Developing Applications with Arcinfo™:;
An Overview of ArcObjects ™

An ESRI® Technical Paper * April 2000

ESRI 380 New York St., Redlands, CA 92373-8100, USA « TEL 909-793-2853 « FAX 909-793-5953 + E-MAIL info@esri.com « WEB www.esri.co



Copyright © 2001 ESRI
All rights reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of ESRI. This work is protected under United
States copyright law and other international copyright treaties and conventions. No part of this work may be
reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and
recording, or by any information storage or retrieval system, except as expressly permitted in writing by ESRI. All
requests should be sent to Attention: Contracts Manager, ESRI, 380 New York Street, Redlands, CA 92373-8100,
USA.

The information contained in this document is subject to change without notice.

U.S. GOVERNMENT RESTRICTED/LIMITED RIGHTS

Any software, documentation, and/or data delivered hereunder is subject to the terms of the License Agreement. In no
event shall the U.S. Government acquire greater than RESTRICTED/LIMITED RIGHTS. At a minimum,
use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in FAR §52.227-14
Alternates I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or FAR §12.211/12.212 (Commercial
Technical Data/Computer Software); and DFARS §252.227-7015 (NOV 1995) (Technical Data) and/or DFARS
§227.7202 (Computer Software), as applicable. Contractor/Manufacturer is ESRI, 380 New York Street, Redlands,
CA 92373-8100, USA.

ESRI, ARC/INFO, ArcCAD, ArcIMS, ArcView, BusinessMAP, MapObjects, PC ARC/INFO, SDE, and the ESRI
globe logo are trademarks of ESRI, registered in the United States and certain other countries; registration is pending
in the European Community. 3D Analyst, ADF, the ARC/INFO logo, AML, ArcNews, ArcTIN, the ArcTIN logo,
ArcCOGO, the ArcCOGO logo, ArcGrid, the ArcGrid logo, Arclnfo, the ArcInfo logo, Arclnfo Librarian, ArcInfo—
Professional GIS, ArcInfo—The World's GIS, ArcAtlas, the ArcAtlas logo, the ArcCAD logo, the ArcCAD
WorkBench logo, ArcCatalog, the ArcData logo, the ArcData Online logo, ArcDoc, ArcEdit, the ArcEdit logo,
ArcEditor, ArcEurope, the ArcEurope logo, ArcExplorer, the ArcExplorer logo, ArcExpress, the ArcExpress logo,
ArcFM, the ArcFM logo, the ArcFM Viewer logo, ArcGIS, the ArcGIS logo, the ArcIMS logo, ArcNetwork, the
ArcNetwork logo, ArcLogistics, the ArcLogistics Route logo, ArcMap, ArcObjects, ArcPad, the ArcPad logo,
ArcPlot, the ArcPlot logo, ArcPress, the ArcPress logo, the ArcPress for ArcView logo, ArcReader, ArcScan, the
ArcScan logo, ArcScene, the ArcScene logo, ArcSchool, ArcSDE, the ArcSDE logo, the ArcSDE CAD Client logo,
ArcSdl, ArcStorm, the ArcStorm logo, ArcSurvey, ArcToolbox, ArcTools, the ArcTools logo, ArcUSA, the ArcUSA
logo, ArcUser, the ArcView logo, the ArcView GIS logo, the ArcView 3D Analyst logo, the ArcView Business
Analyst logo, the ArcView Data Publisher logo, the ArcView Image Analysis logo, the ArcView Internet Map Server
logo, the ArcView Network Analyst logo, the ArcView Spatial Analyst logo, the ArcView StreetMap logo, the
ArcView StreetMap 2000 logo, the ArcView Tracking Analyst logo, ArcVoyager, ArcWorld, the ArcWorld logo,
Atlas GIS, the Atlas GIS logo, AtlasWare, Avenue, the Avenue logo, the BusinessMAP logo, the Data Automation Kit
logo, Database Integrator, DBI Kit, the Digital Chart of the World logo, the ESRI Data logo, the ESRI Press logo,
ESRI—Team GIS, ESRI—The GIS People, FormEdit, Geographic Design System, Geography Matters, GIS by ESRI,
GIS Day, GIS for Everyone, GISData Server, InsiteMAP, MapBeans, MapCafé, the MapCafé logo, the MapObjects
logo, the MapObjects Internet Map Server logo, ModelBuilder, MOLE, the MOLE logo, NetEngine, the NetEngine
logo, the PC ARC/INFO logo, PC ARCEDIT, PC ARCPLOT, PC ARCSHELL, PC DATA CONVERSION,
PC NETWORK, PC OVERLAY, PC STARTER KIT, PC TABLES, the Production Line Tool Set logo, RouteMAP,
the RouteMAP logo, the RouteMAP IMS logo, Spatial Database Engine, the SDE logo, SML, StreetEditor, StreetMap,
TABLES, The World's Leading Desktop GIS, Water Writes, and Your Personal Geographic Information System are
trademarks; and ArcData, ArcOpen, ArcQuest, ArcWatch, ArcWeb, Rent-a-Tech, Geography Network, the Geography
Network logo, www.geographynetwork.com, www.gisday.com, @esri.com, and www.esri.com are service marks of
ESRI.

