
The GIS for AutoCAD

ArcCAD
®

®

™

Programmer’s
Guide

Copyright © 1995 Environmental System Research Institute, Inc.
Reprinted July 1995
All Rights Reserved
Printed in the United States of America

The information contained in this document is the exclusive property of Environmental Systems Research Institute,
Inc. This work is protected under United States Copyright Law and other international copyright treaties and
conventions. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, or by any information storage or retrieval system, except as
expressly permitted in writing by Environmental Systems Research Institute, Inc. All requests should be sent to
Environmental Systems Research Institute, Inc., 380 New York Street, Redlands, CA 92373 USA, Attention:
Contracts Manager.

The information contained in this document is subject to change without notice.

RESTRICTED RIGHTS LEGEND

Use, duplication, and disclosure by the Government are subject to restrictions as set forth in FAR § 52.227-14
Alternate III (g)(3) (JUN 1987), FAR § 52.227-19 (JUN 1987), or DFARS § 252.227-7013 (c)(1)(ii) (OCT 1988),
as applicable. Contractor/Manufacturer is Environmental Systems Research Institute, Inc., 380 New York Street,
Redlands, CA 92373 USA.

ESRI, ARC/INFO, ArcCAD, ArcView, and PC ARC/INFO are registered trademarks of Environmental Systems
Research Institute, Inc. The ESRI logo and the ArcCAD logo, PC ARCEDIT, PC ARCPLOT, PC DATA
CONVERSION, and PC NETWORK are trademarks of Environmental Systems Research Institute, Inc.

AutoCAD and AutoLISP are registered trademarks, and ADS is a trademark of Autodesk, Inc. dBASE is a trademark
of Ashton Tate, a division of Borland International, Inc. Windows is a trademark of Microsoft Corporation.

Other companies and products herein are trademarks or registered trademarks of their respective companies.

Contents

Introduction

What is AutoLISP? -- ii
What is ADS? -- ii
AutoLISP vs ADS --- ii
Organization of ArcCAD databases -------------------------------------- iii
What is a coverage? --- v
What is topology? --- vi
Before you start -- vi
Organization of the guide --- vii
ArcCAD limitations -- vii

Feature limitations --- vii
Other general limitations -- viii

Coordinate rounding --- viii
Themes -- viii
GIS data sets --- viii
Item names -- viii

Section 1: ArcCAD Extensions to AutoLISP

Chapter 1 Theme access -- 1
Chapter 2 Feature access --- 11
Chapter 3 Item access -- 41
Chapter 4 SQL access -- 49
Chapter 5 Additional functions -- 57
Chapter 6 GUI access -- 63
Chapter 7 Command interface --- 81
Index-- ix

Section 2: ArcCAD Extensions to ADS

Chapter 1 Theme access -- 1
Chapter 2 Feature access --- 11
Chapter 3 Item access -- 55
Chapter 4 Command interface --- 63
Index -- xi

Introduction

ArcCAD Programmer’s Guide i

The real power of either AutoCAD® or ArcCAD® lies in the way you customize
your software to meet the specific requirements of your work. AutoCAD
provides you with the tools in AutoLISP® and AutoCAD Development System™

(ADS) to let you write your own programs or customize virtually every aspect
of your software. Over the years, these powerful AutoCAD tools have given
third-party application builders a tremendous developmental environment within
which to write a wide variety of vertical applications on top of the generic tools
provided in the general purpose AutoCAD design package.

Along the same lines, the ArcCAD AutoLISP and ADS extensions described in
this guide let you customize the software and assist you in building custom
applications on top of ArcCAD. The set of AutoLISP and ADS functions
described in this guide is a small subset of functions specifically designed to
access and manipulate the ArcCAD geographic information system (GIS) data
sets. Since ArcCAD runs within AutoCAD, and ArcCAD features are
represented by AutoCAD entities, for the most part, you must use this guide in
association with the AutoCAD Customization Guide supplied with your
AutoCAD software.

The most important concept of the ArcCAD data model is the relationship
between AutoCAD entities and ArcCAD geographic features. These
relationships are intelligently linked to enable communication between
AutoCAD entities and ArcCAD spatial features. For the most part, an
AutoCAD entity behaves identically to an ArcCAD feature. For example, an
entity may be as simple as a single line segment or as complicated as a nested
block. The same is true in ArcCAD. A feature may be as simple as an arc
(linear) feature or as complicated as a polygon feature comprising a set of linear
features, making up the polygon boundary, and one or more label points.

In AutoCAD, every entity in a drawing has a unique entity name. Using a
variety of AutoLISP and ADS functions, you can access the data associated
with that entity. You can group a set of entities and store them in selection sets
for further use in a given AutoCAD session. A similar approach is used in
ArcCAD to access GIS data sets. Every feature in the data set has a unique
feature name. You can group a set of features and store them in feature
selection sets. The intelligent link between the entities and features gives you
enormous power. For example, given an entity name, you can access its
corresponding feature in your GIS data set and vice versa. These kinds of tools
are described in this guide to assist you in customizing the ArcCAD software
and give you the ability to write a variety of GIS applications in AutoLISP and
ADS.

Introduction

ii ArcCAD Programmer’s Guide

What is AutoLISP?
AutoLISP is an implementation of the LISP programming language embedded
within the AutoCAD package. AutoLISP lets users and AutoCAD developers
write macro programs and functions in a powerful high-level language that is
well suited to graphics applications. LISP is easy to learn and use, and is very
flexible (AutoLISP Programmer’s Reference, Release 11, Autodesk®, Inc.).

The AutoLISP programming language is supplied with each copy of AutoCAD.
Refer to Part 2 of the AutoCAD Customization Guide for complete information
about AutoLISP. The ArcCAD extension to AutoLISP is a small subset of
AutoLISP functions specifically designed to access the ArcCAD GIS data sets.
These functions are supplied with every copy of the ArcCAD software. There
is no special configuration or installation procedure required to access these
functions in ArcCAD as long as you have ArcCAD up and running.

What is ADS?
ADS is a C-language programming interface embedded in AutoCAD software
for developing C-based applications. The ArcCAD ADS tools described in this
guide are a set of external functions loaded by, and called from, the AutoLISP
interpreter and extend the power of ADS to enable the developer to create GIS
applications. Although the programming environment and programming
interface differ from AutoLISP, for the most part, ADS functions described in
this guide are functionally equivalent to AutoLISP functions. All the ADS
functions described in this guide have the same name as the comparable
AutoLISP functions, except for the prefix arc_. This similarity between ADS
functions and AutoLISP functions makes it relatively easy to convert programs
from AutoLISP to C.

AutoLISP versus ADS
Although for the most part AutoLISP and ADS tools are functionally
equivalent, the choice of whether to use AutoLISP or ADS is up to the
developer. ADS applications tend to be more efficient in terms of speed and
memory usage; they can also directly access some facilities that AutoLISP
cannot, such as the host operating system and hardware. This makes them well
suited for applications that require considerable computation or interaction with
the host environment. On the other hand, they can be more time consuming and
expensive to develop and maintain. AutoLISP is better suited for applications
where maintenance and development costs are more important considerations
than performance; this is often the case for highly interactive applications that
are bound by user response time (ADS Programmer’s Reference Release 11,

Introduction

ArcCAD Programmer’s Guide iii

Autodesk, Inc.). Since more ArcCAD functions are available to the AutoLISP
programmer, we encourage you to use AutoLISP.

Organization of ArcCAD databases
ArcCAD provides a geographically referenced spatial database on which GIS
operations may be performed. Links to the AutoCAD database are provided to
manage the relationship between the ArcCAD GIS data set and the AutoCAD
CAD database. In ArcCAD, the CAD database is used to store graphical
representations (drawings) of the geographically referenced spatial data sets
(coverages) stored as ArcCAD databases. ArcCAD also provides a set of GIS
operators that can be used to automate, manipulate, analyze and display the
spatial GIS data set to analyze complex spatial relationships.

The ArcCAD data model consists of a CAD database and a GIS data set together
with information that intelligently links the two. The most important concept of
the ArcCAD data model is this relationship between the AutoCAD entities and
the geographically referenced objects that represent geographic features stored
as ArcCAD databases.

The relationship between the CAD and GIS data models is represented by a
theme. The theme defines the relationship between AutoCAD drawing entities
and GIS features stored in the GIS data set.

A GIS data set is a generic term used throughout this guide. A GIS data set
may consist of PC ARC/INFO-compatible coverages and database data files.

Introduction

iv ArcCAD Programmer’s Guide

Here is the conceptual organization of the ArcCAD data model:

21

21

AutoCAD database ArcCAD data sets

Link

Theme
Definition

AutoCAD
Drawing Layers
(entities with properties) ArcCAD

Thematic Layers
(features with topology)

ArcCAD User Interface/
Application Development Environment

Theme Attributes

Identifier Length User Attributes

ArcCAD Data Model

Themes

Introduction

ArcCAD Programmer’s Guide v

What is a coverage?
Under the DOS and MS Windows operating systems, coverages are
implemented as subdirectories having the same name as the coverage under
which all coverage data files reside. The directory structure of an ArcCAD
coverage is outlined below with a brief description of the most common
coverage files:

AAT.DBF - Arc attribute table
ARC - Arc coordinates and topology
ARF - Arc cross-reference file
BND.DBF - Coverage minimum and maximum coordinates
CNT - Polygon centroid table
LAB - Label point coordinates and topology
LOG - Coverage or workspace history file
MSK - Edit area masks
PAL - Polygon topology
PAT.DBF - Polygon or point attribute table
PFF - Polygon filter file
PRF - Polygon or point cross-reference file
TIC.DBF - Tic coordinates and IDs
TOL - Coverage processing tolerances
TXT - Coverage annotation features

Some of the above files contain locational information, while others contain
corresponding attribute information, with pointers that link the two, maintained
in other cross-reference files. The following table explains the relationship
between some of the files that store locational information and their implied
attribute tables.

Location Attributes

TIC TIC.DBF NONE

ARC ARC AAT

POLYGON PAL,CNT PAT

LABEL LAB PAT

ANNOTATION TXT NONE

It is not necessary to understand the details of file structure, but you should be
aware of the relationships between individual files in a coverage. The tools
described in this guide automatically maintain the information within these files
for you. It is important that the developer not alter the contents of these files
without using the tools provided in this guide. For example, if you alter the
geometry of a feature (locational information in an ARC file), you must rebuild
the topology using the build or clean operations to reflect these changes in
other files and maintain the integrity of the database.

Introduction

vi ArcCAD Programmer’s Guide

What is topology?
An ArcCAD coverage explicitly represents all geographic features by sets of
lines (also referred to as arcs) and points, and as relationships between
connected lines and points. For example, an area or polygon is defined by the
set of arcs that makes up its boundary, where an arc is the border between two
polygons. Also, an arc could be part of a path connecting other arcs. For
example, arcs can be used to represent streets and the routes that pass through
them.

The relationships used to represent the connectivity or contiguity of these
features are referred to as topology. Topology is the highest level of
generalization at which geographic features can be stored. By storing
information about the location of a feature relative to other features, topology
provides the basis for many kinds of geographic analysis without having to
access the absolute locations held in the coordinate files (e.g., connectivity,
route finding and contiguity are all derived through topology).

For a detailed explanation of topological relationships on individual feature
classes and how these relationships are maintained, refer to the ‘ArcCAD
concepts’ chapter of the ArcCAD User’s Guide. It is important that you
understand the concept of topological relationships before you start building
applications using the tools described in this guide.

Before you start
Before you start using this guide, you should understand the organization of
ArcCAD databases, how themes are stored, and the relationships between
AutoCAD entities and ArcCAD spatial features. You should also be familiar
with topological relationships between features, the coverage data model and
how coverages are stored in ArcCAD. If you are not yet acquainted with the
ArcCAD data model, you should read the concepts chapter in the ArcCAD
User’s Guide.

We also assume that you are a reasonably proficient AutoCAD and ArcCAD
user; that is, you know the AutoCAD and ArcCAD commands and the general
concepts of AutoCAD. We also assume that you have some experience in
programming in either AutoLISP or ADS, or both. If you are not familiar with
any one of these, we strongly suggest you consult the appropriate AutoCAD
programmer reference manuals to familiarize yourself with AutoLISP or ADS.
This is required because the tools described in this guide are a small subset of
extensions to the AutoLISP and ADS functions provided by Autodesk, Inc.

Introduction

ArcCAD Programmer’s Guide vii

Organization of the guide
As mentioned earlier, the ArcCAD Programmer’s Guide will assist you in
customizing the software or building specific GIS applications using the
ArcCAD AutoLISP and ADS tools. Although the functional tools provided in
both AutoLISP and ADS are identical in nature, the programming environment
and programming interface for AutoLISP and ADS are entirely different. In
order to avoid confusion, this guide is divided into two major sections:

Section 1: ArcCAD Extensions to AutoLISP
Section 2: ArcCAD Extensions to ADS

Each section is self-contained with its own table of contents and index. We
hope this organization will assist you in using this guide.

ArcCAD limitations
The following limitations apply to certain ArcCAD functions and the ArcCAD
data model in general. These limitations may affect your ArcCAD applications.
Keeping these limitations in mind may save you time and effort while designing
specific GIS applications.

Feature limitations
 Maximum number of features in a coverage 262,144

 Maximum number of tic features in a coverage 5,000

 Maximum number of arcs (linear features) per polygon 10,000

 Maximum number of label points per polygon 100

 Maximum number of vertices per arc 500

 Maximum number of concurrent feature selection sets 128

Introduction

viii ArcCAD Programmer’s Guide

Other general limitations

Coordinate rounding

Coverages containing very large coordinate values may experience some small
coordinate rounding during overlay operations due to single-precision data
limits. This is especially true for those coverages also having a small range of
x or y coordinate values. This limit may be avoided by using the xyshift
command to apply a constant offset to the coordinates.

Themes

 The maximum length of a theme name is 31 characters.

 The maximum number of themes that can be defined and linked to GIS data
sets in a single AutoCAD drawing is 511.

 You cannot define more than one theme with the same feature class and GIS
data set, with the exception of record themes.

GIS data sets

 The maximum length of the name of a GIS data set is 8 characters.

 The maximum length of the full pathname to a GIS data set is 64 characters.
This includes the GIS data set name.

 A coverage GIS data set cannot contain both point and polygon features.

Item names

 The maximum length of an item name is 10 characters.

 The only legal characters in item names are alphabetic characters, numbers
and the underscore character.

 Item names cannot begin with a number.

™

ArcCAD
Extensions
to AutoLISP

®

™

Contents

Chapter 1 Theme access 1

Theme manipulation functions --- 2
(thmdef list) -- 2
(thmdel theme option) -- 4
(thmexi theme) --- 5
(thmget theme) --- 5
(thmlst [class dataset]) -- 6
(thmmod theme list) --- 9

Chapter 2 Feature access 1 1

Feature selection set manipulation --------------------------------------- 11
Feature selection sets --- 11
Spatial selection --- 12
Logical expressions --- 13
Arithmetic expressions --- 15
Display width limitations --- 16
Internal variables -- 16

Feature selection set manipulation functions --------------------------- 17
(fssadd featname fss) --- 17
(fssand fss1 fss2) --- 17
(fssclr fss) -- 18
(fssdel featname fss) -- 18
(fssfree fss) -- 19
(fssget theme state mode opt1 opt2) -------------------------------- 19
(fsslength fss) --- 21
(fssmemb featname fss) -- 21
(fssname fss index) --- 22
(fssnot fss) --- 22
(fssor fss1 fss2) --- 23
(fssput fss) --- 24
(fssxor fss1 fss2) --- 24

Feature name functions --- 25
(entfeat ename theme) --- 25
(featent featname) --- 26
(featlast theme) -- 26
(featnext theme featname level) -------------------------------------- 27
(featthm featname) -- 29

Feature data functions --- 29
(featdel featname) --- 29
(featget featname itemlist) -- 30
(featmake theme featlist itemlist) ------------------------------------ 36
(featmod featlist itemlist) --- 39

Contents

Chapter 3 Item access 4 1

Item manipulation functions -- 43
(itmdef theme list) --- 43
(itmexi theme itmname) --- 45
(itmget theme itmname) --- 45
(itmlst theme) -- 46

Chapter 4 SQL access 4 9

SQL access functions --- 51
(esri_cnnactive connectionname) ------------------------------------ 51
(esri_cnncls connectionname) --------------------------------------- 51
(esri_cnnexi connectionname) --------------------------------------- 51
(esri_cnnlst status) -- 51
(esri_cnnopn connectionname username password) -------------- 51
(esri_curabs cursorname recnum) ----------------------------------- 52
(esri_curcls cursorname) --- 52
(esri_curcollst cursorname) -- 52
(esri_curcolexi cursorname columnname) -------------------------- 52
(esri_curcolset cursorname columnname newvalue) -------------- 52
(esri_curcoltype cursorname columnname) ------------------------ 53
(esri_curcolwid cursorname columnname) ------------------------- 53
(esri_curcolval cursorname columnname) -------------------------- 53
(esri_curexi cursorname) --- 53
(esri_curfirst cursorname) -- 54
(esri_curlst) -- 54
(esri_curnext cursorname) --- 54
(esri_curopn cursorname connectionname query access
 update) -- 54

Chapter 5 Additional functions 5 7

(esri_exec command) --- 57
(arcadver) -- 58
(dirlst) -- 58
(arc_filecpy source destination) ------------------------------------- 59
(arc_filedel filespec) -- 60

Theme recovery functions -- 60
(esri_userrepair theme type suggestions) --------------------------- 60
(esrid_thmrecov theme type suggestions) -------------------------- 61
(esrid_thmrecovsql theme type suggestions) ---------------------- 61

Chapter 6 GUI access 6 3

ArcCAD GUI functions --- 63
Source code -- 63
(arcd_browse1 theme irec iopt) -------------------------------------- 64

Contents

(arcd_cover path iscover lonly) -------------------------------------- 65
(arcd_defthm validtypes theme defvals) ---------------------------- 66
(arcd_equat theme arith) -- 68
(arcd_item theme validtypes lonly) ---------------------------------- 70
(arcd_items theme validtypes dlist) --------------------------------- 71
(arcd_iteminfo theme item) --- 73
(arcd_msg title accept reject msg) ----------------------------------- 74
(arcd_symbol type dsym lonly) ------------------------------------- 75
(arcd_theme validtypes etype define lonly theme) ----------------- 77
(arcd_thminfo theme) --- 80

Chapter 7 Command interface 8 1

cmd function --- 81
(cmd list) --- 81

Index i x

Chapter 1

ArcCAD Extensions to AutoLISP 1

Theme access

A theme is a collection of geographic phenomena or an organizing principle that
is used to link AutoCAD¨ entities to geographic information system (GIS) data
sets. Each theme has a unique name, a feature class, a pointer referencing a
corresponding GIS data set (a PCÊARC/INFO-compatible coverage or a
database data file), and a symbol number. Themes are stored as point entities in
the current drawing and maintained on a special layer named ESRI_THEMES.
The parameters of the theme definition are maintained in the extended entity data
of the point entities that are created on this special layer. This layer is not
visible to the user and should always be in a frozen state. You must never
attempt to edit the contents of this layer. Doing so can destroy the theme
definitions and therefore corrupt all the links that are maintained between
AutoCAD entities and ArcCAD¨ features.

The theme manipulation functions described in the following section maintain
and manipulate the extended entity data and the links for you. These functions
are used to manage themes in your drawing and maintain the links between the
ArcCAD features and the corresponding AutoCAD entities. For example, using
the thmdef function, you can define a theme to create or display GIS data sets.
You can use the thmdel function to delete a theme and the links to the GIS data
set. Similarly, using the thmexi function, you can check the validity of a
theme before performing any operation on the theme. The thmlst function lists
the available themes in your drawing, and the thmget function lets you retrieve
the contents of the theme definition in the form of a list. The list obtained in this
fashion can be used to modify the definition of the theme using the thmmod
function.

The following are some of the limitations of the theme access functions:

 The maximum length of a theme name is 31 characters.

 The maximum number of themes that can be defined and linked to GIS data
sets in a single AutoCAD drawing is 511.

 You cannot define more than one theme with the same feature class and GIS
data set, with the exception of record themes.

Theme access

2 ArcCAD Extensions to AutoLISP

Theme manipulation functions
The following functions can be used to create, modify, list and delete some of
the parameters that define a theme.

(thmdef list)
This function creates a new theme in the drawing. If theme is successfully
created, the name of the theme is returned. If theme cannot be created, nil is
returned. There are eight possible feature classes available to the user:
Annotation, Image, Line, Point, Polygon, Record (dBASE), Record (SQL) and
Tic.

The format of the input list is as follows:

((-1 . 0) dummy ename
(1 . themename) theme name
(2 . class) feature class
(3 . GIS data set) GIS data set name
(57 . increment) User-ID increment
(58 . next id) next available User-ID
(60 . symbol) symbol number between 0 and 100
(62 . visibility) theme visibility

)

When defining an SQL Record theme, the list argument has the following
format:

((-1 . 0)
(1 . themename)
(2 . class)
(5 . user name) SQL connection user name
(6 . password) SQL connection password
(7 . query1) 1st 128 characters of SQL query

expression
(8 . query2) remaining characters of SQL query
(9 . connection) SQL connection name

)

This function does not perform any user interaction. All of the parameters must
be supplied. If user interaction is desired, use the cmd function to invoke the
user command that defines themes.

Chapter 1

ArcCAD Extensions to AutoLISP 3

For example, to create a line theme named ÔSAMPLEÕ with a GIS data set of
ÔC:\DEMO\SAMPLEÕ that uses the default line symbol, the following code
fragment could be used.

(setq theme
(thmdef

(list
(cons -1 0)
(cons 1 ÒsampleÓ)
(cons 2 ÒlineÓ)
(cons 3 Òc:\\demo\\sampleÓ)
(cons 60 0)

)
)

)
(if (= theme ÒsampleÓ)

(princ Òtheme defined\nÓ)
(princ Òtheme not defined\nÓ)

)

The next example shows how to create an SQL theme with the name
ÔSQLSAMPLEÕ, connection name of ÔDB3Õ (dBASE III), user name of
ÔJSmithÕ and password of ÔjoshuaÕ. The query string is an SQL
expression that identifies the SQL catalog, schema and table, respectively, as
DATA.WATER.PONDS.

(setq theme
(thmdef

(list
(cons -1 0)
(cons 1 ÒsqlsampleÓ)
(cons 2 Òsql")
(cons 5 ÒjsmithÓ)
(cons 6 ÒjoshuaÓ)
(cons 7 Òselect * from data.water.pondsÓ)
(cons 9 ÒDB3Ó)

)
)

)
(if (= theme ÒsqlsampleÓ)

(princ Òtheme defined\nÓ)
(princ Òtheme not defined\nÓ)

)

Note: If it happens to be the first theme created in your drawing, the software
first creates a frozen, invisible layer called ESRI_THEMES.

Theme access

4 ArcCAD Extensions to AutoLISP

(thmdel theme option)
This function removes a theme from the drawing. The actual output of this
function is dependent upon the value of option provided. This function will
either return a theme name or nil.

If option evaluates to 0, only the links associated with theme will be removed
from the drawing. Theme will remain defined in the drawing. If the links are
successfully removed, the name of the theme will be returned. If the links
cannot be removed, nil will be returned.

If option evaluates to 1, the associated links and the theme definition will be
removed from the drawing. If theme is successfully deleted, the name of the
theme will be returned. If theme cannot be deleted, nil will be returned.

When a theme is deleted from the drawing, the associated links are also
removed from all entities belonging to the theme. In addition, all feature
selection sets derived from the theme are removed.

For example, consider the following code fragment:

; Remove only the links of theme named ÔSAMPLEÕ
(setq theme (thmdel ÒsampleÓ 0))
(if (= theme ÒsampleÓ)

(princ Òremoved links of theme\nÓ)
(princ Òlinks were not removed\nÓ)

)
;
; Remove definition & links for theme named ÔROADSÕ
(setq theme (thmdel ÒroadsÓ 1))
(if (= theme ÒroadsÓ)

(princ Òtheme and links deleted\nÓ)
(princ Òlinks and theme were not removed\nÓ)

)

Note: If you delete a GIS data set referenced by a theme, it is always a good
idea to use the thmdel function to remove the links associated with that theme.
The ArcCAD command kill handles this automatically.

Chapter 1

ArcCAD Extensions to AutoLISP 5

(thmexi theme)
This function checks for the existence of a theme in the drawing. If theme
exists, the name of the theme is returned. If theme does not exist, nil is
returned.

For example, to check for the existence of a theme named ÔSAMPLEÕ, the
following code fragment could be used.

(setq theme (thmexi ÒsampleÓ))
(if (= theme ÒsampleÓ)

(princ Òfound it\nÓ)
(princ Òdoes not exist\nÓ)

)

(thmget theme)
This function returns the definition of an existing theme. If theme exists, a list
is returned that contains the themeÕs name, class, GIS data set, and symbol
number. If theme does not exist, nil is returned.

The list that is returned will be in a format that can be easily manipulated using
the assoc function. The format of the returned list is

((-1 . 0) dummy ename
(1 . themename) theme name
(2 . class) feature class
(3 . GIS data set) GIS data set name
(57 . increment) User-ID increment
(58 . next id) next available User-ID
(60 . symbol) symbol number between 0 and 100
(62 . visibility) theme visibility
(63 . has data) features present in theme

)

For example, to retrieve the definition of a theme named ÔROADSÕ, the
following code fragment could be used.

