaded, you can set it to your tape device.

TAPEDEV NUL

LTAPEDEV

The LTAPEDEV parameter specifies the tape device to which the ONTAPE utility backs
up the logical log files.

Set this to the NUL device. Once the server is up, you can set it to your tape device if you
intend to archive the log files.

LTAPEDEV NUL

NETTYPE

Set separate NETTYPE parameters to configure the poll threads for the shared memory
and TCP/IP network protocols. The settings below allow 20 local connections and 200
remote connections. The configuration of the NETTYPE parameter is discussed in detail
in the ‘Network virtual processors’ section later in this chapter. Set the NETTYPE
parameters to the expected number of local and remote connections, as in the example for
Windows 2000 below:

Windows/2000

NETTYPE olsoctcp,1,,NET

10 ArcSDE Configuration and Tuning Guide for Informix

Restarting the Informix Dynamic Server

To apply the changes made to the onconfig file of the Informix kernel, you must restart
the server.

Restarting the Informix service

The server is started and stopped from the Windows Service panel found on the control
panel. Open the Control Panel and double-click the Services icon. Highlight the
INFORMIX-Universal Server service and press the Stop button on the Services panel.
Press Yes when prompted if you really want to do this and then press the Start button to
restart the server. After a few seconds, the server should start up again; if it doesn’t, check
the %INFORMIXDIR%\online.log file to determine why the server won’t start.
Typographic errors in the onconfig file are the most common problems. Correct the
problem and restart the server.

Tuning disk I/O contention

Disk I/O contention can prove to be one of the more difficult challenges for a Database
Administrator (DBA) to overcome. Unlike memory and CPU issues that can be solved
by acquiring more of these resources once all tuning procedures have been exhausted, the
reduction of disk I/O contention must be solved through proper planning and
administration of the file system.

Beyond the possibility of acquiring faster disk drives and controllers, the only real way to
reduce disk I/O contention is to balance the I/O across the entire file system by
distributing files that experience a high frequency of I/O with those that do not.

RAID systems

Redundant Arrays of Inexpensive (or Independent) Disks (RAID) boost performance by
striping data into slices across multiple disks in a disk array. By spreading data across
multiple disks, all disks share the burden of I/O operations, thus reducing the chance of a
bottleneck occurring on one disk. RAID’s performance increases as you add disks to the

Chapter 2—Essential Informix configuring and tuning 11

array. The operating system and database will see only one volume, a logical
representation of the entire disk array.

In a simple configuration, you could create a single disk array of four disks and configure
one large data file within that RAID array. Your data would be striped across all four
disks evenly, reducing contention. The database’s transaction log should not occupy this
same array. This solution proves scalable as well—additional performance benefits can
be gained by adding disks to the array until performance increases begin to decline. More
complex configurations would include separate disk arrays for indexes, data tables, and
geometry data.

Creating the system dbspaces

In the section ‘Arranging your data’, which follows, you will learn how to create
dbspaces to store your business tables and indexes. Before you start creating these
dbspaces, however, create dbspaces to serve as temporary storage for the transitional
functions of the Informix server. Logical log files, physical log file, and temporary space
for sorting should occupy their own dbspace.

Depending on the available number of disks, try to spread the devices of the dbspaces
across your file system. Try to keep the devices of the physical and logical logs separate.
Either the physical log or the logical logs may share the same disk as the root device.

The temporary sorting devices (commonly referred to as temp devices) should be
separated from all other devices, if possible. These temp devices are used heavily during
the creation of the R-Tree index after data loading.

Therefore, it is a good rule of thumb to start with at least 200 MB of temporary storage
spread across at least two sorting devices to handle the loading of large datasets and their
associated R-Tree index building.

You may need to monitor the temporary space usage during the loading of large datasets
to make sure Informix does not run out and produce an error. If this happened, it would
typically leave the ArcSDE table in “load-only mode”.

Device Files

To create a device file on a Windows 2000 platform, use Explore to locate the directory
in which you want to create the device file and create a new text file. Rename the text file
to your device filename.

Create the device for the physical log.

phydbs.000

Create three devices for the logical logs.

log1dbs.000
log2dbs.000

12 ArcSDE Configuration and Tuning Guide for Informix

log3dbs.000

Create two devices for sorting.

temp1dbs.000
temp2dbs.000

For example, to create the physical log device file example above, right mouse click on
My Computer and select Explore from the list. Locate the proper directory. If the
directory does not exist, create it by selecting File>New>Folder from Explore. Rename
the folder with a right mouse click. While the cursor is on the folder, select Rename from
the list and rename the folder (or directory).

Once you have moved to the correct directory, select File>New>Text Document from the
Explore menu. Rename the document with a right mouse click while the cursor is on the
document by selecting Rename from the list. It is common for Informix device files to
have a .000 initial extension to distinguish them from other types of Windows 2000 files.

Make sure that these device files have read permissions for all and full control for the
Informix administrator account.

The Informix onspaces utility manages dbspaces. Use it to create the dbspaces and assign
them to the devices that you have just set up. The onspaces syntax varies slightly
depending on the kind of dbspace it is operating on. However, the basic syntax for
creating the system dbspaces is:

onspaces -c -d <dbspace_name> -p <path to device> -o <offset> \
 -s <size in kilobytes>

onspaces -c -t -d <dbspace_name> -p <path to device> -o <offset> \
 -s <size in kilobytes>

The -t flag is included to indicate that the dbspace will be used for sorting and other
temporary activities.

When creating a dbspace on the Windows 2000 platform, only the style of the pathname
changes. Start the onspaces and other Informix utilities from the INFORMIX-Universal
Server Command Line Utilities. To invoke this special MS–DOS® command line entry
window, press Start>Programs>INFORMIX®-Universal Server>Command Line
Utilities. The MS–DOS window runs the %INFORMIXDIR%\setenv.cmd Informix
system environment file. If you try to execute the Informix utilities from a regular MS–
DOS command window, you will receive errors unless you set the system environment
variables listed in the %INFORMIXDIR%\setenv.cmd file.

Create the first dbspace for logical logs
onspaces -c -d log1dbs -p D:\informix_data\log1dbs.000 -o 0 -s 125000

Create the second dbspace for the logical logs
onspaces -c -d log2dbs -p E:\informix_data\log2dbs.000 -o 0 -s 125000

Create the third dbspace for the logical logs
onspaces -c -d log3dbs -p E:\informix_data\log3dbs.000 -o 0 -s 125000

Chapter 2—Essential Informix configuring and tuning 13

Create the dbspace for the phydbs
onspaces -c -d phydbs -p C:\informix_data\phydbs.000 -o 0 -s 10000

Create the first temporary dbspace
onspaces -c -t -d temp1dbs -p F:\informix_data\temp1dbs.000 -o 0 -s 150000

Create the second temporary dbspace
onspaces -c -t -d temp2dbs -p G:\informix_data\temp2dbs.000 -o 0 -s 150000

Moving the physical log out of the root dbspace

Moving the physical log out of the root dbspace reduces the I/O contention. Simply
change the PHYDBS parameter in your onconfig file to the dbspace you have just
created for physical logging. In our example the PHYSDBS parameter would be set to
phydbs.

PHYSDBS phydbs

Increase the size of the PHYSFILE to use the space allocated to the physical log’s
dbspace. In the example, the phydbs dbspace is 10,000 kilobytes, allowing you to
increase the PHYSFILE to 9000. It cannot be increased to the size of the dbspace because
Informix uses a certain amount of space for overhead.

PHYSFILE 9000

Shut down and restart the Informix server to use the phydbs dbspace for physical logging.

Windows 2000 users stop and start the server from the Services panel (see ‘Restarting the
Informix Dynamic Server’ above).

Examine the end of the online.log file. An entry should exist stating that the physical
logging has been changed to the dbspace you specified.
Moving the logical logs out of the root dbspace

For the same reason you moved the physical log from the root dbspace, you must do the
same for the logical logs. First, make sure the LOGSMAX parameter in the onconfig file
is set high enough.

By default, the installation creates ten logs in the root dbspace on the Windows 2000
platform. To add 3 log files on a Windows 2000 platform, set LOGSMAX to at least 100.

Make sure you create enough logical logs to handle your longest transaction. Typically,
long transactions occur when you create or delete a large dataset or when you compress a
geodatabase. You must checkpoint your logical logs by backing them up before you
reach the long transaction high watermark percentage defined by the LTXHWM
parameter in your Informix onconfig file. You should not change either the LTXHWM
or LTXEHWM without the consent of an Informix technical support expert who is
familiar with the behavior of the Informix Spatial DataBlade. If a transaction fails to
complete and is rolled back because it reaches the long transaction high watermark, then
you do not have enough logical logs.

14 ArcSDE Configuration and Tuning Guide for Informix

To create the new logical logs, first set the server in quiescent mode by issuing the
onmode command with -s flag Remember to execute all Informix utilities from the
INFORMIX-Dynamic Server command line on the Windows 2000 platform, rather than
the normal DOS command window.

C:\Informix> onmode -s

To add logical log files to each of the dbspaces created for them, use the Informix
onparams utility. When you add the log files, make sure you alternate between at least
two dbspaces. This ensures that while one log file is being flushed from one disk drive
another can be written to another disk drive.

C:\Informix> onparams -a -d log1dbs
C:\Informix> onparams -a -d log2dbs
C:\Informix> onparams -a -d log3dbs

Activate the new logical logs by performing a zero-level archive with the Informix
ontape utility.

C:\Informix> ontape -s

Now you can delete the original 10 logical logs that reside on the root dbspace. First, you
must determine if one of the first 10 logical logs is the current one. Use the onstat -l
command to generate a list of the logical logs.

C:\Informix> onstat -l

The logical log is current if its flags column contains a C. Find this logical log and note
its number. If the number is between one and 10 on a Windows 2000 platform, you must
advance the log with the onmode -l utility.

C:\Informix> onmode -l

Repeat the onstat -l followed by the onmode -l utility until a logical log with a number
greater than 10 for Windows 2000, becomes current.

Then use the onparams -d utility to drop the logical logs in the root dbspace.

C:\Informix> onparams -d -l 1 -y
C:\Informix> onparams -d -l 2 -y
C:\Informix> onparams -d -l 3 -y
C:\Informix> onparams -d -l 4 -y
C:\Informix> onparams -d -l 5 -y
C:\Informix> onparams -d -l 6 -y
C:\Informix> onparams -d -l 7 -y
C:\Informix> onparams -d -l 8 -y
C:\Informix> onparams -d -l 9 -y
C:\Informix> onparams -d -l 10 -y

Use the ontape -s utility command to archive the change. The output of the onstat -l
utility should list only those log files that were added to the log1dbs, log2dbs and log3dbs
spaces. The output of the onstat -l output from a Windows 2000 platform should begin at
11.

Put the server back to online mode with the onmode -m utility.

Chapter 2—Essential Informix configuring and tuning 15

C:\Informix> onmode –m

Setting up the temporary dbspace

By default, Informix uses the root dbspace when it needs temporary space for sorting.
The creation of a large index, such as R-tree index can fill the root dbspace, resulting in a
server crash. Or, in the case of loading data using the ArcCatalog product, the creation of
the rtree index (the last step in loading data) will fail, and the layer loaded will remain in
load-only mode.

It is better then to control the location of the temporary space by using separate dbspaces
and adding chunks of space as necessary. Set the DBSPACETEMP parameter in the
onconfig file to the temporary dbspaces created earlier. Remember to use at least 2
dbspaces totaling 300 MB as a starting point. Then add chunks accordingly, making sure
that these chunks span different disks whenever possible.

DBSPACETEMP temp1dbs,temp2dbs

Restart the Informix server to set the temporary space in the server. On the Windows
2000 platform, the Informix server is restarted from the Services panel (see ‘Restarting
the Informix Dynamic Server’ above).

Examine the online.log file to ensure that the temporary space is set. You should see an
entry stating that the temporary files have been relocated from the root dbspace to the
dbspaces you assigned to the DBSPACETEMP parameter.

Creating the default smart large object dbspace

The Spatial DataBlade module writes the compressed geometry to the smart large object
whenever it is larger than 929 bytes. For this reason a default smart large object space or
sbspace must exist.

On the Windows 2000 platform, the default sbspace and syssbspace (found in the
onconfig file) are created during the installation of the server. You can add additional
chunks of sbspace to this default sbspace or create additional sbspaces to access through
the %SDEHOME%\etc\dbtune.sde file.

Allocating enough metadata within a smart large object sbspace

Make sure to also include enough space when creating both the sbspace and syssbspace
for system metadata. Informix automatically creates the system metadata when you
create a smart large object sbspace; however, it is usually a small percentage of the total
sbspace space.

If the smart large object sbspace uses all the space allocated to the metadata, Informix
returns an “out of smart large object dbspace” error after trying to store data even though
plenty of smart large object sbspace exists.

16 ArcSDE Configuration and Tuning Guide for Informix

Large datasets can require large amounts of smart large object metadata sbspace. Define
the amount of smart large object sbspace to allocate to the metadata with the -Ms option
of the following onspaces command when you create the sbspace.

C:\Informix> onspaces –c –S sblobdbs –g 1 –p
d:\ifmxdata\mailia\sblobdbs.000 –o 0 –s 350000 –Ms 50000

In this example, Informix allocates 50 MB of the total 350 MB of smart large object
sbspace to metadata in the smart large object dbspace sblobdbs. You can also allocate
space to the metadata when you add a chunk to the sbspace:

C:\Informix> onspaces –a sblobdbs –p d:\ifmxdata\mailia\sblob1dbs.000 –o 0
–s 350000 –Ms 50000

You can allocate all of the space to metadata when you add a chunk to smart large object
sbspaces by specifying the same values for the -Ms and -s flags:

C:\Informix> onspaces –a sblobdbs –p d:\ifmxdata\mailia\sblob1dbs.000 –o 0
–s 350000 –Ms 350000

The metadata portion of a smart large object can be monitored with the “dbstat –d”
command. Check the metadata available space for each smart large object sbspace.

Using smart large object sbspaces

In order to avoid the possibility of running out of default smart large object sbspace to
hold both spatial column data or annotation column data, create separate smart large
object sbspaces. Keep the default sbspace and syssbspace small for Informix system use
only. You should make the sbspace and syssbspace separate smart large object sbspaces,
but it is not necessary.

Smart large object sbspaces can be assigned to spatial columns of annotation columns
using the DBTUNE table S_STORAGE parameter. For more information on the
S_STORAGE parameter, see chapter 3, ‘Configuring DBTUNE storage parameters’.

Smart large object sbpace at ArcSDE 9

At Spatial Database Engine™ (SDE®) 3.0.2.2 for Informix, the SDE large binary
datatype SE_BLOB_TYPE was stored as the Informix datatype BYTE.

For ArcSDE 9 for Informix, the ArcSDE large binary datatype is stored as the Informix
BLOB data type.

Since BLOB is stored in the smart large object BLOB spaces, you need to specify the
default smart large object BLOB space in the ONCONFIG file and make sure it is large
enough to hold your large binary data. Make sure you allocate enough space for the
sbspace metadata.

The preferred alternative to using the default smart large object sbspace is to create
separate smart large object sbspaces and control the placement of spatial columns and

Chapter 2—Essential Informix configuring and tuning 17

annotation columns into these smart BLOBs using the storage parameters of the
DBTUNE table. See Chapter 3, ‘Configuring DBTUNE storage parameters’, for details.

Arranging your data

Proper arrangement of tables and indexes on the file system will help to minimize disk
I/O bottlenecks. Placement of these data objects requires that you estimate their size and
create the dbspaces they will be stored in. You add the dbspaces names along with a list
of other data object storage parameters to a DBTUNE table configuration keyword. To
learn more about the storage parameters of the DBTUNE table, see chapter 3,
‘Configuring DBTUNE storage parameters’. The ArcSDE server uses the parameters
when it creates the data objects with the ArcSDE administration commands.

Creating the dbspaces and sbspaces

A dbspace is a logical unit of storage that Informix uses to store tables and indexes. An
sbspace is a logical unit of storage designed specifically to store smart large objects. Both
are created and maintained by the onspaces command. Both may have one or more
physical units of storage assigned to them. The physical units of storage are called
chunks. Chunks may be either raw devices or cooked files.

Raw devices are not recommended on some platforms because the advantage is
negligible from an ease-of-use standpoint. Consult the INFORMIX-Dynamic Server
Administrator’s Guide for advice on when to use a raw device or a cooked file.

The size and placement of dbspaces and sbspaces depend on the tables and indexes stored
within them. Here are some basic guidelines to help determine the size and placement of
your tables, indexes, and smart large objects. Given the number and size of the disk
drives available on your system, you may not be able to follow these guidelines to the
letter, but follow them as best you can, keeping in mind that the goal is to minimize disk
I/O contention.

Separate indexes onto a different disk drive from the tables they index

If the Informix optimizer determines that an index will speed up the execution of a query,
it will read pages of the index into memory, search the pages for a match, and read
matching table records from disk into memory. Storing the index and table on the same
disk forces the disk head to unproductively travel back and forth between the index and
the table. Arranging the tables and indexes on separate disks allows multiple disk heads
to simultaneously read from the index and the table reducing disk head travel and seek
time.

18 ArcSDE Configuration and Tuning Guide for Informix

Separate smart large objects from their associated spatial tables

Spatial data too large to be stored inline with other table data is written to the designated
smart large object. As with indexes, smart large object sbspaces should be stored on a
disk separate from both the table and the indexes.

Place high-use tables in the middle disk drive partitions to minimize disk head
movement

Placing high-use tables in the middle partitions of a disk drive reduces disk head travel.
Based on the law of averages, arranging data so that the disk head spends most of its time
in the middle partition reduces travel. Consult your operating system configuration
manual for directions on partitioning your disk drives. Allocate a single chunk to the
partition and assign the dbspace of the high-use tables to it.

Separate large high-use tables on to different disk drives

Balance disk I/O by spreading large high-use tables throughout the file system. Discuss
the application model with the designers to determine which tables will be accessed most.
Arrange these tables on separate disks to ensure equal employment of disk heads and
controllers.

Group smaller tables together into dbspaces by usage

Creating a separate dbspace for each table in your database is unrealistic. Each dbspace
has an associated overhead cost, and it’s cumbersome to manage a large number of
dbspaces. Group smaller tables together into a single dbspace. You should also group the
related indexes into another dbspace so they may be placed on a separate disk drive.

Grouping the smaller tables by usage into separate dbspaces allows you to place the
high-use smaller tables into the middle partitions.

Optimize extent sizes

Estimating the size of your tables and indexes allows you to allocate the initial extent to
contain the entire data object. For data objects grouped together into the same dbspace,
this prevents their extents from becoming interleaved. Interleaved extents can reduce
performance if the disk head has to seek over the extents of other tables.

Assign individual dbspaces to large tables

Large tables should have their own dbspaces. This allows you to move these tables easily
throughout the file system. Some tables may be so large that the dbspace assigned to
them requires more than one chunk. If so, it’s a good idea to separate the chunks onto
different disk drives and separate controllers if possible. Doing so allows multiple access
to data of the same table and reduces overall seek time.

Chapter 2—Essential Informix configuring and tuning 19

Using onspaces to create dbspaces and sbspaces

The Informix onspaces command creates and maintains dbspaces and sbspaces. Run the
onspaces command as the informix user.

Dbspaces

Dbspaces are created with the onspaces command using the following basic syntax:

onspaces -c -d <dbspace name> -p <pathname> -o <offset> \
 -s <size in kilobytes>

The dbspace name must be unique within the database. The pathname specifies the
location of either a raw device or a cooked file. If it is a cooked file, the file must exist,
and the informix user and group must have read and write permissions to the file. On
Windows 2000 platforms, use Explore to create an empty text file in the appropriate
directory.

In this example, a cooked file d:\Ifmxdata\mailia\roadsdbs1.000 was created and its
permissions are set to read and write access for the informix user and group. The
onspaces command creates the roadsdbs dbspace and allocates 50,000 kilobytes to the
d:\Ifmxdata\mailia\roadsdbs1.000 for its initial chunk.

C:\Informix> onspaces -c -d roadsdbs -p d:\Ifmxdata\mailia\roadsdbs1.000 -
o 0 -s 50000

Additional chunks may be added to a dbspace with

C:\Informix> onspaces -a <dbspace name> -p <pathname> -o <offset> -s <size
in kilobytes>

In this example, the 50,000 KB chunk d:\Ifmxdata\mailia\roadsdbs2.000 is added to the
dbspace roadsdbs2.

C:\Informix> onspaces -a roadsdbs -p d:\Ifmxdata\mailia\roadsdbs2.000 -o 0
-s 50000

Sbspaces

Smart large object spaces are created in the same fashion as dbspaces. The -S flag directs
the onspaces command to create a smart large object space instead of a regular dbspace.
The basic syntax for creating a smart large object space is:

C:\Informix> onspaces -c -S <sbspace name> -p <pathname> -o <offset> -s
<size in kilobytes>

In this example, the sbspace roadsblob is created with the 10,000 KB initial chunk
d:\Ifmxdata\mailia\roadsblobdbs1.000.

C:\Informix> onspaces -c -S roadsblob -g 1 -p
d:\Ifmxdata\mailia\roadsblobdbs1.000 -o 0 -s 10000

You can add additional chunks to the smart large object space with the following
onspaces syntax. You will notice that the -S flag is not required when adding a chunk.

20 ArcSDE Configuration and Tuning Guide for Informix

C:\Informix> onspaces -a <sbspace name> -p <pathname> -o <offset> -s <size
in kilobytes>

In this example, the d:\Ifmxdata\mailia\roadsblobs2.000 -o 0 -s 10000 chunk is added to
the smart large object space roadsblob.

C:\Informix> onspaces -a roadsblob -p d:\Ifmxdata\mailia\roadsblobs2.000 -
o 0 -s 10000

Note: The logging of smart large objects is independent of the rest of the Informix
database. By default, smart large objects are not logged.

If users are going to load data for read-only purposes, there is no need to have smart
BLOB logging enabled. Simply take a level 0 archive after loading the data and
recoverability is ensured.

However, for data that is manipulated additional steps must be taken to ensure
recoverability. Database and smart BLOB logging must be enabled following the initial
data load. After you enable database and smart BLOB logging, a level 0 archive of the
instance must be taken to ensure recoverability.

To turn logging on, add -Df LOGGING=ON to the onspaces command that creates the
sbspace.

C:\Informix> onspaces -a <sbspace name> -p <pathname> -o <offset> -s <size in
kilobytes> -Df LOGGING=ON

The logging mode of an sbspace and the smart BLOBs it contains can be changed with
onspaces:

C:\Informix> onspaces -ch <sbspace name> -Df "LOGGING=<logging mode>"

UNIX systems

Updating the onconfig file

Informix maintains its configuration parameters in the onconfig file located in the
$INFORMIXDIR/etc on UNIX. The parameters of this file control the server's memory
use, the size and number of log files, temporary space, the location of the error logs, and
much more. The onconfig file is read whenever the Informix server is started. So changes
to the parameter require that you restart the server.

Naming the onconfig file

The standard onconfig file, onconfig.std, contains the default settings of the Informix
parameters. Do not edit this file; instead, preserve it as a record of the default settings.

Chapter 2—Essential Informix configuring and tuning 21

On UNIX systems, manually copy the onconfig.std file to a new file name such as
onconfig.sde.

For the remainder of this document, when the onconfig file is mentioned, the
$INFORMIXDIR/etc/<your copied file> on UNIX is being referred to.

On UNIX systems, add the ONCONFIG system variable to the INFORMIX .cshrc or
.profile file. For example, if you have named your onconfig file onconfig.sde, you would
set the ONCONFIG variable to that.

setenv ONCONFIG onconfig.sde

Some important onconfig parameters

The following is a list of some of the more important onconfig parameters whose default
values you should change to improve the performance of your Informix server when
using it with ArcSDE.

BUFFERS

The BUFFERS parameter file controls the size of the regular buffers, the area of memory
in which Informix stores the most recently used page of data. The first reader reads the
page from disk, while subsequent readers read the page from the regular buffer until it is
paged out of memory. A page will be paged out of the regular buffer if it is has been
unused over a period of time and the memory is needed to hold other pages that are being
used.

Increase the number of data buffers to 2,000 or 25 percent of your physical RAM,
whichever is greater. BUFFERS is specified in pages. If your pages are 2 kilobytes (page
size can be determined with the Informix command onstat -b) and your physical RAM is
256 MB, BUFFERS would be calculated as follows:

BUFFERS = <physical RAM converted to kilobytes> * 25% /
 <page size in kilobytes>
 = (256 * 1024) * 0.25 / 2
 = 32768

BUFFERS 32768

LOGSIZE

The LOGSIZE parameter controls the default size of the logical logs. The size of the
logical logs can be specified when they are created with the INFORMIX onparams
utility. However, if the size is not specified, LOGSIZE is used.

Set the logical log file size to 100,000 kilobytes. When the logical logs are moved out of
the rootdbs, they will be created with this size.

LOGSIZE 100000

22 ArcSDE Configuration and Tuning Guide for Informix

LOG_BACKUP_MODE

The LOG_BACKUP_MODE parameter specifies the mode in which logical logs are
backed up. This mode can be either continuous or manual. Continuous mode will allow
you to automatically do logical log backups when required.

LOGSMAX

The LOGSMAX parameter specifies the maximum number of logical logs that may be
created. Increase the LOGSMAX parameter so that you can create new logical logs in
order to move them out of the rootdbs.

Set the maximum number of logical log files to 100.

LOGSMAX 100

CLEANERS

CLEANERS specifies the page cleaner threads started by the INFORMIX instance. Page
cleaner threads periodically wake up and perform background writes of batches of dirty
pages held in the regular buffers to disk.

Set the number of page cleaners to 6 or the number of disks that contain frequently
accessed data, whichever is higher.

CLEANERS 6

STACKSIZE

STACKSIZE specifies the amount of stack allocated to the INFORMIX instance.
Although for most applications Informix recommends that this parameter be left at its
default value of 32 (kilobytes), for ArcSDE it is important to increase the size of this
parameter to 64 (kilobytes) in support of the Informix Spatial DataBlade user-defined
datatypes accessed by ArcSDE.

Increase the initial stack size of each thread to 64 kilobytes. Set the STACKSIZE
parameter to 64.

STACKSIZE 64

RA_PAGES

This read-ahead parameter sets the number of data and index pages that are cached in the
regular buffers whenever a sequential scan of one or more tables occurs.

Set the read-ahead pages to 125.

RA_PAGES 125

Chapter 2—Essential Informix configuring and tuning 23

RA_THRESHOLD

RA_THRESHOLD, the read-ahead threshold, specifies the number of remaining unread
pages that triggers another call to read in more pages from disk.

Set the number of unprocessed pages that trigger another read ahead to 85.

RA_THRESHOLD 85

DUMPDIR

The DUMPDIR parameter specifies the location of the dump directory where error log
files are written in the event of an assertion failure.

Leave the dump directory set to tmp if you have adequate space there. However, you can
create a tmp directory under the Informix installation directory and set DUMPDIR to
that. Should an assert failure occur, the diagnostic files are one directory below the
online.log file that references them.

DUMPDIR /usr/informix/tmp /* UNIX

RESIDENT

The RESIDENT parameter specifies which portion of the INFORMIX instances shared
memory can be swapped out of the operating system's shared memory. Allowing as
many portions of the instance’s shared memory as possible to remain resident eliminates
a large amount of I/O and context switching of the instance’s memory structures.

Setting the RESIDENT parameter to -1 keeps as many of the instance’s memory
structures as possible resident, given the amount of physical memory and system
resources available.

RESIDENT –1

MULTIPROCESSOR

The MULTIPROCESSOR parameter specifies whether the Informix Server machine has
one or multiple processors which to use.

Set to 0 if the Informix Server machine has only one processor, and set to 1 if there are
multiple processors.

System parameters that must be adjusted prior to initialization

ROOTPATH

The ROOTPATH parameter specifies the initial chunk of the root dbspace. The default
setting /dev/online_root causes the initialization of the INFORMIX instance to fail unless
you have actually created the device beforehand. Change the default setting from

24 ArcSDE Configuration and Tuning Guide for Informix

/dev/online_root path to the device of rootdbs space you have created. For example, after
creating the device with the UNIX touch command as the informix user and setting its
permissions to 660 with the UNIX chmod command, set the ROOTPATH to the full
pathname of the root dbspace chunk file. If you are using a raw device, set the
ROOTPATH to the full pathname of the link to the raw device.

ROOTPATH /disk1/informix_data/rootdbs

MSGPATH

The MSGPATH parameter specifies the full pathname to the message log file that the
database server will write status and diagnostic messages to.

Update MSGPATH to reflect the location of your Informix installation.

MSGPATH /disk1/informix/online.log

ALARMPROGRAM

The ALARMPROGRAM parameter specifies the full path of the script that will be
executed when a log full event is issued. Set the parameter to log_full.sh to have the
logical logs backed up automatically and to no_log.sh if you intend to back up the logs
manually.

Update ALARMPROGRAM to reflect the location of your Informix installation.

ALARMPROGRAM /disk1/informix/etc/log_full.sh

TAPEDEV

The TAPEDEV parameter specifies the device used to back up the dbspaces. During the
loading phase of your database, it is often a good idea to set this parameter to the
/dev/null device. After the data is loaded, set the parameter to the proper tape device. The
rationale behind this is that the data is already backed up by the data source that you are
loading it from. Therefore, if a dbspace is lost to a disk failure, the data can be restored
from the original data source. Once the database is loaded, you can set it to your tape
device.

