The American Community Survey

Copyright © 2011 Esri
All rights reserved.
Printed in the United States of America.
The information contained in this document is the exclusive property of Esri. This work is protected under United States copyright law and other international copyright treaties and conventions. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, except as expressly permitted in writing by Esri. All requests should be sent to Attention: Contracts and Legal Services Manager, Esri, 380 New York Street, Redlands, CA 92373-8100 USA.

The information contained in this document is subject to change without notice.
Esri, the Esri globe logo, Business Analyst, esri.com, and @esri.com are trademarks, registered trademarks, or service marks of Esri in the United States, the European Community, or certain other jurisdictions. Other companies and products mentioned herein may be trademarks or registered trademarks of their respective trademark owners.

The American Community Survey

An Esri White Paper

Contents Page
Introduction 1
ACS versus Census 2000: What's the Difference? 1
Data Collection/Methodology 2
Time Frame 2
Sample Size 3
Margin of Error 3
Geography 4
Esri and ACS 4
Medians and Averages 5
Summary Profiles/Mapping: Reliability of ACS Data 5
Anomalies 6
Summary 7
Glossary 7

The American Community Survey

Introduction

ACS versus Census 2000: What's the Difference?

The American Community Survey (ACS) is the de facto replacement for sample data from the decennial census. The 2010 Census eliminated the long form. Those who want data on income, poverty status, education, the labor force, journey to work, marital status, languages spoken, migration, citizenship, disability, ancestry, military service, or housing characteristics must turn to the American Community Survey. ${ }^{1}$

The US Census Bureau was testing this replacement before Census 2000; however, the full rollout of the ACS did not happen until 2005. The first release of ACS data for all counties, plus tracts and block groups (BG) was in December 2010. Earlier releases of ACS data (2006 through 2009) were only available for larger geographic areas. Now the full effects of this replacement for census sample data can be seen and assessed.

The 2005-2009 data from the American Community Survey is now available from Esri's Business Analyst ${ }^{\mathrm{TM}}$ products. To introduce data users to this new source of sample data, Esri is providing reports, thematic mapping, and online help to explain the new data. The reports include two summary profiles (Population and Housing). Esri's reports/maps are designed to simplify the data and enhance its usability.

The first thing that you notice on an ACS report or map is the additional number shown for the margin of error (MOE). The margin of error represents the confidence interval for an ACS estimate. There were no margins of error reported for Census 2000 sample data. The MOE epitomizes the main difference between Census 2000 and ACS data-the precision of the estimates.

The subjects included in the ACS are similar to the Census 2000 sample; however, the method of collecting the data is very different, which introduces conspicuous differences in the results. The Census 2000 sample represented approximately 1 in 6 households and one point in time, April 1, 2000. The ACS represents approximately 1 in 40 households and continuous measurement of demographic characteristics through monthly surveys. Releases for all areas down to block groups represent averages over 60 months, or five years (2005-2009, inclusive).

There are important distinctions between sample data provided in conjunction with a census and sample data collected throughout the year, every year. The differences are summarized here, with references to additional documentation for the curious data user. The three key differences between Census 2000 sample data and ACS estimates are

■ Data collection: Ongoing monthly surveys (ACS) vs. single survey (Census 2000)

- Time frame: Period estimates (ACS) vs. point estimates (Census 2000)
- Sample size: 1 in 40 (or 50) (ACS) vs. 1 in 6 (Census 2000)

[^0]These differences in methodology can affect comparisons of the data over and above the demographic change that occurred between 2000 and the latter half of the decade.

Data Collection/ Methodology

The continuous data collection of the ACS necessitates changes in variable definitions, sample weighting, and sizes:

- Residency rules are different. The ACS defines a resident by a two-month rule. The census rule is "usual place of residence" or wherever a person spends most of the year. ACS data may include seasonal populations in addition to year-round residents.

■ Date-specific variables, like employment, represent monthly averages, including seasonal variations.

- Since income is also collected over the course of the previous 12 months, it must be adjusted by the Consumer Price Index to represent a calendar year.
- Migration is now measured from one year ago, not five years ago.
- Survey samples must be weighted by estimates for states, counties, or places, not census counts for states, counties, tracts, and block groups. (Estimates are subject to error.)