The names of other companies and products herein are trademarks or registered trademarks of their respective
trademark owners.


http://www.esri.com/

J-8462

Developing Applications with
ArcInfo: An Overview of
ArcObjects

An ESRI Technical Paper

Contents

INErOAUCTION ......eiiiiiiieicee e
When to Use ATCODJECLS. ..cccuuiiiriiiiiiiiiieeiee et
What IS ATCODIECES? ...eeieviieiiieeiie ettt
WHhat IS COM? ..ottt
Interface-Based Programming .............cccoeeveeriiiiniiieniieiniieenieeens
EXEENSTDIIILY .ooeivieiiieciie et e

ArcObjects Developer ReSources ..........ccoecveeeeiveeriieeenieeeiieeeieesieeenns
ArcObjects Developer's Guide..........coveevienieniieenienieeeenieeeeee.
ArcObjects Developer Help........cooovveeiieiiieiiiieeieeee e
ATCODJECtS ONIINE ....oeeviieeiiieeiiie et
ArcObjects Component Help.........cceevvieiniiiiniiiiniiiiieiicceiee,
Class DIQ@IamS .....ccuveeeuieeeiiieeiiee e eeite et e e e eeree e ens
Other RESOUICES .......covuiiiiiiiiiiiiiiieeeiteeee e

What Is Possible with ArcObjects?........c.covviieiiiiiiiieiniieenieeeeeeenn
Extending ArcMap and ArcCatalog..........cccceeeeuveeriuieeniieeenieeenieenns
Commands and TOOIS .....cccceeiiiiiiiiiiiiiiiiieeccees
Extending the Data Model ..........cooccueiiiiiiniiiiniiiiiecceeceeee
Embedding Within an Application ............cceeevveeeeieeniieeniieeenieeens
Creating New ApPPliCAtIONS......c..eeevureeeiiieeriiieeiieeerieeeieeeeireesiee e

Conclusion: WHhere NEXE? ....oouuuuieeeieieeeiiieeeee ettt eeeve s

17

ESRI Technical Paper



Developing Applications with ArcInfo: An Overview of ArcObjects

J-8462

April 2000 ii



J-8462

Introduction

Developing Applications with
ArcInfo: An Overview of
ArcObjects

ArcObjects™ is the technology framework that forms the foundation of
ArcInfo™ 8 software (Figure 1). Developers can use the ArcObjects
framework to enhance and extend ArcInfo programmatically. With
ArcObjects, developers can, for example, add new tools or work flows to
the ArcInfo, ArcMap™, and ArcCatalog™™ applications, or extend the
Arclnfo data model into new application domains by adding new custom
feature types. These are only two examples of the many ways in which
developers can build on, embed, or extend ArcInfo ArcObjects.

Figure 1
Simple View of ArcInfo 8 Showing the Role of ArcObjects

Arcinfo

Applications
(Presentation)

ArcMap ArcCatalog

Functionality -
(Business Logic) ArCObjeCtS

Data
(Data Management)

ArcObjects is not sold separately; rather, it is included with ArcInfo software much like

™

Avenue™ is an integral part of ArcView® GIS 3 software. To build applications using

ESRI Technical Paper



Developing Applications with ArcInfo: An Overview of ArcObjects

When to Use
ArcObjects

What Is
ArcObjects?

J-8462

ArcObjects, you must obtain a copy of ArcInfo. In addition, any derivative applications
require a fully licensed Arclnfo seat.

This paper provides an introduction to ArcObjects, focusing on the general characteristics
and examples of applications that can be created with ArcObjects.

ArclInfo 8 includes three levels of customization, two of which utilize ArcObjects
directly.

The first and simplest level of ArcInfo customization involves no programming and,
therefore, no direct use of ArcObjects. All users can easily change the look and feel of
the ArcInfo applications using standard user interface capabilities. For example, toolbars
can be turned on and off using the customize dialog. Many other application properties
can be changed using simple menu-driven actions like this.

The second level involves using the in-built Visual Basic® for Applications (VBA)
application scripting capabilities to add new menus, tools, and work flows to the ArcInfo
applications. The ArcMap and ArcCatalog applications include a fully working VBA
development environment, including an integrated debugger, that provides access to all
the ArcObjects technology. VBA allows the addition of modules, class modules, and
user forms to ArcInfo project files. With VBA, it is possible to create extensive and
sophisticated applications based on ArcObjects that run within the ArcMap and
ArcCatalog application frameworks. It is not, however, possible to create new custom
feature classes or build applications that run outside ArcMap and ArcCatalog. VBA is a
very good choice for small-to-medium-size applications that use or extend the existing
Arclnfo applications or functions. VBA is useful for many of the same types of tasks that
ARC Macro Language (AML™) has been used for in the past.

Serious software developers who want to create reusable software building blocks, new
applications, or custom feature additions to the geodatabase object model will prefer to
work with ArcObjects directly using Visual Basic, or—especially in the latter case—
Microsoft” Visual C++° or Delphi®.

ArcObjects comprises a technology framework, an object-oriented geographic data
model, an integrated library of software components, and a rich collection of developer-
oriented resources (for example, a printed developer guide, online developer help, and a
series of class diagrams). The ArcObjects software components are delivered as an
organized collection of object—components. The ArcInfo object model describes the
scope and organization of the components. Object—-Components offer a number of key
advantages over earlier software development methodologies.