TAPEDEV /dev/null

LTAPEDEV

The LTAPEDEV parameter specifies the tape device to which the ONTAPE utility backs
up the logical log files.

Set this to the /dev/null device. Once the server is up, you can set it to your tape device if
you intend to archive the log files.

LTAPEDEV /dev/null

Chapter 2—Essential Informix configuring and tuning 25

DBSERVERNAME

The DBSERVERNAME parameter specifies the unique name of your database server.
The dbservername is assigned a communications protocol in the sqlhosts file. Typically
the dbservername is set to the database server name that is associated with the shared
memory communications protocol. The DBSERVERALIASES parameter normally
holds the database server name associated with the TCP/IP communications protocol.

Set this value to the lowercase name of your shared memory server.

DBSERVERNAME gis

DBSERVERALIASES

Set this value to the lowercase name of your TCP/IP server.

DBSERVERALIASES gis_net

NETTYPE

Set separate NETTYPE parameters to configure the poll threads for the shared memory
and TCP/IP network protocols. The settings below allow 20 local connections and 200
remote connections. The configuration of the NETTYPE parameter is discussed in detail
in the ‘Network virtual processors’ section later in this chapter. Set the NETTYPE
parameters to the expected number of local and remote connections, as in the example for
Solaris 2 below:

Solaris 2

NETTYPE ipcshm,1,20,CPU
NETTYPE tlitcp,2,100,NET

Following is the NETTYPE parameters for UNIX configurations:

HP

NETTYPE ipcstr,1,20,CPU
NETTYPE soctcp,2,100,NET

IBM

NETTYPE ipcshm,1,20,CPU
NETTYPE soctcp,2,100,NET

Restarting the INFORMIX server

To restart the INFORMIX server on the UNIX system first shut the server down by
issuing the onmode -ky command at the UNIX prompt while logged in as the informix
user.

26 ArcSDE Configuration and Tuning Guide for Informix

informix> onmode -ky

Then restart the server with the oninit command.

informix> oninit

Tuning disk I/O contention

Disk I/O contention can prove to be one of the more difficult challenges for a DBA to
overcome. Unlike memory and CPU issues that can be solved by acquiring more of these
resources once all tuning procedures have been exhausted, the reduction of disk I/O
contention must be solved through proper planning and administration of the file system.

Beyond the possibility of acquiring faster disk drives and controllers, the only real way to
reduce disk I/O contention is to balance the I/O across the entire file system by
distributing files that experience a high frequency of I/O with those that do not.

RAID systems

Redundant Arrays of Inexpensive (or Independent) Disks (RAID) boost performance by
striping data into slices across multiple disks in a disk array. By spreading data across
multiple disks, all disks share the burden of I/O operations, thus reducing the chance of a
bottleneck occurring on one disk. RAID’s performance increases as you add disks to the
array. The operating system and database will see only one volume, a logical
representation of the entire disk array.

In a simple configuration, you could create a single disk array of four disks and configure
one large data file within that RAID array. Your data would be striped across all four
disks evenly, reducing contention. The database’s transaction log should not occupy this
same array. This solution proves scalable as well—additional performance benefits can
be gained by adding disks to the array until performance increases begin to decline. More
complex configurations would include separate disk arrays for indexes, data tables, and
geometry data.

Creating the system dbspaces

In the section ‘Arranging your data’, which follows, you will learn how to create
dbspaces to store your business tables and indexes. Before you start creating these
dbspaces, however, create dbspaces to serve as temporary storage for the transitional
functions of the Informix server. Logical log files, physical log files, and temporary space
for sorting should occupy their own dbspace.

Depending on the available number of disks, try to spread the devices of the dbspaces
across your file system. Try to keep the devices of the physical and logical logs separate.
Either the physical log or the logical log may share the same disk as the root device.

Chapter 2—Essential Informix configuring and tuning 27

The temporary sorting devices (commonly referred to as temp devices) should be
separated from all other devices, if possible. These temp devices are used heavily during
the creation of the R-Tree index after data loading.

Therefore, it is a good rule of thumb to start with at least 300 MB of temporary storage
spread across at least two sorting devices to handle the loading of large datasets and their
associated R-Tree index building.

You may need to monitor the temporary space usage during the loading of large datasets
to make sure Informix does not run out and produce an error. If this happened, it would
typically leave the ArcSDE table in “load-only mode”.

Here is a UNIX example of creating the physical log, logical logs, and temporary
dbspace devices. When these devices are first created, they are empty and occupy zero
space on the disk. After the dbspaces are assigned to them by the onspaces command, the
devices immediately grow to the size allocated by the dbspace.

Note: These examples use cooked devices, which do not provide the best performance on
a UNIX system. For best performance you should create all dbspaces on a UNIX raw
device. Consult the INFORMIX-Universal Server Administrator’s Guide for advice on
creating dbspaces on raw devices.

Create the device for the physical log.

gis> touch /gis1/informix_data/phydbs
gis> chmod 660 /gis1/informix_data/phydbs

Create three devices for the logical logs.

gis> touch /gis2/informix_data/log1dbs
gis> chmod 660 /gis2/informix_data/log1dbs
gis> touch /gis3/informix_data/log2dbs
gis> chmod 660 /gis3/informix_data/log2dbs
gis> touch /gis3/informix_data/log3dbs
gis> chmod 660 /gis3/informix_data/log3dbs

Create two devices for sorting.

gis> touch /gis4/informix_data/temp1dbs
gis> chmod 660 /gis4/informix_data/temp1dbs
gis> touch /gis5/informix_data/temp2dbs
gis> chmod 660 /gis5/informix_data/temp2dbs

The Informix onspaces utility manages dbspaces. Use it to create the dbspaces and assign
them to the devices that you have just set up. The onspaces syntax varies slightly
depending on the kind of dbspace it is operating on. However, the basic syntax for
creating the system dbspaces is:

onspaces -c -d <dbspace_name> -p <path to device> -o <offset> \
 -s <size in kilobytes>

onspaces -c -t -d <dbspace_name> -p <path to device> -o <offset> \
 -s <size in kilobytes>

28 ArcSDE Configuration and Tuning Guide for Informix

The -t flag is included to indicate that the dbspace will be used for sorting and other
temporary activities.

In the UNIX example below, dbspaces are created for the logical logs, physical log, and
temporary space.

Create the first dbspace for logical logs
onspaces -c -d log1dbs -p /gis2/informix_data/log1dbs -o 0 -s 125000

Create the second dbspace for the logical logs
onspaces -c -d log2dbs -p /gis3/informix_data/log2dbs -o 0 -s 125000

Create the third dbspace for the logical logs
onspaces -c -d log3dbs -p /gis3/informix_data/log3dbs -o 0 -s 125000

Create the dbspace for the phydbs
onspaces -c -d phydbs -p /gis1/informix_data/phydbs -o 0 -s 10000

Create the first temporary dbspace
onspaces -c -t -d temp1dbs -p /gis4/informix_data/temp1dbs -o 0 -s 150000

Create the second temporary dbspace
onspaces -c -t -d temp2dbs -p /gis5/informix_data/temp2dbs -o 0 -s 150000

Moving the physical log out of the root dbspace

Moving the physical log out of the root dbspace reduces the I/O contention. Simply
change the PHYDBS parameter in your onconfig file to the dbspace you have just
created for physical logging. In our example the PHYSDBS parameter would be set to
phydbs.

PHYSDBS phydbs

Increase the size of the PHYSFILE to use the space allocated to the physical log’s
dbspace. In the example, the phydbs dbspace is 10,000 kilobytes, allowing us to increase
the PHYSFILE to 9000. It cannot be increased to the size of the dbspace because
Informix uses a certain amount of space for overhead.

PHYSFILE 9000

Shut down and restart the Informix server to use the phydbs dbspace for physical logging.

UNIX users use the onmode command to shut down the server and the oninit command
to start it.

gis> onmode -ky

gis> oninit

Moving the logical logs out of the root dbspace

For the same reason you moved the physical log from the root dbspace, you must do the
same for the logical logs. First, make sure the LOGSMAX parameter in the onconfig file
is set high enough.

Chapter 2—Essential Informix configuring and tuning 29

By default, the installation creates six logs in the root dbspace on a UNIX platform. To
add 20 log files to an Informix server on a UNIX platform, LOGSMAX must be set to at
least 26.

Make sure you create enough logical logs to handle your longest transaction. Typically,
long transactions occur when you create or delete a large dataset or when you compress a
geodatabase. You must checkpoint your logical logs by backing them up before you
reach the long transaction high watermark percentage defined by the LTXHWM
parameter in your Informix onconfig file. You should not change either the LTXHWM
or LTXEHWM without the consent of an Informix technical support expert who is
familiar with the behavior of the Informix Spatial DataBlade. If a transaction fails to
complete and is rolled back because it reaches the long transaction high watermark, then
you do not have enough logical logs.

To create the new logical logs, first set the server in quiescent mode by issuing the
onmode command with -s flag.

gis> onmode -s

To add logical log files to each of the dbspaces created for them, use the Informix
onparams utility. When you add the log files, make sure you alternate between at least
two dbspaces. This ensures that while one log file is being flushed from one disk drive,
another can be written to on another disk drive.

gis> onparams -a -d log1dbs
gis> onparams -a -d log2dbs
gis> onparams -a -d log3dbs

Activate the new logical logs by performing a zero-level archive with the Informix
ontape utility.

gis> ontape -s

Now you can delete the original six logical logs that reside on the root dbspace. First, you
must determine if one of the first six logical logs is the current one. Use the onstat -l
command to generate a list of the logical logs.

gis> onstat -l

The logical log is current if its flags column contains a C. Find this logical log and note
its number. If the number is between one and six on a UNIX platform, you must advance
the log with the onmode -l utility.

gis> onmode -l

Repeat the onstat -l followed by the onmode -l utility until a logical log with a number
greater than six for a UNIX platform, becomes current.

Then use the onparams -d utility to drop the logical logs in the root dbspace.

gis> onparams -d -l 1 -y
gis> onparams -d -l 2 -y
gis> onparams -d -l 3 -y
gis> onparams -d -l 4 -y
gis> onparams -d -l 5 -y

30 ArcSDE Configuration and Tuning Guide for Informix

gis> onparams -d -l 6 -y

Use the ontape -s utility command to archive the change. The output of the onstat -l
utility should list only those log files that were added to the log1dbs, log2dbs, and
log3dbs spaces. The output of the onstat -l on the UNIX platform should begin with log
file number 7.

Put the server back to online mode with the onmode -m utility.

gis> onmode –m

Setting up the temporary dbspace

By default, Informix uses the root dbspace when it needs temporary space for sorting.
The creation of a large index (such as R-tree index) can fill the root dbspace, resulting in
a server crash. Or, in the case of loading data using the ArcCatalog product, the creation
of the rtree index (the last step in loading data) will fail, and the layer loaded will remain
in load-only mode.

It is better to control the location of the temporary space by using separate dbspaces and
adding chunks of space as necessary. Set the DBSPACETEMP parameter in the onconfig
file to the temporary dbspaces created earlier. Remember to use at least two dbspaces
totaling 300 MB as a starting point. Then add chunks accordingly, making sure that these
chunks span different disks whenever possible.

DBSPACETEMP temp1dbs,temp2dbs

Restart the Informix server to set the temporary space in the server. On UNIX platforms
the onmode -ky command shuts down the server and the oninit command starts it again.

gis> onmode -ky
gis> oninit

Examine the online.log file to ensure that the temporary space is set. You should see an
entry stating that the temporary files have been relocated from the root dbspace to the
dbspaces you assigned to the DBSPACETEMP parameter.

Creating the default smart large object dbspace

The Spatial DataBlade module writes the compressed geometry to the smart large object
whenever it is larger than 929 bytes. For this reason a default smart large object space, or
sbspace, must exist.

On the UNIX platform, an sbspace must be created. Create the device for the sbspace. On
a UNIX platform this is done with the touch and chmod commands.

gis> touch /gis6/informix_data/sblobdbs
gis> chmod 660 /gis6/informix_data/sblobdbs

Use the onspaces utility to create the sbspace. The -S flag directs the onspaces utility to
create an sbspace to store a smart large object. Set the -g flag to 1.

Chapter 2—Essential Informix configuring and tuning 31

onspaces -c -S sblobdbs -g 1 -p /gis6/informix_data/sblobdbs -o 0 -s
300000

Set the default smart large object space parameter SBSPACENAME in the onconfig file
to the sbspace you created.

Restart the Informix server to set the default sbspace by invoking the onmode -ky utility
to shut down the server followed by the oninit utility to start it again.

Check the online.log file; look for a message stating that the default smart large object
space has been changed to the sbspace you specified in the onconfig file.

Allocating enough metadata within a smart large object sbspace

Make sure to also include enough space when creating both the sbspace and syssbspace
for system metadata. Informix automatically creates the system metadata when you
create a smart large object sbspace; however, it is usually a small percentage of the total
sbspace space.

If the smart large object sbspace uses all the space allocated to the metadata, Informix
returns an “out of smart large object dbspace” error after trying to store data even though
plenty of smart large object sbspace exists.

Large datasets can require large amounts of smart large object metadata sbspace. Define
the amount of smart large object sbspace to allocate to the metadata with the -Ms option
of the following onspaces command when you create the sbspace.

gis> onspaces –c –S sblobdbs –g 1 –p /gis1/ifmxdata/mailia/sblobdbs –o 0 –
s 350000 –Ms 50000

In this example, Informix allocates 50 MB of the total 350 MB of smart large object
sbspace to metadata in the smart large object dbspace sblobdbs. You can also allocate
space to the metadata when you add a chunk to the sbspace:

gis> onspaces –a sblobdbs –p /gis1/ifmxdata/mailia/sblob1dbs –o 0 –s
350000 –Ms 50000

You can allocate all of the space to metadata when you add a chunk to smart large object
sbspaces by specifying the same values for the -Ms and -s flags:

gis> onspaces –a sblobdbs –p /gis1/ifmxdata/mailia/sblob1dbs –o 0 –s
350000 –Ms 350000

The metadata portion of a smart large object can be monitored with the “dbstat –d”
command. Check the metadata available space for each smart large object sbspace.

Using smart large object sbspaces

In order to avoid the possibility of running out of default smart large object sbspace to
hold both spatial column data or annotation column data, create separate smart large
object sbspaces. Keep the default sbspace and syssbspace small for Informix system use

32 ArcSDE Configuration and Tuning Guide for Informix

only. You should make the sbspace and syssbspace separate smart large object sbspaces,
but it is not necessary.

Smart large object sbspaces can be assigned to spatial columns or annotation columns
using the DBTUNE table S_STORAGE parameter. For more information on the
S_STORAGE parameter, see chapter 3, ‘Configuring DBTUNE storage parameters’.

Smart large object space at ArcSDE 9

At Spatial Database Engine (SDE) 3.0.2.2 for Informix, the SDE large binary datatype
SE_BLOB_TYPE was stored as the Informix datatype BYTE.

For ArcSDE 9 for Informix, the ArcSDE large binary datatype is stored as the Informix
BLOB data type.

Since BLOB is stored in the smart large object BLOB spaces, you need to specify the
default smart large object BLOB space in the ONCONFIG file and make sure it is large
enough to hold your large binary data. Make sure you allocate enough space for the
sbspace metadata.

The preferred alternative to using the default smart large object sbspace is to create
separate smart large object sbspaces and control the placement of spatial columns and
annotation columns into these smart BLOBs using the storage parameters of the
DBTUNE table. See Chapter 3, ‘Configuring DBTUNE storage parameters’, for details.

Arranging your data

Proper arrangement of tables and indexes on the file system will help to minimize disk
I/O bottlenecks. Placement of these data objects requires that you estimate their size and
create the dbspaces they will be stored in. You add the dbspaces, names along with a list
of other data object storage parameters to a DBTUNE table configuration keyword. To
learn more about the storage parameters of the DBTUNE table, see chapter 3,
‘Configuring DBTUNE storage parameters’. The ArcSDE server uses the parameters
when it creates the data objects with the ArcSDE administration commands.

Creating the dbspaces and sbspaces

A dbspace is a logical unit of storage that Informix uses to store tables and indexes. An
sbspace is a logical unit of storage designed specifically to store smart large objects. Both
are created and maintained by the onspaces command. Both may have one or more
physical units of storage assigned to them. The physical units of storage are called
chunks. Chunks may be either raw devices or cooked files.

Informix recommends the use of raw devices on UNIX platforms because they provide
faster access and higher reliability in the event of a system failure. On UNIX platforms

Chapter 2—Essential Informix configuring and tuning 33

cooked files are adequate for demonstrations and storing tables that are infrequently
updated.

The size and placement of dbspaces and sbspaces depend on the tables and indexes stored
within them. Here are some basic guidelines to help determine the size and placement of
your tables, indexes, and smart large objects. Given the number and size of the disk
drives available on your system, you may not be able to follow these guidelines to the
letter, but follow them as best you can, keeping in mind that the goal is to minimize disk
I/O contention.

Separate indexes onto a different disk drive from the tables they index

If the Informix optimizer determines that an index will speed up the execution of a query,
it will read pages of the index into memory, search the pages for a match, and read
matching table records from disk into memory. Storing the index and table on the same
disk forces the disk head to unproductively travel back and forth between the index and
the table. Arranging the tables and indexes on separate disks allows multiple disk heads
to simultaneously read from the index and the table, reducing disk head travel and seek
time.

Separate smart large objects from their associated spatial tables

Spatial data too large to be stored inline with other table data is written to the designated
smart large object. As with indexes, smart large object sbspaces should be stored on a
disk separate from both the table and the indexes.

Place high-use tables in the middle disk drive partitions to minimize disk head
movement

Placing high-use tables in the middle partitions of a disk drive reduces disk head travel.
Based on the law of averages, arranging data so that the disk head spends most of its time
in the middle partition reduces travel. Consult your operating system configuration
manual for directions on partitioning your disk drives. Allocate a single chunk to the
partition and assign the dbspace of the high-use tables to it.

Separate large high-use tables on to different disk drives

Balance disk I/O by spreading large high-use tables throughout the file system. Discuss
the application model with the designers to determine which tables will be accessed most.
Arrange these tables on separate disks to ensure equal employment of disk heads and
controllers.

Group smaller tables together into dbspaces by usage

Creating a separate dbspace for each table in your database is unrealistic. Each dbspace
has an associated overhead cost, and it’s cumbersome to manage a large number of

34 ArcSDE Configuration and Tuning Guide for Informix

dbspaces. Group smaller tables together into a single dbspace. You should also group the
related indexes into another dbspace so they may be placed on a separate disk drive.

Grouping the smaller tables by usage into separate dbspaces allows you to place the
high-use smaller tables into the middle partitions.

Optimize extent sizes

Estimating the size of your tables and indexes allows you to allocate the initial extent to
contain the entire data object. For data objects grouped together into the same dbspace
this prevents their extents from becoming interleaved. Interleaved extents can reduce
performance if the disk head has to seek over the extents of other tables.

Assign individual dbspaces to large tables

Large tables should have their own dbspaces. This allows you to move these tables easily
throughout the file system. Some tables may be so large that the dbspace assigned to
them requires more than one chunk. If so, it’s a good idea to separate the chunks onto
different disk drives and separate controllers if possible. Doing so allows multiple access
to data of the same table and reduces overall seek time.

Using onspaces to create dbspaces and sbspaces

The Informix onspaces command creates and maintains dbspaces and sbspaces. Run the
onspaces command as the informix user.

Dbspaces

Dbspaces are created with the onspaces command using the following basic syntax:

gis> onspaces -c -d <dbspace name> -p <pathname> -o <offset> \
 -s <size in kilobytes>

The dbspace name must be unique within the database. The pathname specifies the
location of either a raw device or a cooked file. If it is a cooked file, the file must exist,
and the informix user and group must have read and write permissions to the file. On
UNIX platforms, before you invoke the onspaces command, use the touch and chmod
commands to create the file and set the permissions.

In this example the UNIX touch command creates the cooked file
/gis6/informix_ck/roadsdbs1 and the chmod command changes its permissions to read
and write access for the informix user and group. The onspaces command creates the
roadsdbs dbspace and allocates 50,000 kilobytes to the /gis6/informix_ck/roadsdbs1 for
its initial chunk.

gis> touch /gis6/informix_ck/roadsdbs1
gis> chmod 660 /gis6/informix_ck/roadsdbs1
gis> onspaces -c -d roadsdbs -p /gis6/informix_ck/roadsdbs1 -o 0 -s 50000

Additional chunks may be added to a dbspace with

Chapter 2—Essential Informix configuring and tuning 35

gis> onspaces -a <dbspace name> -p <pathname> -o <offset> -s <size in
kilobytes>

In this example the 50,000-KB chunk /gis7/informix_ck/roadsdbs2 is added to the
dbspace roadsdbs2.

gis> onspaces -a roadsdbs -p /gis7/informix_ck/roadsdbs2 -o 0 -s 50000

Sbspaces

Smart large object spaces are created in the same fashion as dbspaces. The -S flag directs
the onspaces command to create a smart large object space instead of a regular dbspace.
The basic syntax for creating a smart large object space is:

gis> onspaces -c -S <sbspace name> -p <pathname> -o <offset> -s <size in
kilobytes>

In this example the sbspace roadsblob is created with the 10,000 KB initial chunk
/gis8/informix_ck/roadsblobdbs1.

gis> onspaces -c -S roadsblob -g 1 -p /gis8/informix_ck/roadsblobdbs1 -o
0 -s 10000

You can add additional chunks to the smart large object space with the following
onspaces syntax. You will notice that the -S flag is not required when adding a chunk.

onspaces -a <sbspace name> -p <pathname> -o <offset> -s <size in
kilobytes>

In this example the /gis9/informix_ck/roadsblobs2 -o 0 -s 10000 chunk is added to the
smart large object space roadsblob.

gis> onspaces -a roadsblob -p /gis9/informix_ck/roadsblobs2 -o 0 -s 10000

Note: The logging of smart large objects is independent of the rest of the Informix
database. By default, smart large objects are not logged.

If users are going to load data for read-only purposes, there is no need to have smart
BLOB logging enabled. Simply take a level 0 archive after loading the data and
recoverability is ensured.

However, for data that is manipulated additional steps must be taken to ensure
recoverability. Database and smart BLOB logging must be enabled following the initial
data load. After you enable database and smart BLOB logging, a level 0 archive of the
instance must be taken to ensure recoverability.

To turn logging on add -Df LOGGING=ON to the onspaces command that creates the
sbspace.

gis> onspaces -a <sbspace name> -p <pathname> -o <offset> -s <size in kilobytes> -
Df LOGGING=ON

36 ArcSDE Configuration and Tuning Guide for Informix

The logging mode of an sbspace and the smart BLOBs it contains can be changed with
onspaces:

gis> onspaces -ch <sbspace name> -Df "LOGGING=<logging mode>"

You must also log your database. It is recommended that you use buffered logging. To
change the state of an ArcSDE database from no logging to logging, use the following
command:

gis> ontape -B <arcgis_database_name>

Updating Informix statistics
For optimal performance of feature classes created with ArcSDE, keep the statistics of
the business table up-to-date by frequently updating statistics.

To update the statistics of all of the tables and indexes within a feature dataset in
ArcCatalog, right-click on the feature dataset and click Analyze. To update the tables and
indexes within a feature class, right-click the feature and click Analyze as shown below.

From the command line, use the UPDATE_DBMS_STATS operation of the sdetable
administration command to update the statistics for all the tables and indexes of a feature

Chapter 2—Essential Informix configuring and tuning 37

class. It is better to use the UPDATE_DBMS_STATS operation rather than individually
analyzing the tables with the Informix SQL UPDATE STATISTICS statement because it
updates the statistics for all the tables of a feature class that require statistics. To have the
UPDATE_DBMS_STATS operation update statistics for all the required tables, do not
specify the -K (schema object) option.

sdetable -o update_dbms_stats -t roads -m high -u av -p mo

When the feature class is registered as multiversioned, the ‘adds’ and ‘deletes’ tables are
created to hold the business table’s added and deleted records. The version registration
process automatically updates the statistics for all the required tables at the time it is
registered.

You must periodically update your dynamic data objects’ statistics so that the Informix
optimizer will continue to choose an optimum execution plan. To save time, you can
analyze all of the data objects within a feature dataset in ArcCatalog.

If you decide to update the statistics of all or some of the feature class tables with the
Informix UPDATE STATISTICS statement, you should never compute statistics on a
spatial index table. For more information on the Informix SQL UPDATE STATISTICS
statement, refer to the Informix SQL Reference Manual.

The statistics of a table’s indexes are automatically computed when the statistics on the
table are created, so there is no need to separately generate statistics for the indexes.
However, if you need to do so you can use the sdetable UPDATE_DBMS_STATS
operation with the -n option and the index name.

The example below illustrates how the statistics for the roads_idx index of the roads
business table can be updated.

sdetable -o update_dbms_stats -t roads -K B -n roads_idx -u av -p mo

For more information on updating the statistics on geodatabase objects from ArcCatalog,
refer to Building a Geodatabase.

For more information on the sdetable administration command and the
UPDATE_DBMS_STATS operation, refer to ArcSDE Developer Help.

Tuning CPU
Many server-class machines are multiprocessors—computers that contain more than one
CPU and parallel process several instructions at a time. The initial configuration of
Informix Dynamic Server defaults to single CPU mode. Doing so ensures that Informix
Dynamic Server starts and runs correctly on single CPU servers. If yours is a multiple
CPU server, configure Informix to take advantage of its parallel processing capabilities.

If you have a single CPU machine, set SINGLE_CPU_VP to 1, set
MULTIPROCESSOR to 0, and keep them that way. Setting SINGLE_CPU_VP to 1

38 ArcSDE Configuration and Tuning Guide for Informix

bypasses superfluous mutex calls required only when running multiple virtual processors.
Setting MULTIPROCESSOR to 0 specifies that locking will be optimized for a single
CPU processor.

For multiple processor machines set the SINGLE_CPU_VP to 0 and set
MULTIPROCESSOR to 1. Setting these variables will allow your Informix server to
take advantage of a machine’s parallel processing capabilities.

During its initialization the Informix Dynamic Server creates virtual processors to run the
various threads that service the client applications and other background tasks. Virtual
processors are similar to operating system processes, but they are controlled and
manipulated by the Informix Dynamic Server. Some of the virtual processors are divided
into classes, some of which are tunable. Of particular interest are the CPU, AIO, and
network virtual processor classes.

You may configure the CPU and AIO virtual processors by setting a list of onconfig
parameters that include NUMCPUVPS, AFF_SPROC, AFF_NPROCS, NOAGE, and
NUMAIOVPS. However, Informix recommends that you set the VPCLASS parameter
for each virtual processor class. If you use the VPCLASS method, then you cannot use
the other variables. If Informix detects the presence of both types of parameters in the
onconfig file, it returns an error and will not start the server.

Because Informix recommends the use of the VPCLASS parameter, the VPCLASS
parameter will be discussed in this document. If you would rather use the other
parameters, consult the INFORMIX-Universal Server Administrator’s Guide.

The basic syntax of the VPCLASS parameter is

VPCLASS classname,{num=num_VPS,max=max_vps,aff=affinity,noage,noyield}

The classname is the only required field. It is possible to name and create your own
user-defined virtual processor classes. However, ESRI Spatial DataBlade uses the
predefined CPU VP class. Unless you are using a DataBlade product or custom-built
application that requires the presence of a user-defined virtual processor class, do not
create one.

CPU and AIO virtual processor classes

In addition to other possible uses, the AIO virtual processor maintains the Informix server
ancillary files, such as the message log, so you should always define at least one.

UNIX systems use the AIO virtual processor for nonlogged I/O if kernel-asynchronous
I/O (KAIO) is not implemented or if the I/O performed is to a cooked file.

On UNIX systems, the AIO virtual processor is not used for nonlogged I/O if you have
implemented KAIO and the I/O is to a raw device. Instead, the CPU virtual processor

Chapter 2—Essential Informix configuring and tuning 39

performs the I/O. Having the CPU class perform the I/O avoids expensive context
switching between the CPU virtual processor and the AIO virtual processor.

To implement kernel-asynchronous I/O on a UNIX system, consult the IDS_9.2 release
notes file under the $INFORMIXDIR/release directory. The file contains instructions that
tell you whether or not KAIO is enabled by default, how to enable or disable KAIO, and
which operating system patches are required to enable it.

Informix recommends the use of raw devices on UNIX systems whenever possible. A
raw device is a UNIX block device—in this case a hard disk—that’s been configured
with a ‘character-special’ interface allowing the application, rather than the operating
system, to perform the I/O buffering. The counterpart, a cooked device, is managed by
the operating system. All I/O to a cooked device is buffered by the operating system.

Using a raw device on UNIX operating systems guarantees that committed data has been
written to disk. Also, the performance is better because data is transferred directly to
shared memory and not copied first to the operating system’s kernel buffer pool and then
to shared memory.

Logged I/O occurs whenever a change is made to a table record. Logged I/O is written to
both the physical log file and the logical log file. On Windows 2000 systems, a CPU
virtual processor always runs a KAIO thread to perform logged I/O. However, on UNIX
systems, the LIO virtual processor performs the I/O to the logical log I/O, and the PIO
virtual processor performs the physical log I/O if the log files are stored on a cooked file
system or KAIO is not implemented. If both KAIO and raw devices are used, the CPU
virtual processor performs the logged I/O, eliminating the expensive context switching
between the CPU virtual processor and the LIO and PIO virtual processors.

