ArcSDE® Configuration and Tuning Guide for DB2®

ArcGIS° 9.0

Copyright © 1986 - 2004 ESRI
All Rights Reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of ESRI. This work is protected under
United States copyright law and the copyright laws of the given countries of origin and applicable
international laws, treaties, and/or conventions. No part of this work may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying or recording, or by any
information storage or retrieval system, except as expressly permitted in writing by ESRI. All requests
should be sent to Attention: Contracts Manager, ESRI, 380 New York Street, Redlands, CA 92373-8100,
USA.

The information contained in this document is subject to change without notice.

U. S. GOVERNMENT RESTRICTED/LIMITED RIGHTS

Any software, documentation, and/or data delivered hereunder is subject to the terms of the License
Agreement. In no event shall the U.S. Government acquire greater than RESTRICTED/LIMITED
RIGHTS. At a minimum, use, duplication, or disclosure by the U.S. Government is subject to restrictions
as set forth in FAR §52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or
FAR §12.211/12.212 (Commercial Technical Data/Computer Software); and DFARS §252.227-7015
(NOV 1995) (Technical Data) and/or DFARS §227.7202 (Computer Software), as applicable.
Contractor/Manufacturer is ESRI, 380 New York Street, Redlands, CA 92373-8100, USA.

ESRI, ArcView, ArcSDE, SDE, MapObjects, Arclnfo, ArcCatalog, ArcMap, ArcToolbox, ArcStorm,
ArcGIS, ArcIMS, Spatial Database Engine, and www.esri.com are trademarks, registered trademarks,
or service marks of ESRI in the United States, the European Community, or certain other jurisdictions.

Other companies and products mentioned herein are trademarks or registered trademarks of their respective
trademark owners.

Contents

Contents

Getting started

Tuning and configuring the DB2 instance
Arranging your data

Creating spatia datain a DB2 database
ArcSDE geodatabase maintenance
National Language support

Essential configuring and tuning
How much time should you spend tuning?
Reducing disk 1/O contention

Updating DB2 statistics

Tuning the spatial index

Configuring DBTUNE storage parameters
The DBTUNE table and file

Managing the DBTUNE table

Using the DBTUNE table

Defining the storage parameters

Arranging storage parameters by keyword

DB2 default parameters

The complete list of ArcSDE storage parameters

Managing tables, feature classes, and raster columns

Data creation

Creating and populating raster columns

Creating views

Exporting data

Schema modification

Choosing an ArcSDE logfile configuration

The storage of the tables and indexes of the logfile pool is controlled by the DBTUNE
storage parameters SESSION_STORAGE and SESSION_INDEX.

Using the ArcGI S Desktop ArcCatalog and ArcToolbox applications

ArcSDE Configuration and Tuning Guide for DB2

Efficiently registering large business tables with ArcSDE 63
How does ArcSDE use existing DB2 tables? 65
ArcSDE to DB2 Server Data Type Mapping 66
National language support 69
DB2 database character sets 69
Setting the DB2CODEPAGE 69
Appendixes

Storing raster data 77
Raster schema 80
DB2 Spatial Extender geometry types 89
Spatial Extender data types 96
Instantiable subclasses 100
Storing locators 107
Locator schema 108
Making a direct connection 117
What files do you need? 117
How to get your database setup files 118
Environment variables 119
Client/database compatibility 121
Registration and authorization 121
Setting up clients for DB2 direct connect 122

Index

CHAPTER 1

Getting started

Creating and populating a geodatabase is arguably a smple process,
especidly if you use ESRI® ArcCatalog™ or ArcToolbox™ to load the
data. So, why is there a configuration and tuning guide? Well, while
database creation and data loading can be relatively smple, the resulting
performance may not be acceptable. It requires some effort to build a
database that performs optimally. ArcSDE™ for DB2” dlows you to
store geographic datain a DB2 database and requires, like any other
application of DB2, consideration for configuring and tuning the data
stored.

This document explains how to use ArcSDE and its applications to create,
store, and index the spatial datain aDB2 database.

Tuning and configuring the DB2 instance

Building an efficient geodatabase involves properly tuning and configuring the DB2
instance and proper arrangement and management of the database's tables and indexes.
Chapter 2, ‘ Essentia configuring and tuning’, provides abrief overview of proper
container placement to minimize theimpact of disk 1/0 contention. Also, the proper
selection of the grid cell sizesfor the construction of the spatial index is discussed.

Arranging your data

Every table and index created in a database has a storage configuration. How you store
your tables and indexes affects your database's performance.

2 ArcSDE Configuration and Tuning Guide for DB2

DBTUNE storage parameters

How isthe storage configuration of the tables and indexes controlled? ArcSDE reads
storage parameters from the DBTUNE table to define physical data storage parameters of
ArcSDE tables and indexes. The storage parameters are grouped into configuration
keywords. Y ou assigh configuration keywords to your data objects (tables and indexes)
when you create them from an ArcSDE client program.

Theinitial source of storage parametersis dbtune.sde file found under the ArcSDE etc
directory. When the ArcSDE sdesetupdb2* setup command executes, the configuration
parameters are read from the file and written into the DBTUNE table.

Most ArcSDE storage parameters are configuration strings and represent the entire
storage configuration for atable or index. Most SDE.DBTUNE storage parameters hold
the parameters of aDB2 CREATE TABLE or CREATE INDEX statement.

The sdedbtune command provides the ArcSDE administrator with an easy way to
maintain the SDE.DBTUNE table. The sdedbtune command exports and imports the
records of the SDE.DBTUNE table to afilein the ArcSDE etc directory.

The ArcSDE ingtallation creates the SDE.DBTUNE table. If the dbtune.sdefile is absent
or empty, sdesetupdb2* crestes the SDE.DBTUNE table and populates it with default
configuration keywords representing the minimum ArcSDE configuration.

Indmost al cases, you will populate the table with specific storage parametersfor your
database. Chapter 3, * Configuring DBTUNE storage parameters’, describesin detail the
SDE.DBTUNE table and al possible storage parameters and default configuration
keywords.

Creating spatial data in a DB2 database

ArcCatalog and ArcToolbox are graphica user interfaces (GUIs) specifically designed to
simplify the creation and management of a spatial database. These applications provided
the easiest method for creating gpatia datain a DB2 database. With these tools you can
convert existing ESRI coverages and shapefilesinto ArcSDE feature classes. You can
also import an existing ArcSDE export file containing the data of abusinesstable, feature
class, or ragter column.

Multiversioned ArcSDE data can be edited directly with either the ArcCatalog or
ArcMap GUI.

An alternative gpproach to cregting spatial datain aDB2 databaseisto usethe
administration tools provided with ArcSDE.

Chapter 1—Getting started

Chapter 4, ' Managing tables, feature classes, and raster columns’, describes the methods
used to create and maintain spatial datain a DB2 database.

ArcSDE geodatabase maintenance

Periodicaly the administrator must perform various maintenance tasks on the ArcSDE
geodatabase to maintain performance. Tasks such as periodically updating table and
index statistics and compressing the states table are discussed.

National Language support

If you intend to support a database that does not use the DB2 default character set, you
will haveto take afew extrastepsin creating the DB2 database. Y ou will also need to set
the national language environment of the client applications.

Chapter 5, ‘Nationa language support’, describes how to configure the DB2 database and
setup the application environment.

ArcSDE Configuration and Tuning Guide for DB2

CHAPTER 2

Essential configuring and
tuning

The performance of an ArcSDE service depends on how well you
configure and tune DB2. This chapter discussesthe basic guidelinesfor
configuring a DB2 database for use with ArcSDE. It assumes that you
have a basic understanding of the DB2 data structures such as
tablespaces, tables, and indexes, and that you are proficient with
Structured Query Language (SQL). Refer to DB2' s extensive
documentation, in particular Administration Guide: Performance and
DB2 Spatial Extender User’ s Guide and Reference, for your DB2 release.

How much time should you spend tuning?

The importance of having awell-tuned database depends on how it isused. A database
created and used by asingle user does not require as much tuning as adatabase that isin
constant use by many users. The reason is quite Smple—the more people using a
database, the greater the contention for its resources.

By definition, tuning is the process of sharing available resources among users by
configuring the components of a database to minimize contention and maximize
efficiency. The more people you have accessing your databases, the more effort is
required to provide access to afinite resource.

A well-tuned DB2 database makes optimum use of available central processing unit
(CPU) time and memory while minimizing disk input/output contention. Database
administrators approach this task knowing that each additional hour spent will often
return alesser gain in performance. Eventually, they reach apoint of diminishing returns

6 ArcSDE Configuration and Tuning Guide for DB2

when it becomesimpractical to continue tuning; instead, they continue to monitor the
database and address performance issues asthey arise.

Reducing disk I/O contention

Although disk 1/0 contention has been aleviated through the advancement of hardware
technology it remains an important consideration to the database administrator. Disk I/0
contention within a DB2 database is minimized by properly arranging the components of
the database throughout the file system. Ultimately, the database administrator must
reduce the possibility of one process waiting for another to completeits I/O request. This
isoften referred to as “waiting on 1/0”.

Lodfiles

DB2 V8 supports dua logging on al 8.1 platforms, which meansthat you can now
specify the logpath through the MIRRORLOGPATH DB CFG parameter. This new
parameter replacesthe previousregistry variable DB2NEWLOGPATH2.

The maximum amount of log space has been increased to 256 GB. When the
MIRRORLOGPATH parameter is enabled, DB2 can write acopy of thelogto a
different path.

Arranging the database components

Minimizing disk 1/0 contention is achieved by baancing disk I/O acrossthefile
system—positioning frequently accessed “hot” files with infrequently accessed “cold”
files. Edtimate the size of dl the database components and determine their relative rates
of access. Position the components given the amount of disk space available and the size
and number of disk drives. Diagramming the disk drives and labeling them with the
components help keep track of the location of each component. Have the diagram handy
when you create the DB2 database.

Storage Models

There are two types of tablespace storage modelsin DB2: System Managed Space and
Database Managed Space. ESRI recommends that you use DM S tablespaces for top
performance especialy if your dataiis expected to grow on aregular basis. Separation of
regular and long data is al so recommended.

Note: At release 9.0 you will now require the use of an additional DB2 global
temporary table (DECLARE GLOBAL TEMPORARY TABLE). Per DB2
documentation, in order to declare global temp tables requires 'either SY SADM or
DBADM privileges or 'USE privilege on aUSER TEMPORARY “tablespace’. A user
temporary tablespace can be created viathe DB2 Control Center or from the command

Chapter 2—Essential configuring and tuning 7

lineusing the 'CREATE USER TEMPORARY TABLESPACE' command. For example
CREATE USER TEMPORARY TABLESPACE SDESPACE PAGESIZE 4K
MANAGED BY SYSTEM USING (/peanuts2/db2_data/sdespace’) EXTENTSIZE 16
OVERHEAD 10.5 PREFETCHSIZE 16 TRANSFERRATE 0.14 BUFFERPOOL
"IBMDEFAULTBP";

Separate tables from their indexes

Each time DB2 accesses an index to locate arow, it must access the table to fetch the
referenced row. The disk head travel s between the index and the table if they are stored
on the same disk.

Whenever possible, store indexes and tablesin different tablespaces so you can store
them on multiple physical disks, thus diminating repetitive and costly disk head travel.

Buffer pools

Setting up the buffer poolsis absolutely critical to performance. By default, DB2
provides asingle small (250) pages) buffer pool named IBMDEFAULTBP. Y ou should
create a separate buffer pool for each tablespace. The database snapshot should be
reviewed to check the “buffer pool physical read” values. The buffer pool should belarge
enough that a snapshot of amap redraw resultsin asmall number of physical reads.

Establish the threshold table size

Asarule, store small tables together in the same tablespace and large tables by
themsalvesin their own tablespaces. Decide how large atable must be before it requires
its own tablespace. Generally, the threshold correspondsin part to the maximum
container size. Tables capable of filling the maximum size container should be stored in
their own tablespace. Tables gpproaching this limit should also be considered. Follow the
same policy for indexes.

Separate the tables and indexes into those that require their own tablespaces and those
that will be grouped together. Never store tables and their indexes together in the same

tablespace.

Store small tables and indexes by access

Base the decision of which small tablesto store together in the same tablespace on
expected access. Store tables of high access in one tablespace and tables of low accessin
another. Doing so alows you to position the containers of the high access tablespaces
with low access containers. This same rule applies to indexes. They, too, should be
divided by access.

ArcSDE Configuration and Tuning Guide for DB2

Positioning the files

Onceyou have estimated the size of the containers, determine where to position them on
thefile system. This section providesalist of guidelinesthat you may not be ableto
follow in its entirety, given the number and size of your disk drives.

Package Cache Size (pckcachesize)

Package cache size specifies the amount of memory alocated for caching dynamic
and static SQL requests. Thisis allocated at database startup and freed at shutdown.
If DB2 does not find an SQL statement in the package cache, the statement will need
to be recompiled (dynamic SQL) or loaded from the package catalog (static SQL),
which can consume considerable time. In order to have awell performing database it
isimportant to make maximum use of the package cache size. ESRI recommends
that you start with an initial size of 6000 and then monitor the package cache lookups
and package cache insert values in a database snapshot.

AIX tuning

ESRI recommends turning OFF the following variables on AIX® in order to improve
performance.

These variables are used in conjunction with each other to dlow DB2 to use a
multifunction, multiservice access platform (MMAP) as an aternative method of 1/0.
Thisisused to avoid operating system locks when multiple processes are writing to
different sections of the samefile. Default is ON.

db2set DB2 MMAP_READ=0OFF
db2set DB2_ MMAP_WRITE=OFF

Make sure that the DB2 logs have their own disks gpart from index and data. ESRI
recommends that you set the maxuproc value to a higher value than the default so that dl
processes owned by the SDE and DB2 instance users can run when invoked.

Network tuning can consist of thefollowing

Place the client and server on the same switch or connect them via a minimum
number of routers Set the following ifconfig parameters: tcp_nodelay 1, rfc1323 0.
Check to seeif the following parameters exist and change them asfollows—

a Set RX checksum offload yes.

b. Set TCPlarge send offload yes.

Chapter 2—Essential configuring and tuning 9

ArcSDE system tablespaces

The ArcSDE system tablespaces store the ArcSDE and geodatabase system tables
and indexes created by the ArcSDE sdesetupdb2 command. The number and
placement of the tablespaces depend on what you intend to use the ArcSDE database
for.

The placement of these tables and their indexes is controlled by the storage
parameters of the dbtune DATA_DICTIONARY configuration keyword. The
DATA_DICTIONARY keyword isused exclusively for the creation of the ArcSDE
and geodatabase system tables.

Multiversioned databases that support ArcGIS OL TP applications have a highly
active state tree. The state tree maintains the states of all editing operations that have
occurred on tables registered as multiversioned. Four ArcSDE system tables—
STATES, STATE_LINEAGES, MVTABLES MODIFIED, and VERSIONS—
maintain the transaction information of the versioned database’ s state tree. In this
type of environment these four tables and their indexes have their own
DATA_DICTIONARY configuration keyword storage parameters.

In an active multiversioned database, the STATES LINEAGE table can easily grow
beyond one million records, occupying more than 26 MB of tablespace. The
STATES table is much smaller, storing approximately 5,000 records, occupying
about 2 MB of tablespace. The MVTABLES MODIFIED table typicaly has
approximately 50,000 records occupying about 1 MB of tablespace. The VERSIONS
table isusually quite small with less than 100 rows occupying about 64 KB.

For most applications you can probably create a tablespace for the ArcSDE system
tables and one for their indexes on different disk drives and set the
DATA_DICTIONARY parameters accordingly. For highly active editing ArcGIS
applications, the STATES, STATES LINEAGE, and MVTABLES MODIFIED
tables and their indexes need to be created in separate tabl espaces and positioned
across the file system to minimize disk 1/0 contention.

If you are not using a multiversioned database, the aforementioned tables are
dormant, in which case the tables can be stored with the other ArcSDE system tables
and indexes.

The remainder of the ArcSDE and geodatabase system tables store information
relating to schema changes. They are relatively small and have alow frequency of
1/0. They should be grouped together in two separate tabl espaces—one for tables
and one for indexes—and positioned with other tablespaces of high activity.

To summarize, if you are creating an active multiversioned database, create a 70 MB
tablespace to store ArcSDE tables. On a separate disk drive create a30 MB
tablespace for the indexes.

If you are not going to use a multiversioned database, reduce the extent sizes of the
STATE_LINEAGES, STATES, and MVTABLES_MODIFIED tables and their
indexes to 40 KB. Create two 5 MB tablespaces on separate disk drives—one for the
tables and one for the indexes.

10

ArcSDE Configuration and Tuning Guide for DB2

For more information about the DATA_DICTIONARY configuration keyword, see
Chapter 3, ‘ Configuring DBTUNE storage parameters .

A note about RAID storage devices

RAID, short for Redundant Array of Inexpensive Disks, is a method whereby
information is spread across several disk drivesto reduce latency, increase data
availability, improve data safety or a combination of these. In RAID storage, two or
more physical disk drives are combined into one physical configurable device. RAID
storage operates in various modes identified as RAID 0, RAID 1, RAID 4, RAID 5
and RAID 10.

With RAID 0, also called “ stripe mode” data may be spread over multiple disks. The
first 4 KB might be written to disk O, the second 4 KB block to disk 1, the third to
disk 2 and so on. Datais distributed back to disk O after disk N iswritten. RAID O
may be faster during sequential reads and writes since successive blocks can be read
or written nearly in parallel over multiple disks. However, RAID 0 provides no extra
data safety since there is no duplication of any data.

RAID 1 provides an exact duplicate of the file information maintained on onedisk in
the array. RAID 1 can be used on two diskswith zero or more spare disks. RAID 1
protects data through redundancy; however, it is always slower to write since the
data must be written to at least two locations.

RAID 4 issimilar to RAID 1 except that one disk stores parity information and not
duplicate data. There need be only one parity disk to protect any number of data
disks. However, the disk holding parity datawill become a bottleneck on writes since
it will always be written to. Like RAID 1, RAID 4 is also slower on writes because
two physical blocks—the data block and the parity block—must be written for each
logical block sent. The disk holding the parity data becomes a bottleneck since al
datawrites will affect this disk.

RAID 5 may be the most useful mode, since it eliminates the bottleneck of RAID 4,
but still provides data protection. In RAID 5, parity information is distributed evenly
among the participating disk drives.

RAID 1+0 isaso useful. A group of drives are duplicated, akin to RAID 1, and the
resulting group is striped, akin to RAID 0. The real benefit of this arrangement liesin
the duplication, which provides data protection.

While RAID 1, RAID 1+0 and RAID 5 provide an additional leve of protection, ESRI
does not recommend relying solely on adisk configuration for safeguarding data.

While offering high availability and agood price to performance ratio, RAID-5 isby far
the most popular RAID level in usetoday. It does have a“write penalty” associated with
it but, fast write cache (FWC), which is now fairly common with RAID adaptors, can
reduce the effects of the write penalty.

Chapter 2—Essential configuring and tuning 11

SinceaRAID-5 array enables parallel 1/0 to be used as the datais spread over multiple
physical disksin the array, you need to set the DB2_PARALLEL_IO registry variableto
*. At DB2 V8, the DB2_STRIPED_CONTAINERS = YES s the default behavior used
in creating tablespace containers.

Dealing with deadlocks

Thefollowing situation may not be an uncommon occurrence, where the new_edit_state
stored procedure call has deadlocked the calling application, as well as blocked all other
use of the SDE database.

Imagine a scenario where the stored procedure acquires alarge number of rowlocks
on the state_lineages table, exceeding a threshold for maximum number of locks, and
attempting to escalate to an exclusive table lock. Unfortunately, the calling
application's query already holds a shared lock on the state lineages table, thus
leading to a deadlock. The large number of rowlocks will arise from having avery
deep state lineage. This, along with having avery low setting for lock list size,
guarantees that there would be problems. Given how DB2 handles lock escalation,
there are other deadlock scenarios imaginable.

Once again, the implication here is that deadlocks may not be an uncommon
occurrence at user sites, depending on the user application and on the database
configuration. One again it is to be noted that the problem may be aggravated with
very deep states lineages. Fortunately, DB2 does provide tuning parameters to
control the size of locklist (LOCKLIST), max percentage of locks an application can
hold (MAXLOCKS), deadlock detection (DLCHKTIME, LOCKTIMEOQOUT), as well
as deadlock rollback behavior (DB2LOCK_TO_RB).

Briefly, to increase locklist capacity and lock escaation threshold, modify LOCKLIST
and MAXLOCKS parameters, respectively.

To set or prevent infinite wait deadlocks, or tune lock reguest wait time, modify
LOCKTIMEOUT.

To tune period between deadlock detection checks, adjust DLCHKTIME.

By default, alock timeout will rollback the request transaction. To change this
behavior to only rollback the statement making the lock request, modify
DB2LOCK_TO_RB with 'db2set DB2LOCK_TO_RB=STATEMENT". The default
behavior should be fine for SDE, though.

See the DB2 documentation or performance-tuning guides for detailed info on
properly setting these parameters.

To view locklist settings issue the following command -

db2 get db cfg

12 ArcSDE Configuration and Tuning Guide for DB2

Max storage for lock list (4KB) (LOCKLIST) =50

Interval for checking deadlock (ms) (DLCHKTIME) = 10000
Percent. of lock lists per application ~ (MAXLOCKS) =22

Lock timeout (sec) (LOCKTIMEOUT) =-1

Max number of active applications (MAXAPPLS) = AUTOMATIC

(For DB2LOCK_TO_RB registry value, use 'db2set' and look for
'DB2LOCK_TO_RB=")

Quick check of Lock list capacity - total number of locks:
Upper max # of locks == (LOCKLIST * 4096) / 36
Lower max # of locks== (LOCKLIST * 4096) / 72

Quick check for maximum locks allowed before escal ation:

Upper Threshold = MAXLOCKS* (LOCKLIST * 4096 bytes) / (100 * 36)
Lower Threshold = MAXLOCKS* (LOCKLIST * 4096 bytes) / (100 * 72)

To set LOCKLIST:

1.Estimate maximum number of active applications (MAXAPPLS, if set).
Estimate average # of locks per application.

2. Estimate lower & upper lock list size:

(Avg # locks per application * 36 * MAXAPPLS) / 4096
(Avg # locks per application * 72* MAXAPPLS) / 4096

where:
72 == # bytes of first lock on object
36 == # bytes of additional locks on object

3. Setinitial LOCKLIST somewhere between upper & lower bounds.

For example:
db2 update db cfg using LOCKLIST 200

To set MAXLOCKS:

1. Determine percentage of locklist any single application can consume before lock
escalation occurs. This could be aflat percentage, or based on common transaction
volumes.

For Example, if applications are to be allowed 2X average # of locks:

100 * (Avg # locks per application * 2* 72 bytes per lock)
/ (LOCKLIST * 4096 hytes)

Chapter 2—Essential configuring and tuning

13

For example:
db2 update db cfg using MAXLOCKS 22

Additional tuning of locklist parameters involves use of the Snapshot and Event
Monitors. Look for the following info:

Use Snapshot Monitor at database level for
* Totd lock list memory in use
* Number of lock escallations that have occurred

Use Event Monitor for
» Max # of locks held by transaction

A few useful toolsto diagnose lock problems:
1. Find db2 application ids for sde processes:

SELECT appl_id FROM TABLE(SNAPSHOT APPL_INFO('SDE',-1))
as SNAPSHOT_APPL_INFO where appl_name like 'gsrvroe'

SELECT appl_id,appl_name FROM TABLE(SNAPSHOT_APPL_INFO('SDE' -
1))

2. Use snapshots for lock and application info.
For example:

db2 get snapshot for locks on sde > all_locks.txt

db2 get snapshot for locks for application applid
"*LOCAL.DB2.00AB42215335' > app_locks.txt

db2 get snapshot for application applid *LOCAL.DB2.00AB42215335' >
app_info.txt

A quick search on the snapshot output for items of interest:

Application status = Lock-wait
Locks held by application =1254
Number of SQL requests since last commit =12
Open local cursors =1

Most recent operation = Execute
Object Type =Table

Tablespace Name = USERSPACE1

14 ArcSDE Configuration and Tuning Guide for DB2

Table Schema = SDE

Table Name = STATE_LINEAGES
Mode =X

Status = Converting

Current Mode =1X

Lock Escalation =YES

As noted above, very deep lineages may be an issue for acquiring large number of
row locks. The following SQL statements can provide a quick check of lineage
depths and of max lineage depth:

select count(*) from state_lineages group by lineage name

select max(a.depth) from (select count(*) from state lineages group by
lineage_name) a(depth)

Updating DB2 statistics

For the best performance, the statistics of the ArcSDE tables and indexes that you have
stored in DB2 must be kept up-to-date.

In ArcCatalog, to update the statistics of al of the tables and indexes within afeature
dataset, right-click the feature dataset and click Analyze. To update the tables and indexes
within afeature class, right-click the feature class and click Analyze.