■ Sample sizes are smaller than previous decennial census samples since the data is collected from continuous surveys of the population, not once every 10 years.

Time Frame
Small monthly samples must be pooled to provide suitable estimates for the smallest areas. Areas with populations fewer than 20,000, including tracts and block groups, require 60 months of surveys. Even one-year ACS data (for areas with populations greater than 65,000) requires a 12 -month sample. ACS estimates are all period estimates, representing an interval of time, not a single date like April 1, 2010.

Interpreting the change between April 1, 2000, and a five-year average for 2005-2009 may be difficult.

- An average of 2005-2009 is literally an average of the fastest growth in the decade and the sharpest decline since the Great Depression. Growth prior to the recession will not be discernible from the severe economic downturn after the recession.
- Annual rates of change cannot be calculated, precluding comparison to any other periods in time.
- In the future, overlapping multiyear periods are likely to challenge data users who try to calculate change between periods.

Sample Size

The much smaller sample sizes of the ACS (1 in 40 compared to 1 in 6 in 2000) affect data reporting and produce much larger sampling errors.

- Smaller sample sizes require less detail in the data reported. For example, age by income in 2000 was reported for seven different age groups (10-year intervals, such as 25-34 years). ACS age by income is reported for four age groups (20-year intervals such as 25-44 years).
- Missing values for medians, per capita income, and the aggregates used to determine averages exist in the ACS database, especially at the block group level.
- Sampling errors must be reported as margins of error, because the variability of the estimates is increased with smaller sample sizes. In some cases, the sampling error can exceed the estimate.

ACS data looks like Census 2000 sample data, which was the base for Esri's demographic updates through 2010, but the resemblance is superficial. Continuous measurement and significantly smaller sample sizes yield less precise measures of common variables than Census 2000 sample data. All survey-based estimates are subject to sampling error and uncertainty. Any sample will differ from the total population because it represents just a fraction of the total. Census 2000 sample data represented a larger share of the population, and sampling errors were not reported. However, the Census Bureau deems it necessary to report measures of sampling error with all ACS estimates.

Margin of Error

The margin of error enables data users to measure the range of uncertainty around each estimate. This range can be calculated with 90 percent confidence by taking the estimate $+/-$ the MOE. For example, if the ACS reports an estimate of $100+/-20$, then there is a 90 percent chance that the value for the total population falls between 80 and 120 . The larger the MOE, the lower the precision of the estimate and the less confidence one should have that the estimate is close to the true population value.

The MOE measures the variability of an estimate due to sampling error. Simply, sampling error occurs when only part of the population is surveyed to estimate the total population. There will always be differences between the sample and the total. Statistically, sampling error measures the differences between multiple samples of the same population and differences within a sample of the population. Sampling error is directly related to sample size. The larger the sample size, the smaller the sampling error. Different areas are sampled at different rates to make the sample representative of the total population. Due to these complex sampling techniques, estimates in some areas have more sampling error than estimates in other areas. All MOEs are approximations of the true sampling error in an area and should not be considered exact. In addition, MOEs do not account for nonsampling error in the data and therefore should be thought of as a lower bound of the total error in a survey estimate.

The ACS reports MOEs with estimates for most standard census geographies. ACS estimates of total population and collapsed age, sex, and Hispanic origin estimates are controlled to annual estimates from the census' Population Estimates Program (PEP) for counties or groups of less populous counties. Since these estimates are directly controlled to independent estimates, there is no sampling error, and MOEs are zeroes. However,
controlling a period estimate to the average of five point estimates imparts additional errors in the data that are not measured by MOEs.

In some areas, the Census Bureau has reported missing values for estimates and/or MOEs. Missing values are prevalent for medians and the aggregate estimates used to calculate averages. When estimates are zero, the Census Bureau models the MOE calculation by comparing ACS estimates to the most recent census counts and deriving average weights for states and the country. ${ }^{2}$ At the state, county, tract, or block group level, MOEs for zero estimates will be the same regardless of the base of the table. For example, in Wyoming, zero estimates for all tables and all geographies will have the same MOE of 119.