Early, first-generation object-oriented GIS technology was built using C/C++ and
suffered from several limitations, notably difficulty of sharing parts of the system (it is
very difficult to share binary C++ components; most attempts have only shared source
code), problems of persistence and updating C++ components without recompiling, lack
of good modeling languages and tools, and proprietary user interfaces and customization
tools. To counteract these and other problems, many software engineers have adopted
component-based approaches to system development. A software component is a binary

April 2000 2



Developing Applications with ArcInfo: An Overview of ArcObjects

J-8462

What Is COM?

unit of reusable code. The key to the success of components is that they implement in a
very practical way many of the object-oriented principles now commonly accepted in
software engineering. Components encapsulate behind a well-defined interface the
manipulation methods and the data that characterize each instantiated object. This
promotes structured and safe system development. Components facilitate software reuse
because they are self-contained building blocks that can easily be assembled into larger
systems. They also support inheritance and polymorphism. Inheritance is the ability to
reuse functionality in other components by including reference to another object's state
and behavior. For example, a new type of water valve can easily be created by
overwriting or adding a few properties or methods to an existing type of valve that is
similar. Polymorphism describes the process whereby each object has its specific
implementation for operations such as draw, create, and delete. One example of the
benefit of polymorphism is that a GIS can have a generic object creation component that
issues generic object create requests to be processed in a specific way by each type of
object class factory (e.g., gas pipes, valves, and service lines).

The object—component approach to software development provides a framework for
anyone to extend a data model or customize a geographic information system. In the
basic object model approach, only the original GIS vendor has complete customization
capabilities and is free from performance and functionality bottlenecks. Also, because of
the closed nature of object implementations, users are bound to proprietary macro
languages when they want to undertake customization. With the ArcObjects object—
component model, users extend the data model with exactly the same technology as ESRI
used to build ArcInfo. As a consequence, users have more options and their objects will
perform just as well. To the user, there is absolutely no difference between the ESRI
base object—components and third party developer custom components.

Although there are several different object—component standards (COM, JavaBean, and
CORBA), Microsoft's Component Object Model (COM) has emerged as the most viable
technology for developing high-performance, interactive desktop and client/server
applications. COM is well-defined and mature, is understood reasonably well, is
prevalent in the developer community, and has excellent supporting materials (books,
training resources, Integrated Development Environments [IDE], and modeling languages
[e.g., UML, the Unified Modeling Language]). Because COM is a binary specification, it
delivers good performance and is secure. ArcObjects is based on the COM specification.

COM is a protocol that connects one software component or module with another. By
making use of this protocol, it is possible to build reusable software components that can
be dynamically interchanged in a distributed system. There are many terms in circulation
that refer in part to COM; OleDB, ActiveX®, and DirectX” are all technologies based on
the COM specification.

COM defines a binary specification that is not reliant on any specific language. Any
language capable of manipulating computer memory can implement the COM
specification. Since the COM specification deals with communication between
components within a system, there are no restrictions placed on how the components are
developed or what language is used to develop them.

ESRI Technical Paper 3



Developing Applications with ArcInfo: An Overview of ArcObjects

J-8462

COM allows for components to be reused at a binary level, meaning that third party
developers do not require access to source code, header files, or object libraries in order
to extend the system even at the lowest level.

Interface-Based Developing with COM means developing using interfaces. All communication between
Programming COM components is made via the components' interfaces. COM interfaces are abstract,

meaning there is no implementation associated with an interface, and the code associated
with an interface comes from a class implementation. The interface sets out what
requests can be made of an object. COM interfaces are how COM objects communicate
with each other. When working with COM objects, the developer never has ahold of the
COM object directly but holds a reference to it via one of its interfaces. COM interfaces
are designed to be a grouping of logically related functions. The virtual functions are
used in abstract by the client and implemented by the server. Figure 2 shows examples of
ArcObjects.

Figure 2
The Interfaces, Properties, and Methods of the Domain, RangeDomain, and
CodedValueDomain ArcObjects

Domain
IDomain ¢&— IDomain : IUnknown

m—m Description; String

m—@ DomainlD: Lﬂng

= FieldType: esriFieldType

ma MergePolicy: esriMergePalicyType
B Name: String

=l Owner: String
wa SpliPoiicy: esiSplitPolicyType
B— Type: esrDomainType

= MemberOf (in Value: Variani) - Boolean

T

RangeDomain
IRangeDomain ©— | IRangeDomain : IUnknown

e MaxValue: Variant
w—m hinValue: Variant

CodedValueDomain
ICodedValueDomain O—— ICodedValueDomain : IUnknown
m— CodeCount: Lony

= Name (in Index: Long) - String
m— Value (in Index- Long) : Variant

4~ AddCode (in Value: Varlan, in Name: String)
- DeleteCode (in Value: Variant)

Every COM object has a default interface that is returned when the object is created if no
other interface is specified. With some implementations of COM, a class may choose to
implement the IDispatch interface, a so-called dual interface. Object classes that do not
implement the IDispatch interface cannot be used with scripting languages, such as Java
Script and VB Script, since to work they require all COM servers accessed to support the
IDispatch interface.

Extensibility =~ When an interface has been published, it is not possible to change the external signature
of that interface. It is, however, possible at any time to change the implementation details
of an interface. This change may be a minor bug fix or a complete reworking of the
underlying algorithm; the clients of the interface do not care, because the interface
appears the same to them. This means that when upgrades to the servers are deployed in
the form of new DLLs and EXEs, existing clients do not need to be recompiled to make

April 2000 4



Developing Applications with ArcInfo: An Overview of ArcObjects

J-8462

ArcObjects
Developer Resources

ArcObjects
Developer's Guide

use of the new functionality. If the external signature of the interface must be changed, a
new interface is created to hold the new functions. Thus, when ESRI releases updates to
Arclnfo, developers can be assured that the existing interfaces will always be supported,

even if the internal class code changes.