+3 ArcCatalog - Arclnfo - Database Connections\Connection to kanada.sde

File Edit YWiew Go Toolz Help

| |camm|B® X2 E
J Lacation: |Dalabase ConnectionshConnection to kanada. sde j
JStersheel. [esmi Ay g |

2| Contents | F‘reviewl Matadatal

§J Catalog

. Name | Type |
[
.__g D Encmding Services Geocoding Services Folder
= CQ Database Cornections KAMADA SMP_BLOB SDE Table
‘28 Add OLE DB Connection [El'WORLD.BIGTEST SDE Table
23| Add Spatial D atabase Corinection E‘”n' DEITIEC SDE Table
g Connection to joseph E Copy Chl+C SDE Table
3 Connection to kanada E X Delete SDE Table
@ Geocoding Services |EE Elaems SDE Table
+ Internet Servers |EE = SDE Table
9 Search Besults JEE Register with Geodatabase SDE Table
E FReqister As Yersioned SDE Table
Export »
Create Feature Class »
Load Data...
Q‘} Geocode Addresses..
Privileges...
Properties...

Analyze the datazet to update the DEMS statistics A

Chapter 2—Essential configuring and tuning 15

From the command line, usethe UPDATE_DBMS STATS operation of the sdetable
administration command to update the Satistics for al the tables and indexes of afeature
class. It isbetter to use the sdetable UPDATE_DBMS_STATS operation rather than
individually analyzing the tables with the DB2 RUNSTATS statement because it updates
the satisticsfor al tables of afeature class. In addition to the businesstable, an ArcSDE
for DB2 feature class may include an adds and deletes table aswell.

To havethe UPDATE _DBMS STATS operation update the statistics for all the required
tables, do not specify the -K (schema object) option.

sdetable -o update_dbms_stats -t roads -m compute -u av -p mo

When the feature classis registered as multiversioned, the adds and deletes tables are
created to hold the business tabl€e’ s added and deleted records. The version registration
process automatically updates the atisticsfor al the required tables at thetimeit is
registered.

Periodically update the gtatistics of dynamic tables and indexes to ensure that the DB2
optimizer continues to choose an optimum execution plan. To savetime, you can update
the statistics of all the data objects within afeature dataset in ArcCatalog.

If you decide to update the statistics of al or some of the feature classtableswith the
DB2 RUNSTATS statement, use the following syntax:

RUNSTATS ON TABLE <table_name> WITH DISTRIBUTION AND DETAILED INDEXES ALL

For more information on the DB2 SQL RUNSTATS statement, refer to the IBM DB2
Universal Database Command Reference.

The dtatigtics of atable€' sindexes are automatically computed when the table is analyzed,
so thereisno need to analyze the indexes separately. However, if you need to do so you
can usethe UPDATE_DBMS_STATS -n option with the index name.

The example below illustrates how the statistics for the roads ix index of the roads table
can be updated.

sdetable -o update_dbms_stats -t roads -n roads_ix -u av -p mo

For more information on analyzing geodatabase objects from ArcCatalog, refer to
Building a Geodatabase.

For more information on the sdetable administration command and the
UPDATE_DBMS STATS operation, refer to ArcSDE Developer Help.

Tuning the spatial index

Applications querying the two-dimensional geographic data contained in aspatial column
require an index strategy that will quickly identify all geometries lying within agiven

16

ArcSDE Configuration and Tuning Guide for DB2

extent. For thisreason the DB2 Spatial Extender provides the three-tiered grid spatial
index.

The two-dimensional spatia index differsfrom the traditional hierarchical Btreeindex
provided by DB2. To better understand the difference, first review how a Btreeindex is
structured and used.

Thetop level of aBtreeindex, the root node contains one key for each node &t the next
level. The value of each of these keysisthelargest existing key vaue for the
corresponding node at the next level. Depending on the number of vauesin the base
table, severd intermediate nodes may be needed to bridge the root node with the leaf
nodes, which hold the actual base table row IDs.

The DB2 database manager searches a Btree index starting at the root node, working its
way through the intermediate nodes until it reaches the leaf node with therow ID of the
basetable.

The Btree index may not be gpplied to a spatia column because the two-dimensional
characteristic of the spatial column requires the structure of a spatia index. For the same
reason, you may not apply aspatia index to anonspatial column, and a spatial index may
not be applied to acomposite column of any kind.

The spatia index’ s cREATE INDEX Syntax includes the additional USING clause, which
directs DB2 to use the Spatial Extender’ s patid index rather than a Btree index. Thefull
syntax isasfollows:

create index <index_name> on <table> (<spatial column>)
ui')ing db2gse.spatial_index (<grid level 1>, [grid level 2] , [grid Tlevel
3

The addition of the USING clause distinguishes the spatial index from the Btree index.
The db2gse schema name must qualify the spatial_index index extension name asthis
statement does not follow the current function path.

Because of the smple nature of the data that a Btree was designed to index, the database
designer merely directs DB2 to create the index on one or more table columns. However
since spatia datais complex it requires the designer to understand itsrelative size
disgtribution. The designer must determine the optimum size and number of the spatia
index’sgrid levels.

Thegrid levels[grid leve 1], [grid leve 2], [grid leve 3]) are entered by increasing cell
size. Thusthe second level must have alarger cell size than the first and the third alarger
cell sizethan the second. Thefirst grid level is mandatory, but you may disable the
second and third with a zero vaue (0).

How the Spatial Extender generates a spatial index

The DB2 Spatid Extender constructs a spatial index asfollows:

Chapter 2—Essential configuring and tuning 17

1. The Spatial Extender intersects each geometry’ s envelope with the grid beginning
with thefirst level.

2. If lessthan four intersections occur with thefirst grid level, the Spatial Extender
entersthe geometry ID and the intersecting grid cell IDsin the spatial index and
continues with the next geometry.

3. If the Spatial Extender detects more than four intersections, it intersects the geometry
with the second grid level. If you have not enabled the second grid level, the Spetial
Extender entersthe geometry ID and grid cell IDsin the patia index and continues
with the next geometry.

4. If lessthan four intersections occur with the second grid level, the Spatial Extender
entersthe geometry ID and the intersecting grid cell IDsin the spatial index and
continues with the next geometry.

5. If the Spatial Extender detects more than four intersections, it intersects the geometry
with thethird grid level. If you have not enabled the third grid leve, the Spatial
Extender enters the geometry ID and grid cdll IDsin the spatia index and continues
with the next geometry.

6. The Spatid Extender enters the geometry ID and the intersecting grid cell IDs of the
third level in the spatial index and continues with the next geometry.

The Spatial Extender does not actually create polygon grid structure of any sort. The
Spatial Extender manifests each grid level parametrically by defining the origin asthe X,y
offsets of the column’s spatid reference system extending into positive coordinate space.
Using aparametric grid the Spatial Extender generates the intersections mathematically.

How the Spatial Extender uses the spatial index

The Spatial Extender uses a spatial index to improve the performance of a spatial query.
Consider the box query—the most basic and probably the most popular spatid query.
The box query returns geometries of aspatia column that intersect a user-defined box. If
agpatial index does not exig, the Spatial Extender must compare al of aspatial column’s
geometries with the box.

Using the spatid index, the Spatial Extender identifiesindex grid entries that intersect the
box. Since the spatial index is ordered on agrid, the Spatia Extender quickly obtainsa
list of candidate geometries. The processjust described isreferred to asthefirst pass.

A second pass disqualifies candidate geometries whose envelopes do not intersect the
box.

A third pass compares the actual coordinates of the candidate geometry with the box to
determine whether or not the geometry intersects the box. Thislast complex process of

18

ArcSDE Configuration and Tuning Guide for DB2

comparison operates on a subset of the table rows, significantly reduced by the first two
passes.

All spatial queries perform the three passes with the exception of the Envel opesi ntersect
function. It performs only the first two passes and was designed for display operations
that use display driver clipping routines and that don'’t require the granularity of the third
pass.

Selecting the optimum grid cell sizes

Sdlecting the grid cdll sizeis complicated by the fact that envelopes of irregularly shaped
geometries do not fit neatly within agrid cell. Because of thisirregularity, some
geometry envelopes intersect several grids, while othersfitinsdeasinglegrid cell. On
theflip side, grid cells may intersect severa geometry envelopes depending on the spatia
digtribution of the data.

A spatia index performs well when you enable the correct number of levels and their
grid cell sizesto fit the data. To simplify this discussion, first consider a spatial
column containing geometry whose sizeis uniform. In this case, it is not necessary to
create amultileveled spatial index since asingle grid level will suffice. Create a
spatial index with asingle grid level whose grid cell sizeis 1.5 times the size of the
average geometry envelope. Since point data has a small envelope, the grid size
could also be small.

The generd ruleisthat the grid size should be about 1/10 of the typical query
window size. For point data, only asingle grid level should be necessary.

While testing your application, you may find that it performs better with alarger grid cell
size because each grid cell references more geometries, enabling the first passto discard
nonqualifying geometries faster. However, if you continue to increase the grid cell size,
performance deteriorates as the number of geometriesfiltered by the second pass
increases.

DB2 Spatial Extender provides a utility, the Index Advisor, that lets you create a
simulated grid index and tune thisindex into amodel for areal index. It also determines
whether to retain or replace an existing grid index.

Following is an example of how to use the Index Advisor to return detailed information
about an existing grid index whose fully qualified name is mydb.myindex .

gseidx connect to mydb user test using test get geometry statistics for
index mydb.myindex detail

Both shp2sde and cov2sde use a similar algorithm to cal cul ate the default spatial
index for grid size level 1 when the optional -g option isn't present. The defaults for
grid sizelevel_2 and level_3 are aways set to ZEROs, where shp2sde is based on
the shapefile's extent and cov2sde is based on the ARC/INFO coverage's extent.

Chapter 2—Essential configuring and tuning 19

Selecting the number of levels

Few spatial columns contain geometry of the same relative size. However, geometries of
most spatial columns can be grouped into sizeintervals. For instance, consider a spatia
column of county parcels containing avast number of small parcels clustered in the urban
areas surrounded by afew large rurd parcels. These situations are common and require
the use of amultilevel spatial index. To select the grid cell sizes of each level, determine
theintervals of geometry envelope sizes. Create aspatia index with gridievel cell sizes
dightly larger than each interval. Test theindex by performing queries against the spatial
column using your application. Try adjusting the grid sizes up or down dightly to
determine if an appreciable improvement in performance can be obtained.

For further details on thistopic refer to Chapter 11 “ Using indexes and views to access
spatial data” inthe |IBM DB2 Spatial Extender User’s Guide and Reference.

20

ArcSDE Configuration and Tuning Guide for DB2

CHAPTER 3

Configuring DBTUNE storage
parameters

The DBTUNE storage parameters are stored in the DBTUNE table. The
DBTUNE table, along with al other metadata tables, is created during
the setup phase that follows the installation of the ArcSDE software. The
ArcSDE software install createsa DBTUNE file under the etc directory
from which the DBTUNE table is populated. If no DBTUNE fileis
present during setup, ArcSDE will populate the DBTUNE table with
default values.

DBTUNE storage parameters allow you to control how ArcSDE clients
create objects within an DB2 database. They alow you to determine such
things as how to alocate space to atable or index, which tablespace a
table or index is created in, and other DB2-specific storage attributes.

This chapter discusses the mechanism by which ArcSDE manages
storage parameters that you provide and how ArcSDE applies them to
specific statements submitted to DB2 when creating ArcSDE tables,
indexes, and other objectsin a DB2 database.

Many DBTUNE parameters include corresponding DB2 storage
parameters.

22 ArcSDE Configuration and Tuning Guide for DB2

The DBTUNE table and file

The DBTUNE storage parameters are maintained in the database in the DBTUNE
metadata table. The DBTUNE table, along with all other metadata tables, is created
during the setup phase that follows the installation of the ArcSDE software

The DBTUNE table is populated with specific default values, but these values may
be changed. Several example versions of the dbtune file are provided for the
installation mediafor ArcSDE.

DBTUNE parameters

Parameters define the storage configuration of simple objects, such astables and
indexes, as well as complex objects such as feature classes, networks classes, and raster
columns. Many different parameters may be grouped together under asingle
configuration keyword.

ArcSDE client applications and some ArcSDE administration tools refererence one or
more configuration keywords when creating an object.

When a configuration keyword is specified by an ArcSDE application or administration
tool, the parameters within the associated parameter group are searched and the
necessary configuration strings are incorporated into the CREATE TABLE or CREATE
INDEX statement submitted to the DB2 database server.

The structure of the DBTUNE file

Storage parameters in adbtune file occur as a combination of parameter name and
configuration string delimited by white space. A configuration string value may span
multiple lines and must be enclosed in double quotes. For example, avaid specification
for the parameter named A_INDEX_ROWID might look like this:

A_INDEX_ROWID

Storage parameters are grouped by keyword. Each parameter group isintroduced by its
keyword which is prefixed by two pound signs, “##”. A line beginning with the word
“END” terminates each parameter group. Double pound signs, “##”, signa the presence
of akeyword but are not part of the keyword itself.

For example, agroup of parameters under the configuration keyword
“WILSON_DATA" may look likethis:

##WILSON_DATA

A_INDEX_ROWID ™

Chapter 3—Configuring DBTUNE storage parameters 23

A_INDEX_SHAPE ™

A_INDEX_STATEID ™

B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE> LONG IN <TABLESPACE>"'
END

In specia circumstances ArcSDE references a compound keyword when cregating
database objects. The compound keyword allows ArcSDE to create related database
objects having different object creation parameters to accommodate different
performance needs. A compound keyword consists of a configuration keyword plusa
suffix delimited by adouble colon, “: : . For example:

#H#ELECTRIC::DESC

Comments within the dbtune file are indicated by a single pound sign, “#’. Default
versions of the dbtune file provided in the general software release contain linesthat are
commented out. Such lines are used as placeholders for certain storage parameters, such
as tablespace name, and may be restored by removing the comment character and
editing theline.

Any number of parameter groups may be specified in a dbtune file. However, certain

groups and certain parameter names within groups are expected to exist and will be
crested in the DBTUNE tableif they do not exist in the dbtunefile.

The structure of the DBTUNE table

The DBTUNE table has the following definition:

Name Null? Datatype
keyword not null varchar(32)
parameter_name not null varchar(32)
config_string null varchar(2048)

The keyword field stores the configuration keyword for the group in which each
parameter isfound. For a single keyword, there may be many different parameter_name
values, each one associated with a config_string value.

After creating the DBTUNE table, the setup phase of the ArcSDE ingtallation popul ates
the table with the contents of the dbtune.sdefile, which it expectsto find in the
%SDEHOM E%/etc directory under Windows or the $SDEHOME/etc under Unix. If the
DBTUNE table dready exists, the ArcSDE setup phase will not alter its contents.

Managing the DBTUNE table

Through the use of the sdedbtune utility you can initialize or ater the contents of the
DBTUNE table. This utility guarantees that the DBTUNE table maintains a certain
default set of keywords, parameters and parameter values.

24

ArcSDE Configuration and Tuning Guide for DB2

In addition to the default keywords and parameters, you may add to the DBTUNE file
keywords and configuration vaues of your choosing.

Note: ESRI does not recommend using SQL to directly ater the contents of the
DBTUNE table. Doing so would bypass certain protections written into the sdedbtune
utility, possibly leading to reduced performance.

Initializing the DBTUNE table

The dbtune.sde file provided with the install media contains default values, which are
used to initialize the DBTUNE table.

On UNIX® systems, you can modify the dbtune.sdefile prior to running the sdesetupdb?2
command. On Windows NT® systems the setup phaseis part of the ingtall, so you will
have to edit the file and use the sdedbtune import operation to customize the DBTUNE
table.

If the dbtune.sdefile is missing when the sdesetupdb2 command is executed, or if
specific parameters are missing because the dbtune.sde file has been dtered, the ArcSDE
software will enter software default valuesinto the dbtune table.

Customizing the DBTUNE file

Prior to creating ArcSDE objects, you should customize the dbtune.sdefile by
specifying the tablespace names for storage parameters. In the default dotune.sdefile,
the tablespace entries in the dbtune.sde file have been commented out with the “#”
character.

To customize the dbtune.sde file, remove the comment character preceding each
tablespace specification and enter the names of the tablespaces where you wish to store
your ArcSDE tables and indexes. Be careful not to remove the double quotation marks
that surround the configuration strings.

Follow the procedure provided in the following example for updating the DB2
tablespace parameter in the dbtune.sdefile.

The DEFAULTS configuration keyword in the dbtune.sde file contains the B_STORAGE storage
parameter with the DB2 tablespace parameter commented out.

##DEFAULTS

Chapter 3—Configuring DBTUNE storage parameters 25

A_INDEX_ROWID "

A_INDEX_SHAPE ™

A_INDEX_STATEID

A_INDEX_USER "

#B_STORAGE"IN <TABLESPACE> INDEX IN <TABLESPACE> LONG IN <TABLESPACE>"

Edit the dbtune.sde file, remove the “#” comment character, and enter the name of the tablespace you
want to store business tables in by default.

##DEFAULTS

##DEFAULTS

A_INDEX_ROWID "

A_INDEX_SHAPE ™

A_INDEX_STATEID

A_INDEX_USER "

B_STORAGE "IN SDEDB2 INDEX IN SDEINDEX LONG IN SDELOBS"

When the setup program loads your customized dbtune parameter, configuration
keywords and storage parameters are written into the DBTUNE table.

Editing the DBTUNE table

If you need to change the contents of the DBTUNE table after it isloaded, you should
use the sdedbtune utility and follow these steps.

1. Exportthe DBTUNE tableto atext file using the sdedbtune —o export command.

2. Edit theresulting filewith a UNIX file-based editor, such as"vi", or aWindows
file-based editor such as notepad.

3. Import the edited file to the DBTUNE table using the sdedbtune—o import
command.

In the following example, the DBTUNE table is exported to the “ dbtune.out” file. Then,
thefileis edited with the UNIX "vi" file-based editor.

$ sdedbtune -o export -f dbtune.out -u sde -p sdepasswd

ArcSDE 9.0 wed Ooct 4 22:32:44 pDT 2003
Attribute Administration Utility

Successfully exported to file SDEHOME\etc\dbtune.out
$ vi dbtune.out

$ sdedbtune -o import -f dbtune.out -u sde -p sdepasswd -N

26

ArcSDE Configuration and Tuning Guide for DB2

ArcSDE 9.0 wed oct 4 22:32:44 pDT 2003
Attribute Administration Utility

Successfully imported from file SDEHOME\etc\dbtune.out

The sdedbtune administration tool always exports and imports from the
$SDEHOME/etc directory. Y ou cannot specify that files should be located into another
directory. By not alowing the relocation of thefile, the sdedbtune command ensuresthe
dbtune parameters remain under the ownership of the ArcSDE administrator.

Adding keywords to the DBTUNE table

Y ou may add parameter groups to the DBTUNE table for any special purpose. For
instance, you may wish to create certain feature classes in a newly created tablespace
that is segregated from the rest of the data.

To add keywords, follow the instructions above for editing the DBTUNE table. When
you edit the export file, it is often agood ideato create a new parameter group as a cut
and paste copy of an existing parameter group in order to avoid introducing syntax
errors. 'Y ou may then edit the configuration keyword and any of the stringsto desired
new values before saving the dbtune file and importing it back into the DBTUNE table.

Using the DBTUNE table

At itsmost basic level, the DBTUNE table provides configuration strings that ArcSDE
appendsto a CREATE TABLE or CREATE INDEX statement in SQL. Therefore, the
configuration strings specify storage parameters that must be considered valid by the
DB2 server.

Selecting the configuration string

The choice of configuration strings by an ArcSDE application depends on the operation
being performed and the type of abject it is being performed on, aswell asthe
configuration keyword. For example, if the type of operation is CREATE TABLE and
the type of table being created is a business table, the parameter_name of B_STORAGE
will be used to determine the configuration string.

The ArcSDE application then searchesthe DBTUNE table for a configuration keyword
that matches the one entered and uses the configuration string of the appropriate storage
parameter.

Chapter 3—Configuring DBTUNE storage parameters 27

If the application cannot find the requested configuration string within the specified
parameter group, it searchesthe DEFAULT parameter group. If the requested
configuration string cannot be located within the DEFAULT parameter group, ArcSDE
uses the DB2 defaultsto create the table or index.

Table parameters

Table parameters define the storage configuration of a DB2 table. ArcSDE appendsthe
configuration string associated with the parameter to the CREATE TABLE statement
prior to submitting the statement to DB2.

Valid entriesfor an ArcSDE table include any parameter allowable to the right of the
columnlist in the CREATE TABLE statement, especialy including the TABLESPACE
and STORAGE clauses.

For example, if you define the B STORAGE parameter in this manner:
B_STORAGE "IN SDEDB2 INDEX IN SDEINDEX LONG IN SDELOBS'

ArcSDE would execute the following DB2 CREATE TABLE command:

CREATE TABLE roads (road_id integer, name varchar2(32), surface_code
integer) in SDEDB2 index in SDEINDEX long in SDELOBS

Index parameters

Index parameters define the storage configuration of a DB2 index. ArcSDE appendsthe
index parameter to aDB2 CREATE INDEX statement prior to submitting the statement
to DB2.

Valid entriesin an ArcSDE index parameter include any parameter allowable by the
DB2 server to the right of the column list of the CREATE INDEX statement, especialy
including the TABLESPACE and STORAGE clauses.

Defining the storage parameters

Configuration keywords may include any combination of three basic types of storage
parameters. metaparameters, table parameters, and index parameters.

Meta parameters define the way certain types of datawill be stored, the environment of a
configuration keyword, or a comment that describes the configuration keyword. Table
and index parameters establish the storage characteristics of tables and indexes.

28

ArcSDE Configuration and Tuning Guide for DB2

The business table storage parameter

A businesstableisany DB2 table created by an ArcSDE client, the sdetable
administration command, or the ArcSDE C application programming interface (API)
SE table create function.

Usethe DBTUNE table's B_ STORAGE storage parameter to define the storage
configuration of abusinesstable.

The business table index storage parameters

Three index storage parameters exist to support the creation of business table indexes.

The B_INDEX_USER storage parameter holds the storage configuration for user-
defined indexes created with the C API function SE_table create index and the
create_index operation of the sdetable command.

The B_INDEX_ROWID storage parameter holds the storage configuration of the index
ArcSDE creates on aregister table's object ID column, commonly referred to asthe
ROWID.

Note: ArcSDE registersal tablesthat it creates. Tables not created by ArcSDE can also
be registered with the alter_reg operation of the sdetable command or with ArcCata og.
The SDE.TABLE REGISTRY system table maintainsalist of the currently registered
tables.

The B_INDEX_SHAPE storage parameter holds the storage configuration of the spatia
column index that ArcSDE creates when aspatial column is added to a businesstable.
Thisindex is created by the ArcSDE C API function SE_layer_create. Thisfunctionis
called by Arcinfo” when it creates afeature class and by the add operation of the
sdelayer command.

Multiversioned table storage parameters

Registering a business table as multiversioned alows multiple usersto maintain and edit
their copy of the object. At appropriate intervals, each user merges the changes made to
the copy along with the changes made by other users and reconciles any conflicts that
arise when the same rows are modified.

ArcSDE creates two tables—the adds table and the del etes table—for each table that is
registered as multiversioned.

Chapter 3—Configuring DBTUNE storage parameters 29

The A_STORAGE storage parameter maintains the storage configuration of the adds
table. Four other storage parameters hold the storage configuration of the indexes of the
addstable. The adds table is named A<n>, where <n> isthe registration ID listed in the
SDE.TABLE_REGISTRY system table. For instance, if the businesstable ROADS is
listed with aregistration ID of 10, ArcSDE creates the adds table as A10.

The A_INDEX_ROWID storage parameter holds the storage configuration of the index
that ArcSDE creates on the multiversion object ID column, commonly referred to asthe
ROWID. The adds table ROWID index is named A<n> ROWID_|IX1, where<n>is
the businesstable's registration 1D, which the adds table is associated with.

The A_INDEX_STATEID storage parameter holds the storage configuration of the
index that ArcSDE creates on the adds table's SDE_STATE_|D column. The
SDE_STATE_ID columnindex iscaled A<n> STATE 1X2, where <n> isthe business
table'sregistration 1D, which the adds table is associated with.

The A_INDEX_SHAPE storage parameter holds the storage configuration of the index
that ArcSDE creates on the adds table's spatia column. If the businesstable containsa
gpatia column, the column and the index on it are duplicated in the adds table. The adds
table's spatid columnindex iscaled A<n> IX1 A, where <n> isthelayer ID of the
feature classasit islisted in the SDE.LAY ERS table.

The A_INDEX_USER storage parameter holds the storage configuration of user-
defined indexes that ArcSDE creates on the adds table. The user-defined indexes on the
business tables are duplicated on the adds table.

The D_STORAGE storage parameter holds the storage configuration of the deletes
table. Two other storage parameters hold the storage configuration of the indexes that
ArcSDE creates on the deletes table. The deletes table is named D<n>, where <n> isthe
registration ID listed inthe SDE.TABLE _REGISTRY system table. For instance, if the
business table ROADS is listed with aregistration ID of 10, ArcSDE creates the del etes
table as D10.

The D_INDEX_STATE _ROWID storage parameter holds the storage configuration of
the D<n>_IDX1 index that ArcSDE creates on the deletes table's SDE_ STATE _ID and
SDE _DELETES ROW._ID columns.

TheD_INDEX_DELETED_AT storage parameter holds the storage configuration of
the D<n>_IDX2 index that ArcSDE creates on the deletestable's SDE DELETED AT
column.

Note: If aconfiguration keyword is not specified when the registration of abusiness
tableis converted from single-version to multiversion, the adds and deletes tables and

30 ArcSDE Configuration and Tuning Guide for DB2

their indexes are created with the storage parameters of the configuration keyword the
business table was crested with.

