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For the last two centuries, air quality and air pollution have been recognized throughout 
the world as pressing environmental issues. From the industrial revolution in late 
eighteenth century in Europe through the nineteenth and twentieth centuries, the use of 
coal in homes and industry polluted the air. Growth continued. Smog and “pea soupers” 
became common in cities throughout the world. Following the famous London Smog of 
1952 that lasted for five days and led to more than 5,000 deaths, pollution from industry 
and homes was dramatically reduced in an attempt to protect health. 
 
Southern California experiences some of the worst air quality in the United States. Wind 
speeds in and around Los Angeles are low compared to other urban centers, and the 
region is characterized by low rates of atmospheric mixing, so pollutants become 
concentrated in the atmosphere. The long hours of sunshine, which attract visitors to the 
region’s beaches, are also responsible for very high rates of photochemical reactions and 
the production of ozone. Federal ozone standards are commonly exceeded during spring 
through early autumn, whereas carbon monoxide and particulate highs are recorded in 
late autumn and winter.  
 
Air quality data used in the case studies below were collected by the California Air 
Resources Board, Air Quality Data Branch, Statistical and Analytical Services Section, 
beginning in 1980. The Internet site, which provides related information, is 
http://www.arb.ca.gov/aqd/aqd.htm. 
 
These case studies show spatial statistical air quality data analysis using ArcGIS 
Geostatistical Analyst. If you have little experience in geostatistical data analysis, we 
suggest reading “Introduction to Modeling Spatial Processes Using Geostatistical 
Analyst” first.  
 
 
1. Analyzing Time Series Data  
 
Since Geostatistical Analyst was designed to interpolate between variables in two 
dimensions, the following steps need to be used to prepare one-dimensional data for 
analysis: 
• Use the data attribute table option “Add Field…” to create a pseudo-coordinate for 

the data set in the second dimension.  Name the new field “Y”. 
• To calculate values for the new field, highlight it, right-click, and select the calculator 

function. In the field calculator box enter the following equation:  
Y = 0.975 + 0.05*rnd() 

This generates Y-values equal to 1 plus or minus a small random component. This is 
necessary so that Geostatistical Analyst can prevent contouring in impossible 
situations. 
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• To display the data points in ArcMap, open the database layer as a DBF file. For the 
x-coordinate, select the field with daily ozone measurements, and for the y- 
coordinate, select the Y field calculated above. The y-values should be small, the data 
appearing as a line in the data view. 

 
The data is now ready for analysis. Since Geostatistical Analyst does not provide tools to 
visualize the result of modeling in 1D, you will have to use other software, for example, 
Microsoft Excel. In the examples below, we used the Geostatistical Analyst validation 
option “Save Validation” to predict values of ozone for each day in 1999. The resulting 
DBF file was further analyzed using spreadsheet software. However, visualization of the 
nonspatial data using GIS is not necessary, and we advise that you export the validation 
or cross validation tables and cancel the analysis without visualizing the predictions. 
 
If the input data is continuous, such as air pollutants, kriging and cokriging are powerful 
tools that can be used for prediction and assessing prediction uncertainties in one-
dimensional data sets. 
 
In this section, one-dimensional kriging was used to analyze daily measurements of 
ozone at two locations in California-San Francisco and Redlands-using the one-hour 
daily maximum concentration of ozone in 1999. 
 
Our goal was to analyze dependence between observations separated by a lesser number 
of days, from one to seven. We predicted new values for each day using information on 
average dependence between following days. If the average time lag equaled one week, 
the resulting prediction was the average weekly ozone concentration with associated 
uncertainty. We used a filtered version of kriging to achieve this goal. A prediction 
confidence interval provided information on other likely daily ozone values.  
 