A developer extends a COM-based system by creating new COM servers that serve up
new or improved functionality. These new servers can be created from scratch, or they
can use COM containment or COM aggregation to reuse existing functionality. For a
third party developer to make use of existing components using either containment or
aggregation, the only requirement is that the component that is being contained or
aggregated is installed on both the developer and target client machines.

There are a number of resources available to the developer that help with the learning
process as well as act as an invaluable reference for experienced ArcObjects developers.

The ArcObjects Developer's Guide is for anyone who wants to learn the basic techniques
and principles of customizing or adding functionality to the ArcInfo end user applications
by working graphically with the user interface or by referencing the ArcObjects object
model in a development environment. This book assumes you have some familiarity
with the end-user applications, ArcMap and ArcCatalog, and it would be helpful but not
essential to have had some experience designing and implementing applications or
additional functionality for another ESRI® software program or other Microsoft
Windows-based program. This book can be viewed as the starting point for all
developers working with ArcObjects.

Figure 3
Extract from the ArcObjects Developer's Guide

Using the custom features in
ArcMap ‘

2. Venty the curnens Task is Create New Feature, Click
the Target dropdoun artow and then click Parcel

I this scction of the tutorial, you'll create a few parcels

and buildings o test the schema and fhe functionality

n the Behavior COM clas

d drag and drop the SampleDS featu

Catalog onto ArehMap. Make sure th
able. Save the map as Tutorial\

Creating a COM component

Edrtor toolbar is
the Tutorial folder.

You can use the VBA environment embedded

Creating a unique T E————
value renderer

o s e e s
S 5 |-
——

3. Press F4 1o open the

the Name property a
s the name you'll usc to

ce the ESRI applications are
fure supports the usc of

. o Creatin
Crealing, editing, ~ Greatin

and running + o and subscqueatly usc them insidc the
macros Moo 15 ESRI provides several COM-based ubject
5 2 el :
youw name the project Tutoria. Vieual Basie will provide the
Mo 3 I appio apprapiete exicasions
3 puwy  Sfortzequites CON
ety ” Referencing the object libraries
The s
far e
Cooe ¥
« yod polyion featurcs ad
the ‘SUB, RECHON"fekd name  polyzon ofa layer and displays a stats
mem tutorial uses Microsaft Visual Basic 6.0
New
& e Greating an ActiveX DLL project
s cie Visual Basic ket you build scveral differen kinds of
ek projeets. To ercate 2 somponcat thet works with AreMap or
Editing  ArsCatalog, vou'll ercate an ActiveX DLL, An ActiveX.
visual|  DLL

3 Click OK

2 hihg cxSran Turons 2

“The coe mars been witien
for the macro appeses In he
Cadé wingon.

4 Edtme cose

S Click @a VBE File manu and
ik Save Project

ESRI Technical Paper 5



Developing Applications with ArcInfo: An Overview of ArcObjects

ArcObjects Developer
Help

J-8462

The ArcObjects Developer Help provides the developer with a compiled HTML file
containing reference information, coding tips and tricks, and a number of complete code
samples written in both Visual Basic and Visual C++. The help system viewer is shown
in Figure 4.

The ArcObjects Developer Help is split into several sections. The first section is Getting
Started. This section covers the basics of COM technology and, in greater detail, covers
working with VBA and Visual Basic.

The next two sections cover the object models. These models document the many classes
that make up ArcObjects and the relationships between these classes. In addition to the
actual model diagrams, each diagram has a description of what components can be found
on the diagram, and many of the common tasks performed on these objects are shown
with examples. In this way, the developer is led through the process of working with
these diagrams.

Figure 4
Extract from the ArcObjects Developer Help

E? ArcObjects Developer Help M=

= = [ @ & B

Hide  Booi Fopved Refresh  Home Pt Options

Contents |\gdex | Searcn | Favortes |

[£] Welcome
@ Getting Started
=1 L[} Obiect Model Overviews
[£] Obizct Model Overviews Start Page

ArcObjects Developer Help

e

@ ArcCatalog
% Archiap Welcome to AreObjects Developer Help
Customization Framework
» 5 help system is the place to ormation about ArcObjects mehu. sample code, technic
Qe “This hel the place to find inf bout ArcOb ! le code, techrical
GeoDstabsse ocuments, and object model diagrams
PE} d d obj el di
) Geometry .
& Network Getting Started AreObjects Component Help
@ oupu ~Jetling SHnee Turmp to the C t Help system that cont
@ Faster Provides an overview of working with ArcObjects | oy Lo Lo -OmPonant Seb sysiem A fontams

documentation, including samples, for all the

& Spatial Refersnce
components that make up ArcObjects

@ Object Mode! Diagrams
@ Technical Documents
@ Arcobjects Help

from a developer's perspective.