Raster table storage parameters

A raster column added to abusinesstable is actually aforeign key reference to raster
data stored in a schema consisting of four tables and five supporting indexes.

The RAS_STORAGE storage parameter holdsthe DB2 CREATE TABLE storage
configuration of the RAS table.

The RAS INDEX_ID storage parameter holdsthe DB2 CREATE TABLE storage
configuration of the RAS table index.

The BND_STORAGE storage parameter holdsthe DB2 CREATE TABLE storage
configuration of the BND table index.

The BND_INDEX_ COMPOSITE storage parameter holds the DB2 CREATE INDEX
storage configuration of the BND table' s composite column index.

The BND_INDEX_ID storage parameter holdsthe DB2 CREATE INDEX storage
configuration of the BND table’ srid column index.

The AUX_STORAGE storage parameter holdsthe DB2 CREATE TABLE storage
configuration of the AUX table.

The AUX_INDEX_COMPOSITE storage parameter holdsthe DB2 CREATE INDEX
storage configuration of the AUX table'sindex.

The BLK_STORAGE storage parameter holds the DB2 CREATE TABLE storage
configuration of the BLK table.

The BLK_INDEX_COMPOSITE storage parameter holdsthe DB2 CREATE TABLE
storage configuration of the BLK table'sindex.

Arranging storage parameters by keyword

Storage parameters of the DBTUNE table are grouped by keyword. The following
keywords are present by default inthe DBTUNE table.

Chapter 3—Configuring DBTUNE storage parameters

31

» DEFAULTS

» DATA_DICTIONARY

* IMS METADATARELATIONSHIPS
* IMS METADATA

* IMS METADATATAGS

* IMS METADATATHUMBNAILS

* IMS METADATAUSERS

* IMS METADATAVALUES

* IMS METADATAWORDINDEX

* IMS METADATAWORD

* LOGFILE_DEFAULTS
* NETWORK_DEFAULTS
* NETWORK_DEFAULTS::DESC

* NETWORK_DEFAULTS:NETWORK

*+ SURVEY_MULTI_BINARY

» TOPOLOGY_DEFAULTS

» TOPOLOGY_DEFAULTS:DIRTYAREAS

DEFAULTS keyword

Each DBTUNE table has afully populated DEFAULTS keyword.

The DEFAULTS keyword can be selected whenever you create atable, index, feature
class, or raster column. If you do not select a keyword for one of these abjects, the
DEFAULTSkeyword is used. If you do not include a storage parameter in akeyword
you have defined, ArcSDE subdtitutes the storage parameter from the DEFAULTS

keyword.

The DEFAULTS keyword relieves you of the need to define all the storage parameters
for each of your keywords. The storage parameters of the DEFAULTS keyword should

be populated with values that represent the average storage configuration of your data.

32

ArcSDE Configuration and Tuning Guide for DB2

During installation, if the ArcSDE software detects amissing DEFAUL TS keyword
storage parameter in the dbtune.sdefile, it automatically adds the storage parameter. I
you import a DBTUNE file with the sdedbtune command, the command automatically
adds default storage parametersthat are missing. ArcSDE will detect the presence of the
following list of storage parameters and insert the storage parameter and the default
configuration string.

##DEFAULTS

A_INDEX_ROWID
A_INDEX SHAPE ™

A_INDEX STATEID "

A_INDEX_USER

#A_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE> LONG IN <TABLESPACE>"
B_INDEX_ROWID

B_INDEX SHAPE "

B_INDEX_USER

B_RUNSTATS "YES"

#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE> LONG IN <TABLESPACE>"
#BLK_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE> LONG IN <TABLESPACE>"
#AUX_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"

#BND_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"

#RAS_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"

D _INDEX DELETED AT"

D_INDEX_STATE ROWID

#D_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE> LONG IN <TABLESPACE>"

BLOB_OPTION "LOGGED NOT COMPACT"
BLOB_SIZE "IM"
CLOB_OPTION "LOGGED NOT COMPACT"

CLOB SIZE "32K"
#MAX_CACHED CURSORS "80"

UI_TEXT

#XML DOC_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
#XML_IDX_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
XML IDX_INDEX ID "

XML _IDX_INDEX TAG "

XML_IDX_INDEX DOUBLE "

XML_IDX_FULLTEXT UPD_FREQUENCY ""

XML _IDX_FULLTEXT UPD MINIMUM "
XML_IDX_FULLTEXT UPD COMMIT "

XML _IDX_FULLTEXT IDXDIRECTORY "

XML _IDX_FULLTEXT WKDIRECTORY "

XML _IDX FULLTEXT LANGUAGE "

XML_IDX_FULLTEXT CCSID

END

Setting the default BLOB size

DB2 requires asize on BLOB column cregtion.

Chapter 3—Configuring DBTUNE storage parameters 33

If aBLOB columnisto be created and it has asize of greater than 2 GB, thissize will be
ignored and the default LOB_SIZE parameter of 1 MB will be used. Thiswill alow the
DBA to carefully craft the database parameters.

Setting the default CLOB size

DB2 requires asize on CLOB column crestion.

If aCLOB columnisto be created and it has asize of greater than 2 GB, the size will be
ignored and the default CLOB_SIZE parameter of 32K will be used. Thiswill dlow the
DBA to carefully craft the database parameters.

Setting the B_RUNSTATS parameter

This parameter will be used at the end of a dataload, after al the records are inserted and
the layer isbeing readied to put into normal_io mode. The last part of switching to
normal_io mode will bethe checking of B_RUNSTATS. "YES" will be the default if no
B_RUNSTATS parameter is present in the DEFAUL TS keyword of the dbtune.sde file.
B_RUNSTATS only appliesto thebusinesstable If B_RUNSTATSisequa to"YES'
or "yes', then afull runstats will be performed on the table automatically. If it is set to
anything else, then arunstatswill not happen. The vast mgjority of users will want to
have the full runstats done on the table. For those who wish to do something special with
it for some reason, such as only do indexes, they can set B_RUNSTATSto "NO" and
perform amanual RUNSTATS command with any options they choose.

Setting the MAX_CACHED_CURSORS parameter

Some control should be available over how many cursors per user can be allocated to the
cache. While there are database tuning parameters related to the maximum number of
cursors (SQL_MAX_CONCURRENT_ACTIVITIESfor DB2), these are of limited use
or are often are not set - effectively limited only by available resources and complexity
of query. Simply applying the default max cursor value may cause issues on heavily
loaded systems. To better control this, or to disable caching entirely the dbtune
parameter MAX_CACHED_CURSORS was added asa DEFAULTS keyword. The
current default vaue is"80". To disable caching, setitto"0".

Setting the system table DATA_DICTIONARY keyword

During the execution of sdesetupdb?2 the ArcSDE and geodatabase system tables and
indexes are created with the storage parameters of the DATA_DICTIONARY keyword.
Y ou may customize the keyword in the dbtune.sdefile prior to running the sdesetupdb?2

34

ArcSDE Configuration and Tuning Guide for DB2

toal. In thisway you can change default storage parameters of the
DATA_DICTIONARY keyword.

Editsto al of the geodatabase system tables and most of the ArcSDE system tables
occur when schema change occurs. As such, editsto these system tables and indexes
usually happen during theinitial creation of an ArcGIS database with infrequent
modifications occurring whenever a new schema object is added.

Four of the ArcSDE system tables—VERSION, STATES, STATE_LINEAGES, and
MVTABLES MODIFIED—participate in the ArcSDE versioning model and record
events resulting from changes made to multiversioned tables. If your site makes
extensive use of amultiversioned database, these tables and their associated indexes are
quite active. Separating these objects into their own tablespace alows you to position
their data files with data files that experience low 1/0 activity and thus minimize disk 1/0
contention.

If the dbtune.sde file does not contain the DATA_DICTIONARY keyword, or if any of
the required parameters are missing from the keyword, the following records will be
inserted into the DATA_DICTIONARY when the table is created. Note that the
DBTUNE file entries are provided here for readability.

##DATA_DICTIONARY

B_INDEX ROWID "

B_INDEX USER "

#B_STORAGE "IN <TABLESPACE>INDEX IN <TABLESPACE> LONG IN <TABLESPACE>"
#STATES_TABLE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
STATES_INDEX ""

#STATE_LINEAGES_TABLE "IN <TABLESPACE>INDEX IN <TABLESPACE>"
#VERSIONS_TABLE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
VERSIONS_INDEX "

#MVTABLES_MODIFIED TABLE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
MVTABLES_MODIFIED_INDEX ""

#XML_INDEX TAGS_TABLE "IN <TABLESPACE>INDEX IN <TABLESPACE>"
#XML _TAGS_TABLE "IN <TABLESPACE> INDEX IN <TABLESPACE>"

END

Chapter 3—Configuring DBTUNE storage parameters 35

The SURVEY MULTIBINARY keyword

This keyword is used to support BLOB columns on the SDB_<n>_Surveys
table. However, it is mainly meant for Oracle since it cannot have multiple LONG
RAW columnsin the same business table.

##SURVEY_MULTI_BINARY

UL TEXT""
END

The TOPOLOGY keyword

The TOPOLOGY keyword controls the storage of topology tables, which are named
POINTERRORS, LINEERRORS, POLY ERRORS and DIRTYAREAS. An SDE
instance must have avaid topology keyword in the dbtune table, or topology will not be
built.

The DIRTY AREAS table maintainsinformation on areas within alayer that have been
changed. Because it tracks versions, datawill be inserted or updated but not deleted
during normal use. The DIRTY AREAS table will reduce in size only when database
versions are compressed.

Because the DIRTY AREAS table is much more active than the remaining topol ogy
tables, the TOPOLOGY keyword may be compound. Y ou may specify the
DIRTYAREAS suffix to list configuration string to be used to create the topology
tables.

For DB2, the default values for TOPOLOGY and TOPOLOGY ::DIRTYAREAS are
##TOPOLOGY_DEFAULTS

UL_TOPOLOGY_TEXT "The topology default configuration"
A_INDEX ROWID ""

A_INDEX_SHAPE ""

A_INDEX STATEID ""

A _INDEX USER "

#A_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
B_INDEX ROWID "'

B_INDEX SHAPE "'

B_INDEX USER ""

#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
D_INDEX_DELETED_ AT ""

D_INDEX _STATE_ROWID ""

#D_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
END

##TOPOLOGY DEFAULTS::DIRTYAREAS
A_INDEX_ROWID "

36

ArcSDE Configuration and Tuning Guide for DB2

A_INDEX_SHAPE "

A_INDEX_STATEID "

A_INDEX USER ™

#A_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
B_INDEX ROWID ""

B_INDEX_SHAPE "

B_INDEX USER "

#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
D _INDEX_DELETED AT "

D_INDEX_STATE_ROWID ""

#D_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
END

The IMS METADATA keywords

The IMSMETADATA keywords control the storage of the IMS Metadata tables. These
keywords are a standard part of the dbtune table. If theIMS_METADATA storage
parametersare not present in the dbtune file when it isimported into the DBTUNE
table, ArcSDE applies software defaults.

The software defaults have the same settings as the keyword parameterslisted in the
dbtune.sde table that is shipped with ArcSDE. Y ou will need to edit the storage
parameters tablespace names. As awaystry to separate the tables and indexesinto
different tablespaces.

For more information about installing IMS Metadata and the associated tables and
indexes refer to ArclM S Metadata Server documentation.

TheIMS_METADATA keyword controls the storage of theims_metadata feature class.
Four indexes are created on the ims_metadata business table. ArcSDE createsthe
following default IMS_METADATA keyword in the DBTUNE table if the keyword is
missing from the dbtune file when it isimported.

The IMS metadata keywords are asfollows:

##IMS_METADATA

B_INDEX ROWID ""

B INDEX SHAPE "'

B INDEX USER "

#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE> LONG IN <TABLESPACE>"
BLOB _OPTION "LOGGED NOT COMPACT"

BLOB_SIZE "IM"

COMMENT "The IMS metadata feature class"

UL TEXT "

END

TheIMS METADATARELATIONSHIPS keyword controls the storage of the
ims_metadatarel ationships business table. Threeindexes are created on the

Chapter 3—Configuring DBTUNE storage parameters 37

ims_metadatarel ationships business table. ArcSDE creates the following default
IMS METADATARELATIONSHIPS keyword in the DBTUNE table if the keyword
is missing from the dbtune file when it isimported.

##IMS_METADATARELATIONSHIPS

B_INDEX ROWID "

B_INDEX USER ""

#B_STORAGE "IN <TABLESPACE>INDEX IN <TABLESPACE>"
END

The IMS METADATATAGS keyword controls the storage of theims_metadatatags
business table. Two indexes are created on the ims_metadatatags business table.
ArcSDE creates the following default IMS METADATATAGS keyword in the
DBTUNE tableif the keyword is missing from the dbtune file when it isimported.

##IMS_METADATATAGS

B_INDEX ROWID ""

B_INDEX USER ""

#B_STORAGE "IN <TABLESPACE>INDEX IN <TABLESPACE>"
END

TheIMS METADATATHUMBNAILS keyword controls the storage of the
ims_metadatathumbnails business table. Oneindex is created on the
ims_metadatathumbnails business table. ArcSDE creates the following default

IMS METADATATHUMBNAILS keyword in the DBTUNE tableif the keyword is
missing from the dbtune file when it isimported.

##IMS_METADATATHUMBNAILS

B_INDEX USER ""

#B_STORAGE "IN <TABLESPACE>INDEX IN <TABLESPACE> LONG IN <TABLESPACE>"
BLOB_OPTION "LOGGED NOT COMPACT"

BLOB_SIZE "IM"

END

TheIMS METADATAUSERS keyword controls storage of theims_metadatausers
business table. Oneindex is created on theims_metadatausers business table. ArcSDE
creates the following default IMS METADATAUSERS keyword inthe DBTUNE table
if the keyword is missing from the dbtune file when it isimported.

##IMS_METADATAUSERS

B_INDEX ROWID ""

B_INDEX USER "

#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
END

38

ArcSDE Configuration and Tuning Guide for DB2

TheIMS METADATAVALUES keyword controls the storage of the

ims_metadataval ues business table. Two indexes are created on ims_metadataval ues
business table. ArcSDE creates the following default IMS METADATAVALUES
keyword in the DBTUNE tableif the keyword is missing from the dbtune filewhen it is
imported.

##IMS_METADATAVALUES

B_INDEX USER ""
#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
END

TheIMS METADATAWORDINDEX keyword controls the storage of the
ims_metadatawordindex business table. Three indexes are created on the
ims_metadatawordindex businesstable. ArcSDE creates the following default

IMS METADATAWORDINDEX keyword in the DBTUNE table if the keyword is
missing from the dbtune file when it isimported.

##IMS_METADATAWORDINDEX

B INDEX USER "

#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
END

TheIMS METADATAWORDS keyword controls the storage of the
ims_metadatawords business table. One index is created on the ims_metadatawords
business table. ArcSDE creates the following default IMS METADATAWORDS
keyword in the DBTUNE tableif the keyword is missing from the dbtune filewhen it is
imported.

##IMS_METADATAWORDS

B_INDEX_ROWID ""

B_INDEX_USER "

#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
END

Changing the appearance of DBTUNE keywords in the
Arcinfo user interface

ArcSDE provides UI_TEXT and UI_NETWORK_TEXT storage parameters that allow
you to change the appearance of the configuration keywordsin the ArcGIS® user
interface.

ArcSDE administrators can add one of these storage parameters to each keyword to
communicate to the Arcinfo™ schema builders the intended use of the keyword. The
configuration string of these storage parameters will appear in Arclnfo interface
DBTUNE keyword scrolling lists.

Chapter 3—Configuring DBTUNE storage parameters 39

The Ul_TEXT storage parameter should be added to keywords that will be used to build
tables, feature classes, and indexes.

The Ul_NETWORK_TEXT storage parameter should be added to parent network
keywords.

Adding a comment to a keyword

The COMMENT storage parameter alows you to add informative text that describes
such things as a keyword's intended use, the last time it was changed, or who created it.

LOGFILE configuration keywords

Log filesare used by ArcSDE to maintain temporary and persistent sets of selected
records.

The LOGFILE_DEFAULTS keyword holds the parameter group for all usersthat do
not have their own keyword created. Alternatively, you may createindividual log file
keywords for specific users by appending the user’ s nameto the LOGFILE_ prefix to
form the keyword name. For example, if the user’snameis STANLEY, ArcSDE will
search the DBTUNE table for the LOGFILE_STANLEY configuration keyword. If this
configuration keyword is not found, ArcSDE will use the storage parameters of the
LOGFILE_DEFAULTS configuration keyword.

ArcSDE always createsthe DBTUNE tablewithaLOGFILE_DEFAULTS
configuration keyword. If you do not specify this configuration keyword inaDBTUNE
fileimported by the sdedbtune command, ArcSDE will populate the DBTUNE table
with software default LOGFILE_DEFAULTS storage parameters. Further, if the
DBTUNE filelacks some of the LOGFILE_DEFAULTS configuration keyword storage
parameters, ArcSDE suppliesthe rest. Therefore, the LOGFILE_DEFAULTS
configuration keyword is dways fully populated.

If auser-specific configuration keyword exists but some of the storage parameters are
not present, the storage parameters of the LOGFILE_DEFAULTS configuration
keyword are used.

The storage parameters that are used depend on which type of log files the server has
been configured to use. If the ArcSDE server is configured to use shared log files,
ArcSDE createsthe log file tables SDE L OGFILES and SDE_LOGFILE DATA and
indexesthe firgt time the user connects.

40

ArcSDE Configuration and Tuning Guide for DB2

For the creation of shared log filetablesthe LD_STORAGE and LF_STORAGE
parameters control the storage of the SDE_LOGFILE_DATA and SDE_LOGFILES
tables.

The LF_INDEXES parameter defines the storage of the indexes of the
SDE_LOGFILEStable, whiletheLD_INDEX_DATA_ID and LD_INDEX_ROWID
parameters define the storage of the SDE_LOGFILE_DATA table.

Creating alog file configuration keyword for each user alows you to position the SDE
user'slog files on separate devices by specifying the tablespace the log file tables and
indexes are created in. Mogt ingtad lations of ArcSDE will function well using the
LOGFILE_DEFAULTS storage parameters supplied with the installed dbtune.sdefile.
However, for applications making use of SDE log files, such as ArcGIS Desktop, it may
help performance to spread the log files across the file system. Typically logfiles are
updated whenever a selection set exceeds 100 records.

If you have configured the server to use session based or stand-alone logfilesin addition
to shared logfiles, ArcSDE will use a different set of storage parameters when it creates
the session-based and stand-a one logfiles tables.

The SESSION_STORAGE parameter defines the storage of the session-based and
stand-a one logfile tables which include both session and standal one types.

The SESSION_INDEX parameter defines the storage of the session-based and stand-
alone logfile table indexes.

If the imported DBTUNE file does not contain a LOGFILE_DEFAULTS configuration
keyword or if any of the logfile storage parameters are missing, ArcSDE will insert the
following records:

##LOGFILE_DEFAULTS

LD INDEX DATA ID "
LD_INDEX ROWID

#LD_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
#LF_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
UL_TEXT "LOGFILES"

#SESSION_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
#SESSION_INDEX "IN <TABLESPACE> INDEX IN <TABLESPACE>"

SESSION_TEMP _TABLE "0"
END

Network class composite keywords

The composite keyword is a unique type of keyword designed to accommodate the
tables of the ArcGIS network class. The network table's size variation requires a

Chapter 3—Configuring DBTUNE storage parameters 41

keyword that provides configuration storage parametersfor both large and small tables.
Typicdly the network descriptionstable is very large in comparison with the others.

To accommodate the vast difference in the size of the network tables, the network
composite keyword is subdivided into elements. A network composite keyword has
three elements:. the parent element definesthe general characteristic of the keyword and
the junctions feature class, the description element defines the configuration of the
DESCRIPTIONS table and its indexes, and the network element defines the
configuration of the remaining network tables and their indexes.

The parent element does not have a suffix, and its keyword looks like any other
keyword. The description element is demarcated by the addition of the ::DESC suffix to
the parent element's keyword, and the network element is demarcated by addition of the
:NETWORK suffix to the parent element's keyword.

For example, if the parent element keyword is ELECTRIC, the network composite
keyword would appear inaDBTUNE file asfollows:

##ELECTRIC
COMMENT This keyword is dedicated to the electrical geometric network class
UI NETWORK TEXT "The electrical geometrical network class keyword"

B STORAGE "IN SDEDB2 INDEX IN SDEINDEX LONG IN SDELOBS"

B_INDEX ROWID "PCTFREE 15 DISALLOW REVERSE SCANS"

B_INDEX USER "PCTFREE 10 MINPCTUSED 25 DISALLOW REVERSE SCANS"
A_STORAGE "IN SDEDB2 INDEX IN SDEINDEX LONG IN SDELOBS"
A_INDEX ROWID "PCTFREE 15 DISALLOW REVERSE SCANS"

A_INDEX USER "PCTFREE 10 MINPCTUSED 25 DISALLOW REVERSE SCANS"

A_INDEX_STATEID
D _STORAGE "IN SDEDB2 INDEX IN SDEINDEX LONG IN SDELOBS"
D _INDEX_DELETED AT "

D_INDEX_STATE_ROWID "

END

##ELECTRIC::DESC

B_STORAGE "IN SDEDB2 INDEX IN SDEINDEX LONG IN SDELOBS"

ArcSDE Configuration and Tuning Guide for DB2

B_INDEX ROWID "PCTFREE 15 DISALLOW REVERSE SCANS"

B_INDEX USER "PCTFREE 10 MINPCTUSED 25 DISALLOW REVERSE SCANS"
A _STORAGE "IN SDEDB2 INDEX IN SDEINDEX LONG IN SDELOBS"
A_INDEX ROWID "PCTFREE 15 DISALLOW REVERSE SCANS"

A_INDEX USER "PCTFREE 10 MINPCTUSED 25 DISALLOW REVERSE SCANS"

A_INDEX_STATEID
D _STORAGE "IN SDEDB2 INDEX IN SDEINDEX LONG IN SDELOBS"
D _INDEX_DELETED AT "

D _INDEX_STATE_ROWID "

END

#ELECTRIC:NETWORK

B_STORAGE "IN SDEDB2 INDEX IN SDEINDEX LONG IN SDELOBS"

B _INDEX ROWID "PCTFREE 15 DISALLOW REVERSE SCANS"

B_INDEX_USER "PCTFREE 10 MINPCTUSED 25 DISALLOW REVERSE SCANS"
A _STORAGE "IN SDEDB2 INDEX IN SDEINDEX LONG IN SDELOBS"
A_INDEX_ROWID "PCTFREE 15 DISALLOW REVERSE SCANS"

A _INDEX USER "PCTFREE 10 MINPCTUSED 25 DISALLOW REVERSE SCANS"

A_INDEX_STATEID

D_STORAGE "IN SDEDB2 INDEX IN SDEINDEX LONG IN SDELOBS"
D_INDEX_DELETED AT "

D_INDEX_STATE ROWID "

END

Following theimport of the DBTUNE file, these records would be inserted into the
DBTUNE table.

DB2> select keyword, parameter_name from DBTUNE;

KEYWORD PARAMETER_NAME
ELECTRIC COMMENT
ELECTRIC UI_NETWORK_TEXT
ELECTRIC B_STORAGE

ELECTRIC B_INDEX_ROWID

Chapter 3—Configuring DBTUNE storage parameters 43

ELECTRIC B_INDEX_SHAPE
ELECTRIC B_INDEX_USER
ELECTRIC A_STORAGE

ELECTRIC A_INDEX_ROWID
ELECTRIC A_INDEX_SHAPE
ELECTRIC A_INDEX_USER
ELECTRIC A_INDEX_STATEID
ELECTRIC D_STORAGE

ELECTRIC D_INDEX_DELETED_AT
ELECTRIC D_INDEX_STATE_ROWID
ELECTRIC: :DESC B_STORAGE

ELECTRIC: :DESC B_INDEX_ROWID
ELECTRIC: :DESC B_INDEX_USER
ELECTRIC: :DESC A_STORAGE

ELECTRIC: :DESC A_INDEX_ROWID
ELECTRIC: :DESC A_INDEX_STATEID
ELECTRIC: :DESC A_INDEX_USER
ELECTRIC: :DESC D_STORAGE

ELECTRIC: :DESC D_INDEX_DELETE_AT
ELECTRIC: :DESC D_INDEX_STATE_ROWID

ELECTRIC: :NETWORK B_STORAGE

ELECTRIC: :NETWORK B_INDEX_ROWID
ELECTRIC: :NETWORK B_INDEX_USER
ELECTRIC: :NETWORK A_STORAGE

ELECTRIC: :NETWORK A_INDEX_ROWID
ELECTRIC: :NETWORK A_INDEX_STATEID
ELECTRIC: :NETWORK A_INDEX_USER
ELECTRIC: :NETWORK D_STORAGE

ELECTRIC: :NETWORK D_INDEX_DELETE_AT
ELECTRIC: :NETWORK D_INDEX_STATE_ROWID

The network junctions feature classiis created with the ELECTRIC configuration
keyword storage parameters, the network descriptionstableis created with the storage
parameters of the ELECTRIC::DESC keyword, and the remaining smaller network
tables are created with the ELECTRIC::NETWORK keyword.