Geography ACS geography is generally consistent with 2000 geography and the areas available with Esri's 2010 updates; however, there are differences. Congressional Districts and most block groups, tracts, and counties are consistent with 2010 updates. However, the Census Bureau "inadvertently" used Census 2010 geography in a few counties. Further review indicated that the areas in question were not necessarily compatible with 2010 geography, either. ${ }^{3}$ The most recent changes to counties in Alaska are represented in the ACS geography but not included in Esri's 2010 updates.

The core-based statistical areas (CBSA) reported by the ACS have been updated to be consistent with the latest definitions. County subdivisions, cities, and towns (places) are not strictly comparable due to changes in inventory and boundaries since 2000. For the most part, areas tabulated for the 2005-2009 release of ACS data represent boundaries as of January 2009. Additionally, Esri has made ACS data available for ZIP Codes and userdefined polygons. ACS data for ZIP Codes is not provided by the Census Bureau, but Esri has created ZIP Code ${ }^{\mathrm{TM}}$ data by developing an ACS BG-to-ZIP Code correspondence, applying it to ACS BG data, putting initial estimates through an extensive adjustment process, and recalculating margins of error. ZIP Code boundaries are current as of October 2009. The 2005-2009 ACS will be the final release of ACS data using Census 2000 geography as a base. The next release of the ACS will use Census 2010 geography.

Esri and ACS Clearly, ACS data differs from the familiar census sample data. To help data users understand the inconsistencies, Esri is providing reports, thematic mapping, and online help through the Business Analyst products. All products include the display of MOEs for the estimates. The reports include two summaries (Population and Housing).

Esri's reports/maps are designed to simplify the data and enhance its usability including the following:

- Enhanced geographic coverage: User-defined polygons and ZIP Codes
- Reliability thresholds to simplify interpretation of MOEs in summary profiles and mapping

[^1]
Medians and
 Averages

Summary Profiles/Mapping: Reliability of ACS Data

Esri offers the ability to query ACS data for the most popular geographies-user-defined polygons and ZIP Codes. Since these areas are not available from the Census Bureau, there are no tabulated MOEs. Estimating data for these custom areas requires aggregation of ACS estimates and recalculation of MOEs. Esri has developed algorithms to calculate MOEs using guidelines from the Census Bureau. These algorithms account for full and partial areas within the custom area.

There are several considerations to note when viewing MOEs for custom areas. As the number of estimates involved in the sum of a derived estimate increases, the approximate MOE becomes increasingly different from the MOE that would be derived directly from ACS microdata. The direction of this difference (positive or negative) is based on the correlation and covariance of the estimates. In addition, MOEs are not scalable. MOEs at smaller geographic levels do not add up to MOEs at larger levels. Therefore, analyses should always make use of the largest standard geographic unit possible. For example, if your area of interest includes 90 percent of a county, the MOE for the total county will be more accurate than the MOE derived from county parts.

A median represents the middle of a distribution. A number of variables are reported as distributions with median values such as household income, home value, contract rent, or year structure built. The Census Bureau estimates medians from standard distributions that are not released to the public. ${ }^{4}$ Therefore, their estimated medians will differ from medians that are calculated from the reported tables. For standard geographic areas, Esri displays the medians that are reported by the Census Bureau with its calculations of MOEs. Note that there are missing medians in the Census Bureau's tables, primarily for smaller areas like tracts and block groups. It is possible to find a distribution reported for a given variable, although the median is missing. If the median is not reported by the Census Bureau for a standard geographic area, then Esri reports display N/A, or not available.

However, medians are shown for nonstandard areas like ZIP Codes and polygons, which are not available from the Census Bureau. For these areas, Esri calculates the medians from the reported distributions. However, MOEs are not available.

Averages are commonly calculated from the aggregate value of a variable, such as the sum of all reported incomes by household or the total number of vehicles reported, divided by the total number of cases (e.g., households). Aggregates may also be tabulated as missing by the Census Bureau, even if a distribution is reported for the area. If an aggregate value is missing, then an average cannot be determined and will be displayed as N/A whether for standard or nonstandard areas.

The summary reports display MOEs for the estimates plus an additional column that Esri has added to help data users interpret the MOEs relative to the estimates. Decisions about the quality of an estimate based on the MOE alone can be difficult. A reliability symbol is displayed on the reports to give the user some perspective on the MOE. The symbol is based on an estimate's coefficient of variation (CV) and is meant to be used as a quick reference to gauge the usability of an ACS estimate.