(setq themelist (thmget ÒroadsÓ))
(if (null themelist)

(princ Òtheme not defined\nÓ)
(progn

(setq name (assoc 1 themelist))
(setq class (assoc 2 themelist))
(setq data (assoc 3 themelist))
(setq sym (assoc 60 themelist))
(princ Òtheme defined\nÓ)

)
)

Theme access

6 ArcCAD Extensions to AutoLISP

The following additional codes are returned when theme is an SQL RECORD
theme:

(7 . query1) 1st 128 characters of SQL query
expression

(8 . query2) remaining characters of SQL query
(9 . connection) SQL connection name

(thmlst [class dataset])
This function returns a list of the themes defined in the current drawing. If the
drawing does not contain any themes, nil is returned. The optional class and
dataset arguments return themes of specific types. Note that you cannot omit
only one of the arguments. You must either omit both the class and dataset
arguments or supply both of them as shown below:

(thmlst)

or

(thmlst class dataset)

The optional class argument determines the feature class of themes returned.
The class argument is an integer (bit-coded) with values as shown below:

Bit value Meaning

1 List line themes

2 List polygon themes

4 List point themes

8 List tic themes

16 List annotation themes

32 List dBASE record themes

64 List SQL record themes

128 List image themes

The bit values can be added in any combination to return a variety of theme
feature classes. For example, if you wish to list all line and polygon themes,
set the value of class to 3.

Chapter 1

ArcCAD Extensions to AutoLISP 7

Caution: Future releases of ArcCAD might use additional thmlst control bits,
so avoid setting bits in your applications that arenÕt shown in the above table.
The optional dataset argument instructs thmlst to return themes based on the
existence of their GIS data sets. You can retrieve themes for which a data set
exists, or for which a data set does not exist, or you can ignore the existence of
the data set altogether. The dataset argument is an integer with values as shown
below:

Value Meaning

0 Ignore GIS data set existence

1 GIS data set must exist

2 GIS data set must not exist

Data set existence rules
The GIS data set exists when the following conditions are met for line, point,
polygon, tic and annotation themes:

 The GIS data set (coverage) has been created by adding one or more
features to the theme.

 A theme is defined with its GIS data set referencing an existing coverage in
the specified subdirectory.

 For a record theme, the GIS data set exists if it contains at least one item
definition. It is not dependent on the number of records in the file.

The following code fragments show some examples using the thmlst function
with a combination of class and dataset arguments. These examples assume
that the following themes exist in your current drawing.

 Theme name GIS data set Feature class Symbol

LANDUSE PresentPOLYgon 0
ZONING Not present POLYgon 0
ROADS PresentLine 0
STREAMS PresentLine 0
RIVERS Not present Line 0
WELLS PresentPOint 0

Theme access

8 ArcCAD Extensions to AutoLISP

Example 1

List all the themes, irrespective of GIS data set existence.

The following code fragment

(thmlst)

would return the following list:

(ÒLANDUSEÓ ÒZONINGÓ ÒROADSÓ ÒSTREAMSÓ ÒRIVERSÓ ÒWELLSÓ)

Example 2

List only line and polygon themes and ignore GIS data set existence.

The following code fragment

(thmlst (+ 1 2) 0)

would return the following list:

(ÒLANDUSEÓ ÒZONINGÓ ÒROADSÓ ÒSTREAMSÓ ÒRIVERSÓ)

Example 3

List only line themes for which a GIS data set exists.

The following code fragment

(thmlst 1 1)

would return the following list:

(ÒROADSÓ ÒSTREAMSÓ)

Please note that although RIVERS is a line theme, it is not in the returned list
because the dataset argument was 1 (GIS data set must exist).

Chapter 1

ArcCAD Extensions to AutoLISP 9

(thmmod theme list)
This function modifies the definition of an existing theme. If theme is
successfully modified, the name of the theme contained in list is returned. If the
themeÕs name is being modified, the new name is returned. If the themeÕs name
is not being modified, the original name is returned.

If theme cannot be modified, nil is returned. The list argument must be in the
same format as that received from the thmget function. Please note that the
feature class (GIS data set) has data, SQL query and SQL connection name
values that are read-only.

For example, to change the name of a previously defined theme ÔSAMPLEÕ to
ÔROADSÕ, the following code fragment could be used. This example assumes
that the theme ÔROADSÕ does not exist in the current drawing.

(setq themelist (thmget ÒsampleÓ))
(setq newlist

(subst
(cons 1 ÒroadsÓ)
(assoc 1 themelist)
themelist

)
)
(setq theme (thmmod ÒsampleÓ newlist))
(if (= theme ÒroadsÓ)

(princ Òmodification complete\nÓ)
(princ Òmodification failed\nÓ)

)

Chapter 2

ArcCAD Extensions to AutoLISP 11

Feature access

A comprehensive set of AutoLISP¨ and ADSª functions, provided by
Autodesk¨, Inc., allows you to access AutoCAD¨ entities. In parallel to these
functions, ArcCAD¨ supports similar functions that access features in ArcCAD
databases. Using these functions, you can select features, retrieve their values
and modify them. You can use AutoLISP variables to hold selection sets
derived in this fashion so that you can manipulate selection sets of features.

Feature selection set manipulation
In order to manipulate features, the user must be able to indicate which objects
are to be considered. This process involves the selection of features based upon
combinations of spatial, graphical and attribute criteria specified as a series of
logical expressions. This series of functions allows the user to perform and
maintain selection sets and retrieve information concerning these objects of
interest.

There are two special ArcCAD data types that are implemented to provide access
to ArcCAD features: a feature name and a feature selection set. A feature name
is a pointer into the ArcCAD database from which AutoLISP can find the
appropriate feature and its corresponding attributes (if any exist). A feature
selection set is simply a collection of feature names.

Feature selection sets
A feature selection set in ArcCAD is a set of features that are grouped together
based on a series of spatial, logical and arithmetic expressions. At the
command level, there is one feature selection set maintained for each theme
(except annotation) defined in the drawing. Initially, all features belonging to a
database are selected for that themeÕs selection set. Using the reselect,
aselect, nselect and clearsel commands, the user can manipulate the feature
selection sets to display desired features and their corresponding attribute values
(if any exist). The last operation on a themeÕs feature selection set is always
stored as the current feature selection set for that theme.

Feature access

12 ArcCAD Extensions to AutoLISP

At the AutoLISP and ADS level, the user can create and manipulate feature
selection sets using a set of feature selection functions (explained in later
sections). By using these functions, the user can achieve the same results as
one who uses ArcCAD commands for query and display purposes. There are,
however, obvious advantages to using these functions to customize the
software at the AutoLISP and ADS level.

As explained earlier, at the command level, there is always one and only one
feature selection set maintained for any given theme. By using feature selection
functions, the user can store multiple feature selection sets for a given theme
and use any one of these feature selection sets to replace the current feature
selection set for that same theme.

While making multiple feature selection sets using AutoLISP and ADS
functions, the user has options to select features from the current feature
selection set or from the entire GIS data set associated with that theme. For
example, if the user creates a new feature selection set from the current feature
selection set, the function behaves exactly like a reselect command. On the
other hand, if the user specifies the all option while deriving a feature selection
set (refer to the fssget function), the user has the ability to select a subset of
features from the entire GIS data set of a given theme.

The functions fssand, fssor and fssxor are also available to the user to create
new feature selection sets by combining two valid feature selection sets based
on Boolean AND, OR, XOR combinations.

Features may be selected spatially or by using a series of logical expressions
based on valid feature attributes in the corresponding feature attribute table for a
given theme, as explained below.

Spatial selection
Spatial selection sets can be performed using the following modes:

 Circle crossing
 Circle within
 Window crossing
 Window within
 Polygon crossing
 Polygon within
 Previous (latest feature selection set)
 Interactive (by specifying the appropriate mode)

For further details on spatial selection, refer to the fssget function.

Chapter 2

ArcCAD Extensions to AutoLISP 13

Logical expressions
Logical expressions in ArcCAD have three components: operands, logical
operators and logical connectors.

Logical operands

¥ The name of an item in a data file (e.g., STREAMS_ID)
¥ A constant numerical value (e.g., 10)
¥ A character string in single quotation marks (e.g., ÔHIGHÕ)
¥ An internal variable (e.g., $RECNO)

Logical operators

EQ or =Operand-1 is equal to Operand-2
NE or <> Operand-1 is not equal to Operand-2.
GE or >= Operand-1 is greater than or equal to Operand-2.
LE or <= Operand-1 is less than or equal to Operand-2.
GT or >Operand-1 is greater than Operand-2.
LT or <Operand-1 is less than Operand-2.
CN Operand-1 contains the character expression Operand-2. Used

with character operands only (e.g., NAME CN ÔMAINÕ).
NC Operand-1 does not contain the character expression Operand-2.

Used with character operands only (e.g., NAME NC ÔMAINÕ).
IN Operand-1 is contained in the set of numeric constants of

character strings specified in Operand-2. This set of constants
or character strings must be enclosed in { } braces. The
elements in the set must be separated by commas, unless they
are being used to express a range, in which case, -> is used to
separate the elements forming the lower- and upper-inclusive
limits of the range. A range defined between two character
strings is based on the ASCII number sequence, which is
alphabetical. No blank spaces should separate any of the
elements within the brackets.

Note: Computer roundoff can alter the values of real numbers. This can cause
a problem when specifying real numbers in a logical expression that require
equality. When using expressions of equality, the operands must match exactly
for the match to be found. For example, the value .01139 does not equal
.0114. In such cases, use an expression that includes a range of real values
(i.e., ÒHEIGHT GT .01139 AND HEIGHT LT .01141Ó).

Feature access

14 ArcCAD Extensions to AutoLISP

Logical connectors

AND For the whole expression to be evaluated as true, the logical expressions
on both sides of the AND must be true.

OR For the whole expression to be evaluated as true, the logical expression
on one or the other side of the OR must be true. The whole expression
will also be evaluated as true if both logical expressions are true.

XOR For the whole expression to be evaluated as true, the logical expression
on one and only one side of the XOR must be true. If both logical
expressions are true or both are false, the condition will be evaluated as
false.

The simplest logical expressions take the following form:

[operand-1] [logical-operator] [operand-2]

For example, the following string can be used as a simple logical expression:

ÒCLASS LT 8Ó

Up to eight logical expressions of this simple form can be combined to form
more complex expressions by using the logical connectors. For example, the
following string can be used as a complex logical expression:

ÒCLASS GE 2 AND CLASS LT 8 OR SUIT = ÔMODERATEÕÓ

Note: If the item value is of type character, the value must be enclosed in
single quotes (example: SUIT = ÔMODERATEÕ) and is case sensitive.

There is no limit to the number of [operand-1] [logical-operator] [operand-2]
combinations and logical connectors that can be used in a single expression.
However, the entire expression must be less than 254 characters in length.

All logical operators and connectors have equal precedence. The expression is
evaluated from left to right. However, parentheses can be used to change the
default order of evaluation such that expressions within parentheses are
performed first. Operations inside the innermost set of parentheses have the
highest precedence.

Each element of a logical expression (i.e., operand, logical operator, logical
connector, parenthesis) must be separated by blanks, except when using the IN
operator.

Chapter 2

ArcCAD Extensions to AutoLISP 15

Arithmetic expressions
Arithmetic expressions in ArcCAD have the following components:

Numeric operands

¥ An item name
¥ A constant (e.g., 10)
¥ An internal variable (e.g., $RECNO)

Arithmetic operators

+ Addition
- Subtraction
/ Division
* Multiplication
* * Exponentiation
L N Logarithm

Calculates the natural logarithm of the operand it precedes. The operand
must be a positive number.

WD Width computation
Calculates the width in characters of the operand it precedes excluding
trailing blanks. The operand must be a character item or a literal string.

Arithmetic operators have the following precedence from highest to lowest:

1) LN, WD
2) **
3) *, /
4) +, -

Operands of equal precedence are performed in sequence from left to right
through the expression. Parentheses can be used to override inherent
precedence. Operations within the innermost set of parentheses are performed
first.

Note: There is no unary minus operator for negating an operand in ArcCAD.
For example, the expression -AGE evokes an error message (instead, specify
-1Ê* AGE). Also, all arithmetic operations in ArcCAD are performed in double
precision. As a result, an expression involving integer operands may be
evaluated as having a fractional part.

Feature access

16 ArcCAD Extensions to AutoLISP

Examples of arithmetic expressions:

SUIT = (SOIL + 2 * TERRAIN) / 12

LAB_WIDTH = (WD (LABEL) + 4) * 0.22

Display width limitations
A number assigned to a numeric type item with 0 decimal places that exceeds
the defined width for its item definition is displayed as asterisks (***). The
item value is lost.

The values of a numeric type item defined with 1 or more decimal places that
exceed the defined width for that item will be displayed in scientific notation.

Internal variables
ArcCAD provides you with three internal variables that can be used in logical
and arithmetic expressions.

$RECNOÑthe record number of a record in the selected data file.

$PIÑthe value for pi (3.14159...), which is the ratio of a circleÕs
circumference to its diameter.

$EÑthe value for e (approximately 2.71828), which is the base of the number
system for natural logarithms.

These internal variables can be used as operands anywhere within a logical or
arithmetic expression; for example

Ò$RECNO GT 100Ó

This selection expression will find all records from the selection set whose
record number is greater than 100.

Chapter 2

ArcCAD Extensions to AutoLISP 17

Feature selection set manipulation
functions

 The following functions are used to create, modify, list and delete feature
selection sets.

(fssadd featname fss)
This function adds a named feature to a feature selection set. The actual output
of this function is dependent upon the value of fss provided. This function will
return either a feature selection set or nil. When a new member is added to
fss, it is added to all feature selection sets bound to fss. In other words, if fss
is assigned to other variables, they also reflect the addition.

If fss does not evaluate to nil, this function adds featname to fss. If featname
is successfully added to the feature selection set, the new feature selection set is
returned. If featname cannot be added to the feature selection set, nil is
returned. If featname is already a member of fss, the operation is ignored and
the original feature selection set is returned. If featname and fss are not derived
from the same theme, nil is returned.

If fss evaluates to nil, a new feature selection set is created. This new feature
selection set will contain featname as its only member.

For example, to add the last feature in the theme ÔROADSÕ to an existing feature
selection set named fss1, the following code fragment could be used:

; Get name of last feature in the theme.
(setq f1 (featlast ÒroadsÓ))
;
; Add feature to feature selection set
(setq fs (fssadd f1 fss1))
(if (= fs fss1)

(princ Òfeature added\nÓ)
(princ Òfeature not added\nÓ)

)

(fssand fss1 fss2)
This function creates a new feature selection set that contains all of the feature
names in both of the feature selection sets provided. If both fss1 and fss2 are
derived from the same theme, a new feature selection set is created. If the
feature selection sets are not derived from the same theme, nil is returned.

Feature access

18 ArcCAD Extensions to AutoLISP

If the two feature selection sets do not have any members in common, the
resulting feature selection set will not have any members. This function is
equivalent to a Boolean AND of the two feature selection sets.

For example, if feature selection sets fss1 and fss2 are derived from the same
theme, the following code fragment would return a new feature selection set that
contains features common to both feature selection sets.

(setq fss3 (fssand fss1 fss2))
(if (null fss3)

(princ Òthe operation failed\nÓ)
(princ Òthe operation was successful\nÓ)

)

(fssclr fss)
This function removes all of the members from a feature selection set. If all
members are successfully removed from fss, the name of the feature selection set
is returned. If all of the members cannot be removed, nil is returned.

For example, to remove all of the members of the existing feature selection set
named fss1, the following code fragment could be used.

(setq fs (fssclr fss1))
(if (= fs fss1)

(princ Òthe operation was successful\nÓ)
(princ Òthe operation failed\nÓ)

)

(fssdel featname fss)
This function removes a named feature from a feature selection set. If featname
is successfully removed from fss, the name of the feature selection set is
returned. If featname cannot be removed from the feature selection set, nil is
returned. If featname is not a member of the feature selection set, nil is
returned.

For example, to delete the last feature in the theme ÔROADSÕ from an existing
feature selection set named fss1, the following code fragment could be used.

; Get name of last feature in theme
(setq f1 (featlast ÒroadsÓ))
;
; Remove the feature from the feature
; selection set

Chapter 2

ArcCAD Extensions to AutoLISP 19

(setq fs (fssdel f1 fss1))
(if (= fs fss1)

(princ Òfeature successfully removed\nÓ)
(princ Òfeature not removed\nÓ)

)

(fssfree fss)
This function frees resources allocated to a feature selection set. The resources
allocated to fss is freed. This allows other feature selection sets to be created
since there are a finite number of feature selection sets (128) available. This
function always returns nil.

For example, to free the resources allocated to the feature selection set named
fss1, the following code fragment could be used.

(fssfree fss1)

(fssget theme state mode opt1 opt2)
This function creates a feature selection set based upon the state of the selection
and a selection method indicated by the user. This function will only process
features that are members of theme. All other features will be ignored.

state: the argument state represents the current state of the selection set. By
default, all the features of a given theme are selected. If the user wants to select
a subset of features from a current selection set, the state of the selection would
be ÒCÓ (current). If the user wants to select features from the entire database
associated with the specified theme, the state of the selection would be ÒAÓ (all).
In other words, if the state argument is ÒCÓ, this function behaves similarly to
the reselect command. On the other hand, if the state argument is ÒAÓ, this
function behaves similarly to the aselect command.

mode: there are currently nine different selection modes available to the user.
A list of these modes is provided below.

ÒCCÓ pt1 radius Selects all features crossing or inside a circle whose
center is pt1 and the radius is radius.

ÒCWÓ pt1 radius Selects all features inside a circle whose center is pt1 and
the radius is radius.

ÒEÓ expression nil Selects all features that satisfy a logical expression.
Expression contains one or more valid logical

Feature access

20 ArcCAD Extensions to AutoLISP

expressions. For further details refer to the section on
logical expressions in this chapter.

ÒPÓ nil nil Returns the currently selected features of the theme.
This option will always return the current selection for
the theme and assumes that the state argument is always
ÒCÓ (current). If the user specifies option ÒAÓ (all) as the
state argument, the function ignores this option and
assumes option ÒCÓ as the state argument. However,
since the state argument is always evaluated by the
function, the user should not skip this option or specify
any other option keyword except ÒCÓ or ÒAÓ.

ÒPCÓ list1 nil Selects all features crossing or inside a polygon whose
vertices are stored in list1.

ÒPWÓ list1 nil Selects all features inside a polygon whose vertices are
stored in list1.

ÒWCÓ pt1 pt2 Selects all features crossing or inside a box whose
opposite corners are pt1 and pt2.

ÒWWÓ pt1 pt2 Selects all features inside a box whose opposite corners
are pt1 and pt2.

nil nil nil Selects all features interactively. Only one mode of input
is performed.

The following code fragment shows some examples of the fssget function.
These examples assume that there is a valid polygon theme named LANDUSE
with a user-defined attribute, named LUCODE, associated with each polygon in
the database.

; Select features that cross or are within a user-
; defined window
(setq pt1 (getpoint ÒFirst corner: Ò))
(setq pt2 (getcorner pt1 ÒOpposite corner: Ò))
(setq fss1 (fssget ÒlanduseÓ ÒaÓ ÒwcÓ pt1 pt2))
;
; Select features using a logical expression
(setq fss2 (fssget ÒlanduseÓ ÒaÓ ÒeÓ Òlucode = 2Ó nil))
;
; Select features interactively
(setq fss3 (fssget ÒlanduseÓ ÒaÓ nil nil nil))

Chapter 2

ArcCAD Extensions to AutoLISP 21

Warning: The results of each fssget operation are always stored as the
themeÕs feature selection set. When this function is used, the base of selectable
features is dependent on the value of the state argument. For instance, if you
specify the state argument as ÒCÓ, the base of selectable features is the themeÕs
feature selection set. On the other hand, if you specify ÒAÓ as the state
argument, the base of selectable features is all features in the theme. Therefore,
the value of the state argument influences the results of the selection and should
be used with care.

(fsslength fss)
This function returns the number of members contained in a feature selection
set. If the specified feature selection set is valid and contains 0 or more
members, the function returns a nonnegative real number. If the specified
feature selection set is not a valid name, nil is returned.

For example, to print the number of features that are contained in a feature
selection set created by the user, the following code segment could be used.

; Get theme from user
(setq theme (getstring ÒTheme name: Ó))
;
; Get user-defined feature selection set
(setq fss1 (fssget theme ÒaÓ nil nil nil))
;
; Get the number of members
(setq cnt 0)
(if (null fss1)

(princ Òerror creating feature selection set\nÓ)
(setq cnt (fsslength fss1))

)
(princ ÒThere are Ó)
(princ cnt)
(princ Ò members\nÓ)

(fssmemb featname fss)
This function determines if a named feature is a member of a feature selection
set. If featname is a member of fss, T is returned. If featname is not a member
of the feature selection set, nil is returned.

Feature access

22 ArcCAD Extensions to AutoLISP

For example, to determine if a feature named feat1 is a member of the feature
selection set named fss1, the following code fragment could be used.

(setq result (fssmemb feat1 fss1))
(if (null result)

(princ Òfeature is not a member\nÓ)
(princ Òfeature is a member\nÓ)

)

(fssname fss index)
This function returns the name of the indexed feature in the feature selection set.
The index must always be specified as a nonnegative real number. The index of
the first member of the feature selection set is 0.0. If fss contains a member at
the index position, the feature name is returned. If index is negative or is
greater than the number of members contained in the feature selection set, nil
is returned.

For example, to retrieve the name of the sixth feature of a feature selection set
named fss1, the following code fragment could be used.

; Remember that the first featureÕs index is 0.0
(setq feat1 (fssname fss1 5))
(if (null feat1)

(princ Òfeat1 does not have 6 members\nÓ)
(princ Òfeature name retrieved\nÓ)

)

(fssnot fss)
This function switches the members of a feature selection set. All of the current
members of the feature selection set are replaced by all of the nonselected
members of the associated theme. This function is equivalent to a Boolean
complement of the feature selection set. If members of a feature selection set
are successfully complemented, the feature selection set is returned. If the
feature selection set cannot be complemented, nil is returned.

For example, to create a feature selection set that contains all of the features of
the theme ROADS that are not selected by the user, the following code fragment
could be used.

Chapter 2

ArcCAD Extensions to AutoLISP 23

; Get userÕs selection
(setq fss1 (fssget ÒroadsÓ ÒaÓ nil nil nil))
(if (null fss1)

(princ Òfeature selection operation failed\nÓ)
(progn
; Select everything not currently selected

(setq fs (fssnot fss1))
(if (= fs fss1)

(princ Òoperation successful\nÓ)
(princ Òoperation failed\nÓ)

)
)

)

(fssor fss1 fss2)
This function creates a new feature selection set that contains all of the members
of both of the feature selection sets provided. If both fss1 and fss2 are derived
from the same theme, a new feature selection set is created that contains
members in both fss1 and fss2. If the feature selection sets are not derived
from the same theme, nil is returned. This function is equivalent to a Boolean
OR of the two feature selection sets.

The following code fragment creates a feature selection set that contains a
combination of features from two different feature selection sets. This example
assumes that ÔLANDUSEÕ is a valid polygon theme that has a user-defined
attribute named ÔLUCODEÕ.

; Get first feature selection set from user
(setq fss1 (fssget ÒlanduseÓ ÒaÓ nil nil nil))
;
; Get second feature selection set using a
; logical expression
(setq fss2 (fssget ÒlanduseÓ ÒaÓ ÒeÓ Òlucode = 2Ó nil))
;
(if (or (= fss1 nil) (= fss2 nil))
(princ Òone of the feature selection operations
failed\nÓ)

(progn
; Combine the feature selection sets

(setq fss3 (fssor fss1 fss2))
(if (null fss3)

(princ Òoperation failed\nÓ)
(princ Òoperation successful\nÓ)

);end if
);end progn

);end if

Feature access

24 ArcCAD Extensions to AutoLISP

(fssput fss)
This function replaces the themeÕs feature selection set with the feature selection
set provided. If the replacement is successful, the name of the feature selection
set is returned. If the replacement cannot be performed, nil is returned.

The following code fragment shows an example of the fssput function. In this
example, several feature selection sets are created. Each time the fssget
function is called, the themeÕs selection set is changed. This example shows
how to change the themeÕs selection to a specific feature selection set. This
example assumes that the theme ROADS exists.

; Get first feature selection set from the user
(setq fss1 (fssget ÒroadsÓ ÒaÓ nil nil nil))
; the themeÕs selection set is now identical to
; that of fss1
;
; Get second feature selection set from the user
(setq fss2 (fssget ÒroadsÓ ÒaÓ nil nil nil))
; the themeÕs selection set is now identical to
; that of fss2
;
; Change the themeÕs selection set back to that of
; fss1
(setq fs (fssput fss1))
(if (= fs fss1)

(princ Òreplacement successful\nÓ)
(princ Òreplacement failed\nÓ)

)

(fssxor fss1 fss2)
This function creates a new feature selection set that contains all of the members
that are not in both of the sets provided. If both fss1 and fss2 are derived from
the same theme, a new feature selection set is returned. If the feature selection
sets are not derived from the same theme, nil is returned. This function is
equivalent to a Boolean exclusive OR of the two feature selection sets. If fss1
is identically equal to fss2, an empty feature selection set is created.