The NETWORK_DEFAULTS keyword

The NETWORK_DEFAULTS keyword contains the default storage parameters for the
ArcGIS network class. If the user does not select a network class composite keyword
from the ArcCatalog interface, the ArcGIS network is crested with the storage
parameters within the NETWORK_DEFAULTS keyword.

Whenever anetwork class composite keyword is selected, its storage parameters are
used to create the feature class, table, and indexes of the network class. If anetwork
composite keyword is missing any storage parameters, ArcGI S substitutes the storage
parameters of the DEFAUL TS keyword rather than the NETWORK_DEFAULTS
keyword. The storage parameters of the NETWORK_DEFAULTS keyword are used
when anetwork composite keyword has not been specified.

If aNETWORK_DEFAULTS keyword is not present in a DBTUNE file imported into
the DBTUNE table, the following NETWORK_DEFAULTS keyword is created.

#H#NETWORK_DEFAULTS

44 ArcSDE Configuration and Tuning Guide for DB2

A_INDEX_ROWID "

A _INDEX SHAPE "'

A_INDEX STATEID "

A_INDEX_USER "

#A_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
B_INDEX ROWID "

B INDEX SHAPE "'

B_INDEX USER "

#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
COMMENT "The base system initialization parameters for NETWORK DEFAULTS"
D _INDEX DELETED AT""

D_INDEX_STATE_ROWID "

#D_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
UL NETWORK _TEXT "The network default configuration"

END

##NETWORK_DEFAULTS::DESC

A_INDEX_ROWID

A_INDEX_STATEID "

A_INDEX_USER

#A_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
B_INDEX_ROWID

B_INDEX_USER

#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
D _INDEX DELETED AT"

D_INDEX_STATE_ROWID

#D_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
END

##NETWORK_DEFAULTS::NETWORK

A_INDEX_ROWID

A_INDEX STATEID "

A_INDEX_USER

#A STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
B_INDEX_ROWID

B_INDEX_USER

#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
D_INDEX_DELETED AT"

D_INDEX_STATE_ROWID

#D_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
END

DB2 default parameters

By default, DB2 stores tables and indexes in the user’ s default tablespace using the
tablespace’ s default storage parameters. Thistablespaceis called USERSPACEL in
DB2.

The complete list of ArcSDE storage parameters

Chapter 3—Configuring DBTUNE storage parameters 45
Parameter Name Value | Parameter Description Default Value
STATES LINEAGES TABLE <gring>| State lineagestable B_STORAGE
STATES TABLE <string>| Statestable B_STORAGE
STATES INDEX <gring>| Statesindexes B_INDEX_USER
MVTABLES MODIFIED _TABLE <string>| Mvtables modifiedtable | B_STORAGE
MVTABLES MODIFIED_INDEX <string>| Mvtables modifiedindex | B_INDEX_USER
VERSIONS TABLE <gtring>| Versonstable B_STORAGE
VERSIONS INDEX <gtring>| Version index B_INDEX_USER
B_STORAGE <string>| Businesstable DB2 defaults
B_INDEX_ROWID <string>| Businesstable object ID DB2 defaults
column index

B_INDEX_SHAPE <gring>| Businesstable spatia DB2 defaults
column index

B_INDEX_USER <string>| Businesstable user DB2 defaults
index(s)

B_RUNSTATS <gtring>| Default vduefor YES
RUNSTATS

A_STORAGE <string>| Addstable DB2 defaults

A_INDEX_ROWID <string>| Addstable object ID DB2 defaults
column index

A_INDEX_STATEID <gring>| Addstable sde state id DB2 defaults
column index

A_INDEX_USER <gtring>| Addstableindex DB2 defaults

A_INDEX_SHAPE <gring>| Addstable spatia column | DB2 defaults

index

46 ArcSDE Configuration and Tuning Guide for DB2
Parameter Name Value | Parameter Description Default Value
D_STORAGE <gring>| Deletestable DB2 defaults
D_INDEX_STATE ROWID <gring>| Deletestable sde states id | DB2 defaults

and sde_deletes row _id
column index
D_INDEX_DELETED_AT <gtring>| Deletestable DB2 defaults
sde deleted at column
index
BLOB_SIZE <gtring>| Size of BLOB column 1MB
BLOB_OPTION <gtring>| Storage configuration DB2 defaults
properties of the BLOB
column
CLOB_SIZE <gtring>| Size of CLOB column 32K
CLOB_OPTION <gtring>| Storage configuration DB2 defaults
properties of the CLOB
column
LF STORAGE <gtring>| Sde logfilestable DB2 defaults
LF INDEXES <gring>| Sde logfile table column DB2 defaults
indexes
LD_STORAGE <gtring>| Sde logfile datatable DB2 defaults
LD_INDEX_DATA_ID <gring>| Sde logfile datatable DB2 defaults
LD_INDEX_ROWID <gring>| Sde logfile datatable DB2 defaults
sde row_id column index
SESSION_STORAGE <gtring>| SDE session-based and DB2 defaults
stand dlone log file tables
SESSION_INDEX <gtring>| Sde session-based and DB2 defaults

stand-alone log file indexes

Chapter 3—Configuring DBTUNE storage parameters 47
Parameter Name Value | Parameter Description Default Value
RAS STORAGE <gring>| Raster RAStable DB2 defaults
BND_STORAGE <gring>| Raster BND table DB2 defaults
AUX_STORAGE <gring>| Raster AUX table DB2 defaults
BLK_STORAGE <string>| Raster BLK table DB2 defaults
Ul_TEXT <gring>| User interface name of the | DB2 defaults

configuration keyword
MX_CACHED_CURSORS <string>| Maximum number of 80

cached cursors
Ul_NETWORK_TEXT <string>| User interface name of the | DB2 defaults

network configuration

keyword
COMMENT <gtring>| Comments none
XML_IDX_INDEX_ID <gring>| Index storageinfo DB2 defaults
XML_IDX_INDEX_TAG <gtring>| Index storageinfo DB2 defaults
XML_IDX_INDEX_DOUBLE <gtring>| Index storageinfo DB2 defaults
XML_IDX_FULLTEXT _UPD_FREQU | <string>| Index update frequency DB2 defaults
ENCY
XML_IDX_FULLTEXT_UPD_MINIM <string>| Index update minimum DB2 defaults
UM rows
XML_IDX_FULLTEXT_UPD_COMMI | <string>| Index update DB2 defaults
T commit_count
XML_IDX_FULLTEXT_UPD_IDXDIR | <string>| Path to text index directory | DB2 defaults
ECTORY
XML_IDX_FULLTEXT_UPD_WKDIR | <gtring>| Pathtotext index working | DB2 defaults

ECTORY

directory

48 ArcSDE Configuration and Tuning Guide for DB2

Parameter Name Value | Parameter Description Default Value

XML_IDX_FULLTEXT _UPD_LANGU | <dring>| Text index language DB2 defaults

AGE

XML_IDX_FULLTEXT_UPD_CCSID <gring>| Textindex CCSID DB2 defaults

XML_INDEX_TAGS TABLE <gring>| Index tagstable (data DB2 defaults
dictionary)

XML_TAGS TABLE <gring>| Tagstable (datadictionary) | DB2 defaults

CHAPTER 4

Managing tables, feature
classes, and raster columns

A fundamental part of any database is creating and loading the tables.
Tableswith spatial columns are called standal one feature classes.
Attribute-only (nonspatial) tables are also an important part of any
database. This chapter will describe the table and feature class creation
and loading process.

Data creation

There are numerous applications that can create and load datawithin an ArcSDE DB2
database. Theseinclude:

1. ArcSDE adminigtration commands located in the bin directory of SDEHOME:
* gddaye—Creates and manages feature classes.
* getable—Creates and manages tables.

* gdeimport—Takes an existing sdeexport file and |oads the datainto afeature
class.

o shp2sde—L oads an ESRI shapefileinto afeature class.

+ cov2sde—L oadsacoverage, Map LIBRARIAN layer, or ArcStorm™ layer into
afeature class.

+ thl2sde—L oads an attribute-only dBASE® or INFO™ fileinto atable.

50

ArcSDE Configuration and Tuning Guide for DB2

» sdegroup—A specidty feature class creation command that combines the
features of an existing feature class into single multipart features and stores
them in anew feature class for background display. The generated feature class
isused for rapid display of alarge amount of geometry data. The attribute
information is not retained, and spatia searches cannot be performed on these
feature classes.

e oderaster—creates, insarts, modifies, imports, and manages rasters stored in an
ArcSDE database.

These are al run from the operating system prompt. Command references for these tools are
inthe ArcSDE Developer Help.

Other applicationsinclude:

2.

6.

7.

ArcGIS Desktop—Use ArcCatalog or ArcToolbox to manage and popul ate your
database.

Arclnfo Workgtation—Use the Defined Layer interface to create and populate the
database.

ArcView® 3.2—Use the Database Access extension.

M apObjects"—Custom Component Object Model (COM) applications can be built
to create and popul ate databases.

ArcSDE CAD Client extension—For AutoCAD® and MicroStation® users.

Other third party applications built with either the C or Java™ APIs.

This document focuses primarily on the ArcSDE administration tools but does provide
some ArcGI S Desktop examples aswell. In general, most people prefer an easy-to-use
graphica user interface like the one found in ArcGI'S Desktop. For details on how to use
ArcCatalog or ArcToolbox (another desktop dataloading tool), please refer to the
ArcGIS books:

e Using ArcCatalog

» Building a Geodatabase

Chapter 4—Managing tables, feature classes, and raster columns 51

Creating and populating a feature class

The generd process involved with creating and loading afeature classisto:
1. Createthe businesstable.

2. Record the business table and the spatial column in the ArcSDE LAYERS and
GEOMETRY_COLUMNS system tables, thus adding a new feature classto the
database.

3. Switch the feature classto load_only_io mode, an optiona step to improve bulk data
loading performance. 1t is OK to leavefeature classin normal_io mode to load data.

Insert the records (load data).
Switch the feature class to normal_io mode which builds the indexes.

Version the data (optional).

N o g A

Grant privileges on the data (optional).

In the following sections, this processis discussed in more detail and illustrated with
some examples of ArcSDE administration commands usage and Arclnfo dataloading
utilities through the ArcCatalog and ArcToolbox interfaces.

Creating a feature class “from scratch”

There are two basic waysto create afeature class. Y ou can cregate afeature classfrom
scratch (requiring considerably more effort), or you can create afesture classfrom
exigting data such as a coverage or ESRI shapefile. Both methods are reviewed below
with the “from scratch” method presented first.

Creating a business table

Y ou may create abusiness table with either the SQL CREATE TABLE statement or the
ArcSDE sdetable command. The sdetable command alows you to include a dbtune
configuration keyword containing the storage parameters of the table.

Although the table may contain up to 1012 columns, ArcSDE requires that only one of
those columns be defined as a spatial column.

In this example, the sdetable command is used to create the roads business table.

sdetable -0 create -t roads -d 'road_id integer, name string(32), shape
integer' -k roads -u beetle -p bug

The tableis created using the dbtune configuration keyword (-k) “roads’ by the user
“beetle’.

52

ArcSDE Configuration and Tuning Guide for DB2

The same table could be created with a SQL CREATE TABLE statement using the DB2
SQL interface.

create table roads

(road_id integer,
name varchar(32),
shape integer);

At this point you have created atable in the database. ArcSDE does not yet recognize it
asafeature class. The next step isto record the spatial columninthe ArcSDE LAY ERS
and GEOMETRY _COLUMNS system tables and thus add a new festure classto the
database.

Adding a feature class

After creating abusinesstable, you must add an entry for the spatid columnin the
ArcSDE LAY ERS system tables before the ArcSDE server can referenceit. Usethe
sdelayer command with the “-0 add” operation to add the new feature class.

In the following example, the roads feature classis added to the ArcSDE database. Note
that to add the feature class, the roads table name and the spatial column are combined to
form aunique feature class reference. To understand the purpose of the —e, —g, and —x

options, refer to the sdelayer command reference in the ArcSDE Developer Help system.

sdelayer -o add -1 roads,shape -e 1+ -g 256,0,0 -x 0,0,100 -u beetle -p
bug -k roads

The feature class tables and indexes are stored according to the storage parameters of the
“roads’ configuration keywordsin the DBTUNE table. Upon successful completion of
the previous sdetable command—to cregte a table—and the sdelayer command—to
record the feature classin the ArcSDE system tables—you have an empty feature classin
normal_io mode.

Switching to load-only mode

Switching the feature class to load-only mode drops the spatia index and makesthe
feature class unavailable to ArcSDE clients. Bulk loading datainto the feature classin
this state is much faster due to the absence of index maintenance. Use the sdelayer
command to switch the feature class to load-only mode by specifying the“-o

load _only_io” operation.

sdelayer -o load_only_io -1 roads,shape -u beetle -p bug

Note: A feature classregistered as multiversioned cannot be placed in the load-only 1/0
mode.

Inserting records into the feature class

Once the empty feature class exists, the next step isto populateit with data. There are
severa waysto insert datainto afeature class, but probably the easiest method isto

Chapter 4—Managing tables, feature classes, and raster columns 53

convert an existing shapefile or coverage or import apreviously exported ArcSDE
sdeexport file directly into the feature class.

In thisfirst example, shp2sde is used with the init operation. Theinit operation isused on
newly created festure classes or can be used on feature classes when you want to
“overwrite” datathat’s already there. Don't use the init operation on feature classes that
already contain data unless you want to remove the existing data. Here, the shapefile,
“rdshp”, will be loaded into the feature class, “roads’. Note that the name of the spatial
column (“shape’ in this case) isincluded in the feature class (-1) option.

shp2sde -0 init -1 roads,shape -f rdshp -u beetle -p bug
Similarly, you can aso use the cov2sde command:

cov2sde -o init -1 roads,shape -f rdcov -u beetle -p bug

Switching the table to normal I/O mode

After data has been loaded into the feature class, you must switch the feature classto
normal_io modeto re-create dl indexes and make the feature class available to clients.
For example:

sdelayer -o normal_io -1 roads,shape -u beetle -p bug

Versioning your data

Optionaly, you may enable your feature class as multiversioned. VVersioning is a process
that allows multiple representations of your data to exist without requiring duplication or
copies of the data. ArcMap requires data to be multiversioned to edit it. For further
information on versioning data, refer to the Building a Geodatabase book.

In this example, the feature class, stateswill be registered as multiversioned using the
sdetable ater_reg operation.

sdetable -0 alter_reg -t states -c ver_id -C SDE -V multi -k
GEOMETRY_TYPE

Granting privileges on the data

Once you have the dataloaded, it is often necessary for other usersto have accessto the
datafor update, query, insert, or delete operations. Initialy, only the user who has crested
the businesstable has accessto it. In order to make the data available to others, the owner
of the data must grant privileges to other users. The owner can use the sdelayer command
to grant privileges. Privileges can be granted to either another user or to agroup.

Inthisexample, auser called “beetle’ givesauser called “spider” SELECT privilegeson
afeature class called “ states’.

sdelayer -o grant -1 states,feature -U spider -A SELECT -u beetle -p bug

54

ArcSDE Configuration and Tuning Guide for DB2

Thefull ligt of -A keywords are:

SELECT The user may query the sdlected object data.
DELETE The user may delete the selected object data.
UPDATE The user may modify the sdlected object data.
INSERT The user may add new data to the selected object data.

If you include the -1 grant option, you aso grant the recipient the privilege of granting
other users and groups the initial privilege.

Inthisexample, auser, “beetle’ givesaGROUP, “arcsde’ SELECT privilegeson table
“RIVERS'.

sdetable-ogrant -t RIVERS -U group:arcsde-A SELECT -u beetle-p bug
To distinguish a GROUP from a USER the prefix “group:” is attached to the—U option.

Creating and loading feature classes from existing data

The “from scratch” method of creating a schemaand loading it has been reviewed. This
next section reviews how to create feature classes from existing data. This method is
smpler since the creation and load process is completed at once.

Each of the ArcSDE administration commands, shp2sde, cov2sde, and sdeimport,

includesa“-o create’ operation, which allows you to create a new feature class within the
ArcSDE database. The create operation does al of the following:

» Createsthe businesstable using the input data as the template for the schema
e Addsthefeature classto the ArcSDE system tables

» Putsthefeature classinto load-only mode

* Insertsdatainto thefesture class

* Whendl therecords are inserted, puts the feature class into normal_io mode

shp2sde

The shp2sde command converts shapefiles into ArcSDE feature classes. The spatia
column definition is read directly from the shapefile. Y ou can use the shpinfo command
to display the shapefile column definitions.

Chapter 4—Managing tables, feature classes, and raster columns 55

In this example, the -k option references the DBTUNE configuration keyword ROADS.
The ROADS keyword contains storage parameters for storing the tables and indexes of
the roads feature class.

shp2sde -o create -f rdshp -1 roads,shape -k ROADS -u beetle -p bug

cov2sde

The cov2sde command converts Arcinfo coverages, Arcinfo Librarian™ library feature
classes, and ArcStorm library festure classesinto ArcSDE festure classes. The create
operation derivesthe spatial column definition from the coverage sfeature attribute table.
Usethe Arclnfo describe command to display the Arclnfo data source column
definitions.

Inthisexample, an ArcStorm library, “roadlib”, is converted into the festure class,
“roads’.

cov2sde -o create -1 roads,shape -f roadlib,arcstorm -g 256,0,0 -x
0,0,100 -e 1+ -u beetle -p bug

sdeimport

The sdeimport command converts ArcSDE export filesinto ArcSDE feature classes. In
this example, the “roadexp” ArcSDE export file is converted into the feature class
‘roads .

sdeimport -o create -1 roads,shape -f roadexp -u beetle -p bug

After using these commands to create and load data, you may optionally need to enable
multiversioning on the feature class and grant privileges on the feature classto other
USErs.

Appending data to an existing feature class

A common requirement for data management isto be able to append data to existing
feature classes. The dataloading commands described thus far have a -0 append
operation for gppending data. A feature class must exist prior to using the append
operation. If thefeature classis multiversioned, it must bein an “open” date. Itisaso
advisable to change the feature class to load-only 1/O mode and pause the spétial
indexing operations before loading the data to improve the data loading performance.
The spatia indexeswill be re-created when the feature classis put back into normal 1/0
mode. Because the feature class has been defined, the metadata exists and is not atered
by the append operation.

In the shp2sde example below, the previoudy created “roads’ feature class appends
features from a shapefile, “rdshp2”’. All existing features, loaded from the rdshp
shapefile, remain intact, and ArcSDE updates the feature class with the new features from
the rdshp2 shapefile.

sdelayer -o load_only_io -1 roads,shape -u beetle -p bug

56

ArcSDE Configuration and Tuning Guide for DB2

shp2sde -o append -f rdshp2 -1 roads,shape -u beetle -p bug
sdelayer -o normal_io -1 roads,shape -u beetle -p bug
sdetable -o update_dbms_stats -t roads -u beetle -p bug

Note the last command in the sequence. The sdetable update_dbms_stats operation
updates the table and index statistics required by the DB2 optimizer. Without the
statistics the optimizer may not be able to select the best execution plan when you query
the table. For more information on updating statistics, see Chapter 2, ‘ Essentia
configuring and tuning’.

Creating and populating raster columns

Raster columns are created from ArcGIS Desktop using ArcCatalog or ArcMap™. To
create araster column, you will first need to convert the imagefile into aformat
acceptable to ArcSDE. Then after theimage has been converted to the ESRI ragter file
format, you can convert it into araster column.

For more information on creating raster columns using either ArcCatalog or ArcToolbox,
refer to Building a Geodatabase.

To understand how ArcSDE storesrastersin DB2, refer to Appendix A, ‘ Storing raster
datal.

Creating views

There aretimeswhen a(DBMS) view isrequired in your database schema. ArcSDE
provides the sdetable create view operation to accommodate this need. The view creetion
ismuch like any other DB2 view creation. If you want to create aview using alayer and
you want the resulting view to appear as afesture class to client applications, include the
feature classs spatial column in the view definition. Aswith the other ArcSDE
commands, see ArcSDE Developer Help for more information.

Exporting data

Aswith importing data, there are client applications that export datafrom ArcSDE as
well. With ArcSDE, the following command line tools exist:

sdeexport—creates an ArcSDE export file to easily move feature class data between DB2
instances and other supported DBMSs

sde?2shp—creates an ESRI shapefile from an ArcSDE feature class

sde2cov—creates a coverage from an ArcSDE feature class

Chapter 4—Managing tables, feature classes, and raster columns 57

sde2tbl—creates adBASE or INFO file from aDBMStable

Schema modification

Therewill be occasionswhen it is necessary to modify the schema of sometables. You
may need to add columns from atable. The ArcSDE command to do thisis sdetable with
the -0 alter option. ArcCatalog offers an easy-to-use tool for this and other schema
operations such as modifying the spatia index (grids) and adding and dropping column
indexes.

Choosing an ArcSDE logfile configuration

ArcSDE alows you to configure the allocation of ArcSDE logfilesto your users. You
can alow your usersto own their own logfiles or they can check out alogfile from apool
of logfiles owned by the sde user. Logfiles can be shared, session-based or stand-adone. A
shared logfile isthe default and is used by all sessionsthat connect asagiven user. Also
if the ArcSDE server is configured to use stand-alone logfiles and al available logfiles of
thistypeis exhausted, ArcSDE will attempt to create a session-based lodfileif they are
allowed; otherwise ashared logfileis created. If the shared logfile cannot be created,
ArcSDE returns an error.

Shared ArcSDE logdfiles

Shared logfiles are shared by all sessionsthat connect asthe same user. Essentialy, al
sessions are inserting and deleting records from the same logfile data table. The logfiles
are created the first time any session connects and remain in user’s schema. To configure
your server to use only shared logfiles; set the logfile server configuration parameters as
follows:

MAXSTANDALONELOGS 0
ALLOWSESSIONLOGFILE FALSE

Session-based ArcSDE logfiles

For session-based logfiles, each session that connects to the server creates alogfile.

A session-based logfile is dropped when a sessions disconnects. To configure your server
to use session-based logfiles, set the server configuration parameter
ALLOWSESSIONLOGFILE to true.

ALLOWSESSTIONLOGFILE TRUE

Y ou need to make sure that you configure enough space for the tables and indexes of the
session-based logfiles. The DBTUNE SESSION_STORAGE and SESSION_INDEX
storage parameters control the storage of session-based logfiles.

58

ArcSDE Configuration and Tuning Guide for DB2

Stand-alone ArcSDE lodfiles

Stand-alone logfiles are created by a session for each logfile the application needsto
store. When an application deletes the logfile, the stand-done logfileis truncated. The
stand-alone logfiles are dropped when the session disconnects. To configure your server
to use stand-adone logfiles, set the server configuration parameter
MAXSTANDALONELOGS to the number of stand aone logfiles you want them to be
ableto creste.

For instance, sst MAXSTANDALONELOGSto 6 if you want to alow each ArcSDE
session to create a maximum of 6 stand-alone logfiles.

MAXSTANDALONELOGS 6

Keep in mind that you need to configure enough space to store dl of theselogfiles. The
DBTUNE parameters, SESSION_STORAGE and SESSION_INDEX, dlocate spacefor
the tables and indexes of stand-alone logfiles.

If the application exhausts the number of allowable standalone logfiles—if the
application needs to smultaneoudy create more logical logfiles than
MAXSTANDALONELOGS alows—ArcSDE will attempt to create a session-based
logfile, but only if ALLOWSESSIONLOGFILE is et to TRUE; otherwise ArcSDE will
use ashared logfile. The shared logfileis created if it does not dready exist. If the shared
logfile cannot be created, ArcSDE returns an error.

Using an sde user pool of ArcSDE logfiles

The sde user can create a poal of logfiles that can be checked out and used as either
session-based or stand-alone logfiles by other users. Using a pool of sde owned logfiles
avoids having to grant users CREATE TABLE privileges. Shared logfiles cannot be
checked out from an sde owned logfile poal.

To create apool of logfiles, set the configuration parameter LOGPOOLSIZE to the
number of logfiles that need to be created. This number should reflect the number of
sessions that will connect to your server, in addition to the stand-alone logfilesif allowed.
To calculate the total number of logfilesthat could be checked out of the pool, use the
following formulae;

If session logfiles are alowed, but not stand-alone logfiles:

LOGPOOLSIZE = total sessions expected

If stand-aone logfiles are alowed, but not session logfiles:

LOGPOOLSIZE = MAXSTANDALONELOGS * total sessions expected

If both stand-alone logfiles and session logfiles are allowed:

LOGPOOLSIZE = (MAXSTANDALONELOGS + 1) * total sessions expected

Chapter 4—Managing tables, feature classes, and raster columns 59

For instance, if you compute that 100 logfiles are needed, the LOGPOOL SIZE parameter
would be set asfollows:

LOGPOOLSIZE 100

If the pool is exhausted and another logfile is needed, ArcSDE will attempt to createit in
the users schema. If the logfile cannot be created, an error isreturned.

The pooled logfile tables are created or dropped whenever the LOGFILESIZE parameter
ischanged.

Set the HOLDLOGPOOL TABLES server configuration parameter to TRUE if you want
the sessionsto retain checked out logfiles. If set to false, the logfiles are released
whenever the gpplication deletes all of itslogfilesin the case of a session logfile or
whenever the logfile occupying a stand alone logfile is del eted.