The number of CPU virtual processors configured should not exceed the number of
processors in the system. Set the VPCLASS num option to 2 and the max option to the
number of processors on the server.

For example, if the server contains eight processors, the VPCLASS parameter would be
set as follows:

VPCLASS cpu, num=2, max=8

Informix recommends that you configure at least one AIO virtual processor to handle the
ancillary I/O. The recommendation always applies to Informix servers installed on
Windows systems and on UNIX systems if KAIO has been implemented and all
nonlogged I/O is to a raw device.

For UNIX systems that have implemented KAIO but are using some cooked file space,
Informix recommends you allocate two AIO virtual processors per active dbspace
composed of cooked file space. If four dbspaces use cooked file space and KAIO was
implemented, configure the AIO virtual processors as:

VPCLASS aio, num = 8

40 ArcSDE Configuration and Tuning Guide for Informix

If KAIO is not implemented, Informix recommends that you allocate two AIO virtual
processors for each disk the Informix server accesses frequently. For example, if KAIO is
not implemented and eight disks are accessed frequently, implement the AIO virtual
processor as:

VPCLASS aio, num = 16

Network virtual processors

Network virtual processors are implicitly defined by the NETTYPE parameter. The
NETTYPE parameter defines the number of poll threads allocated for each database
connection type. The NETTYPE parameter defines the connection protocol, number of
poll threads, concurrent connections per poll thread, and type of virtual processor that
will run the connection’s poll thread. A poll thread can be run by a CPU virtual processor
or by a network virtual processor. The network virtual processors include SHM, SOC,
STR, and TLI. All of the network virtual processors are defined under the general virtual
processor class NET. When the server is initialized it starts one network virtual processor
or each poll thread of the protocol defined by the NETTYPE parameter.

If the onconfig file contained the following NETTYPE parameter, as in the example
below for IBM AIX® and HP-UX® platforms:

NETTYPE soctcp,2,100,NET

two SOC virtual processors would be started to run the poll threads for the TCP/IP
sockets protocol. The above example will accept 200 concurrent TCP/IP connections.

Poll threads can be run inline by a CPU virtual processor. Set the NETTYPE virtual
processor to CPU rather than NET if you wish to have the poll thread for a particular
connection type run by the CPU virtual processor. CPU virtual processors could run the
TCP/IP socket poll threads. The NETTYPE parameter would be set as follows for the
Windows 2000 platform:

NETTYPE soctcp,2,100,CPU

Poll threads tend to run more efficiently on CPU virtual processors, particularly on single
processor computers. If you have a lot of CPU virtual processors, it is possible to run all
the poll threads on them. However, as user activity increases and the CPU virtual
processors become congested, it is a good idea to off-load the work of the poll threads to
network virtual processors. Poll threads are processed faster when run by network virtual
processors, but they must still wait for a CPU virtual processor to run the sqlexec thread
that processes the client’s request.

As a rule of thumb, when you have a large number of remote clients, use network
processors to run the poll threads for network connection protocols (soctcp or tlitcp,
depending on the platform). Use the CPU processors to run the few local client poll
threads (ipcshm or ipcstr, depending on the platform).

Chapter 2—Essential Informix configuring and tuning 41

This is a typical NETTYPE configuration, an example for the Sun™ Solaris™ 2 platform:

NETTYPE ipcshm,1,20,CPU
NETTYPE tlitcp,2,100,NET

Priority aging

You should disable priority aging on the UNIX systems supported by the ArcSDE for
Informix software. By default, priority aging is enabled for these systems. Over time,
priority aging decrements the priority of long-running processes. Informix virtual
processors run continuously and will run with a lower priority the longer the server is up,
unless priority aging has been disabled. To disable priority aging, include the noage
option on the VPCLASS parameter of each virtual processor class.

For example, if you wish to disable priority aging for the CPU virtual processor class,
you would add the noage option.

VPCLASS CPU, num=2, max=8, noage

Processor affinity

Processor affinity allows you to assign the CPU virtual processors to specific CPU
processors. Assigning CPU virtual processors directly to machine processors reduces
context switching and improves performance. The virtual processors are assigned using
the aff option of the VPCLASS parameter. The first processor starts at 0, and the last
processor is the number of CPU processors on the machine minus 1. To assign eight CPU
virtual processors to eight CPUs, the VPCLASS parameter would have the following
syntax:

VPCLASS CPU, num=2, max=8, aff=0-7, noage

Not all platforms supported by ArcSDE for Informix software support processor affinity.
See the table on the following page for a list of platforms that do.

 KAIO Processor Affinity No Aging

Sun Solaris Yes No Yes

IBM Yes No Yes

HP-UX Yes Yes Yes

Windows 2000 NT Default Yes Default

Kernel asynchronous I/O is supported on all platforms supported by the ArcSDE for
Informix software as is priority aging. However, the operating system versions of the Sun
and IBM platforms supported by the ArcSDE for Informix software do not support
processor affinity.

42 ArcSDE Configuration and Tuning Guide for Informix

No yield option

You cannot set the noyield option for either the CPU or AIO virtual processor class. This
option can only be set for user-defined virtual processor classes. If you have created
user-defined virtual processor classes and wish to know more about this option, consult
the INFORMIX-Universal Server Administrator’s Guide.

Tuning memory
Memory tuning involves the allocation of the resource to the various components of the
Informix Dynamic Server. Each process running on a computer requires a certain amount
of memory to temporarily store its machine code and data. Database management system
servers also employ shared memory to store data used by many client applications. For a
complete examination of this subject, you should consult the INFORMIX-Universal
Server Administrator’s Guide and the INFORMIX-Universal Server Performance Guide.

Buffers

Buffers are specified in system pages. The Informix server checks the regular buffers to
find the pages it needs. If it doesn’t find them, it reads them into the regular buffers
before using them. Doing so avoids reading the pages from disk for each user, improving
performance. Pages accessed from memory are much faster than from disk. The pages
are maintained in the buffer as long as the instance remains up or until more recently
accessed pages require the space. Informix recommends that, initially, the buffers occupy
20–25 percent of physical memory. For example, if the page on your system is 2 KB and
you have 512 MB of physical memory, set BUFFERS to 65536 to occupy 25% of the
physical memory.

Ideally, you want to keep the ratio of disk reads to buffer reads as low as possible. You
can monitor the ratio by periodically issuing onstat -p and examining the %cached reads
after the system has been up for a while. If this ratio falls below 90 percent for a decision
support system, you should consider increasing the size of the regular buffers.

LRU queues and page cleaners

Each page read into the regular buffers is added to a least recently used (LRU) queue that
tracks the frequency by which each page is accessed. If the regular buffers become full,
the user sqlexec process selects an LRU queue at random to find pages that can be
overwritten. The sqlexec process examines the free least recently used (FLRU) list of the
LRU queue.

Pages are free if they have not been changed. Changed, or dirty pages move from the
FLRU list to the modified least recently used (MLRU) list. If no free pages are listed in

Chapter 2—Essential Informix configuring and tuning 43

FLRU, the sqlexec is forced to do a foreground write to clear pages from the MLRU
queue. Foreground writes are performed one at a time and are resource intensive.

Page cleaners normally write dirty pages to disk. They perform inexpensive background
writes. However, if the page cleaners are unable to keep up, foreground writes become
necessary.

The onstat -F command can determine how often foreground writes have occurred.
Avoid foreground writes by making sure enough LRU queues and page cleaners are
available. The number of LRU queues is set by the LRU variable in the onconfig file.
Informix recommends you set LRU to a minimum of 4. For multiprocessor machines, set
LRU to four times the number of CPUs.

44 ArcSDE Configuration and Tuning Guide for Informix

The figure above is a conceptual illustration of the Informix Dynamic Server’s memory management. At the beginning
of a transaction, pages are read into the data buffers from disk. An LRU queue is selected at random, and the address
of the data buffer pages is added to the most recently used end of the free least recently used queue FLRU. Changes
to the data stored in the data buffers move the buffers from the FLRU queue to the modified least recently used queue.
A change also causes the before image of the data buffer page to be written to the physical log buffer, and the
modifying SQL statement is written to the logical log buffer. When these buffers become full they are written to a
corresponding file. In addition, the logical log files must be archived in order to roll the transactions forward in the event
of a system failure. The page cleaner processes periodically wake up and write the accumulated changed data to disk.
The page cleaners are activated whenever the user’s process detects that the percent of dirty pages listed in the
MLRU exceeds LRU_MAX_DIRTY. The page cleaners continue to write the dirty pages to disk until the percent of
dirty pages is less than LRU_MIN_DIRTY.

Regular
Buffer

LRU
QUEUES

Data

Physical
Log Buffer

Logical
Log Buffer

Logical
Log File

Physical
Log File

LRU_MIN_DIRTY

LRU_MAX_DIRTY

Logical
Log

Archive

Read

Page
Cleaners

Write

Chapter 2—Essential Informix configuring and tuning 45

The onconfig parameter CLEANERS controls the number of page cleaner threads
running. Set the CLEANERS to the number of disks receiving frequent updates.

The LRU_MIN_DIRTY and LRU_MAX_DIRTY parameters determine when the page
cleaners wake up and go to sleep. Page cleaners wake up whenever the percent of dirty
pages in the MLRU reaches the LRU_MAX_DIRTY threshold, and they clean the dirty
pages, starting with the least recently used, until the percent of dirty pages is less than
LRU_MIN_DIRTY.

The default setting of the LRU_MIN_DIRTY is 50, and the default setting of the
LRU_MAX_DIRTY is 60. If the onstat -F command shows a significant number of
foreground writes, and increasing the number of LRU queues and page cleaners does not
have any effect, try lowering the LRU_MIN_DIRTY and LRU_MAX_DIRTY
thresholds to shorten the queues.

Logical log buffers

The Informix server uses three log buffers to temporarily store changes. As one buffer
flushes to a log file, a user thread can write to another one. The log buffers generally
default to 32 kilobytes or pages. Set the LOGBUFF to an even increment of the page
size.

Determine the optimal size of the logical log buffer with the onstat -l command after the
system has been running for a while in update mode. Onstat -l reports the current
statistics of the physical log buffer and logical log buffer.

Under the Logical Logging section of the onstat -l output, if the value under pages/io is
less than 75 percent of the value under bufsize, the logical log buffer is too large; shared
memory is being wasted. Reduce the onconfig LOGBUFF parameter.

If the value under pages/io is greater than 95 percent of the value under bufsize, the
logical log buffer may be too small. Increase the LOGBUFF parameter.

Changes to the onconfig file do not take effect until you restart the Informix server.

Physical log buffers

The Informix server uses two physical log buffers to temporarily store the pages that are
about to be changed, commonly referred to as the before image. A physical buffer flushes
to the physical log file once it becomes full. As one buffer flushes, the other buffer
becomes current and the user thread writes to it.

The PHYSBUFF should always be an even increment of the page size.

46 ArcSDE Configuration and Tuning Guide for Informix

Determine the optimal size of the physical log buffer with the onstat -l command after the
system has been running for a while in update mode. Onstat -l reports the current
statistics of the physical log buffer and logical log buffer.

Under the Physical Logging section of the onstat -l output, if the value under pages/io is
less than 75 percent of the value under bufsize, the physical log buffer is too large; shared
memory is being wasted. Reduce the onconfig PHYSBUFF parameter.

If the value under pages/io is greater than 95 percent of the value under bufsize, the
physical log buffer may be too small. Increase the PHYSBUFF parameter.

Changes to the onconfig file do not take effect until the next time you start the Informix
server.

Residency

When the operating system switches between processes, it normally pages portions of
process memory to disk. Process memory designated as resident is not swapped to disk.
Part of the Informix server’s shared memory is resident, but the operating system will not
treat it as such unless the onconfig RESIDENT parameter is set to 1. Set RESIDENT to
1.

C H A P T E R 3

Configuring DBTUNE storage
parameters

DBTUNE storage parameters allow you to control how ArcSDE clients

create objects within an Informix database. They determine such things

as which dbspace a table or index is created in. The storage parameters

define the extent size of the data object they store as well as other

Informix specific storage attributes. Additional parameters exist that

allow you to further configure the Informix Spatial environment.

The DBTUNE table
The DBTUNE storage parameters are maintained in the DBTUNE metadata table. The
DBTUNE table, along with all other metadata tables, is created during the setup phase
that follows the installation of the ArcSDE software.

The DBTUNE table has the following definition:

Name Null? Datatype

keyword not null varchar2(32)
parameter_name not null varchar2(32)
config_string null varchar2(2048)

The keyword field stores the configuration keywords. Within each configuration
keyword, there are a number of storage parameters, and the names of these are stored in
the parameter_name field. Each storage parameter has a configuration string stored in
the config_string field.

48 ArcSDE Configuration and Tuning Guide for Informix

After creating the DBTUNE table, the setup phase (sdesetupinfx command) of the
ArcSDE 9 installation populates the table with the contents of the dbtune.sde file, which
it expects to find under the etc directory of the SDEHOME directory.

If the DBTUNE table already exists, the ArcSDE setup phase will not alter its contents
should you decide to run it again.

Editing the DBTUNE table

Although you are free to edit the contents of the DBTUNE table using a SQL interface
such as DBACCESS, the sdedbtune administration tool has been provided to enable you
to export the contents of the table to a file. The file can then be edited with a UNIX file-
based editor such as vi or a Windows 2000 file-based editor such as notepad. After
updating the file, you can repopulate the DBTUNE table using the import operation of
the sdedbtune command.

In the following example, the DBTUNE table is exported to the dbtune.out file, and the
file is edited with the UNIX vi file-based editor.

$ sdedbtune -o export -f dbtune.out -u sde -p fredericton

ArcSDE 9 Wed Oct 4 22:32:44 PDT 2000
Attribute Administration Utility

 Successfully exported to file SDEHOME\etc\dbtune.out

$ vi dbtune.out

$ sdedbtune -o import -f dbtune.out -u sde -p fredericton -N

ArcSDE 9 Wed Oct 4 22:32:44 PDT 2000
Attribute Administration Utility

 Successfully imported from file SDEHOME\etc\dbtune.out

The sdedbtune administration tool always exports the file in the etc directory of the
ArcSDE home directory. You cannot relocate the file to another directory with a
qualifying pathname. By not allowing the relocation of the file, the sdedbtune command
ensures that the file is located in the ArcSDE software's etc directory, under the
ownership of the ArcSDE administrator.

The dbtune.proto file, located under the SDEHOME tools directory, provides an
example of a DBTUNE file that can be edited and imported into the DBTUNE table.

Chapter 3—Configuring DBTUNE storage parameters 49

Unlike the dbtune.sde file located under the SDEHOME etc directory, the dbtune.proto
file contains suggested nondefault values that you may or may not want to use.

Adding keywords to the DBTUNE table

You may add parameter groups to the DBTUNE table for any special purpose. For
instance, you may wish to create certain feature classes in a newly created tablespace
that is segregated from the rest of the data.

To add keywords, follow the instructions above for editing the DBTUNE table. When
you edit the export file, it is often a good idea to create a new parameter group as a cut
and paste copy of an existing parameter group in order to avoid introducing syntax
errors. You may then edit the configuration keyword and any of the strings to desired
new values before saving the dbtune file and importing it back into the DBTUNE table

Using the DBTUNE table
At its most basic level, the DBTUNE table provides configuration strings that are
appended to a CREATE TABLE or CREATE INDEX statement in SQL. The
configuration strings specify storage parameters that must be considered valid by the
Informix server.

Selecting the configuration string

The choice of configuration strings by an ArcSDE application depends upon the
operation being performed and the type of object it is being performed on as well as the
configuration keyword. For example, if the type of operation is CREATE TABLE and
the type of table being created is a business table, the parameter_name of B_STORAGE
will be used to determine the configuration string.

The ArcSDE application then searches the DBTUNE table for a configuration string
whose configuration keyword matches the given configuration keyword and whose
parameter_name matches the chosen name.

When running the sdetable and certain other ArcSDE administration commands, you
may specify your own configuration keyword. When running ArcSDE applications, the
configuration keyword is specified to the ArcSDE server automatically.

If the application cannot find the requested configuration string within the specified
parameter group, it searches the DEFAULT parameter group. If the requested
configuration string cannot be located within the DEFAULT parameter group, the

50 ArcSDE Configuration and Tuning Guide for Informix

ArcSDE use no configuration string, and the CREATE TABLE or CREATE INDEX
statement picks up the defaults according to the rules of the Informix server.

Table parameters

Table parameters define the storage configuration of an Informix table. The table
parameter is appended to an Informix CREATE TABLE statement during its creation by
ArcSDE. Valid entries into an ArcSDE table parameter include all Informix CREATE
TABLE statement parameters to the right of the statement's columns list.

For example, a business table created with the following Informix CREATE TABLE
statement:

database cntry94;

--Create table cntry94
create table cntry94
(
area decimal(15,3),
name varchar(40,0),
abbrevname varchar(12,0),
fips_code varchar(2,0),
wb_cntry varchar(3,0),
feature st_multipolygon,
se_row_id integer,
primary key (se_row_id) constraint sde.sp_ref_pk
put feature in (small_business_table),
extend size 16 next size 16
lock mode row
);

would be entered into a dbtune file B_STORAGE table parameter with the following
configuration string:

B_STORAGE " IN SMALL_BUSINESS_TABLE EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE
ROW ”

An example using Table Fragmentation:

create table cntry94
(
area decimal(15,3),
name varchar(40,0),
abbrevname varchar(12,0),

Chapter 3—Configuring DBTUNE storage parameters 51

fips_code varchar(2,0),
wb_cntry varchar(3,0),
feature st_multipolygon,
objectid integer,
primary key (se_row_id) constraint sde.sp_ref_pk

)
fragment by expression objectid <= 100 IN dbspace1, objectid > 100 and objectid <200
IN dbspace2, objectid >= 200 IN dbspace3 extent size 16 next size 16
lock mode row;

would be entered into a dbtune file B_STORAGE table parameter with the following
configuration string:

B_STORAGE " FRAGMENT BY EXPRESSION objected<=100 IN dbspace1, objected
>100 and objected<200 IN dbspace2, objected >= 200 in dbspace3 EXTENT SIZE
16 NEXT SIZE 16 LOCK MODE ROW ”

Index parameters

Index parameters define the storage configuration of an Informix index. The index
parameter is appended to an Informix CREATE INDEX statement during its creation by
ArcSDE. Valid entries into an ArcSDE index parameter include all Informix CREATE
INDEX statement parameters to the right of the statement's column list.

For example, an index created with the following Informix CREATE INDEX statement:

CREATE INDEX cntry94_idx on cntry94
fillfactor 90,
in business_index;

would be entered into a dbtune B_INDEX_USER storage parameter with the following
configuration string:

B_INDEX_USER "FILLFACTOR 90 IN BUSINESS_INDEX"

Defining the storage parameters
Configuration keywords may include any combination of three basic types of storage
parameters: meta parameters, table parameters, and index parameters.

Meta parameters

Meta parameters define such things as the way certain types of data will be stored, the
environment of a keyword, or a comment that describes something about the keyword
such as what it should be used for.

52 ArcSDE Configuration and Tuning Guide for Informix

The business table storage parameter

A business table is any Informix table created by an ArcSDE client, the sdetable
administration command, or the ArcSDE C application programming interface (API)
SE_table_create function.

Use the DBTUNE table’s B_STORAGE parameter to define the storage configuration
of a business table.

The business table index storage parameters

Three index parameters exist to support the creation of business table indexes.

The B_INDEX_USER parameter holds the storage configuration for user-defined
indexes created with the C API function SE_table_create_index and the create_index
operation of the sdetable command.

The B_INDEX_ROWID parameter holds the storage configuration of the index
ArcSDE creates on the register table's object ID column, commonly referred to as the
ROWID. A registered table can be created with the alter_reg operation of the sdetable
command or from the ArcCatalog interface.

The B_RTEE parameter holds the storage configuration of the spatial column index
ArcSDE creates when a spatial column is added to a business table. This index is created
by the ArcSDE C API function SE_layer_create. This function is called by ArcInfo™
when it creates a feature class and by the add operation of the sdelayer command.

Note: ArcSDE registers all tables that it creates. Tables not created by ArcSDE can also
be registered with the alter_reg operation of the sdetable command or with ArcCatalog.
The SDE.TABLE_REGISTRY system table maintains a list of the currently registered
tables.

Multiversioned table storage parameters

Registering a business table or feature class as multiversioned allows multiple users to
maintain and edit their copy of the object. At appropriate intervals, each user merges the
changes they have made to their copy with the changes made by other users and
reconciles any conflicts that arise when the same features are modified.

ArcSDE creates two tables—the adds table and the deletes table—for each table that is
registered as multiversioned.

Chapter 3—Configuring DBTUNE storage parameters 53

The A_STORAGE storage parameter maintains the storage configuration of the adds
table. Four other parameters hold the storage configuration of the indexes of the adds
table. The adds table is named A<n>, where <n> is the registration ID listed in the
SDE.TABLE_REGISTRY system table. For instance, if the business table ROADS is
listed with a registration ID of 10, ArcSDE creates the adds table as A10.

The A_INDEX_ROWID storage parameter holds the storage configuration of the index
that ArcSDE creates on the multiversioned object ID column, commonly referred to as
the ROWID. The adds table ROWID index is named A<n>_ROWID_IX1, where <n>
is the business table's registration ID, which the adds table is associated with.

The A_INDEX_STATEID parameter holds the storage configuration of the index that
ArcSDE creates on the adds table’s SDE_STATE_ID column. The SDE_STATE_ID
column index is called A<n>_STATE_IX2, where <n> is the business table's
registration ID, which the adds table is associated with.

The A_RTREE storage parameter holds the storage configuration of the index that
ArcSDE creates on the adds table's spatial column. If the business table contains a spatial
column, the column and its index are duplicated in the adds table.

The A_INDEX_USER storage parameter holds the storage configuration of user-
defined indexes that ArcSDE creates on the adds table. The user-defined indexes on the
business tables are duplicated on the adds table.

The D_STORAGE storage parameter holds the storage configuration of the deletes
table. Two other parameters hold the storage configuration of the indexes that ArcSDE
creates on the deletes table. The deletes table is named D<n>, where <n> is the
registration ID listed in the SDE.TABLE_REGISTRY system table. For instance, if the
business table ROADS is listed with a registration ID of 10, ArcSDE creates the deletes
table as D10.

The D_INDEX_STATE_ROWID storage parameter holds the storage configuration of
the D<n>_IDX1 index that ArcSDE creates on the deletes table’s SDE_STATE_ID and
SDE_DELETES_ROW_ID columns.

The D_INDEX_DELETED_AT storage parameter holds the storage configuration of
the D<n>_IDX2 index that ArcSDE creates on the deletes table's SDE_DELETED_AT
column.

Note: If a configuration keyword is not specified when the registration of a business
table is converted from single-version to multiversion, the adds and deletes tables and
their indexes are created with the parameters of the configuration keyword that the
business table was created with.

54 ArcSDE Configuration and Tuning Guide for Informix

Raster table storage parameters

A raster column added to a business table is actually a foreign key reference to raster
data stored in a schema consisting of four tables and five supporting indexes.

The RAS_STORAGE storage parameter holds the Informix CREATE TABLE storage
configuration of the RAS table.

The RAS_INDEX_ID storage parameter holds the Informix CREATE TABLE storage
configuration of the RAS table index.

The BND_STORAGE storage parameter holds the Informix CREATE TABLE storage
configuration of the BND table index.

The BND_INDEX_COMPOSITE storage parameter holds the Informix CREATE
INDEX storage configuration of the BND table’s composite column index.

The BND_INDEX_ID storage parameter holds the Informix CREATE INDEX storage
configuration of the BND table’s rid column index.

The AUX_STORAGE storage parameter holds the Informix CREATE TABLE storage
configuration of the AUX table.

The AUX_INDEX_COMPOSITE storage parameter holds the Informix CREATE
INDEX storage configuration of the AUX table's index.

The BLK_STORAGE storage parameter holds the Informix CREATE TABLE storage
configuration of the BLK table.

The BLK_INDEX_COMPOSITE storage parameter holds the Informix CREATE
TABLE storage configuration of the BLK table's index.

Arranging storage parameters by keyword
Storage parameters of the DBTUNE table are grouped by keyword. The following
keywords are present by default in the DBTUNE table.

• DEFAULTS

• DATA_DICTIONARY

Chapter 3—Configuring DBTUNE storage parameters 55

• TOPOLOGY

• IMS_METADATARELATIONSHIPS

• IMS_METADATA

• IMS_METADATATAGS

• IMS_METADATATHUMBNAILS

• IMS_METADATAUSERS

• IMS_METADATAVALUES

• IMS_METADATAWORDINDEX

• IMS_METADATAWORD

DEFAULTS keyword

Each dbtune table has a fully populated DEFAULTS keyword. The DEFAULTS
keyword can be selected whenever you create a table, index, feature class, or raster
column. If you do not select a keyword for one of these objects, the DEFAULTS
keyword is used. If you do not include a parameter in a keyword you have defined,
ArcSDE substitutes the parameter from the DEFAULTS keyword.

The DEFAULTS keyword relieves you of the need to define all the parameters for each
of the keywords you define. The parameters of the DEFAULTS keyword should be
populated with values that represent the average storage configuration of your data.

During installation, if the ArcSDE software detects a missing DEFAULTS keyword
parameter in the dbtune.sde file, it automatically adds the parameter. If you import a
dbtune file with the sdedbtune command, it will automatically add any parameters that
are missing. ArcSDE will detect the presence of the following list of parameters and
insert the parameter and the default configuration string.

##DEFAULTS
UI_TEXT "DEFAULTS"
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK M
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"
B_RTREE ""
A_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
A_INDEX_ROWID "FILLFACTOR 90"
A_INDEX_STATEID "FILLFACTOR 90"
A_INDEX_USER "FILLFACTOR 90"
A_RTREE ""
D_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
D_INDEX_DELETED_AT "FILLFACTOR"
D_INDEX_STATE_ROWID "FILLFACTOR"
S_STORAGE ""
RAS_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"

56 ArcSDE Configuration and Tuning Guide for Informix

RAS_INDEX_ID "FILLFACTOR 90"
BND_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
BND_INDEX_COMPOSITE "FILLFACTOR 90"
BND_INDEX_ID "FILLFACTOR 90"
AUX_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
AUX_INDEX_COMPOSITE "FILLFACTOR 90"
BLK_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
BLK_INDEX_COMPOSITE "FILLFACTOR 90”
USE_EXCLUSIVE_LOCKING “TRUE”

END

NOTE: S_STORAGE was added to ArcSDE 9 to represent the “smart blob sbspace”
and must be set in order for B_RTREE to work successfully. S_STORAGE is used to
store the spatial feature shape data. The S_STORAGE is the equivalent of the “put
feature in <smart large object sbspace>” from the SDE 3.x dbtune.sde file. If
S_STORAGE is not set, then spatial feature data will be put in the default sbspace.

During Compression of large databases, Informix Database frequently runs out of the
available locks. In order to prevent this, tables are locked in exclusive mode during
compress. With ArcSDE 9 Compress could be run with existing user connections. In
order to be able to compress with existing user connections, the exclusive locking during
compress needs to be disabled. The USE_EXCLUSIVE_LOCKING parameter can be
set to false to allow compress with concurrent user connections.

The SDE 3.x A_SBLOB_DBS parameter is not automatically converted to the
S_STORAGE parameter. You need to manually convert the A_SBLOB_DBS parameter
into the new S_STORAGE parameter; otherwise, the default smart large object sbspace
is used. All other SDE 3.x parameters convert automatically to ArcSDE 9 parameters
using the “sdedbtune –o import” command.

Setting the system table DATA_DICTIONARY keyword

During the execution of the install operation of the sdesetupinfx administration tool, the
ArcSDE and geodatabase system tables and indexes are created with the storage
parameters of the DATA_DICTIONARY keyword. You may customize the keyword in
the dbtune.sde file (found in the $SDEHOME/etc on UNIX systems or
%SDEHOME%\etc on Windows 2000 systems) prior to running the sdesetupinfx tool.
In this way you can change default storage parameters of the DATA_DICTIONARY
keyword.

Edits to all of the geodatabase system tables and most of the ArcSDE system tables
occur when schema change occurs. As such, edits to these system tables and indexes
usually happen during the initial creation of an ArcGIS® database with infrequent
modifications occurring whenever a new schema object is added.

Chapter 3—Configuring DBTUNE storage parameters 57

Four of the ArcSDE system tables—VERSION, STATES, STATE_LINEAGES, and
MVTABLES_MODIFIED—directly participate in the ArcSDE versioning model and
record events resulting from changes made to multiversioned tables. If your site makes
extensive use of a multiversioned database, these tables and their associated indexes are
highly active. Separating these objects into their own tablespaces allows you to position
their data files with data files that experience low I/O activity and thus avoid as much
disk I/O contention as possible.

If the dbtune.sde file does not contain the DATA_DICTIONARY keyword, or if any of
the required parameters are missing from the keyword, the following records will be
inserted into the DATA_DICTIONARY when the table is created. (Note that the dbtune
file format is provided here for readability.)

##DATA_DICTIONARY
UI_TEXT "DATA_DICTIONARY"
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"
STATES_TABLE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
STATES_INDEX "FILLFACTOR 90"
STATE_LINEAGES_TABLE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
VERSIONS_TABLE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
VERSIONS_INDEX "FILLFACTOR 90"
MVTABLES_MODIFIED_TABLE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
MVTABLES_MODIFIED_INDEX "FILLFACTOR 90"
END

The TOPOLOGY keyword

The TOPOLOGY keyword controls the storage of topology tables, which are named
POINTERRORS, LINEERRORS, POLYERRORS, and DIRTYAREAS. An SDE
instance must have a valid topology keyword in the dbtune table, or topology will not be
built.