Figure 1 shows the data in blue, and the filtered ordinary kriging interpolation, with the 
nugget effect treated as a measurement error (redline). Power transformation with a 
power value of 0.5 was used. Error bars in pink are upper and lower 95 percent 
confidence intervals, assuming that predictions and their standard errors are normally 
distributed; that is the vertical pink lines represent kriging prediction ± 1.96 × kriging 
standard error values. 
 
The green horizontal line shows the upper permissible level of 0.12 parts per million 
(ppm) of the annual maximum one-hour ozone concentration.  
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Figure 1. The Maximum Daily Concentration of Ozone per Hour in 1999 in Redlands, 
California. Ordinary filtered kriging with a power transformation value of 0.5 and a 
semivariogram lag of one day. 
 
Because of uncertainties associated with observations as well as great data variability, it 
is risky to predict a day’s ozone concentration using the measurements from a few days 
before. However, the weather is stable in Southern California, and usually it is not 
difficult to predict tomorrow’s temperature based on today’s weather conditions.  
 
Figure 2 shows semivariogram models for transformed data averaging using a one-day 
lag. The semivariogram model is a J-Bessel of an order of 1.065 with a partial sill 
equaling 0.00257, a range of 5.62 days, and a nugget of 0.00203.  
 

 
Figure 2. Semivariogram Models Using a One-Day Lag. 
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A great variation in values separated by just one day is evidence of measurement errors, 
not just measurement device inaccuracy but also positional errors (data is not separated 
by exactly one day) and time integration errors (the measurements lasted approximately 
one hour). 
 
Figure 3 shows a one-dimensional analysis of the same data in figure 1 using a lag of 
seven days. Averaging using a greater time interval makes prediction smoother. 
 

 
Figure 3. The Same as Figure 1 With Lag of Seven Days. 
 
Because the mountains surrounding it are natural barriers to smog propagation from Los 
Angeles, as shown in Figure 4a, Redlands is one of the most contaminated cities in 
California, with ozone concentrations above standard in summer. However, there are 
places where the situation is different. For example, in San Francisco, the maximum 
ozone concentration in 1999, shown in Figure 4b, was registered on September 30, while 
the maximum ozone concentration in Redlands in 1999 was registered three and one-half 
months before, on June 13. 
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   (a)         (b) 
Figure 4. Areas Around Redlands (a) and San Francisco (b). Maximum one hour 
concentrations of ozone at the monitoring stations in 1999 are displayed. Major roads 
mark the source of air pollution, and hills and mountains are natural barriers to smog 
propagation. 
 
Predictions of one-hour ozone concentration in San Francisco are presented in figure 5. 
The redline shows the filtered ordinary kriging prediction; pink and blue lines are upper 
and lower 95 percent confidence intervals, assuming that the predictions and their 
standard errors are distributed normally. The semivariogram model used for predictions is 
in the upper left corner of Figure 5. A lag interval of six days was chosen for averaging.  
 

 
Figure 5. Daily Maximum One-Hour Concentration of Ozone in 1999 in San Francisco, 
California. In the upper left corner is a semivariogram for the lag of six days. 
 
According to the EPA, the expected annual number of maximum hourly average ozone 
values exceeding 0.12 ppm must be equal to or less than one. The implementation rule 
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allows the state no more than three daily, maximum hourly average measurements in 
excess of 0.12 ppm during three years at each approved monitoring site.  
 
One correct alternative to this rule is the probability for each day of exceeding the 
threshold. Figure 6 presents an ordinary transGaussian kriging estimation of the 
probability that the 0.12 ppm level was exceeded in Redlands in 1987 and in 1999, shown 
as red crests. We used a power transformation with the power value equal to 0.5. 
Semivariograms were estimated using averaging by a time lag of one day. 
 

 
   (a)      (b) 
Figure 6. Daily Maximum One-Hour Concentration of Ozone (blue, left y-axis) and the 
Probability (red, right y-axis) That 0.12 was Exceeded in 1999 (a) and 1987 (b). 
 