The storage of the tables and indexes of the logfile poal is controlled by the DBTUNE
storage parameters SESSION_STORAGE and SESSION_INDEX.

Using the ArcGIS Desktop ArcCatalog and ArcToolbox
applications

So far the discussion has focused on ArcSDE command line tools that creeste feature class
schemas and load data into them. While robust, these commands can be daunting for the
first-time user. In addition, if you are using ArcGIS Desktop, you may haveto use
ArcCatalog to create feature datasets and feature classes within those feature datasets to
use specific ArcGIS Desktop functionality. For that reason, a glimpse of how to use
ArcToolbox and ArcCatalog to load datais provided. Please refer to the ArcGIS Desktop
documentation on ArcCatalog, ArcToolbox, and the geodatabase for afull discussion of
these tools.

Loading data

Y ou can convert ESRI shapefiles, coverages, Map LIBRARIAN layers, and ArcStorm™
layersinto geodatabase feature classes with the ArcToolbox and ArcCatal og applications.
ArcToolbox provides anumber of tools that enable you to convert data from one format
to another.

ArcToolbox operations, such as the ArcSDE administration commands shp2sde,
cov2sde, and sdeimport, accept configuration keywords.

In the ArcToolbox Shapefile to Geodatabase wizard, you can see that a configuration
keyword has been specified for the loading of the hampton_streets shapefile into the
geodatabase.

ArcSDE Configuration and Tuning Guide for DB2

The shapefile CASNBRST.shp is converted to feature class vtest. CASNBRST using ArcToolbox.

* Shapefile to Geodatabase [2]

Input shapefile:
|E:\keithr\testing\C&SNEIFIST.Shp Eq'y Cancel
Output Geodatabase: Help

|l:: I T8 ProfileshkeithbApplication DatasESRINAcCat | 2

il

Select an existing feature datazet or enter a new ohe:
| [

Enter the name of the new feature class:
|wtest CASNBRST

Output zettings

Coordinate Swstem; GCS Morth Amernican 1927
Grid Size: 3.1484939333343E-03
Itermn Mames: Same items ag input

Configuration Kewsord:

Change Settings... |

Batch -

v

Output Settings
Spatial Ref] Grid Size] Item Mames

Enter the configuration keyword

" Default

t* Llse configuration kepward

Thiz option allows pou to specify a configuration keyword which
references the databaze storage parameters for the new feature
class.

hampton_subdivizion

ak. Cancel

Chapter 4—Managing tables, feature classes, and raster columns 61

Versioning your data

ArcCatalog aso provides a means for registering data as multiversioned. Simply right-
click thefeature class to be registered as multiversioned and select the Register As
Versioned context menu item.

3 ArcCatalog - Database Connections\world to zipzap sde\WORLD STUS_STATES [_ O[]
File Edit View Go Tools Help ‘

e amme x| “asw aane o
Location: IDalabase Connections\warld to zipzap sdelWwORLD STUS_STATE j

Stylesheet [E50) =R §|

WORLD.STDRAINAGE 2|
-ED WORLD STDRAINAGE_GEOM
WORLD.STGEOGRID
WORLD STGEOGRID_GEOM
-B WORLD STLAKES
WORLD. STLAKES_GEOM
- WORLD STLATLONG
WORLD.STLATLONG_GEOM
WORLD.STRIVERS
-E WORLD STRIVERS_GEOM

Contents Previes | hetadata

-
] WORLD.STUS_CITIES -

- WORLD STUS_CITIES_GEOM
WORLD STUS_COUNTIES .. P

WORLD.STUS_COUNTIES_GECM
- WORLD.STUS_STATFS
WORLD.STUS_ST -2 Copy Cul+C
- B WORLD.STWORLD X Delets
WORLD.STWORLD | Renams
3 WORLD.US CITIES -
- WORLD US_couly IEte LAVEn,
WORLD.US_STATE Registerwith Geodatabase
- B WoRLDWORLD3D
worldworld_binany] S Rt
worldworld_pinany2 | =Part >
witld warld_spatiall Leed Dim
WORLDWORLD_S
B world world_spatial2
WORLDWORLD_T E&' Eroperties
- &) WORLD.ZLINE :|

Privileges...

£ WORLD ZPOINT

Preview. |Geography -

Feegister As Versioned %

A feature class is registered as multiversioned from within ArcCatalog.

62

ArcSDE Configuration and Tuning Guide for DB2

Granting privileges

Using ArcCataog, right-click the data object class and click the Privileges context menu.
From the Privileges context menu assign privileges specifying the username or group, for
example, PUBLIC and the privilege you wish to grant to or revoke from a particular user
or group.

i Privileges
Which user doyou want provide ar rewvoke access to the selected object(s).

Frivileges

specify what privileges you want this user to hawe on the selected
objectis). lfyou do notwant this user to hawe any privileges, then leawve all
the options unchecked.

¥ SELECT. The user may query the selected ohject(s) data.

[UPDATE. The user may modify the selected object(s) data.
[INSERT. The user may add new data to the selected object(s).

[DELETE. The user may delete data from the selected object(s).

oK | Cancel Apply

The ArcCatalog Privileges menu allows the owner of an object class, such as a feature dataset,
feature class, or table, to assign privileges to other users or roles.

Chapter 4—Managing tables, feature classes, and raster columns 63

Creating a raster column with ArcCatalog

Using ArcCatalog, right-click the database connection, point to Import, and click Raster
to Geodatabase. Navigate to the raster file to import. Click Change Settingsif you want
to change the coordinate reference system, tile size, pyramids option, or configuration
keyword. Click OK to import the raster fileinto the DB2 database.

(119 |
Cancel |
Output SDE Geodatabaze: Help |

IE: Y[R TAProfilestmark hhApplication Data\ESRIMAcCa El

Select an eristing raster or create a new one;

Iwulld.warld j

— Output zettings

Coordinate Swstem: Unknown
Tile Size: 128x128
Pyramidz Option: Build pyramids

Configuration kepword: world_data

Change Settings... |

Batch - I

Efficiently registering large business tables with ArcSDE

When you create a business table in an ArcSDE database using an ArcSDE client
application, for example, ArcCatalog or sdetable, ArcSDE registers the businesstablein
the SDE.TABLE_REGISTRY. During the registration process ArcSDE performs a
number of tasks depending on the type of registration requested. The duration of the
registration processis dependent on the type of registration, whether the businesstable
has a spatial column, and the table’ s number of rows. For large businesstables, the
registration process can take along time to complete. This section provides the most
efficient method to register tables with alarge number of records.

64

ArcSDE Configuration and Tuning Guide for DB2

Registering a table as NONE or USER maintained

Tables registered as NONE are registered without arow 1D column.

Tablesregistered as USER areregistered with arow 1D column whose values you must
maintain.

If theregistration typeisNONE or USER, ArcSDE merely adds arecord to the
SDE.TABLE REGISTRY that referencesthe businesstable. For tablesregistered as
type USER the name of therow id isalso added to the SDE.TABLE_REGISTRY entry.
In the case of user maintained row |Ds, ArcSDE will ensure that the column existsin the
business table before completing the registration.

Registration of these two registration types happens rather quickly.

Registering a table with an SDE maintained row ID

Tablesregistered as type SDE, must have arow id column that uniquely identifiesthe
rows of thetable.

Note: Tablesregistered by the geodatabase must be registered by ArcSDE with an SDE
maintained row ID. If the geodatabase determines that the table has been registered with
an SDE maintained row 1D, the geodatabase registration processisrdatively
inexpensive.

If atable was registered with a USER maintained row |1D, the geodatabase dtersits row
ID registration to be SDE maintained.

By default the geodatabase adds a column called objectid to the table and registersit as
an SDE maintained row ID. If the objectid column aready exists, and is not currently
registered as SDE maintained, the geodatabase will add a new column to the table called
objectid 1.

Creating a new SDE maintained row ID column

If the row id column does not exist when the table is registered, ArcSDE adds a column
of type INTEGER, withaNOT NULL congraint. If the table contains rows, ArcSDE
popul ates the column with unique ascending val ues starting at your specified minimum
ID vaue. The minimum ID vaue defaultsto 1 if Ieft unspecified. It then creates a unique
index on the column called R<registration id> SDE ROWID_UK, where
registration_id isthe registration identifier ArcSDE assigns the table when it was
registered.

ArcSDE creates a sequence generator called R<regigtration_id> and usesit to generate
the next value of the row id column whenever avaueis added to the column.

Chapter 4—Managing tables, feature classes, and raster columns 65

Using an existing column

If therow ID column aready exists, ArcSDE confirms that the column was defined asan
integer. If it does not, the regigtration fails.

Next, ArcSDE confirms that the column has aunique index. If the column was defined
with anon-unique index, ArcSDE drops the index.

In the event that the column does not have aunique index, ArcSDE attemptsto create a
unique index on the column. If the index crestion fails because the column contains non-
unique values, ArcSDE repopul ates the column with ascending values beginning at 1 and
then creates the unique index. ArcSDE names the unique index

R<regigtration id> SDE ROWID_UK.

Next, ArcSDE verifies that the column has been defined as NOT NULL.

If the column was defined as NUL L, ArcSDE attemptsto redefineit asNOT NULL. If
thisaction fails, ArcSDE repopul ates the column and definesit as NOT NULL.

Repopulating the column either because it contained null values, or because it contained
non-unique valuesis an expensive process, especidly if the table contains more than a
100,000 records.

Therefore, if at al possible, you should not rely on ArcSDE to perform this operation.
Instead, definethe row ID column as not null when the table is created and create your
own uniqueindex on it. At the very least, you should ensure that the column is popul ated
with unique integer values.

Registering a table as multiversioned

To perform versioned edits on a business table, the table must be registered as
multiversioned. These tables, as the name implies, store the records of the businessthat
areadded and deleted. They are named A<registration_id> and
D<regigration_id>.When tables are registered as multiversioned, the associated adds and
deletes tables are created, and along with the business table, ArcSDE updates their
DBMS ddtistics.

Multiversioned views are available for SQL access to the multiversioned database. See
the ArcSDE Developers Guide for more information.

How does ArcSDE use existing DB2 tables?

Tableswith spatid columns can be created by other applications. ArcSDE has been
designed to use tables containing spatial columns that were created by other applications.

66 ArcSDE Configuration and Tuning Guide for DB2

Automatic discovery of tables with spatial columns

Whenever an ArcSDE client lists the feature classes stored in the database, ArcSDE can
automatically search the DB2 system tables for new tables with spatial columns. When a
new tableisdiscovered, it isregistered with ArcSDE and made available to applications.

ArcSDE usesthefirst record in anewly discovered table to establish the ArcSDE
geometry type. If the table contains multiple geometry types, the sdelayer administration
utility can be used to dter the geometry type definition.

ArcSDE searches for acolumn in the table to use asarow_id column. To qualify, the
column must be defined as INTEGER, NOT NULL, and UNIQUE congtraints. If such a
columnisfound, it isrecorded in the ArcSDE table registry along with thetable. If a
row_id column is not found, the table is registered, but operations requiring arow_id are
unavailable.

By default, automatic discovery of tableswith spatial columns, often referred to as auto-

registration, is disabled. In order to enable thisfeature use the “ sdeconfig —o alter”
command and set DISABLEAUTOREG to FAL SE. For example

sdeconfig —o alter -v DISABLEAUTOREG=FALSE —u sde —p sde —-D mydb -1 5151

ArcSDE to DB2 Server Data Type Mapping

ArcSDE uses 12 genera datatypes. These types are mapped to DB2 Server typesin the following

matrix.
ArcSDE Data Type DB2 Server Data type
SE_STRING_TYPE CHAR, VARCHAR
SE_NSTRING_TYPE VARGRAPHIC, GRAPHIC
SE_NCLOB_TYPE LONG VARGRAPHIC, DBLOB
SE_INT16_TYPE SMALLINT

(SE_SMALLINT_TYPE)

SE_INT32_TYPE INTEGER
(SE_INTEGER_TYPE)

SE_INT64_TYPE BIGINT

Chapter 4—Managing tables, feature classes, and raster columns

67

SE_FLOAT32_TYPE FLOAT
(SE_FLOAT_TYPE)

SE_FLOAT64_TYPE DOUBLE
(SE_DOUBLE_TYPE)

SE_DATE_TYPE TIMESTAMP

SE_UUID_TYPE

CHAR, (UUID LEN)

SE_BLOB_TYPE

BLOB

68

ArcSDE Configuration and Tuning Guide for DB2

CHAPTER 5

National language support

Storing datain an ArcSDE DB2 database using character sets other than
the DB2 default requires some extra configuration on both the client and
the server. This section provides guidelines for configuring both the DB2
database and the ArcSDE client environment to enable the use of
character sets other than the defaullt.

DB2 database character sets

If you are using Solaris™ and AlX, aDB2 database is created by default with CODESET
1S08859-1. On HP® 64-hit the default CODESET isroman8 and on Linux® the default
CODESET is1S0-8859-1 On Windows®, the default CODESET is|BM-1252 The
CODESET is selected when the database is created with the CREATE DATABASE
statement and cannot be changed afterwards. To change the CODESET and
TERITORRY, the database must be re-created and the data rel oaded. Consult the DB2
National Language Support Guide for your DB2 release to determine the character set
that isright for your data.

Setting the DB2CODEPAGE

Oncethe ArcSDE DB2 database has been created with the proper CODESET and
TERITORRY, datacan be loaded into it using avariety of applications such as ArcGIS
Desktop and the ArcSDE administration tools shp2sde and cov2sde.

The application code page is derived from the active environment when the database
connection is made. If the DB2CODEPAGE registry variableis set, itsvalue istaken as
the application code page. However, it is not necessary to set the DB2CODEPAGE
registry variable because DB2 will determine the appropriate code page value from the
operating system. Setting the DB2CODEPAGE registry variable to incorrect values may
cause unpredictable results.

70

ArcSDE Configuration and Tuning Guide for DB2

The database code page is derived from the value specified (explicitly or by default) at
the time the database is created. For example, the following defines how the active
environment is determined in different operating environments:

UNIX On UNIX-based operating systems, the active environment is determined from
the locale setting, which includes information about language, territory and code set.

Windows oper ating systems For al Windows operating systems, if the
DB2CODEPAGE environment variable is not set, the code page is derived from the
ANSI code page setting in the Registry.

client code page |f the DB2CODEPAGE variableis s, the client code pageisthe
value of DB2CODEPAGE. Otherwise, the client code page isthe client's operating
system locale.

server code page also called the server operating system locale code page. It isthe
operating system locale on which the DB2 database isinstalled.

For example, if the DB2 database, installed on Windows, has been created with the Shift
J S, DB2 CODEPAGE notation 932, character encoding and you want to accessthis
database from aUnix client running in the EUC JP, DB2 CODEPAGE notation 954,
character encoding, you will have to set the DB2CODEPAGE variableto 954. This
ensuresthat all character data transferred between the ArcSDE server and the ArcSDE
client uses the 954 CODEPAGE setting.

For C AP Client applications, set the DB2CODEPAGE as an environment variable.

setenv DB2CODEPAGE 954

If the situation were reversed, and the DB2 database was on Unix and created with
the EUC JP character encoding and the client is running on Windows, you will have
to set the DB2CODEPA GE environment variable on the Windows client to 932.

For Windows clients such as ArcCatalog or ArcMap, click Start, Settings, and Control
Pandl. Double-click the System icon and click on the Environment tab after the System
menu appears. Click the System Variables scrolling list and enter DB2CODEPAGE in
the Variable: input line 932 in the Value: input line. Click Set and OK.

For C APl and ArcSDE client utility applications like shp2sde that run from the DOS
environment, set the DB2CODEPAGE as an environment variable.

set DB2CODEPAGE=932

Chapter 5—National language support Al

Setting the DB2CODEPAGE variable for windows

Be careful setting the DB2CODEPAGE on Windows because there are actually two
different CODEPAGE environments on this platform. The character encoding standards
supported by the Windows environment are different from that supported by the MS-
DOS environment. Windows applications such as ArcGI S Desktop run in the Windows
American National Standards Ingtitute (ANSI) CODEPAGE environment, while
ArcSDE administration tools and C and Java APl applicationsinvoked from the MS—
DOS Command Prompt run in the original equipment manufacturer (OEM)
CODEPAGE environment.

Setting the DB2CODEPAGE variable for a remote ArcSDE
setup

If you use direct connect to connect to a DB2 server from aremote computer or if you
start the ArcSDE application server on acomputer that is remote from the DB2 server
you will need to set the DB2CODEPAGE variable for ArcSDE.

In the case of the direct connect client the DB2CODEPAGE variable must be set in the
environment. If you are using an ArcSDE admin tool such as shp2sde, that is started
from aMS-DOS command tool, set the DB2CODEPAGE variableinthe MS DOS
environment before executing the command.

Direct connections from a Windows application such as ArcMap require that the
DB2CODEPAGE variable be set in the Windows environment. Click Start, Settings,
Control Pand and double click the System icon. Click the Advanced tab and click the
Environment Variables button. Click New to enter the DB2CODEPAGE variable. The
application must be restarted to consume the DB2CODEPAGE variable.

To set the DB2CODEPAGE for aremote application server, set the variablein the
dbinit.sde file. When the application server is started the variable is read from thefile. To
ensure that the variable is set in the ArcSDE application server environment check the
ArcSDE application server's variable settings with the ArcSDE sdemon -o info -I

vars command.

The following ArcSDE/DB2 configuration illustrates how the DB2CODEPAGE
variable should be set in aremote setup. Consider the case where the language
environment is Eastern European, DB2 isingtalled on a UNIX server, the ArcSDE
application server isrunning on a Windows server and a user is connecting from
Windows on yet another computer. The DB2 database was created with the 1SO8859-2
CODESET. Before the administrator starts the ArcSDE application server the following
windows ANSI ¢p1250 CODEPAGE DB2CODEPAGE variable must be added to the
dbinit.sdefile:

72

ArcSDE Configuration and Tuning Guide for DB2

set DB2CODEPAGE=912

The user connects to the application server with ArcMap, but before doing so setsthe
DB2CODEPAGE variable to the windows ANSI ¢p1250 code page value as:
DB2CODEPAGE=912

The user wishesto use SQLPLUS from the DB2 command window to query atable. In

the command window the user enters the following DOS OEM 852 DB2CODEPAGE
variable:

set DB2CODEPAGE=852

Character encoding standards supported by ArcSDE

For acomplete list of character encoding standards supported by your DB2 database and
their naming conventions, please refer to Supported territory codes and code pagesin the
application development document for your version of DB2. Currently ArcSDE only
supports conversions between the character encoding standards listed in the table below.

Encoding name Description

950 BIGS 16-bit Traditional Chinese
964 EUC 32-bit Traditional Chinese
932 Shift-JI'S 16-bit Japanese

954 EUC 24-hit Japanese

949 K SC5601 16-bit Korean

819 ISO 8859-1 West European
912 ISO 8859-2 East European

915 ISO 8859-5 L atin/Cyrillic
1089 ISO 8859-6 L atin/Arabic

813 ISO 8859-7 L atin/Greek

916 ISO 8859-8 L atin/Hebrew

Chapter 5—National language support

73

920

SO 8859-9 West European & Turkish

437

IBM-PC Code Page 437 8-hit American

850

IBM-PC Code Page 850 8-hit West European

851

IBM-PC Code Page 851 8-hit Greek/Latin

852

IBM-PC Code Page 852 8-hit East European

855

IBM-PC Code Page 855 8-hit Latin/Cyrillic

857

IBM-PC Code Page 857 8-hit Turkish

860

IBM-PC Code Page 860 8-hit West European

861

IBM-PC Code Page 861 8-hit Icelandic

863

IBM-PC Code Page 863 8-hit Canadian French

865

IBM-PC Code Page 865 8-hit Norwegian

866

IBM-PC Code Page 866 8-hit Latin/Cyrillic

869

IBM-PC Code Page 869 8-bit Greek/Latin

737

IBM-PC Code Page 737 8-bit Greek/Latin

775

IBM-PC Code Page 775 8-hit Bdltic

1250

MS Windows Code Page 1250 8-bit East European

1251

MS Windows Code Page 1251 8-hit Latin/Cyrillic

1252

MS Windows Code Page 1252 8-hit West European

1253

MS Windows Code Page 1253 8-hit L atin/Greek

1254

MS Windows Code Page 1254 8-hit Turkish

1255

MS Windows Code Page 1255 8-hit L atin/Hebrew

74

ArcSDE Configuration and Tuning Guide for DB2

1256 MS Windows Code Page 1256 8-Bit Latin/Arabic
1257 M S Windows Code Page 1257 8-bit Baltic
1258 MS Windows Code Page 1258 8-hit Vietnamese

Unicode support

The Unicode project for ArcSDE involves support for the new SDE attribute datatypes
SE_NSTRING_TYPE and SE_NCLOB_TY PE and internal datatype SE. WCHAR.

In DB2, no data type exists which can be used specificaly for WCHAR column types.
You can retrieve, insert, or modify dataas an WCHAR type, however, you cannot create
a column specifically asan WCHAR type, nor can you describe and detect that a column
is meant to be handled exclusively as WCHAR. The application must either handle all
strings as WCHAR, or must know enough to force specific columnsto be WCHAR.

In order to fully support unicode for DB2, it appears that we will need additional
metadata associated with a column flagging it to be handled exclusively asan
NSTRING or NCLOB.

Character columns are stored in the DB2 database in the local e specific codepage that
the database was created in. Conversions occur at the server between database code page
and client application code page - with possible data loss depending on code pages
involved.

In order to store character dataas unicode (UTF-8 & UCS-2 - where CHAR,
VARCHAR, LONG VARCHAR, CLOB is stored as UTF-8 and GRAPHIC,
VARGRAPHIC, LONG VARGRAPHIC, DBCLOB is stored as UCS-2), the database
must be created using the UTF-8 (or codepagett 1208) codepage, with appropriate
territory.

An application can retrieve character data as unicode either by setting the client (SDE)
locdl code page environment to UTF-8, or by connecting as a unicode application

(SQL ConnectW or SQL SetConnectAttr SQL_ATTR_ANSI_APP=SQL_AA_FALSE)
and then binding to ANSI or UNICODE buffers. In the ArcSDE implementation, we
connect as a UNICODE application using SQL ConnectW and then bind to ANSI
(SQL_C_CHAR) or UNICODE (SQL_C _WCHAR) buffers.

Chapter 5—National language support 75

At one point it was suggested that the GRAPHIC datatypes should be used to store
UNICODE data. However, thismay not be practical. The GRAPHIC types are meant to
store double-byte character data and are not available unless the database was created
using a double-byte character set code page. There are dso restrictions on operations

that can be performed on the GRAPHIC typesvs. CHAR types or UTF-8/UCS-8 data
making it impractical to use.

76

ArcSDE Configuration and Tuning Guide for DB2

APPENDIX A

Storing raster data

A ragter isarectangular array of equally spaced cellsthat, taken asa
whole, represent thematic, spectral, or picture data. Raster data can
represent everything from qualities of land surface, such as elevation or
vegetation, to satellite images, scanned maps, and photographs.

Y ou are probably familiar with raster formats, such as tagged imagefile
format (TIFF), Joint Photographic Experts Group (JPEG), and Graphics
Interchange Format (GIF), that your Internet browser renders. These
rasters are composed of one or more bands. Each band is segmented into
agrid of square pixels. Each pixel isassigned avalue that reflectsthe
information it represents at a particular position.

For an expanded discussion of the type of raster data supported by ESRI products,
review Chapter 9, * Cell-based modeling with rasters’, in Modeling Our World.

A raster column is added to a business table, and each cell of the raster column contains
areferenceto araster stored in a separate raster table. Therefore, each row of abusiness
table references an entire rastey.

ArcSDE storesthe raster bands in the raster band table. ArcSDE joins the raster band
table to the raster table on theraster_id column. The raster band tabl€'s raster_id column
isaforeign key reference to the raster table's raster_id primary key.

ArcSDE automatically stores any existing image metadata, such asimage statigtics, color
maps, or bitmasks, in the raster auxiliary table. The rasterband_id column of the raster
auxiliary tableisaforeign key reference to the primary key of the raster band table.

66 ArcSDE Configuration and Tuning Guide for DB2

ArcSDE joins the two tables on this primary/foreign key reference when accessing a
raster band's metadata

A raster can have one or many bands. The cell values of rasters can be drawn in a variety of
ways. These are some of the ways to display rasters by cell values.

Cell values in single-band rasters can be drawn in these three basic ways.

Monochrome Grayscale Display colormap
image image image Colormap

68 124 0 .EG 0
ERY SR oo B 0 B [1]e>»[255 255] ©
76 124 132 66 Pl <> 64 0 | 128
124 16 18. 32 c|le| 255 | 32 | 32
| 4|«>[128 | 255 [128
5 B oY 0 | 255

In a monochrome image, each cell In a grayscale image, each cellhasa One way to represent colors on an
has a value of 0 or 1. They are often value from 0 to 255. They are often image is with a colormap. A set of
used for scanning maps with simple used for black-and-white aerial values is arbritrarily coded to match a
linework, such as parcel maps. photographs. defined set of red-green-blue values.

Raster datasets have one or many
bands. In multiband rasters, a band
represents a segment of the
electromagnetic spectrum that has
been collected by a sensor.