For example, to create a feature selection set that contains all features that are
not in both feature selection sets fss1 and fss2, the following code fragment
could be used.

(setq fss3 (fssxor fss1 fss2))
(if (null fss3)

(princ Òoperation failed\nÓ)
(princ Òoperation successful\nÓ)

)

Chapter 2

ArcCAD Extensions to AutoLISP 25

Feature name functions
The following functions are used to retrieve feature names and entity names.

(entfeat ename theme)
This function returns the feature name(s) of features linked to the named entity.
The ename must be the name of the main entity. This function searches ename
and retrieves a list of the appropriate feature names that correspond to the entity.
This function always returns the name of the main feature. You should use the
featnext function to access the subfeatures of the main feature (if any exist).
The actual output of this function is dependent upon the value of theme. This
function will return either a list or nil.

If theme does not evaluate to nil, this function will check to see if ename is a
member of theme. If the entity is a member of the theme, a list containing only
the corresponding feature name is returned. If the entity is not a member of the
theme, nil is returned.

If theme evaluates to nil, a list of all of the corresponding feature names is
returned. If the entity is not a member of any theme, nil is returned.

For example, to determine the number of themes that a user-selected entity is
linked to, the following code fragment could be used.

; Select the entity
(setq ent1 (car (entsel)))
; Get a list of themes
(setq list1 (entfeat ent1 nil))
(princ ÒEntity is a member of Ò)
(princ (length list1))
(princ Òthemes\nÓ)

The following code fragment can be used to determine if a user-selected entity is
linked to a feature in the theme ROADS.

; Select the entity
(setq ent1 (car (entsel)))
; Check for presence in theme
(setq list1 (entfeat ent1 ÒROADSÓ))
(if (null list1)

(princ Òentity is not linked to themeÓ)
(princ Òentity is linked to themeÓ)

)

Feature access

26 ArcCAD Extensions to AutoLISP

Notes

 In a polygon theme, links are established only to the label point(s) and,
therefore, you must select the label point in order to retrieve the corresponding
polygon feature. Selecting the polygon boundary always returns nil. You
must use the featnext function to access the line (polygon boundary)
subfeatures.

 Tic, image and record themes do not have entity-feature links in ArcCAD;
therefore, the entfeat function on these themes always returns nil.

(featent featname)
This function returns the corresponding entity name of a feature. If featname is
displayed in the drawing, the corresponding entity name is returned. If
featname is not displayed in the drawing, nil is returned.

For example, feat1 is the name of a feature that has been rendered in the
drawing. To retrieve the entityÕs data from the drawing, the following code
fragment could be used.

(setq ent1 (featent feat1))
(if (null ent1)

(princ Òfeature not displayed in the drawing\nÓ)
(progn

(princ Òentity name has been retrieved\nÓ)
(entget ent1)

)
)

(featlast theme)
This function returns the name of the last feature in a theme. This function can
be used to retrieve the name of a feature that was created by an ArcCAD
command. If theme contains features, the name of the last feature is returned.
If theme does not contain any features, nil is returned.

The following example shows how to retrieve the name of a feature that was
just added to the theme ROADS using the addfeat command.

Command: addfeat
Theme name (?/<theme>): roads
Select objects: 1 selected, 1 found
Select objects: <CR>
Optional property table (?/<none>): <CR>
1 Written to C:\ROADS, 0 duplicated, 0 ignored

Chapter 2

ArcCAD Extensions to AutoLISP 27

The following code fragment can be used to retrieve the name of the feature
created using the addfeat command above.

(setq feat1 (featlast ÒroadsÓ))

(featnext theme featname level)
This function returns the name of the next feature in a theme. The actual feature
name returned is a function of the values of featname and level.

If featname evaluates to nil, the value of level is ignored. The resulting name
returned is that of the first feature defined in theme. If theme does not contain
any features, nil is returned.

If featname does not evaluate to nil, the resulting feature name returned is
dependent upon the current value of featname and level. featname should be set
to the name of the feature whose next feature (subfeature) name is to be
retrieved. If theme does not contain any features, nil is returned.

The following table shows the relationships between featname, level, and the
resulting feature name returned by the function.

Current
Feature Name Level 1 Level 2 Level 3
Annotation Next annotation Next annotation Next annotation

Line header Next line header Next vertex of line Next vertex of line

Line vertex Next line header Next vertex of line
or line end

Next vertex of line
or line end

Line end Next line header Next line header Next line header

Point Next point Next point Next point

Polygon header Next polygon Next point or line
header of polygon

Next point or line
header of polygon

Polygon point Next polygon Next point or line
header of polygon

Next point or line
header of polygon

Polygon line header Next polygon Next line header
of polygon

Next vertex of line

Polygon line vertex Next polygon Next line header
of polygon

Next vertex of line
or line end

Polygon line end Next polygon Next line header
of polygon

Next line header
of polygon

Polygon end Next polygon Next polygon Next polygon

Record Next record Next record Next record

Tic Next tic Next tic Next tic

Feature access

28 ArcCAD Extensions to AutoLISP

For example, to retrieve the name of the first vertex in the third-line subfeature
of the first polygon feature in the theme LANDUSE, the following code
fragment could be used.

;Get name of first polygon in theme
(setq feat1 (featnext ÒlanduseÓ nil nil))
(if (null feat1)

(progn
(princ Òno topology in theme\nÓ)
(setq ok nil)

)
(setq ok 1)

)
;Read until 3rd line is found
(setq cnt 0)
(while ok

;Get next subfeature which may be point or line
(setq subfeat (featnext ÒlanduseÓ feat1 2))
(if (null subfeat)

(progn
(princ Òpolygon has no subfeatures\nÓ)
(setq ok nil)

)
(progn

;Check feature to see if it is a line
(setq list1 (featget subfeat nil))
(if (= ÒLINEÓ (assoc 0 list1))

(progn
(setq cnt (1+ cnt))
(if (= cnt 3)

(setq ok nil)
)

)
)
(setq feat1 subfeat)

)
)

)
;Get first vertex of line feature
(if (= cnt 3)

(progn
(setq feat1 (featnext ÒlanduseÓ subfeat 3))
(if (null feat1)

(princ Òsuccess\nÓ)
(princ Òfailure\nÓ)

)
)

)

Chapter 2

ArcCAD Extensions to AutoLISP 29

(featthm featname)
This function returns the name of the theme in which the named feature is a
member. If featname is a valid feature name, the name of the theme that
contains the named feature is returned. If featname is not a valid feature name,
nil is returned.

For example, to determine the name of the theme that a user-selected entity is
linked to, the following code fragment could be used.

; Select the entity
(setq ent1 (car (entsel)))
; Get the list of feature names
(setq list1 (entfeat ent1 nil))
(if (null list1)

(princ ÒEntity is not a member of a theme\nÓ)
(progn
; Get the name of the first theme
(setq theme (featthm (car list1)))
(princ ÒEntity is a member of the theme Ó)
(princ theme)

)
)

Feature data functions
The following functions are used to create, modify, and delete features and
feature data in a theme.

(featdel featname)
This function removes the named feature from its GIS data set. If featname is
successfully removed from the GIS data set, the name of the feature is returned.
If featname cannot be removed from the GIS data set, nil is returned.

This function invalidates all feature selection sets that are bound to the feature
name. In addition, the entity feature link that is associated with the
corresponding feature is dropped (if any exists).

Feature access

30 ArcCAD Extensions to AutoLISP

For example, to remove a user-selected feature from a theme, the following
code fragment could be used.

; Select the entity
(setq ent1 (car (entsel)))
; Get the list of feature names
(setq list1 (entfeat ent1 nil))
(if (null list1)

(princ ÒEntity is not a member of a theme\nÓ)
(progn

; Delete the feature from the theme
(setq feat1 (car list1))
(setq result (featdel feat1))
(if (= feat1 result)

(princ Òfeature successfully deleted\nÓ)
(princ Òfeature deletion failed\nÓ)

)
)

)

(featget featname itemlist)
This function retrieves the named featureÕs data from the theme. If featname
exists, a list containing its data is returned. If featname does not exist, nil is
returned. itemlist is a list containing item names. If itemlist does not evaluate to
nil, the corresponding item values will be included in the list of feature data.
See the itemlist option at the end of this function for further details.

The format of the information returned for each of the six different feature
classes is shown below. The sublists may not be in the order shown. The
assoc function can be used to retrieve a specific sublist regardless of its
position in the list.

 ANNOTATION features are returned in the following format. This format
is styled after the TEXT listing from the entget function.

((-1 . <Entity name: 0>)
(0 . ÒANNOTATIONÓ) feature class
(1 . ÒtextÓ) text string
(6 . featname) feature name (read only)
(40 . hgt) height
(41 . wdtscl) width scale
(42 . level) annotation level
(43 . symbol) symbol number
(59 . Internal-ID) Internal-ID (read only)
(10 x1 y1) 1st position point
(11 x2 y2) 2nd position point (optional)

Chapter 2

ArcCAD Extensions to AutoLISP 31

(12 x3 y3) 3rd position point (optional)
(13 x4 y4) 4th position point (optional)
(14 x5 y5) 1st arrow point (not used)
(15 x6 y6) 2nd arrow point (not used)
(16 x7 y7) 3rd arrow point (not used)

)

 POINT features are returned in the following format. This format is styled
after the POINT listing from the entget function.

((-1 . <Entity name: 0>)
(0 . ÒPOINTÓ) feature class
(6 . featname) feature name (read only)
(10 x y) coordinates
(40 . poly1) polygon ID (read only)
(58 . User-ID) User-ID
(59 . Internal-ID) Internal-ID (read only)

)

 TIC features are returned in the following format. This format is styled
after the POINT listing from the entget function.

((-1 . <Entity name: 0>)
(0 . ÒTICÓ) feature class
(6 . featname) feature name (read only)
(10 x y) coordinates
(58 . User-ID) User-ID
(59 . Internal-ID) Internal-ID (read only)

)

 LINE features are returned in the following format. When the featget
function is called with the name of the line feature, the following list is returned.

((-1 . <Entity name: 0>)
(0 . ÒLINEÓ) feature class
(6 . featname) feature name (read only)
(70 . vcnt) number of vertices (read only)
(40 . node1) from-node (read only)
(41 . node2) to-node (read only)
(42 . poly1) left polygon (read only)
(43 . poly2) right polygon (read only)
(58 . User-ID) User-ID
(59 . Internal-ID) Internal-ID (read only)

)

Feature access

32 ArcCAD Extensions to AutoLISP

When featget is called with the name of a line subfeature, the following list is
returned.

((-1 . <Entity name: 0>)
(0 . ÒVERTEXÓ) subfeature class
(6 . featname) subfeature name (read only)
(10 x y) coordinate

)

When featget is called with the name of the last line subfeature, the following
list is returned to indicate the end of the feature.

((-1 . <Entity name: 0>)
(0 . ÒLINEENDÓ) end of line marker

)

 RECORD (dBASE) features are returned in the following format. When the
featget function is called, the following list is returned.

((-1 . <Entity name: 0>)
(0 . ÒRECORDÓ) subfeature class
(6 . featname) subfeature name (read only)
(59 . Internal-ID) Internal-ID (read only)

)

To obtain item (feature attribute) values, the featget function should be used
with the itemlist option.

 POLYGON features are returned in the following format. When the
featget function is called with the name of the polygon feature, the following
list is returned.

((-1 . <Entity name: 0>)
(0 . ÒPOLYGONÓ) feature class
(6 . featname) feature name (read only)
(58 . User-ID) User-ID
(59 . Internal-ID) Internal-ID (read only)
(70 . pcnt) number of points (read only)
(71 . lcnt) number of lines (read only)
(10 x y) coordinates of centroid (read only)
(11 xmin ymin) box min coordinates (read only)
(12 xmax ymax) box max coordinates (read only)

)

Chapter 2

ArcCAD Extensions to AutoLISP 33

When processing a polygon feature, the points are always accessed before the
lines and their vertices. When featget is called with the name of a polygon
subfeature, one of the following lists is returned.

((-1 . <Entity name: 0>)
(0 . ÒPOINTÓ) feature class
(6 . featname) subfeature name (read only)
(10 x y) coordinates
(40 . poly1) polygon ID (read only)
(58 . User-ID) User-ID
(59 . Internal-ID) Internal-ID (read only)

)

((-1 . <Entity name: 0>)
(0 . ÒLINEÓ) feature class
(6 . featname) subfeature name (read only)
(70 . vcnt) number of vertices (read only)
(71 . flip) flip arc coordinates (optional)
(72 . island) island in a polygon (optional)
(40 . node1) from-node (read only)
(41 . node2) to-node (read only)
(42 . poly1) left polygon (read only)
(43 . poly2) right polygon (read only)
(58 . User-ID) User-ID
(59 . Internal-ID) Internal-ID (read only)

)

((-1 . <Entity name: 0>)
(0 . ÒVERTEXÓ) subfeature class
(10 x y) coordinate
(6 . featname) Sub-subfeature name

)

((-1 . <Entity name: 0>)
(0 . ÒLINEENDÓ) end of line marker

)
((-1 . <Entity name: 0>)

(0 . ÒPOLYENDÓ) end of polygon marker
)

Remember that polygon features have subfeatures called points and lines and
sub-subfeatures called vertices. Also remember that the first polygon feature in
a polygon theme is always the universe polygon. For additional details, refer to
the ArcCAD UserÕs Guide.

Feature access

34 ArcCAD Extensions to AutoLISP

Note: The two group codes 71 (flip) and 72 (island) mentioned in the line
header of a polygon deserve further explanation:

(71 . flip) this code is optional and is used to represent flip line
coordinates. The value 1 indicates that the lineÕs coordinates should be
flipped, and the default value 0 represents no flip. The following figure
demonstrates the usage of the flip option.

1

2

3

4

Before flip
1

2

3

4

After flip

(line feature #2 has been flipped)

(72 . island) this code is optional and is used to indicate that
the remaining line (sub) features of the polygon are part of an island
within the current polygon. The following figure demonstrates the
potential use of the island option in a polygon theme:

Island Island

Island formation in polygon themes

Chapter 2

ArcCAD Extensions to AutoLISP 35

itemlist option

If the itemlist option does not evaluate to nil, the featget function retrieves
both feature data and feature attribute values from the specified theme. The list
of attribute data is appended to the end of the list normally returned with the
main features. This new list will have the following format:

(-3 item flag
(ÒESRIÓ application name

(1040 . real) real value1 (optional)
(1000 . ÒtextÓ) character value1 (optional)
(1040 . real) real value2 (optional)
(1000 . ÒtextÓ) character value2 (optional)
.....
.....
(1040 . real) real valueN (optional)
(1000 . ÒtextÓ) character valueN (optional)

)
)

Only one of the two possible group codes is present. The storage type of the
item determines which group code is output.

This list is only returned when featname is the name of a main or complex
feature. To illustrate, consider the following example where featget is used
with the itemlist option to retrieve the coordinates of a line feature and its
corresponding attribute values. When the function is called with the name of
the line feature with the itemlist option, the following list is returned.

((-1 . <Entity name: 0>)
(0 . ÒLINEÓ) feature class
(6 . featname) feature name (read only)
(70 . vcnt) number of vertices
(40 . node1) from-node
(41 . node2) to-node
(42 . poly1) left polygon
(43 . poly2) right polygon
(58 . User-ID) User-ID
(59 . Internal-ID) Internal-ID (read only)
(-3 item flag

(ÒESRIÓ application name
(1040 . real) real value1 (optional)
(1000 . ÒtextÓ) character value1 (optional)
(1040 . real) real value2 (optional)
(1000 . ÒtextÓ) character value2 (optional)
.....
.....
(1040 . real) real valueN (optional)
(1000 . ÒtextÓ) character valueN (optional)

)
)

)

Feature access

36 ArcCAD Extensions to AutoLISP

When the featnext function is called with the name of the line feature, the
name of the first subfeature (vertex) is returned. When featget is called with
the name of the first subfeature, the following list is returned.

((-1 . <Entity name: 0>)
(0 . ÒVERTEXÓ) subfeature class
(10 x y) coordinate
(6 . featname) subfeature name

)

You will notice that the list returned from the function does not contain any
reference to item data because the feature retrieved is not a main feature.

(featmake theme featlist itemlist)
This function creates a new feature in a theme. If the feature is successfully
created, the name of the feature is returned. If the feature cannot be created,
nil is returned.

If itemlist evaluates to nil, the corresponding item values for the feature are
ignored. If itemlist does not evaluate to nil, the item values for the feature are
retrieved. Values will not be returned for item names that are not in itemlist. In
addition, the values that are returned are in the same order as their item names.

Featlist is assumed to be in the same format as that returned by the featget
function. The only exception to this is when polygon features are being
created.

A polygon theme is composed of lines and points. The actual polygon features
are not created until the themeÕs polygon topology has been created. To create a
polygon theme, add points and line features to the theme. Calls to the featlist
function will return nil until the theme is processed as mentioned earlier. In
addition, featmake will return a dummy feature name.

When creating line features, multiple calls to featmake are required. Each of
the subsequent calls defines the vertex subfeatures. When all of the vertex
subfeatures have been defined, a call to featmake with the following list must
be used to terminate the feature.

((-1 . 0)
(0 . ÒLINEENDÓ)

)

Chapter 2

ArcCAD Extensions to AutoLISP 37

To illustrate the creation of a complex feature, consider the following code
fragment, which creates a line feature with four vertices. The coordinates of the
vertices are 0,0 1,1 2,0 and 3,1. Additionally, the User-ID of the line is 123.
This example assumes that linetheme is a valid line theme.

(setq list1
(list (cons -1 0)

(cons 0 ÒLINEÓ)
(cons 40 0.0)
(cons 41 0.0)
(cons 42 0.0)
(cons 43 0.0)
(cons 58 123.0)

)
)
(featmake linetheme list1) ;create main feature
(setq list1

(list(cons -1 0)
(cons 0 ÒVERTEXÓ)
(list 10 0.0 0.0)

)
)
(featmake linetheme list1) ;create 1st subfeature
(setq list1

(list(cons -1 0)
(cons 0 ÒVERTEXÓ)
(list 10 1.0 1.0)

)
)
(featmake linetheme list1) ;create 2nd subfeature
(setq list1

(list(cons -1 0)
(cons 0 ÒVERTEXÓ)
(list 10 2.0 0.0)

)
)
(featmake linetheme list1) ;create 3rd subfeature
(setq list1

(list(cons -1 0)
(cons 0 ÒVERTEXÓ)
(list 10 3.0 1.0)

)
)
(featmake linetheme list1) ;create 4th subfeature
(setq list1

(list(cons -1 0)
(cons 0 ÒLINEENDÓ)

)
)
(featmake linetheme list1) ;close feature

Feature access

38 ArcCAD Extensions to AutoLISP

To illustrate the creation of a normal feature, consider the following example,
which creates a point feature at 10,10 with a User-ID of 101. Please note that
this example also modifies the User-ID in the attribute file. This example
assumes that pointtheme is a valid point theme with a valid attribute file.

(setq list1
(list (cons -1 0)

(cons 0 ÒPOINTÓ)
(list 10 10.0 10.0)
(cons 40 0.0)
(cons 58 101.0)
(list -3

(list ÒesriÓ
(cons 1040 101.0)

)
)

)
)
;Setup list of item names
(setq itemlist (list ÒUser_IDÓ))
;Create feature
(featmake pointtheme list1 itemlist)

In the above example, it is not necessary to call the featmake function with a
list containing ÔLINEENDÕ because point features do not contain any
subfeatures.

Chapter 2

ArcCAD Extensions to AutoLISP 39

(featmod featlist itemlist)
This function modifies the data of a feature or subfeature. If the feature is
successfully modified, the name of the feature is returned. If the feature cannot
be modified, nil is returned. The name of the feature to be modified must be
found in the group code 6 of featlist.

If itemlist evaluates to nil, all item values in featlist are ignored. If itemlist
does not evaluate to nil, the item values for the feature are modified. The
values of items are not modified for item names that are not in the itemlist. In
addition, the values are assumed to be in the same order as their item names.
The format of the itemlist is assumed to be in the same format as returned by the
featget function with the itemlist option.

Featlist is assumed to be in the same format as that returned by the featget
function. The only exception to this occurs when a polygon feature is to be
modified.

The main features of polygons cannot be modified. Only the subfeatures of a
polygon can be modified. The lists in the documentation for featget show
which group codes are modifiable and which group codes are read-only for line
and point subfeatures of polygons. Also remember that the first polygon in a
polygon theme is the universe polygon and you should never modify it.

It is important to note that featmod cannot be used to change the number of
vertices in a line feature. Featmod also cannot be used to modify the name of
items or the itemÕs type in a record theme.

For example, to change the User-ID of the line feature feat1, the following code
fragment can be used.

; Get new User-ID
(setq newid (getreal ÒNew user id: Ó))
;
; Get topology only
(setq list1 (featget feat1 nil))
;
; Get current value
(setq old (assoc 58 list1))
(setq new (cons 58 newid))
;
; Substitute value in array
(setq newlist (subst new old list1))
;

; Modify line
(setq result (featmod newlist))
(if (null result)

(princ Òmodification failed\nÓ)
(princ Òmodification successful\nÓ)

)

Chapter 3

ArcCAD Extensions to AutoLISP 41

Item access

Item functions are used to manipulate dBASE RECORD themes. They are also
used to manipulate the attribute files of POLYGON, LINE, POINT, and TIC
themes. They perform the basic operations of creating, listing, and retrieving
item definitions. These functions cannot be used to modify the item values.
The functions described in the ÔFeature selection set manipulation functionsÕ
section (featget, featmake, and featmod functions) can be used to modify
the values associated with the items.

As explained in the introduction chapter, some feature classes have implied
attribute files. The following list shows these implications.

Feature class Attribute file
Annotation None
Line AAT
Point PAT
Polygon PAT
Record User defined
TIC TIC

In other words, when you specify the theme name in the following item
manipulation functions, the software automatically performs the operation on
the implied attribute files. For example, if you use the itmdef function (see
next section for details) with a polygon theme, the function automatically
defines the item in the themeÕs implied polygon attribute table (PAT) file.

Note: You cannot use item manipulation functions on an annotation theme.
This is because annotation features are not spatially related to other features and
therefore do not carry any implied attribute table. Annotation themes in
ArcCAD¨ software are used only for annotating the geographic features.

The item access functions described in the following section let you define
dBASE RECORD themes (dBASE files) and add item definitions to store
attribute information. For example, the itmdef function lets you define items.
Similarly, the itmexi function checks for the existence of the item in the
themeÕs data file prior to writing or retrieving item values. The itmget function
lets you access the item definition, and the itmlst function lists all the item
names in a themeÕs data file.

Item access

42 ArcCAD Extensions to AutoLISP

The following are some of the limitations that apply to item access functions:

 The maximum length of an item name is 10 characters.

 The only legal characters in item names are alphabetic characters, numbers
and the underscore character.

 Item names cannot begin with a number.

Chapter 3

ArcCAD Extensions to AutoLISP 43

Item manipulation functions
The following functions can be used to define, modify and list item definitions
stored in database files.

(itmdef theme list)
This function adds a new item to a theme. If the item is successfully created,
the name of the item is returned. If the item cannot be created, nil is returned.
The function does not perform any user interaction. All of the parameters must
be supplied. If user interaction is desired, use the cmd function to invoke the
user command that defines an item.

There are currently four item types available: Character, Date, Integer and
Numeric.

The format for the input list is

((-1 . 0)
(0 . ÒITEMÓ)
(1 . name) item name
(2 . type) item type
(70 . column) start column
(71 . width) item width
(72 . ndec) number of decimal places
(73 . owidth) output width

)

For example, to define a record theme named ÔLANDUSEÕ with items named
ÔAREAÕ and ÔLANDUSE_IDÕ, similar to that of a polygon theme, the following
code fragment could be used.

; Define the theme
(setq list1

(thmdef
(list

(cons -1 0) (cons 1 ÒlanduseÓ)
(cons 2 ÒrecordÓ) (cons 3 Òc:\\path\\landuseÓ)
(cons 60 0)

)
)

)
(if (null list1)

(princ ÒTheme definition failed\nÓ)
(progn

(setq itm nil)

Item access

44 ArcCAD Extensions to AutoLISP

; Define item area
(setq itm1
(itmdef ÒlanduseÓ

(list
(cons -1 0) (cons 0 ÒITEMÓ)
(cons 1 ÒareaÓ) (cons 2 ÒNÓ)
(cons 70 1) (cons 71 13)
(cons 72 6) (cons 73 13)

)
)

)
(if (null itm1)
(setq itm 1)

)
; Define item landuse_id

(setq itm1
(itmdef ÒlanduseÓ

(list
(cons -1 0) (cons 0 ÒITEMÓ)
(cons 1 Òlanduse_idÓ) (cons 2 ÒIÓ)
(cons 70 38) (cons 71 11)
(cons 72 0) (cons 73 11)

)
)

)
(if (null itm1)
(setq itm 1)

)
(if (= itm 1)
(princ ÒItem definition failed\nÓ)
(princ ÒItem definition successful\nÓ)

)
)

)

Chapter 3

ArcCAD Extensions to AutoLISP 45

(itmexi theme itmname)
This function checks for the existence of an item in a theme. If itmname exists
in theme, T is returned. If itmname does not exist in theme, nil is returned.