The DIRTYAREAS table maintains information on areas within a layer that have been
changed. Because it tracks versions, data will be inserted or updated but not deleted
during normal use. The DIRTYAREAS table will reduce in size only when database
versions get compressed.

Because the DIRTYAREAS table is much more active than the remaining topology
tables, the TOPOLOGY keyword may be compound. You may specify the
DIRTYAREAS suffix to list the configuration string to be used to create the topology
tables.

For Informix, the default values for TOPOLOGY and TOPOLOGY::DIRTYAREAS
are

##TOPOLOGY_DEFAULTS

58 ArcSDE Configuration and Tuning Guide for Informix

B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"
A_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
UI_TOPOLOGY_TEXT "The topology default configuration"
A_INDEX_ROWID "FILLFACTOR 90"
D_INDEX_DELETED_AT "FILLFACTOR 90"
A_INDEX_STATEID "FILLFACTOR 90"
A_INDEX_USER "FILLFACTOR 90"
D_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
D_INDEX_STATE_ROWID "FILLFACTOR 90"
A_RTREE ""
B_RTREE ""
END

##TOPOLOGY_DEFAULTS::DIRTYAREAS
B_RTREE ""
A_RTREE ""
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"
A_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
A_INDEX_ROWID "FILLFACTOR 90"
D_INDEX_DELETED_AT "FILLFACTOR 90"
A_INDEX_STATEID "FILLFACTOR 90"
A_INDEX_USER "FILLFACTOR 90"
D_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
D_INDEX_STATE_ROWID "FILLFACTOR 90"
END

The IMS METADATA keywords

The IMS METADATA keywords control the storage of the IMS Metadata tables. These
keywords are a standard part of the dbtune table. If the keywords are not present in the
dbtune file when it is imported into the DBTUNE table, ArcSDE applies software
defaults. The software defaults have the same settings as the keyword parameters listed
in the dbtune.sde table that is shipped with ArcSDE. The Informix parameter settings
such as the initial and next should be sufficient. However, you will need to edit the
storage parameters tablespace names. As always, try to separate the tables and indexes
into different tablespaces.

For more information about installing IMS Metadata and the associated tables and
indexes refer to ArcIMS Metadata Server documentation.

The IMS metadata keywords are as follows:

The IMS_METADATA keyword controls the storage of the ims_metadata feature class.
Four indexes are created on the ims_metadata business table. ArcSDE creates the
following default IMS_METADATA keyword in the DBTUNE table if the keyword is
missing from the dbtune file when it is imported.

Chapter 3—Configuring DBTUNE storage parameters 59

##IMS_METADATA

B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"
B_RTREE ""
S_STORAGE ""
COMMENT "The IMS metatdata feature class"
UI_TEXT ""
END

The IMS_METADATARELATIONSHIPS keyword controls the storage of the
ims_metadatarelationships business table. Three indexes are created on the
ims_metadatarelationships business table. ArcSDE creates the following default
IMS_METADATARELATIONSHIPS keyword in the DBTUNE table if the keyword
is missing from the dbtune file when it is imported.

##IMS_METADATARELATIONSHIPS
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"

END

The IMS_METADATATAGS keyword controls the storage of the ims_metadatatags
business table. Two indexes are created on the ims_metadatatags business table.
ArcSDE creates the following default IMS_METADATATAGS keyword in the
DBTUNE table if the keyword is missing from the dbtune file when it is imported.

##IMS_METADATATAGS
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"

END

The IMS_METADATATHUMBNAILS keyword controls the storage of the
ims_metadatathumbnails business table. One index is created on the
ims_metadatathumbnails business table. ArcSDE creates the following default
IMS_METADATATHUMBNAILS keyword in the DBTUNE table if the keyword is
missing from the dbtune file when it is imported.

##IMS_METADATATHUMBNAILS
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"

END

The IMS_METADATAUSERS keyword controls storage of the ims_metadatausers
business table. One index is created on the ims_metadatausers business table. ArcSDE
creates the following default IMS_METADATAUSERS keyword in the DBTUNE table
if the keyword is missing from the dbtune file when it is imported.

##IMS_METADATAUSERS

60 ArcSDE Configuration and Tuning Guide for Informix

B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"

END

The IMS_METADATAVALUES keyword controls the storage of the
ims_metadatavalues business table. Two indexes are created on the ims_metadatavalues
business table. ArcSDE creates the following default IMS_METADATAVALUES
keyword in the DBTUNE table if the keyword is missing from the dbtune file when it is
imported.

##IMS_METADATAVALUES
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_INDEX_USER "FILLFACTOR 90"

END

The IMS_METADATAWORDINDEX keyword controls the storage of the
ims_metadatawordindex business table. Three indexes are created on the
ims_metadatawordindex business table. ArcSDE creates the following default
IMS_METADATAWORDINDEX keyword in the DBTUNE table if the keyword is
missing from the dbtune file when it is imported.

##IMS_METADATAWORDINDEX
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_INDEX_USER "FILLFACTOR 90"

END

The IMS_METADATAWORDS keyword controls the storage of the
ims_metadatawords business table. One index is created on the ims_metadatawords
business table. ArcSDE creates the following default IMS_METADATAWORDS
keyword in the DBTUNE table if the keyword is missing from the dbtune file when it is
imported.

##IMS_METADATAWORDS
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"

END

Note: These keywords are obsolete. ArcSDE XML columns are not supported with
Informix databases. Therefore, ArcIMS Metadata Services are no longer supported with
Informix databases. These keywords will not be used by ArcSDE or ArcIMS Metadata
Services.

Chapter 3—Configuring DBTUNE storage parameters 61

Changing the appearance of DBTUNE keywords in the
ArcInfo user interface

ArcSDE 9 introduces two new parameters that will support the ArcInfo user interface
UI_TEXT and UI_NETWORK_TEXT. ArcSDE administrators can add one of these
parameters to each keyword to communicate to the ArcInfo schema builders the
intended use of the keyword. The configuration string of these parameters will appear in
ArcInfo interface dbtune keyword scrolling lists.

The UI_TEXT parameter should be added to keywords that will be used to build tables,
feature classes, and indexes.

The UI_NETWORK_TEXT parameter should be added to parent network keywords.

Adding a comment to a configuration keyword

The COMMENT storage parameter allows you to add informative text that describes
such things as a keyword's intended use, the last time it was changed, or who created it.

LOGFILE keywords

Log files are used by ArcSDE to maintain temporary and persistent sets of selected
records. Whenever a user connects to ArcSDE for the first time, the SDE_LOGFILES
and SDE_LOGFILE_DATA tables and indexes are created.

You may create a keyword for each user that begins with the LOGFILE_<username>.
For example, if the user’s name is STANLEY, ArcSDE will search the dbtune table for
the LOGFILE_STANLEY keyword. If this keyword is not found, ArcSDE will use the
parameters of the LOGFILE_DEFAULTS keyword to create the SDE_LOGFILES and
SDE_LOGFILE_DATA tables.

ArcSDE always creates the DBTUNE table with a LOGFILE_DEFAULTS keyword. If
you do not specify this keyword in the dbtune file that you import with the sdedbtune
command, ArcSDE will populate the dbtune table with default LOGFILE_DEFAULTS
parameters. Further, if the dbtune file contains some of the LOGFILE_DEFAULTS
keyword parameters, ArcSDE will supply the rest. Therefore, the
LOGFILE_DEFAULTS keyword is always fully populated.

If a user-specific keyword exists, but some of the parameters are not present, the
parameters of the LOGFILE_DEFAULTS keyword are used. If some of the parameters
are not set in either a user-specific keyword or the LOGFILE_DEFAULTS keyword, the
Informix defaults are used.

62 ArcSDE Configuration and Tuning Guide for Informix

Creating a log file keyword for each user allows you to separate the log files onto
different devices by specifying the tablespace the log file tables and indexes are created
in. Most installations of ArcSDE will function well using the LOGFILE_DEFAULTS
parameters supplied with the installed dbtune.sde file. However, for applications that
make heavy use of log files, such as ArcGIS Desktop, it may help performance by
spreading the log files across the file system. Typically log files are updated whenever a
selection set exceeds 100 records.

If the imported dbtune file does not contain a LOGFILE_DEFAULTS keyword, or if
any of the logfile parameters are missing, ArcSDE will insert the following records:

##LOGFILE_DEFAULTS

UI_TEXT "LOGFILE_DEFAULTS"
LF_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOC”
LF_INDEXES "FILLFACTOR 90"
LD_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOC”
LD_INDEX_DATA_ID "FILLFACTOR 90"
LD_INDEX_ROWID "FILLFACTOR 90"

END

The LD_STORAGE and LF_STORAGE parameters that control the storage of the
SDE_LOGFILE_DATA and SDE_LOGFILES tables by default are generated with
Informix logging turned on, the Informix NOLOGGING parameter is absent from the
configuration string of these parameters. If you are not using a customized application
that stores persistent log files, you should add NOLOGGING to the LD_STORAGE and
LF_STORAGE parameters. ESRI applications accessing ArcSDE data use temporary
log files.

Network class composite configuration keywords

The composite keyword is a unique type of keyword designed to accommodate the
tables of the ArcGIS network class. The network table’s size variation requires a
keyword that provides configuration parameters for both large and small tables.
Typically, the network descriptions table is large in comparison to the others.

To accommodate the vast difference in size of the network tables, the network
composite keyword is subdivided into elements. A network composite keyword has
three elements: the parent element defines the general characteristic of the keyword and
the junctions feature class, the description element defines the configuration of the
DESCRIPTIONS table and its indexes, and the network element defines the
configuration of the remaining network tables and their indexes.

The parent element does not have a suffix, and its keyword looks like any other
keyword. The description element is demarcated by the addition of the ::DESC suffix to

Chapter 3—Configuring DBTUNE storage parameters 63

the parent element’s keyword, and the network element is demarcated by the addition of
the ::NETWORK suffix to the parent element’s keyword.

For example, if the parent element keyword is ELECTRIC, the network composite
keyword would appear in a dbtune file as follows:

##ELECTRIC
A_RTREE ""
B_STORAGE "IN BUSINESS EXTENT SIZE 16 NEXT SIZE 16
LOCK MODE ROW"
B_INDEX_ROWID "FILLFACTOR 90 IN BUSINESS_INDEX"
B_INDEX_USER "FILLFACTOR 90 IN BUSINESS_INDEX"
B_RTREE "IN BUSINESS_INDEX"
D_STORAGE "IN DELTA_TABLE EXTENT SIZE 16 NEXT SIZE
16 LOCK MODE ROW"
A_STORAGE "IN DELTA_TABLE EXTENT SIZE 16 NEXT SIZE
16 LOCK MODE ROW"
D_INDEX_STATE_ROWID "FILLFACTOR 90 IN DELTA_INDEX"
A_INDEX_ROWID "FILLFACTOR 90 IN DELTA_INDEX"
A_INDEX_STATEID "FILLFACTOR 90 IN DELTA_INDEX"
A_INDEX_USER "FILLFACTOR 90 IN DELTA_INDEX"
UI_NETWORK_TEXT "The electrical geometrical network class keyword"
D_INDEX_DELETED_AT "FILLFACTOR 90 IN DELTA_INDEX"
COMMENT "This keyword is dedicated to the electrical geometric
network class "
END

##ELECTRIC::DESC
B_STORAGE "IN BUSINESS EXTENT SIZE 16 NEXT SIZE 16
LOCK MODE ROW"
A_STORAGE "IN DELTA_TABLE EXTENT SIZE 16 NEXT SIZE
16 LOCK MODE ROW"
B_INDEX_ROWID "FILLFACTOR 90 IN BUSINESS_INDEX"
A_INDEX_ROWID "FILLFACTOR 90 IN DELTA_INDEX"
A_INDEX_STATEID "FILLFACTOR 90 INDELTA_INDEX"
A_INDEX_USER "FILLFACTOR 90 IN DELTA_INDEX"
D_STORAGE "IN DELTA_TABLE EXTENT SIZE 16 NEXT SIZE
16 LOCK MODE ROW"
D_INDEX_STATE_ROWID "FILLFACTOR 90 IN DELTA_INDEX"
D_INDEX_DELETED_AT "FILLFACTOR 90 IN DELTA_INDEX"
B_INDEX_USER "FILLFACTOR 90 IN BUSINESS_INDEX"
END

##ELECTRIC::NETWORK

64 ArcSDE Configuration and Tuning Guide for Informix

A_INDEX_ROWID "FILLFACTOR 90 IN DELTA_INDEX"
A_INDEX_STATEID "FILLFACTOR 90 IN DELTA_INDEX"
A_INDEX_USER "FILLFACTOR 90 IN DELTA_INDEX"
D_STORAGE "IN DELTA_TABLE EXTENT SIZE 16 NEXT SIZE
16 LOCK MODE ROW"
D_INDEX_STATE_ROWID "FILLFACTOR 90 IN DELTA_INDEX"
B_STORAGE "IN BUSINESS EXTENT SIZE 16 NEXT SIZE 16
LOCK MODE ROW"
D_INDEX_DELETED_AT "FILLFACTOR 90 IN DELTA_INDEX"
B_INDEX_ROWID "FILLFACTOR 90 IN BUSINESS_INDEX"
B_INDEX_USER "FILLFACTOR 90 IN BUSINESS INDEX"
A_STORAGE "IN DELTA_TABLE EXTENT SIZE 16 NEXT SIZE
16 LOCK MODE ROW"
END

Following the import of the dbtune file, these records would be inserted into the
DBTUNE table. You can use DBACCESS to see the following information:

select keyword, parameter_name from dbtune;

KEYWORD PARAMETER_NAME
---------------- ----------------
ELECTRIC COMMENT
ELECTRIC UI_NETWORK_TEXT
ELECTRIC B_STORAGE
ELECTRIC B_INDEX_ROWID
ELECTRIC B_INDEX_USER
ELECTRIC A_STORAGE
ELECTRIC A_INDEX_ROWID
ELECTRIC A_INDEX_USER
ELECTRIC A_INDEX_STATEID
ELECTRIC D_STORAGE
ELECTRIC D_INDEX_DELETED_AT
ELECTRIC D_INDEX_STATE_ROWID
ELECTRIC::DESC B_STORAGE
ELECTRIC::DESC B_INDEX_ROWID
ELECTRIC::DESC B_INDEX_USER
ELECTRIC::DESC A_STORAGE
ELECTRIC::DESC A_INDEX_ROWID
ELECTRIC::DESC A_INDEX_STATEID
ELECTRIC::DESC A_INDEX_USER
ELECTRIC::DESC D_STORAGE
ELECTRIC::DESC D_INDEX_DELETE_AT
ELECTRIC::DESC D_INDEX_STATE_ROWID
ELECTRIC::NETWORK B_STORAGE
ELECTRIC::NETWORK B_INDEX_ROWID
ELECTRIC::NETWORK B_INDEX_USER
ELECTRIC::NETWORK A_STORAGE
ELECTRIC::NETWORK A_INDEX_ROWID
ELECTRIC::NETWORK A_INDEX_STATEID
ELECTRIC::NETWORK A_INDEX_USER
ELECTRIC::NETWORK D_STORAGE
ELECTRIC::NETWORK D_INDEX_DELETE_AT

Chapter 3—Configuring DBTUNE storage parameters 65

ELECTRIC::NETWORK D_INDEX_STATE_ROWID

The network junctions feature class is created with the ELECTRIC keyword parameters,
the network descriptions table is created with the parameters of the ELECTRIC::DESC
keyword, and the remaining smaller network tables are created with the
ELECTRIC::NETWORK configuration keyword.

The NETWORK_DEFAULTS configuration keyword

The NETWORK_DEFAULTS configuration keyword contains the default parameters
for the ArcGIS network class. If the user does not select a network class composite
keyword from the ArcCatalog interface, the ArcGIS network is created with the
parameters within the NETWORK_DEFAULTS configuration keyword.

Whenever a network class composite keyword is selected, its parameters are used to
create the feature class, table, and indexes of the network class. If a network composite
keyword is missing any parameters, ArcGIS substitutes the parameters of the
DEFAULTS keyword rather than the NETWORK_DEFAULTS keyword. So the
parameters of the NETWORK_DEFAULTS keyword are only used in the event that no
network composite keyword is selected.

If a NETWORK_DEFAULTS configuration keyword is not present within a dbtune file
that is imported into the DBTUNE table, the following NETWORK_DEFAULTS
configuration keyword is created:

##NETWORK_DEFAULTS
A_RTREE ""
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE
ROW"
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"
B_RTREE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE
ROW"
A_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE
ROW"
D_INDEX_STATE_ROWID "FILLFACTOR 90"
A_INDEX_ROWID "FILLFACTOR 90"
A_INDEX_STATEID "FILLFACTOR 90"
A_INDEX_USER "FILLFACTOR 90"
UI_NETWORK_TEXT "The network default configuration"
D_INDEX_DELETED_AT "FILLFACTOR 90"
COMMENT "The base system initialization parameters for
NETWORK_DEFAULTS"
END

66 ArcSDE Configuration and Tuning Guide for Informix

##NETWORK_DEFAULTS::DESC
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE
ROW"
A_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE
ROW"
B_INDEX_ROWID "FILLFACTOR 90"
A_INDEX_ROWID "FILLFACTOR 90"
A_INDEX_STATEID "FILLFACTOR 90"
A_INDEX_USER "FILLFACTOR 90"
D_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE
ROW"
D_INDEX_STATE_ROWID "FILLFACTOR 90"
D_INDEX_DELETED_AT "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"
END

##NETWORK_DEFAULTS::NETWORK

A_INDEX_ROWID "FILLFACTOR 90"
A_INDEX_STATEID "FILLFACTOR 90"
A_INDEX_USER "FILLFACTOR 90"
D_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE
ROW"
D_INDEX_STATE_ROWID "FILLFACTOR 90"
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE
ROW"
D_INDEX_DELETED_AT "FILLFACTOR 90"
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"
A_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE
ROW"
END

Informix default parameters
By default, Informix stores tables and indexes in the ArcSDE database dbspace using the
tablespace’s default storage parameters. Determine the ArcSDE database dbspace by
querying:

C:\Informix> onstat –d

Chapter 3—Configuring DBTUNE storage parameters 67

Editing the storage parameters
To edit the storage parameters, the sdedbtune administration command allows you to
export the DBTUNE table to a file located in the $SDEHOME/etc directory on UNIX
servers and in the %SDEHOME%\etc folder on Windows servers. It is an ArcSDE
configuration file that contains the Informix table and index creation parameters. These
parameters allow the ArcSDE service to communicate to the Informix server such things
as:

• Which dbspace a table or index will be created in

• The size of its initial and next extent

• Other parameters that can be set on either the CREATE TABLE or CREATE
INDEX statement

Converting SDE 3.x storage parameters to ArcSDE 9
storage parameters

In SDE 3.x, the dbtune storage parameters were maintained in the dbtune.sde file. The
storage parameters of these previous versions mapped directly to Informix storage
parameters.

The ArcSDE 9 storage parameters hold entire configuration strings of the table or index
they represent.

The conversion of SDE 3.x storage parameters to ArcSDE 9 occurs automatically when
the ArcSDE 9 sdesetupinfx utility reads the parameters from the SDE 3.x dbtune.sde
file. The import operation of the sdedbtune command also converts an SDE 3.x dbtune
file into ArcSDE 9 storage parameters before it writes them to the dbtune table. To see
the results you can either use DBACCESS to list the parameters of the dbtune table or
write the parameters of the dbtune table to another file using the export operation of the
sdedbtune command.

68 ArcSDE Configuration and Tuning Guide for Informix

The following table lists the conversion of SDE 3.x storage parameters to ArcSDE 9
storage parameters.

The complete list of ArcSDE storage parameters

Parameter Name Value Parameter Description Default Value

STATES_LINEAGES_TABLE <string> State_lineages table B_STORAGE

STATES_TABLE <string> States table B_STORAGE

STATES_INDEX <string> States indexes B_INDEX_USER

MVTABLES_MODIFIED_TABLE <string> Mvtables_modified table B_STORAGE

ArcSDE 3.x storage parameters

INDEX_TABLESPACE roads_index

A_IX_FILL 90
A_IX_TBLSP roads_index

A_SBLOB_DBS roads_sblob

ArcSDE 9.x storage parameters

B_RTREE

 "FILLFACTOR 90
 IN roads_index”

S_STORAGE “roads_sblob”

ArcSDE 3.x storage parameters

A_TBLSP roads
A_INIT 16
A_NEXT 6
A_LOCK_ROW 1

ArcSDE 8.1.2 storage parameters

B_STORAGE
 “In roads
 EXTENT SIZE 16
 NEXT SIZE 16
 LOCK MODE ROW”

The SDE 3.x business table and index parameter prefix is "A_". The ArcSDE 8.1.2 business table and index parameter
prefix is "B_”. The SDE 3.x business table storage parameters are converted to the single ArcSDE 8.1.2 B_STORAGE
storage parameter. The B_STORAGE parameter holds the entire business table’s configuration string.

The SDE 3.x business table index storage parameters are converted to ArcSDE 9.x storage parameter configuration
strings. The example below illustrates how the SDE 3.x storage parameters are converted into the ArcSDE 9.x spatial
column index storage parameter B_RTREE. The other ArcSDE 9.x business table index storage parameters,
B_INDEX_ROWID and B_INDEX_USER, are also constructed this way.

Chapter 3—Configuring DBTUNE storage parameters 69

Parameter Name Value Parameter Description Default Value

MVTABLES_MODIFIED_INDEX <string> Mvtables_modified index B_INDEX_USER

VERSIONS_TABLE <string> Versions table B_STORAGE

VERSIONS_INDEX <string> Version index B_INDEX_USER

B_STORAGE <string> Business table Informix defaults

B_INDEX_ROWID <string> Business table object ID
column index

Informix defaults

B_INDEX_USER <string> Business table user index(s) Informix defaults

A_STORAGE <string> Adds table Informix defaults

A_INDEX_ROWID <string> Adds table object ID column
index

Informix defaults

A_INDEX_STATEID <string> Adds table sde_state_id
column index

Informix defaults

A_INDEX_USER <string> Adds table index Informix defaults

D_STORAGE <string> Deletes table Informix defaults

D_INDEX_ STATE_ROWID <string> Deletes table sde_states_id and
sde_deletes_row_id column
index

Informix defaults

S_STORAGE <string> Represents a “smart blob
sbspace”

Informix defaults

D_INDEX_DELETED_AT <string> Deletes table sde_deleted_at
column index

Informix defaults

LF_STORAGE <string> Sde_logfiles table Informix defaults

LF_INDEXES <string> Sde_logfile table column
indexes

Informix defaults

70 ArcSDE Configuration and Tuning Guide for Informix

Parameter Name Value Parameter Description Default Value

LD_STORAGE <string> Sde_logfile_data table Informix defaults

LD_INDEX_DATA_ID <string> Sde_logfile_data table Informix defaults

LD_INDEX_ROWID <string> Sde_logfile_data table
sde_row_id column index

Informix defaults

RAS_STORAGE <string> Raster RAS table Informix defaults

RAS_INDEX_ID <string> Raster RAS table RID index Informix defaults

BND_STORAGE <string> Raster BND table Informix defaults

BND_INDEX_COMPOSITE <string> Raster BND table composite
column index

Informix defaults

BND_INDEX_ID <string> Raster BND table RID column
index

Informix defaults

AUX_STORAGE <string> Raster AUX table Informix defaults

AUX_INDEX_COMPOSITE <string> Raster AUX table composite
column index

Informix defaults

BLK_STORAGE <string> Raster BLK table Informix defaults

USE_EXCLUSIVE_LOCKING <string> Use Exclusive Locking during
ArcSDE Compress

TRUE

BLK_INDEX_COMPOSITE <string> Raster BLK table composite
column index

Informix defaults

C H A P T E R 4

Managing tables, feature
classes, and raster columns

A fundamental part of any database is creating and loading the tables.

Tables with spatial columns are called standalone feature classes.

Attribute-only (nonspatial) tables are also an important part of any

database. This chapter will describe the table and feature class creation

and loading process.

ArcSDE to Informix Data Type Mapping
ArcSDE uses 12 general data types. These types are mapped to Informix types in the
following matrix. Precision refers to the number of digits in a value, while scale refers to
the number of digits to the right of the decimal separator.

ArcSDE Data Type Informix Data type

SE_STRING_TYPE Char, varchar

SE_NSTRING_TYPE Nchar, nvarchar

SE_NCLOB_TYPE Clob

SE_INT16_TYPE (SE_SMALLINT_TYPE) Smallint

SE_INT32_TYPE (SE_INTEGER_TYPE) Integer

SE_INT64_TYPE Int8

Chapter 4—Managing tables, feature classes, and raster columns 71

ArcSDE Data Type Informix Data type

SE_FLOAT32_TYPE (SE_FLOAT_TYPE) Decimal (precision < 7, scale > 0)

SE_FLOAT64_TYPE (SE_DOUBLE_TYPE) Float

SE_DATE_TYPE Datetime

SE_UUID_TYPE Char

SE_BLOB_TYPE Blob

Data creation
There are numerous applications that can create and load data within an ArcSDE
Informix database. These include:

1. ArcSDE administration commands located in the bin directory of SDEHOME:

• sdelayer—Creates and manages feature classes.

• sdetable—Creates and manages tables.

• sdeimport—Takes an existing sdeexport file and loads the data into a feature
class.

• shp2sde—Loads an ESRI shapefile into a feature class.

• cov2sde—Loads a coverage, Map LIBRARIAN layer, or ArcStormTM layer into
a feature class.

• tbl2sde—Loads an attribute-only dBASE or INFO file into a table.

• sdegroup—A specialty feature class creation command that combines the
features of an existing feature class into single multipart features and stores
them in a new feature class for background display. The generated feature class
is used for rapid display of a large amount of geometry data. The attribute
information is not retained, and spatial searches cannot be performed on these
feature classes.

• sderaster—Creates, inserts, modifies, imports, and manages rasters stored in an
ArcSDE database.

72 ArcSDE Configuration and Tuning Guide for Informix

These are all run from the operating system prompt. Command references for these tools are
in ArcSDE Developer Help.

Other applications include:

2. ArcGIS Desktop—Use ArcCatalog or ArcToolbox to manage and populate your
database.

3. ArcInfo Workstation—Use the Defined Layer interface to create and populate the
database.

4. ArcView® 3.2—Use the Database Access Version 2.1c extension.

5. MapObjects®—Custom Component Object Model (COM) applications can be built
to create and populate databases.

6. ArcSDE CAD Client extension—For AutoCAD® and MicroStation® users.

7. Other third party applications built with either the C or Java™ APIs.

This document focuses primarily on the ArcSDE administration tools but does provide
some ArcGIS Desktop examples as well. In general, most people prefer an easy-to-use
graphical user interface like the one found in ArcGIS Desktop. For details on how to use
ArcCatalog or ArcToolbox (another desktop data loading tool), please refer to the
ArcGIS books:

• Using ArcCatalog

• Using ArcToolbox

• Building a Geodatabase

Creating and populating a feature class

The general process involved with creating and loading a feature class is to:

1. Create the business table.

2. Record the business table and the spatial column in the ArcSDE LAYERS and
GEOMETRY_COLUMNS system tables, thus adding a new feature class to the
database.

3. Switch the feature class to load_only_io mode (optional step to improve bulk data
loading performance. It is OK to leave the feature class in normal_io mode to load
data.).

4. Insert the records (load data).

Chapter 4—Managing tables, feature classes, and raster columns 73

5. Switch the feature class to normal_io mode (builds the indexes).

6. Version the data (optional).

7. Grant privileges on the data (optional).

In the following sections, this process is discussed in more detail and illustrated with
some examples of ArcSDE administration commands usage and ArcInfo data loading
utilities through the ArcCatalog and ArcToolbox interfaces.

Creating a feature class “from scratch”

There are two basic ways to create a feature class. You can create a feature class from
scratch (requiring considerably more effort), or you can create a feature class from
existing data such as a coverage or ESRI shapefile. Both methods are reviewed below the
“from scratch” method being first.

Creating a business table

You may create a business table with either the SQL CREATE TABLE statement or the
ArcSDE sdetable command. The sdetable command allows you to include a dbtune
configuration keyword containing the storage parameters of the table.

Although the table may contain up to 256 columns, ArcSDE requires that only one of
those columns be defined as a spatial column.

In this example, the sdetable command is used to create the roads business table.

sdetable -o create -t roads -d 'road_id integer, name string(32), shape
integer' -k roads -u beetle -p bug

The table is created using the dbtune configuration keyword (-k) roads by the user beetle.

The same table could be created with a SQL CREATE TABLE statement using the
Informix dbaccess interface.

create table roads
(road_id integer,
name varchar(32),
shape integer)
tablespace beetle_data
storage (initial 16K next 8K);

At this point you have created a table in the database. ArcSDE does not yet recognize it
as a feature class. The next step is to record the spatial column in the ArcSDE LAYERS
and GEOMETRY_COLUMNS system tables and thus add a new feature class to the
database.

74 ArcSDE Configuration and Tuning Guide for Informix

Adding a feature class

After creating a business table, you must add an entry for the spatial column in the
ArcSDE LAYERS system tables before the ArcSDE server can reference it. Use the
sdelayer command with the “-o add” operation to add the new feature class.