<\Mnd1
mmimpiei i

Electromagnetic spectrum

Red
pand Red-green-blue Bands often represent a portion of the electromagnetic
composite spectrum, including ranges not visible to the eye—the
infrared or ultraviolet sections of the spectrum.
Green
band
Multiband rasters are often displayed as red-
green-blue composites. This band configuration
is common because these bands can be directly
Blue displayed on computer displays, which employ a
band red-green-blue color rendition model.
Attribute values S
range from 0 to 255

in each band 0

Appendix A —Storing raster data 79

The raster blocks table stores the pixels of each raster band. ArcSDE tilesthe pixelsinto
blocks according to a user-defined dimension. ArcSDE does not have a default
dimension; however, applicationsthat store raster datain ArcSDE do. ArcToolbox and
ArcCatalog, for example, use default raster block dimensions of 128-by-128 pixels per
block. The dimensions of the raster block along with the compression method, if oneis
specified, determine the storage size of each raster block.

The raster blocks table contains the rasterband_id column, which isaforeign key
reference to the raster band table's rasterband_id primary key. ArcSDE joins these tables
together on the primary/foreign key reference when accessing the blocks of the raster
band.

ArcSDE populates the raster blocks table according to a declining resolution pyramid.
The number of levels specified by the application determines the height of the pyramid.
ArcToolbox and ArcCatal og calculate the pyramid for you, so there is no need to define
the number of levels.

The pyramid begins at the base, or level 0, which contains the original pixels of the
image. The pyramid proceeds toward the apex by coaescing four pixels from the
previous level into asingle pixel at the current level. This process continues until less
than four pixels remain or until ArcSDE exhausts the defined number of levels.

The apex of the pyramid is reached when the uppermost level has less than four pixels.
The additional levels of the pyramid increase the number of raster block table rows by
onethird. However, sinceit is possible for the user to specify the number of levels, the
true apex of the pyramid may not be obtained, limiting the number of records added to
the raster blocks table.

Figure A.1 When you build a pyramid, more
rasters are created by progressively
downsampling the previous level by a factor
of two until the apex is reached. As the
application zooms out and the raster cells
grow smaller than the resolution threshold,
ArcSDE selects a higher level of the
pyramid. The purpose of the pyramid is to
optimize display performance.

The pyramid alows ArcSDE to provide the application with a constant resolution of
pixel dataregardless of the rendering window's scale. Data of alarge raster transfers
quicker to the client when a pyramid exists since ArcSDE transfers fewer cells of
reduced resolution.

80 ArcSDE Configuration and Tuning Guide for DB2

Raster schema

When you import araster into an ArcSDE database, ArcSDE adds araster column to the
business table of your choice. Y ou may name the raster column whatever you like, so
long asit conformsto DB2's column naming convention. ArcSDE restricts one raster
column per businesstable.

The raster column isaforeign key reference to the raster_id column of the raster table
created during the addition of the raster column. Also joined to the raster tablesraster_id
primary key, the raster band table stores the bands of the image. The raster auxiliary
table, joined one-to-one to the raster band table by rasterband id, stores the metadata of
each raster band. The rasterband_id a so joins the raster band table to the raster blocks
table in amany-to-one relationship. The raster blocks table rows store blocks of pixels,
determined by the dimensions of the block.

The sections that follow describe the schema of the tables associated with the storage of
raster data. Refer to Figure A.2 for an illustration of these tables and the manner in
which they are associated with one another.

Appendix A —Storing raster data

81

raster_columns

rastercolumn_id | description | database_name

owner

table_name

raster_column

1

baob

building_faotprints

house

building_footprints

building_id | footprint | house

10 55

1
sde_ras_1 (raster table)

raster_id | description

55
sde_bnd_1 (raster band table)
rasterband_id | sequence_nbr | raster_id | name
39 55
I |
sde_blk_1 {raster block table) sde_awx_1 (raster auxiliary table)
rasterband_id | rrd_factor | row_nbr | col_nbr | block_data rasterband_id | type | ohject
39 89

Figure A.2 When ArcSDE adds a raster column to a table, it records that column in the sde user's
raster_columns table. The rastercolumn_id table is used in the creation of the table names of the
raster, raster band, raster auxiliary, and raster blocks table.

RASTER_COLUMNS table

When you add araster column to abusinesstable, ArcSDE adds a record to the
RASTER_COLUMNS system table maintained in the sde user's schema. ArcSDE aso
creates four tables to store the raster images and metadata associated with each one.

82

ArcSDE Configuration and Tuning Guide for DB2

NAME DATA TYPE NULL?
rastercolumn_id INTEGER NOT NULL
description VARCHAR (65) NULL
database_name VARCHAR (32) NULL
owner VARCHAR (32) NOT NULL
table_name VARCHAR (128) NOT NULL
raster_column VARCHAR (128) NOT NULL
cdate INTEGER NOT NULL
config_keyword VARCHAR (32) NULL
minimum_id INTEGER NULL
base_rastercolumn_id INTEGER NOT NULL
rastercolumn_mask INTEGER NOT NULL
srid INTEGER NULL

Raster columns table

rastercolumn_id (SE_INTEGER_TY PE)—The table's primary key.

description (SE_STRING_TY PE)—The description of the raster table.

database name (SE_STRING_TY PE)—The DB2 database name.

owner (SE_STRING_TY PE)—The schema of the raster column's businesstable.
table_name (SE_STRING_TY PE)—The business table name.

raster_column (SE_STRING_TY PE)—Theraster column name.

cdate (SE_INTEGER_TY PE)—The date the raster column was added to the
businesstable.

config_keyword (SE_STRING_TY PE)—The DBTUNE configuration keyword
whose storage parameters determine how the tables and indexes of the raster are
stored in the DB2 database. For more information on DBTUNE configuration
keywords and their storage parameters, review Chapter 3, ' Configuring DBTUNE
slorage parameters.

minimum_id (SE_INTEGER_TY PE)—Defined during the crestion of the raster, it
establishes the value of the raster table's raster_id column.

base rastercolumn_id (SE_INTEGER_TY PE)—If aview of the businesstableis
created that includes the raster column, an entry is added to the
RASTER_COLUMNS table. The raster column entry of the view will haveits own
rastercolumn_id. The base rastercolumn _id will be the rastercolumn_id of the
business table used to create the view. Thisbase rastercolumn_id maintains
referential integrity to the businesstable. It ensures that actions performed on the
business table raster column are reflected in the view. For example, if the business

Appendix A —Storing raster data 83

table' sraster column is dropped, it will also be dropped from the view, essentialy
removing the view's raster column entry from the RASTER_COLUMNS table.

e rastercolumn_mask (SE_INTEGER_TY PE)—Currently not used, maintained for
future use.

* id(SE_INTEGER _TYPE)—The spatia reference ID (SRID) isaforeign key
reference to the DB2GSE.GSE_SPATIAL _REF table. For imagesthat can be
georeferenced, the SRID references the coordinate reference system the image was
created under.

Business table

In the example that follows, thefictitious BUILD_FOOTPRINTS businesstable
contains the raster column house _image. Thisisaforeign key reference to the raster
table created in the user’ s schema. In this case the raster table contains arecord for each
raster of ahouse. It should be noted that images of houses cannot be georeferenced.
Therefore, the SRID column of the RASTER_COLUMN record for thisraster isNULL.

NAME DATA TYPE NULL?

building_id INTEGER NOT NULL
building_footprint INTEGER NOT NULL
house_picture INTEGER NOT NULL

BUILDING_FOOTPRINTS business table with house image raster column
* building_id (SE_INTEGER_TY PE)—Thetable's primary key

e huilding footprints (SE_INTEGER_TY PE)—A spatial column and foreign key
reference to afeature table containing the building footprints

» house image (SE_INTEGER_TYPE)—A raster column and foreign key reference
to araster table containing the images of the houses located on each building
footprint

Raster table (SDE_RAS_<rastercolumn_id>)

Theraster table, created as SDE_RAS <raster_column_id> in the DB2 database, stores
arecord for each image stored in araster column. Theraster_column_id columnis
assigned by ArcSDE whenever araster column is created in the database. A record for
each raster column in the database is stored in the ArcSDE RASTER_COLUMNS
system table maintained in the sde user's schema.

84

ArcSDE Configuration and Tuning Guide for DB2

NAME
raster_id
raster_flags
description

DATA TYPE
INTEGER
INTEGER
VARCHAR (65)

NULL?
NOT NULL
NULL
NULL

Raster description table schema (SDE_RAS_<raster_column_id>)

* rader_id (SE_INTEGER_TY PE)—The primary key of the raster table and unique
sequentid identifier of each image stored in the raster table

e raster_flags (SE_INTEGER _TYPE)—A hitmap set according to the characteristics
of a stored image

o description (SE_STRING_TY PE)—A text description of the image (not
implemented at ArcSDE 8.1)

Raster band table (SDE_BND_<rastercolumn_id>)

Each image referenced in araster may be subdivided into one or more raster bands. The
raster band table, created as SDE_BND_<rastercolumn_id>, stores the raster bands of
each image stored in the raster table. The raster_id column of the raster band tableisa
foreign key reference to the raster table'sraster_id primary key. The rasterband_id
column isthe raster band table's primary key. Each raster band in the table is uniquely
identified by the sequentia rasterband id.

NAME
rasterband_id
sequence_nbr
raster_id

name
band_fTags
band_width
band_height
band_types
block_width
block_height
block_origin_x
block_origin_y
eminx

eminy

emaxx

emaxy

cdate

mdate

DATA TYPE
INTEGER
INTEGER
INTEGER
VARCHAR (65)
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
INTEGER
INTEGER

NULL?

NOT NULL
NOT NULL
NOT NULL
NULL

NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL

Appendix A —Storing raster data 85

Raster band table schema

rasterband_id (SE_INTEGER_TY PE)—The primary key of the raster band table
that uniquely identifies each raster band.

sequence_nbr (SE_INTEGER_TY PE)—An optional sequential number that can be
combined with the raster_id as acomposite key as a second way to uniquely
identify the raster band.

raster_id (SE_INTEGER_TY PE)—The foreign key reference to the raster table's
primary key. Uniquely identifies the raster band when combined with the
sequence_nbr as acomposite key.

name (SE_STRING_TY PE)—The name of the raster band.

band_flags (SE_INTEGER_TY PE)—A bitmap set according to the characteristics
of the raster band.

band_width (SE_INTEGER_TY PE)—The pixel width of the band.
band_height (SE_INTEGER_TY PE)—The pixel height of the band.
band_types (SE_INTEGER_TY PE)—A hitmap band compression data.
block_width (SE_INTEGER_TY PE)—The pixe width of the band'stiles.
block_height (SE_INTEGER_TY PE)—The pixel height of the band'stiles.
block_origin x (SE_DOUBLE_TY PE)—The leftmost pixel.

block_origin y (SE_DOUBLE_TY PE)—The bottom-most pixd.

If the image has amap extent, the optional eminx, eminy, emaxx, and emaxy will hold
the coordinates of the extent.

eminx (SE_DOUBLE_TY PE)—The band's minimum x-coordinate.
eminy (SE_ DOUBLE_TY PE)—The band's minimum y-coordinate.
emaxx (SE_DOUBLE_TY PE)—The band's maximum x-coordinate.
emaxy (SE_DOUBLE_TY PE)—The band's maximum y-coordinate
cdate (SE_INTEGER_TY PE)—The cregation date

mdate (SE_INTEGER_TY PE)—The last modification date

86

ArcSDE Configuration and Tuning Guide for DB2

Raster blocks table (SDE_BLK <rastercolumn_id>)

Created as SDE_BLK_<rastercolumn_id>, the raster blocks table stores the actua pixel
data of the raster images. ArcSDE evenly tiles the bandsinto blocks of pixels. Tiling the
raster band data enables efficient storage and retrieval of the raster data.

The rasterband_id column of the raster block table is aforeign key reference to the raster
band table's primary key. A composite unique key isformed by combining the
rasterband id, rrd_factor, row_nbr, and col_nbr columns.

NAME DATA TYPE NULL?

rasterband_id INTEGER NOT NULL
rrd_factor INTEGER NOT NULL
row_nbr INTEGER NOT NULL
col_nbr INTEGER NOT NULL
bTock_data BLOB NOT NULL

Raster block table schema

o ragterband_id (SE_INTEGER_TYPE)—Theforeign key reference to the raster
band table' s primary key.

e rrd factor (SE_INTEGER TY PE)—The reduced resolution dataset factor
determinesthe position of the raster band block within the resolution pyramid. The
resolution pyramid begins at O for the highest resolution and increases until the
raster band’ s lowest resolution level has been reached.

* row_nbr (SE_INTEGER_TY PE)—The block's row number.
e col_nbr (SE_INTEGER_TY PE)—The block's column number.

» block data(SE BLOB_TYPE)—Theblock'stile of pixel data.

Raster band auxiliary table (SDE_AUX_<rastercolumn_id>)

The raster band auxiliary table, created as SDE_ AUX_<rastercolumn_id>, stores
optiond raster metadata such as the image color map, image statistics, and bitmasks used
for image overlay and mosaicking. The rasterband_id column is aforeign key reference
to the primary key of the raster band table.

NAME DATA TYPE NULL?

rasterband_id INTEGER NOT NULL
type INTEGER NOT NULL
object BLOB NOT NULL

Raster auxiliary table schema

Appendix A —Storing raster data 87

* rasterband id (SE_INTEGER TYPE)—The foreign key reference to the raster
band table' s primary key

* type(SE_INTEGER_TYPE)—Abitmap set according to the characterigtics of the
data stored in the object column

* object (SE_BLOB_TYPE)—May contain the image color map, image statistics,
€tc.

88

ArcSDE Configuration and Tuning Guide for DB2

APPENDIX B

DB2 Spatial Extender
geometry types

ArcSDE for DB2 stores spatial datain the DB2 Spatia Extender data
types. Therefore, before spatial data can be stored in aDB2 database, the
Spatial Extender must be ingtalled, and the database must be spatialy
enabled. This document describes the ArcSDE/DB2 Spatial Extender
interface and provides a brief overview of the spatial data types and
functions available after the database has been spatially enabled with the
DB2 Spatial Extender. For more information about the DB2 Spatial
Extender, seethe IBM DB2 Spatial Extender User’s Guide and
Reference.

The DB2 Spatia Extender embeds a GISinto your DB2 database. The DB2 Spatial
Extender module implements the Open GIS Consortium, Inc. (OpenGIS®, or OGC),
SQL 3 specification of spatial types, columns capable of storing spatial data such asthe
location of alandmark, a street, or aparcel of land.

The (GIS) of the past was spatialy centric and focused on gathering spatial dataand
attaching nonspatia attribute datato it. The Spatial Extender module integrates spatia
and nonspatial data, providing a seamless point of access through the DB2 SQL
interface.

In addition to new data types, the DB2 Spatial Extender provides new capabilities such
as spatia joins. Application programmerstypicaly join tables by comparing two or
more columns to determine whether their values are equal, not equd, greater than, and
soon. The DB2 Spatia Extender includes functions capable of comparing the values of
gpatial columnsto determineif they intersect, overlap, and so forth. These two-
dimensiona functions can join tables based on their spatia relationship and answer

90

ArcSDE Configuration and Tuning Guide for DB2

guestions such as “Is this school within five miles of a hazardous waste site?’ Internaly,
the DB2 Spatiad Extender ST_Overlaps function evaluates this question as, “Does this
polygon (the building footprint of a school) overlap this circular polygon (the five-mile
radius of a hazardous waste site)?’ An application programmer can join atable storing
sensitive sites, such as schoals, playgrounds, and hospitals, to another table containing
the locations of hazardous sites and return alist of sengitive areas at risk.

How the DB2 Spatial Extender works

Oncethe DB2 Spatid Extender isinstaled, you can create spatialy enabled tables that
include spatial columns. Geographic features can be inserted into the spatial columns.
The DB2 Spatial Extender converts spatid datainto its storage format from one of the
following external formats:

» Weéll-known text (WKT) representation

e Weél-known binary (WKB) representation

» Geography Markup Language (GML) representation
e ESRI shaperepresentation

ArcSDE uses the ESRI shape representation.

Accessing the spatialy enabled tables through the ArcSDE server can be done by
applications using the existing tools offered by the GIS software or by creating
applications using the Spatial Database Engine™ (SDE®) C API. An experienced Open
Database Connectivity (ODBC) programmer can also make callsto the DB2 Spatial
Extender spatia functions. The mgority of this document is devoted to discussing and
applying these spatial functions.

After spatialy enabling and loading data into your database, you can include Spatial
Extender functions in your SQL statements, comparing the values of spatial columns,
transforming the valuesinto other spatial data, and describing the properties of the data.

Appendix B—DB2 Spatial Extender geometry types

91

Adding records to the

DB2GSE.ST_SPATIAL_REFERENCES_SYSTEMS catalog

view

The spatia reference system identifies the coordinate transformation matrix for each
geometry. Geometry is the term adopted by the Open GIS Consortium to refer to two-

dimensiona spatial data. All spatial reference systems known to the database are stored

inthe DB2GSE.ST_SPATIAL_REFERENCE _SY STEMS catalog view.

NAME

srs_id
srs_name
x_offset
x_scale
y_offset
y_scale
z_offset
z_scale
m_offset
m_scale
min_x

max_x

min_y

max_y

min_z

max_z

min_m

max_m
coordsys_name
coordsys_type
organization

organization_c
oordsys_id

defintion
description

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view schema

The DB2GSE.ST_SPATIAL_REFERENCE_SY STEMS catalog view stores arecord
for each spatial referencein the database.

DATA TYPE
Integer
varchar(128)
Double
Double
Double
Double
Double
Double
Double
Double
Double
Double
Double
Double
Double
Double
Double
Double
varchar(128)
varchar(128)
varchar(128)
varchar(128)

varchar(2048)
varchar(256)

NULL?

NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NULL

NULL

NOT NULL
NULL

92

ArcSDE Configuration and Tuning Guide for DB2

The datatype for each column is defined below.

s id (INTEGER_TY PE) — Contains the unique ID that identifies each SRID in
the database.

srs_name (SE_STRING_TY PE) — The name of the spatial reference system.

x_offset (SE_DOUBLE_TY PE) — The x-value offset or the minimum allowable
x-ordinate value.

x_scale (SE_DOUBLE_TYPE)) — Scale factor by which to multiply the figure
that results when an offset is subtracted from an x coordinate.

y_offset (SE_DOUBLE_TYPE) — The y-vaue offset or the minimum allowable
y-ordinate value.

y_scde (SE_DOUBLE TYPE)) — Scale factor by which to multiply the figure
that results when an offset is subtracted from ay coordinate.

z_offset (SE_DOUBLE_TY PE) — The z-value offset or the minimum alowable z-
ordinate value.

z scale (SE_ DOUBLE TYPE)) — Scale factor by which to multiply the figure
that results when an offset is subtracted from a z coordinate

m_offset (SE_DOUBLE_TY PE) — The m-value offset or the minimum allowable
M-ordinate value.

m_scale (SE_ DOUBLE_TY PE)) — Scalefactor by which to multiply the figure
that results when an offset is subtracted from a measure.

min_x (SE_DOUBLE_TY PE) — minimum possible value for x-coordinates. This
valueis derived from the valuesin the x_offset and x_scale columns.

max_X (SE_ DOUBLE_TY PE) — maximum possible value for x-coordinates. This
valueisderived from the valuesin the x_offset and x_scale columns.

min_y (SE_DOUBLE_TY PE) — minimum possible value for y-coordinates. This
valueisderived from the valuesin they_offset and y_scale columns.

max_y (SE_DOUBLE_TY PE) — maximum possible value for y-coordinates. This
valueisderived from thevaluesinthey offset andy_scale columns.

min_z (SE_DOUBLE_TY PE) — minimum possible value for z-coordinates. This
value is derived from the valuesin the z_offset and z_scale columns.

Appendix B—DB2 Spatial Extender geometry types 93

max_z(SE_ DOUBLE_TYPE) — maximum possible value for z-coordinates. This
valueisderived from the valuesin the z_offset and z_scale columns.

e min_m (SE_DOUBLE_TY PE) — minimum possible value for measures. This
value is derived from the valuesin them_offset and m_scale columns.

* max_m (SE_DOUBLE_TY PE) — maximum possible value for measures. This
valueisderived from the valuesin the m_offset and m_scale columns.

» coordsys name (SE_STRING_TYPE) — The name of the coordinate system on
which the spatid reference systemis based.

e coordsys type (SE_STRING_TYPE) — Thetype of the coordinate system on
which the spatid reference systemis based.

» organization (SE_STRING_TY PE) —Name of the organization that definesthe
coordinate system on which the spatia referenceis based. Set to NULL if
organizationisNULL.

e organization _coordsys id (SE_ STRING_TY PE) — Name of the organization that
defines the coordinate system on which the spatial referenceis based. Set to NULL
if organizationisNULL.

» Definition (SE_STRING_TY PE) — WKT representation of the defined coordinate
system.

e Destription (SE_STRING_TY PE) — Description of the spatial reference system.

Internal functions use the parameters of aspatia reference system to trandate and scale
each floating-point coordinate of the geometry into 32-bit positive integers prior to
storage. Upon retrieval, the coordinates are restored to their external floating point
format.

The floating-point coordinates are converted to integers by subtracting the falsex and
falsey values, which trandates to the false origin, scales by multiplying by the xyunits,
adds a half unit, and truncates the remainder.

The optional z-coordinates and measures are dealt with similarly, except that they are
trandated with falsez and fal sem and scaled with zunits and munits, respectively.

The spatial reference identifier, the primary key, contains a unique number for each
gpatial reference system.

The spatial reference system is assigned to geometry during its construction. The spatial
reference system must exist in the spatial reference table. All geometriesin acolumn
must have the same spatia reference system.

94

ArcSDE Configuration and Tuning Guide for DB2

Whenever ArcSDE crestes afeature classit searchesthe
ST_SPATIAL_REFERENCE _SYSTEMS cataog view in an attempt to locate a
matching spatia reference system. If oneisfound, the SRID is assigned to the feature
class; otherwise, ArcSDE adds a new spatial reference system to the
ST_SPATIAL_REFERENCE_SYSTEMSview and assignsit to the feature class.

The ArcSDE administration tools shp2sde columns and cov2sde columns provide an
option for you to enter a predefined SRID when you use them to create a new feature
class. In this example, the roads coverage is converted to the roads feature class with a
SRID of 10. The coordinates of the coverage feature must fit within the extent of the
spatia reference system. Each feature found to lie outside the spatid reference system’'s
extent isrgected.

cov%zde -0 create -1 roads, feature -f roads -R 10 -g 100,0,0 -u world -p
wor

Creating feature classes in a DB2 database

A DB2 spatia table can include one or more spatial columns, athough ArcSDE restricts
afeature classto asingle spatial column. Spatial columns are defined with one of the
DB2 Spatia Extender’sUDTSs. A spatial column can only accept data of the type
required by the spatial column. For example, an ST_Polygon column rejects integers,
characters, and even other types of nonpolygon geometry.

When ArcSDE creates a DB2 table with a spatial column, it aso crestesan OBJECTID
integer column. The OBJECTID column is required by ArcSDE client applicationsto
keep track of selection sets; more specifically it isused in ArcSDE logfiles.

A record isadded to the ST GEOMETRY _COLUMNS catal og view whenever
ArcSDE creates afeature classin a DB2 database. This record is added to the view
automatically when atableis created with a column defined with a spatial type.

NAME DATA TYPE NULL?
table_schema varchar(128) NOT NULL
table_name varchar(128) NOT NULL
column_name varchar(128) NOT NULL
type_schema varchar(128) NOT NULL
type_name varchar(128) NOT NULL
srs_name varchar(128) NULL
srs_id integer NULL

Geometry_columns table schema

Appendix B—DB2 Spatial Extender geometry types 95

The ST_GEOMETRY_COLUMNS catalog view stores arecord for each geometry
column in the database.

The datatype for each column is defined below.
» table schema(SE_STRING_TYPE) — The owner of the geometry column’stable
» table name (SE_STRING_TYPE) — The geometry column’stable name.

* column_name (SE_STRING_TYPE) — The name of the geometry column. The
combination of table_schema, table-name, and column_name uniquely identifies
the column.

» type schema(SE_STRING_TYPE) — Schema name to which the declared data
type of the spatial column belongs. Obtained from the DB2 catal og.

* gs name(SE_STRING_TYPE) — Name of the spatid reference system that is
associated with the spatia column. If no spatial reference system is associated with
the spatia column then SRS NAME isNULL. A spatia reference system can be
associated with a spatia column by using the command “db2gse
register_spatial_column” with the appropriate parameters.

e s id(SE_INTEGER_TYPE)—Numeric identifier of the spatial reference system
that is associated with the spatial column. If no spatia reference systemiis
associated with the column, then SRS ID isNULL.

Creating a spatial index

Spatial columns contain two-dimensional geographic data, and applications querying
those columns require an index strategy that will quickly identify al geometriesthat lie
within a given extent. For this reason DB2 Spatial Extender provides support for the
creation of athree-level grid spatial index.

DB2 spatia extender provides a utility, called the Index ADVISOR that will analyze the
gpatial column data and suggest appropriate grid sizes.

For example,

Gseidx connect to sde user sde using arcsde
get geometry information

for column sde.valve(shape)

advise grid sizes

analyze 10 percent

96

ArcSDE Configuration and Tuning Guide for DB2

Please refer to Chapter 11, “Using Indexes and views to access spatia data’ inthe DB2
Spatial Extender User’s Guide and Reference for more details on this utility.