[^2]The CV is a measure of relative error in the estimate. It measures the amount of sampling error in the estimate relative to the size of the estimate itself. A large amount of sampling error in a small estimate will generally discount the usefulness of the estimate; however, a small amount of sampling error in a large estimate shows that the estimate is reliable.

The reliability is based on thresholds that Esri has established based on the usability of the estimates. Users should be aware that these are generalized thresholds:

- High Reliability: Small CVs (less than or equal to 12 percent) are flagged green to indicate that the sampling error is small relative to the estimate, and the estimate is reasonably reliable. ${ }^{5}$

■ Medium Reliability: Estimates with CVs between 12 and 40 are flagged yellowuse with caution.

- Low Reliability: Large CVs (over 40 percent) are flagged red to indicate that the sampling error is large relative to the estimate. The estimate is considered very unreliable.
- Some estimates do not indicate a reliability. In these cases, either the estimate or MOE is missing, or the estimate is zero.

The amount of acceptable error in an estimate is subjective to the analysis at hand. Data users can compute a CV directly from the MOE; the CV is calculated as the ratio of the standard error to the estimate itself. To get the standard error, divide the MOE by 1.645 (for a 90 percent confidence interval). To calculate a CV, use the following equation:

$$
C V=\frac{\left(\frac{M O E}{1.645}\right)}{E S T I M A T E} \times 100
$$

The CV is commonly expressed as a percentage. For example, if you have an estimate of $80+/-20$, the CV for the estimate is 15.2 percent. This estimate should be used with caution, since the sampling error represents more than 15 percent of the estimate.

Anomalies

The 2005-2009 ACS is the first look at American Community Survey data for all areas of the country for both data users and vendors. Until this release, ACS data was only reported for areas with a population of 20,000 or more (three-year data) or more than 65,000 (one-year, or 12 -month, data). Some unexpected differences have been noted in the processing of the files:

- Missing values for medians and averages despite the reporting of distributions
- Missing tables, such as labor force status, at the block group level

[^3]■ Geographic codes inconsistent with Census 2000, TIGER 2009, and Census 2010

- Identical MOEs for zero estimates for all tables and all standard geographies at the substate level
- The same variable in different tables not necessarily having the same value

Summary

The American Community Survey is a product of its design. Data users (including vendors) cannot fix the differences that ensue from continuous measurement of the population in lieu of a decennial sample survey. Data users will have to balance the benefits of timely data with the drawbacks of estimate quality. To do this effectively, data users will have to make use of new tools to evaluate the quality of ACS data, such as MOEs, CVs, and tests for significant differences between samples.

In addition to statistical tools, the data user can employ larger areas of analysis or collapse some of the distributions if the reliability of the estimates is a problem. When comparing areas, the Census Bureau recommends focusing on percentages of distributions rather than estimate values.

Changes to the sample size, time frame, data collection, and survey methodology make ACS data something completely different from the sample data previously collected from the decennial census. When the Census Bureau reports sampling error with the survey estimates, it's time to pay attention to the differences.

Glossary ACS Estimate: The ACS replaces census sample data. Esri is releasing the 2005-2009 ACS estimates, five-year period data collected monthly from January 1, 2005, through December 31, 2009. Although the ACS includes many of the subjects previously covered by the decennial census sample, there are significant differences between the two surveys including fundamental differences in survey design and residency rules.

Coefficient of variation (CV): The CV measures the amount of sampling error relative to the size of the estimate, expressed as a percentage. A large amount of sampling error in a small estimate will generally discount the usefulness of the estimate; however, a small amount of sampling error in a large estimate shows that the estimate is reliable.

Confidence interval: The confidence interval is another way to measure the uncertainty of an estimate. The upper bound is the estimate plus the margin of error; the lower bound is the estimate minus the margin of error. (If the lower bound is negative, then zero is assumed for the lower bound.) Confidence intervals for ACS estimates represent a 90 percent certainty that the interval around the estimate includes the true population value.