In the following example, the roads feature class is added to the ArcSDE database. Note
that to add the feature class, the roads table name and the spatial column are combined to
form a unique feature class reference. To understand the purpose of the –e, –g, and –x
options, refer to the sdelayer command reference in ArcSDE Developer Help.

sdelayer -o add -l roads,shape -e l+ -g 256,0,0 -x 0,0,100 -u beetle -p
bug -k roads

The feature class tables and indexes are stored according to the storage parameters of the
roads configuration keywords in the DBTUNE table. Upon successful completion of the
previous sdetable command—to create a table—and the sdelayer command—to record
the feature class in the ArcSDE system tables—you have an empty feature class in
normal_io mode.

Switching to load-only I/O mode

Switching the feature class to load-only mode drops the spatial index and makes the
feature class unavailable to ArcSDE clients. Bulk loading data into the feature class in
this state is much faster due to the absence of index maintenance. Use the sdelayer
command to switch the feature class to load-only mode by specifying the “-o
load_only_io” operation.

sdelayer -o load_only_io -l roads,shape -u beetle -p bug

Note: A feature class, registered as multiversioned, cannot be placed in the load-only I/O
mode. However, the grid size can be altered with the -o alter operation. The alter
operation will apply an exclusive lock on the feature class, preventing all modifications
by ArcInfo until the operation is complete.

Inserting records into the feature class

Once the empty feature class exists, the next step is to populate it with data. There are
several ways to insert data into a feature class, but probably the easiest method is to
convert an existing shapefile or coverage or import a previously exported ArcSDE
sdeexport file directly into the feature class. A more “from scratch” method would be to
add the data with an editor such as ArcMap.

In this first example, shp2sde is used with the init operation. The init operation is used on
newly created feature classes or can be used on feature classes when you want to
overwrite data that’s already there. Don’t use the init operation on feature classes that
already contain data unless you want to remove the existing data. Here, the shapefile,
rdshp, will be loaded into the feature class, roads. Note that the name of the spatial
column (shape in this case) is included in the feature class (-l) option.

Chapter 4—Managing tables, feature classes, and raster columns 75

shp2sde -o init -l roads,shape -f rdshp -u beetle -p bug

Similarly, you can also use the cov2sde command:

cov2sde -o init -l roads,shape -f rdcov -u beetle -p bug

Switching the table to normal I/O mode

After data has been loaded into the feature class, you must switch the feature class to
normal_io mode to re-create all indexes and make the feature class available to clients.
For example:

sdelayer -o normal_io -l roads,shape -u beetle -p bug

Now your feature class is ready for use by ArcSDE client applications.

Versioning your data

Optionally, you may enable your feature class as multiversioned. Versioning is a process
that allows multiple representations of your data to exist without requiring duplication or
copies of the data. ArcMap requires data to be multiversioned to edit it. For further
information on versioning data, refer to the Building a Geodatabase book.

In this example, the feature class states will be registered as multiversioned using the
sdetable alter_reg operation.

sdelayer -o alter_reg -t states -c ver_id -C SDE -V multi -k GEOMETRY_TYPE

Granting privileges on the data

Once you have the data loaded, it is often necessary for other users to have access to the
data for update, query, insert, or delete operations. Initially, only the user who has created
the business table has access to it. In order to make the data available to others, the owner
of the data must grant privileges to other users. The owner can use the sdelayer command
to grant privileges. Privileges can be granted to either another user or to a role.

In this example, a user called beetle gives a user called spider SELECT privileges on a
feature class called states.

sdelayer -o grant -l states,feature -U spider -A SELECT -u beetle -p bug

The full list of -A keywords are:

SELECT. The user may query the selected object data.

DELETE. The user may delete the selected object data.

UPDATE. The user may modify the selected object data.

INSERT. The user may add new data to the selected object data.

76 ArcSDE Configuration and Tuning Guide for Informix

If you include the -I grant option, you also grant the recipient the privilege of granting
other users and roles the initial privilege.

Creating and loading feature classes from existing data

The “from scratch” method of creating a schema and then loading it has been reviewed.
This next section reviews how to create feature classes from existing data. This method is
simpler since the creation and load process is completed at once.

Each of the ArcSDE administration commands, shp2sde, cov2sde, and sdeimport,
includes a “-o create” operation, which allows you to create a new feature class within the
ArcSDE database. The create operation does all of the following:

• Creates the business table using the input data as the template for the schema

• Adds the feature class to the ArcSDE system tables

• Puts the feature class into load-only mode

• Inserts data into the feature class

• When all the records are inserted, puts the feature class into normal_io mode

shp2sde

The shp2sde command converts shapefiles into ArcSDE feature classes. The spatial
column definition is read directly from the shapefile. You can use the shpinfo command
to display the shapefile column definitions. As part of the create operation, you can
specify which spatial storage format you wish to adopt for the data storage by including a
“–k” option that references to a configuration keyword containing storage parameters for
the business table and indexes of the feature class.

shp2sde -o create -f rdshp -l roads,shape -k GEOMETRY_TYPE -u beetle -p
bug

cov2sde

The cov2sde command converts ArcInfo coverages, ArcInfo Librarian™ library feature
classes, and ArcStorm library feature classes into ArcSDE feature classes. The create
operation derives the spatial column definition from the coverage’s feature attribute table.
Use the ArcInfo describe command to display the ArcInfo data source column
definitions.

In this example, an ArcStorm library, roadlib, is converted into the feature class, roads.

cov2sde -o create -l roads,shape -f roadlib,arcstorm -g 256,0,0 -x 0,0,100
-e l+ -u beetle -p bug

Chapter 4—Managing tables, feature classes, and raster columns 77

sdeimport

The sdeimport command converts ArcSDE export files into ArcSDE feature classes. In
this example, the roadexp ArcSDE export file is converted into the feature class roads.

sdeimport -o create -l roads,shape -f roadexp -u beetle -p bug

After using these commands to create and load data, you may optionally need to enable
multiversioning on the feature class and grant privileges on the feature class to other
users.

Appending data to an existing feature class

A common requirement for data management is to be able to append data to existing
feature classes. The data loading commands described thus far have an -o append
operation for appending data. A feature class must exist prior to using the append
operation. If the feature class is multiversioned, it must be in an “open” state. It is also
advisable to change the feature class to load-only I/O mode and pause the spatial
indexing operations before loading the data to improve the data loading performance.
The spatial indexes will be re-created when the feature class is put back into normal I/O
mode. Because the feature class has been defined, the metadata exists and is not altered
by the append operation.

In the shp2sde example below, a previously created roads feature class appends features
from a shapefile, rdshp2. All existing features, loaded from the rdshp shapefile, remain
intact, and ArcSDE updates the feature class with the new features from the rdshp2
shapefile.

sdelayer -o load_only_io -l roads,shape -u beetle -p bug
shp2sde -o append -f rdshp2 -l roads,shape -u beetle -p bug
sdelayer -o normal_io -l roads,shape -u beetle -p bug
sdetable -o update_dbms_stats -t roads -u beetle -p bug

Note the last command in the sequence. The sdetable update_dbms_stats operation
updates the table and index statistics required by the Informix optimizer. Without the
statistics, the optimizer may not be able to select the best execution plan when you query
the table. For more information on updating statistics, see Chapter 2, ‘Essential Informix
configuring and tuning’.

Creating and populating raster columns
Raster columns are created from ArcGIS Desktop using ArcCatalog or ArcMap. To
create a raster column, you will first need to convert the image file into a format
acceptable to ArcSDE. Then, after the image has been converted to the ESRI raster file
format, you can convert it into a raster column.

78 ArcSDE Configuration and Tuning Guide for Informix

For more information on creating raster columns using either ArcCatalog or ArcToolbox,
refer to Building a Geodatabase.

To estimate the size of your raster data, refer to Appendix A, ‘Estimating the size of your
tables and indexes’.

To understand how ArcSDE stores rasters in Informix, refer to Appendix B, ‘Storing
raster data’.

Creating views
There are times when a DBMS view is required in your database schema. ArcSDE
provides the sdetable create_view operation to accommodate this need. The view creation
is much like any other Informix view creation. If you want to create a view using a layer
and you want the resulting view to appear as a feature class to client applications, include
the feature class's spatial column in the view definition. As with the other ArcSDE
commands, see ArcSDE Developer Help for more information.

Exporting data
As with importing data, there are client applications that export data from ArcSDE as
well. With ArcSDE, the following command line tools exist:

• sdeexport—Creates an ArcSDE export file to easily move feature class data
between Informix instances and to other supported DBMSs

• sde2shp—Creates an ESRI shapefile from an ArcSDE feature class

• sde2cov—Creates a coverage from an ArcSDE feature class

• sde2tbl—Creates a dBASE or INFO file from a DBMS table

Schema modification
There will be occasions when it is necessary to modify the schema of some tables. You
may need to add or remove columns from a table. The ArcSDE command to do this is
sdetable with the –o alter option. ArcCatalog offers an easy-to-use tool for this and other
schema operations such as modifying the spatial index (grids) and adding and dropping
column indexes.

Chapter 4—Managing tables, feature classes, and raster columns 79

Choosing an ArcSDE log file configuration
ArcSDE allows you to configure the allocation of ArcSDE log files to your users. You
can allow your users to own their own log files or they can check out a log file from a
pool of log files owned by the sde user. Log files can be either shared, session-based or
stand-alone. A shared log file is the default and is used by all sessions that connect as a
given user. Also if the ArcSDE server is configured to use stand-alone log files and all
available log files of this type is exhausted, ArcSDE will attempt to create a session-
based log file if they are allowed; otherwise a shared log file is created. If the shared log
file cannot be created, ArcSDE returns an error.

Shared ArcSDE logfiles

Shared log files are shared by all sessions that connect as the same user. Essentially, all
sessions are inserting and deleting records from the same log file data table. The log files
are created the first time any session connects and remain in user's schema. To configure
your server to use only shared log files, set the log file server configuration parameters as
follows:

MAXSTANDALONELOGS 0
ALLOWSESSIONLOGFILE FALSE

Session-based ArcSDE log files

For session-based log files, each session that connects to the server creates a log file.

A session-based log file is dropped when a sessions disconnects. To configure your
server to use session-based log files, set the server configuration parameter
ALLOWSESSIONLOGFILE to true.

ALLOWSESSIONLOGFILE TRUE

You need to make sure that you configure enough space for the tables and indexes of the
session-based log files. The dbtune SESSION_STORAGE and SESSION_INDEX
storage parameters control the storage of session-based log files.

Stand-alone ArcSDE logfiles

Stand-alone log files are created by a session for each log file the application needs to
store. When an application deletes the log file, the stand-alone log file is truncated. The
stand-alone log files are dropped when the session disconnects. To configure your server
to use stand-alone log files, set the server configuration parameter
MAXSTANDALONELOGS to the number of stand alone log files you want them to be
able to create.

For instance, set MAXSTANDALONELOGS to 6 if you want to allow each ArcSDE
session to create a maximum of 6 stand-alone log files.

80 ArcSDE Configuration and Tuning Guide for Informix

MAXSTANDALONELOGS 6

Keep in mind that you need to configure enough space to store all of these log files. The
dbtune parameters, SESSION_STORAGE and SESSION_INDEX, allocate space for the
tables and indexes of stand-alone log files.

If the application exhausts the number of allowable standalone log files—if the
application needs to simultaneously create more logical log files than
MAXSTANDALONELOGS allows—ArcSDE will attempt to create a session-based log
file, but only if ALLOWSESSIONLOGFILE is set to TRUE; otherwise ArcSDE will use
a shared log file. The shared log file is created if it does not already exist. If the shared log
file cannot be created, ArcSDE returns an error.

Using an sde user pool of ArcSDE logfiles

The sde user can create a pool of log files that can be checked out and used as either
session-based or stand-alone log files by other users. Using a pool of sde owned log files
avoids having to grant users CREATE TABLE privileges. Shared log files cannot be
checked out from an sde owned log file pool.

To create a pool of log files, set the configuration parameter LOGPOOLSIZE to the
number of log files that need to be created. This number should reflect the number of
sessions that will connect to your server, in addition to the stand-alone log files if
allowed. To calculate the total number of log files that could be checked out of the pool,
use the following formulae:

If session log files are allowed, but not stand-alone log files:

LOGPOOLSIZE = total sessions expected

If stand-alone log files are allowed, but not session log files:

LOGPOOLSIZE = MAXSTANDALONELOGS * total sessions expected

If both stand-alone log files and session log files are allowed:

LOGPOOLSIZE = (MAXSTANDALONELOGS + 1) * total sessions expected

For instance, if you compute that 100 log files are needed, the LOGPOOLSIZE
parameter would be set as follows:

LOGPOOLSIZE 100

If the pool is exhausted and another log file is needed, ArcSDE will attempt to create it in
the users schema. If the log file cannot be created, an error is returned.

The pooled log file tables are created or dropped whenever the LOGFILESIZE parameter
is changed.

Set the HOLDLOGPOOLTABLES server configuration parameter to TRUE if you want
the sessions to retain checked out log files. If set to false, the log files are released

Chapter 4—Managing tables, feature classes, and raster columns 81

whenever the application deletes all of its log files in the case of a session log file or
whenever the log file occupying a stand alone log file is deleted.

The storage of the tables and indexes of the log file pool is controlled by the dbtune
storage parameters SESSION_STORAGE and SESSION_INDEX.

Using the ArcGIS Desktop, ArcCatalog, and ArcToolbox
applications

So far the discussion has focused on ArcSDE command line tools that create feature class
schemas and load data into them. While robust, these commands can be daunting for the
first-time user. In addition, if you are using ArcGIS Desktop, you may have to use
ArcCatalog to create feature datasets and feature classes within those feature datasets to
use specific ArcGIS Desktop functionality. For that reason, we provide a glimpse of how
to use ArcToolbox and ArcCatalog to load data. Please refer to the ArcInfo
documentation on ArcCatalog, ArcToolbox, and the geodatabase for a full discussion of
these tools.

Loading data

You can convert ESRI shapefiles, coverages, Map LIBRARIAN layers, and ArcStorm
layers into geodatabase feature classes with the ArcToolbox and ArcCatalog applications.
ArcToolbox provides a number of tools that enable you to convert data from one format
to another.

ArcToolbox operations, such as the ArcSDE administration commands shp2sde,
cov2sde, and sdeimport, accept configuration keywords.

In the ArcToolbox Shapefile to Geodatabase wizard, you can see that a configuration
keyword has been specified for the loading of the hampton_streets shapefile into the
geodatabase.

The configuration keyword contains storage parameters that list the Informix storage
parameters that ArcSDE creates the feature class business table and indexes with.

82 ArcSDE Configuration and Tuning Guide for Informix

The shapefile CASNBRST.shp is converted to a feature class vtest.CASNBRST using ArcToolbox.

Chapter 4—Managing tables, feature classes, and raster columns 83

Versioning your data

ArcCatalog also provides a means for registering data as multiversioned. Simply right-
click the feature class to be registered as multiversioned and select the Register As
Versioned context menu item.

A feature class is registered as multiversioned from within ArcCatalog.

Compressing the geodatabase

When the multiversioned tables of a geodatabase have been edited over an extended
period of time, and the number of states and rows in the delta tables has grown
significantly, performance can be improved by running the compress database command.
It is good to compress your database as often as possible.

The compress command removes the states that are no longer referenced by a version
and moves the rows in the delta tables, which are common to all versions, to the business
table. To achieve the maximum benefit when you run the compress command, first
reconcile, post, and delete each version with the DEFAULT version. Sometimes this may
not be a reasonable option based on your organization’s work flow. At a minimum, to
improve performance, simply reconcile each version with the DEFAULT version and
save, then perform the compress. This will ensure that all the edits in the DEFAULT
version will be compressed from the delta tables to the business table. The compress

84 ArcSDE Configuration and Tuning Guide for Informix

command can be executed without first reconciling, posting, and deleting each version,
but the performance benefits may not be as noticeable.

You can perform a compress of the database by using either the ArcCatalog or ArcSDE
command line.

To perform a compress of the database, you must start ArcCatalog and add the compress
database tool. To add the tool, right-click the gray area of the toolbar and select
Customize.

From the Customize menu, choose the Command tab and select Geodatabase tools.
Select Compress Database Command and drag it to the toolbar.

To use the Compress Database tool, connect to your ArcSDE service as the sde user.
Click the sde connection, click the compress tool, and answer yes to the popup window
asking if you are sure you want to compress the database.

To compress the database from the command line, use sdeversion from either the DOS or
UNIX prompt.

sdeversion -o compress [-N]
 -u <DB_user_name> [-p <DB_User_password>] [-q]
 [-i <service>] [-s <server_name>] [-D <database>]

For more information on the sdeversion command, refer to ArcSDE Developer Help.

Chapter 4—Managing tables, feature classes, and raster columns 85

Granting privileges

Using ArcCatalog, right-click the data object class and click the Privileges context menu.
From the Privileges context menu assign privileges specifying the username and the
privilege you wish to grant to or revoke from a particular user.

The ArcCatalog Privileges menu allows the owner of an object class, such as a feature dataset,
feature class, or table, to assign privileges to other users or roles.

86 ArcSDE Configuration and Tuning Guide for Informix

Creating a raster column with ArcCatalog

Using ArcCatalog, right-click the database connection, point to Import, and click Raster
to Geodatabase. Navigate to the raster file to import. Click Change Settings if you want
to change the coordinate reference system, tile size, pyramids option, or configuration
keyword. Click OK to import the raster file into the Informix database.

Registering a business table
When ArcSDE registers a business table, it performs a number of tasks depending on the
type of registration that was requested. The duration of the registration process is
dependent on the type of registration, whether the business table has a spatial column,
and the table’s number of rows.

Registering a table as NONE or USER maintained

Tables registered as NONE are registered without a row ID column.

Tables registered as USER are registered with a row ID column whose values you must
maintain.

Chapter 4—Managing tables, feature classes, and raster columns 87

If the registration type is NONE or USER, ArcSDE merely adds a record to the
SDE.TABLE_REGISTRY that references the business table. For tables registered as
type USER the name of the row id is also added to the SDE.TABLE_REGISTRY entry.

Registration of these two registration types happens rather quickly.

Registering a table as SDE maintained

Tables registered as type SDE must have a row ID column that uniquely identifies the
rows of the table.

NOTE: Tables registered by the geodatabase must be registered to ArcSDE as SDE
maintained. If the geodatabase determined that the table has already been registered by
ArcSDE as SDE maintained, the geodatabase uses the SDE maintained row ID. In this
case the geodatabase registration process is relatively inexpensive.

If a table was registered with a USER maintained row ID, the geodatabase alters its row
ID registration to be SDE maintained.

By default the geodatabase adds a column called objectid to the table and registers it as
SDE maintained. If the objectid column already exists, and is not currently registered as
SDE maintained, the geodatabase will add a new column to the table called objectid_1.

Creating a new SDE maintained row ID column

If the row ID column does not exist when the table is registered, ArcSDE adds a column
of type INTEGER, with a NOT NULL constraint. If the table contains rows, ArcSDE
populates the column with unique ascending values starting at your specified minimum
ID value. The minimum ID value defaults to 1 if left unspecified. It then creates a unique
index on the column called R<registration_id>_SDE_ROWID_UK, where
registration_id is the registration identifier ArcSDE assigns the table when it was
registered.

ArcSDE creates a sequence generator called R<registration_id> and uses it to generate
the next value of the row ID column whenever a value is added to the column.

Therefore, if at all possible, it is better to include the row ID column as part of the table's
original definition or add it before data is inserted into the table. If, however, you must
add the row ID column to a table that contains data, consider exporting the table
afterwards, truncating the rows, and importing the data back into the table. Doing so
eliminates the excessive disk I/O generated by fetching the migrated rows.

Using an existing column

If the row ID column already exists, ArcSDE confirms that the column was defined as an
integer. If it is not, the registration fails.

88 ArcSDE Configuration and Tuning Guide for Informix

Next, ArcSDE confirms that the column has a unique index. If the column was defined
with a non-unique index, ArcSDE drops the index.

In the event that the column does not have a unique index, ArcSDE attempts to create a
unique index on the column. If the index creation fails because the column contains non-
unique values, ArcSDE repopulates the column with ascending values beginning at 1 and
then creates the unique index. ArcSDE names the unique index
R<registration_id>_SDE_ROWID_UK.

Next, ArcSDE verifies that the column has been defined as NOT NULL.

If the column was defined as NULL, ArcSDE attempts to redefine it as NOT NULL. If
this action fails, ArcSDE repopulates the column and defines it as NOT NULL.

Repopulating the column either because it contained null values, or because it contained
non-unique values is an expensive process, especially if the table contains more than a
100,000 records.

Therefore if at all possible you should not rely on ArcSDE to perform this operation. You
instead define the row id column as not null when the table is created and create your
own unique index on it. At the very least, you should insure that the column is populated
with unique integer values.

Registering a table as multiversioned

To perform versioned edits on a business table, the table must be registered as
multiversioned. When tables are registered as multiversioned the associated adds and
deletes table are created and analyzed. These tables as their name implies, store the
records of the business that are added and deleted. They are named A<registration_id>
and D<registration_id>.

Multiversioned views are available for SQL access to the multiversioned database. See
the ArcSDE Developers Guide for more information.

 How does ArcSDE use existing Informix tables?
Tables with spatial columns can be created by other applications. ArcSDE has been
designed to use tables containing spatial columns that were created by other applications
or using SQL (sometimes referred to as third-party tables) so long as the tables meet
certain prerequisites.

Chapter 4—Managing tables, feature classes, and raster columns 89

Manual registration

Users can use the ArcSDE administration command sdelayer –o register to manually
register a table as a layer. Registering tables as layers manually gives users more control
over how a table is registered. Here is an example of registering a table called TBL
containing point geometries (-e p) in a spatial column called SHAPE. The table has an
integer column called PID that will be used as a user-maintained unique feature identifier
column (-C pid,USER).

sdelayer -o register -l tbl,shape -e p -C pid,USER -u <user> -p <pw>

Autoregistration

Autoregistration is controlled by the system configuration parameter
DISABLEAUTOREG, which is set to TRUE by default. To turn on autoregistration, use
the following administration command:

sdeconfig -o alter -v DISABLEAUTOREG=FALSE -u sde -p <sde_password>

Whenever an ArcSDE client lists the feature classes stored in the database, ArcSDE
automatically searches the Informix system tables for new tables with spatial columns.
When a new table is discovered, it is registered with ArcSDE and made available to
applications.

ArcSDE uses the first record in a newly discovered table to establish the ArcSDE
geometry type. If the table contains multiple geometry types, the sdelayer administration
utility can be used to alter the geometry type definition.

ArcSDE searches for a column in the table to use as an OBJECTID column. To qualify,
the column must be defined as INTEGER, NOT NULL, and UNIQUE constraints. If
such a column is found, it is recorded in the ArcSDE table registry along with the table. If
an OBJECTID column is not found, the table is registered, but operations requiring an
OBJECTID are unavailable.

C H A P T E R 5

National language support

Configuring ArcSDE for Informix to use a specific locale begins with the

Informix database. The database must be created with the correct locale

before data can be stored in it. The next step is to configure the Open

Database Connectivity (ODBC) data source names (DSN) to transfer the

data in the proper locale and make the correct codepage conversions that

may be required when the operating systems of the client and server are

different. This chapter provides guidelines for configuring ArcSDE with

the correct locales. For more information refer to the Informix document

Informix Guide to GLS functionality.

Creating an Informix database with a specific language
locale

An Informix database must be created with a specific locale. If the locale is not set when
the database is created, the database locale defaults to US English: en_us.8859-1 for
UNIX and en_us:1252 for Windows 2000.

For example, to create a database that will store French characters on a UNIX server, set
the DB_LOCALE variable to fr_fr.8859-1 before starting the Informix SQL utility
DBACCESS. All database created during this DBACCESS session will be created with
the French locale fr_fr.8859-1. To determine what the proper locale is for your database,
consult the Informix document Informix Guide to GLS functionality.

Setting the NLS_LANG variable on the client
Once the ArcSDE Informix ArcSDE database has been created with the proper character
set, data can be loaded into it using a variety of applications such as ArcGIS Desktop and

Chapter 5—Global language support 91

the ArcSDE administration tools shp2sde and cov2sde. To properly convert and preserve
the characters, you must set the Informix NLS_LANG variable in the client applications
system environment.

For instance, using ArcToolbox installed on Windows 2000 to convert a coverage
containing German attribute data into an Informix database on a UNIX server created
with the Western European character set WE8ISO8859P1, you would set the
NLS_LANG to GERMAN_GERMANY.WE8ISO8859P1. To set the NLS_LANG
variable for ArcToolbox, click Start, Settings, and Control Panel. Double-click on the
System icon and select the Environment tab after the System menu appears. Click on the
System Variables scrolling list and enter NLS_LANG in the Variable: input line and
GERMAN_GERMANY.WE8ISO8859P1 in the Value: input line. Click Set and then
OK.

Setting the NLS_LANG variable for Windows 2000 clients

Be careful setting the NLS_LANG on the Windows 2000 platform because there are
actually two different codepage environments on this platform. Windows applications
such as ArcGIS Desktop run in the Windows American National Standards Institute
(ANSI) codepage environment, while ArcSDE administration tools and C and Java API
applications invoked from the MS–DOS Command Prompt run in the original equipment
manufacturer (OEM) codepage environment. Some languages require two different
NLS_LANG settings for the language character set component for each of these
codepage environments.

For instance, in the above example the NLS_LANG variable would be set to
GERMAN_GERMANY.WE8PC850 if the data was loaded from the MS–DOS
Command Prompt using the ArcSDE administration tool shp2sde. If you use both
Windows applications and MS–DOS applications together, then you should set the
NLS_LANG variable for MS–DOS applications when you open the MS–DOS
Command Prompt using the MS–DOS SET command.

SET NLS_LANG = GERMAN_GERMANY.WE8PC850

To determine if your language requires a separate language character set, consult the
Informix Guide to GLS functionality.

Configuring the Informix server locale
The server locale identifies the locale that the database server uses for its server-specific
files on the server computer. Set the server locale in the environment of the Informix
DBA before starting the Informix server.

After the server locale has been set, all error messages and output to the online.log file
will be reported in the locale set by the SERVER_LOCALE variable. Set the locale in the

94 ArcSDE Configuration and Tuning Guide for Informix

DBA’s system environment before starting the Informix server. The SERVER_LOCALE
variable does not perform a code page conversion during a SQL session.

Configuring the Informix locale for ArcSDE
The Informix CLI does not obtain locale information from the system environment. The
INFORMIX CLI driver obtains the client and database locale information from the
ODBC DSN. Add the following parameters to the .odbc.ini for UNIX or the ODBC
registry for Windows.

CLIENT_LOCALE=
DB_LOCALE=
TRANSLATIONDLL=$(INFORMIXDIR)/lib/esql/igo4a304.so

For example:

CLIENT_LOCALE=fr_fr.PC-Latin-1
DB_LOCALE=fr_fr.8859-1
TRANSLATIONDLL=/export/home/prods/csdk202/lib/esql/igo4a304.so

Setting the locale for ArcSDE
Add the locale information to the sde DSN on the computer that the ArcSDE service is
started on. For example, if the sde database is a French Language database on UNIX, add
the following locale information to the sde DSN. For the sde DSN, the
CLIENT_LOCALE and the DB_LOCALE are always set to the locale the sde database
was created with.

[sde]
. . .
CLIENT_LOCALE=fr_fr.8859-1
DB_LOCALE=fr_fr.8859-1
TRANSLATIONDLL= $(INFORMIXDIR)/lib/esql/igo4a304.so

Chapter 5—Global language support 93

The locale settings of the other DSNs will depend on the locale of the client. The
DB_LOCALE of these DSNs is always set to the locale that the database was created
with. The CLIENT_LOCALE, however, is set to the locale that the client will use. For
instance, if the INFORMIX server is running on a UNIX host and the database was
created with a French locale, the DB_LOCALE would be set to fr_fr.8859-1—the French
locale for a database created on a UNIX server. The CLIENT_LOCALE is set to the
locale of the client environment. If the client environment is on Windows, the
CLIENT_LOCALE would be set to fr_fr.PC-Latin-1.

[bladetest]
. . .
CLIENT_LOCALE=fr_fr.PC-Latin-1
DB_LOCALE=fr_fr.8859-1
TRANSLATIONDLL= $(INFORMIXDIR)/lib/esql/igo4a304.so

Although the ArcSDE client and INFORMIX database can have a different locale, they
must always be of the same basic language. For instance, you cannot create a French
database, set the DB_LOCALE to fr_fr.8859-1, then set the CLIENT_LOCALE to a
non-French locale.

94 ArcSDE Configuration and Tuning Guide for Informix

C H A P T E R 6

Backup and recovery

This chapter provides you with some basic backup and recovery

guidelines. You should refer to the backup and recovery guidelines

presented in the Archive and Backup for Informix Dynamic Server.2000

and Informix Backup and Restore Guide.

Data recovery system
The central concepts of a data recovery system for Informix Dynamic Server 2000 can
be explained by answering the following questions:

• What is a Dynamic Server recovery system?

• What is an archive?

• What is a logical log backup?

• What is a restore?

Informix provides two recovery systems for Dynamic Server: the ON-Archive system
and the ontape utility. You can also use the ON-Bar utility to perform backup and restore
operations. Please see the recommended Informix documentation (Archive and Backup
for Informix Dynamic Server.2000 and Informix Backup and Restore Guide) for
differences between these backup and recovery systems and their usage.