Note aso that ArcCatalog and ArcSDE administration tools, sdelayer, shp2sde, and
cov2sde, provide support for creating the spatial index.

See Chapter 2 of thisbook, ‘ Essentia configuring and tuning’, for adiscussion on
sdlecting the spatial index’sgrid cell sizes.

Updating statistics

The DB2 optimizer may not use the spatial index unlessthe atistics on the table are
up-to-date. If the spatial index is created after the data has been loaded, the statistics are
up-to-date and the optimizer will use theindex. However, if theindex is created and data
isloaded afterwards, the optimizer will not use the spatial index because the statistics
will be out of date. To update the statistics use the following SQL.

RUNSTATS ON TABLE <table_name> WITH DISTRIBUTION AND DETAILED INDEXES ALL;

When updating statistics for ArcSDE feature classes, you should use the tools provided
by either ArcCatalog or the update_dbms_stats operation of the ArcSDE administration
tool sdetable. For more information on using these tools to update stetistics, see Chapter
2, ‘Essential configuring and tuning’.

Spatial Extender data types

The Oxford American Dictionary defines the noun ‘ geometry’ as “the branch of
mathematics dealing with the properties of and relations of lines, angles, surfaces, and
solids.” On August 11, 1997, the OGC, in its publication of OpenGI S Features for
ODBC (QL) Implementation Specification, coined another definition for the noun
geometry. The word was selected to define the geometric features that, for the past
millennium or more, cartographers have used to map the world. Typicaly, points
represent an object at asingle location, linestrings represent alinear characteristic, and
polygons represent a spatial extent. An abstract definition of the Open GIS noun
geometry might be “apoint or aggregate of points symbolizing afeature on the ground”.
This definition, however, fails to describe the rich set of properties and functionality
associated with geometry.

To understand geometry in this context, it is easier to describe it asit has been
implemented within the DB2 Spatia Extender asaUDT, likeal UDTsin an object
relational system geometry, it has a unique set of properties and methods.

Geometry columns as a data type, allow you to define columns that store spatial data.
The Geometry data type itself is an abstract noninstantiable superclass, the subclasses of

Appendix B—DB2 Spatial Extender geometry types

97

which areinstantiable. An instantiated datatype is one that can be defined as atable
column and have values of itstypeinserted into it. A column can be defined astype
ST_Geometry, but ST_Geometry values cannot be inserted into it since they cannot be
instantiated. Only the subclass vaues can be inserted into this column because only they
can beinstantiated. Therefore, the Geometry data type can accept and store any of its
subclasses, while its subclass data types can only accept their own values.

Throughout the remainder of this document the term geometry or geometries
collectively refersto the superclass caled Geometry and al of its subclass data types.
Whenever it is necessary to specify the geometry superclass directly, it will be referred
to asthe Geometry superclass or the Geometry datatype.

Geometry

i

Point Curve Surface GeometryCollecti
LineString Polygon |
MultiSurface MultiCurve MultiPoint
MultiPolygon MultiLineString

Figure B.1 The hierarchy of the Geometry datatype is divided into the subtypes Point, Curve and
Surface simple types and the geometry collections MultiSurface, MultiCurve, and MultiPoint.
LineString is the subtype of Curve. Polygon is the subtype of Surface. MultiPolygon is the subtype of
MultiSurface. MultiLineString is the subtype of MultiCurve.

Geometry properties

Each subclassinherits the properties of the Geometry superclass but also has properties
of itsown. Functions that operate on the Geometry data type will accept any of the
subclass data types. However, some functions have been defined at the subclass level
and will only accept certain subclasses’ datatypes.

98

ArcSDE Configuration and Tuning Guide for DB2

Interior, boundary, exterior

All geometries occupy a position in space defined by their interior, boundary, and
exterior. The exterior of ageometry isall space not occupied by the geometry. The
boundary of a geometry serves as the interface between itsinterior and exterior. The
interior isthe space occupied by the geometry. The subclassinheritsthe interior and
exterior properties directly; however, the boundary property differsfor each.

The spatial extender ST_Boundary function takes geometry as an input parameter and
returnsits boundary as anew geometry. The resulting geometry is represented in the
gpatia reference system of the given geometry.

Simple or nonsimple

Some subclasses of Geometry (LineStrings, MultiPoints, and MultiLineStrings) are
either smple or nonsimple. They are smpleif they obey al topological rulesimposed
on the subclass and nonsimpleif they “bend” afew. A LineString issimpleif it does not
intersect itsinterior. A MultiPoint issimpleif none of its eements occupy the same
coordinate space. A MultiLineString issimple if none of its lement’ sinteriors are
intersected by itsown interior.

The Spatial Extender ST_IsSimple function or method takes a geometry and returns
1 (TRUE) if the geometry issimple and O (FAL SE) otherwise.

Empty or not empty

A Geometry isempty if it does not have any points. An empty geometry hasaNULL
envelope, boundary, interior, and exterior. An empty geometry is aways simple and can
have z-coordinates or measures. Empty LineStrings and MultiLineStrings have a0
length. Empty polygons and multipolygons have a0 area.

The Spatial Extender ST_|sEmpty predicate function takesan ST_Geometry and returns
1 (TRUE) if the ST_Geometry isempty and O (FALSE) otherwise.

Number of points

A geometry can have zero or more points. A geometry is considered empty if it has zero
points. The point subclassisthe only geometry that isrestricted to zero or one point; all
other subclasses can have zero or more.

Appendix B—DB2 Spatial Extender geometry types

99

Envelope

The envelope of ageometry is the bounding geometry formed by the minimum and
maximum (X,y) coordinates. The envelopes of most geometries form aboundary
rectangle; however, the envelope of apoint is the point since its minimum and
maximum coordinates are the same, and the envel ope of ahorizontal or vertical
linestring is alinestring represented by the boundary (the endpoints) of the source
linestring.

The Spatial Extender ST_Envelope function takesan ST_Geometry and returns an
ST_Geometry that representsthe source ST_Geometry’ s envelope.

Dimension

A geometry can have adimension of 0, 1, or 2.

Thedimensionsare
0O—Has neither length nor area
1—Hasalength

2—Contains area

The point and multi point subclasses have adimension of 0. Points represent zero-
dimensional featuresthat can be modeled with a single coordinate, while multipoints
represent data that must be modeled with a cluster of unconnected coordinates.

The subclasses linestring and multilinestring have adimension of 1. They store road
segments, branching river systems, and any other features that are linear in nature.

Polygon and multipolygon subclasses have a dimension of 2. Forest stands, parcels,
water bodies, and other features whose perimeter encloses a definable area can be
rendered by either the polygon or multipolygon data type.

Dimension isimportant not only as a property of the subclass but also playsapart in
determining the spatial relationship of two features. The dimension of the resulting
feature or features determines whether or not the operation was successful. The
dimensions of the features are examined to determine how they should be compared.

The Spatial Extender ST_Dimension function takes a geometry feature and returnsiits
dimension as an integer.

100

ArcSDE Configuration and Tuning Guide for DB2

Z-coordinates

Some geometries have an associated atitude or depth. Each of the points that form the
geometry of afeature can include an optional z-coordinate that represents an atitude or
depth normal to the earth’ s surface.

The Spatial Extender 13D predicate function takes a geometry and returns 1 (TRUE) if
the function has z-coordinates and O (FAL SE) otherwise.
Measures

Measures are val ues assigned to each coordinate. The value represents anything that can
be stored as a double-precision number.

The Spatial Extender |sMeasured predicate function takes geometry and returns 1
(TRUE) if it contains measures and 0 (FAL SE) otherwise.
Spatial reference system

The spatia reference system identifies the coordinate transformation matrix for each
geometry.

The Spatial Extender ST_SRID function takes a geometry and returns its spatial
reference identifier as an integer.

Instantiable subclasses

The Geometry datatypeis not instantiable but instead must store itsinstantiable
subclasses. The subclasses are divided into two categories: the base geometry subclasses
and the homogeneous collection subclasses. The base geometriesinclude Point,
LineString, and Polygon, while the homogeneous collectionsinclude MultiPoint,
MultiLineString, and MultiPolygon. As the namesimply, the homogeneous collections
are collections of base geometries. In addition to sharing base geometry properties,
homogeneous collections have some of their own properties aswell.

The Spatia Extender ST _Geometry Type function takes a geometry and returnsthe
instantiable subclassin the form of a character string. The Spatial Extender
ST_NumGeometries function takes a homogeneous collection and returns the number of
base geometry elementsit contains. The Spatial Extender ST_GeometryN function takes
ahomogeneous collection and an index and returns the nth base geometry.

Appendix B—DB2 Spatial Extender geometry types 101

ST _Point

An ST _Point isa zero-dimensional geometry that occupiesasingle location in
coordinate space. An ST_Point hasasingle x,y coordinate value. An ST_Point isaways
simple and hasaNULL boundary. It is used to define features such as oil wells,
landmarks, and elevations.

Spatial Extender functions that operate solely on the ST_Point datatypeinclude ST_X,
ST_Y,ST Z,and ST_M.

The ST_X function returns a point data type' s x coordinate value as a double-precision
number.

The ST_Y function returns a point data type' sy coordinate value as a double-precision
number.

The ST_Z function returns a point data type' s z coordinate value as a double-precision
number.

The ST_M function returns a point data type’ s m coordinate val ue as a double-precision
number.

ST _LineString

An ST _LineString isaone-dimensional object stored as a sequence of points defining a
linear interpolated path. The ST_LineString issimpleif it does not intersect itsinterior.
The endpoints (the boundary) of aclosed ST_LineString occupy the same point in
space. An ST_LineString isaring if it is both closed and simple. Aswell asthe other
propertiesinherited from the superclass ST_Geometry, ST_LineStrings have length.
ST_LineStrings are often used to define linear features such asroads, rivers, and power
lines.

The endpoints normally form the boundary of an ST_LineString unlessthe
ST_LineString is closed, in which case the boundary isNULL. Theinterior of an
ST_LineString isthe connected path that lies between the endpoints, unlessit is closed,
in which casetheinterior is continuous.

Spatial Extender functionsthat operate on ST_LineStringsinclude ST_StartPoint,
ST_EndPoint, ST_PointN, ST_Length, ST _NumPoints, ST_IsRing, and ST_|sClosed.

The ST_StartPoint function takesan ST_LineString and returnsitsfirst point.

The ST_EndPoint function takesan ST_LineString and returnsits last point.

102

ArcSDE Configuration and Tuning Guide for DB2

The ST_PointN function takesan ST_LineString and an index to an nth point and
returnsthat point.

The ST_L ength function takesan ST_LineString and returnsiits length as a double-
precision number.

The ST_NumPoints function takes an ST_L ineString and returns the number of pointsin
its sequence as an integer.

The ST_IsRing predicate function takes an ST_LineString and returns 1 (TRUE) if the
ST _LineStringisaring and 0 (FALSE) otherwise.

The ST_|sClosed predicate function takesan ST_LineString and returns 1 (TRUE) if the
ST _LineString isclosed and O (FALSE) otherwise.

G O R

@) (2) ©) ()]

Examples of ST_LineString objects: (1) a simple nonclosed ST_LineString, (2) a nonsimple nonclosed
ST_LineString, (3) a closed simple ST_LineString and therefore is a ring, and (4) a closed nonsimple
ST_LineString and is not a ring.

ST_Polygon

An ST_Polygon isatwo-dimensiona surface stored as a sequence of points defining its
exterior bounding ring and O or moreinterior rings. ST_Polygon, by definition, isaways
simple. Most often ST_Polygon defines parcels of land, water bodies, and other features
having spatial extent.

Appendix B—DB2 Spatial Extender geometry types 103

()] (2 (3)

Examples of ST_Polygon objects: (1) an ST_Polygon whose boundary is defined by an exterior ring;
(2) an ST_Polygon whose boundary is defined by an exterior ring and two interior rings, and the area
inside the interior rings is part of the ST_Polygon’s exterior; and (3) a legal ST_Polygon because the
rings intersect at a single tangent point.

The exterior and any interior rings define the boundary of an ST_Polygon, and the space
enclosed between the rings defines the ST_Polygon’ sinterior. The rings of an
ST_Polygon can intersect at atangent point but never cross. In addition to the other
properties inherited from the superclass ST_Geometry, ST_Polygon has area.

Spatial Extender functions that operate on ST_Polygon include ST_Area,
ST_ExteriorRing, ST_NuminteriorRing, ST_InteriorRingN, ST_Centroid, and
ST_PointOnSurface.

The ST_Areafunction takesan ST_Polygon and returns its area as a double-precision
number.

The ST_ExteriorRing function takesan ST_Polygon and returnsits exterior ring asan
ST_LineString.

The ST_NuminteriorRing takes an ST_Polygon and returns the number of interior rings
that it contains.

The ST_InteriorRingN function takesan ST_Polygon and an index and returns the nth
interior ring asan ST_LineString.

The ST_Centroid function takesan ST_Polygon and returnsan ST_Point that isthe
center of the ST_Polygon’ s envelope.

The ST_PointOnSurface function takesan ST_Polygon and returns an ST_Point that is
guaranteed to be on the surface of the ST_Polygon.

104

ArcSDE Configuration and Tuning Guide for DB2

ST _MultiPoint

An ST_MultiPoint isacollection of ST_Pointsand, just likeits elements, it hasa
dimension of 0. An ST_MultiPoint issimple if none of its elements occupy the same
coordinate space. The boundary of an ST_MultiPointisNULL. ST_MultiPoints define
aerid broadcast patterns and incidents of a disease outbreak.

ST_MultiLineString

An ST_MultiLineString isan collection of ST_LineStrings. ST_MultiLineStrings are
simpleif they only intersect at the endpoints of the ST_LineString elements.
ST_MultiLineStrings are nonsmpleif the interiors of the ST_LineString elements
intersect.

The boundary of an ST_MultiLineString is the nonintersected endpoints of the
ST_LineString elements. The ST_MultiLineString isclosed if al its ST_LineString
elements are closed. The boundary of an ST_MultiLineString isNULL if al the
endpoints of dl the elements are intersected. In addition to the other properties inherited
from the superclass ST_Geometry, ST_MultiLineStrings have length.
ST_MultiLineStrings are used to define streams or road networks.

RS
A%

Examples of ST_MultiLineStrings: (1) a simple ST_MultiLineString whose boundary is the four
endpoints of its two ST_LineString elements; (2) a simple ST_MultiLineString because only the
endpoints of the ST_LineString elements intersect. The boundary is two nonintersected endpoints; (3)
a nonsimple ST_MultiLineString because the interior of one of its ST_LineString elements is

Appendix B—DB2 Spatial Extender geometry types 105

intersected. The boundary of this ST_MultiLineString is the three nonintersected endpoints; (4) a
simple nonclosed ST_MultiLineString. It is not closed because its element ST_LineStrings are not
closed. It is simple because none of the interiors of any of the element ST_LineStrings intersect; (5) a
simple closed ST_MultiLineString. It is closed because all its elements are closed. It is simple because
none of its elements intersect at the interiors.

Spatial Extender functionsthat operate on ST_MultiLineStringsinclude ST_L ength and
ST_IsClosed.

The ST_L ength function takesan ST_MultiLineString and returns the cumulative length
of all its ST_LineString elements as a double-precision number.

The ST_IsClosed predicate function tekes an ST_MultiLineString and returns 1 (TRUE)
if the ST_MultiLineString is closed and O (FAL SE) otherwise.

ST_MultiPolygon

The boundary of an ST_MultiPolygon isthe cumulative length of its elements’ exterior
and interior rings. The interior of an ST_MultiPolygon is defined as the cumulative
interiors of itselement ST_Polygons. The boundary of an ST_MultiPolygon’ s elements
can only intersect at atangent point. In addition to the other properties inherited from the
superclass ST_Geometry, ST _MultiPolygons have area. ST_MultiPolygons define
features such as aforest stratum or a noncontiguous parcel of land such as a Pacific
idand chain.

D @

Examples of ST_MultiPolygon: (1) an ST_MultiPolygon with two ST_Polygon elements. The boundary
is defined by the two exterior rings and the three interior rings; and (2) an ST_MultiPolygon with two
ST_Polygon elements. The boundary is defined by the two exterior rings and the two interior rings.
The two ST_Polygon elements intersect at a tangent point.

Spatial Extender functions that operate on ST_MultiPolygonsinclude ST _Area,
ST _Centroid, and ST_PointOnSurface.

106

ArcSDE Configuration and Tuning Guide for DB2

The ST_Areafunction takesan ST_MultiPolygon and returns the cumulative ST_Area
of its ST_Polygon elements as a double-precision number.

The ST_Centroid function takes an ST_MultiPolygon and returnsan ST_Point that is
the center of an ST_MultiPolygon’ s envelope.

The ST_PointOnSurface function takes an ST_MultiPolygon and returns an ST_Point
that is guaranteed to be normal to the surface of one of its ST_Polygon elements.

APPENDIX C

Storing locators

A locator is an object that you can use to convert textual descriptions of
locations into geographic features. The most common locator isan
address locator, which you can use to geocode addresses. For additional
documentation on creating and using locatorsin ArcGI S, see Geocoding
in ArcGISin the ArcGI S documentation set.

ArcSDE storeslocator definitionsin the SDE_|ocators table. Three main types of
locators can be stored in an ArcSDE database:

» Locator styles are used as templates on which to base new locators.

» Locatorsdefine theinputs, outputs, the logic, and one or more reference
datasets that are used to find locations. Locators are usualy created by
adding some propertiesto alocator style that specify which reference
datasets and which columnsin those reference datasets to use to find
locations. Using ArcCatalog to create alocator based on alocator styleis
the easiest way to creste anew locator.

» Attached locators are copies of locators that are used to create a geocoded
feature class. When you create a geocoded feature class by geocoding a
table of addresses using an address locator, ArcSDE stores a copy of the
locator that was used to create the geocoded feature class. ArcSDE uses
this attached locator when you rematch addresses in the geocoded feature
class.

Each locator style, locator, and attached locator has anumber of properties that define
the locator. ArcSDE stores each property of alocator asarecord inthe SDE_metadata
table.

Address locators use a set of geocoding rules that define how addresses are parsed,
standardized, and matched to the reference data used by the address locator. ArcSDE

108

ArcSDE Configuration and Tuning Guide for DB2

stores geocoding rulesin the GCDRULES table. Each row inthe GCDRULES table
correspondsto asinglefilein aset of geocoding rules. For information on geocoding
rulefiles, see the Geocoding Rule Base Developer Guide in the ArcGIS documentation
.

Many address locators require a geocoding index table for each reference datatable.
Geocoding index tables are tables used by alocator to quickly search for recordsin the
corresponding reference datasets that may be matches for an address. The XID column
in ageocoding index tableis aforeign key to the OBJECTID column in the
corresponding reference dataset. When you create a new address locator that requires a
geocoding index table for areference dataset, ArcSDE creates the geocoding index table
if it does not dready exigt.

When alocator isinstantiated, ArcSDE reads the locator record from the SDE _|ocators
table, and dl of the corresponding locator properties from the SDE_metadata table.
Some of the locator properties specify which set of geocoding rulesto use, which are
read from the GCDRULES table. Other locator properties specify which feature classes
or tablesin the ArcSDE database are used as reference datasets, and which geocoding
index tables, if any, correspond to these reference datasets.

When you use alocator to geocode an address, the locator uses the specified geocoding
rules to parse the given address into its components. If the locator uses geocoding index
tablesto index the reference data, the locator properties specify which of these address
components to use to search for matchesin the geocoding index table(s), and which
transformations (usually the Soundex function) to apply to the address components
when searching for records in the geocoding index table. ArcSDE searches for records
matching the geocoding index query in the geocoding index table. The resulting set of
records from the geocoding index table is joined to the corresponding reference data
table to generate a set of candidates for the address. ArcSDE uses the locator’ s properties
to determine which columns in the reference data feature class or table correspond to
address components used by the locator, and uses the geocoding rules to assign a score
to each candidate.

Locator schema

When you create alocator in an ArcSDE database, ArcSDE adds arecord to the
SDE_locatorstable that definesthelocator. ArcSDE also adds arecord to the
SDE_metadata table for each property of the locator. The object_name columnin the
SDE_metadata tableis aforeign key to the Name column in the SDE_locators table that
ArcSDE uses to associate locators with their properties.

Each locator has associated FileMAT and FileSTN propertiesin the SDE_metadatatable
that define which geocoding rules the locator uses. The values of these propertiesarein

Appendix B—DB2 Spatial Extender geometry types 109

the format style.type, and define which geocoding rulefiles, stored in the GCDRULES
table, the locator uses to match addresses. The locator uses the value of these properties
in the SDE_metadata table to query the GCDRULES table on the STYLE and TY PE
columnsto retrieve the correct set of geocoding rules. Locators that support intersection
geocoding have associated IntFileMAT and IntFileSTN properties that define the
geocoding rulesto use for intersection geocoding.

When you create an address |ocator, ArcSDE may create one or more geocoding index
tables for the reference datasets used by the locator, depending upon the locator style on
which the address locator is based. Geocoding index table names are prefixed with
“GC ", and include characters identifying the type of geocoding index table, and the
Geodatabase object class ID of the table or feature class that it indexes. The XID column
in ageocoding index tableisaforeign key to the OBJECTID column in the table or
feature class that the geocoding index table indexes.

In the example that follows, an ArcSDE database contains a STREET feature class that
represents street centerlines for a particular geographic area, such asacity. In addition to
the geometry for the street centerlines, the STREET feature class contains attributes for
the address ranges that can be found along the street, and the components of the street
name. The ArcSDE table schema required to store alocator to allow address geocoding
on thisfeature classis described here.

110 ArcSDE Configuration and Tuning Guide for DB2

STREET

OBJECTID | L_F_ADD |L_T_ADD | R.F.ADD | R_.T.ADD | PREFIX | PRE_TYPE | NAME | TYPE | SUFFIX | ZIPL | ZIPR
1767 201 399 200 398 <null> <null> New York | St <null> | 92373 | 92373
|

GC_SZS826

SX XID | LZONE | RZONE

N620 | 1767 | 92373 | 92373

E—

SDE_locators
locator_id name owner | category | type description

US Streets with Zone
Address Locator

88 City_Streets | SDE | Address 1

| —

SDE_metadata
record_id | object_name | object_owner | object_type | class_name property prop_value
20874 City_Streets SDE 2 SDE internal | FileMAT us_addr1.mat
20875 City_Streets SDE 2 SDE internal | FileSTN | us_addr.stn
20878 City_Streets SDE 2 SDE internal | IntFileMAT us_intsc1.mat
20879 City_Streets SDE 2 SDE internal | IntFileSTN us_intsc.stn
20979 City_Streets SDE 2 SDE internal | RD.Val.ldxTable1 | | sde.SDE.GC_SZS826
20984 City_Streets SDE 2 SDE internal | RD.Val.Table1 sde.SDE.STREET
|

GCDRULES

D STYLE | TYPE DATA

41 us_addr cls <Binary>

42 | us_addr det <Binary>
43 | us_addr pat | <Binary>

44 | us_addr stn <Binary>
45 us_addr1 mat <Binary>
51 us_intsc cls <Binary>
52 us_intsc det <Binary>
53 | us_intsc pat | <Binary>
54 | us_intsc stn <Binary>

55 us_intsc1 mat <Binary>

Business table

In this example, the STREET feature class represents street centerlineswithin a
particular geographic area, and contains attributes that allow address |ocators to geocode
addresses using thisfeature class. By default, ArcSDE stores geometry for feature

Appendix B—DB2 Spatial Extender geometry types 111

classesin a separate feature table in the ArcSDE compressed binary format, whichis
described in Appendix A.

NAVE
OBJECTI D
L_F _ADD
L_T _ADD
R_F_ADD
R T_ADD
PREFI X
PRE_TYPE
NAVE
TYPE
SUFFI X
ZI PL

ZI PR
Shape

DATA TYPE NULL?
I NT(4) NOT NULL
I NT(4) NULL
I NT(4) NULL
I NT(4) NULL
I NT(4) NULL
VARCHAR(2) NULL
VARCHAR(5) NULL
VARCHAR(30) NULL
VARCHAR(5) NULL
VARCHAR(2) NULL
VARCHAR(5) NULL
VARCHAR(5) NULL
I NT(4) NULL
STREET business table

OBJECTID (SE_INTEGER _TYPE) —thetable' s primary key

L_F ADD (SE_INTEGER_TY PE) —the address at the start node on the
left Side of the street feature

L_T _ADD (SE_INTEGER _TY PE) —the address at the end node on the
left side of the street feature

R_F _ADD (SE_INTEGER_TY PE) —the address at the start node on the
right side of the street feature

R T _ADD (SE_INTEGER TY PE) —the address at the end node on the
right side of the feature

PREFIX (SE_STRING_TY PE) —the prefix direction component of the
street’ s name

PRE_TYPE (SE_STRING_TY PE) —the prefix type component of the
dreet’ s name

NAME (SE_STRING_TY PE) —the base component of the street’s name

TYPE (SE_STRING_TY PE) —the suffix type component of the street’s
name

112

ArcSDE Configuration and Tuning Guide for DB2

SUFFIX (SE_STRING_TY PE) —the suffix direction component of the
street’ s name

ZIPL (SE_STRING_TY PE) —the ZIP code on the | eft Side of the street
feature

ZIPR (SE_STRING_TYPE) —the ZIP code on theright side of the street
feature

Shape (SE_INTEGER_TY PE) —aforeign key to the feature table
containing the geometry for the feature class

Geocoding index table (GC_SZS<objectclass_id>)

When you create alocator that uses an ArcSDE feature class as reference data, the
locator style on which the locator is based may specify that a geocoding index tableis
used when performing geocoding queries against the feature class. The locator style
defines the format of the name of the geocoding index table, as well as the contents. In
this example, alocator based on the “ US Streets with Zone” locator style was crested on
the STREET Sfeature class. Geocoding index tables created by locators based on this
style contain a Soundex value for the street name, as well as attributes for the zones on
each side of the street festure.