Object Model Overviews

Overviews and descriptions for each of the

Utilities

@ Utiities: e Obiects subsyet Provides information on commonly used utilities such
=@ E’"F‘ES CIbIECTs subsystems as the Component Category Manager and the ESRI
Samples Start Page . .
@ Tips 8 Ticks Object Model Diagrams Object Browser.
B ([ Took & Samples Component object model diagrams for each Samples
@ Activex Controls subsystem. Sampes
@ pplications Containg custom samples written in various
= ([ Arewap Technical Docutnents programming languages. Samples inclide VBA
Application Fi k .
@ spplication Framevvor White papers and technical discussions mauros,.command buttons and toole, and custom
@ Display applications
= (1) Map Production
%] Expart Taol

@] tap Sheet Production Uity
%] Mutiple Page Layouts
%] Print Taol

@ Selection

@ Symbology

AreObjects Online provides web access to the latest developer help, samples, downloads,
frequently asked questions, discussion forums, and other useful developer support resources.

@ Customization Framework
@ Editing

@ Gendetabase

@ Geometry

@ Metwork

ArcSDE Online prowides access to the web-based ArcSDE help for C, Java, and SQL
developers

Copyright @ Environmental Systems Research Institute, Inc. |

Some utility applications and technical papers are included in the next section, but it is
the last section where developers will gain the majority of information. Samples included
with ArcObjects Developer Help contain more than fifty tips and tricks and 100 full code
examples.

April 2000 6



Developing Applications with ArcInfo: An Overview of ArcObjects

J-8462

ArcObjects Online  The online version of the help system is accessed via a link from the top level page of the
ArcObjects Developer Help system. This online help resource has the same structure as
the help system supplied on the CD, but the content is updated on a regular basis.

Figure 5
Extract from ArcObjects Online Developer Help

73 ArcSK_MP)J - Miciosoft Intemet Explorsr [
Hlo Bt Wew Foales Db HEde |

o S < I N 5 I | - & B . E

Back  fowad  Step  Rehesh  Home | Search Faverkes Hitoy | Mal  Pint  Edt  Discuss
| Address [&] hitp:/ fwum. esii.com/devsupport/arcinfa/samples w/ebHelp/ArcDbigctsDnline. i =] @B “ Links *
Cunlenlsl ndex | search | =
= . . El
Blvielcors Object Model Overviews =5

@ Cetting Started

@ opject Moskel Overviews

@ Component Gbject Modsl Disgrams
=R srocpects e Geo Data Object Model
@ fesirical Documerts
® sorpies

Simple Object Model Diagram

The Geo Data Object model is a generic model for geographic information that can be used with a wide variety
of data sources and applications. The model is & complex web of relationships and inheritance. But don't let
the complexity discourage you, with a little time and experimenting, and hopefully some helpful samples, you
will be able to navigate and understand the model. This document will explain the various classes and their
relationships in the model. There are three types of classes in the diagram: Abstract, Class, and CoClass
Abstract means there are no objects of that class, for exarnple, Dataset is an abstract class. Class means
you rnust ask for an object of that class. For example, you ask a WorkspaceFactory for a Workspace
CoClass means you can create or instantiate an object of that class. For example, the PropertySet class

The major components of a GeoDatabase are Workspaces and Datasets. Understanding this model is key to
working with the different kinds of Datasets such as Feature Datasets, Feature Classes, Tables, Grids, Images
and Tins. This document focuses on working with Feature Datasets, Feature Classes and Tables

Workspaces, Factories and Name objects

At the top of the fond chain {diagram) are Warkspace factories and Name objects. Workspace factories give
out workspaces, you don't CoCreate a workspace. AWorkspace is a collection of datasets and provides
methods to list, add, delete, copy and rename datasets it contains. A Workspace may be implemented as a
directory in the filesystem or as an RDBMS Database. You need to open a workspace before accessing
datasets in that workspace. There are numerous methods to access a workspace from a workspace factory,
Create, Open, OpenFromFile

Workspaces come in various farrms:

Arclnfo Workspace: A directory that contains coverages and an Info sub directory.

Shapefile Warkspace: A directory containing ESRI shapefiles

Access Workspace: A Microsoft Access Database containing Tables and Feature Datasets.
SDE Waorkspace: An ArcSDE instance that contains Tables, Feature Datasets

Raster Workspace: Aworkspace containing Grids and Images.

Tin Waorkepace: A workspace containing TINs.

A Name object is an object that specifies an instance of a geodatabase object. It is a lightweight version of the
geodatabase ohject it refers to, while still providing access to some of the properties/methods available in the
geodatabase object. From a name object, an instance of the geodatabase object specified by the name object
can be created/retumned, and vice versa

A key benefit of name objects being lightweight is pedformance. For example, feature dataset objects contain a
number of instances of feature class objects, whereas feature dataset name objects do not. Mame objects also
support persisting, either via a stream or by converting the name object into a string. Another use for name

1| obissts is that since they can he created indspendent of their gendatahase obiect, they may specify a |
& hittp: /v esii. com/devsuppoit/arcinfo/samples/w/sbHelp tocdhiml htmit || % Intemet

<

N

These updates include the addition of more tips and tricks and tools and samples, as well
as help "hot topics." If there are areas of functionality that after feedback from users
require more detailed discussion, the ArcObjects Online Developer Help system is the
place where these enhancements will be posted.

ArcObjects All the resources mentioned so far provide the developer with information and guidance
Component Help when working with ArcObjects as a whole. For detailed reference information of the
methods and properties of the classes that compose ArcObjects, these are two main
resources.