What is a Dynamic Server recovery system?
A Dynamic Server recovery system enables you to back up your Dynamic Server data
and subsequently restore it in the event that your current data becomes corrupt or
inaccessible. The causes of data corruption or loss can range from a program error to

 Chapter 6— Backup and Recovery 95

disk failure to a disaster that damages the entire facility. A recovery system enables you
to recover data that you already lost due to such mishaps.

What is an archive?

An archive is a copy of either all or some portion of the data that Dynamic Server
manages. More precisely, an archive is a copy of one or more Dynamic Server dbspaces
(database spaces) and any supporting data that you might need to restore them.

You create an archive of Dynamic Server data on tape or disk that, ideally, you store in a
safe location that is separate from your computer facility.

What is a logical-log backup?

A logical log backup is a copy on tape or disk of logical log files that you have made full
and eligible for backup. The logical logs files store a record of Dynamic Server activity
that occurs between archives.

What is a Dynamic server restore?

A Dynamic Server restore re-creates Dynamic Server data, particularly Dynamic Server
dbspaces, from an archive and backed-up logical log files.

Physical and logical restores

You must restore Dynamic Server data in two operations. The first operation is a
physical restore and the second, which must follow the first, is a logical restore.

Backing up the database
Base the frequency of your backups on the rate at which the data in your database is
changing. The more changes that occur, the more frequently backups should occur.

The following command can be used to back up an ArcSDE database that contains
spatial data:

dbexport sde -c

where sde is the name of the ArcSDE database.

For more information on different Informix database backup and recovery strategies,
refer to the Archive and Backup Guide for Informix Dynamic Server 2000.

96 ArcSDE Configuration and Tuning Guide for Informix

Regardless of which backup and restore mode you are using, you should make regular
full backups of your Informix databases. A full backup should include the Informix
database and the giomgr.defs, dbinit.sde, and services.sde files. You should also back up
any dbtune files you have created and imported into the DBTUNE table.

Recovering the database
For the recovery of an Informix database refer to the Archive and Backup for Informix
Dynamic Server 2000 and Informix Backup and Restore Guide. Once the Informix
database has been recovered, if necessary, restore the ArcSDE installation from the
ArcSDE media and the dbtune files, giomgr.defs, dbinit.sde, and services.sde files from
your backup tapes.

The following command can be used to recover your ArcSDE data that contains spatial
data:

dbimport sde -c -d sdedbs -l buffered

where sde is the name of the ArcSDE database and sdedbs is the name of the sbspace
being used.

You should test your backup before you need it. If you have just loaded your database,
you should do a full backup and then recover the database from tape to make sure the
recovery process will work when you need it.

A P P E N D I X A

Estimating the size of your
tables and indexes

The formulas provided in this appendix provide approximations of the

actual sizes of the Informix tables and indexes created by ArcSDE.

Estimating the size of your spatial tables
The INFORMIX-Online Dynamic Server Performance Guide provides precise
guidelines for estimating table size. If you require such precision you should consult the
‘Table Placement, Layout and Fragmentation’ chapter. However, the rough estimates in
this document should be within 100 MB for large tables.

This estimation method requires five steps.

1. Estimate the size of the spatial column.

2. Estimate the actual row size of the spatial table.

3. Estimate the metadata space requirements.

4. Estimate the storage space for the spatial table.

5. Estimate the smart large object storage space.

Estimating the size of the spatial column

Estimate the size of the spatial column with:

spatial column size = (average points per feature * coordinate factor) + annotation size

The average points per feature is the sum of all coordinate points required to render the
features of a spatial table divided by the number of rows in the table. If you are about to

98 ArcSDE Configuration and Tuning Guide for Informix

convert a large number of shapefiles, coverages, or other geographic data into an
ArcSDE spatial table, it is unlikely that you can obtain the sum of all coordinates, let
alone the number of rows required to perform this calculation. The table below lists
reasonable approximations of the average number of points per feature that each data
type often has.

The values listed in the table follow this simple logic. Point data type is always defined
by a single coordinate.

Linestrings and polygons rendering a dense urban condition tend to have fewer
coordinates than a sparse rural condition.

Most linestrings in an urban center have two coordinates. However, curves that define
round features such as cul-de-sacs require several more coordinates, so urban linestrings
tend to average about five coordinates.

In a rural setting, linestrings tend to be longer as features, such as roads, tend to extend
for greater length, interrupted only by streams, rivers, and other rural networks.

The collection data types (multipoints, multilinestrings, and multipolygons) are difficult
to estimate. The numbers shown below are based on the datasets that these data types are
often applied to (broadcast patterns for multipoints, stream networks for multilinestrings,
and island topology for multipolygons).

Data Type Average Points per Feature

point 1

linestring (urban) 5

linestring (rural) 50

polygons (urban) 7

polygons (rural) 150

multipoint 50

multilinestring 250

multipolygon 1,000

 Appendix A – Estimating the size of your Tables and Indexes 99

Select the coordinate factor from the table below.

Coordinate Type Coordinate Factor

xy 4.8

xyz 7.2

xym 7.2

xyzm 9.6

The coordinate factor is based on the type of coordinates stored. If the spatial column
stores only x- and y-values, the coordinate factor is 4.8. If in addition to the x- and y-
values the spatial column stores z-values (for three-dimensional applications) or
measures (used by network analysis packages), the coordinate factor is 7.2. The
coordinate factor is 9.6 if both z-values and measures are stored.

If your layer includes annotation, set the annotation size to 300 bytes. The annotation
size includes the space required to store the text, the placement geometry, the lead line
geometry (if one exists), and various metadata attributes describing the annotation’s size
and font. Three hundred is the average number of bytes required to store most
annotation. The number will vary depending on factors such as the size of the text string
and the complexity of the placement geometry. However, the variation becomes
insignificant for large tables.

Estimating the actual row size of the spatial table

To determine the row size of the remaining columns of a spatial table, create the table
without the spatial column and query the row size column of the systables table. In this
example, a lots table is created with three columns.

create table lots (lot_id integer,
 owner_name varchar(128),
 owner_address varchar(128))

Selecting the row size for the lots table from systables returns a value of 262 bytes.

select rowsize from systables where tabname = 'lots';
262

Tables containing variable length columns of type VARCHAR or NVARCHAR require
the row size to be reduced to reflect the actual length of the data stored.

In the sample lots table the lot_id integer column is a fixed length and always occupies
four bytes. However, the owner_name and owner_address are variable length varchar
columns and may occupy up to 129 bytes each (an extra byte is required for the null

100 ArcSDE Configuration and Tuning Guide for Informix

terminator). Upon closer examination it is determined that the average size of the owner
name is 68 bytes and the average size of the address is 102. The row size should be
reduced.

actual row size = systables row size - ((size of owner_name - average owner name) +
 (size of owner_address - average owner address))

actual row size = 262 - ((129 - 68) + (129 - 102))

actual row size = 262 - (61 + 27)

actual row size = 174

Estimating the metadata space requirement

Informix requires a certain amount of space to store metadata about the table and the
rows. A spatial table with more than 10,000 rows will require about 200 bytes of
metadata per row. Tables with fewer than 10,000 rows but more than 1,000 require 300
bytes. Tables with fewer than 1,000 rows add 400 bytes per row.

Number of Rows Metadata Bytes

>10,000 200

1,000–10,000 300

<1,000 400

Estimating the storage space for the spatial table

To determine the storage space required for the spatial table, obtain a rough estimate of
the number of rows in the table. Once you have that, add the spatial column size, the
attribute column size, and the metadata size together and multiply the sum by the
estimated number of rows. The result is a rough estimate of the size of the spatial table.

Estimating the smart large object storage space

A geometry value is stored inline whenever its size is less than or equal to 930 bytes.
Geometry values greater than or equal to 930 bytes are stored offline in a designated
smart large object. When geometries are written to a smart large object, an inline pointer
of 64 bytes references the geometry.

Determine the amount of smart large object space required with the following formula:

 Appendix A – Estimating the size of your Tables and Indexes 101

smart large object ratio = (spatial column size / 1920)

The smart large object ratio cannot be greater than 1. So if the smart large object ratio is
greater than one, set it to 1.

smart large object space = ((smart large object ratio) * number of rows)

Determine the amount of inline space required with the following formula:

inline space = (size of spatial table) - (smart large object space)

Estimating the size of your ArcSDE indexes
The ArcSDE server creates and maintains two indexes whenever you add a spatial
column to one of your tables. The server creates an rtree index on the spatial column and
a btree index on the SE_ROW_ID integer column. The spatial column rtree index is
named a <N>_ix1, and the SE_ROW_ID btree index is named a <N>_ix2. The <N> in
the index names represents the spatial column’s unique layer number assigned by the
ArcSDE server.

The indexes are 3 percent greater than the metadata and spatial column size of the table.
Calculate the index space requirements by combining the spatial column size and the
metadata size and multiplying this sum by the expected number of rows in the table.
Increase the product by 3 percent (multiply by 1.03).

index space = ((metadata size + spatial column size) * expected number of rows) * 1.03

A P P E N D I X B

Storing raster data

A raster is a rectangular array of equally spaced cells that, taken as a

whole, represent thematic, spectral, or picture data. Raster data can

represent everything from qualities of land surface, such as elevation or

vegetation, to satellite images, scanned maps, and photographs.

You are probably familiar with raster formats such as tagged image file

format (TIFF), Joint Photographic Experts Group (JPEG), and Graphics

Interchange Format (GIF) that your Internet browser renders. These

raster images are composed of one or more bands. Each band is

segmented into a grid of square pixels. Each pixel is assigned a value that

reflects the information it represents at a particular position.

For an expanded discussion of the type of raster data supported by ESRI products,
review Chapter 9, ‘Cell-based modeling with rasters’, in Modeling Our World.

ArcSDE stores raster datasets similar to the way it stores compressed binary feature
classes (see Appendix C.) A raster column is added to a business table, and each cell of
the raster column contains a reference to a raster stored in a separate raster table.
Therefore, each row of a business table references an entire raster.

ArcSDE stores the raster bands in the raster bands table. ArcSDE joins the raster band
table to the raster table on the raster_id column. The raster band table’s raster_id column
is a foreign key reference to the raster table’s raster_id primary key.

ArcSDE automatically stores any existing image metadata, such as image statistics, color
maps and coordinate transformations in the raster auxiliary table. The rasterband_id
column of the raster auxiliary table is a foreign key reference to the primary key of the

Appendix B—Storing raster data 103

raster band table. ArcSDE joins the two tables on this primary/foreign key reference
when accessing a raster band's metadata.

The raster blocks table stores the pixels of each raster band. ArcSDE tiles the pixels into
blocks according to a user-defined dimension. ArcSDE does not have a default
dimension; however, applications that store raster data in ArcSDE do. ArcCatalog, for
example, uses a default raster block dimensions of 128 x 128 pixels per block. The

The rendition of rasters

Multiband rasters are often displayed as red-
green-blue composites. This band configuration
is common because these bands can be directly
displayed on computer displays, which employ a
red-green-blue color rendition model.

Raster datasets have one or many
bands. In multiband rasters, a band

represents a segment of the
electromagnetic spectrum that has

been collected by a sensor.

Red
band

Green
band

Blue
band

Red-green-blue
composite

Attribute values
range from 0 to 255

in each band

255

0

Displaying multiband rasters

Electromagnetic spectrum

band 1

band 2

band 3

Bands often represent a portion of the electromagnetic
spectrum, including ranges not visible to the eye—the
infrared or ultraviolet sections of the spectrum.

A raster can have one or many bands. The cell values of rasters can be drawn in a variety of
ways. These are some of the ways to display rasters by cell values.

Monochrome
image

0 0 0 0 1 1

1 0 0 1 1 0

1 0 1 1 0 0

0 0 0 1 1 0

1 1 0 0 0 1

0 1 1 1 0 0

0

251

41

86

118

141

187 236

201

16 25532

66

126

124 183

191 198

0

243

68

76 124

162

170

212

251 10

255

56

68

124

132

152

218

234

00 1 255

Grayscale
image

Display colormap
image

1 3

42

5

1

3

4

2

5

1 3

4

2

5

1

3

42

5

1

3

4

2

5

1 3

42

5

1 34 2

5

2

1

3

4

2

5

Colormap

red green blue

64

255 0

128

3232

0

255

255 128

25500

128

255

In a monochrome image, each cell
has a value of 0 or 1. They are often
used for scanning maps with simple
linework, such as parcel maps.

In a grayscale image, each cell has a
value from 0 to 255. They are often
used for black-and-white aerial
photographs.

One way to represent colors on an
image is with a colormap. A set of
values is arbritrarily coded to match a
defined set of red-green-blue values.

Cell values in single-band rasters can be drawn in these three basic ways.

Displaying single-band rasters

104 ArcSDE Configuration and Tuning Guide for Informix

dimensions of the raster block, along with any specified compression method, determine
the storage size of each raster block. You should select raster block dimensions that,
combined with the compression method, allow each row of the raster block table to fit
within an Oracle data block. For Oracle databases, storing raster data should be created
with a 16 KB Oracle data block size. See Appendix A, ‘Estimating the size of your
tables and indexes’, for more information on estimating the size of your raster tables and
indexes.

Using a compression method, such as lossless lz77, almost always results in improved
performance. The savings in disk space and network I/O offset the additional CPU
cycles required for the application to decompress the image.

The raster blocks table contains the rasterband_id column, which is a foreign key
reference to the raster band table's rasterband_id primary key. ArcSDE joins these tables
together on the primary/foreign key reference when accessing the blocks of the raster
band.

ArcSDE populates the raster blocks table according to a declining resolution pyramid.
The number of levels specified by the application determines the height of the pyramid.
The application, such as ArcCatalog, may allow you to define the levels, request that
ArcSDE calculate them, or offer both possible choices.

The pyramid begins at the base, or level 0, which contains the original pixels of the
image. The pyramid proceeds toward the apex by coalescing four pixels from the
previous level into a single pixel at the current level. This process continues until less
than four pixels remain or until ArcSDE exhausts the defined number of levels.

The apex of the pyramid is reached when the uppermost level has less than four pixels.
The additional levels of the pyramid increase the number of raster block table rows by
one-third. However, since it is possible for the user to specify the number of levels, the
true apex of the pyramid may not be obtained, limiting the number of records added to
the raster blocks table.

Figure B.1 When you build a pyramid, more rasters
are created by progressively downsampling the
previous level by a factor of two until the apex is
reached. As the application zooms out and the
raster cells grow smaller than the resolution
threshold, ArcSDE selects a higher level of the
pyramid. The purpose of the pyramid is to optimize
display performance.

Appendix B—Storing raster data 105

The pyramid allows ArcSDE to provide the application with a constant resolution of
pixel data regardless of the rendering window's scale. Data of a large raster transfers
more quickly to the client when a pyramid exists since ArcSDE can transfer fewer cells
of a reduced resolution.

Raster schema
When you import a raster into an ArcSDE database, ArcSDE adds a raster column to the
business table of your choice. You may name the raster column whatever you like, so
long as it conforms to Oracle's column naming convention. ArcSDE restricts one raster
column per business table.

The raster column is a foreign key reference to the raster_id column of the raster table
created during the addition of the raster column. Also joined to the raster table's raster_id
primary key, the raster band table stores the bands of the image. The raster auxiliary
table, joined one to one to the raster band table by rasterband_id, stores the metadata of
each raster band. The rasterbands_id also joins the raster band table to the raster blocks
table in a many-to-one relationship. The raster blocks table rows store blocks of pixels,
determined by the dimensions of the block.

The sections that follow describe the schema of the tables associated with the storage of
raster data. Refer to Figure B.2 for an illustration of these tables and the manner in which
they are associated with one another.

106 ArcSDE Configuration and Tuning Guide for Informix

Figure B.2 When ArcSDE adds a raster column to a table, it records that column in the SDE user’s
raster_columns table. The rastercolumn_id table is used in the creation of the table names of the
raster, raster band, raster auxiliary, and raster blocks table.

RASTER_COLUMNS table

When you add a raster column to a business table, ArcSDE adds a record to the
RASTER_COLUMNS system table maintained in the SDE user’s schema. ArcSDE also
creates four tables to store the raster images and metadata associated with each one.

Appendix B—Storing raster data 107

NAME DATA TYPE NULL?

rastercolumn_id NUMBER(38) NOT NULL

description VARCHAR2(65) NULL

database_name VARCHAR2(32) NULL

owner VARCHAR2(32) NOT NULL

table_name VARCHAR2(160) NOT NULL

raster_column VARCHAR2(32) NOT NULL

cdate NUMBER(38) NOT NULL

config_keyword VARCHAR2(32) NULL

minimum_id NUMBER(38) NULL

base_rastercolumn_id NUMBER(38) NOT NULL

rastercolumn_mask NUMBER(38) NOT NULL

srid NUMBER(38) NULL

Raster columns table

• rastercolumn_id (SE_INTEGER_TYPE)—The tables primary key.

• description (SE_STRING_TYPE)—The description of the raster table.

• database_name (SE_STRING_TYPE)—Field is always NULL for Oracle.

• owner (SE_STRING_TYPE)—The owner of the raster column's business table.

• table_name (SE_STRING_TYPE)—The business table name.

• raster_column (SE_STRING_TYPE)—The raster column name.

• cdate (SE_INTEGER_TYPE)—The date the raster column was added to the
business table.

• config_keyword (SE_STRING_TYPE)—The DBTUNE configuration keyword
whose storage parameters determine how the tables and indexes of the raster are
stored in the Oracle database. For more information on DBTUNE configuration
keywords and their storage parameters, review Chapter 3, ‘Configuring DBTUNE
storage parameters’.

• minimum_id (SE_INTEGER_TYPE)—Defined during the creation of the raster,
establishes value of the raster table’s raster_id column.

• base_rastercolumn_id (SE_INTEGER_TYPE)—If a view of the business table is
created that includes the raster column, an entry is added to the
RASTER_COLUMNS table. The raster column entry of the view will have its own
rastercolumn_id. The base_rastercolumn_id will be the rastercolumn_id of the
business table used to create the view. This base_rastercolumn_id maintains

108 ArcSDE Configuration and Tuning Guide for Informix

referential integrity to the business table. It ensures that actions performed on the
business table raster column are reflected in the view. For example, if the business
table’s raster column is dropped, it will also be dropped from the view (essentially
removing the view's raster column entry from the RASTER_COLUMNS table).

• rastercolumn_mask (SE_INTEGER_TYPE)—Currently not used; maintained for
future use.

• srid (SE_INTEGER_TYPE)—The spatial reference ID is a foreign key reference to
the SPATIAL_REFERENCES table. For images that can be georeferenced, the
SRID references the coordinate reference system the image was created under.

Business table

In the example that follows, the fictitious BUILDING_FOOTPRINTS business table
contains the raster column house_image. This is a foreign key reference to the raster
table created in the user’s schema. In this case the raster table contains a record for each
raster of a house. It should be noted that images of houses cannot be georeferenced.
Therefore, the SRID column of the RASTER_COLUMN record for this raster is NULL.

NAME DATA TYPE NULL?

building_id NUMBER(38) NOT NULL

building_footprint NUMBER(38) NOT NULL

house_picture NUMBER(38) NOT NULL

BUILDING_FOOTPRINTS business table with house image raster column

• building_id (SE_INTEGER_TYPE)—The table's primary key

• building_footprints (SE_INTEGER_TYPE)—A spatial column and foreign key
reference to a feature table containing the building footprints

• house_image (SE_INTEGER_TYPE)—A raster column and foreign key reference
to a raster table containing the images of the houses located on each building
footprint

Raster table (SDE_RAS_<rastercolumn_id>)

The raster table, created as SDE_RAS_<raster_column_id> in the Oracle database,
stores a record for each image stored in a raster column. The raster_column_id is
assigned by ArcSDE whenever a raster column is created in the database. A record for
each raster column in the database is stored in the ArcSDE RASTER_COLUMNS
system table maintained in the SDE user’s schema.

Appendix B—Storing raster data 109

NAME DATA TYPE NULL?

raster_id NUMBER(38) NOT NULL

raster_flags NUMBER(38) NULL

description VARCHAR2(65) NULL

Raster description table schema (SDE_RAS_<raster_column_id>)

• raster_id (SE_INTEGER_TYPE)—The primary key of the raster table and unique
sequential identifier of each image stored in the raster table

• raster_flags (SE_INTEGER_TYPE)—A bitmap set according to the characteristics
of a stored image

• description (SE_STRING_TYPE)—A text description of the image (not
implemented at ArcSDE 8.1)

Raster band table (SDE_BND_<rastercolumn_id>)

Each image referenced in a raster may be subdivided into one or more raster bands. The
raster band table, created as SDE_BND_<rastercolumn_id>, stores the raster bands of
each image stored in the raster table. The raster_id column of the raster band table is a
foreign key reference to the raster table’s raster_id primary key. The rasterband_id
column is the raster band table’s primary key. Each raster band in the table is uniquely
identified by the sequential rasterband_id.

NAME DATA TYPE NULL?

rasterband_id NUMBER(38) NOT NULL

sequence_nbr NUMBER(38) NOT NULL

raster_id NUMBER(38) NOT NULL

name VARCHAR2(65) NULL

band_flags NUMBER(38) NOT NULL

band_width NUMBER(38) NOT NULL

band_height NUMBER(38) NOT NULL

band_types NUMBER(38) NOT NULL

block_width NUMBER(38) NOT NULL

block_height NUMBER(38) NOT NULL

block_origin_x NUMBER(64) NOT NULL

block_origin_y NUMBER(64) NOT NULL

eminx NUMBER(64) NOT NULL

eminy NUMBER(64) NOT NULL

emaxx NUMBER(64) NOT NULL

emaxy NUMBER(64) NOT NULL

cdate NUMBER(38) NOT NULL

110 ArcSDE Configuration and Tuning Guide for Informix

mdate NUMBER(38) NOT NULL

Raster band table schema

• rasterband_id (SE_INTEGER_TYPE)—The primary key of the raster band table
that uniquely identifies each raster band.

• sequence_nbr (SE_INTEGER_TYPE)—An optional sequential number that can be
combined with the raster_id as a composite key as a second way to uniquely
identify the raster band.

• raster_id (SE_INTEGER_TYPE)—The foreign key reference to the raster table’s
primary key. Uniquely identifies the raster band when combined with the
sequence_nbr as a composite key.

• name (SE_STRING_TYPE)—The name of the raster band.

• band_flags (SE_INTEGER_TYPE)—A bitmap set according to the characteristics
of the raster band.

• band_width (SE_INTEGER_TYPE)—The pixel width of the band.

• band_height (SE_INTEGER_TYPE)—The pixel height of the band.

• band_types (SE_INTEGER_TYPE)—A bitmap band compression data.

• block_width (SE_INTEGER_TYPE)—The pixel width of the band's tiles.

• block_height (SE_INTEGER_TYPE)—The pixel height of the band's tiles.

• block_origin_x (SE_FLOAT_TYPE)—The leftmost pixel.

• block_origin_y (SE_FLOAT_TYPE)—The bottommost pixel.

If the image has a map extent, the optional eminx, eminy, emaxx, and emaxy will hold
the coordinates of the extent.

• eminx (SE_FLOAT_TYPE)—The band’s minimum x coordinate.

• eminy (SE_FLOAT_TYPE)—The band’s minimum y coordinate.

• emaxx (SE_FLOAT_TYPE)—The band’s maximum x coordinate.

• emaxy (SE_FLOAT_TYPE)—The band’s maximum y coordinate.

• cdate (SE_FLOAT_TYPE)—The creation date.

• mdate (SE_FLOAT_TYPE)—The last modification date.

Appendix B—Storing raster data 111

Raster blocks table (SDE_BLK_<rastercolumn_id>)

Created as SDE_BLK_<rastercolumn_id>, the raster blocks table stores the actual pixel
data of the raster images. ArcSDE evenly tiles the bands into blocks of pixels. Tiling the
raster band data enables efficient storage and retrieval of the raster data. The raster
blocks can be configured so that the records of the raster block table fit with an Oracle
data block, avoiding the adverse effects of data block chaining.

The rasterband_id column of the raster block table is a foreign key reference to the raster
band table's primary key. A composite unique key is formed by combining the
rasterband_id, rrd_factor, row_nbr, and col_nbr columns.

NAME DATA TYPE NULL?

rasterband_id NUMBER(38) NOT NULL

rrd_factor NUMBER(38) NOT NULL

row_nbr NUMBER(38) NOT NULL

col_nbr NUMBER(38) NOT NULL

block_data LONG RAW or BLOB NOT NULL

Raster block table schema

• rasterband_id (SE_INTEGER_TYPE)—The foreign key reference to the raster
band table’s primary key.

• rrd_factor (SE_INTEGER_TYPE)—The reduced resolution dataset factor
determines the position of the raster band block within the resolution pyramid. The
resolution pyramid begins at 0 for the highest resolution and increases until the
raster band’s lowest resolution level has been reached.

• row_nbr (SE_INTEGER_TYPE)—The block’s row number.

• col_nbr (SE_INTEGER_TYPE)—The block’s column number.

• block_data (SE_BLOB_TYPE)—The block’s tile of pixel data.

Raster band auxiliary table (SDE_AUX_<rastercolumn_id>)

The raster band auxiliary table, created as SDE_AUX_<rastercolumn_id>, stores
optional raster metadata such as the image color map, image statistics, and coordinate
transformations used for image overlay and mosaicking. The rasterband_id column is a
foreign key reference to the primary key of the raster band table.

NAME DATA TYPE NULL?

rasterband_id NUMBER(38) NOT NULL

type NUMBER(38) NOT NULL

112 ArcSDE Configuration and Tuning Guide for Informix

object LONG RAW or BLOB NOT NULL

Raster auxiliary table schema

• rasterband_id (SE_INTEGER_TYPE)—The foreign key reference to the raster
band table’s primary key

• type (SE_INTEGER_TYPE)—A bitmap set according to the characteristics of the
data stored in the object column

• object (SE_BLOB_TYPE)—May contain the image color map, image statistics or
coordinate transformation.

A P P E N D I X C

Informix Spatial DataBlade
geometry types

ArcSDE for Informix stores its spatial data in the Informix Spatial

DataBlade® data types. Therefore, before ArcSDE can store spatial data

in an Informix database, the Spatial DataBlade must be registered. This

document describes the ArcSDE/Informix Spatial DataBlade interface

and provides a brief overview of the spatial data types and functions

available following the registration of the Informix Spatial DataBlade.

For more information on the Informix Spatial DataBlade, consult the

Informix Spatial DataBlade Module User’s Guide.

The Informix Spatial DataBlade embeds a GIS into your Informix® Dynamic Server
(IDS) kernel. The Informix Spatial DataBlade module implements the Open GIS
Consortium, Inc. (OpenGIS®, or OGC) SQL 3 specification of UDTs, columns capable
of storing spatial data such as the location of a landmark, a street, or a parcel of land.

The GIS of the past was spatially centric and focused on gathering spatial data and
attaching nonspatial ‘attribute’ data to it. The Spatial DataBlade module integrates
spatial and nonspatial data providing a seamless point of access through the Informix
SQL interface.

In addition to new data types, the Informix Spatial DataBlade provides new capabilities
such as spatial joins. Application programmers typically join tables by comparing two or
more columns to determine whether their values are equal, not equal, greater than, and
so on. The Informix Spatial DataBlade includes functions capable of comparing the
values of spatial columns to determine if they intersect, overlap, and so forth. These two-
dimensional functions can join tables based on their spatial relationship and answer
questions such as, “Is this school within five miles of a hazardous waste site?” Internally,

114 ArcSDE Configuration and Tuning Guide for Informix

the Informix Spatial DataBlade ST_Overlaps function evaluates this question as, “Does
this polygon (the building footprint of a school) overlap this circular polygon (the five-
mile radius of a hazardous waste site)?” An application programmer can join a table
storing sensitive sites, such as schools, playgrounds, and hospitals, to another table
containing the locations of hazardous sites and return a list of sensitive areas at risk.

How the Informix Spatial DataBlade works
Once the Informix Spatial DataBlade is installed, you can create spatially enabled tables
that include spatial columns. Geographic features can be inserted into the spatial
columns. The Informix Spatial DataBlade converts spatial data into its storage format
from one of three external formats:

• Well-known text (WKT) representation

• Well-known binary (WKB) representation

• ESRI shape representation

ArcSDE uses the ESRI shape representation.

Accessing the spatially enabled tables through the ArcSDE server allows you to write
applications using the existing tools offered by the GIS software or create applications
using the SDE C API. An experienced ODBC programmer can also make calls to the
Informix Spatial DataBlade spatial functions. The majority of this document is devoted
to discussing and applying these spatial functions.

After integrating spatial data into your database, you can include Spatial DataBlade
functions in your SQL statements, comparing the values of spatial columns,
transforming the values into other spatial data, and describing the properties of the data.

Adding records to the spatial reference table

The spatial reference system identifies the coordinate transformation matrix for each
geometry. Geometry is the term adopted by the OpenGIS Consortium to refer to two-
dimensional spatial data. All spatial reference systems known to the database are stored
in the SPATIAL_REFERENCES table.

NAME DATA TYPE NULL?

srid integer NOT NULL

description varchar(64) NULL

auth_name varchar(255) NULL

auth_srid integer NULL

 Appendix C—Informix Spatial Datablade Geometry types 115

NAME DATA TYPE NULL?

falsex float NOT NULL

falsey float NOT NULL

xyunits float NOT NULL

falsez float NULL

zunits float NULL

falsem float NULL

munits float NULL

srtext char(2048) NOT NULL

Spatial references table schema

The SPATIAL REFERENCES table stores a record for each spatial reference in the
database.