Margin of error (MOE): The MOE is a measure of the variability of the estimate due to sampling error. MOEs enable the data user to measure the range of uncertainty for each estimate with 90 percent confidence. The range of uncertainty is called the confidence interval, and it is calculated by taking the estimate $+/$ - the MOE. For example, if the ACS reports an estimate of 100 with an MOE of $+/-20$, then you can be 90 percent certain the value for the whole population falls between 80 and 120 .

Nonsampling error: All other survey errors that are not sampling errors are collectively classified as nonsampling error. This type of error includes errors from interviewers, respondents, coverage, nonresponse, imputation, and processing. Nonsampling error also includes unchecked methodological errors from controlling ACS estimates to independent population estimates.

Period estimates: Estimates based on data collected over a period of time. ACS five-year data is collected monthly over 60 months and is sometimes referred to as a "rolling survey."

Point estimates: Estimates based on data collected at a single point in time. The decennial census refers to April 1 and captures a snapshot of the population at that time.

Reliability: These symbols represent threshold values that Esri has established from the coefficients of variation to designate the usability of the estimates:

- High Reliability: Small CVs (less than or equal to 12 percent) are flagged green to indicate that the sampling error is small relative to the estimate and the estimate is reasonably reliable. ${ }^{6}$

■ Medium Reliability: Estimates with CVs between 12 and 40 are flagged yellowuse with caution.

- Low Reliability: Large CVs (over 40 percent) are flagged red to indicate that the sampling error is large relative to the estimate. The estimate is considered very unreliable.

Residence rules: Rules used to establish a primary residence to reduce duplication. The ACS defines a resident by a two-month rule. The census rule is "usual place of residence" or wherever a person spends most of the year. ACS data may include seasonal populations in addition to year-round residents.

Sampling error: Errors that occur from making inferences about the whole population from only a sample of the population are collectively referred to as sampling error. Sampling error measures the variability within each sample as well as the variability between all possible samples. All survey data has sampling error.

Statistical significance: Tests for statistical significance are used to determine if the difference between two survey estimates is real or likely due to sampling error alone. Statistical significance is shown at the 90 percent confidence level. Therefore, if estimate differences are statistically significant, there is less than a 10 percent chance that the difference is due to sampling error.

[^4]

About Esri

Since 1969, Esri has been helping organizations map and model our world. Esri's GIS software tools and methodologies enable these organizations to effectively analyze and manage their geographic information and make better decisions. They are supported by our experienced and knowledgeable staff and extensive network of business partners and international distributors.

A full-service GIS company, Esri supports the implementation of GIS technology on desktops, servers, online services, and mobile devices These GIS solutions are flexible, customizable, and easy to use.

Our Focus

Esri software is used by hundreds of thousands of organizations that apply GIS to solve problems and make our world a better place to live. We pay close attention to our users to ensure they have the best tools possible to accomplish their missions. A comprehensive suite of training options offered worldwide helps our users fully leverage their GIS applications.

Esri is a socially conscious business, actively supporting organizations involved in education, conservation, sustainable development, and humanitarian affairs.

Contact Esri

1-800-GIS-XPRT (1-800-447-9778)
Phone: 909-793-2853
Fax: 909-793-5953
info@esri.com
esri.com

Offices worldwide esri.com/locations

380 New York Street
Redlands, CA 92373-8100 USA

[^0]: ${ }^{1}$ General information about the American Community Survey is summarized here. However, this is the Census Bureau's data. More information is available from the ACS handbooks at http://www.census.gov/acs/www/guidance_for_data_users/handbooks/.

[^1]: ${ }^{2}$ US Census Bureau, "Variance Estimation," Design and Methodology American Community Survey (Washington, D.C.: US Government Printing Office, 2010), 12-4-12-5.
 ${ }^{3}$ For more information, see http://www.census.gov/acs/www/data_documentation/geography_notes/\#tracts.

[^2]: ${ }^{4}$ For more information on the standard distributions, see the Census Bureau's documentation at http://www.census.gov/acs/www/Downloads/data documentation/SubjectDefinitions 2009_ACSSubjectDefinitions.pdf, appendix A.

[^3]: ${ }^{5}$ National Research Council, Using the American Community Survey: Benefits and Challenges (Washington, D.C.: The National Academies Press, 2007).

[^4]: ${ }^{6}$ National Research Council, Using the American Community Survey: Benefits and Challenges (Washington, D.C.: The National Academies Press, 2007).