On only one day in 1999 was there a probability greater than 0.9 that the ozone level 
would exceed 0.12. The situation was much worse in the summer of 1987, when the 
ozone level was above the threshold approximately every other day. 
 
The goal of ecological analysis is to estimate the risk of health hazard to the people who 
live in the contaminated territory. Dose, the parameter used to establish safety rules and 
regulations, is either proportional to the area under the prediction lines in figures 1, 3, and 
5 above, 

Dose = function (time)× Area 
or it is a function of that area,  

Dose = function (time)×  function (Area) 
Rather than use a single measurement, which can contain errors, it is better to integrate 
exposure. The proportional coefficient function (time) can, for instance, be made equal to 
the proportion of the days the population at risk spent out doors.  
 
Indoor exposure can be even higher than outdoor exposure. If indoor exposure is not 
negligible, it should be estimated separately and added to the outdoor exposure. 
 
 
2. Mapping SO2 (focusing on weak spatial autocorrelation) 
 
Sulphur dioxide (SO2) is a colorless, nonflammable gas. The sources of sulphur dioxide 
include fossil fuel combustion, smelting, manufacture of sulphuric acid, conversion of 
wood pulp to paper, incineration of refuse, and production of elemental sulphur. Coal 
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burning is the single, largest man-made source of sulphur dioxide, accounting for about 
50 percent of annual global emissions, with oil burning accounting for a further 25-30 
percent. A natural source of sulphur dioxide is volcanoes. SO2 has a penetrating odor that 
irritates the eyes and air passages. Even moderate concentrations of sulphur dioxide may 
result in health problems for asthmatics.  
 
Ambient air pollution is often compared with disease rates, as in a series of articles 
published on the correlation between such air pollutants as SO2, O3, NO2, PM10, and 
PM2.5 and respiratory symptoms, cancer rates, and some other chronic diseases in 
nonsmokers such as Seventh-Day Adventists. Results of the studies suggest a relationship 
between long-term exposure to air pollution and the development of specific chronic 
diseases including bronchitis, asthma, and cancer. In these case studies, pollution 
measured at the monitoring stations was interpolated by an inverse distance weighted 
(IDW) algorithm to Zip Code centroids, and predictions were used to assess the long-
term effects of air pollution on various chronic diseases. 
 
We used 90 measurements of the high 24-hour concentration of SO2 for November 1980, 
the month when the highest concentration of the chemical was recorded, to produce maps 
using IDW and kriging interpolators. Figure 7a presents the result of IDW interpolation 
using a power value of 6.7, derived using the Geostatistical Analyst “Optimize Power 
Value” option that finds the minimum root-mean-square error of several cross validation 
exercises using different power values. This map has better cross-validation statistics than 
those created using the default power value of 2. 
 
The California air quality standard for SO2 is 0.04 ppm. Brown and red indicate areas 
with predictions above that standard. Very large, warm-colored areas around a few 
measurements with the highest values of ozone cause suspicion. Large, blue-colored 
areas considered safe. 
 
Figure 7b presents a simple kriging interpolation with normal score data transformation. 
Experimental covariance and a J-Bessel model are presented in the upper right corner.  
 

 
   (a)      (b) 
Figure 7. Prediction of Maximum 24-hour Concentration of SO2 in November 1980 
Using IDW (a) and simple Kriging interpolators (b).  
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Spatial correlation in Figure 7b is weak and smooth, with a large nugget effect and a 
range of data correlation. Although this map looks more logical and has more accurate 
cross validation statistics than the map in Figure 7a, we do not think that it can help in 
epidemiological studies. This is because the weaker the spatial correlation, the more data 
is needed for meaningful interpolation. The number of SO2 measurements is insufficient 
for ecological analysis. 
 
The main difference between interpolation using deterministic and statistical methods is 
that kriging prediction is accompanied by estimated prediction standard error. Such a 
map is presented in figure 8a. Areas with few prediction errors, shown in blue, occupy a 
relatively small part of the territory under study.  
 