The datatype for each column is defined below.

• srid (SE_INTEGER_TYPE)—Contains the unique ID that identifies each SRID in
the database.

• description (SE_STRING_TYPE)—An optional short description of the spatial
reference system. ArcSDE leaves this field NULL when it creates the spatial
reference system automatically.

• auth_name (SE_STRING_TYPE)—The name of the standard body cited for the
spatial references system. ArcSDE leaves this field NULL when it creates the
spatial reference system automatically.

• auth_srid (SE_STRING_TYPE)—The ID of the spatial reference system as defined
by the authority cited in auth_name. ArcSDE leaves this field NULL when it
creates the spatial reference system automatically.

• falsex (SE_FLOAT_TYPE)—The x-value offset or the minimum allowable X-
ordinate value.

• falsey (SE_FLOAT_TYPE)—The y-value offset or the minimum allowable Y-
ordinate value.

• xyunits (SE_FLOAT_TYPE)—The XY coordinate system units or spatial reference
system’s XY coordinate precision. Coordinates whose precision exceeds this value
are truncated when they are stored.

• falsez (SE_FLOAT_TYPE)—The z-value offset or the minimum allowable Z-
ordinate value.

116 ArcSDE Configuration and Tuning Guide for Informix

• zunits (SE_FLOAT_TYPE)—The z-coordinate system units or spatial reference
system’s z-coordinate precision. Coordinates whose precision exceeds this value are
truncated when they are stored.

• falsem (SE_FLOAT_TYPE)—The m-value offset or the minimum allowable M-
ordinate value.

• munits (SE_FLOAT_TYPE)—The m-coordinate system units or spatial reference
system’s m-coordinate precision. Coordinates whose precision exceeds this value
are truncated when they are stored.

• srtext (SE_STRING_TYPE)—The srtext column contains the well-known text
representation of the spatial reference system. For information on this subject, see
Appendix B, ‘OGC Well Known Text Representation of Spatial Systems’, in the
Informix Spatial DataBlade Module Users Guide.

Internal functions use the parameters of a spatial reference system to translate and scale
each floating point coordinate of the geometry into 32-bit positive integers prior to
storage. Upon retrieval, the coordinates are restored to their external floating point
format.

The floating point coordinates are converted to integers by subtracting the falsex and
falsey values, which translates to the false origin, scales by multiplying by the xyunits,
adds a half unit, and truncates the remainder.

The optional z-coordinates and measures are dealt with similarly, except that they are
translated with falsez and falsem and scaled with zunits and munits, respectively.

SRID, the spatial_references primary key, contains a unique number for each spatial
reference system.

The spatial reference system is assigned to a geometry during its construction. The
spatial reference system must exist in the spatial reference table. All geometries in a
column must have the same spatial reference system.

Whenever ArcSDE creates a feature class, it searches the SPATIAL_REFERENCES
table in an attempt to locate a matching spatial reference system. If one is found the
SRID is assigned to the feature class; otherwise, ArcSDE adds a new spatial reference
system to the SPATIAL_REFERENCES table and assigns it to the feature class.

The ArcSDE administration tools, shp2sde columns and cov2sde columns, provide an
option for you to enter a predefined SRID when you use them to create a new feature
class. In this example, the roads coverage is converted to the roads feature class with a
SRID of 10. The coordinates of the coverage feature must fit within the extent, of the

 Appendix C—Informix Spatial Datablade Geometry types 117

spatial reference system. Each feature found to lie outside the spatial reference system’s
extent is rejected.

cov2sde -o create -l roads,feature -f roads -R 10 -g 100,0,0 -u world -p
world

Creating feature classes in an Informix database

An Informix spatial table can include one or more spatial columns, although ArcSDE
restricts a feature class to a single spatial column. Spatial columns are defined with one
of the Informix Spatial DataBlade’s UDTs. A spatial column can only accept data of the
type required by the spatial column. For example, an ST_Polygon column rejects
integers, characters, and even other types of nonpolygon geometry.

When ArcSDE creates an Informix table with a spatial column, it also creates an
SE_ROW_ID integer column. The SE_ROW_ID column is required by ArcSDE client
applications to keep track of selection sets; more specifically it is used in ArcSDE log
files.

ArcSDE adds a record to the GEOMETRY_COLUMNS table whenever it creates a
feature class in an Informix database. Applications using the Informix Spatial DataBlade
are responsible for inserting a record into the GEOMETRY_COLUMNS table each time
they add a spatial column to the database.

NAME DATA TYPE NULL?

f_table_catalog varchar(32) NOT NULL

f_table_schema varchar(32) NOT NULL

f_table_name varchar(128) NOT NULL

f_geometry_column varchar(128) NOT NULL

storage_type integer NULL

geometry_type integer NOT NULL

coord_dimension integer NULL

srid integer NOT NULL

Geometry_columns table schema

The GEOMETRY_COLUMNS table stores a record for each geometry column in the
database.

The datatype for each column is defined below.

• f_table_catalog (SE_STRING_TYPE)—The database in which the geometry
column’s table is stored.

118 ArcSDE Configuration and Tuning Guide for Informix

• f_table_schema (SE_STRING_TYPE)—The owner of the geometry column’s
table.

• f_table_name (SE_STRING_TYPE)—The geometry column’s table name.

• f_geometry_column (SE_STRING_TYPE)—The name of the geometry column.

• storage_type (SE_INTEGER_TYPE)—This is an OGC required field that is not
used by ArcSDE.

• geometry_type (SE_INTEGER_TYPE)—The geometry type code. ArcSDE inserts
the following values into this field:

Geometry Type Code Geometry Type

0 ST_Geometry

1 ST_Point

3 ST_LineString

5 ST_Polygon

7 ST_MultiPoint

9 ST_MultiLineString

11 ST_MultiPolygon

• coord_dimension (SE_INTEGER_TYPE)—This is an OGC required field that is
not used by ArcSDE.

• srid (SE_INTEGER_TYPE)—The geometry column’s spatial reference system.
This is a foreign key to the SRID column of the SPATIAL_REFERENCES table.

Creating a spatial index

Spatial columns contain two-dimensional geographic data, and applications querying
those columns require an index strategy that will quickly identify all geometries that lie
within a given extent. For this reason the Informix Spatial DataBlade provides support
for building a spatial index called an R-tree spatial index.

The R-tree index differs from the traditional hierarchical btree index provided by the
Informix Dynamic Server software.

 Appendix C—Informix Spatial Datablade Geometry types 119

The btree index cannot be applied to a spatial column because the two-dimensional
characteristic of the spatial column requires an R-tree index. For the same reason, you
can’t apply R-tree indexes to a nonspatial column or a composite column.

The R-tree index’s ‘create index’ syntax includes the additional ‘using rtree’ clause to
create an R-tree index rather than a btree index. The full syntax is

create index <index> on <table> (<spatial column> ST_Geometry_Ops) using
rtree (<parameters>) <index options>;

The ST_Geometry_Ops is the Informix Spatial DataBlade operator class.
ST_Geometry_Ops manages the R-tree index.

ArcSDE creates a spatial index when a feature class is first created and when it is
switched from load_only_io mode to normal_io mode. The spatial index is created with
default parameter bottom_up_build = ‘yes’ and no index options.

You do not need to ever tune the spatial index for performance since this is all handled
through the R-TREE index. Therefore, you will never have to experiment with the
spatial index by trying different cell sizes and different grid level configurations.
ArcSDE for Informix does not require specifying a spatial index or defining spatial grid
sizes. You can completely ignore the "-g" Spatial Index flag in all ArcSDE client
executables, i.e.,

shp2sde -o create -l <table,column> [-V <version_name>] -f <shape_file> [-I]
[Spatial_Index] [{-R <SRID> | [Spatial_Ref_Opts]}] [-S <layer_description_str>] [-v] [-
e <entity_mask>] [-k <config_keyword>] [-M <minimum_ID>] [-a {none | all |
file=<file_name>}] [-r <reject_shpfile>] [-c <commit_interval>] [-i <service>] [-s
<server_name>] [-D <database>] -u <DB_User_name> [-p <DB_User_password>]

Where [Spatial_Index] := [-g {<grid_sz0>[,<grid_sz1>[,<grid_sz2>]]
|GRID,<grid_sz0>[,<grid_sz1>[,<grid_sz2>]] |DBTUNE |NONE |RTREE
|FIXED,<sdo_level> |HYBRID,<sdo_level>,<sdo_num_tiles>}]

Setting the "-g" flag will not hurt anything but the "-g" flag is ignored for ArcSDE for
Informix and therefore will not be used. Nor is it ever necessary.

Updating statistics

The Informix optimizer will not use the R-tree index unless the statistics on the table are
up-to-date. If the R-tree index is created after the data has been loaded, the statistics are
up-to-date and the optimizer will use the index. However, if the index is created, and
data is loaded afterwards, the optimizer will not use the R-tree index because the
statistics will be out of date. To update the statistics use the update statistics Informix
SQL statement.

120 ArcSDE Configuration and Tuning Guide for Informix

update statistics for table <table_name>

Spatial DataBlade data types
The Oxford American Dictionary defines the noun ‘geometry’ as “the branch of
mathematics dealing with the properties of and relations of lines, angles, surfaces, and
solids.” On August 11, 1997, the OGC, in its publication of OpenGIS Features for
ODBC (SQL) Implementation Specification, coined another definition for the noun
geometry. The word was selected to define the geometric features that, for the past
millennium or more, cartographers have used to map the world. Typically, points
represent an object at a single location, linestrings represent a linear characteristic, and
polygons represent a spatial extent. A very abstract definition of the Open GIS noun
geometry might be “a point or aggregate of points symbolizing a feature on the ground”.
This definition, however, fails to describe the rich set of properties and functionality
associated with geometry.

To understand geometry in this context it is easier to describe it as it has been
implemented within the Informix Spatial DataBlade as a UDT, and like all UDTs in an
object relational system, it has a unique set of properties and methods.

ST_Geometry columns as a data type allow you to define columns that store spatial data.
The ST_Geometry data type itself is an abstract noninstantiable superclass, the
subclasses of which are instantiable. An instantiated data type is one that can be defined
as a table column and have values of its type inserted into it. A column can be defined as
type ST_Geometry, but ST_Geometry values cannot be inserted into it since they cannot
be instantiated. Only the subclass values can be inserted into this column because only
they can be instantiated. Therefore, the ST_Geometry data type can accept and store any
of its subclasses, while its subclass data types can only accept their own values.

Throughout the remainder of this document the term geometry or geometries
collectively refers to the superclass ST_Geometry data type and all of its subclass data
types. Whenever it is necessary to specify the geometry superclass directly, it will be
referred to as the ST_Geometry superclass or the ST_Geometry data type.

 Appendix C—Informix Spatial Datablade Geometry types 121

Figure C.1 The hierarchy of the ST_Geometry datatype is divided into the subtypes ST_Point,
ST_Curve, and ST_Surface simple types and the geometry collections ST_MultiSurface,
ST_MultiCurve, and ST_MultiPoint. ST_LineString is the subtype of ST_Curve. ST_Polygon is the
subtype of ST_Surface. ST_MultiPolygon is the subtype of ST_MultiSurface. ST_MultiLineString is
the subtype of ST_MultiCurve.

Geometry properties

Each subclass inherits the properties of the ST_Geometry superclass but also has
properties of its own. Functions that operate on the ST_Geometry data type will accept
any of the subclass data types. However, some functions have been defined at the
subclass level and will only accept certain subclasses’ data types.

Interior, boundary, exterior

All geometries occupy a position in space defined by its interior, boundary, and exterior.
The exterior of a geometry is all space not occupied by the geometry. The boundary of a
geometry serves as the interface between its interior and exterior. The interior is the
space occupied by the geometry. The subclass inherits the interior and exterior properties
directly; however, the boundary property differs for each.

ST_Polygon

ST_Geometr

ST_Point

ST_LineString

ST_Curve GeometryCollection ST_Surface

ST_MultiCurve

ST_MultiLineString

ST_MultiSurface

ST_MultiPolygon

ST_MultiPoint

122 ArcSDE Configuration and Tuning Guide for Informix

The ST_Boundary Spatial DataBlade function takes an ST_Geometry and returns an
ST_Geometry that represents the source ST_Geometry’s boundary.

Simple or nonsimple

Some subclasses of ST_Geometry (ST_LineStrings, ST_MultiPoints, and
ST_MultiLineStrings) are either simple or nonsimple. They are simple if they obey all
topological rules imposed on the subclass and nonsimple if they “bend” a few. An
ST_LineString is simple if it does not intersect its interior. An ST_MultiPoint is simple if
none of its elements occupy the same coordinate space. An ST_MultiLineString is
simple if none of its element’s interiors are intersected by its own interior.

The Spatial DataBlade ST_IsSimple predicate function takes an ST_Geometry and
returns t (TRUE) if the ST_Geometry is simple and f (FALSE) otherwise.

Empty or not empty

A geometry is empty if it does not have any points. An empty geometry has a NULL
envelope, boundary, interior, and exterior. An empty geometry is always simple and can
have z-coordinates or measures. Empty linestrings and multilinestrings have a 0 length.
Empty polygons and multipolygons have a 0 area.

The Spatial DataBlade ST_IsEmpty predicate function takes an ST_Geometry and
returns t (TRUE) if the ST_Geometry is empty and f (FALSE) otherwise.

Number of points

A geometry can have zero or more points. A geometry is considered empty if it has zero
points. The point subclass is the only geometry that is restricted to zero or one point; all
other subclasses can have zero or more.

Envelope

The envelope of a geometry is the bounding geometry formed by the minimum and
maximum (x,y) coordinates. The envelopes of most geometries form a boundary
rectangle; however, the envelope of a point is the point since its minimum and
maximum coordinates are the same, and the envelope of a horizontal or vertical
linestring is a linestring represented by the boundary (the endpoints) of the source
linestring.

The Spatial DataBlade ST_Envelope function takes an ST_Geometry and returns an
ST_Geometry that represents the source ST_Geometry’s envelope.

 Appendix C—Informix Spatial Datablade Geometry types 123

Dimension

A geometry can have a dimension of 0, 1, or 2.

The dimensions are

0—has neither length nor area

1—has a length

2—contains area

The point and multipoint subclasses have a dimension of 0. Points represent zero-
dimensional features that can be modeled with a single coordinate, while multipoints
represent data that must be modeled with a cluster of unconnected coordinates.

The subclasses linestring and multilinestring have a dimension of 1. They store road
segments, branching river systems, and any other features that are linear in nature.

Polygon and multipolygon subclasses have a dimension of 2. Forest stands, parcels,
water bodies, and other features whose perimeter encloses a definable area can be
rendered by either the polygon or multipolygon data type.

Dimension is important not only as a property of the subclass but also in playing a part
in determining the spatial relationship of two features. The dimension of the resulting
feature or features determines whether or not the operation was successful. The
dimension of the features is examined to determine how they should be compared.

The Spatial DataBlade ST_Dimension function takes an ST_Geometry and returns its
dimension as an integer.

Z-coordinates

Some geometries have an associated altitude or depth. Each of the points that form the
geometry of a feature can include an optional z-coordinate that represents an altitude or
depth normal to the earth’s surface.

The Spatial DataBlade SE_Is3D predicate function takes an ST_Geometry and returns t
(TRUE) if the function has z-coordinates and f (FALSE) otherwise.

124 ArcSDE Configuration and Tuning Guide for Informix

Measures

Measures are values assigned to each coordinate. The value represents anything that can
be stored as a double-precision number.

The Spatial DataBlade SE_IsMeasured predicate function takes a geometry and returns
t (TRUE) if it contains measures and f (FALSE) otherwise.

Spatial reference system

The spatial reference system identifies the coordinate transformation matrix for each
geometry.

The Spatial DataBlade ST_SRID function takes an ST_Geometry and returns its spatial
reference identifier as an integer.

Instantiable subclasses
The ST_Geometry data type is not instantiable but instead must store its instantiable
subclasses. The subclasses are divided into two categories: the base geometry subclasses
and the homogeneous collection subclasses. The base geometries include ST_Point,
ST_LineString, and ST_Polygon, while the homogeneous collections include
ST_MultiPoint, ST_MultiLineString, and ST_MultiPolygon. As the names imply, the
homogeneous collections are collections of base geometries. In addition to sharing base
geometry properties, homogeneous collections have some of their own properties as
well.

The Spatial DataBlade ST_GeometryType function takes an ST_Geometry and returns
the instantiable subclass in the form of a character string. The Spatial DataBlade
ST_NumGeometries function takes a homogeneous collection and returns the number of
base geometry elements it contains. The Spatial DataBlade ST_GeometryN function
takes a homogeneous collection and an index and returns the nth base geometry.

ST_Point

An ST_Point is a zero-dimensional geometry that occupies a single location in
coordinate space. An ST_Point has a single x,y coordinate value. An ST_Point is always
simple; has a NULL boundary; and is used to define features such as oil wells,
landmarks, and elevations.

Spatial DataBlade functions that operate solely on the ST_Point data type include ST_X,
ST_Y, SE_Z, and SE_M.

 Appendix C—Informix Spatial Datablade Geometry types 125

The ST_X function returns a point data type’s x-coordinate value as a double-precision
number.

The ST_Y function returns a point data type’s y-coordinate value as a double-precision
number.

The SE_Z function returns a point data type’s z-coordinate value as a double-precision
number.

The SE_M function returns a point data type’s m-coordinate value as a double-precision
number.

ST_LineString

An ST_LineString is a one-dimensional object stored as a sequence of points defining a
linear interpolated path. The ST_LineString is simple if it does not intersect its interior.
The endpoints (the boundary) of a closed ST_LineString occupy the same point in
space. An ST_LineString is a ring if it is both closed and simple. As well as the other
properties inherited from the superclass ST_Geometry, ST_LineStrings have length.
ST_LineStrings are often used to define linear features such as roads, rivers, and power
lines.

The endpoints normally form the boundary of an ST_LineString unless the
ST_LineString is closed, in which case the boundary is NULL. The interior of an
ST_LineString is the connected path that lies between the endpoints, unless it is closed,
in which case the interior is continuous.

Spatial DataBlade functions that operate on ST_LineStrings include ST_StartPoint,
ST_EndPoint, ST_PointN, ST_Length, ST_NumPoints, ST_IsRing, and ST_IsClosed.

The ST_StartPoint function takes an ST_LineString and returns its first point.

The ST_EndPoint function takes an ST_LineString and returns its last point.

The ST_PointN function takes an ST_LineString and an index to an nth point and
returns that point.

The ST_Length function takes an ST_LineString and returns its length as a double-
precision number.

The ST_NumPoints function takes an ST_LineString and returns the number of points in
its sequence as an integer.

126 ArcSDE Configuration and Tuning Guide for Informix

The ST_IsRing predicate function takes an ST_LineString and returns t (TRUE) if the
ST_LineString is a ring and f (FALSE) otherwise.

The ST_IsClosed predicate function takes an ST_LineString and returns t (TRUE) if the
ST_LineString is closed and f (FALSE) otherwise.

Examples of ST_LineString objects: (1) a simple nonclosed ST_LineString, (2) a nonsimple nonclosed
ST_LineString, (3) a closed simple ST_LineString and is therefore a ring, (4) a closed nonsimple
ST_LineString and is not a ring.

ST_Polygon

An ST_Polygon is a two-dimensional surface stored as a sequence of points defining its
exterior bounding ring and 0 or more interior rings. ST_Polygon, by definition, is always
simple. Most often ST_Polygon defines parcels of land, water bodies, and other features
having spatial extent.

Examples of ST_Polygon objects: (1) an ST_Polygon whose boundary is defined by an exterior ring,
(2) an ST_Polygon whose boundary is defined by an exterior ring and two interior rings and the area
inside the interior rings is part of the ST_Polygon’s exterior, and (3) a legal ST_Polygon because the
rings intersect at a single tangent point.

The exterior and any interior rings define the boundary of an ST_Polygon, and the space
enclosed between the rings defines the ST_Polygon’s interior. The rings of an

(1) (2) (3) (4)

(1 (2 (3

 Appendix C—Informix Spatial Datablade Geometry types 127

ST_Polygon can intersect at a tangent point but never cross. In addition to the other
properties inherited from the superclass ST_Geometry, ST_Polygon has area.

Spatial DataBlade functions that operate on ST_Polygon include ST_Area,
ST_ExteriorRing, ST_NumInteriorRing, ST_InteriorRingN, ST_Centroid, and
ST_PointOnSurface.

The ST_Area function takes an ST_Polygon and returns its area as a double-precision
number.

The ST_ExteriorRing function takes an ST_Polygon and returns its exterior ring as an
ST_LineString.

The ST_NumInteriorRing takes an ST_Polygon and returns the number of interior rings
that it contains.

The ST_InteriorRingN function takes an ST_Polygon and an index and returns the nth
interior ring as an ST_LineString.

The ST_Centroid function takes an ST_Polygon and returns an ST_Point that is the
center of the ST_Polygon’s envelope.

The ST_PointOnSurface function takes an ST_Polygon and returns an ST_Point that is
guaranteed to be on the surface of the ST_Polygon.

ST_MultiPoint

An ST_MultiPoint is a collection of ST_Points and, just like its elements, it has a
dimension of 0. An ST_MultiPoint is simple if none of its elements occupy the same
coordinate space. The boundary of an ST_MultiPoint is NULL. ST_MultiPoints define
aerial broadcast patterns and incidents of a disease outbreak.

ST_MultiLineString

An ST_MultiLineString is a collection of ST_LineStrings. ST_MultiLineStrings are
simple if they only intersect at the endpoints of the ST_LineString elements.
ST_MultiLineStrings are nonsimple if the interiors of the ST_LineString elements
intersect.

The boundary of an ST_MultiLineString is the nonintersected endpoints of the
ST_LineString elements. The ST_MultiLineString is closed if all its ST_LineString
elements are closed. The boundary of an ST_MultiLineString is NULL if all the
endpoints of all the elements are intersected. In addition to the other properties inherited

128 ArcSDE Configuration and Tuning Guide for Informix

from the superclass ST_Geometry, ST_MultiLineStrings have length.
ST_MultiLineStrings are used to define streams or road networks.

Examples of ST_MultiLineStrings: (1) a simple ST_MultiLineString whose boundary is the four
endpoints of its two ST_LineString elements; (2) a simple ST_MultiLineString because only the
endpoints of the ST_LineString elements intersect. The boundary is two nonintersected endpoints; (3)
a nonsimple ST_MultiLineString because the interior of one of its ST_LineString elements is
intersected. The boundary of this ST_MultiLineString is the three nonintersected endpoints; (4) a
simple nonclosed ST_MultiLineString. It is not closed because its element ST_LineStrings are not
closed. It is simple because none of the interiors of any of the element ST_LineStrings intersect; (5) a
simple closed ST_MultiLineString. It is closed because all its elements are closed. It is simple because
none of its elements intersect at the interiors.

Spatial DataBlade functions that operate on ST_MultiLineStrings include ST_Length
and ST_IsClosed.

The ST_Length function takes an ST_MultiLineString and returns the cumulative length
of all its ST_LineString elements as a double-precision number.

The ST_IsClosed predicate function takes an ST_MultiLineString and returns t (TRUE)
if the ST_MultiLineString is closed and f (FALSE) otherwise.

(1) (2) (3)

(4) (5)

 Appendix C—Informix Spatial Datablade Geometry types 129

ST_MultiPolygon

The boundary of an ST_MultiPolygon is the cumulative length of its elements’ exterior
and interior rings. The interior of an ST_MultiPolygon is defined as the cumulative
interiors of its element ST_Polygons. The boundary of an ST_MultiPolygon’s elements
can only intersect at a tangent point. In addition to the other properties inherited from the
superclass ST_Geometry, ST_MultiPolygons have area. ST_MultiPolygons define
features such as a forest stratum or a noncontiguous parcel of land such as a Pacific
island chain.

Examples of ST_MultiPolygon: (1) an ST_MultiPolygon with two ST_Polygon elements. The boundary
is defined by the two exterior rings and the three interior rings; and (2) an ST_MultiPolygon with two
ST_Polygon elements. The boundary is defined by the two exterior rings and the two interior rings.
The two ST_Polygon elements intersect at a tangent point.

Spatial DataBlade functions that operate on ST_MultiPolygons include ST_Area,
ST_Centroid, and ST_PointOnSurface.

The ST_Area function takes an ST_MultiPolygon and returns the cumulative ST_Area
of its ST_Polygon elements as a double-precision number.

The ST_Centroid function takes an ST_MultiPolygon and returns an ST_Point that is
the center of an ST_MultiPolygon’s envelope.

The ST_PointOnSurface function takes an ST_MultiPolygon and returns an ST_Point
that is guaranteed to be normal to the surface of one of its ST_Polygon elements.

(1) (2)

130 ArcSDE Configuration and Tuning Guide for Informix

A P P E N D I X D

Storing locators

A locator is an object that you can use to convert textual descriptions of

locations into geographic features. The most common locator is an

address locator, which you can use to geocode addresses. For additional

documentation on creating and using locators in ArcGIS, see Geocoding

in ArcGIS in the ArcGIS documentation set.

ArcSDE stores locator definitions in the SDE_locators table. Three main types of
locators can be stored in an ArcSDE database:

• Locator styles are used as templates on which to base new locators.

• Locators define the inputs, outputs, the logic, and one or more reference
datasets that are used to find locations. Locators are usually created by
adding some properties to a locator style that specify which reference
datasets and which columns in those reference datasets to use to find
locations. Using ArcCatalog to create a locator based on a locator style is
the easiest way to create a new locator.

• Attached locators are copies of locators that are used to create a geocoded
feature class. When you create a geocoded feature class by geocoding a
table of addresses using an address locator, ArcSDE stores a copy of the
locator that was used to create the geocoded feature class. ArcSDE uses
this attached locator when you rematch addresses in the geocoded feature
class.

Each locator style, locator, and attached locator has a number of properties that define
the locator. ArcSDE stores each property of a locator as a record in the SDE_metadata
table.

Address locators use a set of geocoding rules that define how addresses are parsed,
standardized, and matched to the reference data used by the address locator. ArcSDE

Appendix D—Storing Locators 131

stores geocoding rules in the GCDRULES table. Each row in the GCDRULES table
corresponds to a single file in a set of geocoding rules. For information on geocoding
rule files, see the Geocoding Rule Base Developer Guide in the ArcGIS documentation
set.

Many address locators require a geocoding index table for each reference data table.
Geocoding index tables are tables used by a locator to quickly search for records in the
corresponding reference datasets that may be matches for an address. The XID column
in a geocoding index table is a foreign key to the OBJECTID column in the
corresponding reference dataset. When you create a new address locator that requires a
geocoding index table for a reference dataset, ArcSDE creates the geocoding index table
if it does not already exist.

When a locator is instantiated, ArcSDE reads the locator record from the SDE_locators
table, and all of the corresponding locator properties from the SDE_metadata table.
Some of the locator properties specify which set of geocoding rules to use, which are
read from the GCDRULES table. Other locator properties specify which feature classes
or tables in the ArcSDE database are used as reference datasets, and which geocoding
index tables, if any, correspond to these reference datasets.

When you use a locator to geocode an address, the locator uses the specified geocoding
rules to parse the given address into its components. If the locator uses geocoding index
tables to index the reference data, the locator properties specify which of these address
components to use to search for matches in the geocoding index table(s), and which
transformations (usually the Soundex function) to apply to the address components
when searching for records in the geocoding index table. ArcSDE searches for records
matching the geocoding index query in the geocoding index table. The resulting set of
records from the geocoding index table is joined to the corresponding reference data
table to generate a set of candidates for the address. ArcSDE uses the locator’s properties
to determine which columns in the reference data feature class or table correspond to
address components used by the locator, and uses the geocoding rules to assign a score
to each candidate.

Locator schema
When you create a locator in an ArcSDE database, ArcSDE adds a record to the
SDE_locators table that defines the locator. ArcSDE also adds a record to the
SDE_metadata table for each property of the locator. The object_name column in the
SDE_metadata table is a foreign key to the Name column in the SDE_locators table that
ArcSDE uses to associate locators with their properties.

Each locator has associated FileMAT and FileSTN properties in the SDE_metadata table
that define which geocoding rules the locator uses. The values of these properties are in

132 ArcSDE Configuration and Tuning Guide for Informix

the format style.type, and define which geocoding rule files, stored in the GCDRULES
table, the locator uses to match addresses. The locator uses the value of these properties
in the SDE_metadata table to query the GCDRULES table on the STYLE and TYPE
columns to retrieve the correct set of geocoding rules. Locators that support intersection
geocoding have associated IntFileMAT and IntFileSTN properties that define the
geocoding rules to use for intersection geocoding.

When you create an address locator, ArcSDE may create one or more geocoding index
tables for the reference datasets used by the locator, depending upon the locator style on
which the address locator is based. Geocoding index table names are prefixed with
“GC_”, and include characters identifying the type of geocoding index table, and the
Geodatabase object class ID of the table or feature class that it indexes. The XID column
in a geocoding index table is a foreign key to the OBJECTID column in the table or
feature class that the geocoding index table indexes.

In the example that follows, an ArcSDE database contains a STREET feature class that
represents street centerlines for a particular geographic area, such as a city. In addition to
the geometry for the street centerlines, the STREET feature class contains attributes for
the address ranges that can be found along the street, and the components of the street
name. The ArcSDE table schema required to store a locator to allow address geocoding
on this feature class is described here.