For example, to check for the existence of an item in a theme, the following
code fragment could be used:

; Get theme name
(setq theme (getstring ÒName of theme: Ó))
; Get item name
(setq item (getstring ÒName of item: Ó))
; Check for presence in themeÕs attribute file
(setq result (itmexi theme item))
(if (null result)

(princ ÒItem not defined in theme\nÓ)
(princ ÒItem is defined in theme\nÓ)

)

(itmget theme itmname)
This function returns the definition of an item. If itmname exists in theme, a list
containing the itemÕs type, width, and number of decimal places is returned. If
itmname does not exist in theme, nil is returned.

The list returned is in a format that can easily be manipulated using the assoc
function. The format of the returned list is

((-1 . <Entity name: 0>)
(0 . ÒITEMÓ)
(1 . name)
(2 . type)
(70 . column)
(71 . width)
(72 . ndec)
(73 . owidth)

)

For example, to retrieve the definition of the item named ÔAREAÕ from a
polygon theme named ÔSAMPLEÕ, the following code fragment can be used.

(itmget ÒsampleÓ ÒareaÓ)

Item access

46 ArcCAD Extensions to AutoLISP

This example would return the following list:

((-1 . <Entity name: 0>)
(0 . ÒITEMÓ)
(1 . ÒAREAÓ)
(2 . ÒNÓ)
(70 . 1)
(71 . 13)
(72 . 6)
(73 . 13)

)

(itmlst theme [type])
This function returns a list of the items defined in a themeÕs attribute table. If
the table does not contain any items, nil is returned. The type argument is
optional and is used to return only items of specific types.

Four item types are available: Character, Date, Integer and Numeric. Other
item types available in dBASE¨ but not fully supported by ArcCAD include
Logical (logical data type) and Memo (MEMO field).

Note: ArcCAD functions do not currently support MEMO fields.

The type argument is an integer (bit coded) with values as shown below:

Bit value Meaning

1 List numeric items

2 List integer items

4 List character items

8 List date items

16 List logical items

32 List memo fields

The bit values can be added in any combination to return a variety of item types.
For example, if you wish to list numeric and character items, you can set the
value of type to 5.

Caution: Future releases of ArcCAD might use additional itmlst control bits,
so avoid setting bits in your applications that arenÕt shown in the above table.

Chapter 3

ArcCAD Extensions to AutoLISP 47

Notes

 If the specified theme is currently related to another theme (established using
the relate or ddrelate command), the related themeÕs items are also displayed.
Items in the related theme are prefixed with a pound sign (#).

 The itmlst function cannot be used on annotation or image themes because
these feature classes do not have corresponding database files.

The following code fragments show some uses of the itmlst function with the
type argument. These examples assume that a theme named PARCELS exists
in the current drawing and contains two user-defined items, OWNER (a
character item storing the ownerÕs name) and DATE (a date item storing the
parcel registration date), in addition to the standard polygon attribute table
(PAT) items AREA, PERIMETER, PARCELS_ and PARCELS_ID.

Example 1

List all the items in the themeÕs feature attribute table.

The following code fragment

(itmlst ÒparcelsÓ)

would return the following list:

(ÒAREAÓ ÒPERIMETERÓ ÒPARCELS_Ó ÒPARCELS_IDÓ ÒOWNERÓ ÒDATEÓ)

Example 2

List only the character and date items:

The following code fragment

(itmlst ÒparcelsÓ (+ 4 8))

would return the following list:

(ÒOWNERÓ ÒDATEÓ)

Item access

48 ArcCAD Extensions to AutoLISP

Example 3

Assume that the PARCELS theme is temporarily related to a record theme
containing three character fields named STREET (street address), CITY (city
name) and ZIP (five digit ZIP code).

The following code fragment

(itmlst ÒparcelsÓ 4)

would return the following list:

(ÒOWNERÓ Ò#STREETÓ Ò#CITYÓ Ò#ZIPÓ)

Note that the items prefixed with a pound sign (#) represent items in the related
theme.

Chapter 4

ArcCAD Extensions to AutoLISP 49

SQL access

The ArcCAD¨ SQL functions allow the AutoLISP¨ programmer to access
tabular data stored in external relational database management systems
(RDBMSs). The underlying method used for SQL access is the AutoCAD¨

ASI SQL engine. To allow RDBMS tables to be used by ArcCAD SQL
functions, you must therefore configure the ASI environment (similar to
configuring AutoCAD for ASE).

The SQL functions (as well as ASI and ASE) use SQL2 to access tables. This
system defines a hierarchy that includes environments, catalogs, schemas and
tables. The environment is the top level of the hierarchy and defines the use of
a database program. A catalog is comparable to a database or a collection of
database tables. The schema is a subset of a catalog that contains a portion of
the complete database. A table contains the rows and columns of the data.

Refer to the ArcCAD Installation Guide and the AutoCAD Installation Guide for
complete information about configuring the ASI environment.

The functions described in this section allow the management and editing of
records in SQL tables. SQL tables are accessed using connections and cursors.
A connection defines the SQL environment, as specified in ASI.INI, to be
accessed. A cursor is a handle to a programmer-defined selection set in an SQL
table. Before any SQL table can be accessed, you must open a connection to
the appropriate SQL environment using esri_cnnopn. The specified
environment must be configured in the AutoCAD ASI.INI file. After a
connection is established, a cursor must be created to access an SQL table in
that environment. Cursors are created using the esri_curopn function. The
query string used when defining a cursor is an SQL select statement that defines
the catalog, schema, table and the set of rows and columns in that table to
access. Once a cursor has been created, you can query the cursor for
information about the table using esri_curcollst, esri_curcolexi,
esri_curcoltype, and esri_curcolwid, and column values may be retrieved
and updated using functions such as esri_curfirst, esri_curnext,
esri_curabs, esri_curcolval and esri_curcolset. When finished using
the cursor and connection, you must release their resources by calling
esri_curcls to close the cursor and esri_cnncls to close the connection.

SQL access

50 ArcCAD Extensions to AutoLISP

The following simple example demonstrates how the ArcCAD SQL functions
can be used to display a Microsoft Access¨ table:

; Assuming the database environment odbc_access is
; configured in ASI.INI, open a connection to it
(setq conname (esri_cnnopn Òodbc_accessÓ ÒjohnÓ ÒÒ))

; Open a cursor pointing to all records from the
; table called products
(setq mycursor ÒcurÓ)
(esri_curopn cur conname Òselect * from .Óc:\msoffice\
 access\sampapps\nwindÓ.ÓproductsÓ nil nil)

; print the column names for the cursor
(setq collist (esri_curcollst mycursor))
(princ collist)

; print the column definitions
(foreach itm collist
 (setq typ (esri_curcoltyp mycursor itm))
 (setq wid (esri_curcolwid mycursor itm))
 (princ ÒName: Ò) (princ itm)
 (princ ÒType: Ò) (princ typ)
 (princ ÒWidth: Ò) (princ wid)
 (princ Ò\nÓ)
)

; display all records of the table
(setq r (esri_curnext mycursor))
(while r
 (foreach itm collist
 (setq v (esri_curcolval mycursor itm))
 (princ v)
 (princ Ò Ò)
)
 (princ Ò\nÓ)
 (setq r (esri_curnext mycursor))
)

; close everything down
(esri_curcls mycursor)
(esri_cnncls conname)

Chapter 4

ArcCAD Extensions to AutoLISP 51

SQL access functions

(esri_cnnactive connectionname)
This function checks if connectionname is an active SQL connection. If
connectionname is active, T is returned. If connectionname is not active or is
invalid, nil is returned.

(esri_cnncls connectionname)
This function closes the active connection connectionname. If connectionname
is active, it is closed and T is returned. If connectionname is not active or is
invalid, nil is returned.

(esri_cnnexi connectionname)
This function checks if the connection name connectionname exists in the
ASI.INI file. If connectionname exists, T is returned. If connectionname does
not exist, nil is returned.

(esri_cnnlst status)
This function returns a list of available connection names. The status option is
used to specify the type of list created. Possible values for status are

1Ñreturn a list of active connection names.
2Ñreturn a list of inactive connection names.
3Ñreturn a list of both active and inactive connection names.

(esri_cnnopn connectionname username password)
Opens and activates a connection to an SQL2 environment. connectionname:
specifies the connection as an environment within ASI.INI. username is an
assigned name for logging into the database management system (DBMS)
specified by connectionname. If a login name is not required for connection to
the DBMS, set username to a null string. password is the password for user
name. If the connection to the DBMS does not require a user name, or your
login does not require a password, password should be set to a null string.

SQL access

52 ArcCAD Extensions to AutoLISP

(esri_curabs cursorname recnum)
This function sets the current record of the active cursor cursorname to the
record recnum. esri_curabs only works with scrollable cursors (i.e., cursors
that were created with their scrolling option set to true [see esri_curopn]).
recnum can be any record within the SQL data set. If the cursor is positioned
correctly, this function returns T, otherwise, it returns nil. This function is
used to randomly access records in an SQL data set.

(esri_curcls cursorname [commit])
This function closes the cursor cursorname. If the cursor is successfully
closed, T is returned. If the cursor cannot be closed or cursorname is invalid,
nil is returned. The optional commit argument is used to commit any changes
to the SQL database attached to cursorname made using esri_curcolset.
Setting commit to T commits any changes. Setting commit to nil abandons
any changes. commit only applies changes to the database if the cursor
cursorname is sequential (nonscrollable).

(esri_curcollst cursorname)
This function returns a list of column names for the cursor cursorname. If
cursorname is not a valid cursor or there are no columns, nil is returned.

(esri_curcolexi cursorname columnname)
This function checks if the column columnname exists in the database table
pointed to by cursorname. If columnname exists in cursorname, T is returned,
otherwise nil is returned.

(esri_curcolset cursorname columnname newvalue)
This function sets the value of the column columnname in cursor cursorname to
newvalue for the current record. newvalue may be an AutoLISP string, integer,
real number or nil.

Chapter 4

ArcCAD Extensions to AutoLISP 53

(esri_curcoltype cursorname columnname)
This function returns a code that identifies the column type of column
columnname in cursor cursorname. One of following codes is returned:

C - character
D - date
M - memo
I - short integer number
L - logical
B - SQL long integer number
Z - SQL double-precision number
S - SQL short integer number
R - SQL real number
E - SQL decimal number
P - SQL floating point number
W - SQL numeric
nil - columnname does not exist

(esri_curcolwid cursorname columnname)
This function returns the width of the specified column columnname in cursor
cursorname.

(esri_curcolval cursorname columnname)
This function returns the value of the specified column columnname for the
current record. cursorname is the name of the SQL cursor to use. If
cursorname and columnname are valid, the value of columnname for the current
record is returned. If cursorname or columnname is invalid, nil is returned.
This function is used to retrieve column values from the table pointed to by a
cursor.

Note that nil is also returned if cursorname and columnname are valid and the
value of the column is NULL.

(esri_curexi cursorname)
This function checks for the existence of a cursor called cursorname. If
cursorname exists, T is returned. If cursorname does not exist, nil is
returned.

SQL access

54 ArcCAD Extensions to AutoLISP

(esri_curfirst cursorname)
This function sets the current record of the cursor cursorname to the first record
in the dataset. T is returned if the cursor was positioned correctly. nil is
returned if the cursor could not be positioned correctly. The cursor cursorname
must be a random-access (scrollable) cursor.

(esri_curlst)
This function returns a list of all currently valid cursor names.

(esri_curnext cursorname)
This function sets the current record of the cursor cursorname to the next record
in the data set. T is returned if the cursor was positioned correctly. nil is
returned if the cursor could not be positioned correctly. This function can be
used with both sequential and random-access cursors.

(esri_curopn cursorname connectionname query
access update)

This function creates the cursor cursorname attached to the SQL connection
connectionname. The cursor contains the table records defined in the SQL
query string query. If the cursor is successfully created, T is returned. If the
cursor cannot be created, nil is returned.

query is an SQL select expression that defines the set of SQL records to attach
to this cursor. It usually has the following form:

select fieldnames from catalog.schema.table

but the exact syntax is dependent on the DBMS to which you are connected.
Refer to your AutoCAD documentation for complete information about
supported SQL syntax.

Chapter 4

ArcCAD Extensions to AutoLISP 55

access determines the access method for this cursor. SQL record access can be
either sequential (also called nonscrollable) or random (scrollable). Sequential
access limits you to stepping through the records in order, one at a time, from
beginning to end. The advantage of a sequential cursor is that you can update
the column values using esri_curcolset. Random-access cursors allow you
to move through the SQL data set selecting records in any order. You cannot
update column values using random-access cursors. Set access to T to create a
random-access cursor or to nil to create a sequential-access cursor.

update sets the update privilege of the cursor when the original data set has been
modified. If update is set to T, any changes made to the cursor are not
immediately updated. The cursor must be closed and reopened to display
changes in the SQL data set. If update is nil, changes made to the cursor are
immediately reflected in the cursor.

Chapter 5

ArcCAD Extensions to AutoLISP 57

Additional functions

(esri_exec command)
This function is only available under the Windows version of ArcCAD and is
used to execute other Windows applications from ArcCAD. esri_exec takes a
single character string argument command which is the name of the program to
execute, plus its associated arguments. You must specify the file extension for
the program name (e.g., notepad.exe). Valid file extensions are .EXE, .COM
and .PIF. The function will search for the executable program in the following
directories in this order: current directory, the Windows directory, the
Windows system directory, and finally, the directories specified in the DOS
PATH environment variable.

For example

(esri_exec Ònotepad.exe c:\\config.sysÓ)

would start the Windows notepad program and load the CONFIG.SYS file into
it.

If esri_exec successfully launches the application, the function returns T. If
an error is encountered when executing the command, esri_exec returns one
of the following error codes:

Error Number Meaning

0 Not enough memory to execute program

1 File not found

3 Could not execute program

Additional functions

58 ArcCAD Extensions to AutoLISP

(arcadver)

This function returns a string that contains the current ArcCAD¨ release
number. Applications can tell what release of ArcCAD is running by examining
the string returned by arcadver.

For example

(arcadver)

might return the string:

Ò11.40Ó

(dirlst [path type wildcard])
This function returns a list of a combination of files, subdirectories and
coverages in the current (or in a specified) directory. The path, type and
wildcard arguments are optional. If the optional arguments are omitted, dirlst
returns a list of all files and subdirectories, including coverages, in the current
working directory. Note that you can either ignore all the optional arguments or
supply all of them. You cannot omit only one of the arguments. Consider the
following example:

The following code fragment

(dirlst)

is identical to

(dirlst Ò.Ó (+ 1 2 4) Ò*Ó)

However, the following code fragment

(dirlst Ò.Ó (+ 1 2 4))

is invalid. You must supply Ô*Õ as a wildcard string to complete the argument
list.

path: This optional argument is a valid pathname to the directory to search. A
drive letter is permitted in the path, and you can use the forward slash instead of
the backslash (but remember that you must use \\ to obtain one backslash in a
string). A period (Ô.Õ) represents the current working directory.

Chapter 5

ArcCAD Extensions to AutoLISP 59

type: This optional argument is a bit-coded integer value that filters the type of
files to return. The following table explains the bit values and the data returned
with each:

Bit value Meaning

1 Return file names

2 Return subdirectory names

4 Return coverage names

The bit values can be added in any combination to return a variety of file types.
For example, to return only coverage names and the file names in the specified
directory, set the value of type to 5 (and set the wildcard argument to Ô*Õ).

wildcard: The optional wildcard argument can be used to further filter the
returned list. Only objects matching the wildcard pattern are returned. In the
pattern, alphabetic characters and numerals are treated literally, a question mark
(?) matches a single character, an asterisk (*) matches a sequence of characters,
and certain other characters have special meanings within the pattern. Any valid
AutoCAD wildcard string is accepted. Refer to the wcmatch function in the
AutoCAD Customization Guide for more details on wildcard options.

(arc_filecpy source destination)
This function copies one or more files to a specified directory. The path
argument can specify more than one file by using wildcards.

The following code fragment copies the config.sys file to the c:\temp directory:

(arc_filecpy Òc:\\config.sysÓ Òc:\\tempÓ)

The next code fragment copies all files with the .EXE file extension to a
specified directory:

(arc_filecpy Òc:\\programs*.exeÓ Òc:\\newprogsÓ)

source: This argument is a pathname specifying the file(s) to be copied. A
drive letter is permitted in the path, and you can use the forward slash instead of
the backslash (but remember that you must use \\ to obtain one backslash in a
string). A period (Ô.Õ) represents the current working directory. A wildcard
pattern may be used. In the pattern, alphabetic characters and numerals are
treated literally, and an asterisk (*) matches a sequence of characters. Use
Ò*.*Ó to copy all files in the source path directory.

destination: This argument is a pathname specifying where the files will be
copied. The pathname must already exist.

Additional functions

60 ArcCAD Extensions to AutoLISP

(arc_filedel filespec)
This function deletes one or more files in a specified directory. The filespec
argument can specify more than one file by using wildcard specifiers.

The following code fragment deletes the config.sys file:

(arc_filedel Òc:\\config.sysÓ)

The next code fragment deletes all files with the .EXE file extension in a
specified directory:

(arc_filedel Òc:\\programs*.exeÓ)

filespec: This argument is a pathname specifying the file(s) to be deleted. A
drive letter is permitted in the path, and you can use the forward slash instead of
the backslash (but remember that you must use \\ to obtain one backslash in a
string). A period (Ô.Õ) represents the current working directory. A wildcard
pattern may be used. In the pattern, alphabetic characters and numerals are
treated literally and an asterisk (*) matches a sequence of characters. Use Ò*.*Ó
to delete all files in the specified directory.

Theme recovery functions
Whenever a drawing is loaded, ArcCAD checks to see if the drawing contains
themes. If the drawing does contain themes, ArcCAD must verify that the
geographic information system (GIS) data set and link file directory for each
theme exist and are valid. If the GIS data set of any theme cannot be found,
ArcCAD must either locate the data set or drop the theme. This process is called
theme recovery. When a themeÕs data set needs to be recovered, by default,
ArcCAD will present a dialog box into which the user can type the pathname to
the missing GIS data set (or the SQL login and query for SQL record themes).
If you want to automate this process for your users, control which themes are
recovered, or perform special processing, you can use the following set of
AutoLISP¨ functions.

(esri_userrepair theme type suggestions)
When a theme needs to be recovered and the themeÕs GIS data set needs to be
located, ArcCAD first checks to see if there is an AutoLISP function defined
with the name esri_userrepair. If this function is defined, ArcCAD calls this
function rather than the default theme recovery function (esrid_thmrecov or
esrid_thmrecovsqlÑsee below), allowing you to intercept the theme
recovery process. The argument themeÊidentifies the name of the theme to
recover, type is the theme type and suggestions is a list of character strings

Chapter 5

ArcCAD Extensions to AutoLISP 61

containing possible pathnames to the GIS data set for theme. Inside
esri_userrepair, you can call the following function to reestablish the themeÕs
data set:

(esri_thmrepair theme dataset)

where theme is the name of the theme to be repaired and dataset is the full
pathname to its new GIS data set. When repairing SQL record themes, the
syntax of this function is:

(esri_thmrepair theme conn user pass query)

where theme is the name of the theme to be repaired, conn is the SQL
connection name, user is the user name, pass is the password and query is the
SQL query expression.

If, instead, you want to drop one or more of the themes you are attempting to
recover, you can call

(esri_thmdrop themes)

where themes is a list of theme names you want to drop.

If you want to let ArcCAD handle theme recovery for a particular theme or
themes, call the default theme recovery handler esrid_thmrecov or
esrid_thmrecovsql.

(esrid_thmrecov theme type suggestions)
This function displays a dialog box allowing the user to specify the location of a
themeÕs missing GIS data set. The argument theme is the name of the theme to
recover, type is the theme type and suggestions is a list of strings containing
possible pathnames to the GIS data set for theme. This function cannot be used
to recover SQL record themes. To reestablish the database for SQL record
themes, use esrid_thmrecovsql.

(esrid_thmrecovsql theme type suggestions)
This function displays a dialog box allowing the user to specify the data set
parameters for an SQL record theme. The argument theme is the name of the
SQL record theme to recover, type is the theme type (SQL) and suggestions is
not used and should be set to nil.

Chapter 6

ArcCAD Extensions to AutoLISP 63

GUI access

ArcCAD GUI functions
ArcCAD provides a dialog box interface as an alternative to the command line
interface. The use of some of these ArcCAD¨ dialog boxes has been extended
to provide a set of GUI functions that may be invoked through AutoLISP.
Note that you cannot invoke these dialog boxes through the ArcCAD cmd
function.

There are two classes of dialog boxes in ArcCAD: browsers and function
panels. Browsers are the low-level dialog boxes defined in ArcCAD that aid in
the selection or display of objects from a list. These browsers are used as
standard widgets in function panels. Function panels are comprehensive dialog
boxes that are used to execute several related commands. These panels group
functions are frequently used together in one dialog box.

The graphic user interface (GUI) functions described in this section are the low-
level tools used to invoke the browsers to display or select an object from a list.
For example, the arcd_theme function invokes a dialog box with a list of valid
theme names in the current drawing. The GUI functions always start with an
Ôarcd_Õ prefix to differentiate them from other AutoCAD¨ and ArcCAD
AutoLISP¨ functions.

Source code
The source code for the browsers and function panels is supplied with the
software. Two DCL files included with ArcCAD are pickers.dcl and ddarc.dcl.
These files can be found in the \ARCAD\BIN directory.

The file pickers.dcl contains the DCL definitions for the low-level browsers
described in this section. You should never modify pickers.dcl. An error in
pickers.dcl breaks the appearance of the standard ArcCAD dialog boxes as well
as any customized dialog boxes from your application or other applications.

The file ddarc.dcl contains the definitions of all the function panels used by the
standard release of ArcCAD. You can modify this file if you need to customize
the appearance of the standard function panels.

GUI access

64 ArcCAD Extensions to AutoLISP

Two corresponding LISP files are included in the \ARCAD\SOURCE directory:
pickers.lsp and ddarc.lsp. These files supply the intelligence to the dialog boxes
and are included as examples only. You should never modify the functionality in
pickers.lsp. You may, however, modify ddarc.lsp to change the functionality in
the standard function panels. If you modify ddarc.lsp, you must load this file
only after ArcCAD is successfully loaded. ESRI does not support modifications
made to any of the above files.

The following section describes the ArcCAD GUI functions.

(arcd_browse1 theme irec iopt)
This function invokes the Record Info dialog box, which allows you to view or
edit a specific record. The arguments theme, irec and iopt are used to control
the initial appearance and behavior of the dialog box. The following figure
shows an example of the Record Info dialog box.

The code fragment

(arcd_browse1 ÒstreetsÓ 4 2)

would display the Record Info dialog box as shown below:

theme: A string specifying the name of the theme for which a specific record
will be displayed. The specified theme must exist in the current drawing and
must have an associated dBASE file. Please note that you cannot use
annotation themes with this function.

Chapter 6

ArcCAD Extensions to AutoLISP 65

irec: An integer specifying the record number of the dBASE file that will be
displayed. If the record number does not exist, a warning message will be
displayed indicating that the number entered is out of range.

iopt: This determines whether the dialog box is invoked to list the contents of
the record number or to allow the item values to be modified for that record. If
iopt is 1, the dialog box only lists the contents of the record and does not allow
editing. The OK button is used to dismiss the dialog box and T is returned to
the calling routine. If iopt is 2, the dialog box lists the contents of the record
and allows editing of the item values. The OK button is used to accept changes
made to that recordÕs item values and T is returned to the calling routine. The
Cancel button will abandon edits made to the item values and return a nil to
the calling routine.

(arcd_cover path iscover lonly)
This function invokes a coverage or data file selection dialog box, which allows
the user to pick either a coverage or a data file from a specified subdirectory.
The arguments path, iscover and lonly are used to control the initial appearance
and behavior of the dialog box. The following figure shows an example of the
this dialog box.

The code fragment

(arcd_cover nil t nil)

would display the coverage selection dialog box as shown below:

GUI access

66 ArcCAD Extensions to AutoLISP

path: The path is a string representing a pathname to a subdirectory to search.
A drive letter is permitted in the path and you can use the forward slash instead
of the backslash (but remember that you must use \\ to obtain one backslash in a
string). If path evaluates to nil or Ô.Õ, the directory of the current drawing is
assumed; otherwise, the pathname must be a full pathname (complete with disk
drive letter and colon) to the directory to search.

iscover: The iscover argument determines whether a coverage selection or
data file selection dialog box is invoked. If iscover evaluates to T, the coverage
selection dialog box is displayed. If iscover evaluates to nil, the data file
selection dialog box is displayed. Note that although both dialog boxes look
identical, only the appropriate list box is activated for the selection. For
example, if iscover evaluates to nil, the data file selection dialog box is
invoked, and the OK button is activated only when you select one of the data
files from the data files list box.

lonly: The lonly argument determines whether the dialog box is invoked to list
the contents of subdirectories or to allow selection of a coverage or a data file
name through the appropriate list box. If the dialog box is invoked only to list
the contents of subdirectories, then the OK button dismisses the dialog box and
nil is returned to the calling routine. If lonly evaluates to T the dialog box is
used only for listing the contents of subdirectories. If lonly evaluates to nil,
the OK button is activated on the selection of one of the items in the appropriate
list box (based on the iscover parameter). After selecting a coverage or data
file, double-click on the selection or press the OK button to dismiss the dialog
box and return the full pathname of the selection to the calling routine.