ESRI Technical Paper 7



Developing Applications with ArcInfo: An Overview of ArcObjects

J-8462

Figure 6
Example Help for IEditor Object—Component Interface

siiCore Help H[=1 E3

Help Topics Bk DOptions << >

|Editor Interface

See dlso Properties Methods Example
Parent Gets the application =]
RedoOperation Redo an editoperation.
ScratchWorkspace Returns the editor's scratch workspace
SearchSelection Searches the edit selection the given location.
SelectionAnchor Returns the selection anchor point.
SelectionCount Gets the number of selected features which are
editable
StartEditing Starts an edit session
StartOperation Starts an edit operation. |
StopEditing Stops an edit session
StopOperation Stops an edit operation
Task Returns an edittask by index.
TaskCount Retums the number of edit tasks
UndoOperation Undo an edit operation
Remarks

The following two examples are code excerpts that show how to get a reference to an [Editor interface
with Wisual Basic for Applications and Visual Basic respectively.

When using YBA, you are already inside the application and thus an Application ohject is autamatically
availahle.

Dim pEditor As IEditor
Dim pipp &s IApplication
Dim pID As New UID
pID = "esriCors Editor”
Set pApp = Application 'QI
Set pEditor = pipp. FindExtensionByCLSID(pID)

With Visual Basic you are working outsicde of the application and you therefore need fo establish a hook
toit. When implementing ICommand to create a tool button. a hook 1o the application is passedto
OnCreate

Private m_pipp as IApplication
Private n_pEditor a=s IEditor LI

The definitive resource is the ArcObjects Component Help system. This documents all
the ArcObjects, with the details required by developers to work with the individual
functions. This help system is accessed via ArcObjects Developer Help. In addition to
detailed descriptions of classes and their interfaces, with the functions and arguments,
many of the more common classes have detailed example code snippets to show the
developer how to work with the component.

Class Diagrams For the developer starting work with ArcObjects, the class diagrams are perhaps the
resource that is most useful. Not only do they document many of the classes and
interfaces, but more importantly they show clearly the relationships that individual
classes have with each other. These relationships are not shown in any other form of
documentation.

The class diagrams divide the ArcObjects object—components into distinct functionality
groups. For instance, there are diagrams depicting the object—-components used by the
ArcMap and ArcCatalog applications, along with diagrams for the geometry, display,
output, and geodatabase subsystems, to name a few. The ArcInfo Object Model

(Figure 7) provides an overall picture of the class diagrams. More detailed diagrams are
available for each functionality area.

April 2000 8



Developing Applications with ArcInfo: An Overview of ArcObjects

J-8462

Other Resources

What Is Possible
with ArcObjects?

Extending ArcMap
and ArcCatalog

Commands and Tools

Figure 7
The ArcInfo Object Model, the Highest Level Overview of ArcObjects

"~ Custouizatiou
Framewouk

e Arclnfo,,... - - S

| s e T - :

Display
SO0 e

=
-

Spaual -
eherais

There are many other resources available to the developer. These resources range from
object browsers that allow the object model to be viewed in a form familiar to the
developer (for example, the object browser that ships with Visual Basic or OLEView, a
small utility application available from the Microsoft Web site), to books on COM and
Windows application development. Many of the popular publishing houses have Web
sites that support their books with additional material and many source code examples in
a variety of languages.

ArcObjects offers the developer four main opportunities: extend existing ESRI
applications (ArcMap and ArcCatalog); extend the data model used by applications based
on ArcObjects; embed ArcObjects within an existing application; and create entirely new
applications. What follows are some examples that illustrate these different
opportunities.

These two new Arclnfo software applications provide the developer with an application
framework that can be extended with little effort. Extensions can range from simple
commands and tools to complete industry-focused solutions comprising customized tools,
renderers, and user interfaces.

Commands and tools are most commonly accessed via pushbuttons on toolbars. A very
simple command that displays a dialog box with the number of selected objects would

ESRI Technical Paper 9



Developing Applications with ArcInfo: An Overview of ArcObjects

J-8462

have code like this associated with the OnClick method. This method is called when the
user presses the pushbutton associated with the command.

' Declare an ImxDocument variable

Dim pMxDoc As ImxDocument
' QI the Idocument for the IMxDocument

Set pMxDoc = m_pApp.Document

'Access the property SelectionCount held on the Imap interface

MsgBox "Number of selected objects = " & pMxDoc.FocusMap.SelectionCount

The document object of class has an interface, ImxDocument, that has a property that
refers to the current map that the user is referencing; this in turn has a property that holds
the number of selected features. The value of this property is displayed to the user using
the message box dialog that is supplied by Visual Basic.

The selection count example is one of the simplest commands possible, but that does not
mean there is a limitation to the complexity these commands can have. Figure 8 shows
an example of a more complex command that has been developed for the ArcMap
application. This command, when activated, displays a dialog that supports the automatic
generation of USGS quadrangle sheets.