The number of SO2 measurements decreases each year. Figure 8b presents 62 available 
measurements of high 24-hour concentration of SO2 in May 1999. The covariance model 
in the upper right corner of Figure 8b shows very weak spatial correlation. As a result, it 
is impossible to produce an interpolation map with reasonably few prediction errors using 
this data. 
 

  
   (a)      (b) 
Figure 8 (a)Simple Kriging Prediction Standard Errors of Maximum 24-Hour 
Concentration of SO2 in November 1980;(b) Observations of the 24-Hour Maximum 
Concentration of SO2 in May 1999. Covariance in the upper right corner indicates that 
there is no spatial autocorrelation. 
 
Figure 9a presents an ordinary kriging prediction of the maximum 24-hour annual value 
of SO2 in 1999 to the centers of Zip Codes in Southern California. Measurement values 
are printed in black. Figure 9b shows the prediction and 90 percent confidence interval of 
SO2 in a randomly selected 10 percent of Zip polygons, based on the assumption that 
predictions and their standard errors are distributed normally. 
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   (a)      (b) 
Figure 9 (a) Ordinary Kriging Prediction of SO2 Maximum Annual Value in 1999 to the 
centers of Zip Codes; (b) Prediction and Its 90 Percent Confidence Interval of SO2 in a 
Randomly Selected 10 Percent of Zip Polygons. 
 
Prediction errors are very large. Reliable interpolation is not possible using available 
sulfur dioxide data nor is searching for a correlation between exposure from SO2 and 
people’s health.  
 
3. Probability Mapping 
 
Because predictions are not true values, the uncertainty associated with predictions 
should be provided. Figures 8a and 10b are examples of prediction standard error maps, 
quantified by the minimized prediction root-mean-squared error that makes kriging 
optimum. 
 
In addition to the combination of prediction and prediction standard error maps, two other 
possibilities of presenting this information on just one map are provided by Geostatistical 
Analyst; namely, probability and quantile mapping. Probability maps show the degree to 
which the interpolated values exceed a specified variable’s threshold. Quantile maps are 
particular probability maps in which the thresholds are the quantiles of the predicted 
distribution.  
 
Figure 10a shows the probability that in 1999 the maximum 24-hour PM2.5 value would 
exceed the California Ambient Air Quality Standard of 65 µg/m3. We used disjunctive 
kriging with normal score transformation to create the map. Prediction standard errors are 
displayed in Figure 10b, together with populated places shown as circles. The redline is 
the standard error of prediction of 0.3. Blue areas showing prediction errors are large, 
therefore, decisions about PM2.5 should be made there with great care. 
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  (a)       (b) 
Figure 10 Probability That the PM2.5 Value Exceeded 65 µg/m3 in 1999 (a); Prediction 
Standard Errors and Populated Places (b). Disjunctive kriging with normal score 
transformation was used.  
 
Figure 11 shows PM10 quantile maps with underestimated (Figure 11a) and overestimated 
(Figure 11c) predicted mean values. Figure 11b shows neither overestimated nor 
underestimated prediction of PM10. Often it is better to overestimate contamination than 
miss areas with high contamination, and a quantile map is the right tool for that. 
 

   
  (a)    (b)    (c) 
Figure 11. PM10 0.25 (first quartile) (a), 0.5 (median) (b), and 0.75 (third quartile) 
Quantile (c) Maps, Created Using Lognormal ordinary Kriging. 
 
 
4. Using Additional Variables to Improve Predictions 
 
For data interpolation of air pollution in California, we have a limited number of 
measurements of several air pollution variables and detailed information on geographic 
variables such as elevation, distance to the ocean, and distance to the road (this variable is 
useful because cars are major sources of air contamination in most parts of California). 
Among the possible approaches to interpolate multivariate data is cokriging, which 
combines spatial data on several variables to make a single map of one of the variables. It 
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is appealing to use information from other variables to help make predictions, but it 
comes at a price. Cokriging requires more estimations than kriging including estimating 
the autocorrelation for each variable as well as all the cross correlations.  
 