(arcd_defthm validtypes theme defvals)
This function invokes a Define Theme dialog box which allows you to define a
theme. You can control the feature class of themes that may be defined by
setting the validtypes argument with an appropriate bit value. The theme
argument is the name of the theme to define. The following figure shows an
example of the theme definition dialog box.

The code fragment

(arcd_defthm (+ 1 2 4 8 16 32 64 128) ÒparcelsÓ nil)

would display the Define Theme dialog box as shown below:

Note that the sum of the eight possible bit values for the validtypes argument
instructs the arcd_defthm function to allow all feature classes to be defined.

Chapter 6

ArcCAD Extensions to AutoLISP 67

validtypes: The validtypes argument is a bit-coded integer that controls which
feature classes may be defined within the Define Theme dialog box. validtypes
may contain the following values:

Bit value Meaning

1 line theme

2 polygon theme

4 point theme

8 tic theme

16 annotation theme

32 dBASE record theme

64 SQL record theme

128 image theme

The bit values can be added in any combination to enable the user to define a
variety of theme types. For example, if you wish to be able to define line and
polygon themes, set validtypes to 3.

GUI access

68 ArcCAD Extensions to AutoLISP

defvals: This argument is used internally by ArcCAD and should always be
set to nil.

After entering the appropriate information in the dialog box, press the OK
button to dismiss the dialog box, define the theme, and return the theme name to
the calling routine. If the theme is unable to be defined, nil is returned. The
Cancel button dismisses the dialog box and returns nil to the calling routine.

Note: Future releases of ArcCAD might use additional arcd_defthm control
bits, so avoid setting bits in your applications that arenÕt shown in the above
table.

(arcd_equat theme arith)
This function invokes an Arithmetic or Logical Expression dialog box, which
enables you to interactively build arithmetic or logical expressions on a specified
theme. This dialog box is used to build expressions for calculating (modifying)
item values or selecting theme features using logical expressions based on
feature attributes. The following figure shows an example of the Arithmetic
Expression dialog box.

The code fragment

(arcd_equat ÒparcelsÓ t)

would display the Arithmetic Expression dialog box as shown below:

Chapter 6

ArcCAD Extensions to AutoLISP 69

theme: The theme is the name of the theme for which you want to construct a
logical or arithmetic expression. The specified theme must exist in the current
drawing and must contain an associated data file. Please note that you cannot
use annotation or image themes with this function.

arith: The arith argument determines the appearance of either the Arithmetic
Expression or the Logical Expression dialog box. If arith evaluates to T, the
Arithmetic Expression dialog box displays. If arith evaluates to nil, the
Logical Expression dialog box displays.

After building the valid expression, the OK button dismisses the dialog box and
returns the expression in the form of a string to the calling routine. The Cancel
button dismisses the dialog box and returns nil to the calling routine.

GUI access

70 ArcCAD Extensions to AutoLISP

(arcd_item theme validtypes lonly)
This function invokes an Item Selection dialog box which allows you to pick an
existing item name or list available items in the specified theme and controls
which types of items to display using the validtypes argument. In addition, you
can use the dialog box to list available items in the specified theme or actually
pick one of the items for selection.

The code fragment

(arcd_item ÒparcelsÓ (+ 1 2 4 8 16 32) nil)

would display the Item Selection dialog box with all of the items in the
PARCELS theme as shown below:

theme: The theme argument specifies the theme for which items are to be
listed. If theme contains items, a list of those names is displayed in the items
list box section of the dialog box. If the theme does not contain any items, an
alert box is displayed.

Chapter 6

ArcCAD Extensions to AutoLISP 71

validtypes: The validtypes argument controls which item types display in the
dialog box. Four item types are currently available: Character, Date, Integer
and Numeric. In addition, other item types available in dBASE, but not fully
supported by ArcCAD, include Logical (logical data type) and Memo (MEMO
field).

The validtypes argument is a bit-coded integer with values as shown below:

Bit value Meaning

1 List numeric items

2 List integer items

4 List character items

8 List date items

16 List logical items

32 List memo fields

The bit values can be added in any combination to return a variety of item types.
For example, if you wish to list numeric and character items, you can set the bit
value to 5.

lonly: The lonly argument determines whether the dialog box is invoked to list
the existing items or to allow selection of an item through the item list box. If
the dialog box is invoked only to list the existing items in the specified theme,
then the OK button is used to dismiss the dialog box and nil is returned to the
calling routine. If lonly evaluates to T, the OK button dismisses the dialog box.
If lonly evaluates to nil, the OK button and the Cancel button are enabled,
allowing the user to select an item or dismiss the dialog box. After selecting an
item name, press the OK button to dismiss the dialog box and return the item
name to the calling routine.

(arcd_items theme validtypes dlist)
This function invokes the Multi Item Selection dialog box, which allows you to
view or select multiple items for a particular theme. The argument dlist controls
which items of a theme display in the dialog box.

The code fragment

(arcd_items ÒstreetsÓ 7 nil)

would display the Multi Item Selection dialog box as shown below.

GUI access

72 ArcCAD Extensions to AutoLISP

theme: A string specifying the name of the theme for which items are to be
listed. If theme contains items, a list of those items displays in the UnSelected
list box section of the dialog box.

validtypes: The validtypes argument controls which item types will be
displayed in the Multi Item Selection dialog box. Four item types are currently
available: Character, Date, Integer and Numeric. In addition to these four
types, other item types available in dBASE, but not fully supported by
ArcCAD, include Logical (logical data type) and Memo (MEMO field).

The validtypes argument is a bit-coded integer with values as shown below:

Bit value Meaning

1 List numeric items

2 List integer items

4 List character items

8 List date items

16 List logical items

32 List memo fields

The bit values can be added in any combination to return a variety of item types.
For example, to list numeric and character items, set the bit value to 5.

dlist: Puts item names into the selected list box of the browser. When
arcd_items is invoked, all the valid items display in the unselected list box.
Passing a list of item names through the argument dlist displays the item names
of the list in the selected list box. The list of item names is compared to the item
names retrieved by the validtypes argument. If the item in the list is present in

Chapter 6

ArcCAD Extensions to AutoLISP 73

the theme and is a valid type, then that item will be shown in the selected side of
the dialog box. An item name not present in the theme or not a valid type will
be ignored.

(arcd_iteminfo theme item)
This function displays an alert box which lists the definition information of the
specified item. If item exists in theme, the theme name, the item name, and the
itemÕs type, width and number of decimal places displays. If item does not
exist in the specified theme, the alert box is displayed with the message ÔItem
not found!Õ. The following figure shows an example of the alert box.

The code fragment

(arcd_iteminfo ÒparcelsÓ ÒownerÓ)

displays the Item Information alert box with its item named OWNER and its
definition as shown below:

theme: The theme is a valid theme name in the current drawing used to list one
of its item names. The theme name must exist in the current drawing and must
contain an associated data file. Please note that you cannot specify an
annotation or image theme with this function.

item: A valid item name in the specified theme. If the specified item does not
exist, the message ÔItem not found.Õ is displayed in an alert box.

Note: This function always returns T to the calling routine.

GUI access

74 ArcCAD Extensions to AutoLISP

(arcd_msg title accept reject msg)
This function invokes an alert box with a user-specified error or warning
message passed as the msg argument. The title argument allows you to specify
the title of the alert box. The accept and reject arguments allow you to title the
OK and Cancel buttons. The following figure shows an example of the alert
box.

The code fragment

(arcd_msg ÒWarning!Ó ÒKillÓ ÒCancelÓ (list ÒAre you
 sure you want to KILL the theme?Ó))

would display the alert box as shown below:

Notes

 You must supply the message in the form of a list as shown in the above
example.

 If both the accept and reject arguments evaluate to nil the accept argument
is activated to enable the OK button.

title: The optional title argument sets the title of the alert box. If the title
evaluates to nil, no title appears in the alert box. The maximum length of the
title depends upon and varies according to the display platform device.

accept: The accept argument sets the name of the accept (OK) button. If
accept evaluates to nil, no accept button appears in the alert box. Selecting the
accept button always returns T to the calling routine.

reject: The reject argument sets the name of the reject (Cancel) button. If
reject evaluates to nil, no reject button displays in the alert box. Selecting the
reject button always returns nil to the calling routine. Please note that if both
the accept and reject arguments evaluate to nil, the accept argument activates
and the button is named OK.

Chapter 6

ArcCAD Extensions to AutoLISP 75

msg: The msg argument sets the error or warning message to be displayed.
The message is passed in the form of a list that may contain a variable number
of strings. If the list contains more than one string, each string appears on a
separate line. An empty string (ÒÒ) within a list may be used as a space between
lines as shown below:

The code fragment

(arcd_msg ÒThree linesÓ ÒOKÓ nil
 (list ÒThis is the first line!Ó ÒÒ ÒThis is the
 third line!Ó))

would display the alert box as shown below:

Note that the line length and the number of lines in the alert box are device
dependent, and any string too long to fit inside an alert box will be truncated.

(arcd_symbol type dsym lonly)
This function invokes one of the four Symbol Selection dialog boxes. The type
argument determines the type of symbol to display: Line, Marker, Shade or
Text symbol. The dsym argument determines the current symbol that is
displayed. The following shows an example of the Marker Symbols dialog
box.

The code fragment

(arcd_symbol ÒMarkerÓ 85 nil)

GUI access

76 ArcCAD Extensions to AutoLISP

would display the Marker Symbols dialog box as shown below:

type: The type argument controls the type of symbol to display in the dialog
box. The symbols displayed are from the currently loaded symbol sets.
ArcCAD supports four groups of symbols: marker, line, shade and text.

dsym: The dsym argument is used by arcd_symbol to determine which
symbol to display first. Valid symbol numbers range between 0 and 100. This
feature is especially useful for invoking the Symbol Selection dialog box with
the symbol number that is being stored as part of a themeÕs definition.

Consider the following example, assuming that a theme named PARCELS
exists in your drawing with the default symbol number 12:

...

...
(setq themelist (thmget ÒparcelsÓ))
(if (null themelist)
 (princ ÒTheme not defined\nÓ)
 (setq sym (cdr (assoc 60 themelist)))
)
(arcd_symbol ÒShadeÓ sym nil)
...
...

Chapter 6

ArcCAD Extensions to AutoLISP 77

The Shade Symbols dialog box is invoked with the current symbol number set
to the themeÕs default symbol number. Choose the default symbol number or
select another symbol using the Symbol Selection dialog box.

lonly: The lonly argument determines whether the dialog box is invoked to
display the existing symbols or to allow selection of a symbol. If the dialog
box is invoked only to display the symbols of a certain type, then the OK button
is used to dismiss the dialog box and nil is returned to the calling routine. If
lonly evaluates to T, the OK button dismisses the dialog box. If lonly evaluates
to nil, the OK button and the Cancel button are enabled, allowing you to select
a symbol or dismiss the dialog box. After selecting a symbol, press the OK
button to dismiss the dialog box and return the symbol number to the calling
routine.

(arcd_theme validtypes etype define lonly theme)
This function displays a Theme Selection dialog box from which to pick an
existing theme or to list available themes in the current drawing. You can
control which types of themes to display, using the validtypes parameter, and
whether or not the data set must exist for the selected themes, using the etype
argument. In addition, the optional define argument controls whether the
ÔDefine Theme...Õ button, from which you can access the Define Theme dialog
box, is enabled. The theme argument specifies the default theme. If this
argument is blank, the current theme is used. The following figure shows an
example of the Theme Selection dialog box.

The code fragment

(arcd_theme (+ 1 2 4 8 16 32) 0 t nil ÒparcelsÓ)

GUI access

78 ArcCAD Extensions to AutoLISP

would display the Theme Selection dialog box as shown below:

validtypes: The validtypes argument is used by arcd_theme to list only
desired themes with the specified feature class. The validtypes is an integer
(bit-coded) with values as shown below:

Bit value Meaning

1 List line themes

2 List polygon themes

4 List point themes

8 List tic themes

16 List annotation themes

32 List dBASE record themes

64 List SQL record themes

128 List image themes

The bit values can be added in any combination to list a variety of theme types at
the time of invocation. For example, if you wish to list only line and polygon
themes, set the value of validtypes to 3.

Chapter 6

ArcCAD Extensions to AutoLISP 79

etype: The etype argument is used by arcd_theme to list themes based on
their respective geographic information system (GIS) data sets. In other words,
you can list themes for which data sets exist or do not exist, or you can ignore
the existence of the data sets altogether. The dataset argument is an integer with
values as shown below:

Value Meaning

0 Ignore GIS data set existence

1 GIS data set must exist

2 GIS data set must not exist

3 GIS data set and FAT must exist

define: The define argument controls the enabling of the ÔDefine Theme...Õ
button in the Theme Selection dialog box. Use this button to access the Define
Theme dialog box from which to define a theme. This feature is especially
useful at output theme prompts where you may pick a theme from the available
list or define one from within another command. If define evaluates to T, the
ÔDefine Theme...Õ button is enabled; if it is set to nil, the ÔDefine Theme...Õ
button doesnÕt display.

Note: When you press the ÔDefine Theme...Õ button, the Define Theme dialog
box is displayed, and the OK and Cancel buttons of the arcd_defthm function
control the value returned to the Theme Selection dialog box. For example, if
you invoke the Define Theme dialog box from the Theme Selection dialog box,
after entering appropriate information, the OK button returns the theme name to
the arcd_theme function and appears in the Theme Selection dialog box.

lonly: The lonly argument determines whether the dialog box is invoked to list
existing themes or to allow selection of a theme through the theme list box. If
the dialog box is invoked only to list the existing themes in the current drawing
(i.e., when lonly evaluates to T), only the OK button displays to dismiss the
dialog box and nil is returned to the calling routine. If lonly evaluates to nil,
the OK button and the Cancel button are enabled, allowing you to select a theme
or dismiss the dialog box. After selection of a theme name, press the OK
button to dismiss the dialog box and return the theme name to the calling
routine. The Cancel button dismisses the dialog box and returns nil to the
calling routine.

Note that the display of the ÔDefine Theme...Õ button depends on the define
argument.

GUI access

80 ArcCAD Extensions to AutoLISP

(arcd_thminfo theme)
This function invokes a Theme Information alert box which will list the
definition information of the specified theme. If theme does not exist in the
drawing, an alert box appears with the message ÔTheme name not found!Õ. The
following figure shows an example of the Theme Information alert box.

The code fragment

(arcd_thminfo ÒparcelsÓ)

would display the Theme Information alert box as shown below:

theme: The theme argument is a valid theme name and must exist in the
current drawing. The themeÕs data set, however, may or may not exist. If the
data set does not exist in the specified theme, a ÔData set does not exist.Õ
message appears in the theme information alert box.

Note: This function always returns T to the calling routine.

Chapter 7

ArcCAD Extensions to AutoLISP 81

Command interface

cmd function
The cmd function is a special function used to execute any valid ArcCAD¨

command from within AutoLISP¨. This command is similar to the command
function in standard AutoLISP. Refer to the AutoCAD Customization Guide
for further details on the command function.

(cmd list)
This function executes ArcCAD commands from within AutoLISP and always
returns nil. The list contains a set of arguments that represent an ArcCAD
command and its parameters. It evaluates each argument and sends it to
ArcCAD in response to successive prompts. The first atom in the list must be a
valid ArcCAD command name.

The following is an example of the cmd function used to define a line theme
named roads, with the geographic information system (GIS) data set roads and
a symbol value 3, using the defthm command.

(cmd (list ÒdefthmÓ ÒroadsÓ ÒLineÓ ÒroadsÓ 3))

Each argument must be specified in the order it would be typed at the command
prompt. Also, each argument should have the appropriate type, as specified in
the ArcCAD Command Reference.

There are two special arguments available in the cmd function: pause and an
empty string (ÒÓ). pause may be used to interrupt operation in order to request
information from the user. Once the valid input is received, the function
resumes.

Consider the following example:

(cmd (list ÒjoinitemÓ ÒroadsÓ ÒroadsattÓ ÒroadsÓ Òroads_idÓ
pause ÒÓ))

Command interface

82 ArcCAD Extensions to AutoLISP

In the above example, while executing the ArcCAD joinitem command, the
function pauses to let the user interactively type the start item option. When a
valid input is found, the function resumes and accepts the default link option as
it finds an empty string (ÒÓ) next to the pause argument, and completes the
execution.

General rules in using the cmd function

 Command names and options should be passed in as strings. Points as lists
of two reals, and integers and reals should be passed as is. Note that keywords
should be passed in with correct case (i.e., keyword matching is case
sensitive).

 A null string (ÒÓ) is equivalent to entering <CR> at the keyboard.

 Use pause to prompt for interactive user input.

 Commands executed from the cmd function are never echoed to the screen.

 Commands with repeating (looped) dialog may not be used inside the cmd
function due to the argument-passing restrictions of AutoLISP. ArcCAD
commands with repeating dialog must only be provided with one iteration of
that dialogÕs arguments, including a null string (ÒÓ) to terminate that iteration.

Index

ix

ADS (AutoCAD Development
System) ii

ArcCAD; see also ArcCAD User’s
Guide
coverage iv
data model iii
data set iii
GUI functions 63 thru 80
programmer guide

organization iii
version number 58

Arithmetic expressions 15
arithmetic operators 15
display width 12
numeric operands 15

AutoLISP
configuration ii
what is AutoLISP ii

AutoLISP vs ADS ii

Boolean operations
AND 17
OR 23
XOR 24

Build See build command in the
ArcCAD Command Reference

Clean See clean command in the
ArcCAD Command Reference

Command interface 81
general rules 82

Configuration ii
ADS ii
AutoLISP ii

Coverage iv
directory structure iv

Cross reference files iv

Data set iii

ESRI_THEMES layers 1, 3

Feature
access 11
data functions 29 thru 39
deleting 29
format

annotation 30
line 31
point 31
polygon 32
record 32
tic 31

last 26
make 36 thru 38
modify 39
name 11

functions 25 thru 29
next 27
selection sets 11

adding 17
clearing 18
current 23
deleting 18
getting 19
naming 22

selection set manipulation
functions 17 thru 24

Featlist option 36, 39

Files
copy 59
delete 60
list 58 thru 59

Flip 34

GIS data set ii

GUI functions
coverage selection 65 thru 66
define theme 66 thru 68
expression builder 68 thru 69
item information 73
item selection 70 thru 71

multiple item selection 71 thru
73

GUI functions (cont.)
message box 74 thru 75
record browser 64
symbol selection 75 thru 77
theme information 80
theme selection 77 thru 79

Implied attribute files 41

Index option 22

Internal variables 16
$E 16
$PI 16
$RECNO 16

Island 34

Item
access 41
define 43
get 45
list 46
manipulation functions 43 thru 48

Itemlist option 35, 36, 39

Level option 27

Limitations vii
coordinate rounding vii
display width 16
features vii
feature selection sets vii
GIS data sets viii
item names viii
themes vii

Links iii

Logical connectors 14

Logical expressions 13

PC ARC/INFO iii; see also
ArcCAD User’s Guide

Spatial selection 12, 19

Index

x

SQL
access 49
connections

active 51
close 51
exists 51
list 51
open 51

cursor
close 52
column existence 52
column type 53
column width 53
column value 53
existence 53
first 54
list 54
list of column names 52
next 54
open 54
set 52
set column value 52

example 50

Theme
access 1
defining 2 thru 9
delete See kill command in the

ArcCAD Command Reference
get 5
limitations vii, 1
list 6
manipulation functions 2 thru 9
modify 9
recovery functions 60 thru 61

user-defined recovery 60 thru 61
default recovery 61
SQL theme recovery 61

Topology v; see also ArcCAD
User’s Guide

Universe polygon 33

ArcCAD
Extensions
to ADS

®

™

™

Contents

Chapter 1 Theme access 1

Theme manipulation functions --- 2
arc_thmdef --- 2
arc_thmdel --- 3
arc_thmexi --- 5
arc_thmget --- 5
arc_thmlst -- 6
arc_thmmod -- 8

Chapter 2 Feature access 1 1

Feature selection set manipulation --------------------------------------- 11
Feature selection sets --- 11
Spatial selection --- 12
Logical expressions --- 13
Arithmetic expressions --- 15
Display width limitations --- 16
Internal variables -- 16

Feature selection set manipulation functions --------------------------- 17
arc_fssadd -- 17
arc_fssand -- 18
arc_fssclr --- 19
arc_fssdel -- 20
arc_fssfree --- 21
arc_fssget -- 21
arc_fsslength --- 25
arc_fssmemb --- 26
arc_fssname -- 27
arc_fssnot -- 27
arc_fssor --- 29
arc_fssput -- 30
arc_fssxor -- 32

Feature name functions --- 33
arc_entfeat -- 33
arc_featent -- 34
arc_featlast --- 35
arc_featnext -- 36
arc_featthm --- 39

Contents

Feature data functions --- 40
arc_featdel -- 40
arc_featget -- 41
arc_featmake --- 50
arc_featmod -- 53

Chapter 3 Item access 5 5

Item manipulation functions -- 56
arc_itmdef -- 56
arc_itmexi -- 57
arc_itmget -- 58
arc_itmlst --- 60

Chapter 4 Command interface 6 3

cmd function --- 63
(arc_cmd) -- 63
(arc_arcadver) --- 64
(arc_dirlst) --- 65

Index x i

Chapter 1

ArcCAD Extensions to ADS 1

Theme access
A theme is a collection of geographic phenomena or an organizing principle that
is used to link AutoCAD® entities to geographic information system (GIS) data
sets. Each theme has a unique name, a feature class, a pointer referencing a
corresponding GIS data set (a PC ARC/INFO-compatible coverage or a
database data file), and a symbol number. Themes are stored as point entities in
the current drawing and maintained on a special layer named ESRI_THEMES.
The parameters of the theme definition are maintained in the extended entity data
of the point entities that are created on this special layer. This layer is not
visible to the user and should always be in a frozen state. You must never
attempt to edit the contents of this layer. Doing so can destroy the theme
definitions and therefore corrupt all the links that are maintained between
AutoCAD entities and ArcCAD® features.

The theme manipulation functions described in the following section maintain
and manipulate the extended entity data and the links for you. These functions
are used to manage themes in your drawing and maintain the links between the
ArcCAD features and the corresponding AutoCAD entities. For example, using
the arc_thmdef function, you can define a theme to create or display GIS data
sets. You can use the arc_thmdel function to delete a theme and the links to
the GIS data set. Similarly, using the arc_thmexi function, you can check the
validity of a theme before performing any operation on the theme. The
arc_thmlst function lists the available themes in your drawing, and the
arc_thmget function lets you retrieve the contents of the theme definition in
the form of a list, which can be used to modify the definition of the theme using
the arc_thmmod function.

The following are some of the theme limitations that are applied to theme access
functions:

 The maximum length of a theme name is 31 characters.

 The maximum number of themes that can be defined and linked to GIS data
sets in a single AutoCAD drawing is 511.

 You cannot define more than one theme with the same feature class and GIS
data set, with the exception of record themes.

Theme access

2 ArcCAD Extensions to ADS

Theme manipulation functions
The following functions can be used to create, modify, list and delete some of
the parameters that define a theme.

arc_thmdef
Input Output
-1 dummy ename RTSTR theme
1 theme name
2 Feature class
3 GIS data set
57 User_ID increment value
58 Next available User_ID #
60 Symbol
63 Features present

Xloads required: arcad

This function creates a new theme in the drawing. If theme is successfully
created, the name of the theme is returned as a RTSTR. If theme cannot be
created, RTNIL is returned. There are seven possible feature classes available
to the user: Annotation, Line, Point, Polygon, Record (dBASE), Image, and
Tic.

Note: SQL record themes are not supported by the ArcCAD ADS™

extensions.

This function does not perform any user interaction. All of the parameters must
be supplied. If user interaction is desired, use the arc_cmd function to invoke
the user command that defines themes.

Example

/* this code fragment creates a line theme named
‘ROADS’ that uses a GIS data set named
‘DEMO\ROADS’ and a line symbol of 2.
*/

long ename[2];
char theme[32];
struct resbuf *in_rb, *out_rb;

ename[0]=0;
ename[1]=0;

Chapter 1

ArcCAD Extensions to ADS 3

in_rb = ads_buildlist (
RTSTR, “arc_thmdef”,
-1, ename,
1, “roads”,
2, “Line”,
3, “demo\\roads”,
60, 2,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype == RTSTR) {

strcpy(theme,out_rb->resval.rstring);
ads_printf(“theme defined\n”);

}
else ads_printf(“theme not defined\n”);

Note: If it happens to be the first theme created in your drawing, the software
first creates a frozen, invisible layer, ESRI_THEMES.

arc_thmdel
Input Output
RTSTR theme RTSTR theme
RTSHORT option

Xloads required: arcad

This function removes a theme from the drawing. The actual output of this
function is dependent upon the value of option provided. This function will
either return the theme name as a RTSTR or RTNIL.

If option evaluates to 0, only the links associated with theme will be removed.
Theme will remain defined in the drawing. If the links are successfully
removed from the drawing, the name of the theme will be returned as a RTSTR.
If the links cannot be removed from the drawing, RTNIL will be returned.

If option evaluates to 1, the associated links and the theme definition will be
removed from the drawing. If theme is successfully deleted, the name of the
theme will be returned as a RTSTR. If theme cannot be deleted, RTNIL will be
returned.

When a theme is deleted from the drawing, the associated links are also
removed from all entities belonging to the theme. In addition, all feature
selection sets derived from the theme are removed.