April 2000 10



Developing Applications with ArcInfo: An Overview of ArcObjects

J-8462

Figure 8
Screen Shot Showing an Example of a New Command Added to ArcMap

| QUAD Production2 - ArcMap - [Of %]

Eie Edt Yew lnsesm Sekection Tock: Window Hep |
= = R e N [ ':ﬁf‘@‘\?H@Q::XWOﬁ‘@k‘OM&f.‘
X [T R R L |

uadD ata
smpaint
spoint
hypoint
in=

#11 - Quadrangle Sheet Production M= =

wll File View Opiions Help
ms

¢l Geagraphical Search | Cenmoid Search | Hierarchical Search | Shest Search  Plat Settings | A

=]

o

ER=RGREECEERN
HEEEE

=

st Dutput Typ Output Format

& Single Shest Piint Setup. & Tuncate Edges

1 Multiple Ghezts

gle flap™ ™ " Scale ToFit

€ Conmosit=Sheet I™ Production Wizard

S heet Number
5] Com Creek Springs 3611503
u Com Creek Springs Nw' 3611504 [-115.5, 36.375] to [-116.375, 36.5]

| 2 quad shest(s] found [ A

Display [ Source | :nl EI| [ »LI
Do - K O-A- Sl ez AS.Z.o | BREEE0EEE iE

Copies the selection to the Clipboard "8 2573 22, 8184789.09 Meters |14 02, 13.69 Inches 4
g stant||| GROUAD Production - Arch..| 4 Quadiangle Sheet Procuct. | [49, Paint Shop Pro. léaasae= [BaE ™ sz |

In this example, a new Form Menu (Quadrangle Sheet Production) has been added to ArcMap along with
some new functionality.

This command not only supports the selection of the appropriate sheet, but it also
controls the generation of all the marginalia required for the sheet, in addition to the
printing of the sheet on a suitable device.

Both the above example commands have one thing in common: they implement the
ICommand interface. The application framework recognizes this and is able to interact
with the command and, in this way, the command is plugged into the application with
little effort. When interfaces were covered in the COM section, it was stressed that the
interface acts as a contract between client (ArcMap) and server (command). The
ICommand interface has the properties and methods required by the application
framework in order for the command to be integrated within ArcMap. In Visual Basic, it
is a simple matter of using the Implements keyword to specify the interface to implement.
In order to fulfill the contract between client and server, the developer must then
implement all the methods and properties for that interface.

Below is an example of a command that zooms the display by a factor of two every time
the command is selected. As can be seen, many of the interface's properties are simple to
implement. The only function that has any amount of code is the OnClick. This function
grabs the envelope defining the extents of the current map view and then halves these
extents and redraws the screen.

ESRI Technical Paper 11



Developing Applications with ArcInfo: An Overview of ArcObjects

1-8462
'Member variable holding the ArcMap application interface
Dim m pApp As IApplication
Private Property Get ICommand Bitmap() As esriCore.OLE HANDLE
End Property
Private Property Get ICommand Caption() As String
'Text label displayed on the command button
ICommand Caption = "Zoom In"
End Property
Private Property Get ICommand Category() As String
' Category of command - used to order command in customize dialog
ICommand Category = "Sample Commands"
End Property
Private Property Get ICommand Checked() As Boolean
' Does the command have a check mark next to it - usual for menu entrys

ICommand_Checked = False

End Property

Private Property Get ICommand Enabled() As Boolean
'Enable our command button
ICommand Enabled = True

End Property

Private Property Get ICommand HelpContextID() As Long

End Property

Private Property Get ICommand HelpFile() As String

End Property

April 2000 12



Developing Applications with ArcInfo: An Overview of ArcObjects

J-8462

Private Property Get ICommand Message() As String

' Message that appears on the Status Bar while crossing the tool with
the cursor

ICommand Message = "Zooms the display x2"

End Property

Private Property Get ICommand Name () As String

' Unique name given to the command - makes finding it in VBA easy with
the ArcID

ICommand Name = "Our Tools_Zoom In"

End Property

Private Sub ICommand OnClick ()
' Method called when user clicks button

Dim pMXDoc As IMxDocument

' QI for ImxDocument interface from IDocument

Set pMxXDoc = m_pApp.Document

' Get the Active view extents envelope
Dim pEnv As IEnvelope

Set pEnv = pMXDoc.ActiveView.Extent

' Shrink the envelope by half

pEnv.Expand 0.5, 0.5, True

'Set the activeview to this new envelope extent
pMXDoc.ActiveView.Extent = pEnv

' Redraw the map display to reflect the new extents
pMXDoc.ActiveView.Refresh

End Sub

Private Sub ICommand OnCreate (ByVal hook As Object)

'Hold onto the application for use in subsequent calls to my dll

ESRI Technical Paper 13



Developing Applications with ArcInfo: An Overview of ArcObjects

Extending the Data
Model

J-8462

Set m_pApp = hook

End Sub

Private Property Get ICommand Tooltip() As String
' Tooltip text for bubble help
ICommand Tooltip = "Zoom In x2"

End Property

The code associated with the quadrangle sheet production command is similar for many
of the methods that support the tool tips, descriptions, help, and so forth. The main
difference is the OnClick method. In the case of the quadrangle sheet command, this
displays the dialog developed in Visual Basic. Subsequent user interaction is with this
dialog.

To support different types of interaction with the application, the developer must
implement other types of interfaces. All these interfaces are explained in the ArcObjects
Developer's Guide, and there are numerous examples within the help system.

The ArcInfo data model can be extended in one of two ways. Specific behavior relevant
to individual object classes of the data model can be modeled within the system
framework using custom features, relationships, and so forth. More generic support for
new data types can also be added by extending the data formats supported by the
geodatabase.

Figure 9 illustrates a custom feature class that implements a drawing method. This
drawing method ensures that the Mud Bank polygon feature draws itself differently
depending on what type of features lies beneath it. If the Mud Bank feature is on land, a
swamp symbol is used, whereas if it is on water, the symbol changes to marsh. This
decision is taken every time the symbol is drawn, meaning that changes to any of the
related features automatically update the representation. Figure 9 also illustrates a
custom property inspector. This property inspector has a history list that enables the
object's history to be browsed. When a list entry is selected, the geometry state at that
time in history is displayed in black in the map window, and the geometry when the
object was created is clearly seen.