Cross correlation between variables can be very informative. Figures 12a and 12b show 
directional semivariogram clouds and models of ozone and NO2, and figure 12c displays 
the directional cross covariance cloud and cross covariance model between maximum 
annual one-hour concentrations of ozone and NO2 in 1996. The cross correlation between 
NO2 and ozone is asymmetric; the highest cross covariance occurs for ozone and NO2 at 
different locations. The highest correlation occurs when taking NO2 values that are 
shifted to the west of the ozone values. The shift finds the distance and direction where 
the calculated cross covariance is at its maximum value. This adds two parameters to the 
cross covariance model to describe the shift in the x- and y-coordinates. 
 

   
  (a)    (b)    (c) 
Figure 12 Directional Semivariogram of Ozone (a). Directional Semivariogram of 
Nitrogen Dioxide (b). Directional Cross Covariance of Ozone and Nitrogen Dioxide (c) 
 
Ozone and nitrogen dioxide maximum values shift because ozone is produced as a result 
of chemical reactions between pollutants. That means ozone reaches maximum 
concentration several hours after NO2. During this time, pollutants shift to the east 
because, typically, the wind direction in summer is from the ocean.  
 
Figure 13a presents the result of ozone prediction using a cokriging model, with ozone as 
the primary variable and a grid of distances from major California roads as the secondary 
variable. Major roads are displayed at the top layer of the map. Cross validation statistics 
show that using distance from a road as a secondary variable improves the prediction of 
ozone pollution. Figure 13b shows the cross covariance cloud and the exponential model 
used to create the map in Figure 13a. The largest correlation occurs at the nonzero 
distance between the monitoring stations and the data on the grid. Cross correlation is 
anisotropical and shifted, so it takes some time to find the optimal cross covariance 
model in this situation. 
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(a)      (b) 
Figure 13 Ordinary Cokriging Prediction of the Maximum One-hour Annual Value of 
Ozone in California in 1999 Using Distance to the Road from the Monitoring Stations as 
the Secondary Variable (a). Cross covariance Between Ozone and Distance from the 
Major Roads (c) 
 
 
5. Space-Time Data Analysis Using 2D Geostatistics 
 
The current version of Geostatistical Analyst cannot work with 3D or space-time data. 
However, with a little creativity, some space-time data can be analyzed and visualized. 
Two examples of such analysis are presented in Figure 14.  
 
Figure 14a shows the result of predictions using the estimated coefficients of a linear 
regression trend in maximum one-hour July values of ozone from 1980 to 1999 in 105 
monitoring stations. Ozone tends to decrease in the southern and middle parts of 
California and increase in the north. Fortunately, the level of ozone there is much lower 
(see Figure 13a). 
 
Maximum ozone concentration each July from 1980 to 1999 was used to create 
prediction maps. The result of the modeling was exported to grids and displayed using 
animation in ArcGIS 3D Analyst (currently at \\terrytate\ProductVideos\Geostatistical 
Analyst\CA ozone concentration from 1980 to 1999). The tendency of decreasing ozone 
concentration is clear here as well. 
 
Figure 14b shows a surface prepared using kriging based on monthly data of PM10 in the 
city of Riverside, using years as the x-axis, months as y-axis, and maximum annual 24 
hours as the data value. The result of predictions was visualized using 3D Analyst. 
We can see again that pollutant concentration in one of the more contaminated cities of 
Southern California has tended to decrease over time. 
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   (a)      (b) 
Figure 14 Interpolation of Ozone Trends in 1980-1999 (a). Negative values in cool colors 
represent areas where contamination decreases and positive values in warm colors where 
contamination increases (a). Ordinary kriging surface based on monthly measurements of 
PM10 in the city of Riverside (b) 
 