Theme access

4 ArcCAD Extensions to ADS

Example

struct resbuf *in_rb, *out_rb;
char theme[32];

/* This code fragment removes only the links
associated with a theme named ‘sample’.
*/
in_rb = ads_buildlist (

RTSTR, “arc_thmdel”, RTSTR, “sample”,
RTSHORT, 0,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype == RTSTR) {

strcpy(theme,out_rb->resval.rstring);
ads_printf(“removed links\n”);

}
else ads_printf(“links not removed\n”);

/* This code fragment removes the associated links and
the definition of the theme named “roads”.
*/

in_rb = ads_buildlist (
RTSTR, “arc_thmdel”, RTSTR, “roads”,
RTSHORT, 1,
NULL);

ads_invoke (in_rb, out_rb)
if (out_rb->restype == RTSTR) {

strcpy(theme,out_rb->resval.rstring);
ads_printf(“theme and links removed\n”);

}
else ads_printf(“theme and links not removed\n”);

Note: If you delete a GIS data set reference by a theme, it is always a good
idea to use the arc_thmdel function to remove the links associated with that
theme. The ArcCAD command kill handles this automatically.

Chapter 1

ArcCAD Extensions to ADS 5

arc_thmexi
Input Output
RTSTR theme RTSTR theme

Xloads required: arcad

This function checks for the existence of a theme in the drawing. If theme
exists, the name of the theme will be returned as a RTSTR. If theme does not
exist, RTNIL will be returned.

Example

struct resbuf *in_rb,*out_rb;
char theme[32];

/* This code fragment checks for the existence of a
theme named ‘sample’.
*/
in_rb = ads_buildlist (

RTSTR, “arc_thmexi”, RTSTR, “sample”,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype == RTSTR) {

strcpy(theme,out_rb->resval.rstring);
ads_printf(“found it\n”);

}
else ads_printf(“does not exist\n”);

arc_thmget
Input Output
RTSTR theme -1 dummy ename

1 theme name
2 class (read only)
3 GIS data set (read only)
57 User_ID increment value
58 Next available User_ID#
60 symbol
63 Features present (read only)

Xloads required: arcad

This function returns the definition of an existing theme. If theme exists, a
RESBUF will be returned that contains the theme’s name, class, GIS data set,

Theme access

6 ArcCAD Extensions to ADS

and symbol number. If theme does not exist in the drawing, RTNIL will be
returned.

Example

/* This code fragment retrieves the definition of a
theme named ‘roads’.
*/

struct resbuf *in_rb, *out_rb;
char name[32], class[32], source[132];
int symbol;

in_rb = ads_buildlist (
RTSTR, “arc_thmget”, RTSTR, “roads”,
NULL);

ads_invoke (in_rb,out_rb);
while (out_rb != NULL) {

if (out_rb->restype == 1)
strcpy(name,out_rb->resval.rstring);

if (out_rb->restype == 2)
strcpy(class,out_rb->resval.rstring);

if (out_rb->restype == 3)
strcpy(source,out_rb->resval.rstring);

if (out_rb->restype == 60)
symbol=out_rb->resval.rint;

if (out_rb->restype != RTNIL)
out_rb=out_rb->rbnext;

else out_rb=NULL;
}

arc_thmlst
Input Output
RTSHORT class RTSTR theme name1
RTSHORT data set RTSTR theme name2

.....

.....
RTSTR theme nameN

Xloads required: arcad

This function returns a list of the themes defined in the current drawing. If the
drawing contains any themes, a RESBUF containing the theme names is
returned. If the drawing does not contain any themes, RTNIL is returned. The
optional class and dataset arguments let you list themes in a variety of

Chapter 1

ArcCAD Extensions to ADS 7

combinations. Please note that you cannot omit only one of the arguments.
You must either omit both the class and dataset arguments or supply both of
them.

class: This optional argument determines the feature class of themes returned.
The class argument is an integer (bit-coded) with values as shown below:

Bit value Meaning

1 List line themes

2 List polygon themes

4 List point themes

8 List tic themes

16 List annotation themes

32 List dBASE record themes

64 List SQL record themes

128 List image themes

The bit values can be added in any combination to return a variety of theme
feature classes. For example, if you wish to list all line and polygon themes,
set the value of class to 3.

Caution: Future versions of ArcCAD might use additional arc_thmlst
control bits, so avoid setting bits in your applications that aren’t in the above
table.

dataset: This optional argument instructs arc_thmlst to return themes based
on the existence of their respective GIS data sets. In other words, you can
retrieve themes for which a data set exists or does not exist, or you can ignore
the existence of the data set altogether. The dataset argument is an integer with
values as shown below:

Value Meaning

0 Ignore GIS data set existence

1 GIS data set must exist

2 GIS data set must not exist

Data set existence rules
The GIS data set exists when the following conditions are met for line, point,
polygon, tic and annotation themes:

Theme access

8 ArcCAD Extensions to ADS

 The GIS data set (coverage) has been created by adding one or more
features to the theme.

 A theme is defined with its GIS data set referencing an existing coverage in
the specified subdirectory.

 For a record theme, the GIS data set exists if it contains at least one item
definition. It is not dependent on the number of records in the file.

Example

/* This code fragment returns a list of all line and
polygon themes in your current drawing.
*/

struct resbuf *in_rb, *out_rb, *cur_rb;

in_rb = ads_buildlist (
 RTSTR, "arc_thmlst", RTSHORT, 3, RTSHORT, 0,
 NULL);
ads_invoke (in_rb, &out_rb);
cur_rb = out_rb;
while (cur_rb->restype == RTSTR && cur_rb != NULL) {
 ads_printf (“Theme name is: %s\n”,
 cur_rb->resval.rtstring);
 cur_rb = cur_rb->rbnext;
}
ads_relrb (in_rb);
ads_relrb (out_rb);

arc_thmmod
Input Output
RTSTR theme RTSTR theme
-1 dummy ename
1 new theme name
2 class (read-only)
3 GIS data set (read-only)
57 User_ID increment value
58 Next available User_ID#
60 symbol
63 Features present (read only)

Xloads required: arcad

Chapter 1

ArcCAD Extensions to ADS 9

This function modifies the definition of an existing theme. If theme is
successfully modified, the name of the theme associated with the restype of 1,
in the input RESBUF, is returned as a RTSTR.

If theme cannot be modified, RTNIL will be returned. The DXF group codes
in the buildlist arguments must be in the same format as received from the
arc_thmget function as shown in the example below. Please note that the
class and GIS data set values are read-only.

Example

/* This code fragment changes the name of a previously
defined theme named ‘sample’ to ‘roads’.
*/
struct resbuf *in_rb, *out_rb, *new_rb;
char name[32], class[32], source[132];
int symbol;
long ename[2];

/* get existing values */

in_rb = ads_buildlist (
RTSTR, “arc_thmget”, RTSTR, “sample”,
NULL);

ads_invoke (in_rb,out_rb)
while (out_rb != NULL) {

if (out_rb->restype == 1)
strcpy(name,out_rb->resval.rstring);

if (out_rb->restype == 2)
strcpy(class,out_rb->resval.rstring);

if (out_rb->restype == 3)
strcpy(source,out_rb->resval.rstring);

if (out_rb->restype == 60)
symbol=out_rb->resval.rint;

if (out_rb->restype != RTNIL)
out_rb=out_rb->rbnext;

else out_rb=NULL;
}

/* create new resbuf with modified values */

ename[0]=0;
ename[1]=0;
new_rb=ads_buildlist(

RTSTR, “arc_thmmod”, -1, ename,
1, “roads”, 2, class, 3, source, 60, symbol,
NULL);

ads_invoke (new_rb, out_rb);

Theme access

10 ArcCAD Extensions to ADS

if (out_rb->restype == RTSTR) {
strcpy(name,out_rb->resval.rstring);
if (strcmp(name,“roads”)==0)

ads_printf(“modification complete\n”);
else ads_printf(“modification failed\n”);

}
else ads_printf(“modification failed\n”);

Chapter 2

ArcCAD Extensions to ADS 11

Feature access

A comprehensive set of AutoLISP® and ADS™ functions, provided by
Autodesk®, Inc., allows you to access AutoCAD® entities. Running parallel to
these functions, ArcCAD® software supports similar functions that access
features in ArcCAD databases. Using these functions, you can select features,
retrieve their values and modify them. You can use AutoLISP variables to hold
selection sets derived in this fashion so that you can manipulate selection sets of
features.

Feature selection set manipulation
In order to manipulate features, the user must be able to indicate which objects
are to be considered. This process involves the selection of features based upon
combinations of spatial, graphical and attribute criteria specified as a series of
logical expressions. This series of functions allows the user to perform and
maintain selection sets, and retrieve information concerning these objects of
interest.

There are two special ArcCAD data types implemented to provide access to
ArcCAD features: a feature name and a feature selection set. A feature name is
a pointer into the ArcCAD database from which AutoLISP can find the
appropriate feature and its corresponding attributes (if any exist). A feature
selection set is simply a collection of feature names.

Feature selection sets
A feature selection set in ArcCAD is a set of features that are grouped together
based on a series of spatial, logical and arithmetic expressions. At the
command level, there is one feature selection set maintained for each theme
(except annotation) defined in the drawing. Initially, all features belonging to a
database are selected for that theme’s selection set. Using the reselect,
aselect, nselect and clearsel commands, the user can manipulate the feature
selection sets to display desired features and their corresponding attribute values
(if any exist). The last operation on a theme’s feature selection set is always
stored as the current feature selection set for that theme.

Feature access

12 ArcCAD Extensions to ADS

At the AutoLISP and ADS level, the user can create and manipulate feature
selection sets using a set of feature selection functions (explained in later
sections). By using these functions, the user can achieve the same results as
one who uses ArcCAD commands for query and display purposes. There are,
however, obvious advantages to using these functions to customize the
software at the AutoLISP and ADS level.

As explained earlier, at the command level, there is always one and only one
feature selection set maintained for any given theme. By using feature selection
functions, the user can store multiple feature selection sets for a given theme
and use any one of these feature selection sets to replace the current feature
selection set for that same theme.

While making multiple feature selection sets using AutoLISP and ADS
functions, the user has options to select features from the current feature
selection set or from the entire geographic information system (GIS) data set
associated with that theme. For example, if the user creates a new feature
selection set from the theme’s selection set, the function behaves exactly like a
reselect command. On the other hand, if the user specifies the all option while
deriving a feature selection set (refer to the arc_fssget function), the user has
the ability to select a subset of features from the entire GIS data set of a given
theme.

The functions arc_fssand, arc_fssor and arc_fssxor are also available to
the user to create new feature selection sets by combining two valid feature
selection sets based on Boolean AND, OR, XOR combinations.

Features may be selected spatially or by using a series of logical expressions
based on valid feature attributes in the corresponding feature attribute table for a
given theme, as explained below:

Spatial selection
Spatial selection sets can be performed using the following modes:

 Circle crossing
 Circle within
 Window crossing
 Window within
 Polygon crossing
 Polygon within
 Previous (latest feature selection set)
 Interactive (by specifying the appropriate mode)

For further details on spatial selection, refer to the arc_fssget function.

Chapter 2

ArcCAD Extensions to ADS 13

Logical expressions
Logical expressions in ArcCAD have three components: operands, logical
operators and logical connectors.

Logical operands

• The name of an item in a data file (e.g., STREAMS_ID)
• A constant numerical value (e.g., 10)
• A character string in single quotation marks (e.g., ‘HIGH’)
• An internal variable (e.g., $RECNO)

Logical operators

EQ or = Operand-1 is equal to Operand-2
NE or <> Operand-1 is not equal to Operand-2.
GE or >= Operand-1 is greater than or equal to Operand-2.
LE or <= Operand-1 is less than or equal to Operand-2.
GT or > Operand-1 is greater than Operand-2.
LT or < Operand-1 is less than Operand-2.
CN Operand-1 contains the character expression Operand-2. Used

with character operands only (e.g., NAME CN ‘MAIN’).
NC Operand-1 does not contain the character expression Operand-2.

Used with character operands only (e.g., NAME NC ‘MAIN’).
IN Operand-1 is contained in the set of numeric constants of

character strings specified in Operand-2. This set of constants
or character strings must be enclosed in { } braces. The
elements in the set must be separated by commas, unless they
are being used to express a range, in which case, -> is used to
separate the elements forming the lower- and upper-inclusive
limits of the range. A range defined between two character
strings is based on the ASCII number sequence, which is
alphabetical. No blank spaces should separate any of the
elements within the brackets.

Note: Computer roundoff can alter the values of real numbers. This can cause
a problem when specifying real numbers in a [logical expression] that require
equality. When using expressions of equality, the operands must match exactly
for the match to be found. For example, the value .01139 does not equal
.0114. In such cases, use an expression that includes a range of real values
(i.e., “HEIGHT GT .01139 AND HEIGHT LT .01141”).

Feature access

14 ArcCAD Extensions to ADS

Logical connectors

AND For the whole expression to be evaluated as true, the logical expressions
on both sides of the AND must be true.

OR For the whole expression to be evaluated as true, the logical expression
on one or the other side of the OR must be true. The whole expression
will also be evaluated as true if both logical expressions are true.

XOR For the whole expression to be evaluated as true, the logical expression
on one and only one side of the XOR must be true. If both logical
expressions are true or both are false, the condition will be evaluated as
false.

The simplest logical expressions take the following form:

[operand-1] [logical-operator] [operand-2]

For example, the following string can be used as a simple logical expression:

“CLASS LT 8”

Up to eight logical expressions of this simple form can be combined to form
more complex expressions by using the logical connectors. For example, the
following string can be used as a complex logical expression:

“CLASS GE 2 AND CLASS LT 8 OR SUIT = ‘MODERATE’”

Note: If the item value is of type character, the value must be enclosed in
single quotes (example: SUIT = ‘MODERATE’) and is case sensitive.

There is no limit to the number of [operand-1] [logical-operator] [operand-2]
combinations and logical connectors that can be used in a single expression.
However, the entire expression must be less than 254 characters in length.

All logical operators and connectors have equal precedence. The expression is
evaluated from left to right. However, parentheses can be used to change the
default order of evaluation such that expressions within parentheses are
performed first. Operations inside the innermost set of parentheses have the
highest precedence.

Each element of a logical expression (i.e., operand, logical operator, logical
connector, parenthesis) must be separated by blanks, except when using the IN
operator.

Chapter 2

ArcCAD Extensions to ADS 15

Arithmetic expressions
Arithmetic expressions in ArcCAD have the following components:

Numeric operands

• An item name
• A constant (e.g., 10)
• An internal variable (e.g., $RECNO)

Arithmetic operators

+ Addition
- Subtraction
/ Division
* Multiplication
* * Exponentiation
L N Logarithm

Calculates the natural logarithm of the operand it precedes. The operand
must be a positive number.

WD Width computation
Calculates the width in characters of the operand it precedes excluding
trailing blanks. The operand must be a character item or a literal string.

Arithmetic operators have the following precedence from highest to lowest:

1) LN, WD
2) **
3) *, /
4) +, -

Operands of equal precedence are performed as they are encountered moving
from left to right through the expression. Parentheses can be used to override
inherent precedence. Operations within the innermost set of parentheses are
performed first.

Note: There is no unary minus operator for negating an operand in ArcCAD.
For example, the expression -AGE evokes an error message (instead, specify
-1 * AGE). Also, all arithmetic operations in ArcCAD are performed in double
precision. As a result, an expression involving integer operands may be
evaluated as having a fractional part.

Feature access

16 ArcCAD Extensions to ADS

Examples of arithmetic expressions:

SUIT = (SOIL + 2 * TERRAIN) / 12

LAB_WIDTH = (WD (LABEL) + 4) * 0.22

Display width limitations
A number assigned to a numeric type item with 0 decimal places that exceeds
the defined width for its item definition is displayed as asterisks (***). The
item value is lost.

The values of a numeric type item defined with 1 or more decimal places that
exceeds the defined width for that item will be displayed in scientific notation.

Internal variables
ArcCAD provides you with three internal variables that can be used in logical
and arithmetic expressions.

$RECNO—the record number of a record in the selected data file.

$PI—the value for pi (3.14159...), which is the ratio of a circle’s
circumference to its diameter.

$E—the value for e (approximately 2.71828), which is the base of the number
system for natural logarithms.

These internal variables can be used as operands anywhere within a logical or
arithmetic expression; for example

“$RECNO GT 100”

This selection expression will find all records from the selection set whose
record number is greater than 100.

Chapter 2

ArcCAD Extensions to ADS 17

Feature selection set manipulation
functions

 The following functions are used to create, modify, list and delete feature
selection sets.

arc_fssadd
Input Output
RTSTR featname RTSHORT fss
RTSHORT fss

Xloads required: arcad

This function adds a named feature to a feature selection set. The actual output
of this function is dependent upon the value of fss provided. This function will
either return a feature selection set as a RTSHORT or return RTNIL. When a
new member is added to fss, it is added to all feature selection sets bound to
fss. In other words, if fss is assigned to other variables, they also reflect the
addition.

If fss does not evaluate to RTNIL, this function will add featname to fss. If
featname is successfully added to the feature selection set, the new feature
selection set is returned as a RTSHORT. If the featname is already a member of
fss, the operation will be ignored and the original feature selection set will be
returned as a RTSHORT. If featname and fss are not derived from the same
theme, RTNIL will be returned.

If fss evaluates to RTNIL, a new feature selection set will be created. This new
feature selection set will contain featname as its only member.

Example

/* This code fragment adds the last feature in the
theme ‘ROADS’ to an existing feature selection set
named fss1
*/
char f1[32];
int fs;
struct resbuf *in_rb,*out_rb;

/* Get name of last feature in theme */

in_rb = ads_buildlist(

Feature access

18 ArcCAD Extensions to ADS

RTSTR, “arc_featlast”, RTSTR, “roads”,
NULL);

ads_invoke(in_rb,out_rb);
if (out_rb->restype==RTSTR) {

strcpy(f1,out_rb->resval.rstring);
/* Add feature to selection set */
in_rb=ads_buildlist(

RTSTR, “arc_fssadd”, RTSTR, f1,
RTSHORT, fss1,
NULL);

ads_invoke(in_rb,out_rb);
if (out_rb->restype==RTSHORT) {

fs=out_rb->resval.rint;
if (fs==fss1) ads_printf(“success\n”);
else ads_printf(“failure\n”);

}
else ads_printf(“failure\n”);

}
else ads_printf(“failure\n”);

arc_fssand
Input Output
RTSHORT fss1 RTSHORT fss
RTSHORT fss2

Xloads required: arcad

This function creates a new feature selection set, which contains all of the
feature names in both of the feature selection sets provided. If both fss1 and
fss2 are derived from the same theme, a new feature selection set will be
returned as a RTSHORT. If the feature selection sets are not derived from the
same theme, RTNIL will be returned.

If the two feature selection sets do not have any members in common, the
resulting feature selection set will not have any members. This function is
equivalent to a Boolean AND of the two feature selection sets.

Example

/* This code fragment creates a new feature selection
set that contains all members that are common to both
feature selection sets fss1 and fss2.
*/

int fss3;

Chapter 2

ArcCAD Extensions to ADS 19

struct resbuf *in_rb, *out_rb;

in_rb = ads_buildlist (
RTSTR, “arc_fssand”, RTSHORT, fss1,
RTSHORT, fss2,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype == RTSHORT) {

fss3=out_rb->resval.rint;
ads_printf(“success\n”);

}
else ads_printf(“failure\n”);

arc_fssclr
Input Output
RTSHORT fss RTSHORT fss

Xloads required: arcad

This function removes all of the members from a feature selection set. If all
members are successfully removed from fss, the feature selection set is returned
as a RTSHORT. If all the members cannot be removed, RTNIL will be
returned.

Example

/* This code fragment removes all members from the
feature selection set fss1
*/

int fss;
struct resbuf *in_rb, *out_rb;

in_rb = ads_buildlist (
RTSTR, “arc_fssclr”, RTSHORT, fss1,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype==RTSHORT) {

fss=out_rb->resval.rint;
if (fss==fss1) ads_printf(“success\n”);
else ads_printf(“failure\n”);

}
else ads_printf(“failure\n”);

Feature access

20 ArcCAD Extensions to ADS

arc_fssdel
Input Output
RTSTR featname RTSHORT fss
RTSHORT fss

Xloads required: arcad

This function removes a named feature from a feature selection set. If featname
is successfully removed from fss, the feature selection set fss will be returned
as a RTSHORT. If featname cannot be removed from the feature selection set,
RTNIL will be returned.

Example

/* This code fragment removes the last feature in the
theme ‘ROADS’ from the existing feature selection set
fss1. The feature selection set is checked to see if
the feature is a member prior to its removal.
*/
char feat1[32];
int fss;
struct resbuf *in_rb, *out_rb;

in_rb = ads_buildlist (
RTSTR, “arc_featlast”, RTSTR, “roads”,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype == RTSTR) {

strcpy(feat1,out_rb->resval.rstring);
/* check for membership in fss */
in_rb = ads_buildlist (

RTSTR, “arc_fssmemb”,
RTSTR, feat1, RTSTR, “roads”,
NULL);

ads_invoke(in_rb,out_rb);
if (out_rb->restype==RTSTR) {

/* remove feature name from fss */
in_rb = ads_buildlist (

RTSTR, “arc_fssdel”,
RTSTR, feat1,
RTSHORT, fss1,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype == RTSHORT {

fss = out_rb->resval.rint;
if (fss==fss1)

Chapter 2

ArcCAD Extensions to ADS 21

ads_printf(“success\n”);
else ads_printf(“failure\n”);

}
else ads_printf(“failure\n”);

}
else ads_printf(“Not a member of fss\n”);

}
else ads_printf(“failure\n”);

arc_fssfree
Input Output
RTSHORT fss RTNIL

Xloads required: arcad

This function frees resources allocated to a feature selection set (fss). This
allows other feature selection sets to be created since a finite number of feature
selection sets (128) are available to the user. This function will always return
RTNIL.

Example

/* This code fragment frees resources allocated to the
feature selection set fss1.
*/

struct resbuf *in_rb, *out_rb;
in_rb = ads_buildlist (

RTSTR, “arc_fssfree”,
RTSHORT, fss1,
NULL);

ads_invoke (in_rb, out_rb);
/* always returns RTNIL */

arc_fssget
Input Output
RTSTR theme RTSHORT fss
RTSTR state
mode
option1
option2

Feature access

22 ArcCAD Extensions to ADS

The following chart shows the relationships between the values of mode,
option1, and option2. All of these modes are of type RTSTR, with the
exception of RTNIL.

Description Modes Option1 Option2
Circle
(crossing and within)

CC RTPOINT RTREAL

Circle
(within)

CW RTPOINT RTREAL

Expression E RTSTR RTNIL

Previous P RTNIL RTNIL

Polygon
(crossing and within)

PC RTLB
 RTPOINT
 RTPOINT
 ...
RTLE

RTNIL

Polygon
(within)

PW RTLB
 RTPOINT
 RTPOINT
 ...
RTLE

RTNIL

Window
(crossing and within)

WC RTPOINT RTPOINT

Window
(within)

WW RTPOINT RTPOINT

Interactive RTNIL RTNIL RTNIL

Xloads required: arcad

This function creates a feature selection set based upon the state of the selection
and a selection method indicated by the user. This function will only process
features that are members of a given theme. All other features will be ignored.

state: The argument state represents the current state of the selection set. By
default, all the features of a given theme are selected. If the user wants to select
a subset of features from a current selection set, the state of the selection would
be “C” (current). If the user wants to select features from the entire database
associated with the specified theme, the state of the selection would be “A” (all).
In other words, if the state argument is “C”, this function behaves similarly to
the reselect command. On the other hand, if the state argument is “A”, this
function behaves similarly to the aselect command.

Chapter 2

ArcCAD Extensions to ADS 23

mode: There are currently nine different selection modes available to the user.
A list of these modes is provided below.

“CC” pt1 radius Selects all features crossing or inside a circle whose
center is pt1 (RTPOINT) and the radius is radius
(RTREAL).

“CW” pt1 radius Selects all features inside a circle whose center is pt1
(RTPOINT) and the radius is radius (RTREAL).

“E” expression nil Selects all features that satisfy a logical expression.
expression (RTSTR) contains one or more valid logical
expressions. For further details, refer to the section on
logical expressions in this chapter.

“P” nil nil Returns the currently selected features of the theme.
This option will always return the current selection for
the theme and assumes that the state argument is always
“C” (current). If the user specifies option “A” (all) as the
state argument, the function ignores this option and
assumes option “C” as the state argument. However,
since the state argument is always evaluated by the
function, the user should not skip this option or specify
any other option keyword except “C” or “A”.

“PC” list1 nil Selects all features crossing or inside a polygon whose
vertices are stored in a list1. The format of the list is
RTLB, RTPOINT, RTPOINT, ... , RTLE.

“PW” list1 nil Selects all features inside a polygon whose vertices are
stored in a list1. The format of the list is RTLB,
RTPOINT, RTPOINT, ... , RTLE.

“WC” pt1 pt2 Selects all features crossing or inside a box whose
opposite corners are pt1 (RTPOINT) and pt2
(RTPOINT).

“WW” pt1 pt2 Selects all features inside a box whose opposite corners
are pt1 (RTPOINT) and pt2 (RTPOINT).

nil nil nil Selects all features interactively. Only one mode of input
will be performed. When this option is used, the values
of mode, option1, and option2 are all RTNIL.