Appendix D—Storing Locators 133

STREET
OBJECTID L_F_ADD L_T_ADD R_F_ADD R_T_ADD PREFIX PRE_TYPE NAME TYPE SUFFIX ZIPL ZIPR

1767 201 399 200 398 <null> <null> New York St <null> 92373 92373

GC_SZS826
SX XID LZONE RZONE

N620 1767 92373 92373

SDE_locators
locator_id name owner category type description

88 City_Streets SDE Address 1 US Streets with Zone
Address Locator

GCDRULES
ID STYLE TYPE DATA
41
42
43
44
45
51
52
53
54
55

us_addr
us_addr
us_addr
us_addr
us_addr1
us_intsc
us_intsc
us_intsc
us_intsc
us_intsc1

cls
dct
pat
stn
mat
cls
dct
pat
stn
mat

<Binary>
<Binary>
<Binary>
<Binary>
<Binary>
<Binary>
<Binary>
<Binary>
<Binary>
<Binary>

SDE_metadata
record_id

20874
20875
20878
20879
20979
20984

object_name object_owner

City_Streets
City_Streets
City_Streets
City_Streets
City_Streets
City_Streets

SDE
SDE
SDE
SDE
SDE
SDE

object_type

2
2
2
2
2
2

class_name

SDE internal
SDE internal
SDE internal
SDE internal
SDE internal
SDE internal

property

FileMAT
FileSTN
IntFileMAT
IntFileSTN
RD.Val.IdxTable1
RD.Val.Table1

prop_value

us_addr1.mat
us_addr.stn
us_intsc1.mat
us_intsc.stn
sde.SDE.GC_SZS826
sde.SDE.STREET

Business table

In this example, the STREET feature class represents street centerlines within a
particular geographic area, and contains attributes that allow address locators to geocode
addresses using this feature class. By default, ArcSDE stores geometry for feature

134 ArcSDE Configuration and Tuning Guide for Informix

classes in a separate feature table in the ArcSDE compressed binary format, which is
described in Appendix A.

NAME DATA TYPE NULL?
OBJECTID INT(4) NOT NULL
L_F_ADD INT(4) NULL
L_T_ADD INT(4) NULL
R_F_ADD INT(4) NULL
R_T_ADD INT(4) NULL
PREFIX VARCHAR(2) NULL
PRE_TYPE VARCHAR(5) NULL
NAME VARCHAR(30) NULL
TYPE VARCHAR(5) NULL
SUFFIX VARCHAR(2) NULL
ZIPL VARCHAR(5) NULL
ZIPR VARCHAR(5) NULL
Shape INT(4) NULL

 STREET business table

• OBJECTID (SE_INTEGER_TYPE) – the table’s primary key

• L_F_ADD (SE_INTEGER_TYPE) – the address at the start node on the
left side of the street feature

• L_T_ADD (SE_INTEGER_TYPE) – the address at the end node on the
left side of the street feature

• R_F_ADD (SE_INTEGER_TYPE) – the address at the start node on the
right side of the street feature

• R_T_ADD (SE_INTEGER_TYPE) – the address at the end node on the
right side of the feature

• PREFIX (SE_STRING_TYPE) – the prefix direction component of the
street’s name

• PRE_TYPE (SE_STRING_TYPE) – the prefix type component of the
street’s name

• NAME (SE_STRING_TYPE) – the base component of the street’s name

• TYPE (SE_STRING_TYPE) – the suffix type component of the street’s
name

Appendix D—Storing Locators 135

• SUFFIX (SE_STRING_TYPE) – the suffix direction component of the
street’s name

• ZIPL (SE_STRING_TYPE) – the ZIP code on the left side of the street
feature

• ZIPR (SE_STRING_TYPE) – the ZIP code on the right side of the street
feature

• Shape (SE_INTEGER_TYPE) – a foreign key to the feature table
containing the geometry for the feature class

Geocoding index table (GC_SZS<objectclass_id>)

When you create a locator that uses an ArcSDE feature class as reference data, the
locator style on which the locator is based may specify that a geocoding index table is
used when performing geocoding queries against the feature class. The locator style
defines the format of the name of the geocoding index table, as well as the contents. In
this example, a locator based on the “US Streets with Zone” locator style was created on
the STREETS feature class. Geocoding index tables created by locators based on this
style contain a Soundex value for the street name, as well as attributes for the zones on
each side of the street feature.

The size of the delta tables also depends on how often records are removed. These tables
shrink only when the states preceding the level 0 version are compressed. This occurs
only after a version branching directly off the root of the version tree completes and is
removed from the system. The compression of states that follows will cause the changes
of the states between the level 0 version and the next version following the one removed
to be written to the business table and deleted from the delta tables.

NAME DATA TYPE NULL?
SX VARCHAR(4) NULL

XID
INT(4) NULL

LZONE VARCHAR(5) NULL
RZONE VARCHAR(4) NULL

Geocoding index table

• SX (SE_STRING_TYPE) – the Soundex value for the street name

• XID (SE_INTEGER_TYPE) – a foreign key to the OBJECTID column in
the business table

• LZONE (SE_STRING_TYPE) – the zone on the left side of the street
feature

136 ArcSDE Configuration and Tuning Guide for Informix

• RZONE (SE_STRING_TYPE) – the zone on the right side of the street
feature

SDE_locators table

When you add a locator to an ArcSDE database, ArcSDE adds a row to the
SDE_locators table. Each row in the SDE_locators table defines a locator or locator
style.

NAME DATA TYPE NULL?
locator_id INT(4) NOT NULL
Name VARCHAR(32) NOT NULL
Owner VARCHAR(32) NOT NULL
Category VARCHAR(32) NOT NULL
Type INT(4) NOT NULL
Description VARCHAR(64) NULL

SDE locators table

• locator_id (SE_INTEGER_TYPE) – the table’s primary key

• name (SE_STRING_TYPE) – the name of the locator

• owner (SE_STRING_TYPE) – the name of the ArcSDE user that owns
the locator

• category (SE_STRING_TYPE) – the category of the locator; address
locators have a category value of “Address”

• type (SE_INTEGER_TYPE) – the type of locator; values in this column
are represented as follows:

• 0 – define locator styles

• 1 – define locators (i.e., locators that can be used to find locations)

• 2 – define attached locators (i.e., locators that are attached to a geocoded
feature class, and are a copy of the locator and the geocoding options that
were used to create the geocoded feature class)

• description (SE_STRING_TYPE) – the description of the locator

Appendix D—Storing Locators 137

SDE_metadata table

When you add a locator to an ArcSDE database, ArcSDE adds a row to the
SDE_metadata table for each property of the locator. Each row in the SDE_metadata
table defines a single property for a locator. The object_name column is a foreign key to
the name column in the SDE_locators table that ArcSDE uses to associate a locator with
its properties.

NAME DATA TYPE NULL?
record_id INT(4) NOT NULL
object_database VARCHAR(32) NULL
object_name VARCHAR(160) NULL
object_owner VARCHAR(32) NOT NULL
object_type INT(4) NOT NULL
class_name VARCHAR(32) NULL
property VARCHAR(32) NULL
prop_value VARCHAR(255) NULL
description VARCHAR(65) NULL
creation_date DATETIME(8) NOT NULL

SDE metadata table

• record_id (SE_INTEGER_TYPE) – the table’s primary key

• object_database (SE_STRING_TYPE) – the ArcSDE database in which
the described object is storedS; not used for locator properties

• object_name (SE_STRING_TYPE) – the name of the locator to which the
property belongs

• object_owner (SE_STRING_TYPE) – the name of the ArcSDE user that
owns the record

• object_type (SE_INTEGER_TYPE) – always a value of 2 for locator
properties

• class_name (SE_STRING_TYPE) – always a value of “SDE_internal”
for locator properties

• property (SE_STRING_TYPE) – the name of the locator property

• prop_value (SE_STRING_TYPE) – the value of the locator property

• description (SE_STRING_TYPE) – not used for locator properties

138 ArcSDE Configuration and Tuning Guide for Informix

• creation_date (SE_DATE_TYPE) – the date and time at which the locator
property was created

GCDRULES table

The GCDRULES table stores the geocoding rules that are used by address locators to
match addresses. Each record in the GCDRULES table corresponds to a geocoding rule
file. For descriptions of each of the geocoding rule files and their contents, see the
Geocoding Rule Base Developer Guide in the ArcGIS documentation set.

NAME DATA TYPE NULL?
ID INT(4) NOT NULL
STYLE VARCHAR(32) NULL
TYPE VARCHAR(3) NULL
DATA image NULL

Geocoding rules table

• ID (SE_INTEGER_TYPE) – the table’s primary key

• STYLE (SE_STRING_TYPE) – the name of the geocoding rule set

• TYPE (SE_STRING_TYPE) – the type of geocoding rule file

• DATA (SE_BLOB_TYPE) – the contents of the geocoding rule file

Appendix D—Storing Locators 139

A P P E N D I X E

Making a direct connection

Direct connect is another configuration option for ArcSDE and all the

ArcSDE concepts and pre-requisites also apply to direct connect. The

main difference between ArcSDE’s application server and direct connect

is where the ArcSDE processing takes place. This purpose of this

appendix is to provide administrators information on how to setup and

configure direct connect configurations for the database as well as client

machines. If using the application server exclusively, you do not need

this appendix.

What files do you need?
There are 2 sets of ESRI-supplied files required for direct connect:

1 direct connect drivers. These are dynamically linked libraries in the bin or lib
directory (depending on your operating system) of your client application that provide
the functionality to connect and use spatial data in a DBMS. There are drivers for the
following databases:

• IBM DB2

• IBM Informix

• Microsoft SQL Server

• Oracle 8i and 9i

These drivers are automatically installed for ArcGIS (the whole product suite), ArcView
GIS 3.x Database Access, ArcIMS, ArcInfo workstation and MapObjects 2. If you are
using a non-ESRI custom application built from the ArcSDE C API, you may need to

172 ArcSDE Configuration and Tuning Guide for Informix

install the direct connect drivers from the ArcSDE Developer Kit CD-ROM located in
the ArcSDE media kit. Check with the supplier of your non-ESRI custom application.

2 database setup files. These are files needed by an administrator to setup and
configure a DBMS for direct connect and include files like sdesetup<dbms>. The setup
is exactly the same as it is for the ArcSDE application server. These setup files are
located on the platform CD-ROM of choice in the ArcSDE media kit. To get them, you
must install ArcSDE for your database. You do not have to create an application server;
you only need the files on disk so you can use them against your database.

DBMS considerations are as follows:

• Oracle8i™, Oracle9i™
To facilitate network communication to an Oracle database, each client machine where
direct connect is used must have Oracle Net installed.

• Microsoft® SQL Server 7, Microsoft SQL Server 2000
SQL Server requires Microsoft Data Access Components (MDAC).

 If you intend to use ArcCatalog 9.0 or ArcView GIS 3.3 with Database Access 2.1f,
MDAC version 2.6(SP1) or greater is required. If using ArcIMS 9.0 or ArcGIS 9.0 to
direct connect, you must have MDAC 2.6 or higher.

• DB2

 Each client machine must be configured for remote database access. Use the DB2
Configuration Assistant on the database host to connect to a remote database.

• Informix
Each client machine where direct connect will be used must have the Informix Client
SDK 2.8 or the Informix I-connect 2.8 application installed. The client machine must
also have the SetNet32 application installed, which comes with both the Informix Client
SDK 2.8 and the Informix I-connect 2.8 applications.

How to get your database setup files
You will need to get your database setup files from one of the CD-ROM’s in the
ArcSDE media kit. The ArcSDE media kit has CD-ROM’s by platform with the
exception of the ArcSDE Developer Kit CD-ROM. To get your database setup files,
you will need to install the software for the ArcSDE application server for your
database/platform. For example, if you are using IBM DB2 on a Sun Solaris server, you

Appendix E—Making a direct connection for Informix 173

will select the Sun Solaris CD-ROM from the ArcSDE media kit and install the DB2
version of ArcSDE on your Sun Solaris server. Please be sure to follow the post
installation configuration instructions in the database specific install guide but ignore any
instructions about creating the application server. You don’t need to do that. Install
guides are html files on each CD-ROM. Please read them carefully.

Why do I need to install the ArcSDE application server
software?

Installation of the ArcSDE application server is to get the database setup and
administration files only. If you are a direct connect only site, you do not need to start
an ArcSDE application server. All you need to do is install the ArcSDE files to disk
and then follow the post installation configuration instructions. The administration files
that get installed (eg: sdesetup<dbms>, sdeconfig, sdedbtune, sdelayer) are useful for
managing your connection parameters, dbtune table and manual
registration/unregistration of 3rd party layers. Please see the Managing ArcSDE
Services book and the ArcSDE Configuration and Tuning Guides for more information.

If you use both the application server and direct connect at your site, you already have or
soon will have ArcSDE setup and administration files installed anyway. It is important
to note that once your database is configured for use with the ArcSDE application
server, it is also ready for direct connect usage.

Environment variables
For each client machine, there are environment variables you must set. If necessary, ask
your Windows or Unix system administrator to find out how to set environment
variables on your systems.

The SDEHOME environment variable

You must set the SDEHOME variable to tell the client application:.

• Where the direct connect driver files are stored. For ESRI client applications, the
direct connect files are located in the same directory where the client application’s other
dynamicly linked library files get installed. For Windows applications, this is normally
in the bin directory of your client applications install location. For Unix and Linux
systems, these will normally be in the lib directory.

To set this environment variable, you must specify the full file path for it. For example,

Unix: setenv SDEHOME /unix1/arcgis/

174 ArcSDE Configuration and Tuning Guide for Informix

Windows: use Windows utilities to set a variable to something like this

Variable: Value:
SDEHOME C:\Program Files\ArcGIS\

The direct connect process will “look” for the appropriate driver in the bin or lib
directories of the path specifiied.

You do not have to set the SDEHOME environment variable if the following are true:

• Your users are using ESRI client applications built with the ArcSDE 9.0 C API (a
list of these applications is in Chapter 1, ‘Introducing direct connect’)

• Your users are not using UNIX

Unix or Linux systems

1. Include $SDEHOME/lib in the library environment variable for your platform.

 If your database is an Oracle database, include $ORACLE_HOME/lib as well.

 For example:

 setenv LD_LIBRARY_PATH $SDEHOME/
 lib:$ORACLE_HOME/lib:/usr/ openwin/lib:/usr/lib

2. Add the bin directory to the system path:and

 An example follows for the SDEHOME variable.

 setenv PATH $JAVA_HOME/bin:$SDEHOME/
 bin:$AEJHOME/bin:/usr/sbin:/usr/bin:/usr/local/ bin:
/etc:/usr/ucb:/usr/dt/bin:/usr/bin/X11

3. If ArcIMS is your client application and Oracle is the database, append
$ORACLE_HOME/lib to the LD_LIBRARY_PATH variable in the aimsappsrvr and
aimsmonitor scripts, located in the $AIMSHOME/Xenv directory.

 For example, where your LD_LIBRARY_PATH variable now reads:

 LD_LIBRARY_PATH-$AIMSHOME/lib:$AIMSHOME/bin;
 export LD_LIBRARY_PATH

 It should now be:

Appendix E—Making a direct connection for Informix 175

 LD_LIBRARY_PATH-$AIMSHOME/lib:$AIMSHOME/
 bin:$ORACLE_HOME/lib; export LD_LIBRARY_PATH

The ETC directory

 If an etc directory exists for the client application, it must be located in the directory you
specified for SDEHOME. If it isn’t located there, you must create it there. This etc
directory is where the log file of error messages will be stored by default.

The dbinit.sde file

This file is located in the etc directory of your SDEHOME. This file can be u sed to set
environment variables for direct connect use. It may be more convenient to set
environment variables for direct connect here than via system tools.

See Chapter 3 in Managing ArcSDE Application Servers for more information on the
dbinit.sde file.

Client/database compatibility
Direct connect drivers are only compatible with a same-vintage database configured for
ArcSDE. For example, you cannot direct connect from ArcMap 9.0 to a a database that
is still at an 8.3 configuration. You would have to run the 9.0 setup configuration on that
8.3 database to be able to use direct connect from the ArcMap 9.0 client.

Registration and authorization
ArcSDE application servers and all direct connect configurations must be registered
before use. The end result of the registration process is an authorization file that is used
to enable the software for use. Please note that if you are an existing ArcSDE user, your
ArcSDE 8.x keycode will not work with 9.0. To register in the United States, go
http://service.esri.com. If you are not in the United States, please call your local
distributor to register your software. If the Internet is not an option, you can contact
ESRI Customer Service or your local distributor to register and receive your 9.0
authorization file.

176 ArcSDE Configuration and Tuning Guide for Informix

 Setting up clients for Informix direct connect

Set up the database

You must set up and configure each database you’d like your users to be able to connect
directly to. Use standard Informix tools, ArcSDE tools and documentation to

1. Install application server software

2. Perform the post installation configuration.

When your database is configured for ArcSDE, you are ready to set up your client
machines.

Setting up the client machines

When you set up the client machine, you perform the following steps in order on the
client machine:

1. Install the Informix Client-SDK or the I-Connect application on each remote
client machine you want to direct connect to your database. This makes the
Informix client setup files you need available to you.

Note: if the Informix server is running on the same host as the client
application, you can skip this step.

2. Ensure that the user on each client machine you want to connect directly to
your database has the Connect permission on the database server.

3. For Windows:
Use SetNet32 to configure the client so that it can work with the available
objects. If you want to connect a client via an ODBC driver, use SetNet32 to
add a new Informix server.

4. For UNIX:
Set up the $INFORMIXDIR and add the appropriate database server entry in
the sqlhosts file in the $INFORMIXDIR\etc directory.

5. Set environment variables.

6. Test the connection.

Appendix E—Making a direct connection for Informix 177

Set up an ODBC driver connection in Windows 2000

Note: instructions here are provided as a convenience and do not supercede or otherwise
replace Informix documentation on this topic. Please consult your Informix
documentation for further information or help on this topic.

1. Open the SetNet32 application (it comes with Informix Client-SDK and Informix I-
Connect) by clicking Start | Programs | Informix | Informix SetNet32.

2. In the Informix Setnet32 dialog box, click Server Information.

3. In the Server Information tab, enter information in the text areas as needed.

In the Service Name text area, type the TCP port for the Informix database. If you don’t
know the TCP port, you can find it by opening the Informix sqlhosts file on the database
server. You can also type an alias, provided you’ve aliased the TCP port with a service
name and defined the service in the services file.

4. Click Apply.

5. In the Prompt that asks if you wish to define a new server, click OK.

6. In the Informix Setnet32 dialog box, click OK to close the SetNet32 application.

7. Click Start | Settings | Control Panel | Administrative Tools | Data Sources (ODBC).

8. In the ODBC Data Source Administrator dialog box, click the System DSN tab.

9. In the System DSN tab, click Add.

10. In the Create New Data Source dialog box, in the Name list area, click the Informix
3.80 32-bit driver, then click Finish.

11. In the Informix ODBC Driver Setup dialog box, click the General tab.

12. In the General tab, in the Data Source Name text box, type a unique data source
name.

13. In the Connection tab, in the Server Name list area, select the server you just added
in SetNet32. In the Database Name list area, select the database name to which you want
the client to connect to.

178 ArcSDE Configuration and Tuning Guide for Informix

14. In the User Id text box, type the user name for the database user that corresponds to
the client machine you are setting up. In the Password text box, have your user type his
or her password.

15. In the Environment tab, in the Cursor Behavior list area, select 1 - Preserve.

16. Click OK to close the Informix ODBC Driver Setup dialog box.

Set up a connection in UNIX

This procedure describes how to connect to another Informix server using direct connect
from Unix.

1. Install the Client-SDK or the I-Connect application to access the Informix client
files.

2. Set up the $INFORMIXDIR and add the appropriate database server entry in the
sqlhosts file in the $INFORMIXDIR\etc directory.

 A typical entry in the sqlhosts file is:

 iron_directconnect ontlitcp iron 1526

3. Add an entry in the .odbc.ini file in the user’s home directory. A sample entry
follows:

 [sdedirect]
 Driver=/iron1/informix/lib/cli/iclis09b.so
 Description=Informix 9.x ODBC Driver
 Database=sde
 HostName=iron
 Service=informix
 Protocol=onsoctcp
 Servername=iron_net
 CursorBehavior=1

Set environment variables

You must set the SDEHOME and SDE_DATABASE environment variables. Set
SDEHOME to point to the directory where the client application’s .dll files are stored.

If your client application is remote (is not running on the same host as the Informix
server), edit the client machine’s SDE_DATABASE variable in the dbinit.sde file so
that it points to the remote database.

Appendix E—Making a direct connection for Informix 179

If your client application is local, set the client machine’s SDE_DATABASE variable
using system tools (do not use the dbinit.sde file to set this) to the name of the Informix
database on the local machine that you want to connect the client to.

Connection syntax
There is a particular syntax to use when connecting with direct connect. For the
Service (or instance) value,

sde:informix:<odbc dsn>

where
sde:informix

is a required part of the syntax and
<odbc dsn>

is the ODBC data source name used to setup the connection to the database server in
step 3. If the client application is local (running on the same host as the Informix
server), do not specify a value for Server. If the client application is remote, specify
a Server value of remote.

Test the connection from the client application

Test the connection.

Index

A

American National Standards
Institute (ANSI) 91

ArcCatalog 3, 72, 73, 78, 83,
84, 85, 103, 104

ArcGIS Desktop 62, 72, 90
ArcIMS Metadata Services

support 3
ArcInfo 73
ArcInfo Workstation 72
ArcMap 3, 74
ArcSDE service 3
ArcStorm libraries 76
ArcToolbox 72, 73, 78, 81, 91
ArcView GIS 3.2 72

B

backup and recovery 3, 94

C

CAD Client 72
CLIENT_LOCALE 92
Compress database 83
configuration keyword 73
cov2sde 71, 76, 116
coverage 76

D

DB_LOCALE 92
dbspaces

creating 17, 32
root 13, 28
system 11, 26
temporary 15, 30

DBTUNE
configuration keyword 2
dbtune.sde file 2

storage parameters 2, 47
DBTUNE configuration

keywords
data_dictionary 56
defaults 55
logfile_defaults 61
network_defaults 65
Topology 57

DBTUNE storage parameters
a_index_rowid 53
a_index_stateid 53
a_index_user 53
a_rtree 53
a_storage 53
aux_index_composite 54
aux_storage 54
b_index_rowid 52
b_index_user 51, 52
b_rtree 52
b_storage 50, 51, 52
blk_index_composite 54
blk_storage 54
bnd_index_composite 54
bnd_index_id 54
bnd_storage 54
d_index_deleted_at 53
d_index_state_rowid 53
d_storage 53
ras_index_id 54
ras_storage 54
ui_network_text 61
ui_text 61

DBTUNE table 2, 47
dbtune.sde file 48, 62
declining resolution pyramid

104
disk I/O contention 10, 26

E

endpoints 125

F

falsem 116
falsex 116
falsey 116
falsez 116
feature table

sizing of 131

G

geographic information system
113

geometry 116, 120
properties 121

GIF 102
GIS See geographic

information system
Graphics Interchange Format

102
gsrvr process 3

I

index size
estimating 101

Informix
NLS_LANG 90
physical log 13, 28

Informix Dynamic Server 113
starting 10

Informix instance 1
instantiated data type 120

J

Joint Photographic Experts
Group 102

JPEG 102

L

Librarian libraries 76
load-only I/O mode 74, 77
locale 90
LRU queues 42

M

MapObjects 72
measures 124
multiversioned 75
munits 116

N

national language support 3
network tables

sizing of 136
normal I/O mode 75, 77

O

ODBC 114
onconfig file 6, 20
onconfig parameters

aff_nprocs 38
aff_sproc 38
alarmprogram 24
buffers 6, 21, 42
cleaners 7, 22, 45
dbserveraliases 25
dbservername 25
dbspacetemp 15, 30
dumpdir 8, 23
logbuff 45
logsize 7, 21
logsmax 7, 13, 22, 28
lru_max_dirty 45
lru_min_dirty 45
ltapedev 9, 24
msgpath 24
multiprocessor 9, 23, 37
nettype 9, 25, 40
noage 38

numaiovps 38
numcpuvps 38
physbuff 45
physdbs 13, 28
physfile 13, 28
ra_pages 8, 22
ra_threshhold 8, 23
residency 46
resident 8, 23
rootpath 23
single_cpu_vp 37
stacksize 8, 22
tapedev 9, 24
vpclass 38

oninit 30
onmode 14, 29
onparams 14, 29
onspaces 19, 34
onstat 14, 29, 45
ontape 14, 29
Open GIS Consortium 113, 120
Oracle

data block 104
original equipment manufacturer

91

P

page cleaners 42
privileges

granting 75

R

R tree index 119
raster band auxiliary table 111
raster band table 109
raster bands 102
raster blocks table 111
raster columns 77, 102
raster table 108
RASTER_COLUMNS table

106

S

sbspace 15
sbspaces

creating 17, 32
SDE_LOGFILE_DATA 61

SDE_LOGFILES 61
sde2cov 78
sde2shp 78
sde2tbl 78
sdedbtune 2
sdeexport 78
sdegroup 71
SDEHOME 48, 67
sdeimport 71, 76, 77
sdelayer 71, 74, 75, 89
sdesetupinfx 2, 48, 56
sdetable 71, 73, 78

update_dbms_stats 36, 37
SERVER_LOCALE 92
shapes

properties 121
shp2sde 71, 74, 76, 116
shpinfo 76
simple 125
spatial columns 114, 117
spatial data 113
Spatial DataBlade 113, 117
Spatial DataBlade datatypes

ST_Geometry 120
ST_LineString 124, 125
ST_MultiLineString 124,

127
ST_MultiPoint 124, 127
ST_MultiPolygon 124, 129
ST_Point 124
ST_Polygon 117, 124, 126

Spatial DataBlade functions
SE_Is3D 123
SE_IsMeasured 124
SE_M 125
SE_Z 125
ST_Area 127, 129
ST_Boundary 122
ST_Centroid 127, 129
ST_Dimension 123
ST_EndPoint 125
ST_Envelope 122
ST_ExteriorRing 127
ST_GeometryN 124
ST_GeometryType 124
ST_InteriorRingN 127
ST_IsClosed 125, 128
ST_IsEmpty 122

Index 182

ST_IsRing 125
ST_IsSimple 122
ST_Length 125, 128
ST_NumGeometries 124
ST_NumInteriorRings 127
ST_NumPoints 125
ST_Overlaps 114
ST_PointN 125
ST_PointOnSurface 127,

129
ST_SRID 124
ST_StartPoint 125
ST_X 125
ST_Y 125

Spatial DataBlade homogeneous
collections 124

spatial index table
sizing of 133

spatial joins 113
spatial tables 117
spatial_references table 114,

116
spatially enabled 114
SQL 113

SRID See spatial reference
identifier

statistics 36
subclass data types 120
syssbspace 15

T

table size
estimating 97

TABLE_REGISTRY table 53
tagged image file format 102
tbl2sde 71
three-tiered architecture 3
TIFF 102
tuning CPU 37
tuning memory 42

U

UDTs See user-defined types
update statistics 37, 120
user-defined types 113, 120

V

version delta tables

sizing of 135
virtual processor

no yield option 42
priority aging 41
processor affinity 41

virtual processors 38

W

well-known binary
representation 114

well-known text representation
114

WKB See well-known binary
representation

WKT See well-known text
representation

X

XML columns 3
xyunits 116

Z

z-coordinate 123
zunits 116

	ArcSDE Configuration and Tuning Guide for Informix
	Chapter 1: Getting started
	Tuning and configuring the Informix instance
	Arranging your data
	Creating spatial data in an Informix database
	Connecting to Informix
	National language support
	Backup and recovery

	Chapter 2: Essential Informix configuring and tuning
	How much time should you spend tuning?
	Windows 2000 systems
	UNIX systems
	Updating Informix statistics
	Tuning CPU
	Tuning memory

	Chapter 3: Configuring DBTUNE storage parameters
	The DBTUNE table
	Using the DBTUNE table
	Defining the storage parameters
	Arranging storage parameters by keyword
	Informix default parameters
	Editing the storage parameters
	Converting SDE 3.x storage parameters to ArcSDE 9 storage parameters
	The complete list of ArcSDE storage parameters

	Chapter 4: Managing tables, feature classes, and raster columns
	ArcSDE to Informix Data Type Mapping
	Data creation
	Creating and populating raster columns
	Creating views
	Exporting data
	Schema modification
	Choosing an ArcSDE log file configuration
	Using the ArcGIS Desktop, ArcCatalog, and ArcToolbox applications
	Registering a business table
	How does ArcSDE use existing Informix tables?

	Chapter 5: National language support
	Creating an Informix database with a specific language locale
	Setting the NLS_LANG variable on the client
	Configuring the Informix server locale
	Configuring the Informix locale for ArcSDE
	Setting the locale for ArcSDE

	Chapter 6: Backup and recovery
	Data recovery system
	What is a Dynamic Server recovery system?
	Backing up the database
	Recovering the database

	Appendix A: Estimating the size of your tables and indexes
	Estimating the size of your spatial tables
	Estimating the size of your ArcSDE indexes

	Appendix B: Storing raster data
	Raster schema

	Appendix C: Informix Spatial DataBlade geometry types
	How the Informix Spatial DataBlade works
	Spatial DataBlade data types
	Instantiable subclasses

	Appendix D: Storing locators
	Locator schema

	Appendix E: Making a direct connection
	What files do you need?
	How to get your database setup files
	Environment variables
	Client/database compatibility
	Registration and authorization
	Setting up clients for Informix direct connect

	Index