The size of the deltatables also depends on how often records are removed. These tables
shrink only when the states preceding the level 0 version are compressed. This occurs
only after aversion branching directly off the root of the version tree completesand is
removed from the system. The compression of states that follows will cause the changes
of the states between the level 0 version and the next version following the one removed
to be written to the business table and deleted from the delta tables.

NAME
SX
XLC
LZONE
RZONE

DATA TYPE NULL?
VARCHAR(4) NULL
I NT(4) NULL
VARCHAR(5) NULL
VARCHAR(4) NULL

Geocoding index table
SX (SE_STRING_TY PE) —the Soundex value for the street name

XID (SE_INTEGER _TYPE) —aforeign key to the OBJECTID columnin
the businesstable

LZONE (SE_STRING_TY PE) —the zone on the left Side of the Street
feature

Appendix B—DB2 Spatial Extender geometry types 113

RZONE (SE_STRING_TYPE) —the zone on the right side of the street

feature

SDE_locators table

When you add alocator to an ArcSDE database, ArcSDE adds arow to the
SDE_locatorstable. Each row in the SDE_|ocators table defines alocator or locator

syle.

NAVE

| ocator_id
Nanme

Oaner

Cat egory
Type
Description

DATA TYPE NULL?
| NT(4) NOT NULL
VARCHAR(32) NOT NULL
VARCHAR(32) NOT NULL
VARCHAR(32) NOT NULL
| NT(4) NOT NULL
VARCHAR(64) NULL

SDE locators table
locator_id (SE_INTEGER _TY PE) —thetable s primary key
name (SE_STRING_TY PE) —the name of the locator

owner (SE_STRING_TY PE) —the name of the ArcSDE user that owns
the locator

category (SE_STRING_TY PE) —the category of the locator; address
locators have a category vaue of “ Address”

type (SE_INTEGER _TY PE) —the type of locator; valuesin this column
are represented asfollows:

0 —definelocator styles
1 —definelocators (i.e., locators that can be used to find locations)

2 —define attached locators (i.e., locators that are attached to a geocoded
feature class, and are a copy of the locator and the geocoding options that
were used to create the geocoded feature class)

description (SE_STRING_TY PE) —the description of the locator

114

ArcSDE Configuration and Tuning Guide for DB2

SDE_metadata table

When you add alocator to an ArcSDE database, ArcSDE adds arow to the
SDE_metadata table for each property of the locator. Each row in the SDE_metadata
table defines asingle property for alocator. The object_name column isaforeign key to
the name column in the SDE _|ocators table that ArcSDE usesto associate alocator with

its properties.

NAVE DATA TYPE NULL?
record id I NT(4) NOT NULL
obj ect _dat abase VARCHAR(32) NULL

obj ect _nane VARCHAR(160) NULL

obj ect _owner VARCHAR(32) NOT NULL
obj ect _type I NT(4) NOT NULL
cl ass_nane VARCHAR(32) NULL
property VARCHAR(32) NULL
prop_val ue VARCHAR(255) NULL
description VARCHAR(65) NULL
creation_date DATETI ME(8) NOT NULL

SDE metadata table

e record id (SE_INTEGER _TYPE) —thetable€'s primary key

object_database (SE_STRING_TY PE) —the ArcSDE database in which
the described object is storedS; not used for locator properties

object_name (SE_STRING_TY PE) — the name of the locator to which the
property belongs

object_ owner (SE_STRING_TY PE) —the name of the ArcSDE user that
ownsthe record

object_type (SE_INTEGER _TYPE) —awaysavalue of 2 for locator
properties

class name (SE_STRING_TYPE) — dwaysavalue of “SDE_interna”
for locator properties

property (SE_STRING_TY PE) —the name of the locator property
prop_value (SE_STRING_TY PE) —the value of the locator property
description (SE_STRING_TYPE) —not used for locator properties

Appendix B—DB2 Spatial Extender geometry types 115

e creation_date (SE_DATE_TYPE) —the date and time at which the locator
property was created

GCDRULES table

The GCDRULES table stores the geocoding rules that are used by address locators to
match addresses. Each record in the GCDRULES table corresponds to a geocoding rule
file. For descriptions of each of the geocoding rule files and their contents, see the
Geocoding Rule Base Developer Guidein the ArcGIS documentation set.

NAVE DATA TYPE NULL?

I D | NT(4) NOT NULL
STYLE VARCHAR(32) NULL
TYPE VARCHAR(3) NULL
DATA i mage NULL

Geocoding rules table
* ID(SE_INTEGER TYPE) —thetable s primary key
* STYLE (SE_STRING_TY PE) —the name of the geocoding rule set
e TYPE(SE_STRING_TYPE) —thetype of geocoding rulefile
» DATA (SE_BLOB_TYPE) —the contents of the geocoding rulefile

116 ArcSDE Configuration and Tuning Guide for DB2

APPENDIX D

Making a direct connection

Direct connect is another configuration option for ArcSDE and all the
ArcSDE concepts and prerequisites also apply to direct connect. The
main difference between the ArcSDE application server and direct connect
iswhere the ArcSDE processing takes place. This purpose of this
appendix isto provide administrators information on how to setup and
configure direct connect configurations for the database as well as client
machines. If using the application server exclusively, you do not need

this appendix.

What files do you need?

There are two sets of ESRI-supplied files required for direct connect:

1. Direct connect drivers. These are dynamically linked librariesinthe bin or lib
directory (depending on your operating system) of your client application that provide
the functiondity to connect and use spatial datainaDBMS. There are driversfor the
following databases:

e IBM" DB2
e IBM Informix®
e Microsoft® SQL Server™
e Oracle® 8i and 9i
These drivers are automatically installed for ArcGIS (the whole product suite), ArcView

GIS 3.x Database Access, ArciMS®, Arclnfo workstation and MapObjects 2. If you are
using anon-ESRI custom application built from the ArcSDE C AP, you may need to

118

ArcSDE Configuration and Tuning Guide for DB2

install the direct connect drivers from the ArcSDE Devel oper Kit CD-ROM located in
the ArcSDE mediakit. Check with the supplier of your non-ESRI custom application.

2. Database setup files. These are files needed by an administrator to setup and
configureaDBM S for direct connect and include files like sdesetup<dbms>. The setup
isexactly the same asit isfor the ArcSDE application server. These setup filesare
located on the platform CD-ROM of choicein the ArcSDE mediakit. To get them, you
must install ArcSDE for your database. Y ou do not have to create an application server;
you only need the files on disk so you can use them against your database.

DBMS considerations are as follows:

e Oracle8i™, Oracledi™
To facilitate network communication to an Oracle database, each client machine where
direct connect is used must have Oracle Net installed.

+ Microsoft SQL Server 7, Microsoft SQL Server 2000
SQL Server requires Microsoft Data Access Components (MDAC).

If you intend to use ArcCatalog 9.0 or ArcView GIS 3.3 with Database Access 2.1f,
MDAC version 2.6(SP1) or greater isrequired. If using ArciIMS 9.0 or ArcGIS9.0to
direct connect, you must have MDAC 2.6 or higher.

« DB2

Each client machine must be configured for remote database access. Usethe DB2
Configuration Assistant on the database host to connect to a remote database.

* Informix

Each client machine where direct connect will be used must have the Informix Client
SDK 2.8 or the Informix I-connect 2.8 application instaled. The client machine must
also have the SetNet32 application installed, which comes with both the Informix Client
SDK 2.8 and the Informix I-connect 2.8 applications.

How to get your database setup files

Y ou will need to get your database setup files from one of the CD-ROM’sin the
ArcSDE mediakit. The ArcSDE mediakit has CD-ROM’ s by platform with the
exception of the ArcSDE Devel oper Kit CD-ROM. To get your database setup files,
you will need to install the software for the ArcSDE application server for your
database/platform. For example, if you are using IBM DB2 on a Sun Solaris server, you

Appendix D—Making a direct connection for DB2 119

will select the Sun Solaris CD-ROM from the ArcSDE mediakit and install the DB2
version of ArcSDE on your Sun Solaris server. Please be sure to follow the post
installation configuration instructions in the database specific install guide but ignore any
instructions about creating the application server. Y ou don't need to do that. Install
guides are html files on each CD-ROM. Please read them carefully.

Why do | need to install the ArcSDE application server
software?

Installation of the ArcSDE application server isto get the database setup and
adminigtration filesonly. 1f you are adirect connect only site, you do not need to start
an ArcSDE application server. All you need to doisinstall the ArcSDE filesto disk
and then follow the post installation configuration instructions. The administration files
that get installed (eg: sdesetup<dbms>, sdeconfig, sdedbtune, sdelayer) are useful for
managing your connection parameters, dbtune table and manual
registration/unregistration of 3rd party layers. Please see the Managing ArcSDE
Services book and the ArcSDE Configuration and Tuning Guides for more information.

If you use both the application server and direct connect at your site, you already have or
soon will have ArcSDE setup and adminigtration filesinstalled anyway. 1t isimportant
to note that once your database is configured for use with the ArcSDE application
server, it isalso ready for direct connect usage.

Environment variables

For each client machine, there are environment variables you must set. If necessary, ask
your Windows or UNIX system administrator to find out how to set environment
variables on your systems.

The SDEHOME environment variable

Y ou must set the SDEHOME variableto tell the client application:.

* Wherethedirect connect driver files are stored. For ESRI client applications, the
direct connect files are located in the same directory where the client application’ s other
dynamicly linked library files get installed. For Windows applications, thisis normally
in the bin directory of your client applicationsinstall location. For UNIX and Linux
systems, these will normally bein the lib directory.

To st thisenvironment varigle, you mugt spedify thefull filepath for it. For example,

Unix: setenv SDEHOME /unixV/arcgis/

120

ArcSDE Configuration and Tuning Guide for DB2

Windows use Windows utilities to set avariable to something like this

variable: Vvalue:)
SDEHOME C:\Program Files\ArcGIS\

The direct connect process will “look” for the appropriate driver inthe bin or lib
directories of the path specifiied.

Y ou do not have to set the SDEHOME environment variableif the following are true:

* Your usersare using ESRI client applications built with the ArcSDE 9.0 C API (a
list of these applicationsisin Chapter 1, ‘ Introducing direct connect’)

* Your usersarenot using UNIX

Unix or Linux systems

1. Include $SDEHOMFE/lib inthelibrary environment variable for your platform.
If your database is an Oracle database, include $SORACLE_HOME/lib as well.
For example:

setenv LD_LIBRARY_PATH $SDEHOME/
lib:$ORACLE_HOMHE/lib:/usr/ openwin/lib:/usi/lib

2. Addthehin directory to the system path:and

An examplefollows for the SDEHOME variable.

setenv PATH $JIAVA_HOME/bin:$SDEHOME/

bin:$AEHOME/bin:/usr/sbin:/usr/bin:/usr/local/ bin:
[etc:/usr/uch:/usr/dt/bin:/usr/bin/X11
3. If ArclMSisyour client application and Oracle is the database, append
$ORACLE_HOME/libtothe LD_LIBRARY_PATH variablein the aimsappsrvr and
amsmonitor scripts, located in the SAIMSHOME/Xenv directory.

For example, whereyour LD_LIBRARY _PATH variable now reads:

LD_LIBRARY_PATH-$AIMSHOME/lib:$AIMSHOME/bin;
export LD_LIBRARY_PATH

It should now be:

Appendix D—Making a direct connection for DB2 121

LD_LIBRARY_PATH-$AIMSHOME/lib:$AIMSHOME/
bin:$ORACLE_HOME/lib; export LD_LIBRARY_ _PATH

The ETC directory

If an etc directory existsfor the client application, it must be located in the directory you
specified for SDEHOME. If itisn't located there, you must create it there. This etc
directory iswhere the log file of error messages will be stored by defaullt.

The dbinit.sde file

Thisfileislocated in the etc directory of your SDEHOME. Thisfile can be u sed to set
environment variables for direct connect use. It may be more convenient to set
environment variables for direct connect here than via system toals.

See Chapter 3 in Managing ArcSDE Application Serversfor more information on the
dhinit.sdefile.

Client/database compatibility

Direct connect drivers are only compatable with a same-vintage database configured for
ArcSDE. For example, you cannot direct connect from ArcMap 9.0 to a a database that
istill at an 8.3 configuration. 'Y ou would have to run the 9.0 setup configuration on that
8.3 database to be able to use direct connect from the ArcMap 9.0 client.

Registration and authorization

ArcSDE application servers and al direct connect configurations must be registered
before use. The end result of the registration processis an authorization file that is used
to enable the software for use. Please note that if you are an existing ArcSDE user, your
ArcSDE 8.x keycode will not work with 9.0. To register in the United States, go
http://service.esri.com. If you are not in the United States, please call your local
distributor to register your software. If the Internet is not an option, you can contact
ESRI Customer Service or your local distributor to register and receive your 9.0
authorization file.

122 ArcSDE Configuration and Tuning Guide for DB2

Setting up clients for DB2 direct connect

Set up the database

Y ou must set up and configure each database that users will be direct connecting to. Use
standard DB2 tools,, ArcSDE tools and documentation to

1. ingtal the application server software

2. performthe post installation configuration (application server start up isnot
required for direct connect)

When your database is configured and authorized for ArcSDE, you are ready to set up
your client machines.

Setting up the client machines

When you set up the client machines, you perform the following stepsin order on the
client machine:

1. If your host database must connect to a remote database, you must use the DB2
Configuration Assistant on the database host to connect to a remote database. The
Configuration Assistant comes with DB2 and lets you configure and maintain the
database objects that you or your applications will be using.

2. Set environment variables.
3. Createalocal user account.

4, Test the connection.

Use the DB2 Configuration Assistant

Note: steps are provided here as a convenience but do not supercede or otherwise
replace DB2 documentation. Please refer to DB2's documentation for al information
on thistopic.

Usethe DB2 Configuration Assistant to configure the client to connect directly to aDB2
instance. The Configuration Assistant comes with DB2 and lets you configure and
maintain the database objects that you or your applicationswill beusing. Itisavailable
as part of the DB2 Administration Client and DB2 Application Development Client.

Appendix D—Making a direct connection for DB2 123

Each DB2 database that will be accessed must be configured at your DB2 client before
you can work with it. Y ou must configure your DB2 clients so they can work with the
available objects. From the Configuration Assistant, you can work with existing
database objects, add new ones, bind applications, set database manager configuration
parameters, and import and export configuration information.

To open the Configuration Assistant in Windows, click Start, point to Programs, click
IBM DB2, click Set-up Tools, then click Configuration Assistant. The Configuration
Assigtant opens. In UNIX, open the Configuration Assistant with the db2ca command.

After the Main panel appears choose Selected in the drop down Menu and select Add
Database Using Wizard.

Select how you want to set up a connection. In this menu, you indicate how you will be
adding the database that you want to connect to. Each method involves adightly
different set of wizard pages.

Use aprofile invokes. Select a database from a profile. Specify an dias for the database.
Register this database as a data source.

Search the network invokes: Select a database from the network search result. Specify
an diasfor the database. Register this database as a data source. Manually configure a
connection to a database invokes:

Specify catalog options. (Only appearsif the Lightweight Directory Access Protocol
(LDAP) isenabled.) Select acommunications protocol. Specify communication
parameters. (A page tailored to the protocol specified on the previous page.) Specify
information for a database on this system. (Only appearsif the database islocal.) Specify
information for a database on aremote system. (Only appearsif the database isremote.)

Following is an example choosing the network option. Select Search the network option.
Now choose the Add System button to select a database from the Network.

Y ou can use Discover to retrieve information known about the TCP/IP system and
populate the window as shown in the following screen. In the Node name field, specify
the cataloged system where the database is located. The node hame you choose must not
already exist in the node directory or the admin node directory.

In the System name field, specify the physical machine, server system, or workstation
where the target database is |ocated. The system name on the server system is defined by
the DB2SY STEM DAS configuration parameter. If the system is not listed, you can
issue the db2 get admin cfg command on the server to retrieve its value.

124

ArcSDE Configuration and Tuning Guide for DB2

If your network supports TCP/IP, then you can use discovery to help complete the
remaining fields on thiswindow. After you select a System name, clicking Discover
opens the Discovery Search window where you can select the instance node that you
want to add.

Specify an aliasfor the database.

The next step would be to register the database as an ODBC data source and press
Finish.

Y ou should test the database connection that you created. In the Configuration Assistant
advanced view: Click on the Databases tab. The Databases page opens. Select the
database that you want to work with. From the Selected menu, click Test Connection.
The Test Connection notebook opens. Select the type of connections that you want to
test. Inthe User ID field, type a user ID that can connect to the database. Type the
password for the User ID in the Password field. If you do not specify auser ID and
password, the system password will be used for the connection. Click Test Connection.
The Results page opens, displaying the results of the connection test. Optional: Click
clear to erase the results.

If the connection is successful you will get the following message.

This process creates an entry in the db2cli.ini file that will ook like this. Thisfile resides
under the %DB2PATH% dir.

[SDEQUART]
DBALIAS=SDEQUART

Set environment variables

Y ou must set the SDEHOME and SDE_ DATABASE environment variables. Set
SDEHOME to point to the directory the client applications .dynamicaly linked library
filesare stored.

If your client application is remote (is not running on the same host asthe DB2 server),
edit the client maching s SDE_ DATABASE variable in the dbinit.sdefile so that it
points to the remote database.

If your client application islocal, set the client machine's SDE_ DATABASE variable
with system tools (do not use the dbinit.sdefile to set this) to the name of the DB2
database on the local machine that you want to connect the client to.

Appendix D—Making a direct connection for DB2 125

Create a local user account

In order for direct connect to work successfully with ArcGIS, aloca user with the same
user name as specified for the connection to the server must be present on the client
machine. This user does not require any specid permissions.

To create aloca user, please refer to Microsoft’ s Windows documentation.

For UNIX platforms, please refer to the platform specific commands/procedures (ie.
useradd)

Connection syntax

Thereisaparticular syntax to use when connecting with direct connect. For the Service
(or instance) value,

sde:db2

For the Database name, use the alias name specified when setting up the Configuration
Assigtant. Y ou may aso specify the database name in the Service (or instance) vaue,

sde:db2:<db alias name>

If the client application islocal (running on the same host as the DB2 server), do not
specify avauefor Server. If the client application is remote, specify a Server value of
remote.

Test the connection from the client application

Test the connection from the client application you set up to use direct connect.

126 ArcSDE Configuration and Tuning Guide for DB2

Index

A

American National Standards
Institute (ANSI) 73
ArcCatalog 2, 14, 52, 53, 58,

63, 64, 81
ArcGIS Desktop 52, 71
Arclnfo 53
Arclnfo Workstation 52
ArcStorm libraries 57
ArcToolbox 2,53, 58, 61, 81
ArcView GIS3.2 52

C

CAD Client 52
configuration keyword 2, 53
cov2sde 51, 56, 96
coverage 57

D

DB2
RUNSTATS statement 15
dbtune configuration keyword
LOGFILE_DEFAULTS 39
DBTUNE configuration
keywords
DATA_DICTIONARY 33
DEFAULTS 31
NETWORK_DEFAULTS
43
dbtune storage parameter
A_INDEX_ROWID 29
A_INDEX_SHAPE 29
A_INDEX_STATEID 29
A_INDEX_USER 29
A_STORAGE 29
AUX_INDEX_COMPOSITE
30
AUX_STORAGE 30

BLK_INDEX_COMPOSITE
30
BLK_STORAGE 30
BND_INDEX_COMPOSITE
30
BND_INDEX_ID 30
BND_STORAGE 30
D_INDEX_DELETED_AT
29
D_INDEX_STATE_ROWID
29
D_STORAGE 29
RAS INDEX_ID 30
RAS STORAGE 30
DBTUNE storage
parameters 22
B_INDEX_ROWID 28
B_INDEX_SHAPE 28
B_INDEX_USER 28
COMMENT 39
LOB_SIZE 33
UI_NETWORK_TEXT 38
DBTUNE table 2
dbtune.sde 23, 40
dbtune.sdefile 2
declining resolution pyramid 81
disk /O contention 6

E
endpoints 103
F

falsem 95
falsex 95
falsey 95
falsez 95
feature table
sizing of 110

G

geographic information system
91

geometry 95, 98

properties 99

GIS Seegeographic
information system

Graphics Interchange Format
(GIF) 79

|
instantiated datatype 99
J

Joint Photographic Experts
Group (JPEG) 79

L

LIBRARIAN libraries 57
load-only 1/0 mode 54, 57

MapObjects 52
measures 102
multiversioned 55
munits 95

N

network tables
sizing of 115
normal 1/0 mode 55, 57

0

ODBC 92
Open GIS Consortium 91, 98
Oracle
CREATE INDEX statement
27

ArcSDE Configuration and Tuning Guide for DB2

original equipment manufacturer
73

P

privileges
granting 55

R

raster band auxiliary table 88
raster band table 86

raster bands 79

raster blockstable 88

raster columns 58, 79

raster table 85
RASTER_COLUMNStable 83

S

SDE_LOGFILE_DATA 39
SDE _LOGFILES 39
sde2cov 58
sde2shp 58
sde2tbl 59
sdedbtune 2, 25
sdeexport 58
sdegroup 52
sdeimport 51, 56, 57
sdelayer 51, 54, 55, 68
sdetable 51, 53, 59
update_dbms stats 15
shapes
properties 99
shp2sde 51, 55, 56, 96
shpinfo 56
simple 103
spatial columns 92, 96
spatial data 91
Spatial Extender 91, 96
Spatial Extender datatypes
ST_Geometry 98
ST_LineString 102, 103

ST_MultiLineString 102,
106
ST_MultiPoint 102, 106
ST_MultiPolygon 102, 107
ST _Point 102, 103
ST_Polygon 96, 102, 104
Spatial Extender functions
Is3D 102
IsMeasured 102
M 103
ST_Area 105, 107
ST_Boundary 100
ST_Centroid 105, 107
ST _Dimension 101
ST_EndPoint 103
ST_Envelope 101
ST_ExteriorRing 105
ST_GeometryN 102
ST_GeometryType 102
ST_InteriorRingN 105
ST _IsClosed 103, 107
ST_IsEmpty 100
ST_IsRing 103
ST_IsSimple 100
ST_Length 103, 107
ST_NumGeometries 102
ST_NuminteriorRings 105
ST_NumPoints 103
ST_Overlaps 92
ST_PointN 103
ST_PointOnSurface 105,
107
ST_SRID 102
ST_StartPoint 103
ST_X 103
ST_Y 103
Z 103
Spatial Extender homogeneous
collections 102
spatial index 98
spatial index table

sizing of 112
spatial joins 91
spatial referenceidentifier 95
spatial tables 96
spatial_referencestable 93, 95
spatially enabled 92
SQL 91
storage parameters 2
subclass datatypes 99
Survey Multibinary 35

T

tagged image file format (TI1FF)
79

tbl2sde 51

Topology 35

v

version deltatables
sizingof 114

w

well-known binary
representation 92

well-known text representation
92

WKB See well-known binary
representation

WKT Seewell-known text

representation
X
Xyunits 95
Z

z coordinates 102
zunits 95

	ArcSDE Configuration and Tuning Guide for DB2
	Contents
	Chapter 1: Getting started
	Tuning and configuring the DB2 instance
	Arranging your data
	Creating spatial data in a DB2 database
	ArcSDE geodatabase maintenance
	National Language support

	Chapter 2: Essential configuring and tuning
	How much time should you spend tuning?
	Reducing disk I/O contention
	Updating DB2 statistics
	Tuning the spatial index

	Chapter 3: Configuring DBTUNE storage parameters
	The DBTUNE table and file
	Managing the DBTUNE table
	Using the DBTUNE table
	Defining the storage parameters
	Arranging storage parameters by keyword
	DB2 default parameters
	The complete list of ArcSDE storage parameters

	Chapter 4: Managing tables, feature classes, and raster columns
	Data creation
	Creating and populating raster columns
	Creating views
	Exporting data
	Schema modification
	Choosing an ArcSDE logfile configuration
	Using the ArcGIS Desktop ArcCatalog and ArcToolbox applications
	Efficiently registering large business tables with ArcSDE
	How does ArcSDE use existing DB2 tables?
	ArcSDE to DB2 Server Data Type Mapping

	Chapter 5: National language support
	DB2 database character sets
	Setting the DB2CODEPAGE

	Appendix A: Storing raster data
	Raster schema

	Appendix B: DB2 Spatial Extender geometry types
	Spatial Extender data types
	Instantiable subclasses

	Appendix C: Storing locators
	Locator schema

	Appendix D: Making a direct connection
	What files do you need?
	How to get your database setup files
	Environment variables
	Client/database compatibility
	Registration and authorization
	Setting up clients for DB2 direct connect

	Index