Feature access

24 ArcCAD Extensions to ADS

Example

/* This code fragment shows several examples of the
fssget function using the theme ‘LANDUSE’
*/

ads_point pt1,pt2;
int fss1,fss2,fss3;
struct resbuf *in_rb, *out_rb;

/* This section selects all features that cross or are
within a user defined window */

ads_getpoint(NULL,“First corner: ”,pt1);
ads_getcorner(pt1,“opposite corner: ”,pt2);
in_rb= ads_buildlist(

RTSTR, “arc_fssget”, RTSTR, “landuse”, RTSTR,
“a”,RTSTR, “wc”, RTPOINT, pt1,
RTPOINT,pt2,NULL);

ads_invoke(in_rb,out_rb);
if (out_rb->restype==RTSHORT) {

fss1= out_rb->resval.rint;
}
else {

ads_printf(“fss1 failed\n”);
}

/* This section selects features using a logical
expression
*/

in_rb= ads_buildlist(
RTSTR, “arc_fssget”, RTSTR, “landuse”, RTSTR,
“a”,RTSTR, “e”, RTSTR, “lucode = 2”, RTNIL,
NULL);

ads_invoke(in_rb,out_rb);
if (out_rb->restype==RTSHORT) {

fss2= out_rb->resval.rint;
}
else {

ads_printf(“fss2 failed\n”);
}

/* This section selects features interactively
*/

in_rb= ads_buildlist(
RTSTR, “arc_fssget”, RTSTR, “landuse”, RTSTR,
“a”,RTNIL, RTNIL, RTNIL,

Chapter 2

ArcCAD Extensions to ADS 25

NULL);
ads_invoke(in_rb,out_rb);
if (out_rb->restype==RTSHORT) {

fss3= out_rb->resval.rint;
}
else ads_printf(“fss3 failed\n”);

Warning: The results of each arc_fssget operation are always stored as the
theme’s feature selection set. When this function is used, the base of selectable
features is dependent on the value of the state argument. For instance, if you
specify the state argument as “C”, the base of selectable features is the theme’s
feature selection set. On the other hand, if you specify “A” as the state
argument, the base of selectable features is all features in the theme. Therefore,
the value of the state argument influences the results of the selection and should
be used with care.

arc_fsslength
Input Output
RTSHORT fss RTREAL count

Xloads required: arcad

This function returns the number of members contained in a feature selection
set. If the specified feature selection set is valid and contains zero or more
members, the function returns a nonnegative real number as a RTREAL. If the
specified feature selection set is not valid, RTNIL will be returned.

Example

/* This code fragment returns the number of members in
a user defined feature selection set */

char theme[32];
int fss1;
ads_real length;
struct resbuf *in_rb, *out_rb;

/* Get theme name from user */

ads_getstring(0,”Theme name: ”,theme);

/* Get user defined feature selection set */

in_rb = ads_buildlist (

Feature access

26 ArcCAD Extensions to ADS

RTSTR, “arc_fssget”, RTSTR, theme,
RTSTR, “a”, RTNIL, RTNIL, RTNIL,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype == RTSHORT) {

fss1 = out_rb->resval.rint;
in_rb = ads_buildlist (

RTSTR, “arc_fsslength”,
RTSHORT, fss1,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype == RTREAL) {

length = out_rb->resval.rreal;
ads_printf(“there are %7.0f members\n”,

length);
}
else ads_printf(“failure\n”);

}
else ads_printf(“failure\n”);

arc_fssmemb
Input Output
RTSTR f1 RTSTR status
RTSHORT fss

Xloads required: arcad

This function determines if a named feature is a member of a feature selection
set fss. If featname is member of fss, RTSTR will be returned. If featname is
not a member of fss, RTNIL will be returned.

Example

/* This code fragment determines if a feature feat1 is
a member of the feature selection set fss1 */

struct resbuf *in_rb, *out_rb;
in_rb = ads_buildlist (

RTSTR, “arc_fssmemb”,
RTSRT, feat1, RTSHORT, fss1,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype==RTSTR)

ads_printf(“feature is a member\n”);
else ads_printf(“feature is not a member\n”);

Chapter 2

ArcCAD Extensions to ADS 27

arc_fssname
Input Output
RTSHORT fss RTSTR featname
RTREAL index

Xloads required: arcad

This function returns the name of the indexed feature in the feature selection set.
The index must always be specified as RTREAL. The index of the first member
of the feature selection set is 0.0. If fss contains a member at the index
position, the feature name will be returned as a RTSTR. If index is negative or
greater than the number of members contained in the feature selection set,
RTNIL will be returned.

Example

/* This code fragment retrieves the name of the 6th
member of the feature selection set fss1.
*/

struct resbuf *in_rb, *out_rb;
char feat1[32];

in_rb = ads_buildlist (
RTSTR, “arc_fssname”, RTSHORT, fss1,
RTREAL, 5.0,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype == RTSTR)

strcpy(feat1,out_rb->resval.rstring);
else ads_printf(“feature does not have 6

members\n”);

arc_fssnot
Input Output
RTSHORT fss RTSHORT fss

Xloads required: arcad

This function switches the members of a feature selection set. All of the current
members of the feature selection set are replaced by all of the members that were
removed from the feature selection set. This function is equivalent to a Boolean
complement of the feature selection set. If members of a feature selection set
are successfully complemented, the feature selection set will be returned as a

Feature access

28 ArcCAD Extensions to ADS

RTSHORT. If the feature selection set cannot be complemented, RTNIL will be
returned.

Example

/* This code fragment creates a feature selection set
that contains all features of the theme ‘ROADS’ that
are not selected by the user
*/

struct resbuf *in_rb, *out_rb;
int fss,fss1;

/* Get user’s feature selection set */

in_rb = ads_buildlist (
RTSTR, “arc_fssget”, RTSTR, “roads”,
RTSTR, “a”, RTNIL, RTNIL, RTNIL,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype == RTSHORT) {

fss1 = out_rb->resval.rint;
/* complement feature selection set */
in_rb = ads_buildlist (

RTSTR, “arc_fssnot”,
RTSHORT, fss1,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype == RTSHORT) {

fss = out_rb->resval.rint;
if (fss==fss1) ads_printf(“success\n”);
else ads_printf(“failure\n”);

}
else ads_printf(“failure\n”);

}
else ads_printf(“failure\n”);

Chapter 2

ArcCAD Extensions to ADS 29

arc_fssor
Input Output
RTSHORT fss1 RTSHORT fss
RTSHORT fss2

Xloads required: arcad

This function creates a new feature selection set that contains all of the members
of both of the feature selection sets provided. If both fss1 and fss2 are derived
from the same theme, a new feature selection set will be returned as a RTSHORT
that contains members in both fss1 and fss2. If the feature selection sets are not
derived from the same theme, RTNIL will be returned. This function is
equivalent to a Boolean OR of the two feature selection sets.

Example

/* This code fragment creates a feature selection set
that contains a combination of features from two
different feature selection sets. This example uses
the theme ‘LANDUSE’ and the user defined item ‘LUCODE’
*/

struct resbuf *in_rb, *out_rb;
int fss1, fss2, fss3;

/* Get user’s first feature selection set */

in_rb = ads_buildlist (
RTSTR, “arc_fssget”, RTSTR, “landuse”,
RTSTR, “a”, RTNIL, RTNIL, RTNIL,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype == RTSHORT)

fss1 = out_rb->resval.rint;
else {

ads_printf(“failure\n”);
fss1= -1;

}

/* Get user’s second feature selection set */

in_rb = ads_buildlist (
RTSTR, “arc_fssget”, RTSTR, “landuse”,
RTSTR, “a”, RTSTR, “e”, RTSTR, “lucode = 2”,
RTNIL,
NULL);

Feature access

30 ArcCAD Extensions to ADS

ads_invoke (in_rb, out_rb);
if (out_rb->restype == RTSHORT)

fss2 = out_rb->resval.rint;
else {

ads_printf(“failure\n”);
fss2= -1;

}

/* Combine both feature selection sets */
if (fss1 > -1 && fss2 > -1) {

in_rb = ads_buildlist (
RTSTR, “arc_fssor”, RTSHORT, fss1,
RTSHORT, fss2,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype == RTSHORT)

fss3 = out_rb->resval.rint;
else ads_printf(“failure\n”);

}

arc_fssput
Input Output
RTSHORT fss RTSHORT fss

Xloads required: arcad

This function replaces a theme’s feature selection set with the members of the
feature selection set provided. If the replacement is successful, the name of the
feature selection set will be returned as a RTSHORT. If the replacement cannot
be performed, RTNIL will be returned.

Example

/* This code fragment creates several feature
selection sets and overwrites the theme’s selection
set with the very first feature selection set
generated. This example uses the theme ‘ROADS’.
*/

struct resbuf *in_rb, *out_rb;
int fss1, fss2, fss3;

Chapter 2

ArcCAD Extensions to ADS 31

/* Get user’s first feature selection set. Remember
that the theme’s selection set will be the same as the
feature selection set generated.
*/

in_rb = ads_buildlist (
RTSTR, “arc_fssget”, RTSTR, “roads”
RTSTR, “a”, RTNIL, RTNIL, RTNIL,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype == RTSHORT)

fss1 = out_rb->resval.rint;
else {

 ads_printf(“failure\n”);
fss1= -1;

}

/* Get user’s second feature selection set. Remember
that the theme’s selection set will not be previously
generated, but will be generated by this function call
*/

in_rb = ads_buildlist (
RTSTR, “arc_fssget”, RTSTR, “roads”,
RTSTR, “a”, RTNIL, RTNIL, RTNIL,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype == RTSHORT)

fss2 = out_rb->resval.rint;
else {

ads_printf(“failure\n”);
fss2= -1;

}

/* Overwrite theme’s selection set with that of the
first feature selection set generated
*/

if (fss1 > -1 && fss2 > -1) {
in_rb = ads_buildlist (

RTSTR, “arc_fssput”, RTSHORT, fss1,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype == RTSHORT) {

fss3 = out_rb->resval.rint;
if (fss3 == fss1) ads_printf(“success\n”);
else ads_printf(“failure\n”);

}
else ads_printf(“failure\n”);

}

Feature access

32 ArcCAD Extensions to ADS

arc_fssxor
Input Output
RTSHORT fss1 RTSHORT fss
RTSHORT fss2

Xloads required: arcad

This function creates a new feature selection set, which contains all of the
members that are not in both of the sets provided. If both fss1 and fss2 are
derived from the same theme, a new feature selection set will be returned as a
RTSHORT. If the feature selection sets are not derived from the same theme,
RTNIL will be returned. This function is equivalent to a Boolean EXCLUSIVE
OR of the two feature selection sets. If fss1 is identically equal to fss2, an
empty feature selection set will be created.

Example

/* This code fragment creates a feature selection set
that contains all features that are not in both
feature selection sets fss1 and fss2.
*/

int fss3;
struct resbuf *in_rb, *out_rb;

in_rb = ads_buildlist (
RTSTR, “arc_fssxor”, RTSHORT, fss1,
RTSHORT, fss2,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype == RTSHORT)

fss3 = out_rb->resval.rint;
else ads_printf(“failure\n”);

Chapter 2

ArcCAD Extensions to ADS 33

Feature name functions
The following functions are used to retrieve feature names and entity names.

arc_entfeat
Input Output
RTENAME ename RTSTR featname1
option RTSTR featname2

.....
RTSTR featnameN

The following table shows the relationship between the value of option and the
output of the function.

Description Option value

Return all feature names RTNIL

Return a feature name
corresponding to a theme

RTSTR theme

Xloads required: arcad

This function returns the corresponding feature name(s) of features linked to the
named entity. The ename must be the name of the main entity. This function
searches ename and retrieves a list of the appropriate feature names that
correspond to the entity. This function always returns the name of the main
feature. You should use the arc_featnext function to access the subfeatures
of the main feature (if any exist). The actual output of this function is
dependent upon the value of theme. This function will either return a RESBUF
containing feature names or RTNIL.

If theme does not evaluate to RTNIL, this function will check to see if ename is
a member of theme. If the entity is a member of the theme, a RESBUF
containing only the corresponding feature name will be returned. If the entity is
not a member of the theme, RTNIL will be returned.

If theme evaluates to RTNIL, a RESBUF containing all of the corresponding
feature names is returned. If the entity is not a member of any theme, RTNIL
will be returned.

Feature access

34 ArcCAD Extensions to ADS

Example

/* This code fragment returns a list of themes that
contains the feature feat1 as a member.
*/

struct resbuf *in_rb, *out_rb;
char theme[32];
int ok;

ok=1;
in_rb = ads_buildlist (

RTSTR, “arc_entfeat”, RTENAME, e1,
RTNIL,
NULL);

ads_invoke (in_rb, out_rb);
while (ok) {

if (out_rb->restype==RTSTR) {
strcpy(theme,out_rb->resval.rstring);
ads_printf(“%s\n”,theme);
out_rb=out_rb->rbnext;
if (out_rb==NULL) ok=0;

}
else ok=0;

}

Notes

 In a polygon theme, links are established only to the label point(s) and,
therefore, you must select the label point in order to retrieve the corresponding
polygon feature. Selecting the polygon boundary always returns nil. You
must use the arc_featnext function to access the line (polygon boundary)
subfeatures.

 The tic and record themes do not maintain links in ArcCAD and, therefore,
the arc_entfeat function on these themes will always return nil.

arc_featent
Input Output
RTSTR featname RTENAME ename1

Xloads required: arcad

This function returns the corresponding entity name of a feature. If featname is
rendered in the drawing, the corresponding entity name will be returned as a

Chapter 2

ArcCAD Extensions to ADS 35

RTENAME. If featname has not been rendered in the drawing, RTNIL will be
returned.

Example

/* This code fragment retrieves the corresponding
entity name for the feature feat1.
*/

struct resbuf *in_rb, *out_rb;
long ent1[2];

in_rb = ads_buildlist (
RTSTR, “arc_featent”,
RTSTR, feat1,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype==RTENAME)

ent1[0]=out_rb->resval.rlname[0];
ent1[1]=out_rb->resval.rlname[1];

}
else ads_printf(“failure\n”);

arc_featlast
Input Output
RTSTR theme RTSTR featname

Xloads required: arcad

This function returns the name of the last feature created in the specified theme.
If theme contains features, the name of the last feature will be returned as a
RTSTR. If theme does not contain any features, RTNIL will be returned.

This function is useful to retrieve the featname after the user has created a new
feature via the arc_cmd function.

Example

/* This code fragment retrieves the name of the last
feature in the theme ‘ROADS’
*/

struct resbuf *in_rb, *out_rb;
char feat1[32];

Feature access

36 ArcCAD Extensions to ADS

in_rb = ads_buildlist (
RTSTR, “arc_featlast”, RTSTR, “roads”,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype == RTSTR)

strcpy(feat1,out_rb->resval.rstring);
else ads_printf(“failure\n”);

arc_featnext
Input Output
RTSTR theme RTSTR featname
RTSTR featname
RTSHORT level

Xloads required: arcad

This function returns the name of the next feature in a theme. The actual feature
name returned is a function of the values of featname and level.

If featname evaluates to RTNIL, the value of level is ignored. The resulting
name returned will be that of the first feature defined in theme. If theme does
not contain any features, RTNIL will be returned.

If featname does not evaluate to RTNIL, the resulting feature name returned will
be dependent upon the current value of featname and level. If theme does not
contain any features, RTNIL will be returned.

The following table shows the relationships between featname, level, and the
resulting feature name returned by this function.

Chapter 2

ArcCAD Extensions to ADS 37

Current
Feature Name Level 1 Level 2 Level 3
Annotation Next annotation Next annotation Next annotation

Line header Next line header Next vertex of line Next vertex of line

Line vertex Next line header Next vertex of line
or line end

Next vertex of line
or line end

Line end Next line header Next line header Next line header

Point Next point Next point Next point

Polygon header Next polygon Next point or line
header of polygon

Next point or line
header of polygon

Polygon point Next polygon Next point or line
header of polygon

Next point or line
header of polygon

Polygon line header Next polygon Next line header
of polygon

Next vertex of line

Polygon line vertex Next polygon Next line header
of polygon

Next vertex of line
or line end

Polygon line end Next polygon Next line header
of polygon

Next line header
of polygon

Polygon end Next polygon Next polygon Next polygon

Record Next record Next record Next record

Tic Next tic Next tic Next tic

Example

/* This code fragment retrieves the name of the first
vertex in the third line subfeature of the first
polygon feature in the theme ‘LANDUSE’
*/

struct resbuf *in_rb, *out_rb;
int ok, cnt;
char feat[32], subfeat[32];

/* Get name of first polygon in theme */

in_rb=ads_buildlist (
RTSTR, “arc_featnext”, RTSTR, “landuse”, RTNIL,
RTNIL, NULL);

ads_invoke(in_rb,out_rb);
if (out_rb->restype == RTSTR) {

ok=1;
strcpy(feat1,out_rb->resval.rstring);

}

Feature access

38 ArcCAD Extensions to ADS

else {
ok=0;
ads_printf(“no topology in theme\n”);

}

/* Read until 3rd line is found */

cnt=0;
while (ok>0) {

/* Get next subfeature which may be point or
line
*/
in_rb=ads_buildlist (

RTSTR, “arc_featnext”, RTSTR, “landuse”,
RTSTR, feat1, RTSHORT, 2, NULL);

ads_invoke(in_rb,out_rb);
if (out_rb->restype != RTSTR) {

ads_printf(“polygon has no subfeatures\n”);
ok=0;

}
else {

strcpy(subfeat,out_rb->resval.rstring);
/* Check feature to see if it is a line */
in_rb=ads_buildlist (

RTSTR, “arc_featget”, RTSTR, subfeat,
RTNIL, NULL);

ads_invoke(in_rb,out_rb);
while (out_rb != NULL) {

if (out_rb->restype==0) {
if (strcmp(“LINE”,out_rb-

>resval.rstring)==0) {
cnt++;
if (cnt==3) {

ok=0;
out_rb=NULL;

}
else out_rb=out_rb->rbnext;

}
else out_rb=out_rb->rbnext;

}
else out_rb=out_rb->rbnext;

}
strcpy(feat1,subfeat);

}
}

/* Get first vertex of line feature */

if (cnt==3) {

Chapter 2

ArcCAD Extensions to ADS 39

in_rb=ads_buildlist (
RTSTR, “arc_featnext”, RTSTR, “landuse”,
RTSTR, subfeat, RTSHORT, 3, NULL);
ads_invoke(in_rb,out_rb);
if (out_rb->restype == RTSTR)

ads_printf(“success\n”);
else

ads_printf(“failure\n”);
}

arc_featthm
Input Output
RTSTR featname RTSTR theme

Xloads required: arcad

This function returns the name of the theme in which the named feature is a
member. If featname is a valid feature name, the name of the theme that
contains the named feature is returned as a RTSTR. If featname is not a valid
feature, RTNIL will be returned.

Example

/* This code fragment retrieves the name of the theme
that the feature feat1 is a member
*/

struct resbuf *in_rb, *out_rb;
char theme[32];

in_rb = ads_buildlist (
RTSTR, “arc_featthm”, RTSTR, feat1,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype == RTSTR)

strcpy(theme,out_rb->resval.rstring);
else ads_printf(“failure\n”);

Feature access

40 ArcCAD Extensions to ADS

Feature data functions
The following functions are used to create, modify, and delete features and
feature data in a theme.

arc_featdel
Input Output
RTSTR featname RTSTR featname

Xloads required: arcad

This function removes the named feature from its GIS data set. If featname is
successfully removed from the GIS data set, the name of the feature will be
returned as a RTSTR. If featname cannot be removed from the GIS data set,
RTNIL will be returned.

This function invalidates all feature selection sets that are bound to the feature
name. In addition, the entity-feature link associated with the corresponding
feature will be dropped (if any exists).

Example

/* This code fragment removes the feature feat1 from
its GIS data set
*/

struct resbuf *in_rb, *out_rb;
char result[32];

in_rb = ads_buildlist (
RTSTR, “arc_featdel”, RTSTR, feat1,
NULL);

ads_invoke (in_rb, out_rb);
if (out_rb->restype == RTSTR)

ads_printf(“feature removed\n”);
else ads_printf(“failure\n”);

Chapter 2

ArcCAD Extensions to ADS 41

arc_featget
Input Output
RTSTR featname DXF Restypes
itemlist

The following table shows the possible values for itemlist and their meaning.

Meaning Itemlist value

Ignore item values RTNIL

Retrieve values for selected item
names

RTLB
 RTSTR
 RTSTR
 ...
 RTSTR
RTLE

Xloads required: arcad

This function retrieves the named feature’s data from the theme. If featname
exists, a RESBUF containing its data is returned. If featname does not exist,
RTNIL will be returned. This function also returns the values of a list of items
specified by itemlist (see the arc_itmlst function).

The format of RESBUF is dependent on the type of the feature class being
retrieved. The format of each of the feature classes is shown below. The order
of the sublists may vary and should not be assumed to be in the order shown.

There are seven possible feature classes: Annotation, Point, Tic, Line, Record,
Polygon and Image. Note that Image and SQL record themes cannot be used
with this function. The contents of RESBUF for all seven feature classes are
described in the following sections:

Feature access

42 ArcCAD Extensions to ADS

 ANNOTATION features are returned in the following format. This format
is styled after the TEXT listing from the ads_entget function.

Restype Resval Description Comments

-1 <Entity name: 0> dummy ename

0 “ANNOTATION” feature class Read only

1 text text string

6 featname feature name Read only

40 hgt height

41 wdtscl width scale

42 level annotation level

43 symbol symbol number

59 Internal-ID Internal-ID Read only

10 x1 y1 1st position point

11 x2 y2 2nd position point Optional

12 x3 y3 3rd position point Optional

13 x4 y4 4th position point Optional

14 x5 y5 1st arrow point Not Used

15 x6 y6 2nd arrow point Not Used

16 x7 y7 3rd arrow point Not Used

Chapter 2

ArcCAD Extensions to ADS 43

 POINT features are returned in the following format. This format is styled
after the POINT listing from the ads_entget function.

Restype Resval Description Comments

-1 <Entity name: 0> dummy ename

0 “POINT” feature class Read only

6 featname feature name Read only

10 x y coordinates

40 poly1 polygon id Read only

58 User-ID User-ID

59 Internal-ID Internal-ID Read only

 TIC features are returned in the following format. This format is styled after
the POINT listing from the ads_entget function.

Restype Resval Description Comments

-1 <Entity name: 0> dummy ename

0 “TIC” feature class Read only

6 featname feature name Read only

10 x y coordinates

58 User-ID User-ID

59 Internal-ID Internal-ID Read only

Feature access

44 ArcCAD Extensions to ADS

 LINE features are returned in the following format. When the arc_featget
function is called with the name of the line feature, the following list is returned.

Restype Resval Description Comments

-1 <Entity name: 0> dummy ename

0 “LINE” feature class Read only

6 featname feature name Read only

70 vcnt number of vertices Read only

40 node1 from node Read only

41 node2 to node Read only

42 poly1 left polygon Read only

43 poly2 right polygon Read only

58 User-ID User-ID

59 Internal-ID Internal-ID Read only

When arc_featget is called with the name of a line subfeature, the following
list is returned.

Restype Resval Description Comments

-1 <Entity name: 0> dummy ename

0 “VERTEX” subfeature class Read only

6 featname subfeature name Read only

10 x y coordinate

When arc_featget is called with the name of the last line subfeature, the
following list is returned to indicate the end of the feature.

Restype Resval Description Comments

-1 <Entity name: 0> dummy ename

0 “LINEEND” end of line marker Read only

Chapter 2

ArcCAD Extensions to ADS 45

 RECORD features are returned in the following format. When the
arc_featget function is called, the following list is returned.

Restype Resval Description Comments

-1 <Entity name: 0> dummy ename

0 “RECORD” subfeature class Read only

6 featname subfeature name Read only

59 Internal-ID Internal-ID Read only

To obtain item names and values, the itemlist option should be used.

 POLYGON features are returned in the following format. When the
arc_featget function is called with the name of the polygon feature, the
following list is returned.

Restype Resval Description Comments

-1 <Entity name: 0> dummy ename

0 “POLYGON” feature class Read only

6 featname feature name Read only

58 User-ID User-ID Not Used

59 Internal-ID Internal-ID Read only

70 pcnt number of points Read only

71 lcnt number of lines Read only

10 x y coordinates of
centroid

Read only

11 xmin ymin box min coordinates Read only

12 xmax ymax box max coordinates Read only

Feature access

46 ArcCAD Extensions to ADS

When processing a polygon feature, the points are always accessed before the
lines and their vertices. When arc_featget is called with the name of a
polygon subfeature, one of the following lists will be returned.

Restype Resval

-1 <Entity name: 0>

0 “POINT”

6 featname

10 x y

40 poly1

58 User-ID

59 Internal-ID

Restype Resval

-1 <Entity name: 0>

0 “LINE”

6 featname

70 vcnt

71 flip

72 island

40 node1

41 node2

42 poly1

43 poly2

58 User-ID

59 Internal-ID

Please remember that polygon features have subfeatures called points and lines
and sub-subfeatures called vertices. Also remember that the first polygon
feature in a polygon theme is always the universe polygon. For additional
details, refer to the ArcCAD User’s Guide.