April 2000 14



Developing Applications with ArcInfo: An Overview of ArcObjects

J-8462

Embedding Within an
Application

Figure 9
A Screen Shot Showing an ArcObjects Application Example That Implements a
Data Model Extension
%_History. mxd - ArcMap 1 [=]
J File Edit View lnsert Selsction Tools Window Help ‘
DSHS tmEx|o (¢ [ Far [@anu0ded Brons s
Efi HT| e | Task: [Create New Feature = ‘ Taget: [MudBark : MudBank = |x @ ‘ K ‘|
= |
MudBank
= Land
=M Sea
m —bud Attrbutes —————————————————————
343 137208965732 Type lSIIt—
Depth |234—
Viscosity [ ——
- Lineage
Modified By [orcsrs |
Modiied Date W
Browse Deleled Features.. | Hide Histoy |
1 features
Display - 20| &4 | ﬂv
Jomia - KB[O-A-EFe  FWszulA-b. 4 |[BBEEEDH S|

7

3 42834 350.20Meters

The new feature type "Mud Bank" is rendered based on logic that extends the standard polygon draw method.

Since ArcObjects is based on COM, any application that is capable of integrating COM

components can embed ArcObjects. There is no limitation to what can be done with
ArcObjects when used in this context compared to working with ArcObjects in the

context of ArcMap and ArcCatalog. Figure 10 illustrates embedding ArcObjects inside

Microsoft Word to provide a simple map viewer within Word documents.

Like ArcMap, Microsoft Word comes with VBA as its native development environment,

meaning that the developer will have a similar experience working with ArcObjects
inside Microsoft Word to that of working with the objects within ArcMap.

ESRI Technical Paper

15



Developing Applications with ArcInfo: An Overview of ArcObjects

J-8462
Figure 10
A Map Viewer Embedded Within a Microsoft Word Document
2§ Docl - Microsoft Word =[=]>]
File Edit View Insert Format Tools Table window Help 5“
DEH2 SRy g o QPEOE=ESL BT 0 3.
Mormal = Times New Roman = 12 = | B I U HEE ‘ -2 -A-[w.

Tl T R WA IR AR < b E nbeddcd in HS ord K|
ahout companents installed on the syst Ql@l@l{"?lol

Dhem  [eefil

application would have to instantiate eal
supported the required functionality, whi
categories supportthe extensibilty of Ct
application to create and work with clags
date a new class is added to the catego
take advantage of the new class, it will ¢
the categary is read

A developer extends a COM systern by creating new COM servers that serve up new or
improved functionality. These new servers can be created from scratch, or they can use
COM cortainment or COM aggregationto re-use existing functionality. For a 3rd party
developer to make use of existing components using either containmert or aggregation,
the only requirement is that the component that is being cortained or aggregated is
ingtalled on both the deweloper and target client machines.

The simplest form of binary re-use is containment (Figure 3). With containment, the
. contained object (parent) has no knowledge that it is contained within another object
o (child). The child must implement all the interfaces supported by the parent. When

b= I3 & | amcshepes- . x DO EAE|6-Z-A-===0@ .
[Page 2 Sect 22 |[At3@  Inte coles | [eec [iRk B PR TIEE

Creating New The previous examples have focused on extending the existing application frameworks.
Applications It is also possible to create completely new applications that embed ArcObjects. Here the
developer is responsible for all aspects of the application framework, graphic user
interface (GUI), program control, and so on. Figure 11 is an example of a stand-alone
application created with ArcObjects and Visual Basic. This simple map viewer uses
ArcObjects to draw map layers, perform geographic and attribute queries, and edit and
print maps.

April 2000 16



Developing Applications with ArcInfo: An Overview of ArcObjects

J-8462

Figure 11
A Screen Shot of a Completely New Stand-Alone Application Built with Visual
Basic and ArcObjects
. ArcObject Viewer M=l E
Fil=  Edit
RS QAT WER 0= s X |
_;"/- -] = B =

Conclusion: Where The goal of this paper is to give an overview of the ArcObjects technology and to
Next? illustrate the type of projects that can be undertaken. Hopefully you have gained an
understanding of the openness of ArcObjects and the tremendous wealth of GIS
functionality it exposes to developers.

To begin using ArcObjects, you will need to obtain a copy of ArcInfo software. More
details about ArcObjects can be found in the ArcInfo documentation; especially valuable
are the developer samples. Before starting on an ArcObjects project, it is advisable to
attend an ESRI developer training class.

ESRI Technical Paper 17



Developing Applications with ArcInfo: An Overview of ArcObjects

J-8462

April 2000 18



	Developing Applications with ArcInfo: An Overview of ArcObjects
	Introduction
	When to Use ArcObjects
	What Is ArcObjects?
	What Is COM?
	Interface-Based Programming
	Extensibility

	ArcObjects Developer Resources
	ArcObjects Developer's Guide
	ArcObjects Developer Help
	ArcObjects Online
	ArcObjects Component Help
	Class Diagrams
	Other Resources

	What Is Possible with ArcObjects?
	Extending ArcMap and ArcCatalog
	Extending the Data Model
	Embedding Within an Application
	Creating New Applications

	Conclusion: Where Next?