Chapter 2

ArcCAD Extensions to ADS 47

Note: The two restypes 71 (flip) and 72 (island) mentioned in the line header
of a polygon deserve further explanation:

RESTYPE 71: This code is optional and is used to indicate flip line
coordinates. The value 1 indicates that the line’s coordinates should be
flipped, and the default value 0 represents no flip. The following figure
demonstrates the usage of the flip option.

1

2

3

4

Before flip
1

2

3

4

After flip

(line feature #2 has been flipped)

RESTYPE 71: This code is optional and is used to indicate that the
remaining line (sub) features of the polygon are part of an island within
the current polygon. The following figure demonstrates the potential
use of the island option in a polygon theme:

Island Island

Island formation in polygon themes

Feature access

48 ArcCAD Extensions to ADS

Restype Resval

-1 <Entity name: 0>

0 “VERTEX”

10 x y

6 featname

Restype Resval

-1 <Entity name: 0>

0 “LINEEND”

Restype Resval Description Comments

-1 <Entity name: 0> dummy ename

0 “POLYEND” end of polygon
marker

Read only

Please remember that polygon features have subfeatures called points and lines.
Line subfeatures have sub-subfeatures called vertices.

itemlist option
If the itemlist option does not evaluate to RTNIL, the arc_featget function
retrieves both feature data and feature attribute values from the specified theme.
The list of attribute data is appended to the end of the list normally returned with
the main features. This new list will have the following format:

Restype Resval Description Comments

-3 item flag

1001 “ESRI” application name

1040
 or
1000

real 1
or
text 1

real value 1
or
text value 1

Optional

The optional designation indicates that only one of the two possible group codes
will be present. The storage type of the item determines which group code is
output.

Chapter 2

ArcCAD Extensions to ADS 49

Items are only returned when featname is the name of a main feature. To
illustrate, consider the following example where arc_featget is used with the
itemlist option to retrieve the coordinates of a line feature and its corresponding
attribute values. When the function is called with the name of the line feature
with itemlist option, the following list is returned.

Restype Resval

-1 <Entity name: 0>

0 “LINE”

6 featname

70 vcnt

40 node1

41 node2

42 poly1

43 poly2

58 User-ID

59 Internal-ID

-3

1001 “ESRI”

1040
or
1000

real1

text1
1040
or
1000

real2

text2
.....

1040
or
1000

realN

textN

Feature access

50 ArcCAD Extensions to ADS

When the arc_featnext function is called with the name of the line feature, the
name of the first subfeature (vertex) is returned. When arc_featget is called
with the name of the first subfeature, the following list is returned.

Restype Resval

-1 <Entity name: 0>

0 “VERTEX”

10 x y

6 featname

You will notice that the list returned from the function does not contain any
reference to item data because the feature retrieved is not a main feature.

arc_featmake
Input Output
RTSTR theme RTSTR featname
featlist
itemlist

The following table shows the possible values for itemlist and their meaning.

Meaning Itemlist value

Ignore item values RTNIL

Retrieve values for selected item
names

RTLB
 RTSTR
 RTSTR
 ...
 RTSTR
RTLE

Xloads required: arcad

This function creates a new feature in a theme. If the feature is successfully
created, the name of the feature will be returned. If the feature cannot be
created, RTNIL will be returned.

If itemlist evaluates to RTNIL, the corresponding item values for the feature are
ignored. If itemlist does not evaluate to RTNIL, the item values for the feature

Chapter 2

ArcCAD Extensions to ADS 51

will be retrieved. Values will not be returned for item names that are not in
itemlist. In addition, the values that are returned will be in the same order as
their item names.

Featlist is assumed to be in the same format as that returned by the arc_featget
function. The only exception to this is when polygon features are being created.

A polygon theme is composed of lines and points. The actual polygon features
are not created until the theme’s polygon topology has been processed. To
create a polygon theme, add points and line features to the theme. Calls to the
arc_featlast function will return RTNIL until the theme is processed as
mentioned earlier. In addition, arc_featmake will return a dummy feature
name.

When creating line features, multiple calls to arc_featmake will be required.
Each of the subsequent calls will define the vertex subfeatures. When all of the
vertex subfeatures have been defined, a call to arc_featmake with the
following code fragment must be used to terminate the feature.

long ename[0]=0;
long ename[1]=0;
ads_buildlist (RTSTR, “arc_featmake”,

-1, ename, 0, “LINEEND”, NULL);
ads_invoke(in_rb,out_rb);

Example

/* This code fragment creates a line feature with four
vertices. The coordinates of the vertices are 0,0 1,1
2,0 and 3,1. Additionally, the User-ID of the line is
123. This example assumes that linetheme is a valid
line theme.
*/

struct resbuf *in_rb, *out_rb;
long ename[2];
double point[3];

/* main feature header */

ename[0]=0;
ename[1]=0;
in_rb= ads_buildlist (RTSTR, “arc_featmake”,

RTSTR, linetheme, -1, ename,
0, “LINE”, 40, 0.0, 41, 0.0, 42, 0.0, 43, 0.0,
58, 123.0, RTNIL, NULL);

ads_invoke(in_rb, out_rb);
/* first subfeature */

Feature access

52 ArcCAD Extensions to ADS

point[0]=0.0;
point[1]=0.0;
point[2]=0.0;
in_rb= ads_buildlist (RTSTR, “arc_featmake”,

RTSTR, linetheme, -1, ename,
0, “VERTEX”, 10, point, RTNIL, NULL);

ads_invoke(in_rb, out_rb);

/* second subfeature */

point[0]=1.0;
point[1]=1.0;
point[2]=0.0;
in_rb= ads_buildlist (RTSTR, “arc_featmake”,

RTSTR, linetheme, -1, ename,
0, “VERTEX”, 10, point, RTNIL, NULL);

ads_invoke(in_rb, out_rb);

/* third subfeature */

point[0]=2.0;
point[1]=0.0;
point[2]=0.0;
in_rb= ads_buildlist (RTSTR, “arc_featmake”,

RTSTR, linetheme, -1, ename,
0, “VERTEX”, 10, point, RTNIL, NULL);

ads_invoke(in_rb, out_rb);

/* fourth subfeature */

point[0]=3.0;
point[1]=1.0;
point[2]=0.0;
in_rb= ads_buildlist (RTSTR, “arc_featmake”,

RTSTR, linetheme, -1, ename,
0, “VERTEX”, 10, point, RTNIL, NULL);

ads_invoke(in_rb, out_rb);

/* close feature */

in_rb= ads_buildlist (RTSTR, “arc_featmake”,
RTSTR, linetheme, -1, ename,
0, “LINEEND”, RTNIL, NULL);

ads_invoke(in_rb, out_rb);

 /* To illustrate the creation of a normal feature,
consider the following example which creates a point
feature at 10,10 with a User-ID of 101. Please note
that this example also modifies the User-ID in the

Chapter 2

ArcCAD Extensions to ADS 53

attribute file. This example assumes that pointtheme
is a valid point theme with a valid attribute file.
*/

/* feature header */
point[0]=10.0;
point[1]=10.0;
point[2]=0.0;
in_rb= ads_buildlist (RTSTR, “arc_featmake”,

/* theme name */
RTSTR, pointtheme,
/* feature data */
-1, ename, 0, “POINT”,
10, point, 40, 0.0, 58, 101.0,
/* item value group */
-3, 1001, “esri”, 1040, 101.0,
/* item name list */
RTLB, RTSTR, “User_ID”, RTLE, NULL);

ads_invoke(in_rb, out_rb);

In the example above, it is not necessary to call the featmake function with a
list containing ‘LINEEND’ because point features do not contain any
subfeatures.

arc_featmod
Input Output
featlist RTSTR featname
itemlist

Xloads required: arcad

This function modifies the data of a feature or subfeature. If the feature is
successfully modified, the feature name will be returned as a RTSTR. If the
feature cannot be modified, RTNIL will be returned. The name of the feature to
be modified must be found in the group code 6 of featlist.

If itemlist evaluates to RTNIL, all item values in featlist are ignored. If itemlist
does not evaluate to RTNIL, the item values for the feature will be modified.
The values of items will not be modified for item names that are not in itemlist.
In addition, the values are assumed to be in the same order as their item names.

Feature access

54 ArcCAD Extensions to ADS

Featlist is assumed to be in the same format as that returned by the arc_featget
function. The only exception occurs when a polygon feature is to be modified.

The main features of polygons cannot be modified. Only the subfeatures of a
polygon can be modified. The lists in the documentation for the arc_featget
function show which group codes are modifiable and which group codes are
read-only for line and point subfeatures of polygons.

It is important to note that the arc_featmod function cannot be used to change
the number of vertices in a line feature. arc_featmod also cannot be used to
modify the name of items or the item type in a record theme.

Example

/* This code fragment modifies the User-ID of the line
feature feat1
*/
struct resbuf *in_rb, *out_rb, *new_rb;
double dummy;
int newid;

ads_getreal(“New User-ID: ”,dummy);
newid=dummy;

/* Get topology only */

in_rb= ads_buildlist (
RTSTR, “arc_featget”, RTSTR, feat1, RTNIL, NULL);

ads_invoke(in_rb,out_rb);
in_rb=out_rb;
if (out_rb->restype==0 || out_rb->restype== -1) {

while (in_rb != NULL) {
if (in_rb->restype == 58) {

in_rb->resval.rint= newid;
in_rb= NULL;

}
else in_rb=in_rb->rbnext;

}
/* modify feature data */
new_rb=ads_buildlist(RTSTR, “arc_featmod”,
NULL);
new_rb->rbnext=out_rb;
ads_invoke(new_rb,out_rb);
if (out_rb->restype == RTSTR)

ads_printf(“success\n”);
else ads_printf(“failure\n”);

}
else ads_printf(“failure\n”);

Chapter 3

ArcCAD Extensions to ADS 55

Item access

Item manipulation functions are used to manipulate dBASE RECORD themes.
They are also used to manipulate the attribute files of POLYGON, LINE,
POINT and TIC themes. They perform the basic operations of creating, listing
and retrieving item definitions. These functions cannot be used to modify the
item values. The functions described in the ‘Feature selection set manipulation
functions’ section (arc_featget, arc_featmake, and arc_featmod
functions) can be used to modify the values associated with the items.

As explained in the introduction chapter, some feature classes have implied
attribute files. The following list shows these implications.

Feature class Attribute file
Annotation None
Image None
Line AAT
Point PAT
Polygon PAT
Record (dBASE) User defined
Record (SQL) User defined
TIC TIC

In other words, when you specify the theme name in the following item
manipulation functions, the software automatically performs the operation on
the implied attribute files. For example, if you use the arc_itmdef function
(see next section for details) with a polygon theme, the function automatically
defines the item in the theme’s implied PAT file (polygon attribute table).

Note: You cannot use item manipulation functions on annotation themes,
image themes or SQL record themes. Annotation features are not spatially
related to other features and therefore do not carry any implied attribute table.
Annotation themes in ArcCAD are used only for annotating geographic features.
Image themes do not contain spatial information, so there is no implied attribute
table. An SQL record theme is accessed using ArcCAD software’s AutoLISP
extensions and no ADS routines are available.

The item access functions described in the following section let you define
database files (dBASE files) and add item definitions to store attribute
information. For example, the arc_itmdef function lets you define item
definitions. Similarly, the arc_itmexi function checks for the existence of the

Item access

56 ArcCAD Extensions to ADS

item in the data file prior to writing or retrieving item values. The arc_itmget
function lets you access the item definition, and the arc_itmlst function lists all
the item names in a theme’s data file.

The following are some of the limitations that apply to item access functions:

 The maximum length of an item name is 10 characters.

 The only legal characters in item names are alphabetic characters, numbers
and the underscore character.

 Item names cannot begin with a number.

Item manipulation functions
The following functions can be used to define, modify and list item definitions
that are stored in database data files.

arc_itmdef
Input Output
RTSTR theme RTSTR itmname
-1 0
0 “ITEM”
1 itmname
2 type
70 column
71 width
72 ndec
73 owidth

Xloads required: arcad

This function adds a new item to a theme. If itmname is successfully created,
itmname will be returned as a RTSTR. If itmname cannot be created, RTNIL
will be returned. The function does not perform any user interaction. All of the
parameters must be supplied. If user interaction is desired, use the arc_cmd
function to invoke the user command that defines an item.

There are currently four item types available to the user: Character, Date,
Integer, and Numeric.

Chapter 3

ArcCAD Extensions to ADS 57

Example

/* This code fragment defines the record theme
“LANDUSE” with items named ‘AREA’ and ‘LANDUSE_ID’
similar to that of a polygon theme
*/
struct resbuf *in_rb, *out_rb;
int i;
long ename[2];

ename[0]=0;
ename[1]=0;
i=1;
in_rb = ads_buildlist(

RTSTR, “arc_thmdef”, -1, ename, 1, “landuse”,
2, “record”, 3, “c:\\path\\landuse”,
60, RTDXF0,
NULL);

ads_invoke(in_rb,out_rb);
if (out_rb->restype==RTSTR) {

/* define area */
in_rb= ads_buildlist(

RTSTR, “arc_itmdef”, RTSTR, “landuse”,
-1, ename, RTDXF0, “ITEM”, 1, “area”,
2, “n”, 70, 1, 71, 13, 72, 6, 73, 13,
NULL);

ads_invoke(in_rb,out_rb);
if (out_rb->restype != RTSTR) i=0;
/* define landuse_id */
in_rb= ads_buildlist(

RTSTR, “arc_itmdef”, RTSTR, “landuse”,
-1, ename, RTDXF0, “ITEM”,
1, “landuse_id”, 2, “i”, 70, 14,
71, 11, 72, 0, 73, 11,
NULL);

ads_invoke(in_rb,out_rb);
if (out_rb->restype != RTSTR) i=0;
if (i==1) ads_printf(“success\n”);
else ads_printf(“failure\n”);

}
else ads_printf(“failure\n”);

arc_itmexi
Input Output
RTSTR theme RTSTR status
RTSTR itmname

Xloads required: arcad

Item access

58 ArcCAD Extensions to ADS

This function checks for the existence of an item in a theme. If itmname exists
in theme, a T will be returned as a RTSTR. If itmname does not exist in theme,
RTNIL will be returned.

Example

/* This code fragment checks for the existence of a
user-defined item in a user-defined theme
*/

struct resbuf *in_rb, *out_rb;
char theme[32], item[32];
ads_getstring(0,”Name of theme: ”,theme);
ads_getstring(0,”Item name: ”,item);
in_rb= ads_buildlist(

RTSTR, “arc_itmexi”, RTSTR, theme,
RTSTR, item,
NULL);

ads_invoke(in_rb, out_rb);
if (out_rb->restype==RTSTR)

ads_printf(“Item exists\n”);
else ads_printf(“Item does not exist\n”);

arc_itmget
Input Output
RTSTR theme -1 dummy
RTSTR itmname 0 “ITEM”

1 itmname
2 type
70 column
71 width
72 ndec
73 owidth

Xloads required: arcad

This function returns the definition of an item. If itmname exists in theme, a
RESBUF containing the item’s name, type, width, number of decimal places,
and output width will be returned. If itmname does not exist in theme, RTNIL
will be returned.

Chapter 3

ArcCAD Extensions to ADS 59

Example

/* This code fragment retrieves the definition of the
item ‘AREA’ from the polygon theme ‘SAMPLE’
*/

struct resbuf *in_rb, *out_rb;
int start, width, ndec, owidth;
int ok, i;
char type[4];

in_rb= ads_buildlist(
RTSTR, “arc_itmget”, RTSTR, “area”,
RTSTR, “sample”,
NULL);

ads_invoke(in_rb,out_rb);
ok=1;
while (ok) {

i=0;
if (out_rb->restype== -1) i=1;
if (out_rb->restype== 0) i=1;
if (out_rb->restype== 1) i=1;
if (out_rb->restype== 2) {

i=1;
strcpy(type,out_rb->resval.rstring);

}
if (out_rb->restype== 70) {

i=1;
start=out_rb->resval.rint;

}
if (out_rb->restype== 71) {

i=1;
width=out_rb->resval.rint;

}
if (out_rb->restype== 72) {

i=1;
ndec=out_rb->resval.rint;

}
if (out_rb->restype== 73) {

i=1;
owidth=out_rb->resval.rint;

}
if (i==1) {

out_rb=out_rb->rbnext;
if (out_rb==NULL) ok=0;

}
else ok=0;

}

Item access

60 ArcCAD Extensions to ADS

arc_itmlst
Input Output
RTSTR theme RTSTR item name1
RTSHORT type RTSTR item name2

.....

.....
RTSTR item nameN

Xloads required: arcad

This function returns a list of the items defined in a theme’s feature attribute
table. If theme’s feature attribute table contains items, a RESBUF containing a
list of those item names is returned. If theme’s table does not contain any
items, or if the theme does not exist, RTNIL is returned. The type argument is
optional, used to return only items of specific types.

Four item types are currently available: Character, Date, Integer and Numeric.
Other item types available in dBASE, but not fully supported by ArcCAD,
include Logical (logical data type) and Memo (MEMO field).

Note: ArcCAD functions do not currently support the creation of MEMO
fields. However, if you use dBASE or other external programs to create
MEMO fields, ArcCAD displays or lists them.

The optional type argument instructs arc_itmlst to return a list of items of a
specific item type. The type argument is an integer (bit-coded) with values as
shown below:

Bit value Meaning

1 List numeric items

2 List integer items

4 List character items

8 List date items

16 List logical items

32 List memo fields

The bit values can be added in any combination to return a variety of item types.
For example, if you wish to list numeric and character items, you can set the
value of type to 5.

Caution: Future versions of ArcCAD might use additional arc_itmlst
control bits, so avoid setting bits in your applications that aren’t shown in the
above table.

Chapter 3

ArcCAD Extensions to ADS 61

Notes

 If the specified theme is currently related to another theme (established using
the relate or ddrelate command), the related theme’s items also displays.
Items in the related theme are prefixed with a pound sign (#).

 The arc_itmlst function cannot be performed on Annotation, Image, or
SQL record themes.

Example

The following code fragments show some uses of the arc_itmlst function with
the type argument. These examples assume that a theme named PARCELS
exists in the current drawing and contains two user-defined items: OWNER (a
character item storing the owner’s name) and DATE (a date item storing the
parcel registration date) in addition to the standard polygon attribute table (PAT)
items AREA, PERIMETER, PARCELS_ and PARCELS_ID.

/* This code fragment returns a list of CHARACTER and
DATE items of a PARCELS theme.
*/

struct resbuf *in_rb, *out_rb, *cur_rb;
in_rb = ads_buildlist (
 RTSTR, “arc_itmlst”, RTSTR, “parcels”,
 RTSHORT, 12, NULL);
cur_rb = out_rb;
while (cur_rb->restype == RTSTR && cur_rb != NULL) {
 ads_printf (“Item name: %s\n”,
 cur_rb->resval.rstring);
cur_rb = cur_rb->rbnext;
}
ads_relrb (in_rb);
ads_relrb (out_rb);

Chapter 4

ArcCAD Extensions to ADS 63

Command interface

cmd function
The arc_cmd function is a special function used to execute selected
ArcCAD® commands from within ADS™. This command is similar to the
ads_command function in standard ADS. Refer to the AutoCAD
Customization Guide for further details on the ads_command function.

arc_cmd
Input Output
RESBUF RTNIL

Xloads required: arcad

This function executes ArcCAD commands from within ADS and always
returns RTNIL. The arc_cmd function has a variable-length argument list.
Arguments to the arc_cmd function are treated as pairs: the first of each pair
identifies the type of the argument that follows, and the second, of the indicated
type, contains the actual data. The first argument in the list is always the
function name (arc_cmd) and is followed by a valid ArcCAD command.

The following example shows how to use the defthm command at the user
interface level and an equivalent arc_cmd function to define a line theme.

Command: defthm
Theme name (?): roads
Feature class: line
GIS data set (?/<roads>): \demo\roads
Line symbol number (0-100) (?/<0>): 3
Command:

/* This code fragment uses arc_cmd function to create
a line theme named “ROADS” that uses a GIS data set
named “\demo\roads” and a line symbol 3.
*/

Command interface

64 ArcCAD Extensions to ADS

struct resbuf *in_rb, *out_rb;
in_rb = ads_buildlist (

RTSTR, “arc_cmd”,
RTSTR, “defthm”,
RTSTR, “roads”,
RTSTR, “Line”,
RTSTR, “\\demo\\roads”,
RTSHORT, 3,
NULL);

ads_invoke (in_rb, out_rb);

An empty string (““) or NULL string is equivalent to entering a space on the
keyboard.

arc_arcadver
Input Output
-none- RTSTR version number

Xloads required: arcad

This function returns a string that contains the current ArcCAD version number.
Applications can tell what version of ArcCAD is being used by examining the
string returned by arc_arcadver.

Example

/* The following code fragment returns the current
ArcCAD version number.
*/

struct resbuf *in_rb, *out_rb;

in_rb = ads_buildlist (
 RTSTR, “arc_arcadver”, NULL);
ads_invoke (in_rb, &out_rb);
if (out_rb->restype == RTSTR)
 ads_printf (“Version is %s\n”,
 out_rb->resval.rstring);
ads_relrb (in_rb);
ads_relrb (out_rb);

Chapter 4

ArcCAD Extensions to ADS 65

arc_dirlst
Input Output
RTSTR path RTSTR name1
RTSHORT type RTSTR name2
RTSTR wildcard

.....
RTSTR nameN

Xloads required: arcad

This function returns a combination of files, subdirectories and coverages in the
current (or in a specified) directory. The path, type and wildcard arguments are
optional. If the optional arguments are omitted, arc_dirlst returns a RESBUF
containing a list of all files and subdirectories, including coverages, in the
current working directory. Note that you can either ignore all the optional
arguments or supply all the arguments. You cannot, however, omit only one of
the arguments.

path: This optional argument is a valid pathname to the desired directory to
search. A drive letter is permitted in the path, and you can use the forward
slash instead of the backslash (but remember that you must use \\ to obtain one
backslash in a string). A period (‘.’) represents the current working directory.

type: This optional argument is an integer value (bit-coded) that filters the type
of files to return. The following table explains the bit values and the data
returned with each:

Bit value Meaning

1 Return file names

2 Return subdirectory names

4 Return coverage names

The bit values can be added in any combination to return a variety of file types.

wildcard: The optional wildcard argument can be used to further filter the
returned list. Only objects matching the wildcard pattern are returned. In the
pattern, alphabetic characters and numerals are treated literally, a question mark
(?) matches a single character, an asterisk (*) matches a sequence of characters,
and certain other characters have special meanings within the pattern. Any valid
AutoCAD wildcard string is accepted. Refer to the ads_wcmatch function in
the AutoCAD Customization Guide for more details on wildcard options.

Command interface

66 ArcCAD Extensions to ADS

Example

/* This code fragment returns a list of files,
subdirectories and coverages in the current working
directory.
*/

struct resbuf *in_rb, *out_rb, *cur_rb;

in_rb = ads_buildlist (
 RTSTR, “arc_dirlst”, RTSTR, “.”, RTSHORT, 7,
 RTSTR, “*”, NULL);
ads_invoke (in_rb, &out_rb);
cur_rb = out_rb;
while (cur_rb->restype == RTSTR && cur_rb != NULL)
{
 ads_printf (“Name: %s\n”,
 cur_rb->resval.rstring)
cur_rb = cur_rb->rbnext;
}
ads_relrb (in_rb);
ads_relrb (out_rb);

Index

xi

ADS (AutoCAD Development
System) ii

ArcCAD; see also ArcCAD User’s
Guide
coverage iv
data model iii
data set iii
programmer guide

organization iii

Arithmetic expressions 13
arithmetic operators 13
display width 14
numeric operands 13

AutoLISP
configuration ii
what is AutoLISP ii

AutoLISP vs ADS ii

Boolean operations
AND 16
OR 26
XOR 29

Build See build command in the
ArcCAD Command Reference

Clean See clean command in the
ArcCAD Command Reference

Command interface 61
general rules 62

Configuration ii
ADS ii
AutoLISP ii

Coverage iv
directory structure iv

Cross reference files iv

Data set iii

ESRI_THEMES layers 1, 3

Feature
access 9
data functions 38 thru 52
deleting 38
format

annotation 40
line 42
point 41
polygon 43
record 43
tic 41

last 33
make 48
modify 51
name 25

functions 31 thru 37
next 34
selection set manipulation

functions 15 thru 30
selection sets 9

adding 15
clearing 17
current 28
deleting 18
getting 19
naming 25

Featlist option 48, 51

Flip 45

GIS data set ii

Implied attribute files 53

Index option 25

Internal variables 14
$E 14
$PI 14
$RECNO 14

Island 45

Item
access 53
defining 55
get 57
list 59
manipulation functions 55 thru 60

Itemlist option 19, 46, 48, 51

Level option 34

Limitations vii
coordinate rounding vii
display width 14
features vii
feature selection sets vii
GIS data sets viii
item names viii
themes vii

Links iii

Logical connectors 12

Logical expressions 11

PC ARC/INFO iii; see also
ArcCAD User’s Guide

Spatial selection 10, 19

Theme
access 1
defining 2
deleting See kill command in the

ArcCAD Command Reference
get 5
limitations vii, 1
list 6
manipulation functions 2 thru 8
modify 7

Topology v; see also ArcCAD
User’s Guide

Universe polygon 44

